]> git.ipfire.org Git - thirdparty/u-boot.git/blame - arch/arm/mach-omap2/emif-common.c
Revert "Merge patch series "arm: dts: am62-beagleplay: Fix Beagleplay Ethernet""
[thirdparty/u-boot.git] / arch / arm / mach-omap2 / emif-common.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
2ae610f0
A
2/*
3 * EMIF programming
4 *
5 * (C) Copyright 2010
6 * Texas Instruments, <www.ti.com>
7 *
8 * Aneesh V <aneesh@ti.com>
2ae610f0
A
9 */
10
d678a59d 11#include <common.h>
db41d65a 12#include <hang.h>
9b4a205f 13#include <init.h>
f7ae49fc 14#include <log.h>
5e6267af 15#include <net.h>
bb772a59 16#include <asm/emif.h>
af1d002f 17#include <asm/arch/clock.h>
2ae610f0
A
18#include <asm/arch/sys_proto.h>
19#include <asm/omap_common.h>
501f0ef3 20#include <asm/omap_sec_common.h>
2ae610f0 21#include <asm/utils.h>
25476382 22#include <linux/compiler.h>
650fda93 23#include <asm/ti-common/ti-edma3.h>
c05ed00a 24#include <linux/delay.h>
2ae610f0 25
86021143
LV
26static int emif1_enabled = -1, emif2_enabled = -1;
27
38f25b12
LV
28void set_lpmode_selfrefresh(u32 base)
29{
30 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
31 u32 reg;
32
33 reg = readl(&emif->emif_pwr_mgmt_ctrl);
34 reg &= ~EMIF_REG_LP_MODE_MASK;
35 reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
36 reg &= ~EMIF_REG_SR_TIM_MASK;
37 writel(reg, &emif->emif_pwr_mgmt_ctrl);
38
39 /* dummy read for the new SR_TIM to be loaded */
40 readl(&emif->emif_pwr_mgmt_ctrl);
41}
42
7c97b715 43void force_emif_self_refresh(void)
38f25b12
LV
44{
45 set_lpmode_selfrefresh(EMIF1_BASE);
663f6fca
LV
46 if (!is_dra72x())
47 set_lpmode_selfrefresh(EMIF2_BASE);
38f25b12
LV
48}
49
bb772a59 50inline u32 emif_num(u32 base)
2ae610f0 51{
bb772a59 52 if (base == EMIF1_BASE)
2ae610f0 53 return 1;
bb772a59 54 else if (base == EMIF2_BASE)
2ae610f0
A
55 return 2;
56 else
57 return 0;
58}
59
60static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
61{
62 u32 mr;
63 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
64
bb772a59 65 mr_addr |= cs << EMIF_REG_CS_SHIFT;
2ae610f0
A
66 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
67 if (omap_revision() == OMAP4430_ES2_0)
68 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
69 else
70 mr = readl(&emif->emif_lpddr2_mode_reg_data);
71 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
72 cs, mr_addr, mr);
55c12849
SS
73 if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
74 ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
75 ((mr & 0xff000000) >> 24) == (mr & 0xff))
76 return mr & 0xff;
77 else
78 return mr;
2ae610f0
A
79}
80
81static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
82{
83 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
84
bb772a59 85 mr_addr |= cs << EMIF_REG_CS_SHIFT;
2ae610f0
A
86 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
87 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
88}
89
90void emif_reset_phy(u32 base)
91{
92 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
93 u32 iodft;
94
95 iodft = readl(&emif->emif_iodft_tlgc);
bb772a59 96 iodft |= EMIF_REG_RESET_PHY_MASK;
2ae610f0
A
97 writel(iodft, &emif->emif_iodft_tlgc);
98}
99
100static void do_lpddr2_init(u32 base, u32 cs)
101{
102 u32 mr_addr;
e05a4f1f 103 const struct lpddr2_mr_regs *mr_regs;
2ae610f0 104
e05a4f1f 105 get_lpddr2_mr_regs(&mr_regs);
2ae610f0
A
106 /* Wait till device auto initialization is complete */
107 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
108 ;
e05a4f1f 109 set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
2ae610f0
A
110 /*
111 * tZQINIT = 1 us
112 * Enough loops assuming a maximum of 2GHz
113 */
f4010734 114
2ae610f0 115 sdelay(2000);
f4010734 116
e05a4f1f
LV
117 set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
118 set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
f4010734 119
2ae610f0
A
120 /*
121 * Enable refresh along with writing MR2
122 * Encoding of RL in MR2 is (RL - 2)
123 */
bb772a59 124 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
e05a4f1f 125 set_mr(base, cs, mr_addr, mr_regs->mr2);
f4010734 126
e05a4f1f
LV
127 if (mr_regs->mr3 > 0)
128 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
2ae610f0
A
129}
130
131static void lpddr2_init(u32 base, const struct emif_regs *regs)
132{
133 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
134
135 /* Not NVM */
bb772a59 136 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
2ae610f0
A
137
138 /*
139 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
140 * when EMIF_SDRAM_CONFIG register is written
141 */
bb772a59 142 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
2ae610f0
A
143
144 /*
145 * Set the SDRAM_CONFIG and PHY_CTRL for the
146 * un-locked frequency & default RL
147 */
148 writel(regs->sdram_config_init, &emif->emif_sdram_config);
0474fb0e 149 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
f4010734 150
25476382 151 do_ext_phy_settings(base, regs);
2ae610f0
A
152
153 do_lpddr2_init(base, CS0);
bb772a59 154 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
2ae610f0
A
155 do_lpddr2_init(base, CS1);
156
157 writel(regs->sdram_config, &emif->emif_sdram_config);
158 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
159
160 /* Enable refresh now */
bb772a59 161 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
2ae610f0 162
25476382
S
163 }
164
165__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
166{
2ae610f0
A
167}
168
bb772a59 169void emif_update_timings(u32 base, const struct emif_regs *regs)
2ae610f0
A
170{
171 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
172
de095474
LV
173 if (!is_dra7xx())
174 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
175 else
176 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
177
2ae610f0
A
178 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
179 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
180 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
181 if (omap_revision() == OMAP4430_ES1_0) {
182 /* ES1 bug EMIF should be in force idle during freq_update */
183 writel(0, &emif->emif_pwr_mgmt_ctrl);
184 } else {
185 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
186 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
187 }
188 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
189 writel(regs->zq_config, &emif->emif_zq_config);
190 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
191 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
924eb369 192
3ac8c0bf 193 if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
bb772a59
S
194 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
195 &emif->emif_l3_config);
196 } else if (omap_revision() >= OMAP4460_ES1_0) {
924eb369
A
197 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
198 &emif->emif_l3_config);
199 } else {
200 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
201 &emif->emif_l3_config);
2ae610f0
A
202 }
203}
204
f5af0827 205#ifndef CONFIG_OMAP44XX
6c70935d 206static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
784ab7c5
LV
207{
208 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
209
210 /* keep sdram in self-refresh */
211 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
212 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
213 __udelay(130);
214
215 /*
216 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
6c70935d
S
217 * Invert clock adds an additional half cycle delay on the
218 * command interface. The additional half cycle, is usually
219 * meant to enable leveling in the situation that DQS is later
220 * than CK on the board.It also helps provide some additional
221 * margin for leveling.
