]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/coff-mips.c
* sparc.h (sparc_opcode_lookup_arch) Make return type in
[thirdparty/binutils-gdb.git] / bfd / coff-mips.c
CommitLineData
1f29e30b 1/* BFD back-end for MIPS Extended-Coff files.
dfc1c006 2 Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
8fa0d3a0 3 Original version by Per Bothner.
f6409552 4 Full support added by Ian Lance Taylor, ian@cygnus.com.
1327fb29 5
68b70212 6This file is part of BFD, the Binary File Descriptor library.
23b0b558 7
68b70212 8This program is free software; you can redistribute it and/or modify
23b0b558 9it under the terms of the GNU General Public License as published by
68b70212
JG
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
23b0b558 12
68b70212 13This program is distributed in the hope that it will be useful,
23b0b558
JG
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
68b70212 19along with this program; if not, write to the Free Software
a5655244 20Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
1327fb29 21
23b0b558 22#include "bfd.h"
dd4646ca 23#include "sysdep.h"
4991ebb9 24#include "bfdlink.h"
1327fb29 25#include "libbfd.h"
dae31cf5
ILT
26#include "coff/internal.h"
27#include "coff/sym.h"
28#include "coff/symconst.h"
29#include "coff/ecoff.h"
30#include "coff/mips.h"
31#include "libcoff.h"
32#include "libecoff.h"
33\f
34/* Prototypes for static functions. */
c3fe0c41 35
dae31cf5 36static boolean mips_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr));
dae31cf5
ILT
37static void mips_ecoff_swap_reloc_in PARAMS ((bfd *, PTR,
38 struct internal_reloc *));
39static void mips_ecoff_swap_reloc_out PARAMS ((bfd *,
40 const struct internal_reloc *,
41 PTR));
5fa2aaa2
ILT
42static void mips_adjust_reloc_in PARAMS ((bfd *,
43 const struct internal_reloc *,
44 arelent *));
45static void mips_adjust_reloc_out PARAMS ((bfd *, const arelent *,
46 struct internal_reloc *));
23f44e6f
ILT
47static bfd_reloc_status_type mips_generic_reloc PARAMS ((bfd *abfd,
48 arelent *reloc,
49 asymbol *symbol,
50 PTR data,
51 asection *section,
4991ebb9
ILT
52 bfd *output_bfd,
53 char **error));
23f44e6f
ILT
54static bfd_reloc_status_type mips_refhi_reloc PARAMS ((bfd *abfd,
55 arelent *reloc,
56 asymbol *symbol,
57 PTR data,
58 asection *section,
4991ebb9
ILT
59 bfd *output_bfd,
60 char **error));
23f44e6f
ILT
61static bfd_reloc_status_type mips_reflo_reloc PARAMS ((bfd *abfd,
62 arelent *reloc,
63 asymbol *symbol,
64 PTR data,
65 asection *section,
4991ebb9
ILT
66 bfd *output_bfd,
67 char **error));
23f44e6f
ILT
68static bfd_reloc_status_type mips_gprel_reloc PARAMS ((bfd *abfd,
69 arelent *reloc,
70 asymbol *symbol,
71 PTR data,
72 asection *section,
4991ebb9
ILT
73 bfd *output_bfd,
74 char **error));
4f996613
ILT
75static bfd_reloc_status_type mips_relhi_reloc PARAMS ((bfd *abfd,
76 arelent *reloc,
77 asymbol *symbol,
78 PTR data,
79 asection *section,
80 bfd *output_bfd,
81 char **error));
82static bfd_reloc_status_type mips_rello_reloc PARAMS ((bfd *abfd,
83 arelent *reloc,
84 asymbol *symbol,
85 PTR data,
86 asection *section,
87 bfd *output_bfd,
88 char **error));
dabf906e
ILT
89static bfd_reloc_status_type mips_switch_reloc PARAMS ((bfd *abfd,
90 arelent *reloc,
91 asymbol *symbol,
92 PTR data,
93 asection *section,
94 bfd *output_bfd,
95 char **error));
4f996613
ILT
96static void mips_relocate_hi PARAMS ((struct internal_reloc *refhi,
97 struct internal_reloc *reflo,
98 bfd *input_bfd,
99 asection *input_section,
100 bfd_byte *contents,
101 size_t adjust,
102 bfd_vma relocation,
103 boolean pcrel));
4991ebb9
ILT
104static boolean mips_relocate_section PARAMS ((bfd *, struct bfd_link_info *,
105 bfd *, asection *,
106 bfd_byte *, PTR));
a5655244 107static boolean mips_read_relocs PARAMS ((bfd *, asection *));
a3a33af3
ILT
108static boolean mips_relax_section PARAMS ((bfd *, asection *,
109 struct bfd_link_info *,
110 boolean *));
111static boolean mips_relax_pcrel16 PARAMS ((struct bfd_link_info *, bfd *,
112 asection *,
113 struct ecoff_link_hash_entry *,
114 bfd_byte *, bfd_vma));
dae31cf5 115\f
dae31cf5
ILT
116/* ECOFF has COFF sections, but the debugging information is stored in
117 a completely different format. ECOFF targets use some of the
118 swapping routines from coffswap.h, and some of the generic COFF
119 routines in coffgen.c, but, unlike the real COFF targets, do not
120 use coffcode.h itself.
8fa0d3a0 121
dae31cf5 122 Get the generic COFF swapping routines, except for the reloc,
23f44e6f 123 symbol, and lineno ones. Give them ECOFF names. */
dae31cf5
ILT
124#define MIPSECOFF
125#define NO_COFF_RELOCS
126#define NO_COFF_SYMBOLS
127#define NO_COFF_LINENOS
128#define coff_swap_filehdr_in mips_ecoff_swap_filehdr_in
129#define coff_swap_filehdr_out mips_ecoff_swap_filehdr_out
130#define coff_swap_aouthdr_in mips_ecoff_swap_aouthdr_in
131#define coff_swap_aouthdr_out mips_ecoff_swap_aouthdr_out
132#define coff_swap_scnhdr_in mips_ecoff_swap_scnhdr_in
133#define coff_swap_scnhdr_out mips_ecoff_swap_scnhdr_out
134#include "coffswap.h"
8fa0d3a0 135
dae31cf5
ILT
136/* Get the ECOFF swapping routines. */
137#define ECOFF_32
138#include "ecoffswap.h"
139\f
23f44e6f 140/* How to process the various relocs types. */
dae31cf5 141
23f44e6f 142static reloc_howto_type mips_howto_table[] =
dae31cf5 143{
23f44e6f
ILT
144 /* Reloc type 0 is ignored. The reloc reading code ensures that
145 this is a reference to the .abs section, which will cause
146 bfd_perform_relocation to do nothing. */
147 HOWTO (MIPS_R_IGNORE, /* type */
148 0, /* rightshift */
149 0, /* size (0 = byte, 1 = short, 2 = long) */
150 8, /* bitsize */
151 false, /* pc_relative */
152 0, /* bitpos */
153 complain_overflow_dont, /* complain_on_overflow */
154 0, /* special_function */
155 "IGNORE", /* name */
156 false, /* partial_inplace */
157 0, /* src_mask */
158 0, /* dst_mask */
159 false), /* pcrel_offset */
160
161 /* A 16 bit reference to a symbol, normally from a data section. */
162 HOWTO (MIPS_R_REFHALF, /* type */
163 0, /* rightshift */
164 1, /* size (0 = byte, 1 = short, 2 = long) */
165 16, /* bitsize */
166 false, /* pc_relative */
167 0, /* bitpos */
168 complain_overflow_bitfield, /* complain_on_overflow */
169 mips_generic_reloc, /* special_function */
170 "REFHALF", /* name */
171 true, /* partial_inplace */
172 0xffff, /* src_mask */
173 0xffff, /* dst_mask */
174 false), /* pcrel_offset */
175
176 /* A 32 bit reference to a symbol, normally from a data section. */
177 HOWTO (MIPS_R_REFWORD, /* type */
178 0, /* rightshift */
179 2, /* size (0 = byte, 1 = short, 2 = long) */
180 32, /* bitsize */
181 false, /* pc_relative */
182 0, /* bitpos */
183 complain_overflow_bitfield, /* complain_on_overflow */
184 mips_generic_reloc, /* special_function */
185 "REFWORD", /* name */
186 true, /* partial_inplace */
187 0xffffffff, /* src_mask */
188 0xffffffff, /* dst_mask */
189 false), /* pcrel_offset */
190
191 /* A 26 bit absolute jump address. */
192 HOWTO (MIPS_R_JMPADDR, /* type */
193 2, /* rightshift */
194 2, /* size (0 = byte, 1 = short, 2 = long) */
195 26, /* bitsize */
196 false, /* pc_relative */
197 0, /* bitpos */
5fa2aaa2
ILT
198 complain_overflow_dont, /* complain_on_overflow */
199 /* This needs complex overflow
200 detection, because the upper four
201 bits must match the PC. */
23f44e6f
ILT
202 mips_generic_reloc, /* special_function */
203 "JMPADDR", /* name */
204 true, /* partial_inplace */
205 0x3ffffff, /* src_mask */
206 0x3ffffff, /* dst_mask */
207 false), /* pcrel_offset */
208
209 /* The high 16 bits of a symbol value. Handled by the function
210 mips_refhi_reloc. */
211 HOWTO (MIPS_R_REFHI, /* type */
212 16, /* rightshift */
213 2, /* size (0 = byte, 1 = short, 2 = long) */
214 16, /* bitsize */
215 false, /* pc_relative */
216 0, /* bitpos */
217 complain_overflow_bitfield, /* complain_on_overflow */
218 mips_refhi_reloc, /* special_function */
219 "REFHI", /* name */
220 true, /* partial_inplace */
221 0xffff, /* src_mask */
222 0xffff, /* dst_mask */
223 false), /* pcrel_offset */
224
225 /* The low 16 bits of a symbol value. */
226 HOWTO (MIPS_R_REFLO, /* type */
227 0, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 16, /* bitsize */
230 false, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_dont, /* complain_on_overflow */
233 mips_reflo_reloc, /* special_function */
234 "REFLO", /* name */
235 true, /* partial_inplace */
236 0xffff, /* src_mask */
237 0xffff, /* dst_mask */
238 false), /* pcrel_offset */
239
240 /* A reference to an offset from the gp register. Handled by the
241 function mips_gprel_reloc. */
242 HOWTO (MIPS_R_GPREL, /* type */
243 0, /* rightshift */
244 2, /* size (0 = byte, 1 = short, 2 = long) */
245 16, /* bitsize */
246 false, /* pc_relative */
247 0, /* bitpos */
248 complain_overflow_signed, /* complain_on_overflow */
249 mips_gprel_reloc, /* special_function */
250 "GPREL", /* name */
251 true, /* partial_inplace */
252 0xffff, /* src_mask */
253 0xffff, /* dst_mask */
254 false), /* pcrel_offset */
255
256 /* A reference to a literal using an offset from the gp register.
