]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/coff-mips.c
Mon Jun 13 17:28:50 1994 Stan Shebs (shebs@andros.cygnus.com)
[thirdparty/binutils-gdb.git] / bfd / coff-mips.c
CommitLineData
1f29e30b 1/* BFD back-end for MIPS Extended-Coff files.
dfc1c006 2 Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
8fa0d3a0 3 Original version by Per Bothner.
f6409552 4 Full support added by Ian Lance Taylor, ian@cygnus.com.
1327fb29 5
68b70212 6This file is part of BFD, the Binary File Descriptor library.
23b0b558 7
68b70212 8This program is free software; you can redistribute it and/or modify
23b0b558 9it under the terms of the GNU General Public License as published by
68b70212
JG
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
23b0b558 12
68b70212 13This program is distributed in the hope that it will be useful,
23b0b558
JG
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
68b70212
JG
19along with this program; if not, write to the Free Software
20Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
1327fb29 21
23b0b558 22#include "bfd.h"
dd4646ca 23#include "sysdep.h"
4991ebb9 24#include "bfdlink.h"
1327fb29 25#include "libbfd.h"
dae31cf5
ILT
26#include "coff/internal.h"
27#include "coff/sym.h"
28#include "coff/symconst.h"
29#include "coff/ecoff.h"
30#include "coff/mips.h"
31#include "libcoff.h"
32#include "libecoff.h"
33\f
34/* Prototypes for static functions. */
c3fe0c41 35
dae31cf5 36static boolean mips_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr));
dae31cf5
ILT
37static void mips_ecoff_swap_reloc_in PARAMS ((bfd *, PTR,
38 struct internal_reloc *));
39static void mips_ecoff_swap_reloc_out PARAMS ((bfd *,
40 const struct internal_reloc *,
41 PTR));
5fa2aaa2
ILT
42static void mips_adjust_reloc_in PARAMS ((bfd *,
43 const struct internal_reloc *,
44 arelent *));
45static void mips_adjust_reloc_out PARAMS ((bfd *, const arelent *,
46 struct internal_reloc *));
23f44e6f
ILT
47static bfd_reloc_status_type mips_generic_reloc PARAMS ((bfd *abfd,
48 arelent *reloc,
49 asymbol *symbol,
50 PTR data,
51 asection *section,
4991ebb9
ILT
52 bfd *output_bfd,
53 char **error));
23f44e6f
ILT
54static bfd_reloc_status_type mips_refhi_reloc PARAMS ((bfd *abfd,
55 arelent *reloc,
56 asymbol *symbol,
57 PTR data,
58 asection *section,
4991ebb9
ILT
59 bfd *output_bfd,
60 char **error));
23f44e6f
ILT
61static bfd_reloc_status_type mips_reflo_reloc PARAMS ((bfd *abfd,
62 arelent *reloc,
63 asymbol *symbol,
64 PTR data,
65 asection *section,
4991ebb9
ILT
66 bfd *output_bfd,
67 char **error));
23f44e6f
ILT
68static bfd_reloc_status_type mips_gprel_reloc PARAMS ((bfd *abfd,
69 arelent *reloc,
70 asymbol *symbol,
71 PTR data,
72 asection *section,
4991ebb9
ILT
73 bfd *output_bfd,
74 char **error));
4f996613
ILT
75static bfd_reloc_status_type mips_relhi_reloc PARAMS ((bfd *abfd,
76 arelent *reloc,
77 asymbol *symbol,
78 PTR data,
79 asection *section,
80 bfd *output_bfd,
81 char **error));
82static bfd_reloc_status_type mips_rello_reloc PARAMS ((bfd *abfd,
83 arelent *reloc,
84 asymbol *symbol,
85 PTR data,
86 asection *section,
87 bfd *output_bfd,
88 char **error));
dabf906e
ILT
89static bfd_reloc_status_type mips_switch_reloc PARAMS ((bfd *abfd,
90 arelent *reloc,
91 asymbol *symbol,
92 PTR data,
93 asection *section,
94 bfd *output_bfd,
95 char **error));
4f996613
ILT
96static void mips_relocate_hi PARAMS ((struct internal_reloc *refhi,
97 struct internal_reloc *reflo,
98 bfd *input_bfd,
99 asection *input_section,
100 bfd_byte *contents,
101 size_t adjust,
102 bfd_vma relocation,
103 boolean pcrel));
4991ebb9
ILT
104static boolean mips_relocate_section PARAMS ((bfd *, struct bfd_link_info *,
105 bfd *, asection *,
106 bfd_byte *, PTR));
a3a33af3
ILT
107static boolean mips_relax_section PARAMS ((bfd *, asection *,
108 struct bfd_link_info *,
109 boolean *));
110static boolean mips_relax_pcrel16 PARAMS ((struct bfd_link_info *, bfd *,
111 asection *,
112 struct ecoff_link_hash_entry *,
113 bfd_byte *, bfd_vma));
dae31cf5 114\f
dae31cf5
ILT
115/* ECOFF has COFF sections, but the debugging information is stored in
116 a completely different format. ECOFF targets use some of the
117 swapping routines from coffswap.h, and some of the generic COFF
118 routines in coffgen.c, but, unlike the real COFF targets, do not
119 use coffcode.h itself.