784ab7c5 222 */
6c70935d
S
223 writel(regs->emif_ddr_phy_ctlr_1,
224 &emif->emif_ddr_phy_ctrl_1);
225
226 writel(regs->emif_ddr_phy_ctlr_1,
227 &emif->emif_ddr_phy_ctrl_1_shdw);
784ab7c5
LV
228 __udelay(130);
229
230 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
6c70935d 231 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
784ab7c5
LV
232
233 /* Launch Full leveling */
234 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
235
236 /* Wait till full leveling is complete */
237 readl(&emif->emif_rd_wr_lvl_ctl);
6c70935d 238 __udelay(130);
784ab7c5
LV
239
240 /* Read data eye leveling no of samples */
241 config_data_eye_leveling_samples(base);
242
6c70935d
S
243 /*
244 * Launch 8 incremental WR_LVL- to compensate for
245 * PHY limitation.
246 */
247 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
248 &emif->emif_rd_wr_lvl_ctl);
249
784ab7c5
LV
250 __udelay(130);
251
252 /* Launch Incremental leveling */
253 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
6c70935d 254 __udelay(130);
784ab7c5
LV
255}
256
6213db78 257static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
6c70935d 258{
6213db78
LV
259 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
260 u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
e3ce3aa1 261 u32 reg, i, phy;
6213db78 262
e18cd3d7 263 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
e3ce3aa1 264 phy = readl(&emif->emif_ddr_phy_ctrl_1);
6213db78
LV
265
266 /* Update PHY_REG_RDDQS_RATIO */
267 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
e3ce3aa1
LV
268 if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
269 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
270 reg = readl(emif_phy_status++);
271 writel(reg, emif_ext_phy_ctrl_reg++);
272 writel(reg, emif_ext_phy_ctrl_reg++);
273 }
6213db78
LV
274
275 /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
276 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
e18cd3d7 277 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
e3ce3aa1
LV
278 if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
279 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
280 reg = readl(emif_phy_status++);
281 writel(reg, emif_ext_phy_ctrl_reg++);
282 writel(reg, emif_ext_phy_ctrl_reg++);
283 }
6213db78
LV
284
285 /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
286 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
e18cd3d7 287 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
e3ce3aa1
LV
288 if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
289 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
290 reg = readl(emif_phy_status++);
291 writel(reg, emif_ext_phy_ctrl_reg++);
292 writel(reg, emif_ext_phy_ctrl_reg++);
293 }
6213db78
LV
294
295 /* Disable Leveling */
296 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
297 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
298 writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
92b0482c
S
299}
300
6213db78
LV
301static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
302{
303 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
304
305 /* Clear Error Status */
306 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
307 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
308 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
309
310 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
311 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
312 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
313
314 /* Disable refreshed before leveling */
d6927a5d
LV
315 clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
316 EMIF_REG_INITREF_DIS_MASK);
6213db78
LV
317
318 /* Start Full leveling */
319 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
320
321 __udelay(300);
322
323 /* Check for leveling timeout */
324 if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
325 printf("Leveling timeout on EMIF%d\n", emif_num(base));
326 return;
327 }
328
329 /* Enable refreshes after leveling */
d6927a5d 330 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
6213db78
LV
331
332 debug("HW leveling success\n");
333 /*
334 * Update slave ratios in EXT_PHY_CTRLx registers
335 * as per HW leveling output
336 */
337 update_hwleveling_output(base, regs);
338}
339
650fda93
LV
340static void dra7_reset_ddr_data(u32 base, u32 size)
341{
342#if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
343 enable_edma3_clocks();
344
345 edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
346
347 disable_edma3_clocks();
348#else
349 memset((void *)base, 0, size);
350#endif
351}
352
353static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
354{
355 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
2b2e1573 356 u32 rgn, rgn_start, size, ctrl_reg;
650fda93
LV
357
358 /* ECC available only on dra76x EMIF1 */
359 if ((base != EMIF1_BASE) || !is_dra76x())
360 return;
361
362 if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
d0a37a5e
KB
363 /* Disable high-order interleaving */
364 clrbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
365
2b2e1573
KB
366#ifdef CONFIG_DRA7XX
367 /* Clear the status flags and other history */
368 writel(readl(&emif->emif_1b_ecc_err_cnt),
369 &emif->emif_1b_ecc_err_cnt);
370 writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
371 writel(0x2, &emif->emif_1b_ecc_err_addr_log);
372 writel(0x1, &emif->emif_2b_ecc_err_addr_log);
373 writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
374 EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
375 EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
376 &emif->emif_irqstatus_sys);
377#endif
650fda93
LV
378 writel(regs->emif_ecc_address_range_1,
379 &emif->emif_ecc_address_range_1);
380 writel(regs->emif_ecc_address_range_2,
381 &emif->emif_ecc_address_range_2);
2b2e1573
KB
382
383 /* Disable RMW and ECC verification for read accesses */
384 ctrl_reg = (regs->emif_ecc_ctrl_reg &
385 ~EMIF_ECC_REG_RMW_EN_MASK) |
386 EMIF_ECC_CTRL_REG_ECC_VERIFY_DIS_MASK;
387 writel(ctrl_reg, &emif->emif_ecc_ctrl_reg);
650fda93
LV
388
389 /* Set region1 memory with 0 */
ed474ae0
LV
390 rgn_start = (regs->emif_ecc_address_range_1 &
391 EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
aa6e94de 392 rgn = rgn_start + CFG_SYS_SDRAM_BASE;
650fda93 393 size = (regs->emif_ecc_address_range_1 &
ed474ae0 394 EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
650fda93
LV
395
396 if (regs->emif_ecc_ctrl_reg &
397 EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
398 dra7_reset_ddr_data(rgn, size);
399
400 /* Set region2 memory with 0 */
ed474ae0
LV
401 rgn_start = (regs->emif_ecc_address_range_2 &
402 EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
aa6e94de 403 rgn = rgn_start + CFG_SYS_SDRAM_BASE;
650fda93 404 size = (regs->emif_ecc_address_range_2 &
ed474ae0 405 EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
650fda93
LV
406
407 if (regs->emif_ecc_ctrl_reg &
408 EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
409 dra7_reset_ddr_data(rgn, size);
410
2b2e1573
KB
411 /* Default value enables RMW and ECC verification */
412 writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
650fda93
LV
413 }
414}
415
6213db78
LV
416static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
417{
418 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
419
4571c519 420 if (warm_reset()) {
6213db78 421 emif_reset_phy(base);
4571c519
LV
422 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
423 }
6213db78
LV
424 do_ext_phy_settings(base, regs);