257 Handled by the function mips_gprel_reloc. */
258 HOWTO (MIPS_R_LITERAL, /* type */
259 0, /* rightshift */
260 2, /* size (0 = byte, 1 = short, 2 = long) */
261 16, /* bitsize */
262 false, /* pc_relative */
263 0, /* bitpos */
264 complain_overflow_signed, /* complain_on_overflow */
265 mips_gprel_reloc, /* special_function */
266 "LITERAL", /* name */
267 true, /* partial_inplace */
268 0xffff, /* src_mask */
269 0xffff, /* dst_mask */
a3a33af3
ILT
270 false), /* pcrel_offset */
271
4f996613
ILT
272 { 8 },
273 { 9 },
274 { 10 },
275 { 11 },
276
a3a33af3
ILT
277 /* This reloc is a Cygnus extension used when generating position
278 independent code for embedded systems. It represents a 16 bit PC
279 relative reloc rightshifted twice as used in the MIPS branch
280 instructions. */
281 HOWTO (MIPS_R_PCREL16, /* type */
282 2, /* rightshift */
283 2, /* size (0 = byte, 1 = short, 2 = long) */
284 16, /* bitsize */
285 true, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_signed, /* complain_on_overflow */
288 mips_generic_reloc, /* special_function */
289 "PCREL16", /* name */
290 true, /* partial_inplace */
291 0xffff, /* src_mask */
292 0xffff, /* dst_mask */
dabf906e
ILT
293 true), /* pcrel_offset */
294
4f996613
ILT
295 /* This reloc is a Cygnus extension used when generating position
296 independent code for embedded systems. It represents the high 16
297 bits of a PC relative reloc. The next reloc must be
298 MIPS_R_RELLO, and the addend is formed from the addends of the
299 two instructions, just as in MIPS_R_REFHI and MIPS_R_REFLO. The
300 final value is actually PC relative to the location of the
301 MIPS_R_RELLO reloc, not the MIPS_R_RELHI reloc. */
302 HOWTO (MIPS_R_RELHI, /* type */
303 16, /* rightshift */
304 2, /* size (0 = byte, 1 = short, 2 = long) */
305 16, /* bitsize */
306 true, /* pc_relative */
307 0, /* bitpos */
308 complain_overflow_bitfield, /* complain_on_overflow */
309 mips_relhi_reloc, /* special_function */
310 "RELHI", /* name */
311 true, /* partial_inplace */
312 0xffff, /* src_mask */
313 0xffff, /* dst_mask */
314 true), /* pcrel_offset */
315
316 /* This reloc is a Cygnus extension used when generating position
317 independent code for embedded systems. It represents the low 16
318 bits of a PC relative reloc. */
319 HOWTO (MIPS_R_RELLO, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 16, /* bitsize */
323 true, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_dont, /* complain_on_overflow */
326 mips_rello_reloc, /* special_function */
327 "RELLO", /* name */
328 true, /* partial_inplace */
329 0xffff, /* src_mask */
330 0xffff, /* dst_mask */
331 true), /* pcrel_offset */
332
333 { 15 },
334 { 16 },
335 { 17 },
336 { 18 },
337 { 19 },
338 { 20 },
339 { 21 },
340
dabf906e
ILT
341 /* This reloc is a Cygnus extension used when generating position
342 independent code for embedded systems. It represents an entry in
343 a switch table, which is the difference between two symbols in
344 the .text section. The symndx is actually the offset from the
345 reloc address to the subtrahend. See include/coff/mips.h for
346 more details. */
347 HOWTO (MIPS_R_SWITCH, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 true, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_dont, /* complain_on_overflow */
354 mips_switch_reloc, /* special_function */
355 "SWITCH", /* name */
356 true, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
a3a33af3 359 true) /* pcrel_offset */
dae31cf5 360};
23f44e6f
ILT
361
362#define MIPS_HOWTO_COUNT \
363 (sizeof mips_howto_table / sizeof mips_howto_table[0])
a3a33af3
ILT
364
365/* When the linker is doing relaxing, it may change a external PCREL16
366 reloc. This typically represents an instruction like
367 bal foo
368 We change it to
369 .set noreorder
370 bal $L1
371 lui $at,%hi(foo - $L1)
372 $L1:
373 addiu $at,%lo(foo - $L1)
374 addu $at,$at,$31
375 jalr $at
376 PCREL16_EXPANSION_ADJUSTMENT is the number of bytes this changes the
377 instruction by. */
378
379#define PCREL16_EXPANSION_ADJUSTMENT (4 * 4)
dae31cf5
ILT
380\f
381/* See whether the magic number matches. */
8fa0d3a0 382
dae31cf5
ILT
383static boolean
384mips_ecoff_bad_format_hook (abfd, filehdr)
385 bfd *abfd;
386 PTR filehdr;
387{
388 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
8fa0d3a0 389
5fa2aaa2
ILT
390 switch (internal_f->f_magic)
391 {
392 case MIPS_MAGIC_1:
393 /* I don't know what endianness this implies. */
394 return true;
c3fe0c41 395
5fa2aaa2
ILT
396 case MIPS_MAGIC_BIG:
397 case MIPS_MAGIC_BIG2:
398 case MIPS_MAGIC_BIG3:
64d5f5d0 399 return bfd_big_endian (abfd);
c3fe0c41 400
5fa2aaa2
ILT
401 case MIPS_MAGIC_LITTLE:
402 case MIPS_MAGIC_LITTLE2:
403 case MIPS_MAGIC_LITTLE3:
64d5f5d0 404 return bfd_little_endian (abfd);
23ba15b7 405
5fa2aaa2
ILT
406 default:
407 return false;
c3fe0c41 408 }
dae31cf5
ILT
409}
410\f
411/* Reloc handling. MIPS ECOFF relocs are packed into 8 bytes in
412 external form. They use a bit which indicates whether the symbol
413 is external. */
23ba15b7 414
dae31cf5 415/* Swap a reloc in. */
23ba15b7 416
dae31cf5
ILT
417static void
418mips_ecoff_swap_reloc_in (abfd, ext_ptr, intern)
419 bfd *abfd;
420 PTR ext_ptr;
421 struct internal_reloc *intern;
422{
423 const RELOC *ext = (RELOC *) ext_ptr;
23ba15b7 424
dae31cf5 425 intern->r_vaddr = bfd_h_get_32 (abfd, (bfd_byte *) ext->r_vaddr);
64d5f5d0 426 if (bfd_header_big_endian (abfd))
dae31cf5
ILT
427 {
428 intern->r_symndx = (((int) ext->r_bits[0]
429 << RELOC_BITS0_SYMNDX_SH_LEFT_BIG)
430 | ((int) ext->r_bits[1]
431 << RELOC_BITS1_SYMNDX_SH_LEFT_BIG)
432 | ((int) ext->r_bits[2]
433 << RELOC_BITS2_SYMNDX_SH_LEFT_BIG));
434 intern->r_type = ((ext->r_bits[3] & RELOC_BITS3_TYPE_BIG)
435 >> RELOC_BITS3_TYPE_SH_BIG);
436 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_BIG) != 0;
23ba15b7 437 }
dae31cf5 438 else
23ba15b7 439 {
dae31cf5
ILT
440 intern->r_symndx = (((int) ext->r_bits[0]
441 << RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE)
442 | ((int) ext->r_bits[1]
443 << RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE)
444 | ((int) ext->r_bits[2]
445 << RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE));
4f996613
ILT
446 intern->r_type = (((ext->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
447 >> RELOC_BITS3_TYPE_SH_LITTLE)
448 | ((ext->r_bits[3] & RELOC_BITS3_TYPEHI_LITTLE)
449 << RELOC_BITS3_TYPEHI_SH_LITTLE));
dae31cf5 450 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) != 0;
23ba15b7 451 }
dabf906e 452
4f996613
ILT
453 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
454 MIPS_R_RELLO reloc, r_symndx is actually the offset from the
455 reloc address to the base of the difference (see
dabf906e
ILT
456 include/coff/mips.h for more details). We copy symndx into the
457 r_offset field so as not to confuse ecoff_slurp_reloc_table in
458 ecoff.c. In adjust_reloc_in we then copy r_offset into the reloc
459 addend. */
4f996613
ILT
460 if (intern->r_type == MIPS_R_SWITCH
461 || (! intern->r_extern
462 && (intern->r_type == MIPS_R_RELLO
463 || intern->r_type == MIPS_R_RELHI)))
dabf906e
ILT
464 {
465 BFD_ASSERT (! intern->r_extern);
466 intern->r_offset = intern->r_symndx;
4f996613
ILT
467 if (intern->r_offset & 0x800000)
468 intern->r_offset -= 0x1000000;
dabf906e
ILT
469 intern->r_symndx = RELOC_SECTION_TEXT;
470 }
c3fe0c41
ILT
471}
472
dae31cf5 473/* Swap a reloc out. */
c3fe0c41 474
dae31cf5
ILT
475static void
476mips_ecoff_swap_reloc_out (abfd, intern, dst)
f6409552 477 bfd *abfd;
dae31cf5
ILT
478 const struct internal_reloc *intern;
479 PTR dst;
c3fe0c41 480{
dae31cf5 481 RELOC *ext = (RELOC *) dst;
dabf906e 482 long r_symndx;
c3fe0c41 483
5fa2aaa2
ILT
484 BFD_ASSERT (intern->r_extern
485 || (intern->r_symndx >= 0 && intern->r_symndx <= 12));
486
4f996613
ILT
487 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELLO or
488 MIPS_R_RELHI reloc, we actually want to write the contents of
489 r_offset out as the symbol index. This undoes the change made by
490 mips_ecoff_swap_reloc_in. */
491 if (intern->r_type != MIPS_R_SWITCH
492 && (intern->r_extern
493 || (intern->r_type != MIPS_R_RELHI
494 && intern->r_type != MIPS_R_RELLO)))
dabf906e
ILT
495 r_symndx = intern->r_symndx;
496 else
497 {
498 BFD_ASSERT (intern->r_symndx == RELOC_SECTION_TEXT);
4f996613 499 r_symndx = intern->r_offset & 0xffffff;
dabf906e
ILT
500 }
501
dae31cf5 502 bfd_h_put_32 (abfd, intern->r_vaddr, (bfd_byte *) ext->r_vaddr);
64d5f5d0 503 if (bfd_header_big_endian (abfd))
c3fe0c41 504 {
dabf906e
ILT
505 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_BIG;
506 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_BIG;
507 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_BIG;
dae31cf5
ILT
508 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_BIG)
509 & RELOC_BITS3_TYPE_BIG)
510 | (intern->r_extern ? RELOC_BITS3_EXTERN_BIG : 0));
c3fe0c41 511 }
dae31cf5 512 else
c3fe0c41 513 {
dabf906e
ILT
514 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE;
515 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE;
516 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE;
dae31cf5
ILT
517 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_LITTLE)
518 & RELOC_BITS3_TYPE_LITTLE)
4f996613
ILT
519 | ((intern->r_type >> RELOC_BITS3_TYPEHI_SH_LITTLE
520 & RELOC_BITS3_TYPEHI_LITTLE))
dae31cf5 521 | (intern->r_extern ? RELOC_BITS3_EXTERN_LITTLE : 0));
c3fe0c41 522 }
c3fe0c41 523}
23f44e6f
ILT
524
525/* Finish canonicalizing a reloc. Part of this is generic to all
526 ECOFF targets, and that part is in ecoff.c. The rest is done in
527 this backend routine. It must fill in the howto field. */
528
529static void
5fa2aaa2 530mips_adjust_reloc_in (abfd, intern, rptr)
23f44e6f 531 bfd *abfd;
5fa2aaa2 532 const struct internal_reloc *intern;
23f44e6f
ILT
533 arelent *rptr;
534{
dabf906e 535 if (intern->r_type > MIPS_R_SWITCH)
23f44e6f
ILT
536 abort ();
537
538 if (! intern->r_extern
539 && (intern->r_type == MIPS_R_GPREL
540 || intern->r_type == MIPS_R_LITERAL))
541 rptr->addend += ecoff_data (abfd)->gp;
542
543 /* If the type is MIPS_R_IGNORE, make sure this is a reference to
544 the absolute section so that the reloc is ignored. */
545 if (intern->r_type == MIPS_R_IGNORE)
69645d10 546 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
23f44e6f 547
4f996613
ILT
548 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
549 MIPS_R_RELLO reloc, we want the addend field of the BFD relocto
550 hold the value which was originally in the symndx field of the
551 internal MIPS ECOFF reloc. This value was copied into
552 intern->r_offset by mips_swap_reloc_in, and here we copy it into
553 the addend field. */
554 if (intern->r_type == MIPS_R_SWITCH
555 || (! intern->r_extern
556 && (intern->r_type == MIPS_R_RELHI
557 || intern->r_type == MIPS_R_RELLO)))
dabf906e
ILT
558 rptr->addend = intern->r_offset;
559
23f44e6f
ILT
560 rptr->howto = &mips_howto_table[intern->r_type];
561}
562
5fa2aaa2
ILT
563/* Make any adjustments needed to a reloc before writing it out. None
564 are needed for MIPS. */
565
566static void
4991ebb9 567mips_adjust_reloc_out (abfd, rel, intern)
5fa2aaa2
ILT
568 bfd *abfd;
569 const arelent *rel;
570 struct internal_reloc *intern;
571{
4f996613
ILT
572 /* For a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
573 MIPS_R_RELLO reloc, we must copy rel->addend into
dabf906e
ILT
574 intern->r_offset. This will then be written out as the symbol
575 index by mips_ecoff_swap_reloc_out. This operation parallels the
576 action of mips_adjust_reloc_in. */
4f996613
ILT
577 if (intern->r_type == MIPS_R_SWITCH
578 || (! intern->r_extern
579 && (intern->r_type == MIPS_R_RELHI
580 || intern->r_type == MIPS_R_RELLO)))
dabf906e 581 intern->r_offset = rel->addend;
5fa2aaa2
ILT
582}
583
23f44e6f
ILT
584/* ECOFF relocs are either against external symbols, or against
585 sections. If we are producing relocateable output, and the reloc
586 is against an external symbol, and nothing has given us any
587 additional addend, the resulting reloc will also be against the
588 same symbol. In such a case, we don't want to change anything
589 about the way the reloc is handled, since it will all be done at
590 final link time. Rather than put special case code into
591 bfd_perform_relocation, all the reloc types use this howto
592 function. It just short circuits the reloc if producing
593 relocateable output against an external symbol. */
594
595static bfd_reloc_status_type
596mips_generic_reloc (abfd,
597 reloc_entry,
598 symbol,
599 data,
600 input_section,
4991ebb9
ILT
601 output_bfd,
602 error_message)
23f44e6f
ILT
603 bfd *abfd;
604 arelent *reloc_entry;
605 asymbol *symbol;
606 PTR data;
607 asection *input_section;
608 bfd *output_bfd;
4991ebb9 609 char **error_message;
23f44e6f
ILT
610{
611 if (output_bfd != (bfd *) NULL
612 && (symbol->flags & BSF_SECTION_SYM) == 0
613 && reloc_entry->addend == 0)
614 {
615 reloc_entry->address += input_section->output_offset;
616 return bfd_reloc_ok;
617 }
618
619 return bfd_reloc_continue;