8fa0d3a0 120
dae31cf5 121 Get the generic COFF swapping routines, except for the reloc,
23f44e6f 122 symbol, and lineno ones. Give them ECOFF names. */
dae31cf5
ILT
123#define MIPSECOFF
124#define NO_COFF_RELOCS
125#define NO_COFF_SYMBOLS
126#define NO_COFF_LINENOS
127#define coff_swap_filehdr_in mips_ecoff_swap_filehdr_in
128#define coff_swap_filehdr_out mips_ecoff_swap_filehdr_out
129#define coff_swap_aouthdr_in mips_ecoff_swap_aouthdr_in
130#define coff_swap_aouthdr_out mips_ecoff_swap_aouthdr_out
131#define coff_swap_scnhdr_in mips_ecoff_swap_scnhdr_in
132#define coff_swap_scnhdr_out mips_ecoff_swap_scnhdr_out
133#include "coffswap.h"
8fa0d3a0 134
dae31cf5
ILT
135/* Get the ECOFF swapping routines. */
136#define ECOFF_32
137#include "ecoffswap.h"
138\f
23f44e6f 139/* How to process the various relocs types. */
dae31cf5 140
23f44e6f 141static reloc_howto_type mips_howto_table[] =
dae31cf5 142{
23f44e6f
ILT
143 /* Reloc type 0 is ignored. The reloc reading code ensures that
144 this is a reference to the .abs section, which will cause
145 bfd_perform_relocation to do nothing. */
146 HOWTO (MIPS_R_IGNORE, /* type */
147 0, /* rightshift */
148 0, /* size (0 = byte, 1 = short, 2 = long) */
149 8, /* bitsize */
150 false, /* pc_relative */
151 0, /* bitpos */
152 complain_overflow_dont, /* complain_on_overflow */
153 0, /* special_function */
154 "IGNORE", /* name */
155 false, /* partial_inplace */
156 0, /* src_mask */
157 0, /* dst_mask */
158 false), /* pcrel_offset */
159
160 /* A 16 bit reference to a symbol, normally from a data section. */
161 HOWTO (MIPS_R_REFHALF, /* type */
162 0, /* rightshift */
163 1, /* size (0 = byte, 1 = short, 2 = long) */
164 16, /* bitsize */
165 false, /* pc_relative */
166 0, /* bitpos */
167 complain_overflow_bitfield, /* complain_on_overflow */
168 mips_generic_reloc, /* special_function */
169 "REFHALF", /* name */
170 true, /* partial_inplace */
171 0xffff, /* src_mask */
172 0xffff, /* dst_mask */
173 false), /* pcrel_offset */
174
175 /* A 32 bit reference to a symbol, normally from a data section. */
176 HOWTO (MIPS_R_REFWORD, /* type */
177 0, /* rightshift */
178 2, /* size (0 = byte, 1 = short, 2 = long) */
179 32, /* bitsize */
180 false, /* pc_relative */
181 0, /* bitpos */
182 complain_overflow_bitfield, /* complain_on_overflow */
183 mips_generic_reloc, /* special_function */
184 "REFWORD", /* name */
185 true, /* partial_inplace */
186 0xffffffff, /* src_mask */
187 0xffffffff, /* dst_mask */
188 false), /* pcrel_offset */
189
190 /* A 26 bit absolute jump address. */
191 HOWTO (MIPS_R_JMPADDR, /* type */
192 2, /* rightshift */
193 2, /* size (0 = byte, 1 = short, 2 = long) */
194 26, /* bitsize */
195 false, /* pc_relative */
196 0, /* bitpos */
5fa2aaa2
ILT
197 complain_overflow_dont, /* complain_on_overflow */
198 /* This needs complex overflow
199 detection, because the upper four
200 bits must match the PC. */
23f44e6f
ILT
201 mips_generic_reloc, /* special_function */
202 "JMPADDR", /* name */
203 true, /* partial_inplace */
204 0x3ffffff, /* src_mask */
205 0x3ffffff, /* dst_mask */
206 false), /* pcrel_offset */
207
208 /* The high 16 bits of a symbol value. Handled by the function
209 mips_refhi_reloc. */
210 HOWTO (MIPS_R_REFHI, /* type */
211 16, /* rightshift */
212 2, /* size (0 = byte, 1 = short, 2 = long) */
213 16, /* bitsize */
214 false, /* pc_relative */
215 0, /* bitpos */
216 complain_overflow_bitfield, /* complain_on_overflow */
217 mips_refhi_reloc, /* special_function */
218 "REFHI", /* name */
219 true, /* partial_inplace */
220 0xffff, /* src_mask */
221 0xffff, /* dst_mask */
222 false), /* pcrel_offset */
223
224 /* The low 16 bits of a symbol value. */
225 HOWTO (MIPS_R_REFLO, /* type */
226 0, /* rightshift */
227 2, /* size (0 = byte, 1 = short, 2 = long) */
228 16, /* bitsize */
229 false, /* pc_relative */
230 0, /* bitpos */
231 complain_overflow_dont, /* complain_on_overflow */
232 mips_reflo_reloc, /* special_function */
233 "REFLO", /* name */
234 true, /* partial_inplace */
235 0xffff, /* src_mask */
236 0xffff, /* dst_mask */
237 false), /* pcrel_offset */
238
239 /* A reference to an offset from the gp register. Handled by the
240 function mips_gprel_reloc. */
241 HOWTO (MIPS_R_GPREL, /* type */
242 0, /* rightshift */
243 2, /* size (0 = byte, 1 = short, 2 = long) */
244 16, /* bitsize */
245 false, /* pc_relative */
246 0, /* bitpos */
247 complain_overflow_signed, /* complain_on_overflow */
248 mips_gprel_reloc, /* special_function */
249 "GPREL", /* name */
250 true, /* partial_inplace */
251 0xffff, /* src_mask */
252 0xffff, /* dst_mask */
253 false), /* pcrel_offset */
254
255 /* A reference to a literal using an offset from the gp register.
256 Handled by the function mips_gprel_reloc. */
257 HOWTO (MIPS_R_LITERAL, /* type */
258 0, /* rightshift */
259 2, /* size (0 = byte, 1 = short, 2 = long) */
260 16, /* bitsize */
261 false, /* pc_relative */
262 0, /* bitpos */
263 complain_overflow_signed, /* complain_on_overflow */
264 mips_gprel_reloc, /* special_function */
265 "LITERAL", /* name */
266 true, /* partial_inplace */
267 0xffff, /* src_mask */
268 0xffff, /* dst_mask */
a3a33af3
ILT
269 false), /* pcrel_offset */
270
4f996613
ILT
271 { 8 },
272 { 9 },
273 { 10 },
274 { 11 },
275
a3a33af3
ILT
276 /* This reloc is a Cygnus extension used when generating position
277 independent code for embedded systems. It represents a 16 bit PC
278 relative reloc rightshifted twice as used in the MIPS branch
279 instructions. */
280 HOWTO (MIPS_R_PCREL16, /* type */
281 2, /* rightshift */
282 2, /* size (0 = byte, 1 = short, 2 = long) */
283 16, /* bitsize */
284 true, /* pc_relative */
285 0, /* bitpos */
286 complain_overflow_signed, /* complain_on_overflow */
287 mips_generic_reloc, /* special_function */
288 "PCREL16", /* name */
289 true, /* partial_inplace */
290 0xffff, /* src_mask */
291 0xffff, /* dst_mask */
dabf906e
ILT
292 true), /* pcrel_offset */
293
4f996613
ILT
294 /* This reloc is a Cygnus extension used when generating position
295 independent code for embedded systems. It represents the high 16
296 bits of a PC relative reloc. The next reloc must be
297 MIPS_R_RELLO, and the addend is formed from the addends of the
298 two instructions, just as in MIPS_R_REFHI and MIPS_R_REFLO. The
299 final value is actually PC relative to the location of the
300 MIPS_R_RELLO reloc, not the MIPS_R_RELHI reloc. */
301 HOWTO (MIPS_R_RELHI, /* type */
302 16, /* rightshift */
303 2, /* size (0 = byte, 1 = short, 2 = long) */
304 16, /* bitsize */
305 true, /* pc_relative */
306 0, /* bitpos */
307 complain_overflow_bitfield, /* complain_on_overflow */
308 mips_relhi_reloc, /* special_function */
309 "RELHI", /* name */
310 true, /* partial_inplace */
311 0xffff, /* src_mask */
312 0xffff, /* dst_mask */
313 true), /* pcrel_offset */
314
315 /* This reloc is a Cygnus extension used when generating position
316 independent code for embedded systems. It represents the low 16