425
426 writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
427 &emif->emif_sdram_ref_ctrl);
428 /* Update timing registers */
429 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
430 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
431 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
432
433 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
434 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
435 writel(regs->zq_config, &emif->emif_zq_config);
436 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
437 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
438 writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
439
440 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
441 writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
442
443 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
444
445 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
446 writel(regs->sdram_config_init, &emif->emif_sdram_config);
447
448 __udelay(1000);
449
450 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
451
650fda93
LV
452 if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
453 /*
454 * Perform Dummy ECC setup just to allow hardware
455 * leveling of ECC memories
456 */
457 if (is_dra76x() && (base == EMIF1_BASE) &&
458 (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
459 writel(0, &emif->emif_ecc_address_range_1);
460 writel(0, &emif->emif_ecc_address_range_2);
461 writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
462 EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
463 &emif->emif_ecc_ctrl_reg);
464 }
465
6213db78 466 dra7_ddr3_leveling(base, regs);
650fda93
LV
467
468 /* Disable ECC */
469 if (is_dra76x())
470 writel(0, &emif->emif_ecc_ctrl_reg);
471 }
472
473 /* Enable ECC as necessary */
474 dra7_enable_ecc(base, regs);
6213db78
LV
475}
476
477static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
784ab7c5
LV
478{
479 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
784ab7c5 480
802bb57a
LV
481 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
482 writel(regs->sdram_config_init, &emif->emif_sdram_config);
784ab7c5
LV
483 /*
484 * Set SDRAM_CONFIG and PHY control registers to locked frequency
485 * and RL =7. As the default values of the Mode Registers are not
486 * defined, contents of mode Registers must be fully initialized.
487 * H/W takes care of this initialization
488 */
784ab7c5
LV
489 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
490
491 /* Update timing registers */
492 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
493 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
494 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
495
784ab7c5
LV
496 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
497
6213db78
LV
498 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
499 writel(regs->sdram_config_init, &emif->emif_sdram_config);
500 do_ext_phy_settings(base, regs);
784ab7c5 501
784ab7c5 502 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
6213db78
LV
503 omap5_ddr3_leveling(base, regs);
504}
784ab7c5 505
6213db78
LV
506static void ddr3_init(u32 base, const struct emif_regs *regs)
507{
508 if (is_omap54xx())
509 omap5_ddr3_init(base, regs);
510 else
511 dra7_ddr3_init(base, regs);
784ab7c5 512}
f5af0827 513#endif
784ab7c5 514
095aea29
A
515#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
516#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
517
095aea29
A
518/*
519 * Organization and refresh requirements for LPDDR2 devices of different
520 * types and densities. Derived from JESD209-2 section 2.4
521 */
522const struct lpddr2_addressing addressing_table[] = {
523 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
524 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
525 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
526 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
527 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
528 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
529 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
530 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
531 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
532 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
533 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
534};
535
536static const u32 lpddr2_density_2_size_in_mbytes[] = {
537 8, /* 64Mb */
538 16, /* 128Mb */
539 32, /* 256Mb */
540 64, /* 512Mb */
541 128, /* 1Gb */
542 256, /* 2Gb */
543 512, /* 4Gb */
544 1024, /* 8Gb */
545 2048, /* 16Gb */
546 4096 /* 32Gb */
547};
548
549/*
550 * Calculate the period of DDR clock from frequency value and set the
551 * denominator and numerator in global variables for easy access later
552 */
553static void set_ddr_clk_period(u32 freq)
554{
555 /*
556 * period = 1/freq
557 * period_in_ns = 10^9/freq
558 */
559 *T_num = 1000000000;
560 *T_den = freq;
561 cancel_out(T_num, T_den, 200);
562
563}
564
565/*
566 * Convert time in nano seconds to number of cycles of DDR clock
567 */
568static inline u32 ns_2_cycles(u32 ns)
569{
570 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
571}
572
573/*
574 * ns_2_cycles with the difference that the time passed is 2 times the actual
575 * value(to avoid fractions). The cycles returned is for the original value of
576 * the timing parameter
577 */
578static inline u32 ns_x2_2_cycles(u32 ns)
579{
580 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
581}
582
583/*
584 * Find addressing table index based on the device's type(S2 or S4) and
585 * density
586 */
587s8 addressing_table_index(u8 type, u8 density, u8 width)
588{
589 u8 index;
590 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
591 return -1;
592
593 /*
594 * Look at the way ADDR_TABLE_INDEX* values have been defined
595 * in emif.h compared to LPDDR2_DENSITY_* values
596 * The table is layed out in the increasing order of density
597 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
598 * at the end
599 */
600 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
601 index = ADDR_TABLE_INDEX1GS2;
602 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
603 index = ADDR_TABLE_INDEX2GS2;
604 else
605 index = density;
606
607 debug("emif: addressing table index %d\n", index);
608
609 return index;
610}
611
612/*
613 * Find the the right timing table from the array of timing
614 * tables of the device using DDR clock frequency
615 */
616static const struct lpddr2_ac_timings *get_timings_table(const struct
d679a529 617 lpddr2_ac_timings *const *device_timings,
095aea29
A
618 u32 freq)
619{
620 u32 i, temp, freq_nearest;
621 const struct lpddr2_ac_timings *timings = 0;
622
623 emif_assert(freq <= MAX_LPDDR2_FREQ);
624 emif_assert(device_timings);
625
626 /*
627 * Start with the maximum allowed frequency - that is always safe
628 */
629 freq_nearest = MAX_LPDDR2_FREQ;
630 /*
631 * Find the timings table that has the max frequency value:
632 * i. Above or equal to the DDR frequency - safe
633 * ii. The lowest that satisfies condition (i) - optimal
634 */
635 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
636 temp = device_timings[i]->max_freq;
637 if ((temp >= freq) && (temp <= freq_nearest)) {
638 freq_nearest = temp;
639 timings = device_timings[i];
640 }
641 }
642 debug("emif: timings table: %d\n", freq_nearest);
643 return timings;
644}
645
646/*
647 * Finds the value of emif_sdram_config_reg
648 * All parameters are programmed based on the device on CS0.