620}
621
622/* Do a REFHI relocation. This has to be done in combination with a
623 REFLO reloc, because there is a carry from the REFLO to the REFHI.
624 Here we just save the information we need; we do the actual
625 relocation when we see the REFLO. MIPS ECOFF requires that the
626 REFLO immediately follow the REFHI, so this ought to work. */
627
628static bfd_byte *mips_refhi_addr;
629static bfd_vma mips_refhi_addend;
630
631static bfd_reloc_status_type
632mips_refhi_reloc (abfd,
633 reloc_entry,
634 symbol,
635 data,
636 input_section,
4991ebb9
ILT
637 output_bfd,
638 error_message)
23f44e6f
ILT
639 bfd *abfd;
640 arelent *reloc_entry;
641 asymbol *symbol;
642 PTR data;
643 asection *input_section;
644 bfd *output_bfd;
4991ebb9 645 char **error_message;
23f44e6f
ILT
646{
647 bfd_reloc_status_type ret;
648 bfd_vma relocation;
649
650 /* If we're relocating, and this an external symbol, we don't want
651 to change anything. */
652 if (output_bfd != (bfd *) NULL
653 && (symbol->flags & BSF_SECTION_SYM) == 0
654 && reloc_entry->addend == 0)
655 {
656 reloc_entry->address += input_section->output_offset;
657 return bfd_reloc_ok;
658 }
659
660 ret = bfd_reloc_ok;
69645d10 661 if (bfd_is_und_section (symbol->section)
23f44e6f
ILT
662 && output_bfd == (bfd *) NULL)
663 ret = bfd_reloc_undefined;
664
665 if (bfd_is_com_section (symbol->section))
666 relocation = 0;
667 else
668 relocation = symbol->value;
669
670 relocation += symbol->section->output_section->vma;
671 relocation += symbol->section->output_offset;
672 relocation += reloc_entry->addend;
673
674 if (reloc_entry->address > input_section->_cooked_size)
675 return bfd_reloc_outofrange;
676
677 /* Save the information, and let REFLO do the actual relocation. */
678 mips_refhi_addr = (bfd_byte *) data + reloc_entry->address;
679 mips_refhi_addend = relocation;
680
681 if (output_bfd != (bfd *) NULL)
682 reloc_entry->address += input_section->output_offset;
683
684 return ret;
685}
686
687/* Do a REFLO relocation. This is a straightforward 16 bit inplace
688 relocation; this function exists in order to do the REFHI
689 relocation described above. */
690
691static bfd_reloc_status_type
692mips_reflo_reloc (abfd,
693 reloc_entry,
694 symbol,
695 data,
696 input_section,
4991ebb9
ILT
697 output_bfd,
698 error_message)
23f44e6f
ILT
699 bfd *abfd;
700 arelent *reloc_entry;
701 asymbol *symbol;
702 PTR data;
703 asection *input_section;
704 bfd *output_bfd;
4991ebb9 705 char **error_message;
23f44e6f
ILT
706{
707 if (mips_refhi_addr != (bfd_byte *) NULL)
708 {
709 unsigned long insn;
710 unsigned long val;
711 unsigned long vallo;
712
713 /* Do the REFHI relocation. Note that we actually don't need to
714 know anything about the REFLO itself, except where to find
715 the low 16 bits of the addend needed by the REFHI. */
716 insn = bfd_get_32 (abfd, mips_refhi_addr);
717 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
718 & 0xffff);
719 val = ((insn & 0xffff) << 16) + vallo;
720 val += mips_refhi_addend;
721
722 /* The low order 16 bits are always treated as a signed value.
723 Therefore, a negative value in the low order bits requires an
724 adjustment in the high order bits. We need to make this
725 adjustment in two ways: once for the bits we took from the
726 data, and once for the bits we are putting back in to the
727 data. */
728 if ((vallo & 0x8000) != 0)
729 val -= 0x10000;
730 if ((val & 0x8000) != 0)
731 val += 0x10000;
732
733 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
734 bfd_put_32 (abfd, insn, mips_refhi_addr);
735
736 mips_refhi_addr = (bfd_byte *) NULL;
737 }
738
739 /* Now do the REFLO reloc in the usual way. */
740 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
4991ebb9 741 input_section, output_bfd, error_message);
23f44e6f
ILT
742}
743
744/* Do a GPREL relocation. This is a 16 bit value which must become
745 the offset from the gp register. */
746
747static bfd_reloc_status_type
748mips_gprel_reloc (abfd,
4991ebb9
ILT
749 reloc_entry,
750 symbol,
751 data,
752 input_section,
753 output_bfd,
754 error_message)
23f44e6f
ILT
755 bfd *abfd;
756 arelent *reloc_entry;
757 asymbol *symbol;
758 PTR data;
759 asection *input_section;
760 bfd *output_bfd;
4991ebb9 761 char **error_message;
23f44e6f
ILT
762{
763 boolean relocateable;
764 bfd_vma relocation;
765 unsigned long val;
766 unsigned long insn;
767
768 /* If we're relocating, and this is an external symbol with no
769 addend, we don't want to change anything. We will only have an
770 addend if this is a newly created reloc, not read from an ECOFF
771 file. */
772 if (output_bfd != (bfd *) NULL
773 && (symbol->flags & BSF_SECTION_SYM) == 0
774 && reloc_entry->addend == 0)
775 {
776 reloc_entry->address += input_section->output_offset;
777 return bfd_reloc_ok;
778 }
779
780 if (output_bfd != (bfd *) NULL)
781 relocateable = true;
782 else
783 {
784 relocateable = false;
785 output_bfd = symbol->section->output_section->owner;
786 }
787
69645d10 788 if (bfd_is_und_section (symbol->section)
23f44e6f
ILT
789 && relocateable == false)
790 return bfd_reloc_undefined;
791
792 /* We have to figure out the gp value, so that we can adjust the
793 symbol value correctly. We look up the symbol _gp in the output
794 BFD. If we can't find it, we're stuck. We cache it in the ECOFF
795 target data. We don't need to adjust the symbol value for an
796 external symbol if we are producing relocateable output. */
797 if (ecoff_data (output_bfd)->gp == 0
798 && (relocateable == false
799 || (symbol->flags & BSF_SECTION_SYM) != 0))
800 {
801 if (relocateable != false)
802 {
803 /* Make up a value. */
804 ecoff_data (output_bfd)->gp =
805 symbol->section->output_section->vma + 0x4000;
806 }
807 else
808 {
809 unsigned int count;
810 asymbol **sym;
811 unsigned int i;
812
813 count = bfd_get_symcount (output_bfd);
814 sym = bfd_get_outsymbols (output_bfd);
815
816 if (sym == (asymbol **) NULL)
817 i = count;
818 else
819 {
820 for (i = 0; i < count; i++, sym++)
821 {
822 register CONST char *name;
823
824 name = bfd_asymbol_name (*sym);
825 if (*name == '_' && strcmp (name, "_gp") == 0)
826 {
827 ecoff_data (output_bfd)->gp = bfd_asymbol_value (*sym);
828 break;
829 }
830 }
831 }
832
833 if (i >= count)
834 {
835 /* Only get the error once. */
836 ecoff_data (output_bfd)->gp = 4;
4991ebb9
ILT
837 *error_message =
838 (char *) "GP relative relocation when _gp not defined";
23f44e6f
ILT
839 return bfd_reloc_dangerous;
840 }
841 }
842 }
843
844 if (bfd_is_com_section (symbol->section))
845 relocation = 0;
846 else
847 relocation = symbol->value;
848
849 relocation += symbol->section->output_section->vma;
850 relocation += symbol->section->output_offset;
851
852 if (reloc_entry->address > input_section->_cooked_size)
853 return bfd_reloc_outofrange;
854
855 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
856
857 /* Set val to the offset into the section or symbol. */
858 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
859 if (val & 0x8000)
860 val -= 0x10000;
861
862 /* Adjust val for the final section location and GP value. If we
863 are producing relocateable output, we don't want to do this for
864 an external symbol. */
865 if (relocateable == false
866 || (symbol->flags & BSF_SECTION_SYM) != 0)
867 val += relocation - ecoff_data (output_bfd)->gp;
868
869 insn = (insn &~ 0xffff) | (val & 0xffff);
870 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
871
872 if (relocateable != false)
873 reloc_entry->address += input_section->output_offset;
874
875 /* Make sure it fit in 16 bits. */
876 if (val >= 0x8000 && val < 0xffff8000)
4991ebb9 877 return bfd_reloc_overflow;
23f44e6f
ILT
878
879 return bfd_reloc_ok;
880}
881
4f996613
ILT
882/* Do a RELHI relocation. We do this in conjunction with a RELLO
883 reloc, just as REFHI and REFLO are done together. RELHI and RELLO
884 are Cygnus extensions used when generating position independent
885 code for embedded systems. */
886
887static bfd_byte *mips_relhi_addr;
888static bfd_vma mips_relhi_addend;
889
890static bfd_reloc_status_type
891mips_relhi_reloc (abfd,
892 reloc_entry,
893 symbol,
894 data,
895 input_section,
896 output_bfd,
897 error_message)
898 bfd *abfd;
899 arelent *reloc_entry;
900 asymbol *symbol;
901 PTR data;
902 asection *input_section;
903 bfd *output_bfd;
904 char **error_message;
905{
906 bfd_reloc_status_type ret;
907 bfd_vma relocation;
908
909 /* If this is a reloc against a section symbol, then it is correct
910 in the object file. The only time we want to change this case is
911 when we are relaxing, and that is handled entirely by
912 mips_relocate_section and never calls this function. */
913 if ((symbol->flags & BSF_SECTION_SYM) != 0)
914 {
915 if (output_bfd != (bfd *) NULL)
916 reloc_entry->address += input_section->output_offset;
917 return bfd_reloc_ok;
918 }
919
920 /* This is an external symbol. If we're relocating, we don't want
921 to change anything. */
922 if (output_bfd != (bfd *) NULL)
923 {
924 reloc_entry->address += input_section->output_offset;
925 return bfd_reloc_ok;
926 }
927
928 ret = bfd_reloc_ok;
69645d10 929 if (bfd_is_und_section (symbol->section)
4f996613
ILT
930 && output_bfd == (bfd *) NULL)
931 ret = bfd_reloc_undefined;
932
933 if (bfd_is_com_section (symbol->section))
934 relocation = 0;
935 else
936 relocation = symbol->value;
937
938 relocation += symbol->section->output_section->vma;
939 relocation += symbol->section->output_offset;
940 relocation += reloc_entry->addend;
941
942 if (reloc_entry->address > input_section->_cooked_size)
943 return bfd_reloc_outofrange;
944
945 /* Save the information, and let RELLO do the actual relocation. */
946 mips_relhi_addr = (bfd_byte *) data + reloc_entry->address;
947 mips_relhi_addend = relocation;
948
949 if (output_bfd != (bfd *) NULL)
950 reloc_entry->address += input_section->output_offset;
951
952 return ret;
953}
954
955/* Do a RELLO relocation. This is a straightforward 16 bit PC
956 relative relocation; this function exists in order to do the RELHI
957 relocation described above. */
958
959static bfd_reloc_status_type
960mips_rello_reloc (abfd,
961 reloc_entry,
962 symbol,
963 data,
964 input_section,
965 output_bfd,
966 error_message)
967 bfd *abfd;
968 arelent *reloc_entry;
969 asymbol *symbol;
970 PTR data;
971 asection *input_section;
972 bfd *output_bfd;
973 char **error_message;
974{
975 if (mips_relhi_addr != (bfd_byte *) NULL)
976 {
977 unsigned long insn;
978 unsigned long val;
979 unsigned long vallo;
980
981 /* Do the RELHI relocation. Note that we actually don't need to
982 know anything about the RELLO itself, except where to find
983 the low 16 bits of the addend needed by the RELHI. */
984 insn = bfd_get_32 (abfd, mips_relhi_addr);
985 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
986 & 0xffff);
987 val = ((insn & 0xffff) << 16) + vallo;
988 val += mips_relhi_addend;
989
990 /* If the symbol is defined, make val PC relative. If the
991 symbol is not defined we don't want to do this, because we
992 don't want the value in the object file to incorporate the
993 address of the reloc. */
69645d10 994 if (! bfd_is_und_section (bfd_get_section (symbol))
4f996613
ILT
995 && ! bfd_is_com_section (bfd_get_section (symbol)))
996 val -= (input_section->output_section->vma
997 + input_section->output_offset
998 + reloc_entry->address);
999
1000 /* The low order 16 bits are always treated as a signed value.