317 bits of a PC relative reloc. */
318 HOWTO (MIPS_R_RELLO, /* type */
319 0, /* rightshift */
320 2, /* size (0 = byte, 1 = short, 2 = long) */
321 16, /* bitsize */
322 true, /* pc_relative */
323 0, /* bitpos */
324 complain_overflow_dont, /* complain_on_overflow */
325 mips_rello_reloc, /* special_function */
326 "RELLO", /* name */
327 true, /* partial_inplace */
328 0xffff, /* src_mask */
329 0xffff, /* dst_mask */
330 true), /* pcrel_offset */
331
332 { 15 },
333 { 16 },
334 { 17 },
335 { 18 },
336 { 19 },
337 { 20 },
338 { 21 },
339
dabf906e
ILT
340 /* This reloc is a Cygnus extension used when generating position
341 independent code for embedded systems. It represents an entry in
342 a switch table, which is the difference between two symbols in
343 the .text section. The symndx is actually the offset from the
344 reloc address to the subtrahend. See include/coff/mips.h for
345 more details. */
346 HOWTO (MIPS_R_SWITCH, /* type */
347 0, /* rightshift */
348 2, /* size (0 = byte, 1 = short, 2 = long) */
349 32, /* bitsize */
350 true, /* pc_relative */
351 0, /* bitpos */
352 complain_overflow_dont, /* complain_on_overflow */
353 mips_switch_reloc, /* special_function */
354 "SWITCH", /* name */
355 true, /* partial_inplace */
356 0xffffffff, /* src_mask */
357 0xffffffff, /* dst_mask */
a3a33af3 358 true) /* pcrel_offset */
dae31cf5 359};
23f44e6f
ILT
360
361#define MIPS_HOWTO_COUNT \
362 (sizeof mips_howto_table / sizeof mips_howto_table[0])
a3a33af3
ILT
363
364/* When the linker is doing relaxing, it may change a external PCREL16
365 reloc. This typically represents an instruction like
366 bal foo
367 We change it to
368 .set noreorder
369 bal $L1
370 lui $at,%hi(foo - $L1)
371 $L1:
372 addiu $at,%lo(foo - $L1)
373 addu $at,$at,$31
374 jalr $at
375 PCREL16_EXPANSION_ADJUSTMENT is the number of bytes this changes the
376 instruction by. */
377
378#define PCREL16_EXPANSION_ADJUSTMENT (4 * 4)
dae31cf5
ILT
379\f
380/* See whether the magic number matches. */
8fa0d3a0 381
dae31cf5
ILT
382static boolean
383mips_ecoff_bad_format_hook (abfd, filehdr)
384 bfd *abfd;
385 PTR filehdr;
386{
387 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
8fa0d3a0 388
5fa2aaa2
ILT
389 switch (internal_f->f_magic)
390 {
391 case MIPS_MAGIC_1:
392 /* I don't know what endianness this implies. */
393 return true;
c3fe0c41 394
5fa2aaa2
ILT
395 case MIPS_MAGIC_BIG:
396 case MIPS_MAGIC_BIG2:
397 case MIPS_MAGIC_BIG3:
398 return abfd->xvec->byteorder_big_p;
c3fe0c41 399
5fa2aaa2
ILT
400 case MIPS_MAGIC_LITTLE:
401 case MIPS_MAGIC_LITTLE2:
402 case MIPS_MAGIC_LITTLE3:
403 return abfd->xvec->byteorder_big_p == false;
23ba15b7 404
5fa2aaa2
ILT
405 default:
406 return false;
c3fe0c41 407 }
dae31cf5
ILT
408}
409\f
410/* Reloc handling. MIPS ECOFF relocs are packed into 8 bytes in
411 external form. They use a bit which indicates whether the symbol
412 is external. */
23ba15b7 413
dae31cf5 414/* Swap a reloc in. */
23ba15b7 415
dae31cf5
ILT
416static void
417mips_ecoff_swap_reloc_in (abfd, ext_ptr, intern)
418 bfd *abfd;
419 PTR ext_ptr;
420 struct internal_reloc *intern;
421{
422 const RELOC *ext = (RELOC *) ext_ptr;
23ba15b7 423
dae31cf5
ILT
424 intern->r_vaddr = bfd_h_get_32 (abfd, (bfd_byte *) ext->r_vaddr);
425 if (abfd->xvec->header_byteorder_big_p != false)
426 {
427 intern->r_symndx = (((int) ext->r_bits[0]
428 << RELOC_BITS0_SYMNDX_SH_LEFT_BIG)
429 | ((int) ext->r_bits[1]
430 << RELOC_BITS1_SYMNDX_SH_LEFT_BIG)
431 | ((int) ext->r_bits[2]
432 << RELOC_BITS2_SYMNDX_SH_LEFT_BIG));
433 intern->r_type = ((ext->r_bits[3] & RELOC_BITS3_TYPE_BIG)
434 >> RELOC_BITS3_TYPE_SH_BIG);
435 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_BIG) != 0;
23ba15b7 436 }
dae31cf5 437 else
23ba15b7 438 {
dae31cf5
ILT
439 intern->r_symndx = (((int) ext->r_bits[0]
440 << RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE)
441 | ((int) ext->r_bits[1]
442 << RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE)
443 | ((int) ext->r_bits[2]
444 << RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE));
4f996613
ILT
445 intern->r_type = (((ext->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
446 >> RELOC_BITS3_TYPE_SH_LITTLE)
447 | ((ext->r_bits[3] & RELOC_BITS3_TYPEHI_LITTLE)
448 << RELOC_BITS3_TYPEHI_SH_LITTLE));
dae31cf5 449 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) != 0;
23ba15b7 450 }
dabf906e 451
4f996613
ILT
452 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
453 MIPS_R_RELLO reloc, r_symndx is actually the offset from the
454 reloc address to the base of the difference (see
dabf906e
ILT
455 include/coff/mips.h for more details). We copy symndx into the
456 r_offset field so as not to confuse ecoff_slurp_reloc_table in
457 ecoff.c. In adjust_reloc_in we then copy r_offset into the reloc
458 addend. */
4f996613
ILT
459 if (intern->r_type == MIPS_R_SWITCH
460 || (! intern->r_extern
461 && (intern->r_type == MIPS_R_RELLO
462 || intern->r_type == MIPS_R_RELHI)))
dabf906e
ILT
463 {
464 BFD_ASSERT (! intern->r_extern);
465 intern->r_offset = intern->r_symndx;
4f996613
ILT
466 if (intern->r_offset & 0x800000)
467 intern->r_offset -= 0x1000000;
dabf906e
ILT
468 intern->r_symndx = RELOC_SECTION_TEXT;
469 }
c3fe0c41
ILT
470}
471
dae31cf5 472/* Swap a reloc out. */
c3fe0c41 473
dae31cf5
ILT
474static void
475mips_ecoff_swap_reloc_out (abfd, intern, dst)
f6409552 476 bfd *abfd;
dae31cf5
ILT
477 const struct internal_reloc *intern;
478 PTR dst;
c3fe0c41 479{
dae31cf5 480 RELOC *ext = (RELOC *) dst;
dabf906e 481 long r_symndx;
c3fe0c41 482
5fa2aaa2
ILT
483 BFD_ASSERT (intern->r_extern
484 || (intern->r_symndx >= 0 && intern->r_symndx <= 12));
485
4f996613
ILT
486 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELLO or
487 MIPS_R_RELHI reloc, we actually want to write the contents of
488 r_offset out as the symbol index. This undoes the change made by
489 mips_ecoff_swap_reloc_in. */
490 if (intern->r_type != MIPS_R_SWITCH
491 && (intern->r_extern
492 || (intern->r_type != MIPS_R_RELHI
493 && intern->r_type != MIPS_R_RELLO)))
dabf906e
ILT
494 r_symndx = intern->r_symndx;
495 else
496 {
497 BFD_ASSERT (intern->r_symndx == RELOC_SECTION_TEXT);
4f996613 498 r_symndx = intern->r_offset & 0xffffff;
dabf906e
ILT
499 }
500
dae31cf5
ILT
501 bfd_h_put_32 (abfd, intern->r_vaddr, (bfd_byte *) ext->r_vaddr);
502 if (abfd->xvec->header_byteorder_big_p != false)
c3fe0c41 503 {
dabf906e
ILT
504 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_BIG;
505 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_BIG;
506 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_BIG;
dae31cf5
ILT
507 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_BIG)
508 & RELOC_BITS3_TYPE_BIG)
509 | (intern->r_extern ? RELOC_BITS3_EXTERN_BIG : 0));
c3fe0c41 510 }
dae31cf5 511 else
c3fe0c41 512 {
dabf906e
ILT
513 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE;
514 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE;
515 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE;