649 * If there is a device on CS1, it will be same as that on CS0 or
650 * it will be NVM. We don't support NVM yet.
651 * If cs1_device pointer is NULL it is assumed that there is no device
652 * on CS1
653 */
654static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
655 const struct lpddr2_device_details *cs1_device,
656 const struct lpddr2_addressing *addressing,
657 u8 RL)
658{
659 u32 config_reg = 0;
660
bb772a59 661 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
095aea29 662 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
bb772a59 663 EMIF_REG_IBANK_POS_SHIFT;
095aea29 664
bb772a59 665 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
095aea29 666
bb772a59 667 config_reg |= RL << EMIF_REG_CL_SHIFT;
095aea29
A
668
669 config_reg |= addressing->row_sz[cs0_device->io_width] <<
bb772a59 670 EMIF_REG_ROWSIZE_SHIFT;
095aea29 671
bb772a59 672 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
095aea29
A
673
674 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
bb772a59 675 EMIF_REG_EBANK_SHIFT;
095aea29
A
676
677 config_reg |= addressing->col_sz[cs0_device->io_width] <<
bb772a59 678 EMIF_REG_PAGESIZE_SHIFT;
095aea29
A
679
680 return config_reg;
681}
682
683static u32 get_sdram_ref_ctrl(u32 freq,
684 const struct lpddr2_addressing *addressing)
685{
686 u32 ref_ctrl = 0, val = 0, freq_khz;
687 freq_khz = freq / 1000;
688 /*
689 * refresh rate to be set is 'tREFI * freq in MHz
690 * division by 10000 to account for khz and x10 in t_REFI_us_x10
691 */
692 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
bb772a59 693 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
095aea29
A
694
695 return ref_ctrl;
696}
697
698static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
699 const struct lpddr2_min_tck *min_tck,
700 const struct lpddr2_addressing *addressing)
701{
702 u32 tim1 = 0, val = 0;
703 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
bb772a59 704 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
095aea29
A
705
706 if (addressing->num_banks == BANKS8)
707 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
708 (4 * (*T_num)) - 1;
709 else
710 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
711
bb772a59 712 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
095aea29
A
713
714 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
bb772a59 715 tim1 |= val << EMIF_REG_T_RC_SHIFT;
095aea29
A
716
717 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
bb772a59 718 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
095aea29
A
719
720 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
bb772a59 721 tim1 |= val << EMIF_REG_T_WR_SHIFT;
095aea29
A
722
723 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
bb772a59 724 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
095aea29
A
725
726 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
bb772a59 727 tim1 |= val << EMIF_REG_T_RP_SHIFT;
095aea29
A
728
729 return tim1;
730}
731
732static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
733 const struct lpddr2_min_tck *min_tck)
734{
735 u32 tim2 = 0, val = 0;
736 val = max(min_tck->tCKE, timings->tCKE) - 1;
bb772a59 737 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
095aea29
A
738
739 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
bb772a59 740 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
095aea29
A
741
742 /*
743 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
744 * same value
745 */
746 val = ns_2_cycles(timings->tXSR) - 1;
bb772a59
S
747 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
748 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
095aea29
A
749
750 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
bb772a59 751 tim2 |= val << EMIF_REG_T_XP_SHIFT;
095aea29
A
752
753 return tim2;
754}
755
756static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
757 const struct lpddr2_min_tck *min_tck,
758 const struct lpddr2_addressing *addressing)
759{
760 u32 tim3 = 0, val = 0;
761 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
bb772a59 762 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
095aea29
A
763
764 val = ns_2_cycles(timings->tRFCab) - 1;
bb772a59 765 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
095aea29
A
766
767 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
bb772a59 768 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
095aea29
A
769
770 val = ns_2_cycles(timings->tZQCS) - 1;
bb772a59 771 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
095aea29
A
772
773 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
bb772a59 774 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
095aea29
A
775
776 return tim3;
777}
778
779static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
780 const struct lpddr2_addressing *addressing,
781 u8 volt_ramp)
782{
783 u32 zq = 0, val = 0;
784 if (volt_ramp)
785 val =
786 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
787 addressing->t_REFI_us_x10;
788 else
789 val =
790 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
791 addressing->t_REFI_us_x10;
bb772a59 792 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
095aea29 793
bb772a59 794 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
095aea29 795
bb772a59 796 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
095aea29 797
bb772a59 798 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
095aea29
A
799
800 /*
801 * Assuming that two chipselects have a single calibration resistor
802 * If there are indeed two calibration resistors, then this flag should
803 * be enabled to take advantage of dual calibration feature.
804 * This data should ideally come from board files. But considering
805 * that none of the boards today have calibration resistors per CS,
806 * it would be an unnecessary overhead.