1001 Therefore, a negative value in the low order bits requires an
1002 adjustment in the high order bits. We need to make this
1003 adjustment in two ways: once for the bits we took from the
1004 data, and once for the bits we are putting back in to the
1005 data. */
1006 if ((vallo & 0x8000) != 0)
1007 val -= 0x10000;
1008 if ((val & 0x8000) != 0)
1009 val += 0x10000;
1010
1011 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1012 bfd_put_32 (abfd, insn, mips_relhi_addr);
1013
1014 mips_relhi_addr = (bfd_byte *) NULL;
1015 }
1016
1017 /* If this is a reloc against a section symbol, then it is correct
1018 in the object file. The only time we want to change this case is
1019 when we are relaxing, and that is handled entirely by
1020 mips_relocate_section and never calls this function. */
1021 if ((symbol->flags & BSF_SECTION_SYM) != 0)
1022 {
1023 if (output_bfd != (bfd *) NULL)
1024 reloc_entry->address += input_section->output_offset;
1025 return bfd_reloc_ok;
1026 }
1027
1028 /* bfd_perform_relocation does not handle pcrel_offset relocations
1029 correctly when generating a relocateable file, so handle them
1030 directly here. */
1031 if (output_bfd != (bfd *) NULL)
1032 {
1033 reloc_entry->address += input_section->output_offset;
1034 return bfd_reloc_ok;
1035 }
1036
1037 /* Now do the RELLO reloc in the usual way. */
1038 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
1039 input_section, output_bfd, error_message);
1040}
1041
dabf906e
ILT
1042/* This is the special function for the MIPS_R_SWITCH reloc. This
1043 special reloc is normally correct in the object file, and only
1044 requires special handling when relaxing. We don't want
1045 bfd_perform_relocation to tamper with it at all. */
1046
1047/*ARGSUSED*/
1048static bfd_reloc_status_type
1049mips_switch_reloc (abfd,
1050 reloc_entry,
1051 symbol,
1052 data,
1053 input_section,
1054 output_bfd,
1055 error_message)
1056 bfd *abfd;
1057 arelent *reloc_entry;
1058 asymbol *symbol;
1059 PTR data;
1060 asection *input_section;
1061 bfd *output_bfd;
1062 char **error_message;
1063{
1064 return bfd_reloc_ok;
1065}
1066
23f44e6f
ILT
1067/* Get the howto structure for a generic reloc type. */
1068
a5655244 1069static reloc_howto_type *
23f44e6f
ILT
1070mips_bfd_reloc_type_lookup (abfd, code)
1071 bfd *abfd;
1072 bfd_reloc_code_real_type code;
1073{
1074 int mips_type;
1075
1076 switch (code)
1077 {
1078 case BFD_RELOC_16:
1079 mips_type = MIPS_R_REFHALF;
1080 break;
1081 case BFD_RELOC_32:
f1cca647 1082 case BFD_RELOC_CTOR:
23f44e6f
ILT
1083 mips_type = MIPS_R_REFWORD;
1084 break;
1085 case BFD_RELOC_MIPS_JMP:
1086 mips_type = MIPS_R_JMPADDR;
1087 break;
1088 case BFD_RELOC_HI16_S:
1089 mips_type = MIPS_R_REFHI;
1090 break;
1091 case BFD_RELOC_LO16:
1092 mips_type = MIPS_R_REFLO;
1093 break;
1094 case BFD_RELOC_MIPS_GPREL:
1095 mips_type = MIPS_R_GPREL;
1096 break;
4991ebb9
ILT
1097 case BFD_RELOC_MIPS_LITERAL:
1098 mips_type = MIPS_R_LITERAL;
1099 break;
a3a33af3
ILT
1100 case BFD_RELOC_16_PCREL_S2:
1101 mips_type = MIPS_R_PCREL16;
1102 break;
4f996613
ILT
1103 case BFD_RELOC_PCREL_HI16_S:
1104 mips_type = MIPS_R_RELHI;
1105 break;
1106 case BFD_RELOC_PCREL_LO16:
1107 mips_type = MIPS_R_RELLO;
1108 break;
dabf906e
ILT
1109 case BFD_RELOC_GPREL32:
1110 mips_type = MIPS_R_SWITCH;
1111 break;
23f44e6f 1112 default:
a5655244 1113 return (reloc_howto_type *) NULL;
23f44e6f
ILT
1114 }
1115
1116 return &mips_howto_table[mips_type];
1117}
c3fe0c41 1118\f
4991ebb9 1119/* A helper routine for mips_relocate_section which handles the REFHI
4f996613
ILT
1120 and RELHI relocations. The REFHI relocation must be followed by a
1121 REFLO relocation (and RELHI by a RELLO), and the addend used is
1122 formed from the addends of both instructions. */
de17306e 1123
4991ebb9 1124static void
4f996613
ILT
1125mips_relocate_hi (refhi, reflo, input_bfd, input_section, contents, adjust,
1126 relocation, pcrel)
4991ebb9
ILT
1127 struct internal_reloc *refhi;
1128 struct internal_reloc *reflo;
1129 bfd *input_bfd;
1130 asection *input_section;
1131 bfd_byte *contents;
a3a33af3 1132 size_t adjust;
4991ebb9 1133 bfd_vma relocation;
4f996613 1134 boolean pcrel;
de17306e 1135{
4991ebb9
ILT
1136 unsigned long insn;
1137 unsigned long val;
1138 unsigned long vallo;
1139
1140 insn = bfd_get_32 (input_bfd,
a3a33af3 1141 contents + adjust + refhi->r_vaddr - input_section->vma);
4991ebb9 1142 vallo = (bfd_get_32 (input_bfd,
a3a33af3 1143 contents + adjust + reflo->r_vaddr - input_section->vma)
4991ebb9
ILT
1144 & 0xffff);
1145 val = ((insn & 0xffff) << 16) + vallo;
1146 val += relocation;
1147
1148 /* The low order 16 bits are always treated as a signed value.
1149 Therefore, a negative value in the low order bits requires an
1150 adjustment in the high order bits. We need to make this
1151 adjustment in two ways: once for the bits we took from the data,
1152 and once for the bits we are putting back in to the data. */
1153 if ((vallo & 0x8000) != 0)
1154 val -= 0x10000;
4f996613
ILT
1155
1156 if (pcrel)
1157 val -= (input_section->output_section->vma
1158 + input_section->output_offset
1159 + (reflo->r_vaddr - input_section->vma + adjust));
1160
4991ebb9
ILT
1161 if ((val & 0x8000) != 0)
1162 val += 0x10000;
de17306e 1163
4991ebb9
ILT
1164 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1165 bfd_put_32 (input_bfd, (bfd_vma) insn,
a3a33af3 1166 contents + adjust + refhi->r_vaddr - input_section->vma);
4991ebb9 1167}
de17306e 1168
4991ebb9 1169/* Relocate a section while linking a MIPS ECOFF file. */
de17306e 1170
4991ebb9
ILT
1171static boolean
1172mips_relocate_section (output_bfd, info, input_bfd, input_section,
1173 contents, external_relocs)
1174 bfd *output_bfd;
1175 struct bfd_link_info *info;
1176 bfd *input_bfd;
1177 asection *input_section;
1178 bfd_byte *contents;
1179 PTR external_relocs;
1180{
1181 asection **symndx_to_section;
1182 struct ecoff_link_hash_entry **sym_hashes;
1183 bfd_vma gp;
1184 boolean gp_undefined;
a3a33af3
ILT
1185 size_t adjust;
1186 long *offsets;
4991ebb9
ILT
1187 struct external_reloc *ext_rel;
1188 struct external_reloc *ext_rel_end;
a3a33af3 1189 unsigned int i;
4f996613
ILT
1190 boolean got_lo;
1191 struct internal_reloc lo_int_rel;
4991ebb9 1192
64d5f5d0
ILT
1193 BFD_ASSERT (input_bfd->xvec->header_byteorder
1194 == output_bfd->xvec->header_byteorder);
4991ebb9
ILT
1195
1196 /* We keep a table mapping the symndx found in an internal reloc to
1197 the appropriate section. This is faster than looking up the
1198 section by name each time. */
1199 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1200 if (symndx_to_section == (asection **) NULL)
1201 {
1202 symndx_to_section = ((asection **)
1203 bfd_alloc (input_bfd,
1204 (NUM_RELOC_SECTIONS
1205 * sizeof (asection *))));
9783e04a 1206 if (!symndx_to_section)
a9713b91 1207 return false;
4991ebb9
ILT
1208
1209 symndx_to_section[RELOC_SECTION_NONE] = NULL;
1210 symndx_to_section[RELOC_SECTION_TEXT] =
1211 bfd_get_section_by_name (input_bfd, ".text");
1212 symndx_to_section[RELOC_SECTION_RDATA] =
1213 bfd_get_section_by_name (input_bfd, ".rdata");
1214 symndx_to_section[RELOC_SECTION_DATA] =
1215 bfd_get_section_by_name (input_bfd, ".data");
1216 symndx_to_section[RELOC_SECTION_SDATA] =
1217 bfd_get_section_by_name (input_bfd, ".sdata");
1218 symndx_to_section[RELOC_SECTION_SBSS] =
1219 bfd_get_section_by_name (input_bfd, ".sbss");
1220 symndx_to_section[RELOC_SECTION_BSS] =
1221 bfd_get_section_by_name (input_bfd, ".bss");
1222 symndx_to_section[RELOC_SECTION_INIT] =
1223 bfd_get_section_by_name (input_bfd, ".init");
1224 symndx_to_section[RELOC_SECTION_LIT8] =
1225 bfd_get_section_by_name (input_bfd, ".lit8");
1226 symndx_to_section[RELOC_SECTION_LIT4] =
1227 bfd_get_section_by_name (input_bfd, ".lit4");
1228 symndx_to_section[RELOC_SECTION_XDATA] = NULL;
1229 symndx_to_section[RELOC_SECTION_PDATA] = NULL;
1230 symndx_to_section[RELOC_SECTION_FINI] =
1231 bfd_get_section_by_name (input_bfd, ".fini");
1232 symndx_to_section[RELOC_SECTION_LITA] = NULL;
1233 symndx_to_section[RELOC_SECTION_ABS] = NULL;
1234
1235 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1236 }
de17306e 1237
4991ebb9 1238 sym_hashes = ecoff_data (input_bfd)->sym_hashes;
de17306e 1239
4991ebb9
ILT
1240 gp = ecoff_data (output_bfd)->gp;
1241 if (gp == 0)
1242 gp_undefined = true;
1243 else
1244 gp_undefined = false;
de17306e 1245
4f996613 1246 got_lo = false;
de17306e 1247
a3a33af3
ILT
1248 adjust = 0;
1249
1250 if (ecoff_section_data (input_bfd, input_section) == NULL)
1251 offsets = NULL;
1252 else
1253 offsets = ecoff_section_data (input_bfd, input_section)->offsets;
1254
4991ebb9
ILT
1255 ext_rel = (struct external_reloc *) external_relocs;
1256 ext_rel_end = ext_rel + input_section->reloc_count;
a3a33af3 1257 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
4991ebb9
ILT
1258 {
1259 struct internal_reloc int_rel;
4991ebb9
ILT
1260 bfd_vma addend;
1261 reloc_howto_type *howto;
1262 struct ecoff_link_hash_entry *h = NULL;
1263 asection *s = NULL;
1264 bfd_vma relocation;
1265 bfd_reloc_status_type r;
1266
4f996613 1267 if (! got_lo)
4991ebb9
ILT
1268 mips_ecoff_swap_reloc_in (input_bfd, (PTR) ext_rel, &int_rel);
1269 else
1270 {
4f996613
ILT
1271 int_rel = lo_int_rel;
1272 got_lo = false;
4991ebb9 1273 }
de17306e 1274
4991ebb9
ILT
1275 BFD_ASSERT (int_rel.r_type
1276 < sizeof mips_howto_table / sizeof mips_howto_table[0]);
de17306e 1277
4f996613
ILT
1278 /* The REFHI and RELHI relocs requires special handling. they
1279 must be followed by a REFLO or RELLO reloc, respectively, and
1280 the addend is formed from both relocs. */
1281 if (int_rel.r_type == MIPS_R_REFHI
1282 || int_rel.r_type == MIPS_R_RELHI)
4991ebb9
ILT
1283 {
1284 BFD_ASSERT ((ext_rel + 1) < ext_rel_end);
1285 mips_ecoff_swap_reloc_in (input_bfd, (PTR) (ext_rel + 1),
4f996613
ILT
1286 &lo_int_rel);
1287 BFD_ASSERT ((lo_int_rel.r_type
1288 == (int_rel.r_type == MIPS_R_REFHI
1289 ? MIPS_R_REFLO
1290 : MIPS_R_RELLO))
1291 && int_rel.r_extern == lo_int_rel.r_extern
1292 && int_rel.r_symndx == lo_int_rel.r_symndx);
1293 got_lo = true;
4991ebb9 1294 }
de17306e 1295
4991ebb9 1296 howto = &mips_howto_table[int_rel.r_type];
de17306e 1297
dabf906e
ILT
1298 /* The SWITCH reloc must be handled specially. This reloc is
1299 marks the location of a difference between two portions of an
1300 object file. The symbol index does not reference a symbol,
1301 but is actually the offset from the reloc to the subtrahend
1302 of the difference. This reloc is correct in the object file,
