]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/coff-mips.c
* aout-adobe.c: Don't compare against "true" or "false.
[thirdparty/binutils-gdb.git] / bfd / coff-mips.c
CommitLineData
252b5132 1/* BFD back-end for MIPS Extended-Coff files.
7898deda 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3cac74d0 3 2000, 2001, 2002
252b5132
RH
4 Free Software Foundation, Inc.
5 Original version by Per Bothner.
6 Full support added by Ian Lance Taylor, ian@cygnus.com.
7
8This file is part of BFD, the Binary File Descriptor library.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24#include "bfd.h"
25#include "sysdep.h"
26#include "bfdlink.h"
27#include "libbfd.h"
28#include "coff/internal.h"
29#include "coff/sym.h"
30#include "coff/symconst.h"
31#include "coff/ecoff.h"
32#include "coff/mips.h"
33#include "libcoff.h"
34#include "libecoff.h"
35\f
36/* Prototypes for static functions. */
37
38static boolean mips_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr));
39static void mips_ecoff_swap_reloc_in PARAMS ((bfd *, PTR,
40 struct internal_reloc *));
41static void mips_ecoff_swap_reloc_out PARAMS ((bfd *,
42 const struct internal_reloc *,
43 PTR));
44static void mips_adjust_reloc_in PARAMS ((bfd *,
45 const struct internal_reloc *,
46 arelent *));
47static void mips_adjust_reloc_out PARAMS ((bfd *, const arelent *,
48 struct internal_reloc *));
49static bfd_reloc_status_type mips_generic_reloc PARAMS ((bfd *abfd,
50 arelent *reloc,
51 asymbol *symbol,
52 PTR data,
53 asection *section,
54 bfd *output_bfd,
55 char **error));
56static bfd_reloc_status_type mips_refhi_reloc PARAMS ((bfd *abfd,
57 arelent *reloc,
58 asymbol *symbol,
59 PTR data,
60 asection *section,
61 bfd *output_bfd,
62 char **error));
63static bfd_reloc_status_type mips_reflo_reloc PARAMS ((bfd *abfd,
64 arelent *reloc,
65 asymbol *symbol,
66 PTR data,
67 asection *section,
68 bfd *output_bfd,
69 char **error));
70static bfd_reloc_status_type mips_gprel_reloc PARAMS ((bfd *abfd,
71 arelent *reloc,
72 asymbol *symbol,
73 PTR data,
74 asection *section,
75 bfd *output_bfd,
76 char **error));
77static bfd_reloc_status_type mips_relhi_reloc PARAMS ((bfd *abfd,
78 arelent *reloc,
79 asymbol *symbol,
80 PTR data,
81 asection *section,
82 bfd *output_bfd,
83 char **error));
84static bfd_reloc_status_type mips_rello_reloc PARAMS ((bfd *abfd,
85 arelent *reloc,
86 asymbol *symbol,
87 PTR data,
88 asection *section,
89 bfd *output_bfd,
90 char **error));
91static bfd_reloc_status_type mips_switch_reloc PARAMS ((bfd *abfd,
92 arelent *reloc,
93 asymbol *symbol,
94 PTR data,
95 asection *section,
96 bfd *output_bfd,
97 char **error));
98static void mips_relocate_hi PARAMS ((struct internal_reloc *refhi,
99 struct internal_reloc *reflo,
100 bfd *input_bfd,
101 asection *input_section,
102 bfd_byte *contents,
103 size_t adjust,
104 bfd_vma relocation,
105 boolean pcrel));
106static boolean mips_relocate_section PARAMS ((bfd *, struct bfd_link_info *,
107 bfd *, asection *,
108 bfd_byte *, PTR));
109static boolean mips_read_relocs PARAMS ((bfd *, asection *));
110static boolean mips_relax_section PARAMS ((bfd *, asection *,
111 struct bfd_link_info *,
112 boolean *));
113static boolean mips_relax_pcrel16 PARAMS ((struct bfd_link_info *, bfd *,
114 asection *,
115 struct ecoff_link_hash_entry *,
116 bfd_byte *, bfd_vma));
117static reloc_howto_type *mips_bfd_reloc_type_lookup
118 PARAMS ((bfd *, bfd_reloc_code_real_type));
252b5132
RH
119\f
120/* ECOFF has COFF sections, but the debugging information is stored in
121 a completely different format. ECOFF targets use some of the
122 swapping routines from coffswap.h, and some of the generic COFF
123 routines in coffgen.c, but, unlike the real COFF targets, do not
124 use coffcode.h itself.
125
126 Get the generic COFF swapping routines, except for the reloc,
127 symbol, and lineno ones. Give them ECOFF names. */
128#define MIPSECOFF
129#define NO_COFF_RELOCS
130#define NO_COFF_SYMBOLS
131#define NO_COFF_LINENOS
132#define coff_swap_filehdr_in mips_ecoff_swap_filehdr_in
133#define coff_swap_filehdr_out mips_ecoff_swap_filehdr_out
134#define coff_swap_aouthdr_in mips_ecoff_swap_aouthdr_in
135#define coff_swap_aouthdr_out mips_ecoff_swap_aouthdr_out
136#define coff_swap_scnhdr_in mips_ecoff_swap_scnhdr_in
137#define coff_swap_scnhdr_out mips_ecoff_swap_scnhdr_out
138#include "coffswap.h"
139
140/* Get the ECOFF swapping routines. */
141#define ECOFF_32
142#include "ecoffswap.h"
143\f
144/* How to process the various relocs types. */
145
146static reloc_howto_type mips_howto_table[] =
147{
148 /* Reloc type 0 is ignored. The reloc reading code ensures that
149 this is a reference to the .abs section, which will cause
150 bfd_perform_relocation to do nothing. */
151 HOWTO (MIPS_R_IGNORE, /* type */
152 0, /* rightshift */
153 0, /* size (0 = byte, 1 = short, 2 = long) */
154 8, /* bitsize */
155 false, /* pc_relative */
156 0, /* bitpos */
157 complain_overflow_dont, /* complain_on_overflow */
158 0, /* special_function */
159 "IGNORE", /* name */
160 false, /* partial_inplace */
161 0, /* src_mask */
162 0, /* dst_mask */
163 false), /* pcrel_offset */
164
165 /* A 16 bit reference to a symbol, normally from a data section. */
166 HOWTO (MIPS_R_REFHALF, /* type */
167 0, /* rightshift */
168 1, /* size (0 = byte, 1 = short, 2 = long) */
169 16, /* bitsize */
170 false, /* pc_relative */
171 0, /* bitpos */
172 complain_overflow_bitfield, /* complain_on_overflow */
173 mips_generic_reloc, /* special_function */
174 "REFHALF", /* name */
175 true, /* partial_inplace */
176 0xffff, /* src_mask */
177 0xffff, /* dst_mask */
178 false), /* pcrel_offset */
179
180 /* A 32 bit reference to a symbol, normally from a data section. */
181 HOWTO (MIPS_R_REFWORD, /* type */
182 0, /* rightshift */
183 2, /* size (0 = byte, 1 = short, 2 = long) */
184 32, /* bitsize */
185 false, /* pc_relative */
186 0, /* bitpos */
187 complain_overflow_bitfield, /* complain_on_overflow */
188 mips_generic_reloc, /* special_function */
189 "REFWORD", /* name */
190 true, /* partial_inplace */
191 0xffffffff, /* src_mask */
192 0xffffffff, /* dst_mask */
193 false), /* pcrel_offset */
194
195 /* A 26 bit absolute jump address. */
196 HOWTO (MIPS_R_JMPADDR, /* type */
197 2, /* rightshift */
198 2, /* size (0 = byte, 1 = short, 2 = long) */
199 26, /* bitsize */
200 false, /* pc_relative */
201 0, /* bitpos */
202 complain_overflow_dont, /* complain_on_overflow */
203 /* This needs complex overflow
204 detection, because the upper four
205 bits must match the PC. */
206 mips_generic_reloc, /* special_function */
207 "JMPADDR", /* name */
208 true, /* partial_inplace */
209 0x3ffffff, /* src_mask */
210 0x3ffffff, /* dst_mask */
211 false), /* pcrel_offset */
212
213 /* The high 16 bits of a symbol value. Handled by the function
214 mips_refhi_reloc. */
215 HOWTO (MIPS_R_REFHI, /* type */
216 16, /* rightshift */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
218 16, /* bitsize */
219 false, /* pc_relative */
220 0, /* bitpos */
221 complain_overflow_bitfield, /* complain_on_overflow */
222 mips_refhi_reloc, /* special_function */
223 "REFHI", /* name */
224 true, /* partial_inplace */
225 0xffff, /* src_mask */
226 0xffff, /* dst_mask */
227 false), /* pcrel_offset */
228
229 /* The low 16 bits of a symbol value. */
230 HOWTO (MIPS_R_REFLO, /* type */
231 0, /* rightshift */
232 2, /* size (0 = byte, 1 = short, 2 = long) */
233 16, /* bitsize */
234 false, /* pc_relative */
235 0, /* bitpos */
236 complain_overflow_dont, /* complain_on_overflow */
237 mips_reflo_reloc, /* special_function */
238 "REFLO", /* name */
239 true, /* partial_inplace */
240 0xffff, /* src_mask */
241 0xffff, /* dst_mask */
242 false), /* pcrel_offset */
243
244 /* A reference to an offset from the gp register. Handled by the
245 function mips_gprel_reloc. */
246 HOWTO (MIPS_R_GPREL, /* type */
247 0, /* rightshift */
248 2, /* size (0 = byte, 1 = short, 2 = long) */
249 16, /* bitsize */
250 false, /* pc_relative */
251 0, /* bitpos */
252 complain_overflow_signed, /* complain_on_overflow */
253 mips_gprel_reloc, /* special_function */
254 "GPREL", /* name */
255 true, /* partial_inplace */
256 0xffff, /* src_mask */
257 0xffff, /* dst_mask */
258 false), /* pcrel_offset */
259
260 /* A reference to a literal using an offset from the gp register.