807 */
bb772a59 808 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
095aea29 809
bb772a59 810 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
095aea29 811
bb772a59 812 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
095aea29
A
813
814 return zq;
815}
816
817static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
818 const struct lpddr2_addressing *addressing,
819 u8 is_derated)
820{
821 u32 alert = 0, interval;
822 interval =
823 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
824 if (is_derated)
825 interval *= 4;
bb772a59 826 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
095aea29 827
bb772a59 828 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
095aea29 829
bb772a59 830 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
095aea29 831
bb772a59 832 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
095aea29 833
bb772a59 834 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
095aea29 835
bb772a59 836 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
095aea29
A
837
838 return alert;
839}
840
841static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
842{
843 u32 idle = 0, val = 0;
844 if (volt_ramp)
924eb369 845 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
095aea29
A
846 else
847 /*Maximum value in normal conditions - suggested by hw team */
848 val = 0x1FF;
bb772a59 849 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
095aea29 850
bb772a59 851 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
095aea29
A
852
853 return idle;
854}
855
856static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
857{
858 u32 phy = 0, val = 0;
859
bb772a59 860 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
095aea29
A
861
862 if (freq <= 100000000)
863 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
864 else if (freq <= 200000000)
865 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
866 else
867 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
bb772a59 868 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
095aea29
A
869
870 /* Other fields are constant magic values. Hardcode them together */
871 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
bb772a59 872 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
095aea29
A
873
874 return phy;
875}
876
d3d82e9f 877static u32 get_emif_mem_size(u32 base)
095aea29
A
878{
879 u32 size_mbytes = 0, temp;
d3d82e9f
LV
880 struct emif_device_details dev_details;
881 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
882 u32 emif_nr = emif_num(base);
095aea29 883
d3d82e9f
LV
884 emif_reset_phy(base);
885 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
886 &cs0_dev_details);
887 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
888 &cs1_dev_details);
889 emif_reset_phy(base);
095aea29 890
d3d82e9f
LV
891 if (dev_details.cs0_device_details) {
892 temp = dev_details.cs0_device_details->density;
095aea29
A
893 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
894 }
895
d3d82e9f
LV
896 if (dev_details.cs1_device_details) {
897 temp = dev_details.cs1_device_details->density;
095aea29
A
898 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
899 }
900 /* convert to bytes */
901 return size_mbytes << 20;
902}
903
904/* Gets the encoding corresponding to a given DMM section size */
905u32 get_dmm_section_size_map(u32 section_size)
906{
907 /*
908 * Section size mapping:
909 * 0x0: 16-MiB section
910 * 0x1: 32-MiB section
911 * 0x2: 64-MiB section
912 * 0x3: 128-MiB section
913 * 0x4: 256-MiB section
914 * 0x5: 512-MiB section
915 * 0x6: 1-GiB section
916 * 0x7: 2-GiB section
917 */
918 section_size >>= 24; /* divide by 16 MB */
919 return log_2_n_round_down(section_size);
920}
921
922static void emif_calculate_regs(
923 const struct emif_device_details *emif_dev_details,
924 u32 freq, struct emif_regs *regs)
925{
926 u32 temp, sys_freq;
927 const struct lpddr2_addressing *addressing;
928 const struct lpddr2_ac_timings *timings;
929 const struct lpddr2_min_tck *min_tck;
930 const struct lpddr2_device_details *cs0_dev_details =
931 emif_dev_details->cs0_device_details;
932 const struct lpddr2_device_details *cs1_dev_details =
933 emif_dev_details->cs1_device_details;
934 const struct lpddr2_device_timings *cs0_dev_timings =
935 emif_dev_details->cs0_device_timings;
936
937 emif_assert(emif_dev_details);
938 emif_assert(regs);
939 /*
940 * You can not have a device on CS1 without one on CS0
941 * So configuring EMIF without a device on CS0 doesn't
942 * make sense
943 */
944 emif_assert(cs0_dev_details);
945 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
946 /*
947 * If there is a device on CS1 it should be same type as CS0
948 * (or NVM. But NVM is not supported in this driver yet)
949 */
950 emif_assert((cs1_dev_details == NULL) ||
951 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
952 (cs0_dev_details->type == cs1_dev_details->type));
953 emif_assert(freq <= MAX_LPDDR2_FREQ);
954
955 set_ddr_clk_period(freq);
956
957 /*
958 * The device on CS0 is used for all timing calculations
959 * There is only one set of registers for timings per EMIF. So, if the
960 * second CS(CS1) has a device, it should have the same timings as the
961 * device on CS0
962 */
963 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
964 emif_assert(timings);
965 min_tck = cs0_dev_timings->min_tck;
966
967 temp = addressing_table_index(cs0_dev_details->type,
968 cs0_dev_details->density,
969 cs0_dev_details->io_width);
970
971 emif_assert((temp >= 0));
972 addressing = &(addressing_table[temp]);
973 emif_assert(addressing);
974
975 sys_freq = get_sys_clk_freq();
976
977 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
978 cs1_dev_details,
979 addressing, RL_BOOT);
980
981 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
982 cs1_dev_details,
983 addressing, RL_FINAL);
984
985 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
986
987 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
988
989 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
990
991 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
992
993 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
994
995 regs->temp_alert_config =
996 get_temp_alert_config(cs1_dev_details, addressing, 0);
997
998 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
999 LPDDR2_VOLTAGE_STABLE);
1000
1001 regs->emif_ddr_phy_ctlr_1_init =
1002 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
1003
1004 regs->emif_ddr_phy_ctlr_1 =
1005 get_ddr_phy_ctrl_1(freq, RL_FINAL);
1006
1007 regs->freq = freq;
1008
1009 print_timing_reg(regs->sdram_config_init);
1010 print_timing_reg(regs->sdram_config);
1011 print_timing_reg(regs->ref_ctrl);
1012 print_timing_reg(regs->sdram_tim1);
1013 print_timing_reg(regs->sdram_tim2);
1014 print_timing_reg(regs->sdram_tim3);
1015 print_timing_reg(regs->read_idle_ctrl);
1016 print_timing_reg(regs->temp_alert_config);
1017 print_timing_reg(regs->zq_config);
1018 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
1019 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
1020}
1021#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1022
1e463866
A
1023#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
1024const char *get_lpddr2_type(u8 type_id)
1025{
1026 switch (type_id) {