dae31cf5
ILT
516 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_LITTLE)
517 & RELOC_BITS3_TYPE_LITTLE)
4f996613
ILT
518 | ((intern->r_type >> RELOC_BITS3_TYPEHI_SH_LITTLE
519 & RELOC_BITS3_TYPEHI_LITTLE))
dae31cf5 520 | (intern->r_extern ? RELOC_BITS3_EXTERN_LITTLE : 0));
c3fe0c41 521 }
c3fe0c41 522}
23f44e6f
ILT
523
524/* Finish canonicalizing a reloc. Part of this is generic to all
525 ECOFF targets, and that part is in ecoff.c. The rest is done in
526 this backend routine. It must fill in the howto field. */
527
528static void
5fa2aaa2 529mips_adjust_reloc_in (abfd, intern, rptr)
23f44e6f 530 bfd *abfd;
5fa2aaa2 531 const struct internal_reloc *intern;
23f44e6f
ILT
532 arelent *rptr;
533{
dabf906e 534 if (intern->r_type > MIPS_R_SWITCH)
23f44e6f
ILT
535 abort ();
536
537 if (! intern->r_extern
538 && (intern->r_type == MIPS_R_GPREL
539 || intern->r_type == MIPS_R_LITERAL))
540 rptr->addend += ecoff_data (abfd)->gp;
541
542 /* If the type is MIPS_R_IGNORE, make sure this is a reference to
543 the absolute section so that the reloc is ignored. */
544 if (intern->r_type == MIPS_R_IGNORE)
545 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
546
4f996613
ILT
547 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
548 MIPS_R_RELLO reloc, we want the addend field of the BFD relocto
549 hold the value which was originally in the symndx field of the
550 internal MIPS ECOFF reloc. This value was copied into
551 intern->r_offset by mips_swap_reloc_in, and here we copy it into
552 the addend field. */
553 if (intern->r_type == MIPS_R_SWITCH
554 || (! intern->r_extern
555 && (intern->r_type == MIPS_R_RELHI
556 || intern->r_type == MIPS_R_RELLO)))
dabf906e
ILT
557 rptr->addend = intern->r_offset;
558
23f44e6f
ILT
559 rptr->howto = &mips_howto_table[intern->r_type];
560}
561
5fa2aaa2
ILT
562/* Make any adjustments needed to a reloc before writing it out. None
563 are needed for MIPS. */
564
565static void
4991ebb9 566mips_adjust_reloc_out (abfd, rel, intern)
5fa2aaa2
ILT
567 bfd *abfd;
568 const arelent *rel;
569 struct internal_reloc *intern;
570{
4f996613
ILT
571 /* For a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
572 MIPS_R_RELLO reloc, we must copy rel->addend into
dabf906e
ILT
573 intern->r_offset. This will then be written out as the symbol
574 index by mips_ecoff_swap_reloc_out. This operation parallels the
575 action of mips_adjust_reloc_in. */
4f996613
ILT
576 if (intern->r_type == MIPS_R_SWITCH
577 || (! intern->r_extern
578 && (intern->r_type == MIPS_R_RELHI
579 || intern->r_type == MIPS_R_RELLO)))
dabf906e 580 intern->r_offset = rel->addend;
5fa2aaa2
ILT
581}
582
23f44e6f
ILT
583/* ECOFF relocs are either against external symbols, or against
584 sections. If we are producing relocateable output, and the reloc
585 is against an external symbol, and nothing has given us any
586 additional addend, the resulting reloc will also be against the
587 same symbol. In such a case, we don't want to change anything
588 about the way the reloc is handled, since it will all be done at
589 final link time. Rather than put special case code into
590 bfd_perform_relocation, all the reloc types use this howto
591 function. It just short circuits the reloc if producing
592 relocateable output against an external symbol. */
593
594static bfd_reloc_status_type
595mips_generic_reloc (abfd,
596 reloc_entry,
597 symbol,
598 data,
599 input_section,
4991ebb9
ILT
600 output_bfd,
601 error_message)
23f44e6f
ILT
602 bfd *abfd;
603 arelent *reloc_entry;
604 asymbol *symbol;
605 PTR data;
606 asection *input_section;
607 bfd *output_bfd;
4991ebb9 608 char **error_message;
23f44e6f
ILT
609{
610 if (output_bfd != (bfd *) NULL
611 && (symbol->flags & BSF_SECTION_SYM) == 0
612 && reloc_entry->addend == 0)
613 {
614 reloc_entry->address += input_section->output_offset;
615 return bfd_reloc_ok;
616 }
617
618 return bfd_reloc_continue;
619}
620
621/* Do a REFHI relocation. This has to be done in combination with a
622 REFLO reloc, because there is a carry from the REFLO to the REFHI.
623 Here we just save the information we need; we do the actual
624 relocation when we see the REFLO. MIPS ECOFF requires that the
625 REFLO immediately follow the REFHI, so this ought to work. */
626
627static bfd_byte *mips_refhi_addr;
628static bfd_vma mips_refhi_addend;
629
630static bfd_reloc_status_type
631mips_refhi_reloc (abfd,
632 reloc_entry,
633 symbol,
634 data,
635 input_section,
4991ebb9
ILT
636 output_bfd,
637 error_message)
23f44e6f
ILT
638 bfd *abfd;
639 arelent *reloc_entry;
640 asymbol *symbol;
641 PTR data;
642 asection *input_section;
643 bfd *output_bfd;
4991ebb9 644 char **error_message;
23f44e6f
ILT
645{
646 bfd_reloc_status_type ret;
647 bfd_vma relocation;
648
649 /* If we're relocating, and this an external symbol, we don't want
650 to change anything. */
651 if (output_bfd != (bfd *) NULL
652 && (symbol->flags & BSF_SECTION_SYM) == 0
653 && reloc_entry->addend == 0)
654 {
655 reloc_entry->address += input_section->output_offset;
656 return bfd_reloc_ok;
657 }
658
659 ret = bfd_reloc_ok;
660 if (symbol->section == &bfd_und_section
661 && output_bfd == (bfd *) NULL)
662 ret = bfd_reloc_undefined;
663
664 if (bfd_is_com_section (symbol->section))
665 relocation = 0;
666 else
667 relocation = symbol->value;
668
669 relocation += symbol->section->output_section->vma;
670 relocation += symbol->section->output_offset;
671 relocation += reloc_entry->addend;
672
673 if (reloc_entry->address > input_section->_cooked_size)
674 return bfd_reloc_outofrange;
675
676 /* Save the information, and let REFLO do the actual relocation. */
677 mips_refhi_addr = (bfd_byte *) data + reloc_entry->address;
678 mips_refhi_addend = relocation;
679
680 if (output_bfd != (bfd *) NULL)
681 reloc_entry->address += input_section->output_offset;
682
683 return ret;
684}
685
686/* Do a REFLO relocation. This is a straightforward 16 bit inplace
687 relocation; this function exists in order to do the REFHI
688 relocation described above. */
689
690static bfd_reloc_status_type
691mips_reflo_reloc (abfd,
692 reloc_entry,
693 symbol,
694 data,
695 input_section,
4991ebb9
ILT
696 output_bfd,
697 error_message)
23f44e6f
ILT
698 bfd *abfd;
699 arelent *reloc_entry;
700 asymbol *symbol;
701 PTR data;
702 asection *input_section;
703 bfd *output_bfd;
4991ebb9 704 char **error_message;
23f44e6f
ILT
705{
706 if (mips_refhi_addr != (bfd_byte *) NULL)
707 {
708 unsigned long insn;
709 unsigned long val;
710 unsigned long vallo;
711
712 /* Do the REFHI relocation. Note that we actually don't need to
713 know anything about the REFLO itself, except where to find
714 the low 16 bits of the addend needed by the REFHI. */
715 insn = bfd_get_32 (abfd, mips_refhi_addr);
716 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
717 & 0xffff);
718 val = ((insn & 0xffff) << 16) + vallo;
719 val += mips_refhi_addend;
720
721 /* The low order 16 bits are always treated as a signed value.