261 Handled by the function mips_gprel_reloc. */
262 HOWTO (MIPS_R_LITERAL, /* type */
263 0, /* rightshift */
264 2, /* size (0 = byte, 1 = short, 2 = long) */
265 16, /* bitsize */
266 false, /* pc_relative */
267 0, /* bitpos */
268 complain_overflow_signed, /* complain_on_overflow */
269 mips_gprel_reloc, /* special_function */
270 "LITERAL", /* name */
271 true, /* partial_inplace */
272 0xffff, /* src_mask */
273 0xffff, /* dst_mask */
274 false), /* pcrel_offset */
275
5f771d47
ILT
276 EMPTY_HOWTO (8),
277 EMPTY_HOWTO (9),
278 EMPTY_HOWTO (10),
279 EMPTY_HOWTO (11),
252b5132
RH
280
281 /* This reloc is a Cygnus extension used when generating position
282 independent code for embedded systems. It represents a 16 bit PC
283 relative reloc rightshifted twice as used in the MIPS branch
284 instructions. */
285 HOWTO (MIPS_R_PCREL16, /* type */
286 2, /* rightshift */
287 2, /* size (0 = byte, 1 = short, 2 = long) */
288 16, /* bitsize */
289 true, /* pc_relative */
290 0, /* bitpos */
291 complain_overflow_signed, /* complain_on_overflow */
292 mips_generic_reloc, /* special_function */
293 "PCREL16", /* name */
294 true, /* partial_inplace */
295 0xffff, /* src_mask */
296 0xffff, /* dst_mask */
297 true), /* pcrel_offset */
298
299 /* This reloc is a Cygnus extension used when generating position
300 independent code for embedded systems. It represents the high 16
301 bits of a PC relative reloc. The next reloc must be
302 MIPS_R_RELLO, and the addend is formed from the addends of the
303 two instructions, just as in MIPS_R_REFHI and MIPS_R_REFLO. The
304 final value is actually PC relative to the location of the
305 MIPS_R_RELLO reloc, not the MIPS_R_RELHI reloc. */
306 HOWTO (MIPS_R_RELHI, /* type */
307 16, /* rightshift */
308 2, /* size (0 = byte, 1 = short, 2 = long) */
309 16, /* bitsize */
310 true, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_bitfield, /* complain_on_overflow */
313 mips_relhi_reloc, /* special_function */
314 "RELHI", /* name */
315 true, /* partial_inplace */
316 0xffff, /* src_mask */
317 0xffff, /* dst_mask */
318 true), /* pcrel_offset */
319
320 /* This reloc is a Cygnus extension used when generating position
321 independent code for embedded systems. It represents the low 16
322 bits of a PC relative reloc. */
323 HOWTO (MIPS_R_RELLO, /* type */
324 0, /* rightshift */
325 2, /* size (0 = byte, 1 = short, 2 = long) */
326 16, /* bitsize */
327 true, /* pc_relative */
328 0, /* bitpos */
329 complain_overflow_dont, /* complain_on_overflow */
330 mips_rello_reloc, /* special_function */
331 "RELLO", /* name */
332 true, /* partial_inplace */
333 0xffff, /* src_mask */
334 0xffff, /* dst_mask */
335 true), /* pcrel_offset */
336
5f771d47
ILT
337 EMPTY_HOWTO (15),
338 EMPTY_HOWTO (16),
339 EMPTY_HOWTO (17),
340 EMPTY_HOWTO (18),
341 EMPTY_HOWTO (19),
342 EMPTY_HOWTO (20),
343 EMPTY_HOWTO (21),
252b5132
RH
344
345 /* This reloc is a Cygnus extension used when generating position
346 independent code for embedded systems. It represents an entry in
347 a switch table, which is the difference between two symbols in
348 the .text section. The symndx is actually the offset from the
349 reloc address to the subtrahend. See include/coff/mips.h for
350 more details. */
351 HOWTO (MIPS_R_SWITCH, /* type */
352 0, /* rightshift */
353 2, /* size (0 = byte, 1 = short, 2 = long) */
354 32, /* bitsize */
355 true, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_dont, /* complain_on_overflow */
358 mips_switch_reloc, /* special_function */
359 "SWITCH", /* name */
360 true, /* partial_inplace */
361 0xffffffff, /* src_mask */
362 0xffffffff, /* dst_mask */
363 true) /* pcrel_offset */
364};
365
366#define MIPS_HOWTO_COUNT \
367 (sizeof mips_howto_table / sizeof mips_howto_table[0])
368
08da05b0 369/* When the linker is doing relaxing, it may change an external PCREL16
252b5132
RH
370 reloc. This typically represents an instruction like
371 bal foo
372 We change it to
373 .set noreorder
374 bal $L1
375 lui $at,%hi(foo - $L1)
376 $L1:
377 addiu $at,%lo(foo - $L1)
378 addu $at,$at,$31
379 jalr $at
380 PCREL16_EXPANSION_ADJUSTMENT is the number of bytes this changes the
381 instruction by. */
382
383#define PCREL16_EXPANSION_ADJUSTMENT (4 * 4)
384\f
385/* See whether the magic number matches. */
386
387static boolean
388mips_ecoff_bad_format_hook (abfd, filehdr)
389 bfd *abfd;
390 PTR filehdr;
391{
392 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
393
394 switch (internal_f->f_magic)
395 {
396 case MIPS_MAGIC_1:
397 /* I don't know what endianness this implies. */
398 return true;
399
400 case MIPS_MAGIC_BIG:
401 case MIPS_MAGIC_BIG2:
402 case MIPS_MAGIC_BIG3:
403 return bfd_big_endian (abfd);
404
405 case MIPS_MAGIC_LITTLE:
406 case MIPS_MAGIC_LITTLE2:
407 case MIPS_MAGIC_LITTLE3:
408 return bfd_little_endian (abfd);
409
410 default:
411 return false;
412 }
413}
414\f
415/* Reloc handling. MIPS ECOFF relocs are packed into 8 bytes in
416 external form. They use a bit which indicates whether the symbol
417 is external. */
418
419/* Swap a reloc in. */
420
421static void
422mips_ecoff_swap_reloc_in (abfd, ext_ptr, intern)
423 bfd *abfd;
424 PTR ext_ptr;
425 struct internal_reloc *intern;
426{
427 const RELOC *ext = (RELOC *) ext_ptr;
428
dc810e39 429 intern->r_vaddr = H_GET_32 (abfd, ext->r_vaddr);
252b5132
RH
430 if (bfd_header_big_endian (abfd))
431 {
432 intern->r_symndx = (((int) ext->r_bits[0]
433 << RELOC_BITS0_SYMNDX_SH_LEFT_BIG)
434 | ((int) ext->r_bits[1]
435 << RELOC_BITS1_SYMNDX_SH_LEFT_BIG)
436 | ((int) ext->r_bits[2]
437 << RELOC_BITS2_SYMNDX_SH_LEFT_BIG));
438 intern->r_type = ((ext->r_bits[3] & RELOC_BITS3_TYPE_BIG)
439 >> RELOC_BITS3_TYPE_SH_BIG);
440 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_BIG) != 0;
441 }
442 else
443 {
444 intern->r_symndx = (((int) ext->r_bits[0]
445 << RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE)
446 | ((int) ext->r_bits[1]
447 << RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE)
448 | ((int) ext->r_bits[2]
449 << RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE));
450 intern->r_type = (((ext->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
451 >> RELOC_BITS3_TYPE_SH_LITTLE)
452 | ((ext->r_bits[3] & RELOC_BITS3_TYPEHI_LITTLE)
453 << RELOC_BITS3_TYPEHI_SH_LITTLE));
454 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) != 0;
455 }
456
457 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
458 MIPS_R_RELLO reloc, r_symndx is actually the offset from the
459 reloc address to the base of the difference (see
460 include/coff/mips.h for more details). We copy symndx into the
461 r_offset field so as not to confuse ecoff_slurp_reloc_table in
462 ecoff.c. In adjust_reloc_in we then copy r_offset into the reloc
463 addend. */
464 if (intern->r_type == MIPS_R_SWITCH
465 || (! intern->r_extern
466 && (intern->r_type == MIPS_R_RELLO
467 || intern->r_type == MIPS_R_RELHI)))
468 {
469 BFD_ASSERT (! intern->r_extern);
470 intern->r_offset = intern->r_symndx;
471 if (intern->r_offset & 0x800000)
472 intern->r_offset -= 0x1000000;
473 intern->r_symndx = RELOC_SECTION_TEXT;
474 }
475}
476
477/* Swap a reloc out. */
478
479static void
480mips_ecoff_swap_reloc_out (abfd, intern, dst)
481 bfd *abfd;
482 const struct internal_reloc *intern;
483 PTR dst;
484{
485 RELOC *ext = (RELOC *) dst;
486 long r_symndx;
487
488 BFD_ASSERT (intern->r_extern
489 || (intern->r_symndx >= 0 && intern->r_symndx <= 12));
490
491 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELLO or
492 MIPS_R_RELHI reloc, we actually want to write the contents of
493 r_offset out as the symbol index. This undoes the change made by
494 mips_ecoff_swap_reloc_in. */
495 if (intern->r_type != MIPS_R_SWITCH
496 && (intern->r_extern
497 || (intern->r_type != MIPS_R_RELHI
498 && intern->r_type != MIPS_R_RELLO)))
499 r_symndx = intern->r_symndx;
500 else
501 {
502 BFD_ASSERT (intern->r_symndx == RELOC_SECTION_TEXT);
503 r_symndx = intern->r_offset & 0xffffff;
504 }
505
dc810e39 506 H_PUT_32 (abfd, intern->r_vaddr, ext->r_vaddr);
252b5132
RH
507 if (bfd_header_big_endian (abfd))
508 {
509 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_BIG;
510 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_BIG;
511 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_BIG;
512 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_BIG)
513 & RELOC_BITS3_TYPE_BIG)
514 | (intern->r_extern ? RELOC_BITS3_EXTERN_BIG : 0));
515 }
516 else
517 {
518 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE;
519 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE;
520 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE;
521 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_LITTLE)
522 & RELOC_BITS3_TYPE_LITTLE)
523 | ((intern->r_type >> RELOC_BITS3_TYPEHI_SH_LITTLE
524 & RELOC_BITS3_TYPEHI_LITTLE))
525 | (intern->r_extern ? RELOC_BITS3_EXTERN_LITTLE : 0));
526 }
527}
528
529/* Finish canonicalizing a reloc. Part of this is generic to all
530 ECOFF targets, and that part is in ecoff.c. The rest is done in
531 this backend routine. It must fill in the howto field. */
532
533static void
534mips_adjust_reloc_in (abfd, intern, rptr)
535 bfd *abfd;
536 const struct internal_reloc *intern;
537 arelent *rptr;
538{
539 if (intern->r_type > MIPS_R_SWITCH)
540 abort ();
541
542 if (! intern->r_extern
543 && (intern->r_type == MIPS_R_GPREL
544 || intern->r_type == MIPS_R_LITERAL))
545 rptr->addend += ecoff_data (abfd)->gp;
546
547 /* If the type is MIPS_R_IGNORE, make sure this is a reference to
548 the absolute section so that the reloc is ignored. */
549 if (intern->r_type == MIPS_R_IGNORE)
550 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
551
552 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
553 MIPS_R_RELLO reloc, we want the addend field of the BFD relocto
554 hold the value which was originally in the symndx field of the
555 internal MIPS ECOFF reloc. This value was copied into
556 intern->r_offset by mips_swap_reloc_in, and here we copy it into
557 the addend field. */
558 if (intern->r_type == MIPS_R_SWITCH
559 || (! intern->r_extern
560 && (intern->r_type == MIPS_R_RELHI
561 || intern->r_type == MIPS_R_RELLO)))
562 rptr->addend = intern->r_offset;
563
564 rptr->howto = &mips_howto_table[intern->r_type];
565}
566
567/* Make any adjustments needed to a reloc before writing it out. None
568 are needed for MIPS. */
569
570static void
571mips_adjust_reloc_out (abfd, rel, intern)
5f771d47 572 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
573 const arelent *rel;
574 struct internal_reloc *intern;
575{
576 /* For a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
577 MIPS_R_RELLO reloc, we must copy rel->addend into
578 intern->r_offset. This will then be written out as the symbol
579 index by mips_ecoff_swap_reloc_out. This operation parallels the
580 action of mips_adjust_reloc_in. */
581 if (intern->r_type == MIPS_R_SWITCH
582 || (! intern->r_extern
583 && (intern->r_type == MIPS_R_RELHI
584 || intern->r_type == MIPS_R_RELLO)))
585 intern->r_offset = rel->addend;
586}
587
588/* ECOFF relocs are either against external symbols, or against
589 sections. If we are producing relocateable output, and the reloc
590 is against an external symbol, and nothing has given us any
591 additional addend, the resulting reloc will also be against the
592 same symbol. In such a case, we don't want to change anything
593 about the way the reloc is handled, since it will all be done at
594 final link time. Rather than put special case code into
595 bfd_perform_relocation, all the reloc types use this howto
596 function. It just short circuits the reloc if producing
597 relocateable output against an external symbol. */
598
599static bfd_reloc_status_type
600mips_generic_reloc (abfd,
601 reloc_entry,
602 symbol,
603 data,
604 input_section,
605 output_bfd,
606 error_message)
5f771d47 607 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
608 arelent *reloc_entry;
609 asymbol *symbol;
5f771d47 610 PTR data ATTRIBUTE_UNUSED;
252b5132
RH
611 asection *input_section;
612 bfd *output_bfd;
5f771d47 613 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
614{
615 if (output_bfd != (bfd *) NULL
616 && (symbol->flags & BSF_SECTION_SYM) == 0
617 && reloc_entry->addend == 0)
618 {
619 reloc_entry->address += input_section->output_offset;
620 return bfd_reloc_ok;
621 }
622
623 return bfd_reloc_continue;