1303 and needs no further adjustment, unless we are relaxing. If
1304 we are relaxing, we may have to add in an offset. Since no
1305 symbols are involved in this reloc, we handle it completely
1306 here. */
1307 if (int_rel.r_type == MIPS_R_SWITCH)
1308 {
1309 if (offsets != NULL
1310 && offsets[i] != 0)
1311 {
1312 r = _bfd_relocate_contents (howto, input_bfd,
1313 (bfd_vma) offsets[i],
1314 (contents
1315 + adjust
1316 + int_rel.r_vaddr
1317 - input_section->vma));
1318 BFD_ASSERT (r == bfd_reloc_ok);
1319 }
1320
1321 continue;
1322 }
1323
4991ebb9
ILT
1324 if (int_rel.r_extern)
1325 {
1326 h = sym_hashes[int_rel.r_symndx];
1327 /* If h is NULL, that means that there is a reloc against an
1328 external symbol which we thought was just a debugging
1329 symbol. This should not happen. */
1330 if (h == (struct ecoff_link_hash_entry *) NULL)
1331 abort ();
1332 }
1333 else
1334 {
1335 if (int_rel.r_symndx < 0 || int_rel.r_symndx >= NUM_RELOC_SECTIONS)
1336 s = NULL;
1337 else
1338 s = symndx_to_section[int_rel.r_symndx];
de17306e 1339
4991ebb9
ILT
1340 if (s == (asection *) NULL)
1341 abort ();
1342 }
de17306e 1343
4991ebb9
ILT
1344 /* The GPREL reloc uses an addend: the difference in the GP
1345 values. */
f1cca647
ILT
1346 if (int_rel.r_type != MIPS_R_GPREL
1347 && int_rel.r_type != MIPS_R_LITERAL)
4991ebb9
ILT
1348 addend = 0;
1349 else
de17306e 1350 {
4991ebb9
ILT
1351 if (gp_undefined)
1352 {
1353 if (! ((*info->callbacks->reloc_dangerous)
1354 (info, "GP relative relocation when GP not defined",
1355 input_bfd, input_section,
1356 int_rel.r_vaddr - input_section->vma)))
1357 return false;
1358 /* Only give the error once per link. */
1359 ecoff_data (output_bfd)->gp = gp = 4;
1360 gp_undefined = false;
1361 }
1362 if (! int_rel.r_extern)
1363 {
1364 /* This is a relocation against a section. The current
1365 addend in the instruction is the difference between
1366 INPUT_SECTION->vma and the GP value of INPUT_BFD. We
1367 must change this to be the difference between the
1368 final definition (which will end up in RELOCATION)
1369 and the GP value of OUTPUT_BFD (which is in GP). */
1370 addend = ecoff_data (input_bfd)->gp - gp;
1371 }
1372 else if (! info->relocateable
a5655244
ILT
1373 || h->root.type == bfd_link_hash_defined
1374 || h->root.type == bfd_link_hash_defweak)
4991ebb9 1375 {
a5655244
ILT
1376 /* This is a relocation against a defined symbol. The
1377 current addend in the instruction is simply the
1378 desired offset into the symbol (normally zero). We
1379 are going to change this into a relocation against a
1380 defined symbol, so we want the instruction to hold
1381 the difference between the final definition of the
1382 symbol (which will end up in RELOCATION) and the GP
1383 value of OUTPUT_BFD (which is in GP). */
4991ebb9
ILT
1384 addend = - gp;
1385 }
1386 else
1387 {
1388 /* This is a relocation against an undefined or common
1389 symbol. The current addend in the instruction is
1390 simply the desired offset into the symbol (normally
1391 zero). We are generating relocateable output, and we
1392 aren't going to define this symbol, so we just leave
1393 the instruction alone. */
1394 addend = 0;
1395 }
de17306e
ILT
1396 }
1397
a3a33af3
ILT
1398 /* If we are relaxing, mips_relax_section may have set
1399 offsets[i] to some value. A value of 1 means we must expand
1400 a PC relative branch into a multi-instruction of sequence,
1401 and any other value is an addend. */
1402 if (offsets != NULL
1403 && offsets[i] != 0)
1404 {
1405 BFD_ASSERT (! info->relocateable);
4f996613
ILT
1406 BFD_ASSERT (int_rel.r_type == MIPS_R_PCREL16
1407 || int_rel.r_type == MIPS_R_RELHI
1408 || int_rel.r_type == MIPS_R_RELLO);
a3a33af3 1409 if (offsets[i] != 1)
4f996613 1410 addend += offsets[i];
a3a33af3
ILT
1411 else
1412 {
1413 bfd_byte *here;
1414
4f996613
ILT
1415 BFD_ASSERT (int_rel.r_extern
1416 && int_rel.r_type == MIPS_R_PCREL16);
a3a33af3
ILT
1417
1418 /* Move the rest of the instructions up. */
1419 here = (contents
1420 + adjust
1421 + int_rel.r_vaddr
1422 - input_section->vma);
1423 memmove (here + PCREL16_EXPANSION_ADJUSTMENT, here,
a5655244
ILT
1424 (size_t) (input_section->_raw_size
1425 - (int_rel.r_vaddr - input_section->vma)));
a3a33af3
ILT
1426
1427 /* Generate the new instructions. */
1428 if (! mips_relax_pcrel16 (info, input_bfd, input_section,
1429 h, here,
1430 (input_section->output_section->vma
1431 + input_section->output_offset
1432 + (int_rel.r_vaddr
1433 - input_section->vma)
1434 + adjust)))
1435 return false;
1436
1437 /* We must adjust everything else up a notch. */
1438 adjust += PCREL16_EXPANSION_ADJUSTMENT;
1439
1440 /* mips_relax_pcrel16 handles all the details of this
1441 relocation. */
1442 continue;
1443 }
1444 }
1445
ac9ed096
ILT
1446 /* If we are relaxing, and this is a reloc against the .text
1447 segment, we may need to adjust it if some branches have been
1448 expanded. The reloc types which are likely to occur in the
1449 .text section are handled efficiently by mips_relax_section,
1450 and thus do not need to be handled here. */
1451 if (ecoff_data (input_bfd)->debug_info.adjust != NULL
1452 && ! int_rel.r_extern
1453 && int_rel.r_symndx == RELOC_SECTION_TEXT
1454 && (strcmp (bfd_get_section_name (input_bfd, input_section),
1455 ".text") != 0
1456 || (int_rel.r_type != MIPS_R_PCREL16
1457 && int_rel.r_type != MIPS_R_SWITCH
1458 && int_rel.r_type != MIPS_R_RELHI
1459 && int_rel.r_type != MIPS_R_RELLO)))
1460 {
1461 bfd_vma adr;
1462 struct ecoff_value_adjust *a;
1463
1464 /* We need to get the addend so that we know whether we need
1465 to adjust the address. */
1466 BFD_ASSERT (int_rel.r_type == MIPS_R_REFWORD);
1467
1468 adr = bfd_get_32 (input_bfd,
1469 (contents
1470 + adjust
1471 + int_rel.r_vaddr
1472 - input_section->vma));
1473
1474 for (a = ecoff_data (input_bfd)->debug_info.adjust;
1475 a != (struct ecoff_value_adjust *) NULL;
1476 a = a->next)
1477 {
1478 if (adr >= a->start && adr < a->end)
1479 addend += a->adjust;
1480 }
1481 }
1482
4991ebb9
ILT
1483 if (info->relocateable)
1484 {
1485 /* We are generating relocateable output, and must convert
1486 the existing reloc. */
1487 if (int_rel.r_extern)
1488 {
a5655244
ILT
1489 if ((h->root.type == bfd_link_hash_defined
1490 || h->root.type == bfd_link_hash_defweak)
1491 && ! bfd_is_abs_section (h->root.u.def.section))
4991ebb9 1492 {
4991ebb9 1493 const char *name;
de17306e 1494
4991ebb9
ILT
1495 /* This symbol is defined in the output. Convert
1496 the reloc from being against the symbol to being
1497 against the section. */
de17306e 1498
4991ebb9
ILT
1499 /* Clear the r_extern bit. */
1500 int_rel.r_extern = 0;
de17306e 1501
4991ebb9 1502 /* Compute a new r_symndx value. */
a3a33af3 1503 s = h->root.u.def.section;
4991ebb9 1504 name = bfd_get_section_name (output_bfd,
a3a33af3 1505 s->output_section);
de17306e 1506
4991ebb9
ILT
1507 int_rel.r_symndx = -1;
1508 switch (name[1])
1509 {
1510 case 'b':
1511 if (strcmp (name, ".bss") == 0)
1512 int_rel.r_symndx = RELOC_SECTION_BSS;
1513 break;
1514 case 'd':
1515 if (strcmp (name, ".data") == 0)
1516 int_rel.r_symndx = RELOC_SECTION_DATA;
1517 break;
1518 case 'f':
1519 if (strcmp (name, ".fini") == 0)
1520 int_rel.r_symndx = RELOC_SECTION_FINI;
1521 break;
1522 case 'i':
1523 if (strcmp (name, ".init") == 0)
1524 int_rel.r_symndx = RELOC_SECTION_INIT;
1525 break;
1526 case 'l':
1527 if (strcmp (name, ".lit8") == 0)
1528 int_rel.r_symndx = RELOC_SECTION_LIT8;
1529 else if (strcmp (name, ".lit4") == 0)
1530 int_rel.r_symndx = RELOC_SECTION_LIT4;
1531 break;
1532 case 'r':
1533 if (strcmp (name, ".rdata") == 0)
1534 int_rel.r_symndx = RELOC_SECTION_RDATA;
1535 break;
1536 case 's':
1537 if (strcmp (name, ".sdata") == 0)
1538 int_rel.r_symndx = RELOC_SECTION_SDATA;
1539 else if (strcmp (name, ".sbss") == 0)
1540 int_rel.r_symndx = RELOC_SECTION_SBSS;
1541 break;
1542 case 't':
1543 if (strcmp (name, ".text") == 0)
1544 int_rel.r_symndx = RELOC_SECTION_TEXT;
1545 break;
1546 }
1547
1548 if (int_rel.r_symndx == -1)
1549 abort ();
1550
1551 /* Add the section VMA and the symbol value. */
1552 relocation = (h->root.u.def.value
a3a33af3
ILT
1553 + s->output_section->vma
1554 + s->output_offset);
1555
1556 /* For a PC relative relocation, the object file
1557 currently holds just the addend. We must adjust
1558 by the address to get the right value. */
1559 if (howto->pc_relative)
4f996613
ILT
1560 {
1561 relocation -= int_rel.r_vaddr - input_section->vma;
1562
1563 /* If we are converting a RELHI or RELLO reloc
1564 from being against an external symbol to
1565 being against a section, we must put a
1566 special value into the r_offset field. This
1567 value is the old addend. The r_offset for
1568 both the RELOHI and RELLO relocs are the
1569 same, and we set both when we see RELHI. */
1570 if (int_rel.r_type == MIPS_R_RELHI)
1571 {
1572 long addhi, addlo;
1573
1574 addhi = bfd_get_32 (input_bfd,
1575 (contents
1576 + adjust
1577 + int_rel.r_vaddr
1578 - input_section->vma));
1579 addhi &= 0xffff;
1580 if (addhi & 0x8000)
1581 addhi -= 0x10000;
1582 addhi <<= 16;
1583
1584 addlo = bfd_get_32 (input_bfd,
1585 (contents
1586 + adjust
1587 + lo_int_rel.r_vaddr
1588 - input_section->vma));
1589 addlo &= 0xffff;
1590 if (addlo & 0x8000)
1591 addlo -= 0x10000;
1592
1593 int_rel.r_offset = addhi + addlo;
1594 lo_int_rel.r_offset = int_rel.r_offset;
1595 }
1596 }
a3a33af3
ILT
1597
1598 h = NULL;
4991ebb9
ILT
1599 }
1600 else
1601 {
1602 /* Change the symndx value to the right one for the
1603 output BFD. */
1604 int_rel.r_symndx = h->indx;
1605 if (int_rel.r_symndx == -1)
1606 {
1607 /* This symbol is not being written out. */
1608 if (! ((*info->callbacks->unattached_reloc)
1609 (info, h->root.root.string, input_bfd,
1610 input_section,
1611 int_rel.r_vaddr - input_section->vma)))
1612 return false;
1613 int_rel.r_symndx = 0;
1614 }
1615 relocation = 0;
1616 }
1617 }
1618 else
1619 {
1620 /* This is a relocation against a section. Adjust the
1621 value by the amount the section moved. */
1622 relocation = (s->output_section->vma
1623 + s->output_offset
1624 - s->vma);
1625 }
de17306e 1626
4991ebb9 1627 relocation += addend;
ac9ed096 1628 addend = 0;
de17306e 1629
a3a33af3
ILT
1630 /* Adjust a PC relative relocation by removing the reference
1631 to the original address in the section and including the
4f996613
ILT
1632 reference to the new address. However, external RELHI
1633 and RELLO relocs are PC relative, but don't include any