722 Therefore, a negative value in the low order bits requires an
723 adjustment in the high order bits. We need to make this
724 adjustment in two ways: once for the bits we took from the
725 data, and once for the bits we are putting back in to the
726 data. */
727 if ((vallo & 0x8000) != 0)
728 val -= 0x10000;
729 if ((val & 0x8000) != 0)
730 val += 0x10000;
731
732 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
733 bfd_put_32 (abfd, insn, mips_refhi_addr);
734
735 mips_refhi_addr = (bfd_byte *) NULL;
736 }
737
738 /* Now do the REFLO reloc in the usual way. */
739 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
4991ebb9 740 input_section, output_bfd, error_message);
23f44e6f
ILT
741}
742
743/* Do a GPREL relocation. This is a 16 bit value which must become
744 the offset from the gp register. */
745
746static bfd_reloc_status_type
747mips_gprel_reloc (abfd,
4991ebb9
ILT
748 reloc_entry,
749 symbol,
750 data,
751 input_section,
752 output_bfd,
753 error_message)
23f44e6f
ILT
754 bfd *abfd;
755 arelent *reloc_entry;
756 asymbol *symbol;
757 PTR data;
758 asection *input_section;
759 bfd *output_bfd;
4991ebb9 760 char **error_message;
23f44e6f
ILT
761{
762 boolean relocateable;
763 bfd_vma relocation;
764 unsigned long val;
765 unsigned long insn;
766
767 /* If we're relocating, and this is an external symbol with no
768 addend, we don't want to change anything. We will only have an
769 addend if this is a newly created reloc, not read from an ECOFF
770 file. */
771 if (output_bfd != (bfd *) NULL
772 && (symbol->flags & BSF_SECTION_SYM) == 0
773 && reloc_entry->addend == 0)
774 {
775 reloc_entry->address += input_section->output_offset;
776 return bfd_reloc_ok;
777 }
778
779 if (output_bfd != (bfd *) NULL)
780 relocateable = true;
781 else
782 {
783 relocateable = false;
784 output_bfd = symbol->section->output_section->owner;
785 }
786
787 if (symbol->section == &bfd_und_section
788 && relocateable == false)
789 return bfd_reloc_undefined;
790
791 /* We have to figure out the gp value, so that we can adjust the
792 symbol value correctly. We look up the symbol _gp in the output
793 BFD. If we can't find it, we're stuck. We cache it in the ECOFF
794 target data. We don't need to adjust the symbol value for an
795 external symbol if we are producing relocateable output. */
796 if (ecoff_data (output_bfd)->gp == 0
797 && (relocateable == false
798 || (symbol->flags & BSF_SECTION_SYM) != 0))
799 {
800 if (relocateable != false)
801 {
802 /* Make up a value. */
803 ecoff_data (output_bfd)->gp =
804 symbol->section->output_section->vma + 0x4000;
805 }
806 else
807 {
808 unsigned int count;
809 asymbol **sym;
810 unsigned int i;
811
812 count = bfd_get_symcount (output_bfd);
813 sym = bfd_get_outsymbols (output_bfd);
814
815 if (sym == (asymbol **) NULL)
816 i = count;
817 else
818 {
819 for (i = 0; i < count; i++, sym++)
820 {
821 register CONST char *name;
822
823 name = bfd_asymbol_name (*sym);
824 if (*name == '_' && strcmp (name, "_gp") == 0)
825 {
826 ecoff_data (output_bfd)->gp = bfd_asymbol_value (*sym);
827 break;
828 }
829 }
830 }
831
832 if (i >= count)
833 {
834 /* Only get the error once. */
835 ecoff_data (output_bfd)->gp = 4;
4991ebb9
ILT
836 *error_message =
837 (char *) "GP relative relocation when _gp not defined";
23f44e6f
ILT
838 return bfd_reloc_dangerous;
839 }
840 }
841 }
842
843 if (bfd_is_com_section (symbol->section))
844 relocation = 0;
845 else
846 relocation = symbol->value;
847
848 relocation += symbol->section->output_section->vma;
849 relocation += symbol->section->output_offset;
850
851 if (reloc_entry->address > input_section->_cooked_size)
852 return bfd_reloc_outofrange;
853
854 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
855
856 /* Set val to the offset into the section or symbol. */
857 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
858 if (val & 0x8000)
859 val -= 0x10000;
860
861 /* Adjust val for the final section location and GP value. If we
862 are producing relocateable output, we don't want to do this for
863 an external symbol. */
864 if (relocateable == false
865 || (symbol->flags & BSF_SECTION_SYM) != 0)
866 val += relocation - ecoff_data (output_bfd)->gp;
867
868 insn = (insn &~ 0xffff) | (val & 0xffff);
869 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
870
871 if (relocateable != false)
872 reloc_entry->address += input_section->output_offset;
873
874 /* Make sure it fit in 16 bits. */
875 if (val >= 0x8000 && val < 0xffff8000)
4991ebb9 876 return bfd_reloc_overflow;
23f44e6f
ILT
877
878 return bfd_reloc_ok;
879}
880
4f996613
ILT
881/* Do a RELHI relocation. We do this in conjunction with a RELLO
882 reloc, just as REFHI and REFLO are done together. RELHI and RELLO
883 are Cygnus extensions used when generating position independent
884 code for embedded systems. */
885
886static bfd_byte *mips_relhi_addr;
887static bfd_vma mips_relhi_addend;
888
889static bfd_reloc_status_type
890mips_relhi_reloc (abfd,
891 reloc_entry,
892 symbol,
893 data,
894 input_section,
895 output_bfd,
896 error_message)
897 bfd *abfd;
898 arelent *reloc_entry;
899 asymbol *symbol;
900 PTR data;
901 asection *input_section;
902 bfd *output_bfd;
903 char **error_message;
904{
905 bfd_reloc_status_type ret;
906 bfd_vma relocation;
907
908 /* If this is a reloc against a section symbol, then it is correct
909 in the object file. The only time we want to change this case is
910 when we are relaxing, and that is handled entirely by
911 mips_relocate_section and never calls this function. */
912 if ((symbol->flags & BSF_SECTION_SYM) != 0)
913 {
914 if (output_bfd != (bfd *) NULL)
915 reloc_entry->address += input_section->output_offset;
916 return bfd_reloc_ok;
917 }
918
919 /* This is an external symbol. If we're relocating, we don't want
920 to change anything. */
921 if (output_bfd != (bfd *) NULL)
922 {
923 reloc_entry->address += input_section->output_offset;
924 return bfd_reloc_ok;
925 }
926
927 ret = bfd_reloc_ok;
928 if (symbol->section == &bfd_und_section
929 && output_bfd == (bfd *) NULL)
930 ret = bfd_reloc_undefined;
931
932 if (bfd_is_com_section (symbol->section))
933 relocation = 0;
934 else
935 relocation = symbol->value;
936
937 relocation += symbol->section->output_section->vma;
938 relocation += symbol->section->output_offset;
939 relocation += reloc_entry->addend;
940
941 if (reloc_entry->address > input_section->_cooked_size)
942 return bfd_reloc_outofrange;
943