624}
625
626/* Do a REFHI relocation. This has to be done in combination with a
627 REFLO reloc, because there is a carry from the REFLO to the REFHI.
628 Here we just save the information we need; we do the actual
629 relocation when we see the REFLO. MIPS ECOFF requires that the
630 REFLO immediately follow the REFHI. As a GNU extension, we permit
631 an arbitrary number of HI relocs to be associated with a single LO
632 reloc. This extension permits gcc to output the HI and LO relocs
633 itself. */
634
635struct mips_hi
636{
637 struct mips_hi *next;
638 bfd_byte *addr;
639 bfd_vma addend;
640};
641
642/* FIXME: This should not be a static variable. */
643
644static struct mips_hi *mips_refhi_list;
645
646static bfd_reloc_status_type
647mips_refhi_reloc (abfd,
648 reloc_entry,
649 symbol,
650 data,
651 input_section,
652 output_bfd,
653 error_message)
5f771d47 654 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
655 arelent *reloc_entry;
656 asymbol *symbol;
657 PTR data;
658 asection *input_section;
659 bfd *output_bfd;
5f771d47 660 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
661{
662 bfd_reloc_status_type ret;
663 bfd_vma relocation;
664 struct mips_hi *n;
665
666 /* If we're relocating, and this an external symbol, we don't want
667 to change anything. */
668 if (output_bfd != (bfd *) NULL
669 && (symbol->flags & BSF_SECTION_SYM) == 0
670 && reloc_entry->addend == 0)
671 {
672 reloc_entry->address += input_section->output_offset;
673 return bfd_reloc_ok;
674 }
675
676 ret = bfd_reloc_ok;
677 if (bfd_is_und_section (symbol->section)
678 && output_bfd == (bfd *) NULL)
679 ret = bfd_reloc_undefined;
680
681 if (bfd_is_com_section (symbol->section))
682 relocation = 0;
683 else
684 relocation = symbol->value;
685
686 relocation += symbol->section->output_section->vma;
687 relocation += symbol->section->output_offset;
688 relocation += reloc_entry->addend;
689
690 if (reloc_entry->address > input_section->_cooked_size)
691 return bfd_reloc_outofrange;
692
693 /* Save the information, and let REFLO do the actual relocation. */
dc810e39 694 n = (struct mips_hi *) bfd_malloc ((bfd_size_type) sizeof *n);
252b5132
RH
695 if (n == NULL)
696 return bfd_reloc_outofrange;
697 n->addr = (bfd_byte *) data + reloc_entry->address;
698 n->addend = relocation;
699 n->next = mips_refhi_list;
700 mips_refhi_list = n;
701
702 if (output_bfd != (bfd *) NULL)
703 reloc_entry->address += input_section->output_offset;
704
705 return ret;
706}
707
708/* Do a REFLO relocation. This is a straightforward 16 bit inplace
709 relocation; this function exists in order to do the REFHI
710 relocation described above. */
711
712static bfd_reloc_status_type
713mips_reflo_reloc (abfd,
714 reloc_entry,
715 symbol,
716 data,
717 input_section,
718 output_bfd,
719 error_message)
720 bfd *abfd;
721 arelent *reloc_entry;
722 asymbol *symbol;
723 PTR data;
724 asection *input_section;
725 bfd *output_bfd;
726 char **error_message;
727{
728 if (mips_refhi_list != NULL)
729 {
730 struct mips_hi *l;
731
732 l = mips_refhi_list;
733 while (l != NULL)
734 {
735 unsigned long insn;
736 unsigned long val;
737 unsigned long vallo;
738 struct mips_hi *next;
739
740 /* Do the REFHI relocation. Note that we actually don't
741 need to know anything about the REFLO itself, except
742 where to find the low 16 bits of the addend needed by the
743 REFHI. */
744 insn = bfd_get_32 (abfd, l->addr);
745 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
746 & 0xffff);
747 val = ((insn & 0xffff) << 16) + vallo;
748 val += l->addend;
749
750 /* The low order 16 bits are always treated as a signed
751 value. Therefore, a negative value in the low order bits
752 requires an adjustment in the high order bits. We need
753 to make this adjustment in two ways: once for the bits we
754 took from the data, and once for the bits we are putting
755 back in to the data. */
756 if ((vallo & 0x8000) != 0)
757 val -= 0x10000;
758 if ((val & 0x8000) != 0)
759 val += 0x10000;
760
dc810e39
AM
761 insn = (insn &~ (unsigned) 0xffff) | ((val >> 16) & 0xffff);
762 bfd_put_32 (abfd, (bfd_vma) insn, l->addr);
252b5132
RH
763
764 next = l->next;
765 free (l);
766 l = next;
767 }
768
769 mips_refhi_list = NULL;
770 }
771
772 /* Now do the REFLO reloc in the usual way. */
773 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
774 input_section, output_bfd, error_message);
775}
776
777/* Do a GPREL relocation. This is a 16 bit value which must become
778 the offset from the gp register. */
779
780static bfd_reloc_status_type
781mips_gprel_reloc (abfd,
782 reloc_entry,
783 symbol,
784 data,
785 input_section,
786 output_bfd,
787 error_message)
788 bfd *abfd;
789 arelent *reloc_entry;
790 asymbol *symbol;
791 PTR data;
792 asection *input_section;
793 bfd *output_bfd;
794 char **error_message;
795{
796 boolean relocateable;
797 bfd_vma gp;
798 bfd_vma relocation;
799 unsigned long val;
800 unsigned long insn;
801
802 /* If we're relocating, and this is an external symbol with no
803 addend, we don't want to change anything. We will only have an
804 addend if this is a newly created reloc, not read from an ECOFF
805 file. */
806 if (output_bfd != (bfd *) NULL
807 && (symbol->flags & BSF_SECTION_SYM) == 0
808 && reloc_entry->addend == 0)
809 {
810 reloc_entry->address += input_section->output_offset;
811 return bfd_reloc_ok;
812 }
813
814 if (output_bfd != (bfd *) NULL)
815 relocateable = true;
816 else
817 {
818 relocateable = false;
819 output_bfd = symbol->section->output_section->owner;
820 }
821
82e51918 822 if (bfd_is_und_section (symbol->section) && ! relocateable)
252b5132
RH
823 return bfd_reloc_undefined;
824
825 /* We have to figure out the gp value, so that we can adjust the
826 symbol value correctly. We look up the symbol _gp in the output
827 BFD. If we can't find it, we're stuck. We cache it in the ECOFF
828 target data. We don't need to adjust the symbol value for an
829 external symbol if we are producing relocateable output. */
830 gp = _bfd_get_gp_value (output_bfd);
831 if (gp == 0
82e51918 832 && (! relocateable
252b5132
RH
833 || (symbol->flags & BSF_SECTION_SYM) != 0))
834 {
82e51918 835 if (relocateable)
252b5132
RH
836 {
837 /* Make up a value. */
838 gp = symbol->section->output_section->vma + 0x4000;
839 _bfd_set_gp_value (output_bfd, gp);
840 }
841 else
842 {
843 unsigned int count;
844 asymbol **sym;
845 unsigned int i;
846
847 count = bfd_get_symcount (output_bfd);
848 sym = bfd_get_outsymbols (output_bfd);
849
850 if (sym == (asymbol **) NULL)
851 i = count;
852 else
853 {
854 for (i = 0; i < count; i++, sym++)
855 {
dc810e39 856 register const char *name;
252b5132
RH
857
858 name = bfd_asymbol_name (*sym);
859 if (*name == '_' && strcmp (name, "_gp") == 0)
860 {
861 gp = bfd_asymbol_value (*sym);
862 _bfd_set_gp_value (output_bfd, gp);
863 break;
864 }
865 }
866 }
867
868 if (i >= count)
869 {
870 /* Only get the error once. */
871 gp = 4;
872 _bfd_set_gp_value (output_bfd, gp);
873 *error_message =
874 (char *) _("GP relative relocation when _gp not defined");
875 return bfd_reloc_dangerous;
876 }
877 }
878 }
879
880 if (bfd_is_com_section (symbol->section))
881 relocation = 0;
882 else
883 relocation = symbol->value;
884
885 relocation += symbol->section->output_section->vma;
886 relocation += symbol->section->output_offset;
887
888 if (reloc_entry->address > input_section->_cooked_size)
889 return bfd_reloc_outofrange;
890
891 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
892
893 /* Set val to the offset into the section or symbol. */
894 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
895 if (val & 0x8000)
896 val -= 0x10000;
897
898 /* Adjust val for the final section location and GP value. If we
899 are producing relocateable output, we don't want to do this for
900 an external symbol. */
82e51918 901 if (! relocateable
252b5132
RH
902 || (symbol->flags & BSF_SECTION_SYM) != 0)
903 val += relocation - gp;
904
dc810e39
AM
905 insn = (insn &~ (unsigned) 0xffff) | (val & 0xffff);
906 bfd_put_32 (abfd, (bfd_vma) insn, (bfd_byte *) data + reloc_entry->address);
252b5132 907
82e51918 908 if (relocateable)
252b5132
RH
909 reloc_entry->address += input_section->output_offset;
910
911 /* Make sure it fit in 16 bits. */
43cbcf28 912 if ((long) val >= 0x8000 || (long) val < -0x8000)
252b5132
RH
913 return bfd_reloc_overflow;
914
915 return bfd_reloc_ok;
916}
917
918/* Do a RELHI relocation. We do this in conjunction with a RELLO
919 reloc, just as REFHI and REFLO are done together. RELHI and RELLO
920 are Cygnus extensions used when generating position independent
921 code for embedded systems. */
922
923/* FIXME: This should not be a static variable. */
924
925static struct mips_hi *mips_relhi_list;
926
927static bfd_reloc_status_type
928mips_relhi_reloc (abfd,
929 reloc_entry,
930 symbol,
931 data,
932 input_section,
933 output_bfd,
934 error_message)
5f771d47 935 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
936 arelent *reloc_entry;
937 asymbol *symbol;
938 PTR data;
939 asection *input_section;
940 bfd *output_bfd;
5f771d47 941 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
942{
943 bfd_reloc_status_type ret;
944 bfd_vma relocation;
945 struct mips_hi *n;
946
947 /* If this is a reloc against a section symbol, then it is correct
948 in the object file. The only time we want to change this case is
949 when we are relaxing, and that is handled entirely by
950 mips_relocate_section and never calls this function. */
951 if ((symbol->flags & BSF_SECTION_SYM) != 0)
952 {
953 if (output_bfd != (bfd *) NULL)
954 reloc_entry->address += input_section->output_offset;
955 return bfd_reloc_ok;
956 }
957
958 /* This is an external symbol. If we're relocating, we don't want
959 to change anything. */
960 if (output_bfd != (bfd *) NULL)
961 {
962 reloc_entry->address += input_section->output_offset;
963 return bfd_reloc_ok;
964 }
965
966 ret = bfd_reloc_ok;
967 if (bfd_is_und_section (symbol->section)
968 && output_bfd == (bfd *) NULL)
969 ret = bfd_reloc_undefined;
970
971 if (bfd_is_com_section (symbol->section))
972 relocation = 0;
973 else
974 relocation = symbol->value;
975
976 relocation += symbol->section->output_section->vma;
977 relocation += symbol->section->output_offset;
978 relocation += reloc_entry->addend;
979
980 if (reloc_entry->address > input_section->_cooked_size)
981 return bfd_reloc_outofrange;
982
983 /* Save the information, and let RELLO do the actual relocation. */
dc810e39 984 n = (struct mips_hi *) bfd_malloc ((bfd_size_type) sizeof *n);
252b5132
RH
985 if (n == NULL)
986 return bfd_reloc_outofrange;
987 n->addr = (bfd_byte *) data + reloc_entry->address;
988 n->addend = relocation;
989 n->next = mips_relhi_list;