1027 case LPDDR2_TYPE_S4:
1028 return "LPDDR2-S4";
1029 case LPDDR2_TYPE_S2:
1030 return "LPDDR2-S2";
1031 default:
1032 return NULL;
1033 }
1034}
1035
1036const char *get_lpddr2_io_width(u8 width_id)
1037{
1038 switch (width_id) {
1039 case LPDDR2_IO_WIDTH_8:
1040 return "x8";
1041 case LPDDR2_IO_WIDTH_16:
1042 return "x16";
1043 case LPDDR2_IO_WIDTH_32:
1044 return "x32";
1045 default:
1046 return NULL;
1047 }
1048}
1049
1050const char *get_lpddr2_manufacturer(u32 manufacturer)
1051{
1052 switch (manufacturer) {
1053 case LPDDR2_MANUFACTURER_SAMSUNG:
1054 return "Samsung";
1055 case LPDDR2_MANUFACTURER_QIMONDA:
1056 return "Qimonda";
1057 case LPDDR2_MANUFACTURER_ELPIDA:
1058 return "Elpida";
1059 case LPDDR2_MANUFACTURER_ETRON:
1060 return "Etron";
1061 case LPDDR2_MANUFACTURER_NANYA:
1062 return "Nanya";
1063 case LPDDR2_MANUFACTURER_HYNIX:
1064 return "Hynix";
1065 case LPDDR2_MANUFACTURER_MOSEL:
1066 return "Mosel";
1067 case LPDDR2_MANUFACTURER_WINBOND:
1068 return "Winbond";
1069 case LPDDR2_MANUFACTURER_ESMT:
1070 return "ESMT";
1071 case LPDDR2_MANUFACTURER_SPANSION:
1072 return "Spansion";
1073 case LPDDR2_MANUFACTURER_SST:
1074 return "SST";
1075 case LPDDR2_MANUFACTURER_ZMOS:
1076 return "ZMOS";
1077 case LPDDR2_MANUFACTURER_INTEL:
1078 return "Intel";
1079 case LPDDR2_MANUFACTURER_NUMONYX:
1080 return "Numonyx";
1081 case LPDDR2_MANUFACTURER_MICRON:
1082 return "Micron";
1083 default:
1084 return NULL;
1085 }
1086}
1087
1088static void display_sdram_details(u32 emif_nr, u32 cs,
1089 struct lpddr2_device_details *device)
1090{
1091 const char *mfg_str;
1092 const char *type_str;
1093 char density_str[10];
1094 u32 density;
1095
1096 debug("EMIF%d CS%d\t", emif_nr, cs);
1097
1098 if (!device) {
1099 debug("None\n");
1100 return;
1101 }
1102
1103 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1104 type_str = get_lpddr2_type(device->type);
1105
1106 density = lpddr2_density_2_size_in_mbytes[device->density];
1107 if ((density / 1024 * 1024) == density) {
1108 density /= 1024;
1109 sprintf(density_str, "%d GB", density);
1110 } else
1111 sprintf(density_str, "%d MB", density);
1112 if (mfg_str && type_str)
1113 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1114}
1115
1116static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1117 struct lpddr2_device_details *lpddr2_device)
1118{
1119 u32 mr = 0, temp;
1120
1121 mr = get_mr(base, cs, LPDDR2_MR0);
1122 if (mr > 0xFF) {
1123 /* Mode register value bigger than 8 bit */
1124 return 0;
1125 }
1126
1127 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1128 if (temp) {
1129 /* Not SDRAM */
1130 return 0;
1131 }
1132 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1133
1134 if (temp) {
1135 /* DNV supported - But DNV is only supported for NVM */
1136 return 0;
1137 }
1138
1139 mr = get_mr(base, cs, LPDDR2_MR4);
1140 if (mr > 0xFF) {
1141 /* Mode register value bigger than 8 bit */
1142 return 0;
1143 }
1144
1145 mr = get_mr(base, cs, LPDDR2_MR5);
ad0878a7 1146 if (mr > 0xFF) {
1e463866
A
1147 /* Mode register value bigger than 8 bit */
1148 return 0;
1149 }
1150
1151 if (!get_lpddr2_manufacturer(mr)) {
1152 /* Manufacturer not identified */
1153 return 0;
1154 }
1155 lpddr2_device->manufacturer = mr;
1156
1157 mr = get_mr(base, cs, LPDDR2_MR6);
1158 if (mr >= 0xFF) {
1159 /* Mode register value bigger than 8 bit */
1160 return 0;
1161 }
1162
1163 mr = get_mr(base, cs, LPDDR2_MR7);
1164 if (mr >= 0xFF) {
1165 /* Mode register value bigger than 8 bit */
1166 return 0;
1167 }
1168
1169 mr = get_mr(base, cs, LPDDR2_MR8);
1170 if (mr >= 0xFF) {
1171 /* Mode register value bigger than 8 bit */
1172 return 0;
1173 }
1174
1175 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1176 if (!get_lpddr2_type(temp)) {
1177 /* Not SDRAM */
1178 return 0;
1179 }
1180 lpddr2_device->type = temp;
1181
1182 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1183 if (temp > LPDDR2_DENSITY_32Gb) {
1184 /* Density not supported */
1185 return 0;
1186 }
1187 lpddr2_device->density = temp;
1188
1189 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1190 if (!get_lpddr2_io_width(temp)) {
1191 /* IO width unsupported value */
1192 return 0;
1193 }
1194 lpddr2_device->io_width = temp;
1195
1196 /*
1197 * If all the above tests pass we should
1198 * have a device on this chip-select
1199 */
1200 return 1;
1201}
1202
025bc425 1203struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1e463866
A
1204 struct lpddr2_device_details *lpddr2_dev_details)
1205{
1206 u32 phy;
bb772a59
S
1207 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1208
1e463866
A
1209 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1210
1211 if (!lpddr2_dev_details)
1212 return NULL;
1213
1214 /* Do the minimum init for mode register accesses */
784229cc 1215 if (!(running_from_sdram() || warm_reset())) {
1e463866
A
1216 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1217 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1218 }
1219
1220 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1221 return NULL;
1222
1223 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1224
1225 return lpddr2_dev_details;
1226}
1e463866
A
1227#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1228
2ae610f0
A
1229static void do_sdram_init(u32 base)
1230{
1231 const struct emif_regs *regs;
1232 u32 in_sdram, emif_nr;
1233
1234 debug(">>do_sdram_init() %x\n", base);
1235
1236 in_sdram = running_from_sdram();
bb772a59 1237 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
2ae610f0 1238
095aea29 1239#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
2ae610f0
A
1240 emif_get_reg_dump(emif_nr, &regs);
1241 if (!regs) {
1242 debug("EMIF: reg dump not provided\n");
1243 return;
1244 }
095aea29
A
1245#else
1246 /*
1247 * The user has not provided the register values. We need to
1248 * calculate it based on the timings and the DDR frequency
1249 */
1250 struct emif_device_details dev_details;
1251 struct emif_regs calculated_regs;
1252
1253 /*
1254 * Get device details:
1255 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1256 * - Obtained from user otherwise
1257 */
1258 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
025bc425 1259 emif_reset_phy(base);
4324c118 1260 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
025bc425 1261 &cs0_dev_details);
4324c118 1262 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
025bc425
A
1263 &cs1_dev_details);
1264 emif_reset_phy(base);
095aea29
A
1265
1266 /* Return if no devices on this EMIF */
1267 if (!dev_details.cs0_device_details &&
1268 !dev_details.cs1_device_details) {
095aea29
A
1269 return;
1270 }
1271
095aea29
A
1272 /*
1273 * Get device timings:
1274 * - Default timings specified by JESD209-2 if
1275 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1276 * - Obtained from user otherwise
1277 */
1278 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1279 &dev_details.cs1_device_timings);
1280
1281 /* Calculate the register values */
2e5ba489 1282 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
095aea29
A
1283 regs = &calculated_regs;
1284#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
2ae610f0
A
1285
1286 /*
f5af0827 1287 * Initializing the DDR device can not happen from SDRAM.