944 /* Save the information, and let RELLO do the actual relocation. */
945 mips_relhi_addr = (bfd_byte *) data + reloc_entry->address;
946 mips_relhi_addend = relocation;
947
948 if (output_bfd != (bfd *) NULL)
949 reloc_entry->address += input_section->output_offset;
950
951 return ret;
952}
953
954/* Do a RELLO relocation. This is a straightforward 16 bit PC
955 relative relocation; this function exists in order to do the RELHI
956 relocation described above. */
957
958static bfd_reloc_status_type
959mips_rello_reloc (abfd,
960 reloc_entry,
961 symbol,
962 data,
963 input_section,
964 output_bfd,
965 error_message)
966 bfd *abfd;
967 arelent *reloc_entry;
968 asymbol *symbol;
969 PTR data;
970 asection *input_section;
971 bfd *output_bfd;
972 char **error_message;
973{
974 if (mips_relhi_addr != (bfd_byte *) NULL)
975 {
976 unsigned long insn;
977 unsigned long val;
978 unsigned long vallo;
979
980 /* Do the RELHI relocation. Note that we actually don't need to
981 know anything about the RELLO itself, except where to find
982 the low 16 bits of the addend needed by the RELHI. */
983 insn = bfd_get_32 (abfd, mips_relhi_addr);
984 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
985 & 0xffff);
986 val = ((insn & 0xffff) << 16) + vallo;
987 val += mips_relhi_addend;
988
989 /* If the symbol is defined, make val PC relative. If the
990 symbol is not defined we don't want to do this, because we
991 don't want the value in the object file to incorporate the
992 address of the reloc. */
993 if (bfd_get_section (symbol) != &bfd_und_section
994 && ! bfd_is_com_section (bfd_get_section (symbol)))
995 val -= (input_section->output_section->vma
996 + input_section->output_offset
997 + reloc_entry->address);
998
999 /* The low order 16 bits are always treated as a signed value.
1000 Therefore, a negative value in the low order bits requires an
1001 adjustment in the high order bits. We need to make this
1002 adjustment in two ways: once for the bits we took from the
1003 data, and once for the bits we are putting back in to the
1004 data. */
1005 if ((vallo & 0x8000) != 0)
1006 val -= 0x10000;
1007 if ((val & 0x8000) != 0)
1008 val += 0x10000;
1009
1010 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1011 bfd_put_32 (abfd, insn, mips_relhi_addr);
1012
1013 mips_relhi_addr = (bfd_byte *) NULL;
1014 }
1015
1016 /* If this is a reloc against a section symbol, then it is correct
1017 in the object file. The only time we want to change this case is
1018 when we are relaxing, and that is handled entirely by
1019 mips_relocate_section and never calls this function. */
1020 if ((symbol->flags & BSF_SECTION_SYM) != 0)
1021 {
1022 if (output_bfd != (bfd *) NULL)
1023 reloc_entry->address += input_section->output_offset;
1024 return bfd_reloc_ok;
1025 }
1026
1027 /* bfd_perform_relocation does not handle pcrel_offset relocations
1028 correctly when generating a relocateable file, so handle them
1029 directly here. */
1030 if (output_bfd != (bfd *) NULL)
1031 {
1032 reloc_entry->address += input_section->output_offset;
1033 return bfd_reloc_ok;
1034 }
1035
1036 /* Now do the RELLO reloc in the usual way. */
1037 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
1038 input_section, output_bfd, error_message);
1039}
1040
dabf906e
ILT
1041/* This is the special function for the MIPS_R_SWITCH reloc. This
1042 special reloc is normally correct in the object file, and only
1043 requires special handling when relaxing. We don't want
1044 bfd_perform_relocation to tamper with it at all. */
1045
1046/*ARGSUSED*/
1047static bfd_reloc_status_type
1048mips_switch_reloc (abfd,
1049 reloc_entry,
1050 symbol,
1051 data,
1052 input_section,
1053 output_bfd,
1054 error_message)
1055 bfd *abfd;
1056 arelent *reloc_entry;
1057 asymbol *symbol;
1058 PTR data;
1059 asection *input_section;
1060 bfd *output_bfd;
1061 char **error_message;
1062{
1063 return bfd_reloc_ok;
1064}
1065
23f44e6f
ILT
1066/* Get the howto structure for a generic reloc type. */
1067
1068static CONST struct reloc_howto_struct *
1069mips_bfd_reloc_type_lookup (abfd, code)
1070 bfd *abfd;
1071 bfd_reloc_code_real_type code;
1072{
1073 int mips_type;
1074
1075 switch (code)
1076 {
1077 case BFD_RELOC_16:
1078 mips_type = MIPS_R_REFHALF;
1079 break;
1080 case BFD_RELOC_32:
f1cca647 1081 case BFD_RELOC_CTOR:
23f44e6f
ILT
1082 mips_type = MIPS_R_REFWORD;
1083 break;
1084 case BFD_RELOC_MIPS_JMP:
1085 mips_type = MIPS_R_JMPADDR;
1086 break;
1087 case BFD_RELOC_HI16_S:
1088 mips_type = MIPS_R_REFHI;
1089 break;
1090 case BFD_RELOC_LO16:
1091 mips_type = MIPS_R_REFLO;
1092 break;
1093 case BFD_RELOC_MIPS_GPREL:
1094 mips_type = MIPS_R_GPREL;
1095 break;
4991ebb9
ILT
1096 case BFD_RELOC_MIPS_LITERAL:
1097 mips_type = MIPS_R_LITERAL;
1098 break;
a3a33af3
ILT
1099 case BFD_RELOC_16_PCREL_S2:
1100 mips_type = MIPS_R_PCREL16;
1101 break;
4f996613
ILT
1102 case BFD_RELOC_PCREL_HI16_S:
1103 mips_type = MIPS_R_RELHI;
1104 break;
1105 case BFD_RELOC_PCREL_LO16:
1106 mips_type = MIPS_R_RELLO;
1107 break;
dabf906e
ILT
1108 case BFD_RELOC_GPREL32:
1109 mips_type = MIPS_R_SWITCH;
1110 break;
23f44e6f
ILT
1111 default:
1112 return (CONST struct reloc_howto_struct *) NULL;
1113 }
1114
1115 return &mips_howto_table[mips_type];
1116}
c3fe0c41 1117\f
4991ebb9 1118/* A helper routine for mips_relocate_section which handles the REFHI
4f996613
ILT
1119 and RELHI relocations. The REFHI relocation must be followed by a
1120 REFLO relocation (and RELHI by a RELLO), and the addend used is
1121 formed from the addends of both instructions. */
de17306e 1122
4991ebb9 1123static void
4f996613
ILT
1124mips_relocate_hi (refhi, reflo, input_bfd, input_section, contents, adjust,
1125 relocation, pcrel)
4991ebb9
ILT
1126 struct internal_reloc *refhi;
1127 struct internal_reloc *reflo;
1128 bfd *input_bfd;
1129 asection *input_section;
1130 bfd_byte *contents;
a3a33af3 1131 size_t adjust;
4991ebb9 1132 bfd_vma relocation;
4f996613 1133 boolean pcrel;
de17306e 1134{
4991ebb9
ILT
1135 unsigned long insn;
1136 unsigned long val;
1137 unsigned long vallo;
1138
1139 insn = bfd_get_32 (input_bfd,
a3a33af3 1140 contents + adjust + refhi->r_vaddr - input_section->vma);
4991ebb9 1141 vallo = (bfd_get_32 (input_bfd,
a3a33af3 1142 contents + adjust + reflo->r_vaddr - input_section->vma)
4991ebb9
ILT
1143 & 0xffff);
1144 val = ((insn & 0xffff) << 16) + vallo;
1145 val += relocation;
1146
1147 /* The low order 16 bits are always treated as a signed value.