990 mips_relhi_list = n;
991
992 if (output_bfd != (bfd *) NULL)
993 reloc_entry->address += input_section->output_offset;
994
995 return ret;
996}
997
998/* Do a RELLO relocation. This is a straightforward 16 bit PC
999 relative relocation; this function exists in order to do the RELHI
1000 relocation described above. */
1001
1002static bfd_reloc_status_type
1003mips_rello_reloc (abfd,
1004 reloc_entry,
1005 symbol,
1006 data,
1007 input_section,
1008 output_bfd,
1009 error_message)
1010 bfd *abfd;
1011 arelent *reloc_entry;
1012 asymbol *symbol;
1013 PTR data;
1014 asection *input_section;
1015 bfd *output_bfd;
1016 char **error_message;
1017{
1018 if (mips_relhi_list != NULL)
1019 {
1020 struct mips_hi *l;
1021
1022 l = mips_relhi_list;
1023 while (l != NULL)
1024 {
1025 unsigned long insn;
1026 unsigned long val;
1027 unsigned long vallo;
1028 struct mips_hi *next;
1029
1030 /* Do the RELHI relocation. Note that we actually don't
1031 need to know anything about the RELLO itself, except
1032 where to find the low 16 bits of the addend needed by the
1033 RELHI. */
1034 insn = bfd_get_32 (abfd, l->addr);
1035 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1036 & 0xffff);
1037 val = ((insn & 0xffff) << 16) + vallo;
1038 val += l->addend;
1039
1040 /* If the symbol is defined, make val PC relative. If the
1041 symbol is not defined we don't want to do this, because
1042 we don't want the value in the object file to incorporate
1043 the address of the reloc. */
1044 if (! bfd_is_und_section (bfd_get_section (symbol))
1045 && ! bfd_is_com_section (bfd_get_section (symbol)))
1046 val -= (input_section->output_section->vma
1047 + input_section->output_offset
1048 + reloc_entry->address);
1049
1050 /* The low order 16 bits are always treated as a signed
1051 value. Therefore, a negative value in the low order bits
1052 requires an adjustment in the high order bits. We need
1053 to make this adjustment in two ways: once for the bits we
1054 took from the data, and once for the bits we are putting
1055 back in to the data. */
1056 if ((vallo & 0x8000) != 0)
1057 val -= 0x10000;
1058 if ((val & 0x8000) != 0)
1059 val += 0x10000;
1060
dc810e39
AM
1061 insn = (insn &~ (unsigned) 0xffff) | ((val >> 16) & 0xffff);
1062 bfd_put_32 (abfd, (bfd_vma) insn, l->addr);
252b5132
RH
1063
1064 next = l->next;
1065 free (l);
1066 l = next;
1067 }
1068
1069 mips_relhi_list = NULL;
1070 }
1071
1072 /* If this is a reloc against a section symbol, then it is correct
1073 in the object file. The only time we want to change this case is
1074 when we are relaxing, and that is handled entirely by
1075 mips_relocate_section and never calls this function. */
1076 if ((symbol->flags & BSF_SECTION_SYM) != 0)
1077 {
1078 if (output_bfd != (bfd *) NULL)
1079 reloc_entry->address += input_section->output_offset;
1080 return bfd_reloc_ok;
1081 }
1082
1083 /* bfd_perform_relocation does not handle pcrel_offset relocations
1084 correctly when generating a relocateable file, so handle them
1085 directly here. */
1086 if (output_bfd != (bfd *) NULL)
1087 {
1088 reloc_entry->address += input_section->output_offset;
1089 return bfd_reloc_ok;
1090 }
1091
1092 /* Now do the RELLO reloc in the usual way. */
1093 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
1094 input_section, output_bfd, error_message);
1095}
1096
1097/* This is the special function for the MIPS_R_SWITCH reloc. This
1098 special reloc is normally correct in the object file, and only
1099 requires special handling when relaxing. We don't want
1100 bfd_perform_relocation to tamper with it at all. */
1101
252b5132
RH
1102static bfd_reloc_status_type
1103mips_switch_reloc (abfd,
1104 reloc_entry,
1105 symbol,
1106 data,
1107 input_section,
1108 output_bfd,
1109 error_message)
5f771d47
ILT
1110 bfd *abfd ATTRIBUTE_UNUSED;
1111 arelent *reloc_entry ATTRIBUTE_UNUSED;
1112 asymbol *symbol ATTRIBUTE_UNUSED;
1113 PTR data ATTRIBUTE_UNUSED;
1114 asection *input_section ATTRIBUTE_UNUSED;
1115 bfd *output_bfd ATTRIBUTE_UNUSED;
1116 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
1117{
1118 return bfd_reloc_ok;
1119}
1120
1121/* Get the howto structure for a generic reloc type. */
1122
1123static reloc_howto_type *
1124mips_bfd_reloc_type_lookup (abfd, code)
5f771d47 1125 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
1126 bfd_reloc_code_real_type code;
1127{
1128 int mips_type;
1129
1130 switch (code)
1131 {
1132 case BFD_RELOC_16:
1133 mips_type = MIPS_R_REFHALF;
1134 break;
1135 case BFD_RELOC_32:
1136 case BFD_RELOC_CTOR:
1137 mips_type = MIPS_R_REFWORD;
1138 break;
1139 case BFD_RELOC_MIPS_JMP:
1140 mips_type = MIPS_R_JMPADDR;
1141 break;
1142 case BFD_RELOC_HI16_S:
1143 mips_type = MIPS_R_REFHI;
1144 break;
1145 case BFD_RELOC_LO16:
1146 mips_type = MIPS_R_REFLO;
1147 break;
cdf6fd85 1148 case BFD_RELOC_GPREL16:
252b5132
RH
1149 mips_type = MIPS_R_GPREL;
1150 break;
1151 case BFD_RELOC_MIPS_LITERAL:
1152 mips_type = MIPS_R_LITERAL;
1153 break;
1154 case BFD_RELOC_16_PCREL_S2:
1155 mips_type = MIPS_R_PCREL16;
1156 break;
1157 case BFD_RELOC_PCREL_HI16_S:
1158 mips_type = MIPS_R_RELHI;
1159 break;
1160 case BFD_RELOC_PCREL_LO16:
1161 mips_type = MIPS_R_RELLO;
1162 break;
1163 case BFD_RELOC_GPREL32:
1164 mips_type = MIPS_R_SWITCH;
1165 break;
1166 default:
1167 return (reloc_howto_type *) NULL;
1168 }
1169
1170 return &mips_howto_table[mips_type];
1171}
1172\f
1173/* A helper routine for mips_relocate_section which handles the REFHI
1174 and RELHI relocations. The REFHI relocation must be followed by a
1175 REFLO relocation (and RELHI by a RELLO), and the addend used is
1176 formed from the addends of both instructions. */
1177
1178static void
1179mips_relocate_hi (refhi, reflo, input_bfd, input_section, contents, adjust,
1180 relocation, pcrel)
1181 struct internal_reloc *refhi;
1182 struct internal_reloc *reflo;
1183 bfd *input_bfd;
1184 asection *input_section;
1185 bfd_byte *contents;
1186 size_t adjust;
1187 bfd_vma relocation;
1188 boolean pcrel;
1189{
1190 unsigned long insn;
1191 unsigned long val;
1192 unsigned long vallo;
1193
1194 if (refhi == NULL)
1195 return;
b48499ec 1196
252b5132
RH
1197 insn = bfd_get_32 (input_bfd,
1198 contents + adjust + refhi->r_vaddr - input_section->vma);
1199 if (reflo == NULL)
1200 vallo = 0;
1201 else
1202 vallo = (bfd_get_32 (input_bfd,
1203 contents + adjust + reflo->r_vaddr - input_section->vma)
1204 & 0xffff);
b48499ec 1205
252b5132
RH
1206 val = ((insn & 0xffff) << 16) + vallo;
1207 val += relocation;
1208
1209 /* The low order 16 bits are always treated as a signed value.
1210 Therefore, a negative value in the low order bits requires an
1211 adjustment in the high order bits. We need to make this
1212 adjustment in two ways: once for the bits we took from the data,
1213 and once for the bits we are putting back in to the data. */
1214 if ((vallo & 0x8000) != 0)
1215 val -= 0x10000;
1216
1217 if (pcrel)
1218 val -= (input_section->output_section->vma
1219 + input_section->output_offset
1220 + (reflo->r_vaddr - input_section->vma + adjust));
1221
1222 if ((val & 0x8000) != 0)
1223 val += 0x10000;
1224
dc810e39 1225 insn = (insn &~ (unsigned) 0xffff) | ((val >> 16) & 0xffff);
252b5132
RH
1226 bfd_put_32 (input_bfd, (bfd_vma) insn,
1227 contents + adjust + refhi->r_vaddr - input_section->vma);
1228}
1229
1230/* Relocate a section while linking a MIPS ECOFF file. */
1231
1232static boolean
1233mips_relocate_section (output_bfd, info, input_bfd, input_section,
1234 contents, external_relocs)
1235 bfd *output_bfd;
1236 struct bfd_link_info *info;
1237 bfd *input_bfd;
1238 asection *input_section;
1239 bfd_byte *contents;
1240 PTR external_relocs;
1241{
1242 asection **symndx_to_section;
1243 struct ecoff_link_hash_entry **sym_hashes;
1244 bfd_vma gp;
1245 boolean gp_undefined;
1246 size_t adjust;
1247 long *offsets;
1248 struct external_reloc *ext_rel;
1249 struct external_reloc *ext_rel_end;
1250 unsigned int i;
1251 boolean got_lo;
1252 struct internal_reloc lo_int_rel;
dc810e39 1253 bfd_size_type amt;
252b5132
RH
1254
1255 BFD_ASSERT (input_bfd->xvec->byteorder
1256 == output_bfd->xvec->byteorder);
1257
1258 /* We keep a table mapping the symndx found in an internal reloc to
1259 the appropriate section. This is faster than looking up the
1260 section by name each time. */
1261 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1262 if (symndx_to_section == (asection **) NULL)
1263 {
dc810e39
AM
1264 amt = NUM_RELOC_SECTIONS * sizeof (asection *);
1265 symndx_to_section = (asection **) bfd_alloc (input_bfd, amt);
252b5132
RH
1266 if (!symndx_to_section)
1267 return false;
1268
1269 symndx_to_section[RELOC_SECTION_NONE] = NULL;
1270 symndx_to_section[RELOC_SECTION_TEXT] =
1271 bfd_get_section_by_name (input_bfd, ".text");
1272 symndx_to_section[RELOC_SECTION_RDATA] =
1273 bfd_get_section_by_name (input_bfd, ".rdata");
1274 symndx_to_section[RELOC_SECTION_DATA] =
1275 bfd_get_section_by_name (input_bfd, ".data");
1276 symndx_to_section[RELOC_SECTION_SDATA] =
1277 bfd_get_section_by_name (input_bfd, ".sdata");
1278 symndx_to_section[RELOC_SECTION_SBSS] =
1279 bfd_get_section_by_name (input_bfd, ".sbss");
1280 symndx_to_section[RELOC_SECTION_BSS] =
1281 bfd_get_section_by_name (input_bfd, ".bss");
1282 symndx_to_section[RELOC_SECTION_INIT] =
1283 bfd_get_section_by_name (input_bfd, ".init");
1284 symndx_to_section[RELOC_SECTION_LIT8] =
1285 bfd_get_section_by_name (input_bfd, ".lit8");
1286 symndx_to_section[RELOC_SECTION_LIT4] =
1287 bfd_get_section_by_name (input_bfd, ".lit4");
1288 symndx_to_section[RELOC_SECTION_XDATA] = NULL;
1289 symndx_to_section[RELOC_SECTION_PDATA] = NULL;
1290 symndx_to_section[RELOC_SECTION_FINI] =
1291 bfd_get_section_by_name (input_bfd, ".fini");
1292 symndx_to_section[RELOC_SECTION_LITA] = NULL;
1293 symndx_to_section[RELOC_SECTION_ABS] = NULL;
1294
1295 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1296 }
1297
1298 sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1299
1300 gp = _bfd_get_gp_value (output_bfd);
1301 if (gp == 0)
1302 gp_undefined = true;
1303 else
1304 gp_undefined = false;
1305
1306 got_lo = false;
1307
1308 adjust = 0;
1309
1310 if (ecoff_section_data (input_bfd, input_section) == NULL)
1311 offsets = NULL;
1312 else
1313 offsets = ecoff_section_data (input_bfd, input_section)->offsets;
1314
1315 ext_rel = (struct external_reloc *) external_relocs;
1316 ext_rel_end = ext_rel + input_section->reloc_count;
1317 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1318 {
1319 struct internal_reloc int_rel;
1320 boolean use_lo = false;
1321 bfd_vma addend;
1322 reloc_howto_type *howto;
1323 struct ecoff_link_hash_entry *h = NULL;
1324 asection *s = NULL;
1325 bfd_vma relocation;