1634 reference to the address. The addend is merely an
1635 addend. */
1636 if (howto->pc_relative
1637 && (! int_rel.r_extern
1638 || (int_rel.r_type != MIPS_R_RELHI
1639 && int_rel.r_type != MIPS_R_RELLO)))
a3a33af3
ILT
1640 relocation -= (input_section->output_section->vma
1641 + input_section->output_offset
1642 - input_section->vma);
1643
4991ebb9
ILT
1644 /* Adjust the contents. */
1645 if (relocation == 0)
1646 r = bfd_reloc_ok;
1647 else
1648 {
4f996613
ILT
1649 if (int_rel.r_type != MIPS_R_REFHI
1650 && int_rel.r_type != MIPS_R_RELHI)
4991ebb9
ILT
1651 r = _bfd_relocate_contents (howto, input_bfd, relocation,
1652 (contents
a3a33af3 1653 + adjust
4991ebb9
ILT
1654 + int_rel.r_vaddr
1655 - input_section->vma));
1656 else
1657 {
4f996613
ILT
1658 mips_relocate_hi (&int_rel, &lo_int_rel,
1659 input_bfd, input_section, contents,
1660 adjust, relocation,
1661 int_rel.r_type == MIPS_R_RELHI);
4991ebb9
ILT
1662 r = bfd_reloc_ok;
1663 }
1664 }
de17306e 1665
4991ebb9
ILT
1666 /* Adjust the reloc address. */
1667 int_rel.r_vaddr += (input_section->output_section->vma
1668 + input_section->output_offset
1669 - input_section->vma);
de17306e 1670
4991ebb9
ILT
1671 /* Save the changed reloc information. */
1672 mips_ecoff_swap_reloc_out (input_bfd, &int_rel, (PTR) ext_rel);
1673 }
1674 else
1675 {
1676 /* We are producing a final executable. */
1677 if (int_rel.r_extern)
1678 {
1679 /* This is a reloc against a symbol. */
a5655244
ILT
1680 if (h->root.type == bfd_link_hash_defined
1681 || h->root.type == bfd_link_hash_defweak)
4991ebb9
ILT
1682 {
1683 asection *hsec;
de17306e 1684
4991ebb9
ILT
1685 hsec = h->root.u.def.section;
1686 relocation = (h->root.u.def.value
1687 + hsec->output_section->vma
1688 + hsec->output_offset);
1689 }
1690 else
1691 {
1692 if (! ((*info->callbacks->undefined_symbol)
1693 (info, h->root.root.string, input_bfd,
1694 input_section,
1695 int_rel.r_vaddr - input_section->vma)))
1696 return false;
1697 relocation = 0;
1698 }
1699 }
1700 else
1701 {
1702 /* This is a reloc against a section. */
1703 relocation = (s->output_section->vma
1704 + s->output_offset
1705 - s->vma);
1706
a3a33af3
ILT
1707 /* A PC relative reloc is already correct in the object
1708 file. Make it look like a pcrel_offset relocation by
1709 adding in the start address. */
4991ebb9 1710 if (howto->pc_relative)
4f996613
ILT
1711 {
1712 if (int_rel.r_type != MIPS_R_RELHI)
1713 relocation += int_rel.r_vaddr + adjust;
1714 else
1715 relocation += lo_int_rel.r_vaddr + adjust;
1716 }
4991ebb9 1717 }
de17306e 1718
4f996613
ILT
1719 if (int_rel.r_type != MIPS_R_REFHI
1720 && int_rel.r_type != MIPS_R_RELHI)
4991ebb9
ILT
1721 r = _bfd_final_link_relocate (howto,
1722 input_bfd,
1723 input_section,
1724 contents,
a3a33af3
ILT
1725 (int_rel.r_vaddr
1726 - input_section->vma
1727 + adjust),
4991ebb9
ILT
1728 relocation,
1729 addend);
1730 else
1731 {
4f996613
ILT
1732 mips_relocate_hi (&int_rel, &lo_int_rel, input_bfd,
1733 input_section, contents, adjust,
1734 relocation,
1735 int_rel.r_type == MIPS_R_RELHI);
4991ebb9
ILT
1736 r = bfd_reloc_ok;
1737 }
1738 }
1739
ac9ed096
ILT
1740 /* MIPS_R_JMPADDR requires peculiar overflow detection. The
1741 instruction provides a 28 bit address (the two lower bits are
1742 implicit zeroes) which is combined with the upper four bits
1743 of the instruction address. */
1744 if (r == bfd_reloc_ok
1745 && int_rel.r_type == MIPS_R_JMPADDR
1746 && (((relocation
1747 + addend
1748 + (int_rel.r_extern ? 0 : s->vma))
1749 & 0xf0000000)
1750 != ((input_section->output_section->vma
1751 + input_section->output_offset
1752 + (int_rel.r_vaddr - input_section->vma)
1753 + adjust)
1754 & 0xf0000000)))
1755 r = bfd_reloc_overflow;
1756
4991ebb9
ILT
1757 if (r != bfd_reloc_ok)
1758 {
1759 switch (r)
1760 {
1761 default:
1762 case bfd_reloc_outofrange:
1763 abort ();
1764 case bfd_reloc_overflow:
1765 {
1766 const char *name;
1767
1768 if (int_rel.r_extern)
1769 name = h->root.root.string;
1770 else
1771 name = bfd_section_name (input_bfd, s);
1772 if (! ((*info->callbacks->reloc_overflow)
1773 (info, name, howto->name, (bfd_vma) 0,
1774 input_bfd, input_section,
1775 int_rel.r_vaddr - input_section->vma)))
1776 return false;
1777 }
1778 break;
1779 }
1780 }
1781 }
1782
1783 return true;
de17306e 1784}
de17306e 1785\f
a5655244
ILT
1786/* Read in the relocs for a section. */
1787
1788static boolean
1789mips_read_relocs (abfd, sec)
1790 bfd *abfd;
1791 asection *sec;
1792{
1793 struct ecoff_section_tdata *section_tdata;
1794
1795 section_tdata = ecoff_section_data (abfd, sec);
1796 if (section_tdata == (struct ecoff_section_tdata *) NULL)
1797 {
1798 sec->used_by_bfd =
1799 (PTR) bfd_alloc_by_size_t (abfd, sizeof (struct ecoff_section_tdata));
1800 if (sec->used_by_bfd == NULL)
a9713b91 1801 return false;
a5655244
ILT
1802
1803 section_tdata = ecoff_section_data (abfd, sec);
1804 section_tdata->external_relocs = NULL;
1805 section_tdata->contents = NULL;
1806 section_tdata->offsets = NULL;
1807 }
1808
1809 if (section_tdata->external_relocs == NULL)
1810 {
1811 bfd_size_type external_relocs_size;
1812
1813 external_relocs_size = (ecoff_backend (abfd)->external_reloc_size
1814 * sec->reloc_count);
1815
1816 section_tdata->external_relocs =
1817 (PTR) bfd_alloc (abfd, external_relocs_size);
1818 if (section_tdata->external_relocs == NULL && external_relocs_size != 0)
a9713b91 1819 return false;
a5655244
ILT
1820
1821 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1822 || (bfd_read (section_tdata->external_relocs, 1,
1823 external_relocs_size, abfd)
1824 != external_relocs_size))
1825 return false;
1826 }
1827
1828 return true;
1829}
1830
a3a33af3
ILT
1831/* Relax a section when linking a MIPS ECOFF file. This is used for
1832 embedded PIC code, which always uses PC relative branches which
1833 only have an 18 bit range on MIPS. If a branch is not in range, we
1834 generate a long instruction sequence to compensate. Each time we
1835 find a branch to expand, we have to check all the others again to
1836 make sure they are still in range. This is slow, but it only has
1837 to be done when -relax is passed to the linker.
1838
1839 This routine figures out which branches need to expand; the actual
1840 expansion is done in mips_relocate_section when the section
1841 contents are relocated. The information is stored in the offsets
1842 field of the ecoff_section_tdata structure. An offset of 1 means
1843 that the branch must be expanded into a multi-instruction PC
1844 relative branch (such an offset will only occur for a PC relative
1845 branch to an external symbol). Any other offset must be a multiple
1846 of four, and is the amount to change the branch by (such an offset
1847 will only occur for a PC relative branch within the same section).
1848
1849 We do not modify the section relocs or contents themselves so that
1850 if memory usage becomes an issue we can discard them and read them
1851 again. The only information we must save in memory between this
1852 routine and the mips_relocate_section routine is the table of
1853 offsets. */
1854
1855static boolean
1856mips_relax_section (abfd, sec, info, again)
1857 bfd *abfd;
1858 asection *sec;
1859 struct bfd_link_info *info;
1860 boolean *again;
1861{
1862 struct ecoff_section_tdata *section_tdata;
1863 bfd_byte *contents = NULL;
1864 long *offsets;
1865 struct external_reloc *ext_rel;
1866 struct external_reloc *ext_rel_end;
1867 unsigned int i;
1868
1869 /* Assume we are not going to need another pass. */
1870 *again = false;
1871
1872 /* If we are not generating an ECOFF file, this is much too
1873 confusing to deal with. */
1874 if (info->hash->creator->flavour != bfd_get_flavour (abfd))
1875 return true;
1876
1877 /* If there are no relocs, there is nothing to do. */
1878 if (sec->reloc_count == 0)
1879 return true;
1880
1881 /* We are only interested in PC relative relocs, and why would there
1882 ever be one from anything but the .text section? */
1883 if (strcmp (bfd_get_section_name (abfd, sec), ".text") != 0)
1884 return true;
1885
1886 /* Read in the relocs, if we haven't already got them. */
1887 section_tdata = ecoff_section_data (abfd, sec);
a5655244
ILT
1888 if (section_tdata == (struct ecoff_section_tdata *) NULL
1889 || section_tdata->external_relocs == NULL)
a3a33af3 1890 {
a5655244 1891 if (! mips_read_relocs (abfd, sec))
a3a33af3 1892 goto error_return;
a5655244
ILT
1893 section_tdata = ecoff_section_data (abfd, sec);
1894 }
a3a33af3 1895
a5655244
ILT
1896 if (sec->_cooked_size == 0)
1897 {
a3a33af3
ILT
1898 /* We must initialize _cooked_size only the first time we are
1899 called. */
1900 sec->_cooked_size = sec->_raw_size;
1901 }
1902
1903 contents = section_tdata->contents;
1904 offsets = section_tdata->offsets;
1905
1906 /* Look for any external PC relative relocs. Internal PC relative
1907 relocs are already correct in the object file, so they certainly
1908 can not overflow. */
1909 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
1910 ext_rel_end = ext_rel + sec->reloc_count;
1911 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1912 {
1913 struct internal_reloc int_rel;
1914 struct ecoff_link_hash_entry *h;
1915 asection *hsec;
1916 bfd_signed_vma relocation;
1917 struct external_reloc *adj_ext_rel;
1918 unsigned int adj_i;
1919 unsigned long ext_count;
1920 struct ecoff_link_hash_entry **adj_h_ptr;
1921 struct ecoff_link_hash_entry **adj_h_ptr_end;
1922 struct ecoff_value_adjust *adjust;
1923
1924 /* If we have already expanded this reloc, we certainly don't
1925 need to do it again. */
1926 if (offsets != (long *) NULL && offsets[i] == 1)
1927 continue;
1928
1929 /* Quickly check that this reloc is external PCREL16. */
64d5f5d0 1930 if (bfd_header_big_endian (abfd))
a3a33af3
ILT
1931 {
1932 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_BIG) == 0
1933 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_BIG)
1934 >> RELOC_BITS3_TYPE_SH_BIG)
1935 != MIPS_R_PCREL16))
1936 continue;
1937 }
1938 else
1939 {
1940 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) == 0
1941 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
1942 >> RELOC_BITS3_TYPE_SH_LITTLE)
1943 != MIPS_R_PCREL16))
1944 continue;
1945 }
1946
1947 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
1948
1949 h = ecoff_data (abfd)->sym_hashes[int_rel.r_symndx];
1950 if (h == (struct ecoff_link_hash_entry *) NULL)
1951 abort ();
1952
a5655244
ILT
1953 if (h->root.type != bfd_link_hash_defined
1954 && h->root.type != bfd_link_hash_defweak)
a3a33af3
ILT
1955 {