1148 Therefore, a negative value in the low order bits requires an
1149 adjustment in the high order bits. We need to make this
1150 adjustment in two ways: once for the bits we took from the data,
1151 and once for the bits we are putting back in to the data. */
1152 if ((vallo & 0x8000) != 0)
1153 val -= 0x10000;
4f996613
ILT
1154
1155 if (pcrel)
1156 val -= (input_section->output_section->vma
1157 + input_section->output_offset
1158 + (reflo->r_vaddr - input_section->vma + adjust));
1159
4991ebb9
ILT
1160 if ((val & 0x8000) != 0)
1161 val += 0x10000;
de17306e 1162
4991ebb9
ILT
1163 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1164 bfd_put_32 (input_bfd, (bfd_vma) insn,
a3a33af3 1165 contents + adjust + refhi->r_vaddr - input_section->vma);
4991ebb9 1166}
de17306e 1167
4991ebb9 1168/* Relocate a section while linking a MIPS ECOFF file. */
de17306e 1169
4991ebb9
ILT
1170static boolean
1171mips_relocate_section (output_bfd, info, input_bfd, input_section,
1172 contents, external_relocs)
1173 bfd *output_bfd;
1174 struct bfd_link_info *info;
1175 bfd *input_bfd;
1176 asection *input_section;
1177 bfd_byte *contents;
1178 PTR external_relocs;
1179{
1180 asection **symndx_to_section;
1181 struct ecoff_link_hash_entry **sym_hashes;
1182 bfd_vma gp;
1183 boolean gp_undefined;
a3a33af3
ILT
1184 size_t adjust;
1185 long *offsets;
4991ebb9
ILT
1186 struct external_reloc *ext_rel;
1187 struct external_reloc *ext_rel_end;
a3a33af3 1188 unsigned int i;
4f996613
ILT
1189 boolean got_lo;
1190 struct internal_reloc lo_int_rel;
4991ebb9
ILT
1191
1192 BFD_ASSERT (input_bfd->xvec->header_byteorder_big_p
1193 == output_bfd->xvec->header_byteorder_big_p);
1194
1195 /* We keep a table mapping the symndx found in an internal reloc to
1196 the appropriate section. This is faster than looking up the
1197 section by name each time. */
1198 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1199 if (symndx_to_section == (asection **) NULL)
1200 {
1201 symndx_to_section = ((asection **)
1202 bfd_alloc (input_bfd,
1203 (NUM_RELOC_SECTIONS
1204 * sizeof (asection *))));
9783e04a
DM
1205 if (!symndx_to_section)
1206 {
f1cca647 1207 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
1208 return false;
1209 }
4991ebb9
ILT
1210
1211 symndx_to_section[RELOC_SECTION_NONE] = NULL;
1212 symndx_to_section[RELOC_SECTION_TEXT] =
1213 bfd_get_section_by_name (input_bfd, ".text");
1214 symndx_to_section[RELOC_SECTION_RDATA] =
1215 bfd_get_section_by_name (input_bfd, ".rdata");
1216 symndx_to_section[RELOC_SECTION_DATA] =
1217 bfd_get_section_by_name (input_bfd, ".data");
1218 symndx_to_section[RELOC_SECTION_SDATA] =
1219 bfd_get_section_by_name (input_bfd, ".sdata");
1220 symndx_to_section[RELOC_SECTION_SBSS] =
1221 bfd_get_section_by_name (input_bfd, ".sbss");
1222 symndx_to_section[RELOC_SECTION_BSS] =
1223 bfd_get_section_by_name (input_bfd, ".bss");
1224 symndx_to_section[RELOC_SECTION_INIT] =
1225 bfd_get_section_by_name (input_bfd, ".init");
1226 symndx_to_section[RELOC_SECTION_LIT8] =
1227 bfd_get_section_by_name (input_bfd, ".lit8");
1228 symndx_to_section[RELOC_SECTION_LIT4] =
1229 bfd_get_section_by_name (input_bfd, ".lit4");
1230 symndx_to_section[RELOC_SECTION_XDATA] = NULL;
1231 symndx_to_section[RELOC_SECTION_PDATA] = NULL;
1232 symndx_to_section[RELOC_SECTION_FINI] =
1233 bfd_get_section_by_name (input_bfd, ".fini");
1234 symndx_to_section[RELOC_SECTION_LITA] = NULL;
1235 symndx_to_section[RELOC_SECTION_ABS] = NULL;
1236
1237 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1238 }
de17306e 1239
4991ebb9 1240 sym_hashes = ecoff_data (input_bfd)->sym_hashes;
de17306e 1241
4991ebb9
ILT
1242 gp = ecoff_data (output_bfd)->gp;
1243 if (gp == 0)
1244 gp_undefined = true;
1245 else
1246 gp_undefined = false;
de17306e 1247
4f996613 1248 got_lo = false;
de17306e 1249
a3a33af3
ILT
1250 adjust = 0;
1251
1252 if (ecoff_section_data (input_bfd, input_section) == NULL)
1253 offsets = NULL;
1254 else
1255 offsets = ecoff_section_data (input_bfd, input_section)->offsets;
1256
4991ebb9
ILT
1257 ext_rel = (struct external_reloc *) external_relocs;
1258 ext_rel_end = ext_rel + input_section->reloc_count;
a3a33af3 1259 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
4991ebb9
ILT
1260 {
1261 struct internal_reloc int_rel;
4991ebb9
ILT
1262 bfd_vma addend;
1263 reloc_howto_type *howto;
1264 struct ecoff_link_hash_entry *h = NULL;
1265 asection *s = NULL;
1266 bfd_vma relocation;
1267 bfd_reloc_status_type r;
1268
4f996613 1269 if (! got_lo)
4991ebb9
ILT
1270 mips_ecoff_swap_reloc_in (input_bfd, (PTR) ext_rel, &int_rel);
1271 else
1272 {
4f996613
ILT
1273 int_rel = lo_int_rel;
1274 got_lo = false;
4991ebb9 1275 }
de17306e 1276
4991ebb9
ILT
1277 BFD_ASSERT (int_rel.r_type
1278 < sizeof mips_howto_table / sizeof mips_howto_table[0]);
de17306e 1279
4f996613
ILT
1280 /* The REFHI and RELHI relocs requires special handling. they
1281 must be followed by a REFLO or RELLO reloc, respectively, and
1282 the addend is formed from both relocs. */
1283 if (int_rel.r_type == MIPS_R_REFHI
1284 || int_rel.r_type == MIPS_R_RELHI)