1326 bfd_reloc_status_type r;
1327
1328 if (! got_lo)
1329 mips_ecoff_swap_reloc_in (input_bfd, (PTR) ext_rel, &int_rel);
1330 else
1331 {
1332 int_rel = lo_int_rel;
1333 got_lo = false;
1334 }
1335
1336 BFD_ASSERT (int_rel.r_type
1337 < sizeof mips_howto_table / sizeof mips_howto_table[0]);
1338
1339 /* The REFHI and RELHI relocs requires special handling. they
1340 must be followed by a REFLO or RELLO reloc, respectively, and
1341 the addend is formed from both relocs. */
1342 if (int_rel.r_type == MIPS_R_REFHI
1343 || int_rel.r_type == MIPS_R_RELHI)
1344 {
1345 struct external_reloc *lo_ext_rel;
1346
1347 /* As a GNU extension, permit an arbitrary number of REFHI
1348 or RELHI relocs before the REFLO or RELLO reloc. This
1349 permits gcc to emit the HI and LO relocs itself. */
1350 for (lo_ext_rel = ext_rel + 1;
1351 lo_ext_rel < ext_rel_end;
1352 lo_ext_rel++)
1353 {
1354 mips_ecoff_swap_reloc_in (input_bfd, (PTR) lo_ext_rel,
1355 &lo_int_rel);
1356 if (lo_int_rel.r_type != int_rel.r_type)
1357 break;
1358 }
1359
1360 if (lo_ext_rel < ext_rel_end
1361 && (lo_int_rel.r_type
1362 == (int_rel.r_type == MIPS_R_REFHI
1363 ? MIPS_R_REFLO
1364 : MIPS_R_RELLO))
1365 && int_rel.r_extern == lo_int_rel.r_extern
1366 && int_rel.r_symndx == lo_int_rel.r_symndx)
1367 {
1368 use_lo = true;
1369 if (lo_ext_rel == ext_rel + 1)
1370 got_lo = true;
1371 }
1372 }
1373
1374 howto = &mips_howto_table[int_rel.r_type];
1375
1376 /* The SWITCH reloc must be handled specially. This reloc is
1377 marks the location of a difference between two portions of an
1378 object file. The symbol index does not reference a symbol,
1379 but is actually the offset from the reloc to the subtrahend
1380 of the difference. This reloc is correct in the object file,
1381 and needs no further adjustment, unless we are relaxing. If
1382 we are relaxing, we may have to add in an offset. Since no
1383 symbols are involved in this reloc, we handle it completely
1384 here. */
1385 if (int_rel.r_type == MIPS_R_SWITCH)
1386 {
1387 if (offsets != NULL
1388 && offsets[i] != 0)
1389 {
1390 r = _bfd_relocate_contents (howto, input_bfd,
1391 (bfd_vma) offsets[i],
1392 (contents
1393 + adjust
1394 + int_rel.r_vaddr
1395 - input_section->vma));
1396 BFD_ASSERT (r == bfd_reloc_ok);
1397 }
1398
1399 continue;
1400 }
1401
1402 if (int_rel.r_extern)
1403 {
1404 h = sym_hashes[int_rel.r_symndx];
1405 /* If h is NULL, that means that there is a reloc against an
1406 external symbol which we thought was just a debugging
1407 symbol. This should not happen. */
1408 if (h == (struct ecoff_link_hash_entry *) NULL)
1409 abort ();
1410 }
1411 else
1412 {
1413 if (int_rel.r_symndx < 0 || int_rel.r_symndx >= NUM_RELOC_SECTIONS)
1414 s = NULL;
1415 else
1416 s = symndx_to_section[int_rel.r_symndx];
1417
1418 if (s == (asection *) NULL)
1419 abort ();
1420 }
1421
1422 /* The GPREL reloc uses an addend: the difference in the GP
1423 values. */
1424 if (int_rel.r_type != MIPS_R_GPREL
1425 && int_rel.r_type != MIPS_R_LITERAL)
1426 addend = 0;
1427 else
1428 {
1429 if (gp_undefined)
1430 {
1431 if (! ((*info->callbacks->reloc_dangerous)
cc9ff76a 1432 (info, _("GP relative relocation used when GP not defined"),
252b5132
RH
1433 input_bfd, input_section,
1434 int_rel.r_vaddr - input_section->vma)))
1435 return false;
1436 /* Only give the error once per link. */
1437 gp = 4;
1438 _bfd_set_gp_value (output_bfd, gp);
1439 gp_undefined = false;
1440 }
1441 if (! int_rel.r_extern)
1442 {
1443 /* This is a relocation against a section. The current
1444 addend in the instruction is the difference between
1445 INPUT_SECTION->vma and the GP value of INPUT_BFD. We
1446 must change this to be the difference between the
1447 final definition (which will end up in RELOCATION)
1448 and the GP value of OUTPUT_BFD (which is in GP). */
1449 addend = ecoff_data (input_bfd)->gp - gp;
1450 }
1451 else if (! info->relocateable
1452 || h->root.type == bfd_link_hash_defined
1453 || h->root.type == bfd_link_hash_defweak)
1454 {
1455 /* This is a relocation against a defined symbol. The
1456 current addend in the instruction is simply the
1457 desired offset into the symbol (normally zero). We
1458 are going to change this into a relocation against a
1459 defined symbol, so we want the instruction to hold
1460 the difference between the final definition of the
1461 symbol (which will end up in RELOCATION) and the GP
1462 value of OUTPUT_BFD (which is in GP). */
1463 addend = - gp;
1464 }
1465 else
1466 {
1467 /* This is a relocation against an undefined or common
1468 symbol. The current addend in the instruction is
1469 simply the desired offset into the symbol (normally
1470 zero). We are generating relocateable output, and we
1471 aren't going to define this symbol, so we just leave
1472 the instruction alone. */
1473 addend = 0;
1474 }
1475 }
1476
1477 /* If we are relaxing, mips_relax_section may have set
1478 offsets[i] to some value. A value of 1 means we must expand
1479 a PC relative branch into a multi-instruction of sequence,
1480 and any other value is an addend. */
1481 if (offsets != NULL
1482 && offsets[i] != 0)
1483 {
1484 BFD_ASSERT (! info->relocateable);
1485 BFD_ASSERT (int_rel.r_type == MIPS_R_PCREL16
1486 || int_rel.r_type == MIPS_R_RELHI
1487 || int_rel.r_type == MIPS_R_RELLO);
1488 if (offsets[i] != 1)
1489 addend += offsets[i];
1490 else
1491 {
1492 bfd_byte *here;
1493
1494 BFD_ASSERT (int_rel.r_extern
1495 && int_rel.r_type == MIPS_R_PCREL16);
1496
1497 /* Move the rest of the instructions up. */
1498 here = (contents
1499 + adjust
1500 + int_rel.r_vaddr
1501 - input_section->vma);
1502 memmove (here + PCREL16_EXPANSION_ADJUSTMENT, here,
1503 (size_t) (input_section->_raw_size
1504 - (int_rel.r_vaddr - input_section->vma)));
b48499ec 1505
252b5132
RH
1506 /* Generate the new instructions. */
1507 if (! mips_relax_pcrel16 (info, input_bfd, input_section,
1508 h, here,
1509 (input_section->output_section->vma
1510 + input_section->output_offset
1511 + (int_rel.r_vaddr
1512 - input_section->vma)
1513 + adjust)))
1514 return false;
1515
1516 /* We must adjust everything else up a notch. */
1517 adjust += PCREL16_EXPANSION_ADJUSTMENT;
1518
1519 /* mips_relax_pcrel16 handles all the details of this
1520 relocation. */
1521 continue;
1522 }
1523 }
1524
1525 /* If we are relaxing, and this is a reloc against the .text
1526 segment, we may need to adjust it if some branches have been
1527 expanded. The reloc types which are likely to occur in the
1528 .text section are handled efficiently by mips_relax_section,
1529 and thus do not need to be handled here. */
1530 if (ecoff_data (input_bfd)->debug_info.adjust != NULL
1531 && ! int_rel.r_extern
1532 && int_rel.r_symndx == RELOC_SECTION_TEXT
1533 && (strcmp (bfd_get_section_name (input_bfd, input_section),
1534 ".text") != 0
1535 || (int_rel.r_type != MIPS_R_PCREL16
1536 && int_rel.r_type != MIPS_R_SWITCH
1537 && int_rel.r_type != MIPS_R_RELHI
1538 && int_rel.r_type != MIPS_R_RELLO)))
1539 {
1540 bfd_vma adr;
1541 struct ecoff_value_adjust *a;
1542
1543 /* We need to get the addend so that we know whether we need
1544 to adjust the address. */
1545 BFD_ASSERT (int_rel.r_type == MIPS_R_REFWORD);
1546
1547 adr = bfd_get_32 (input_bfd,
1548 (contents
1549 + adjust
1550 + int_rel.r_vaddr
1551 - input_section->vma));
1552
1553 for (a = ecoff_data (input_bfd)->debug_info.adjust;
1554 a != (struct ecoff_value_adjust *) NULL;
1555 a = a->next)
1556 {
1557 if (adr >= a->start && adr < a->end)
1558 addend += a->adjust;
1559 }
1560 }
1561
1562 if (info->relocateable)
1563 {
1564 /* We are generating relocateable output, and must convert
1565 the existing reloc. */
1566 if (int_rel.r_extern)
1567 {
1568 if ((h->root.type == bfd_link_hash_defined
1569 || h->root.type == bfd_link_hash_defweak)
1570 && ! bfd_is_abs_section (h->root.u.def.section))
1571 {
1572 const char *name;
1573
1574 /* This symbol is defined in the output. Convert
1575 the reloc from being against the symbol to being
1576 against the section. */
1577
1578 /* Clear the r_extern bit. */
1579 int_rel.r_extern = 0;
1580
1581 /* Compute a new r_symndx value. */
1582 s = h->root.u.def.section;
1583 name = bfd_get_section_name (output_bfd,
1584 s->output_section);
1585
1586 int_rel.r_symndx = -1;
1587 switch (name[1])
1588 {
1589 case 'b':
1590 if (strcmp (name, ".bss") == 0)
1591 int_rel.r_symndx = RELOC_SECTION_BSS;
1592 break;
1593 case 'd':
1594 if (strcmp (name, ".data") == 0)
1595 int_rel.r_symndx = RELOC_SECTION_DATA;
1596 break;
1597 case 'f':
1598 if (strcmp (name, ".fini") == 0)
1599 int_rel.r_symndx = RELOC_SECTION_FINI;
1600 break;
1601 case 'i':
1602 if (strcmp (name, ".init") == 0)
1603 int_rel.r_symndx = RELOC_SECTION_INIT;
1604 break;
1605 case 'l':
1606 if (strcmp (name, ".lit8") == 0)
1607 int_rel.r_symndx = RELOC_SECTION_LIT8;
1608 else if (strcmp (name, ".lit4") == 0)
1609 int_rel.r_symndx = RELOC_SECTION_LIT4;
1610 break;
1611 case 'r':
1612 if (strcmp (name, ".rdata") == 0)
1613 int_rel.r_symndx = RELOC_SECTION_RDATA;
1614 break;
1615 case 's':
1616 if (strcmp (name, ".sdata") == 0)
1617 int_rel.r_symndx = RELOC_SECTION_SDATA;
1618 else if (strcmp (name, ".sbss") == 0)
1619 int_rel.r_symndx = RELOC_SECTION_SBSS;
1620 break;
1621 case 't':
1622 if (strcmp (name, ".text") == 0)
1623 int_rel.r_symndx = RELOC_SECTION_TEXT;
1624 break;
1625 }
b48499ec 1626
252b5132
RH
1627 if (int_rel.r_symndx == -1)
1628 abort ();
1629
1630 /* Add the section VMA and the symbol value. */
1631 relocation = (h->root.u.def.value
1632 + s->output_section->vma
1633 + s->output_offset);
1634
1635 /* For a PC relative relocation, the object file
1636 currently holds just the addend. We must adjust
1637 by the address to get the right value. */
1638 if (howto->pc_relative)
1639 {
1640 relocation -= int_rel.r_vaddr - input_section->vma;
1641
1642 /* If we are converting a RELHI or RELLO reloc
1643 from being against an external symbol to
1644 being against a section, we must put a
1645 special value into the r_offset field. This
1646 value is the old addend. The r_offset for
1647 both the RELHI and RELLO relocs are the same,
1648 and we set both when we see RELHI. */
1649 if (int_rel.r_type == MIPS_R_RELHI)
1650 {
1651 long addhi, addlo;
1652
1653 addhi = bfd_get_32 (input_bfd,
1654 (contents
1655 + adjust
1656 + int_rel.r_vaddr
1657 - input_section->vma));
1658 addhi &= 0xffff;
1659 if (addhi & 0x8000)
1660 addhi -= 0x10000;
1661 addhi <<= 16;
1662
1663 if (! use_lo)
1664 addlo = 0;
1665 else
1666 {
1667 addlo = bfd_get_32 (input_bfd,
1668 (contents
1669 + adjust
1670 + lo_int_rel.r_vaddr
1671 - input_section->vma));
1672 addlo &= 0xffff;
1673 if (addlo & 0x8000)
1674 addlo -= 0x10000;
1675