1956 /* Just ignore undefined symbols. These will presumably
1957 generate an error later in the link. */
1958 continue;
1959 }
1960
1961 /* Get the value of the symbol. */
1962 hsec = h->root.u.def.section;
1963 relocation = (h->root.u.def.value
1964 + hsec->output_section->vma
1965 + hsec->output_offset);
1966
1967 /* Subtract out the current address. */
1968 relocation -= (sec->output_section->vma
1969 + sec->output_offset
1970 + (int_rel.r_vaddr - sec->vma));
1971
1972 /* The addend is stored in the object file. In the normal case
1973 of ``bal symbol'', the addend will be -4. It will only be
1974 different in the case of ``bal symbol+constant''. To avoid
1975 always reading in the section contents, we don't check the
1976 addend in the object file (we could easily check the contents
1977 if we happen to have already read them in, but I fear that
1978 this could be confusing). This means we will screw up if
1979 there is a branch to a symbol that is in range, but added to
1980 a constant which puts it out of range; in such a case the
1981 link will fail with a reloc overflow error. Since the
1982 compiler will never generate such code, it should be easy
1983 enough to work around it by changing the assembly code in the
1984 source file. */
1985 relocation -= 4;
1986
1987 /* Now RELOCATION is the number we want to put in the object
1988 file. See whether it fits. */
1989 if (relocation >= -0x20000 && relocation < 0x20000)
1990 continue;
1991
1992 /* Now that we know this reloc needs work, which will rarely
1993 happen, go ahead and grab the section contents. */
1994 if (contents == (bfd_byte *) NULL)
1995 {
1996 if (info->keep_memory)
1997 contents = (bfd_byte *) bfd_alloc (abfd, sec->_raw_size);
1998 else
58142f10 1999 contents = (bfd_byte *) bfd_malloc ((size_t) sec->_raw_size);
a3a33af3 2000 if (contents == (bfd_byte *) NULL)
58142f10 2001 goto error_return;
a3a33af3
ILT
2002 if (! bfd_get_section_contents (abfd, sec, (PTR) contents,
2003 (file_ptr) 0, sec->_raw_size))
2004 goto error_return;
2005 if (info->keep_memory)
2006 section_tdata->contents = contents;
2007 }
2008
2009 /* We only support changing the bal instruction. It would be
2010 possible to handle other PC relative branches, but some of
2011 them (the conditional branches) would require a different
2012 length instruction sequence which would complicate both this
2013 routine and mips_relax_pcrel16. It could be written if
2014 somebody felt it were important. Ignoring this reloc will
2015 presumably cause a reloc overflow error later on. */
2016 if (bfd_get_32 (abfd, contents + int_rel.r_vaddr - sec->vma)
2017 != 0x0411ffff) /* bgezal $0,. == bal . */
2018 continue;
2019
2020 /* Bother. We need to expand this reloc, and we will need to
2021 make another relaxation pass since this change may put other
2022 relocs out of range. We need to examine the local branches
2023 and we need to allocate memory to hold the offsets we must
2024 add to them. We also need to adjust the values of all
2025 symbols in the object file following this location. */
2026
2027 sec->_cooked_size += PCREL16_EXPANSION_ADJUSTMENT;
2028 *again = true;
2029
2030 if (offsets == (long *) NULL)
2031 {
2032 size_t size;
2033
2034 size = sec->reloc_count * sizeof (long);
2035 offsets = (long *) bfd_alloc_by_size_t (abfd, size);
2036 if (offsets == (long *) NULL)
a9713b91 2037 goto error_return;
a3a33af3
ILT
2038 memset (offsets, 0, size);
2039 section_tdata->offsets = offsets;
2040 }
2041
2042 offsets[i] = 1;
2043
4f996613
ILT
2044 /* Now look for all PC relative references that cross this reloc
2045 and adjust their offsets. */
a3a33af3
ILT
2046 adj_ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2047 for (adj_i = 0; adj_ext_rel < ext_rel_end; adj_ext_rel++, adj_i++)
2048 {
2049 struct internal_reloc adj_int_rel;
4f996613
ILT
2050 bfd_vma start, stop;
2051 int change;
a3a33af3
ILT
2052
2053 mips_ecoff_swap_reloc_in (abfd, (PTR) adj_ext_rel, &adj_int_rel);
2054
4f996613 2055 if (adj_int_rel.r_type == MIPS_R_PCREL16)
dabf906e
ILT
2056 {
2057 unsigned long insn;
4f996613
ILT
2058
2059 /* We only care about local references. External ones
2060 will be relocated correctly anyhow. */
2061 if (adj_int_rel.r_extern)
2062 continue;
dabf906e
ILT
2063
2064 /* We are only interested in a PC relative reloc within
2065 this section. FIXME: Cross section PC relative
2066 relocs may not be handled correctly; does anybody
2067 care? */
2068 if (adj_int_rel.r_symndx != RELOC_SECTION_TEXT)
2069 continue;
a3a33af3 2070
4f996613
ILT
2071 start = adj_int_rel.r_vaddr;
2072
dabf906e
ILT
2073 insn = bfd_get_32 (abfd,
2074 contents + adj_int_rel.r_vaddr - sec->vma);
2075
4f996613
ILT
2076 stop = (insn & 0xffff) << 2;
2077 if ((stop & 0x20000) != 0)
2078 stop -= 0x40000;
2079 stop += adj_int_rel.r_vaddr + 4;
dabf906e 2080 }
4f996613
ILT
2081 else if (adj_int_rel.r_type == MIPS_R_RELHI)
2082 {
2083 struct internal_reloc rello;
2084 long addhi, addlo;
2085
2086 /* The next reloc must be MIPS_R_RELLO, and we handle
2087 them together. */
2088 BFD_ASSERT (adj_ext_rel + 1 < ext_rel_end);
2089
2090 mips_ecoff_swap_reloc_in (abfd, (PTR) (adj_ext_rel + 1), &rello);
2091
2092 BFD_ASSERT (rello.r_type == MIPS_R_RELLO);
2093
2094 addhi = bfd_get_32 (abfd,
2095 contents + adj_int_rel.r_vaddr - sec->vma);
2096 addhi &= 0xffff;
2097 if (addhi & 0x8000)
2098 addhi -= 0x10000;
2099 addhi <<= 16;
2100
2101 addlo = bfd_get_32 (abfd, contents + rello.r_vaddr - sec->vma);
2102 addlo &= 0xffff;
2103 if (addlo & 0x8000)
2104 addlo -= 0x10000;
2105
2106 if (adj_int_rel.r_extern)
2107 {
2108 /* The value we want here is
2109 sym - RELLOaddr + addend
2110 which we can express as
2111 sym - (RELLOaddr - addend)
2112 Therefore if we are expanding the area between
2113 RELLOaddr and RELLOaddr - addend we must adjust
2114 the addend. This is admittedly ambiguous, since
2115 we might mean (sym + addend) - RELLOaddr, but in
2116 practice we don't, and there is no way to handle
2117 that case correctly since at this point we have
2118 no idea whether any reloc is being expanded
2119 between sym and sym + addend. */
2120 start = rello.r_vaddr - (addhi + addlo);
2121 stop = rello.r_vaddr;
2122 }
2123 else
2124 {
2125 /* An internal RELHI/RELLO pair represents the
2126 difference between two addresses, $LC0 - foo.
2127 The symndx value is actually the difference
2128 between the reloc address and $LC0. This lets us
2129 compute $LC0, and, by considering the addend,
2130 foo. If the reloc we are expanding falls between
2131 those two relocs, we must adjust the addend. At
2132 this point, the symndx value is actually in the
2133 r_offset field, where it was put by
2134 mips_ecoff_swap_reloc_in. */
2135 start = rello.r_vaddr - adj_int_rel.r_offset;
2136 stop = start + addhi + addlo;
2137 }
2138 }
2139 else if (adj_int_rel.r_type == MIPS_R_SWITCH)
dabf906e 2140 {
dabf906e
ILT
2141 /* A MIPS_R_SWITCH reloc represents a word of the form
2142 .word $L3-$LS12
2143 The value in the object file is correct, assuming the
2144 original value of $L3. The symndx value is actually
2145 the difference between the reloc address and $LS12.
2146 This lets us compute the original value of $LS12 as
2147 vaddr - symndx
2148 and the original value of $L3 as
2149 vaddr - symndx + addend
2150 where addend is the value from the object file. At
2151 this point, the symndx value is actually found in the
2152 r_offset field, since it was moved by
2153 mips_ecoff_swap_reloc_in. */
dabf906e
ILT
2154 start = adj_int_rel.r_vaddr - adj_int_rel.r_offset;
2155 stop = start + bfd_get_32 (abfd,
2156 (contents
2157 + adj_int_rel.r_vaddr
2158 - sec->vma));
4f996613
ILT
2159 }
2160 else
2161 continue;
2162
2163 /* If the range expressed by this reloc, which is the
2164 distance between START and STOP crosses the reloc we are
2165 expanding, we must adjust the offset. The sign of the
2166 adjustment depends upon the direction in which the range
2167 crosses the reloc being expanded. */
2168 if (start <= int_rel.r_vaddr && stop > int_rel.r_vaddr)
2169 change = PCREL16_EXPANSION_ADJUSTMENT;
2170 else if (start > int_rel.r_vaddr && stop <= int_rel.r_vaddr)
2171 change = - PCREL16_EXPANSION_ADJUSTMENT;
2172 else
2173 change = 0;
dabf906e 2174
4f996613
ILT
2175 offsets[adj_i] += change;
2176
2177 if (adj_int_rel.r_type == MIPS_R_RELHI)
2178 {
2179 adj_ext_rel++;
2180 adj_i++;
2181 offsets[adj_i] += change;
dabf906e 2182 }
a3a33af3
ILT
2183 }
2184
2185 /* Find all symbols in this section defined by this object file
2186 and adjust their values. Note that we decide whether to
2187 adjust the value based on the value stored in the ECOFF EXTR
2188 structure, because the value stored in the hash table may
2189 have been changed by an earlier expanded reloc and thus may
2190 no longer correctly indicate whether the symbol is before or
2191 after the expanded reloc. */
2192 ext_count = ecoff_data (abfd)->debug_info.symbolic_header.iextMax;
2193 adj_h_ptr = ecoff_data (abfd)->sym_hashes;
2194 adj_h_ptr_end = adj_h_ptr + ext_count;
2195 for (; adj_h_ptr < adj_h_ptr_end; adj_h_ptr++)
2196 {
2197 struct ecoff_link_hash_entry *adj_h;
2198
2199 adj_h = *adj_h_ptr;
2200 if (adj_h != (struct ecoff_link_hash_entry *) NULL
a5655244
ILT
2201 && (adj_h->root.type == bfd_link_hash_defined
2202 || adj_h->root.type == bfd_link_hash_defweak)
a3a33af3
ILT
2203 && adj_h->root.u.def.section == sec
2204 && adj_h->esym.asym.value > int_rel.r_vaddr)
2205 adj_h->root.u.def.value += PCREL16_EXPANSION_ADJUSTMENT;
2206 }
2207
2208 /* Add an entry to the symbol value adjust list. This is used
2209 by bfd_ecoff_debug_accumulate to adjust the values of
2210 internal symbols and FDR's. */
2211 adjust = ((struct ecoff_value_adjust *)
2212 bfd_alloc (abfd, sizeof (struct ecoff_value_adjust)));
2213 if (adjust == (struct ecoff_value_adjust *) NULL)
a9713b91 2214 goto error_return;
a3a33af3
ILT
2215
2216 adjust->start = int_rel.r_vaddr;
2217 adjust->end = sec->vma + sec->_raw_size;
2218 adjust->adjust = PCREL16_EXPANSION_ADJUSTMENT;
2219
2220 adjust->next = ecoff_data (abfd)->debug_info.adjust;
2221 ecoff_data (abfd)->debug_info.adjust = adjust;
2222 }
2223
2224 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2225 free (contents);
2226
2227 return true;
2228
2229 error_return:
2230 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2231 free (contents);
2232 return false;
2233}
2234
2235/* This routine is called from mips_relocate_section when a PC
2236 relative reloc must be expanded into the five instruction sequence.