2ae610f0
A
1288 * Changing the timing registers in EMIF can happen(going from one
1289 * OPP to another)
1290 */
c997da5c 1291 if (!in_sdram && (!warm_reset() || is_dra7xx())) {
7c352cd3
TR
1292 if (emif_sdram_type(regs->sdram_config) ==
1293 EMIF_SDRAM_TYPE_LPDDR2)
784ab7c5 1294 lpddr2_init(base, regs);
f5af0827 1295#ifndef CONFIG_OMAP44XX
784ab7c5
LV
1296 else
1297 ddr3_init(base, regs);
f5af0827 1298#endif
784ab7c5 1299 }
c9592e3c 1300#ifdef CONFIG_OMAP54XX
7c352cd3 1301 if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
c997da5c 1302 EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
166e5cc6
LV
1303 set_lpmode_selfrefresh(base);
1304 emif_reset_phy(base);
6213db78 1305 omap5_ddr3_leveling(base, regs);
166e5cc6 1306 }
f5af0827 1307#endif
2ae610f0
A
1308
1309 /* Write to the shadow registers */
1310 emif_update_timings(base, regs);
1311
1312 debug("<<do_sdram_init() %x\n", base);
1313}
1314
bb772a59 1315void emif_post_init_config(u32 base)
2ae610f0
A
1316{
1317 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
bb772a59
S
1318 u32 omap_rev = omap_revision();
1319
2ae610f0 1320 /* reset phy on ES2.0 */
bb772a59 1321 if (omap_rev == OMAP4430_ES2_0)
2ae610f0
A
1322 emif_reset_phy(base);
1323
1324 /* Put EMIF back in smart idle on ES1.0 */
bb772a59 1325 if (omap_rev == OMAP4430_ES1_0)
2ae610f0
A
1326 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1327}
1328
bb772a59 1329void dmm_init(u32 base)
2ae610f0
A
1330{
1331 const struct dmm_lisa_map_regs *lisa_map_regs;
86021143 1332 u32 i, section, valid;
2ae610f0 1333
095aea29 1334#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
2ae610f0 1335 emif_get_dmm_regs(&lisa_map_regs);
095aea29
A
1336#else
1337 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1338 u32 section_cnt, sys_addr;
1339 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1340
1341 mapped_size = 0;
1342 section_cnt = 3;
aa6e94de 1343 sys_addr = CFG_SYS_SDRAM_BASE;
d3d82e9f
LV
1344 emif1_size = get_emif_mem_size(EMIF1_BASE);
1345 emif2_size = get_emif_mem_size(EMIF2_BASE);
095aea29
A
1346 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1347
1348 if (!emif1_size && !emif2_size)
1349 return;
1350
1351 /* symmetric interleaved section */
1352 if (emif1_size && emif2_size) {
1353 mapped_size = min(emif1_size, emif2_size);
1354 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
bb772a59 1355 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
095aea29
A
1356 /* only MSB */
1357 section_map |= (sys_addr >> 24) <<
bb772a59 1358 EMIF_SYS_ADDR_SHIFT;
095aea29 1359 section_map |= get_dmm_section_size_map(mapped_size * 2)
bb772a59 1360 << EMIF_SYS_SIZE_SHIFT;
095aea29
A
1361 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1362 emif1_size -= mapped_size;
1363 emif2_size -= mapped_size;
1364 sys_addr += (mapped_size * 2);
1365 section_cnt--;
1366 }
1367
1368 /*
1369 * Single EMIF section(we can have a maximum of 1 single EMIF
1370 * section- either EMIF1 or EMIF2 or none, but not both)
1371 */
1372 if (emif1_size) {
1373 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1374 section_map |= get_dmm_section_size_map(emif1_size)
bb772a59 1375 << EMIF_SYS_SIZE_SHIFT;
095aea29
A
1376 /* only MSB */
1377 section_map |= (mapped_size >> 24) <<
bb772a59 1378 EMIF_SDRC_ADDR_SHIFT;
095aea29 1379 /* only MSB */
bb772a59 1380 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
095aea29
A
1381 section_cnt--;
1382 }
1383 if (emif2_size) {
1384 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1385 section_map |= get_dmm_section_size_map(emif2_size) <<
bb772a59 1386 EMIF_SYS_SIZE_SHIFT;
095aea29 1387 /* only MSB */
bb772a59 1388 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
095aea29 1389 /* only MSB */
bb772a59 1390 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
095aea29
A
1391 section_cnt--;
1392 }
1393
1394 if (section_cnt == 2) {
1395 /* Only 1 section - either symmetric or single EMIF */
1396 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1397 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1398 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1399 } else {
1400 /* 2 sections - 1 symmetric, 1 single EMIF */
1401 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1402 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1403 }
1404
1405 /* TRAP for invalid TILER mappings in section 0 */
1406 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
2ae610f0 1407
e3f53104
LV
1408 if (omap_revision() >= OMAP4460_ES1_0)
1409 lis_map_regs_calculated.is_ma_present = 1;
1410
095aea29
A
1411 lisa_map_regs = &lis_map_regs_calculated;
1412#endif
2ae610f0
A
1413 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1414 (struct dmm_lisa_map_regs *)base;
1415
1416 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1417 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1418 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1419 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1420
1421 writel(lisa_map_regs->dmm_lisa_map_3,
1422 &hw_lisa_map_regs->dmm_lisa_map_3);
1423 writel(lisa_map_regs->dmm_lisa_map_2,
1424 &hw_lisa_map_regs->dmm_lisa_map_2);
1425 writel(lisa_map_regs->dmm_lisa_map_1,
1426 &hw_lisa_map_regs->dmm_lisa_map_1);
1427 writel(lisa_map_regs->dmm_lisa_map_0,
1428 &hw_lisa_map_regs->dmm_lisa_map_0);
924eb369 1429
7831419d 1430 if (lisa_map_regs->is_ma_present) {
924eb369 1431 hw_lisa_map_regs =
bb772a59 1432 (struct dmm_lisa_map_regs *)MA_BASE;
924eb369
A
1433
1434 writel(lisa_map_regs->dmm_lisa_map_3,
1435 &hw_lisa_map_regs->dmm_lisa_map_3);
1436 writel(lisa_map_regs->dmm_lisa_map_2,
1437 &hw_lisa_map_regs->dmm_lisa_map_2);
1438 writel(lisa_map_regs->dmm_lisa_map_1,
1439 &hw_lisa_map_regs->dmm_lisa_map_1);
1440 writel(lisa_map_regs->dmm_lisa_map_0,
1441 &hw_lisa_map_regs->dmm_lisa_map_0);
29c20ba2
LV
1442
1443 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
924eb369 1444 }
86021143
LV
1445
1446 /*
1447 * EMIF should be configured only when
1448 * memory is mapped on it. Using emif1_enabled
1449 * and emif2_enabled variables for this.