1676 lo_int_rel.r_offset = addhi + addlo;
1677 }
1678
1679 int_rel.r_offset = addhi + addlo;
1680 }
1681 }
1682
1683 h = NULL;
1684 }
1685 else
1686 {
1687 /* Change the symndx value to the right one for the
1688 output BFD. */
1689 int_rel.r_symndx = h->indx;
1690 if (int_rel.r_symndx == -1)
1691 {
1692 /* This symbol is not being written out. */
1693 if (! ((*info->callbacks->unattached_reloc)
1694 (info, h->root.root.string, input_bfd,
1695 input_section,
1696 int_rel.r_vaddr - input_section->vma)))
1697 return false;
1698 int_rel.r_symndx = 0;
1699 }
1700 relocation = 0;
1701 }
1702 }
1703 else
1704 {
1705 /* This is a relocation against a section. Adjust the
1706 value by the amount the section moved. */
1707 relocation = (s->output_section->vma
1708 + s->output_offset
1709 - s->vma);
1710 }
1711
1712 relocation += addend;
1713 addend = 0;
1714
1715 /* Adjust a PC relative relocation by removing the reference
1716 to the original address in the section and including the
1717 reference to the new address. However, external RELHI
1718 and RELLO relocs are PC relative, but don't include any
1719 reference to the address. The addend is merely an
1720 addend. */
1721 if (howto->pc_relative
1722 && (! int_rel.r_extern
1723 || (int_rel.r_type != MIPS_R_RELHI
1724 && int_rel.r_type != MIPS_R_RELLO)))
1725 relocation -= (input_section->output_section->vma
1726 + input_section->output_offset
1727 - input_section->vma);
1728
1729 /* Adjust the contents. */
1730 if (relocation == 0)
1731 r = bfd_reloc_ok;
1732 else
1733 {
1734 if (int_rel.r_type != MIPS_R_REFHI
1735 && int_rel.r_type != MIPS_R_RELHI)
1736 r = _bfd_relocate_contents (howto, input_bfd, relocation,
1737 (contents
1738 + adjust
1739 + int_rel.r_vaddr
1740 - input_section->vma));
1741 else
1742 {
1743 mips_relocate_hi (&int_rel,
1744 use_lo ? &lo_int_rel : NULL,
1745 input_bfd, input_section, contents,
1746 adjust, relocation,
1747 int_rel.r_type == MIPS_R_RELHI);
1748 r = bfd_reloc_ok;
1749 }
1750 }
1751
1752 /* Adjust the reloc address. */
1753 int_rel.r_vaddr += (input_section->output_section->vma
1754 + input_section->output_offset
1755 - input_section->vma);
1756
1757 /* Save the changed reloc information. */
1758 mips_ecoff_swap_reloc_out (input_bfd, &int_rel, (PTR) ext_rel);
1759 }
1760 else
1761 {
1762 /* We are producing a final executable. */
1763 if (int_rel.r_extern)
1764 {
1765 /* This is a reloc against a symbol. */
1766 if (h->root.type == bfd_link_hash_defined
1767 || h->root.type == bfd_link_hash_defweak)
1768 {
1769 asection *hsec;
1770
1771 hsec = h->root.u.def.section;
1772 relocation = (h->root.u.def.value
1773 + hsec->output_section->vma
1774 + hsec->output_offset);
1775 }
1776 else
1777 {
1778 if (! ((*info->callbacks->undefined_symbol)
1779 (info, h->root.root.string, input_bfd,
1780 input_section,
5cc7c785 1781 int_rel.r_vaddr - input_section->vma, true)))
252b5132
RH
1782 return false;
1783 relocation = 0;
1784 }
1785 }
1786 else
1787 {
1788 /* This is a reloc against a section. */
1789 relocation = (s->output_section->vma
1790 + s->output_offset
1791 - s->vma);
1792
1793 /* A PC relative reloc is already correct in the object
1794 file. Make it look like a pcrel_offset relocation by
1795 adding in the start address. */
1796 if (howto->pc_relative)
1797 {
1798 if (int_rel.r_type != MIPS_R_RELHI || ! use_lo)
1799 relocation += int_rel.r_vaddr + adjust;
1800 else
1801 relocation += lo_int_rel.r_vaddr + adjust;
1802 }
1803 }
1804
1805 if (int_rel.r_type != MIPS_R_REFHI
1806 && int_rel.r_type != MIPS_R_RELHI)
1807 r = _bfd_final_link_relocate (howto,
1808 input_bfd,
1809 input_section,
1810 contents,
1811 (int_rel.r_vaddr
1812 - input_section->vma
1813 + adjust),
1814 relocation,
1815 addend);
1816 else
1817 {
1818 mips_relocate_hi (&int_rel,
1819 use_lo ? &lo_int_rel : NULL,
1820 input_bfd, input_section, contents, adjust,
1821 relocation,
1822 int_rel.r_type == MIPS_R_RELHI);
1823 r = bfd_reloc_ok;
1824 }
1825 }
1826
1827 /* MIPS_R_JMPADDR requires peculiar overflow detection. The
1828 instruction provides a 28 bit address (the two lower bits are
1829 implicit zeroes) which is combined with the upper four bits
1830 of the instruction address. */
1831 if (r == bfd_reloc_ok
1832 && int_rel.r_type == MIPS_R_JMPADDR
1833 && (((relocation
1834 + addend
1835 + (int_rel.r_extern ? 0 : s->vma))
1836 & 0xf0000000)
1837 != ((input_section->output_section->vma
1838 + input_section->output_offset
1839 + (int_rel.r_vaddr - input_section->vma)
1840 + adjust)
1841 & 0xf0000000)))
1842 r = bfd_reloc_overflow;
1843
1844 if (r != bfd_reloc_ok)
1845 {
1846 switch (r)
1847 {
1848 default:
1849 case bfd_reloc_outofrange:
1850 abort ();
1851 case bfd_reloc_overflow:
1852 {
1853 const char *name;
1854
1855 if (int_rel.r_extern)
1856 name = h->root.root.string;
1857 else
1858 name = bfd_section_name (input_bfd, s);
1859 if (! ((*info->callbacks->reloc_overflow)
1860 (info, name, howto->name, (bfd_vma) 0,
1861 input_bfd, input_section,
1862 int_rel.r_vaddr - input_section->vma)))
1863 return false;
1864 }
1865 break;
1866 }
1867 }
1868 }
1869
1870 return true;
1871}
1872\f
1873/* Read in the relocs for a section. */
1874
1875static boolean
1876mips_read_relocs (abfd, sec)
1877 bfd *abfd;
1878 asection *sec;
1879{
1880 struct ecoff_section_tdata *section_tdata;
dc810e39 1881 bfd_size_type amt;
252b5132
RH
1882
1883 section_tdata = ecoff_section_data (abfd, sec);
1884 if (section_tdata == (struct ecoff_section_tdata *) NULL)
1885 {
dc810e39
AM
1886 amt = sizeof (struct ecoff_section_tdata);
1887 sec->used_by_bfd = (PTR) bfd_alloc (abfd, amt);
252b5132
RH
1888 if (sec->used_by_bfd == NULL)
1889 return false;
1890
1891 section_tdata = ecoff_section_data (abfd, sec);
1892 section_tdata->external_relocs = NULL;
1893 section_tdata->contents = NULL;
1894 section_tdata->offsets = NULL;
1895 }
1896
1897 if (section_tdata->external_relocs == NULL)
1898 {
dc810e39
AM
1899 amt = ecoff_backend (abfd)->external_reloc_size;
1900 amt *= sec->reloc_count;
1901 section_tdata->external_relocs = (PTR) bfd_alloc (abfd, amt);
1902 if (section_tdata->external_relocs == NULL && amt != 0)
252b5132
RH
1903 return false;
1904
1905 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
dc810e39 1906 || bfd_bread (section_tdata->external_relocs, amt, abfd) != amt)
252b5132
RH
1907 return false;
1908 }
1909
1910 return true;
1911}
1912
1913/* Relax a section when linking a MIPS ECOFF file. This is used for
1914 embedded PIC code, which always uses PC relative branches which
1915 only have an 18 bit range on MIPS. If a branch is not in range, we
1916 generate a long instruction sequence to compensate. Each time we
1917 find a branch to expand, we have to check all the others again to
1918 make sure they are still in range. This is slow, but it only has
1919 to be done when -relax is passed to the linker.
1920
1921 This routine figures out which branches need to expand; the actual
1922 expansion is done in mips_relocate_section when the section
1923 contents are relocated. The information is stored in the offsets
1924 field of the ecoff_section_tdata structure. An offset of 1 means
1925 that the branch must be expanded into a multi-instruction PC
1926 relative branch (such an offset will only occur for a PC relative
1927 branch to an external symbol). Any other offset must be a multiple
1928 of four, and is the amount to change the branch by (such an offset
1929 will only occur for a PC relative branch within the same section).
1930
1931 We do not modify the section relocs or contents themselves so that
1932 if memory usage becomes an issue we can discard them and read them
1933 again. The only information we must save in memory between this
1934 routine and the mips_relocate_section routine is the table of
1935 offsets. */
1936
1937static boolean
1938mips_relax_section (abfd, sec, info, again)
1939 bfd *abfd;
1940 asection *sec;
1941 struct bfd_link_info *info;
1942 boolean *again;
1943{
1944 struct ecoff_section_tdata *section_tdata;
1945 bfd_byte *contents = NULL;
1946 long *offsets;
1947 struct external_reloc *ext_rel;
1948 struct external_reloc *ext_rel_end;
1949 unsigned int i;
1950
1951 /* Assume we are not going to need another pass. */
1952 *again = false;
1953
1954 /* If we are not generating an ECOFF file, this is much too
1955 confusing to deal with. */
1956 if (info->hash->creator->flavour != bfd_get_flavour (abfd))
1957 return true;
1958
1959 /* If there are no relocs, there is nothing to do. */
1960 if (sec->reloc_count == 0)
1961 return true;
1962
1963 /* We are only interested in PC relative relocs, and why would there
1964 ever be one from anything but the .text section? */
1965 if (strcmp (bfd_get_section_name (abfd, sec), ".text") != 0)
1966 return true;
1967
1968 /* Read in the relocs, if we haven't already got them. */
1969 section_tdata = ecoff_section_data (abfd, sec);
1970 if (section_tdata == (struct ecoff_section_tdata *) NULL
1971 || section_tdata->external_relocs == NULL)
1972 {
1973 if (! mips_read_relocs (abfd, sec))
1974 goto error_return;
1975 section_tdata = ecoff_section_data (abfd, sec);
1976 }
1977
1978 if (sec->_cooked_size == 0)
1979 {
1980 /* We must initialize _cooked_size only the first time we are
1981 called. */
1982 sec->_cooked_size = sec->_raw_size;
1983 }
1984
1985 contents = section_tdata->contents;
1986 offsets = section_tdata->offsets;
1987
1988 /* Look for any external PC relative relocs. Internal PC relative
1989 relocs are already correct in the object file, so they certainly
1990 can not overflow. */
1991 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
1992 ext_rel_end = ext_rel + sec->reloc_count;
1993 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1994 {
1995 struct internal_reloc int_rel;
1996 struct ecoff_link_hash_entry *h;
1997 asection *hsec;
1998 bfd_signed_vma relocation;
1999 struct external_reloc *adj_ext_rel;
2000 unsigned int adj_i;
2001 unsigned long ext_count;
2002 struct ecoff_link_hash_entry **adj_h_ptr;
2003 struct ecoff_link_hash_entry **adj_h_ptr_end;
2004 struct ecoff_value_adjust *adjust;
dc810e39 2005 bfd_size_type amt;
252b5132
RH
2006
2007 /* If we have already expanded this reloc, we certainly don't
2008 need to do it again. */
2009 if (offsets != (long *) NULL && offsets[i] == 1)
2010 continue;
2011
2012 /* Quickly check that this reloc is external PCREL16. */
2013 if (bfd_header_big_endian (abfd))
2014 {
2015 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_BIG) == 0
2016 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_BIG)
2017 >> RELOC_BITS3_TYPE_SH_BIG)
2018 != MIPS_R_PCREL16))
2019 continue;
2020 }
2021 else
2022 {
2023 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) == 0