2237 It handles all the details of the expansion, including resolving
2238 the reloc. */
2239
2240static boolean
2241mips_relax_pcrel16 (info, input_bfd, input_section, h, location, address)
2242 struct bfd_link_info *info;
2243 bfd *input_bfd;
2244 asection *input_section;
2245 struct ecoff_link_hash_entry *h;
2246 bfd_byte *location;
2247 bfd_vma address;
2248{
2249 bfd_vma relocation;
2250
2251 /* 0x0411ffff is bgezal $0,. == bal . */
2252 BFD_ASSERT (bfd_get_32 (input_bfd, location) == 0x0411ffff);
2253
2254 /* We need to compute the distance between the symbol and the
2255 current address plus eight. */
2256 relocation = (h->root.u.def.value
2257 + h->root.u.def.section->output_section->vma
2258 + h->root.u.def.section->output_offset);
2259 relocation -= address + 8;
2260
2261 /* If the lower half is negative, increment the upper 16 half. */
2262 if ((relocation & 0x8000) != 0)
2263 relocation += 0x10000;
2264
2265 bfd_put_32 (input_bfd, 0x04110001, location); /* bal .+8 */
2266 bfd_put_32 (input_bfd,
2267 0x3c010000 | ((relocation >> 16) & 0xffff), /* lui $at,XX */
2268 location + 4);
2269 bfd_put_32 (input_bfd,
2270 0x24210000 | (relocation & 0xffff), /* addiu $at,$at,XX */
2271 location + 8);
2272 bfd_put_32 (input_bfd, 0x003f0821, location + 12); /* addu $at,$at,$ra */
2273 bfd_put_32 (input_bfd, 0x0020f809, location + 16); /* jalr $at */
2274
2275 return true;
2276}
a5655244
ILT
2277
2278/* Given a .sdata section and a .rel.sdata in-memory section, store
2279 relocation information into the .rel.sdata section which can be
2280 used at runtime to relocate the section. This is called by the
2281 linker when the --embedded-relocs switch is used. This is called
2282 after the add_symbols entry point has been called for all the
2283 objects, and before the final_link entry point is called. This
2284 function presumes that the object was compiled using
2285 -membedded-pic. */
2286
2287boolean
2288bfd_mips_ecoff_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
2289 bfd *abfd;
2290 struct bfd_link_info *info;
2291 asection *datasec;
2292 asection *relsec;
2293 char **errmsg;
2294{
2295 struct ecoff_link_hash_entry **sym_hashes;
2296 struct ecoff_section_tdata *section_tdata;
2297 struct external_reloc *ext_rel;
2298 struct external_reloc *ext_rel_end;
2299 bfd_byte *p;
2300
2301 BFD_ASSERT (! info->relocateable);
2302
2303 *errmsg = NULL;
2304
2305 if (datasec->reloc_count == 0)
2306 return true;
2307
2308 sym_hashes = ecoff_data (abfd)->sym_hashes;
2309
2310 if (! mips_read_relocs (abfd, datasec))
2311 return false;
2312
2313 relsec->contents = (bfd_byte *) bfd_alloc (abfd, datasec->reloc_count * 4);
2314 if (relsec->contents == NULL)
a9713b91 2315 return false;
a5655244
ILT
2316
2317 p = relsec->contents;
2318
2319 section_tdata = ecoff_section_data (abfd, datasec);
2320 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2321 ext_rel_end = ext_rel + datasec->reloc_count;
2322 for (; ext_rel < ext_rel_end; ext_rel++, p += 4)
2323 {
2324 struct internal_reloc int_rel;
2325 boolean text_relative;
2326
2327 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
2328
2329 /* We are going to write a four byte word into the runtime reloc
2330 section. The word will be the address in the data section
2331 which must be relocated. This must be on a word boundary,
2332 which means the lower two bits must be zero. We use the
2333 least significant bit to indicate how the value in the data
2334 section must be relocated. A 0 means that the value is
2335 relative to the text section, while a 1 indicates that the
2336 value is relative to the data section. Given that we are
2337 assuming the code was compiled using -membedded-pic, there
2338 should not be any other possibilities. */
2339
2340 /* We can only relocate REFWORD relocs at run time. */
2341 if (int_rel.r_type != MIPS_R_REFWORD)
2342 {
2343 *errmsg = "unsupported reloc type";
2344 bfd_set_error (bfd_error_bad_value);
2345 return false;
2346 }
2347
2348 if (int_rel.r_extern)
2349 {
2350 struct ecoff_link_hash_entry *h;
2351
2352 h = sym_hashes[int_rel.r_symndx];
2353 /* If h is NULL, that means that there is a reloc against an
2354 external symbol which we thought was just a debugging
2355 symbol. This should not happen. */
2356 if (h == (struct ecoff_link_hash_entry *) NULL)
2357 abort ();
2358 if ((h->root.type == bfd_link_hash_defined
2359 || h->root.type == bfd_link_hash_defweak)
2360 && (h->root.u.def.section->flags & SEC_CODE) != 0)
2361 text_relative = true;
2362 else
2363 text_relative = false;
2364 }
2365 else
2366 {
2367 switch (int_rel.r_symndx)
2368 {
2369 case RELOC_SECTION_TEXT:
2370 text_relative = true;
2371 break;
2372 case RELOC_SECTION_SDATA:
2373 case RELOC_SECTION_SBSS:
2374 case RELOC_SECTION_LIT8:
2375 text_relative = false;
2376 break;
2377 default:
2378 /* No other sections should appear in -membedded-pic
2379 code. */
2380 *errmsg = "reloc against unsupported section";
2381 bfd_set_error (bfd_error_bad_value);
2382 return false;
2383 }
2384 }
2385
2386 if ((int_rel.r_offset & 3) != 0)
2387 {
2388 *errmsg = "reloc not properly aligned";
2389 bfd_set_error (bfd_error_bad_value);
2390 return false;
2391 }
2392
2393 bfd_put_32 (abfd,
2394 (int_rel.r_vaddr - datasec->vma + datasec->output_offset
2395 + (text_relative ? 0 : 1)),
2396 p);
2397 }
2398
2399 return true;
2400}
a3a33af3 2401\f
23f44e6f
ILT
2402/* This is the ECOFF backend structure. The backend field of the
2403 target vector points to this. */
2404
2405static const struct ecoff_backend_data mips_ecoff_backend_data =
2406{
2407 /* COFF backend structure. */
2408 {
9783e04a 2409 (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */
23f44e6f
ILT
2410 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */
2411 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */
9783e04a 2412 (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/
23f44e6f
ILT
2413 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */
2414 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */
2415 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */
2416 mips_ecoff_swap_filehdr_out, mips_ecoff_swap_aouthdr_out,
2417 mips_ecoff_swap_scnhdr_out,
69645d10 2418 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, true,
23f44e6f 2419 mips_ecoff_swap_filehdr_in, mips_ecoff_swap_aouthdr_in,
69645d10
ILT
2420 mips_ecoff_swap_scnhdr_in, NULL,
2421 mips_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2422 _bfd_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
aca73687 2423 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
a9713b91 2424 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
23f44e6f
ILT
2425 },
2426 /* Supported architecture. */
2427 bfd_arch_mips,
23f44e6f
ILT
2428 /* Initial portion of armap string. */
2429 "__________",
23f44e6f
ILT
2430 /* The page boundary used to align sections in a demand-paged
2431 executable file. E.g., 0x1000. */
2432 0x1000,
5fa2aaa2
ILT
2433 /* True if the .rdata section is part of the text segment, as on the
2434 Alpha. False if .rdata is part of the data segment, as on the
2435 MIPS. */
2436 false,
23f44e6f
ILT
2437 /* Bitsize of constructor entries. */
2438 32,
2439 /* Reloc to use for constructor entries. */
2440 &mips_howto_table[MIPS_R_REFWORD],
4991ebb9
ILT
2441 {
2442 /* Symbol table magic number. */
2443 magicSym,
2444 /* Alignment of debugging information. E.g., 4. */
2445 4,
2446 /* Sizes of external symbolic information. */
2447 sizeof (struct hdr_ext),
2448 sizeof (struct dnr_ext),
2449 sizeof (struct pdr_ext),
2450 sizeof (struct sym_ext),
2451 sizeof (struct opt_ext),
2452 sizeof (struct fdr_ext),
2453 sizeof (struct rfd_ext),
2454 sizeof (struct ext_ext),
2455 /* Functions to swap in external symbolic data. */
2456 ecoff_swap_hdr_in,
2457 ecoff_swap_dnr_in,
2458 ecoff_swap_pdr_in,
2459 ecoff_swap_sym_in,
2460 ecoff_swap_opt_in,
2461 ecoff_swap_fdr_in,
2462 ecoff_swap_rfd_in,
2463 ecoff_swap_ext_in,
75f3ef7a
ILT
2464 _bfd_ecoff_swap_tir_in,
2465 _bfd_ecoff_swap_rndx_in,
4991ebb9
ILT
2466 /* Functions to swap out external symbolic data. */
2467 ecoff_swap_hdr_out,
2468 ecoff_swap_dnr_out,
2469 ecoff_swap_pdr_out,
2470 ecoff_swap_sym_out,
2471 ecoff_swap_opt_out,
2472 ecoff_swap_fdr_out,
2473 ecoff_swap_rfd_out,
aac6b32f 2474 ecoff_swap_ext_out,
75f3ef7a
ILT
2475 _bfd_ecoff_swap_tir_out,
2476 _bfd_ecoff_swap_rndx_out,
aac6b32f 2477 /* Function to read in symbolic data. */
75f3ef7a 2478 _bfd_ecoff_slurp_symbolic_info
4991ebb9 2479 },
23f44e6f
ILT
2480 /* External reloc size. */
2481 RELSZ,
2482 /* Reloc swapping functions. */
2483 mips_ecoff_swap_reloc_in,
2484 mips_ecoff_swap_reloc_out,
2485 /* Backend reloc tweaking. */
5fa2aaa2 2486 mips_adjust_reloc_in,
4991ebb9
ILT
2487 mips_adjust_reloc_out,
2488 /* Relocate section contents while linking. */
aca73687
ILT
2489 mips_relocate_section,
2490 /* Do final adjustments to filehdr and aouthdr. */
64d5f5d0
ILT
2491 NULL,
2492 /* Read an element from an archive at a given file position. */
2493 _bfd_get_elt_at_filepos
515c4292
ILT
2494};
2495
23f44e6f 2496/* Looking up a reloc type is MIPS specific. */
75f3ef7a 2497#define _bfd_ecoff_bfd_reloc_type_lookup mips_bfd_reloc_type_lookup
23f44e6f 2498
5fa2aaa2 2499/* Getting relocated section contents is generic. */
75f3ef7a 2500#define _bfd_ecoff_bfd_get_relocated_section_contents \
5fa2aaa2
ILT
2501 bfd_generic_get_relocated_section_contents
2502
a9713b91
ILT
2503/* Handling file windows is generic. */
2504#define _bfd_ecoff_get_section_contents_in_window \
2505 _bfd_generic_get_section_contents_in_window
2506
a3a33af3 2507/* Relaxing sections is MIPS specific. */
75f3ef7a 2508#define _bfd_ecoff_bfd_relax_section mips_relax_section
a3a33af3 2509
2f3508ad 2510const bfd_target ecoff_little_vec =
294eaca4
SC
2511{
2512 "ecoff-littlemips", /* name */
515c4292 2513 bfd_target_ecoff_flavour,
64d5f5d0
ILT
2514 BFD_ENDIAN_LITTLE, /* data byte order is little */
2515 BFD_ENDIAN_LITTLE, /* header byte order is little */
294eaca4
SC
2516
2517 (HAS_RELOC | EXEC_P | /* object flags */
2518 HAS_LINENO | HAS_DEBUG |
4991ebb9 2519 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
294eaca4 2520
a5655244 2521 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
294eaca4 2522 0, /* leading underscore */
de17306e 2523 ' ', /* ar_pad_char */
294eaca4 2524 15, /* ar_max_namelen */
23f44e6f
ILT
2525 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2526 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2527 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2528 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2529 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2530 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
294eaca4 2531
515c4292 2532 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
75f3ef7a
ILT
2533 _bfd_ecoff_archive_p, _bfd_dummy_target},
2534 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
dae31cf5 2535 _bfd_generic_mkarchive, bfd_false},
75f3ef7a 2536 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
c3fe0c41 2537 _bfd_write_archive_contents, bfd_false},
6812b607 2538
75f3ef7a
ILT
2539 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2540 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
6812b607 2541 BFD_JUMP_TABLE_CORE (_bfd_nocore),
75f3ef7a
ILT
2542 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2543 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2544 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2545 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2546 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
dfc1c006 2547 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6812b607 2548
23f44e6f 2549 (PTR) &mips_ecoff_backend_data
515c4292 2550};
1327fb29 2551
2f3508ad 2552const bfd_target ecoff_big_vec =
294eaca4
SC
2553{
2554 "ecoff-bigmips", /* name */
515c4292 2555 bfd_target_ecoff_flavour,
64d5f5d0
ILT
2556 BFD_ENDIAN_BIG, /* data byte order is big */
2557 BFD_ENDIAN_BIG, /* header byte order is big */
294eaca4
SC
2558
2559 (HAS_RELOC | EXEC_P | /* object flags */
2560 HAS_LINENO | HAS_DEBUG |
4991ebb9 2561 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
294eaca4 2562
a5655244 2563 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
294eaca4
SC
2564 0, /* leading underscore */
2565 ' ', /* ar_pad_char */
de17306e 2566 15, /* ar_max_namelen */
23f44e6f
ILT
2567 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2568 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2569 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2570 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2571 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2572 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
294eaca4 2573 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
75f3ef7a
ILT
2574 _bfd_ecoff_archive_p, _bfd_dummy_target},
2575 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
dae31cf5 2576 _bfd_generic_mkarchive, bfd_false},
75f3ef7a 2577 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
c3fe0c41 2578 _bfd_write_archive_contents, bfd_false},
6812b607 2579
75f3ef7a
ILT
2580 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2581 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
6812b607 2582 BFD_JUMP_TABLE_CORE (_bfd_nocore),
75f3ef7a
ILT
2583 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2584 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2585 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2586 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2587 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
dfc1c006 2588 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6812b607 2589
23f44e6f 2590 (PTR) &mips_ecoff_backend_data
515c4292 2591};