1450 */
1451 emif1_enabled = 0;
1452 emif2_enabled = 0;
1453 for (i = 0; i < 4; i++) {
1454 section = __raw_readl(DMM_BASE + i*4);
1455 valid = (section & EMIF_SDRC_MAP_MASK) >>
1456 (EMIF_SDRC_MAP_SHIFT);
1457 if (valid == 3) {
1458 emif1_enabled = 1;
1459 emif2_enabled = 1;
1460 break;
dbf02eca
FB
1461 }
1462
1463 if (valid == 1)
86021143 1464 emif1_enabled = 1;
dbf02eca
FB
1465
1466 if (valid == 2)
86021143 1467 emif2_enabled = 1;
86021143 1468 }
2ae610f0
A
1469}
1470
54d022e7
S
1471static void do_bug0039_workaround(u32 base)
1472{
1473 u32 val, i, clkctrl;
1474 struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1475 const struct read_write_regs *bug_00339_regs;
1476 u32 iterations;
1477 u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1478 u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1479
1480 if (is_dra7xx())
1481 phy_status_base++;
1482
1483 bug_00339_regs = get_bug_regs(&iterations);
1484
1485 /* Put EMIF in to idle */
1486 clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1487 __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1488
1489 /* Copy the phy status registers in to phy ctrl shadow registers */
1490 for (i = 0; i < iterations; i++) {
1491 val = __raw_readl(phy_status_base +
1492 bug_00339_regs[i].read_reg - 1);
1493
1494 __raw_writel(val, phy_ctrl_base +
1495 ((bug_00339_regs[i].write_reg - 1) << 1));
1496
1497 __raw_writel(val, phy_ctrl_base +
1498 (bug_00339_regs[i].write_reg << 1) - 1);
1499 }
1500
1501 /* Disable leveling */
1502 writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1503
1504 __raw_writel(clkctrl, (*prcm)->cm_memif_clkstctrl);
1505}
1506
2ae610f0
A
1507/*
1508 * SDRAM initialization:
1509 * SDRAM initialization has two parts:
1510 * 1. Configuring the SDRAM device
1511 * 2. Update the AC timings related parameters in the EMIF module
1512 * (1) should be done only once and should not be done while we are
1513 * running from SDRAM.
1514 * (2) can and should be done more than once if OPP changes.
1515 * Particularly, this may be needed when we boot without SPL and
1516 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1517 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1518 * the frequency. So,
1519 * Doing (1) and (2) makes sense - first time initialization
1520 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1521 * Doing (1) and not (2) doen't make sense
1522 * See do_sdram_init() for the details
1523 */
1524void sdram_init(void)
1525{
1526 u32 in_sdram, size_prog, size_detect;
7c352cd3
TR
1527 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1528 u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
2ae610f0
A
1529
1530 debug(">>sdram_init()\n");
1531
508a58fa 1532 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
2ae610f0
A
1533 return;
1534
1535 in_sdram = running_from_sdram();
1536 debug("in_sdram = %d\n", in_sdram);
1537
166e5cc6
LV
1538 if (!in_sdram) {
1539 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
01b753ff 1540 bypass_dpll((*prcm)->cm_clkmode_dpll_core);
166e5cc6 1541 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
01b753ff 1542 writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
753bae8c 1543 }
2ae610f0 1544
784229cc 1545 if (!in_sdram)
bb772a59 1546 dmm_init(DMM_BASE);
784229cc 1547
86021143
LV
1548 if (emif1_enabled)
1549 do_sdram_init(EMIF1_BASE);
1550
1551 if (emif2_enabled)
1552 do_sdram_init(EMIF2_BASE);
1553
784229cc 1554 if (!(in_sdram || warm_reset())) {
86021143
LV
1555 if (emif1_enabled)
1556 emif_post_init_config(EMIF1_BASE);
1557 if (emif2_enabled)
1558 emif_post_init_config(EMIF2_BASE);
2ae610f0
A
1559 }
1560
1561 /* for the shadow registers to take effect */
9ca8bfea 1562 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
753bae8c 1563 freq_update_core();
2ae610f0
A
1564
1565 /* Do some testing after the init */
1566 if (!in_sdram) {
508a58fa 1567 size_prog = omap_sdram_size();
41321fd4
S
1568 size_prog = log_2_n_round_down(size_prog);
1569 size_prog = (1 << size_prog);
1570
aa6e94de 1571 size_detect = get_ram_size((long *)CFG_SYS_SDRAM_BASE,
2ae610f0
A
1572 size_prog);
1573 /* Compare with the size programmed */
1574 if (size_detect != size_prog) {
1575 printf("SDRAM: identified size not same as expected"
1576 " size identified: %x expected: %x\n",
1577 size_detect,
1578 size_prog);
1579 } else
1580 debug("get_ram_size() successful");
1581 }
1582
501f0ef3
DA
1583#if defined(CONFIG_TI_SECURE_DEVICE)
1584 /*
1585 * On HS devices, do static EMIF firewall configuration
1586 * but only do it if not already running in SDRAM
1587 */
1588 if (!in_sdram)
1589 if (0 != secure_emif_reserve())
1590 hang();
1591
1592 /* On HS devices, ensure static EMIF firewall APIs are locked */
1593 if (0 != secure_emif_firewall_lock())
1594 hang();
1595#endif
1596
54d022e7 1597 if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
f2a1b93b 1598 (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
9fcf3d3a
LV
1599 if (emif1_enabled)
1600 do_bug0039_workaround(EMIF1_BASE);
1601 if (emif2_enabled)
1602 do_bug0039_workaround(EMIF2_BASE);
54d022e7
S
1603 }
1604
2ae610f0
A
1605 debug("<<sdram_init()\n");
1606}