2024 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
2025 >> RELOC_BITS3_TYPE_SH_LITTLE)
2026 != MIPS_R_PCREL16))
2027 continue;
2028 }
2029
2030 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
2031
2032 h = ecoff_data (abfd)->sym_hashes[int_rel.r_symndx];
2033 if (h == (struct ecoff_link_hash_entry *) NULL)
2034 abort ();
2035
2036 if (h->root.type != bfd_link_hash_defined
2037 && h->root.type != bfd_link_hash_defweak)
2038 {
2039 /* Just ignore undefined symbols. These will presumably
2040 generate an error later in the link. */
2041 continue;
2042 }
2043
2044 /* Get the value of the symbol. */
2045 hsec = h->root.u.def.section;
2046 relocation = (h->root.u.def.value
2047 + hsec->output_section->vma
2048 + hsec->output_offset);
2049
2050 /* Subtract out the current address. */
2051 relocation -= (sec->output_section->vma
2052 + sec->output_offset
2053 + (int_rel.r_vaddr - sec->vma));
2054
2055 /* The addend is stored in the object file. In the normal case
2056 of ``bal symbol'', the addend will be -4. It will only be
2057 different in the case of ``bal symbol+constant''. To avoid
2058 always reading in the section contents, we don't check the
2059 addend in the object file (we could easily check the contents
2060 if we happen to have already read them in, but I fear that
2061 this could be confusing). This means we will screw up if
2062 there is a branch to a symbol that is in range, but added to
2063 a constant which puts it out of range; in such a case the
2064 link will fail with a reloc overflow error. Since the
2065 compiler will never generate such code, it should be easy
2066 enough to work around it by changing the assembly code in the
2067 source file. */
2068 relocation -= 4;
2069
2070 /* Now RELOCATION is the number we want to put in the object
2071 file. See whether it fits. */
2072 if (relocation >= -0x20000 && relocation < 0x20000)
2073 continue;
2074
2075 /* Now that we know this reloc needs work, which will rarely
2076 happen, go ahead and grab the section contents. */
2077 if (contents == (bfd_byte *) NULL)
2078 {
2079 if (info->keep_memory)
2080 contents = (bfd_byte *) bfd_alloc (abfd, sec->_raw_size);
2081 else
dc810e39 2082 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
252b5132
RH
2083 if (contents == (bfd_byte *) NULL)
2084 goto error_return;
2085 if (! bfd_get_section_contents (abfd, sec, (PTR) contents,
2086 (file_ptr) 0, sec->_raw_size))
2087 goto error_return;
2088 if (info->keep_memory)
2089 section_tdata->contents = contents;
2090 }
2091
2092 /* We only support changing the bal instruction. It would be
2093 possible to handle other PC relative branches, but some of
2094 them (the conditional branches) would require a different
2095 length instruction sequence which would complicate both this
2096 routine and mips_relax_pcrel16. It could be written if
2097 somebody felt it were important. Ignoring this reloc will
2098 presumably cause a reloc overflow error later on. */
2099 if (bfd_get_32 (abfd, contents + int_rel.r_vaddr - sec->vma)
b48499ec 2100 != 0x0411ffff) /* bgezal $0,. == bal . */
252b5132
RH
2101 continue;
2102
2103 /* Bother. We need to expand this reloc, and we will need to
2104 make another relaxation pass since this change may put other
2105 relocs out of range. We need to examine the local branches
2106 and we need to allocate memory to hold the offsets we must
2107 add to them. We also need to adjust the values of all
2108 symbols in the object file following this location. */
2109
2110 sec->_cooked_size += PCREL16_EXPANSION_ADJUSTMENT;
2111 *again = true;
2112
2113 if (offsets == (long *) NULL)
2114 {
dc810e39 2115 bfd_size_type size;
252b5132 2116
dc810e39 2117 size = (bfd_size_type) sec->reloc_count * sizeof (long);
9bab7074 2118 offsets = (long *) bfd_zalloc (abfd, size);
252b5132
RH
2119 if (offsets == (long *) NULL)
2120 goto error_return;
252b5132
RH
2121 section_tdata->offsets = offsets;
2122 }
2123
2124 offsets[i] = 1;
2125
2126 /* Now look for all PC relative references that cross this reloc
2127 and adjust their offsets. */
2128 adj_ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2129 for (adj_i = 0; adj_ext_rel < ext_rel_end; adj_ext_rel++, adj_i++)
2130 {
2131 struct internal_reloc adj_int_rel;
2132 bfd_vma start, stop;
2133 int change;
2134
2135 mips_ecoff_swap_reloc_in (abfd, (PTR) adj_ext_rel, &adj_int_rel);
2136
2137 if (adj_int_rel.r_type == MIPS_R_PCREL16)
2138 {
2139 unsigned long insn;
2140
2141 /* We only care about local references. External ones
2142 will be relocated correctly anyhow. */
2143 if (adj_int_rel.r_extern)
2144 continue;
2145
2146 /* We are only interested in a PC relative reloc within
2147 this section. FIXME: Cross section PC relative
2148 relocs may not be handled correctly; does anybody
2149 care? */
2150 if (adj_int_rel.r_symndx != RELOC_SECTION_TEXT)
2151 continue;
2152
2153 start = adj_int_rel.r_vaddr;
2154
2155 insn = bfd_get_32 (abfd,
2156 contents + adj_int_rel.r_vaddr - sec->vma);
2157
2158 stop = (insn & 0xffff) << 2;
2159 if ((stop & 0x20000) != 0)
2160 stop -= 0x40000;
2161 stop += adj_int_rel.r_vaddr + 4;
2162 }
2163 else if (adj_int_rel.r_type == MIPS_R_RELHI)
2164 {
2165 struct internal_reloc rello;
2166 long addhi, addlo;
2167
2168 /* The next reloc must be MIPS_R_RELLO, and we handle
2169 them together. */
2170 BFD_ASSERT (adj_ext_rel + 1 < ext_rel_end);
2171
2172 mips_ecoff_swap_reloc_in (abfd, (PTR) (adj_ext_rel + 1), &rello);
2173
2174 BFD_ASSERT (rello.r_type == MIPS_R_RELLO);
b48499ec 2175
252b5132
RH
2176 addhi = bfd_get_32 (abfd,
2177 contents + adj_int_rel.r_vaddr - sec->vma);
2178 addhi &= 0xffff;
2179 if (addhi & 0x8000)
2180 addhi -= 0x10000;
2181 addhi <<= 16;
2182
2183 addlo = bfd_get_32 (abfd, contents + rello.r_vaddr - sec->vma);
2184 addlo &= 0xffff;
2185 if (addlo & 0x8000)
2186 addlo -= 0x10000;
2187
2188 if (adj_int_rel.r_extern)
2189 {
2190 /* The value we want here is
2191 sym - RELLOaddr + addend
2192 which we can express as
2193 sym - (RELLOaddr - addend)
2194 Therefore if we are expanding the area between
2195 RELLOaddr and RELLOaddr - addend we must adjust
2196 the addend. This is admittedly ambiguous, since
2197 we might mean (sym + addend) - RELLOaddr, but in
2198 practice we don't, and there is no way to handle
2199 that case correctly since at this point we have
2200 no idea whether any reloc is being expanded
2201 between sym and sym + addend. */
2202 start = rello.r_vaddr - (addhi + addlo);
2203 stop = rello.r_vaddr;
2204 }
2205 else
2206 {
2207 /* An internal RELHI/RELLO pair represents the
2208 difference between two addresses, $LC0 - foo.
2209 The symndx value is actually the difference
2210 between the reloc address and $LC0. This lets us
2211 compute $LC0, and, by considering the addend,
2212 foo. If the reloc we are expanding falls between
2213 those two relocs, we must adjust the addend. At
2214 this point, the symndx value is actually in the
2215 r_offset field, where it was put by
2216 mips_ecoff_swap_reloc_in. */
2217 start = rello.r_vaddr - adj_int_rel.r_offset;
2218 stop = start + addhi + addlo;
2219 }
2220 }
2221 else if (adj_int_rel.r_type == MIPS_R_SWITCH)
2222 {
2223 /* A MIPS_R_SWITCH reloc represents a word of the form
2224 .word $L3-$LS12
2225 The value in the object file is correct, assuming the
2226 original value of $L3. The symndx value is actually
2227 the difference between the reloc address and $LS12.
2228 This lets us compute the original value of $LS12 as
2229 vaddr - symndx
2230 and the original value of $L3 as
2231 vaddr - symndx + addend
2232 where addend is the value from the object file. At
2233 this point, the symndx value is actually found in the
2234 r_offset field, since it was moved by
2235 mips_ecoff_swap_reloc_in. */
2236 start = adj_int_rel.r_vaddr - adj_int_rel.r_offset;
2237 stop = start + bfd_get_32 (abfd,
2238 (contents
2239 + adj_int_rel.r_vaddr
2240 - sec->vma));
2241 }
2242 else
2243 continue;
2244
2245 /* If the range expressed by this reloc, which is the
2246 distance between START and STOP crosses the reloc we are
2247 expanding, we must adjust the offset. The sign of the
2248 adjustment depends upon the direction in which the range
2249 crosses the reloc being expanded. */
2250 if (start <= int_rel.r_vaddr && stop > int_rel.r_vaddr)
2251 change = PCREL16_EXPANSION_ADJUSTMENT;
2252 else if (start > int_rel.r_vaddr && stop <= int_rel.r_vaddr)
2253 change = - PCREL16_EXPANSION_ADJUSTMENT;
2254 else
2255 change = 0;
2256
2257 offsets[adj_i] += change;
2258
2259 if (adj_int_rel.r_type == MIPS_R_RELHI)
2260 {
2261 adj_ext_rel++;
2262 adj_i++;
2263 offsets[adj_i] += change;
2264 }
2265 }
2266
2267 /* Find all symbols in this section defined by this object file
2268 and adjust their values. Note that we decide whether to
2269 adjust the value based on the value stored in the ECOFF EXTR
2270 structure, because the value stored in the hash table may
2271 have been changed by an earlier expanded reloc and thus may
2272 no longer correctly indicate whether the symbol is before or
2273 after the expanded reloc. */
2274 ext_count = ecoff_data (abfd)->debug_info.symbolic_header.iextMax;
2275 adj_h_ptr = ecoff_data (abfd)->sym_hashes;
2276 adj_h_ptr_end = adj_h_ptr + ext_count;
2277 for (; adj_h_ptr < adj_h_ptr_end; adj_h_ptr++)
2278 {
2279 struct ecoff_link_hash_entry *adj_h;
2280
2281 adj_h = *adj_h_ptr;
2282 if (adj_h != (struct ecoff_link_hash_entry *) NULL
2283 && (adj_h->root.type == bfd_link_hash_defined
2284 || adj_h->root.type == bfd_link_hash_defweak)
2285 && adj_h->root.u.def.section == sec
2286 && adj_h->esym.asym.value > int_rel.r_vaddr)
2287 adj_h->root.u.def.value += PCREL16_EXPANSION_ADJUSTMENT;
2288 }
2289
2290 /* Add an entry to the symbol value adjust list. This is used
2291 by bfd_ecoff_debug_accumulate to adjust the values of
2292 internal symbols and FDR's. */
dc810e39
AM
2293 amt = sizeof (struct ecoff_value_adjust);
2294 adjust = (struct ecoff_value_adjust *) bfd_alloc (abfd, amt);
252b5132
RH
2295 if (adjust == (struct ecoff_value_adjust *) NULL)
2296 goto error_return;
2297
2298 adjust->start = int_rel.r_vaddr;
2299 adjust->end = sec->vma + sec->_raw_size;
2300 adjust->adjust = PCREL16_EXPANSION_ADJUSTMENT;
2301
2302 adjust->next = ecoff_data (abfd)->debug_info.adjust;
2303 ecoff_data (abfd)->debug_info.adjust = adjust;
2304 }
2305
2306 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2307 free (contents);
2308
2309 return true;
2310
2311 error_return:
2312 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2313 free (contents);
2314 return false;
2315}
2316
2317/* This routine is called from mips_relocate_section when a PC
2318 relative reloc must be expanded into the five instruction sequence.
2319 It handles all the details of the expansion, including resolving
2320 the reloc. */
2321
2322static boolean
2323mips_relax_pcrel16 (info, input_bfd, input_section, h, location, address)
5f771d47 2324 struct bfd_link_info *info ATTRIBUTE_UNUSED;
252b5132 2325 bfd *input_bfd;
5f771d47 2326 asection *input_section ATTRIBUTE_UNUSED;
252b5132
RH
2327 struct ecoff_link_hash_entry *h;
2328 bfd_byte *location;
2329 bfd_vma address;
2330{
2331 bfd_vma relocation;
2332
2333 /* 0x0411ffff is bgezal $0,. == bal . */
2334 BFD_ASSERT (bfd_get_32 (input_bfd, location) == 0x0411ffff);
2335
2336 /* We need to compute the distance between the symbol and the
2337 current address plus eight. */
2338 relocation = (h->root.u.def.value
2339 + h->root.u.def.section->output_section->vma
2340 + h->root.u.def.section->output_offset);
2341 relocation -= address + 8;
2342
2343 /* If the lower half is negative, increment the upper 16 half. */
2344 if ((relocation & 0x8000) != 0)
2345 relocation += 0x10000;
2346
dc810e39 2347 bfd_put_32 (input_bfd, (bfd_vma) 0x04110001, location); /* bal .+8 */
252b5132
RH
2348 bfd_put_32 (input_bfd,
2349 0x3c010000 | ((relocation >> 16) & 0xffff), /* lui $at,XX */
2350 location + 4);
2351 bfd_put_32 (input_bfd,
2352 0x24210000 | (relocation & 0xffff), /* addiu $at,$at,XX */
2353 location + 8);
dc810e39
AM
2354 bfd_put_32 (input_bfd,
2355 (bfd_vma) 0x003f0821, location + 12); /* addu $at,$at,$ra */
2356 bfd_put_32 (input_bfd,
2357 (bfd_vma) 0x0020f809, location + 16); /* jalr $at */
252b5132
RH
2358
2359 return true;
2360}
2361
2362/* Given a .sdata section and a .rel.sdata in-memory section, store
2363 relocation information into the .rel.sdata section which can be
2364 used at runtime to relocate the section. This is called by the
2365 linker when the --embedded-relocs switch is used. This is called
2366 after the add_symbols entry point has been called for all the
2367 objects, and before the final_link entry point is called. This
2368 function presumes that the object was compiled using
2369 -membedded-pic. */
2370
2371boolean
2372bfd_mips_ecoff_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
2373 bfd *abfd;
2374 struct bfd_link_info *info;
2375 asection *datasec;
2376 asection *relsec;
2377 char **errmsg;
2378{
2379 struct ecoff_link_hash_entry **sym_hashes;
2380 struct ecoff_section_tdata *section_tdata;
2381 struct external_reloc *ext_rel;
2382 struct external_reloc *ext_rel_end;
2383 bfd_byte *p;
dc810e39 2384 bfd_size_type amt;
252b5132
RH
2385
2386 BFD_ASSERT (! info->relocateable);
2387
2388 *errmsg = NULL;
2389
2390 if (datasec->reloc_count == 0)
2391 return true;
2392
2393 sym_hashes = ecoff_data (abfd)->sym_hashes;
2394
2395 if (! mips_read_relocs (abfd, datasec))
2396 return false;
2397
dc810e39
AM
2398 amt = (bfd_size_type) datasec->reloc_count * 4;
2399 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
252b5132
RH
2400 if (relsec->contents == NULL)
2401 return false;
2402
2403 p = relsec->contents;
2404
2405 section_tdata = ecoff_section_data (abfd, datasec);
2406 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2407 ext_rel_end = ext_rel + datasec->reloc_count;
2408 for (; ext_rel < ext_rel_end; ext_rel++, p += 4)
2409 {
2410 struct internal_reloc int_rel;
2411 boolean text_relative;
2412
2413 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
2414
2415 /* We are going to write a four byte word into the runtime reloc
2416 section. The word will be the address in the data section
2417 which must be relocated. This must be on a word boundary,
2418 which means the lower two bits must be zero. We use the
2419 least significant bit to indicate how the value in the data
2420 section must be relocated. A 0 means that the value is
2421 relative to the text section, while a 1 indicates that the
2422 value is relative to the data section. Given that we are
2423 assuming the code was compiled using -membedded-pic, there
2424 should not be any other possibilities. */
2425
2426 /* We can only relocate REFWORD relocs at run time. */
2427 if (int_rel.r_type != MIPS_R_REFWORD)
2428 {
2429 *errmsg = _("unsupported reloc type");
2430 bfd_set_error (bfd_error_bad_value);
2431 return false;
2432 }
2433
2434 if (int_rel.r_extern)
2435 {
2436 struct ecoff_link_hash_entry *h;
2437
2438 h = sym_hashes[int_rel.r_symndx];
2439 /* If h is NULL, that means that there is a reloc against an
2440 external symbol which we thought was just a debugging
2441 symbol. This should not happen. */
2442 if (h == (struct ecoff_link_hash_entry *) NULL)
2443 abort ();
2444 if ((h->root.type == bfd_link_hash_defined
2445 || h->root.type == bfd_link_hash_defweak)
2446 && (h->root.u.def.section->flags & SEC_CODE) != 0)
2447 text_relative = true;
2448 else
2449 text_relative = false;
2450 }
2451 else
2452 {
2453 switch (int_rel.r_symndx)
2454 {
2455 case RELOC_SECTION_TEXT:
2456 text_relative = true;
2457 break;
2458 case RELOC_SECTION_SDATA:
2459 case RELOC_SECTION_SBSS:
2460 case RELOC_SECTION_LIT8:
2461 text_relative = false;
2462 break;
2463 default:
2464 /* No other sections should appear in -membedded-pic
2465 code. */
2466 *errmsg = _("reloc against unsupported section");
2467 bfd_set_error (bfd_error_bad_value);
2468 return false;
2469 }
2470 }
2471
2472 if ((int_rel.r_offset & 3) != 0)
2473 {
2474 *errmsg = _("reloc not properly aligned");
2475 bfd_set_error (bfd_error_bad_value);
2476 return false;
2477 }
2478
2479 bfd_put_32 (abfd,
2480 (int_rel.r_vaddr - datasec->vma + datasec->output_offset
2481 + (text_relative ? 0 : 1)),
2482 p);
2483 }
2484
2485 return true;
2486}
2487\f
2488/* This is the ECOFF backend structure. The backend field of the
2489 target vector points to this. */
2490
2491static const struct ecoff_backend_data mips_ecoff_backend_data =
2492{
2493 /* COFF backend structure. */
2494 {
2495 (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */
2496 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */
2497 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */
2498 (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/
2499 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */
2500 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */
2501 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */
2502 mips_ecoff_swap_filehdr_out, mips_ecoff_swap_aouthdr_out,
2503 mips_ecoff_swap_scnhdr_out,
ecefdb58 2504 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, true, false, 4, false, 2,
252b5132
RH
2505 mips_ecoff_swap_filehdr_in, mips_ecoff_swap_aouthdr_in,
2506 mips_ecoff_swap_scnhdr_in, NULL,
2507 mips_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2508 _bfd_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2509 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
5f771d47
ILT
2510 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2511 NULL, NULL
252b5132
RH
2512 },
2513 /* Supported architecture. */
2514 bfd_arch_mips,
2515 /* Initial portion of armap string. */
2516 "__________",
2517 /* The page boundary used to align sections in a demand-paged
2518 executable file. E.g., 0x1000. */
2519 0x1000,
2520 /* True if the .rdata section is part of the text segment, as on the
2521 Alpha. False if .rdata is part of the data segment, as on the
2522 MIPS. */
2523 false,
2524 /* Bitsize of constructor entries. */
2525 32,
2526 /* Reloc to use for constructor entries. */
2527 &mips_howto_table[MIPS_R_REFWORD],
2528 {
2529 /* Symbol table magic number. */
2530 magicSym,
2531 /* Alignment of debugging information. E.g., 4. */
2532 4,
2533 /* Sizes of external symbolic information. */
2534 sizeof (struct hdr_ext),
2535 sizeof (struct dnr_ext),
2536 sizeof (struct pdr_ext),
2537 sizeof (struct sym_ext),
2538 sizeof (struct opt_ext),
2539 sizeof (struct fdr_ext),
2540 sizeof (struct rfd_ext),
2541 sizeof (struct ext_ext),
2542 /* Functions to swap in external symbolic data. */
2543 ecoff_swap_hdr_in,
2544 ecoff_swap_dnr_in,
2545 ecoff_swap_pdr_in,
2546 ecoff_swap_sym_in,
2547 ecoff_swap_opt_in,
2548 ecoff_swap_fdr_in,
2549 ecoff_swap_rfd_in,
2550 ecoff_swap_ext_in,
2551 _bfd_ecoff_swap_tir_in,
2552 _bfd_ecoff_swap_rndx_in,
2553 /* Functions to swap out external symbolic data. */
2554 ecoff_swap_hdr_out,
2555 ecoff_swap_dnr_out,
2556 ecoff_swap_pdr_out,
2557 ecoff_swap_sym_out,
2558 ecoff_swap_opt_out,
2559 ecoff_swap_fdr_out,
2560 ecoff_swap_rfd_out,
2561 ecoff_swap_ext_out,
2562 _bfd_ecoff_swap_tir_out,
2563 _bfd_ecoff_swap_rndx_out,
2564 /* Function to read in symbolic data. */
2565 _bfd_ecoff_slurp_symbolic_info
2566 },
2567 /* External reloc size. */
2568 RELSZ,
2569 /* Reloc swapping functions. */
2570 mips_ecoff_swap_reloc_in,
2571 mips_ecoff_swap_reloc_out,
2572 /* Backend reloc tweaking. */
2573 mips_adjust_reloc_in,
2574 mips_adjust_reloc_out,
2575 /* Relocate section contents while linking. */
2576 mips_relocate_section,
2577 /* Do final adjustments to filehdr and aouthdr. */
2578 NULL,
2579 /* Read an element from an archive at a given file position. */
2580 _bfd_get_elt_at_filepos
2581};
2582
2583/* Looking up a reloc type is MIPS specific. */
2584#define _bfd_ecoff_bfd_reloc_type_lookup mips_bfd_reloc_type_lookup
2585
2586/* Getting relocated section contents is generic. */
2587#define _bfd_ecoff_bfd_get_relocated_section_contents \
2588 bfd_generic_get_relocated_section_contents
2589
2590/* Handling file windows is generic. */
2591#define _bfd_ecoff_get_section_contents_in_window \
2592 _bfd_generic_get_section_contents_in_window
2593
2594/* Relaxing sections is MIPS specific. */
2595#define _bfd_ecoff_bfd_relax_section mips_relax_section
2596
2597/* GC of sections is not done. */
2598#define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2599
8550eb6e
JJ
2600/* Merging of sections is not done. */
2601#define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2602
e61463e1
AM
2603#define _bfd_ecoff_bfd_discard_group bfd_generic_discard_group
2604
c3c89269
NC
2605extern const bfd_target ecoff_big_vec;
2606
252b5132
RH
2607const bfd_target ecoff_little_vec =
2608{
2609 "ecoff-littlemips", /* name */
2610 bfd_target_ecoff_flavour,
2611 BFD_ENDIAN_LITTLE, /* data byte order is little */
2612 BFD_ENDIAN_LITTLE, /* header byte order is little */
2613
2614 (HAS_RELOC | EXEC_P | /* object flags */
2615 HAS_LINENO | HAS_DEBUG |
2616 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2617
2618 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2619 0, /* leading underscore */
2620 ' ', /* ar_pad_char */
2621 15, /* ar_max_namelen */
2622 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2623 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2624 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2625 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2626 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2627 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2628
2629 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2630 _bfd_ecoff_archive_p, _bfd_dummy_target},
2631 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2632 _bfd_generic_mkarchive, bfd_false},
2633 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2634 _bfd_write_archive_contents, bfd_false},
2635
2636 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2637 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2638 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2639 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2640 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2641 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2642 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2643 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2644 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2645
c3c89269 2646 & ecoff_big_vec,
b48499ec 2647
252b5132
RH
2648 (PTR) &mips_ecoff_backend_data
2649};
2650
2651const bfd_target ecoff_big_vec =
2652{
2653 "ecoff-bigmips", /* name */
2654 bfd_target_ecoff_flavour,
2655 BFD_ENDIAN_BIG, /* data byte order is big */
2656 BFD_ENDIAN_BIG, /* header byte order is big */
2657
2658 (HAS_RELOC | EXEC_P | /* object flags */
2659 HAS_LINENO | HAS_DEBUG |
2660 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2661
2662 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2663 0, /* leading underscore */
2664 ' ', /* ar_pad_char */
2665 15, /* ar_max_namelen */
2666 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2667 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2668 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2669 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2670 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2671 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2672 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2673 _bfd_ecoff_archive_p, _bfd_dummy_target},
2674 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2675 _bfd_generic_mkarchive, bfd_false},
2676 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2677 _bfd_write_archive_contents, bfd_false},
2678
2679 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2680 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2681 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2682 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2683 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2684 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2685 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2686 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2687 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2688
c3c89269 2689 & ecoff_little_vec,
b48499ec 2690
252b5132
RH
2691 (PTR) &mips_ecoff_backend_data
2692};
2693
2694const bfd_target ecoff_biglittle_vec =
2695{
2696 "ecoff-biglittlemips", /* name */
2697 bfd_target_ecoff_flavour,
2698 BFD_ENDIAN_LITTLE, /* data byte order is little */
2699 BFD_ENDIAN_BIG, /* header byte order is big */
2700
2701 (HAS_RELOC | EXEC_P | /* object flags */
2702 HAS_LINENO | HAS_DEBUG |
2703 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2704
2705 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2706 0, /* leading underscore */
2707 ' ', /* ar_pad_char */
2708 15, /* ar_max_namelen */
2709 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2710 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2711 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2712 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2713 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2714 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
2715
2716 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2717 _bfd_ecoff_archive_p, _bfd_dummy_target},
2718 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2719 _bfd_generic_mkarchive, bfd_false},
2720 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2721 _bfd_write_archive_contents, bfd_false},
2722
2723 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2724 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2725 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2726 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2727 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2728 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2729 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2730 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2731 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2732
c3c89269 2733 NULL,
b48499ec 2734
252b5132
RH
2735 (PTR) &mips_ecoff_backend_data
2736};