4991ebb9
ILT
1285 {
1286 BFD_ASSERT ((ext_rel + 1) < ext_rel_end);
1287 mips_ecoff_swap_reloc_in (input_bfd, (PTR) (ext_rel + 1),
4f996613
ILT
1288 &lo_int_rel);
1289 BFD_ASSERT ((lo_int_rel.r_type
1290 == (int_rel.r_type == MIPS_R_REFHI
1291 ? MIPS_R_REFLO
1292 : MIPS_R_RELLO))
1293 && int_rel.r_extern == lo_int_rel.r_extern
1294 && int_rel.r_symndx == lo_int_rel.r_symndx);
1295 got_lo = true;
4991ebb9 1296 }
de17306e 1297
4991ebb9 1298 howto = &mips_howto_table[int_rel.r_type];
de17306e 1299
dabf906e
ILT
1300 /* The SWITCH reloc must be handled specially. This reloc is
1301 marks the location of a difference between two portions of an
1302 object file. The symbol index does not reference a symbol,
1303 but is actually the offset from the reloc to the subtrahend
1304 of the difference. This reloc is correct in the object file,
1305 and needs no further adjustment, unless we are relaxing. If
1306 we are relaxing, we may have to add in an offset. Since no
1307 symbols are involved in this reloc, we handle it completely
1308 here. */
1309 if (int_rel.r_type == MIPS_R_SWITCH)
1310 {
1311 if (offsets != NULL
1312 && offsets[i] != 0)
1313 {
1314 r = _bfd_relocate_contents (howto, input_bfd,
1315 (bfd_vma) offsets[i],
1316 (contents
1317 + adjust
1318 + int_rel.r_vaddr
1319 - input_section->vma));
1320 BFD_ASSERT (r == bfd_reloc_ok);
1321 }
1322
1323 continue;
1324 }
1325
4991ebb9
ILT
1326 if (int_rel.r_extern)
1327 {
1328 h = sym_hashes[int_rel.r_symndx];
1329 /* If h is NULL, that means that there is a reloc against an
1330 external symbol which we thought was just a debugging
1331 symbol. This should not happen. */
1332 if (h == (struct ecoff_link_hash_entry *) NULL)
1333 abort ();
1334 }
1335 else
1336 {
1337 if (int_rel.r_symndx < 0 || int_rel.r_symndx >= NUM_RELOC_SECTIONS)
1338 s = NULL;
1339 else
1340 s = symndx_to_section[int_rel.r_symndx];
de17306e 1341
4991ebb9
ILT
1342 if (s == (asection *) NULL)
1343 abort ();
1344 }
de17306e 1345
4991ebb9
ILT
1346 /* The GPREL reloc uses an addend: the difference in the GP
1347 values. */
f1cca647
ILT
1348 if (int_rel.r_type != MIPS_R_GPREL
1349 && int_rel.r_type != MIPS_R_LITERAL)
4991ebb9
ILT
1350 addend = 0;
1351 else
de17306e 1352 {
4991ebb9
ILT
1353 if (gp_undefined)
1354 {
1355 if (! ((*info->callbacks->reloc_dangerous)
1356 (info, "GP relative relocation when GP not defined",
1357 input_bfd, input_section,
1358 int_rel.r_vaddr - input_section->vma)))
1359 return false;
1360 /* Only give the error once per link. */
1361 ecoff_data (output_bfd)->gp = gp = 4;
1362 gp_undefined = false;
1363 }
1364 if (! int_rel.r_extern)
1365 {
1366 /* This is a relocation against a section. The current
1367 addend in the instruction is the difference between
1368 INPUT_SECTION->vma and the GP value of INPUT_BFD. We
1369 must change this to be the difference between the
1370 final definition (which will end up in RELOCATION)
1371 and the GP value of OUTPUT_BFD (which is in GP). */
1372 addend = ecoff_data (input_bfd)->gp - gp;
1373 }
1374 else if (! info->relocateable
1375 || h->root.type == bfd_link_hash_defined)
1376 {
1377 /* This is a relocation against an undefined or common
1378 symbol. The current addend in the instruction is
1379 simply the desired offset into the symbol (normally
1380 zero). We are going to change this into a relocation
1381 against a defined symbol, so we want the instruction
1382 to hold the difference between the final definition
1383 of the symbol (which will end up in RELOCATION) and
1384 the GP value of OUTPUT_BFD (which is in GP). */
1385 addend = - gp;
1386 }
1387 else
1388 {
1389 /* This is a relocation against an undefined or common
1390 symbol. The current addend in the instruction is
1391 simply the desired offset into the symbol (normally
1392 zero). We are generating relocateable output, and we
1393 aren't going to define this symbol, so we just leave
1394 the instruction alone. */
1395 addend = 0;
1396 }
de17306e
ILT
1397 }
1398
a3a33af3
ILT
1399 /* If we are relaxing, mips_relax_section may have set
1400 offsets[i] to some value. A value of 1 means we must expand
1401 a PC relative branch into a multi-instruction of sequence,
1402 and any other value is an addend. */
1403 if (offsets != NULL
1404 && offsets[i] != 0)
1405 {
1406 BFD_ASSERT (! info->relocateable);
4f996613
ILT
1407 BFD_ASSERT (int_rel.r_type == MIPS_R_PCREL16
1408 || int_rel.r_type == MIPS_R_RELHI
1409 || int_rel.r_type == MIPS_R_RELLO);
a3a33af3 1410 if (offsets[i] != 1)
4f996613 1411 addend += offsets[i];
a3a33af3
ILT
1412 else
1413 {
1414 bfd_byte *here;
1415
4f996613
ILT
1416 BFD_ASSERT (int_rel.r_extern
1417 && int_rel.r_type == MIPS_R_PCREL16);
a3a33af3
ILT
1418
1419 /* Move the rest of the instructions up. */
1420 here = (contents
1421 + adjust
1422 + int_rel.r_vaddr
1423 - input_section->vma);
1424 memmove (here + PCREL16_EXPANSION_ADJUSTMENT, here,
1425 (input_section->_raw_size
1426 - (int_rel.r_vaddr - input_section->vma)));
1427
1428 /* Generate the new instructions. */
1429 if (! mips_relax_pcrel16 (info, input_bfd, input_section,
1430 h, here,
1431 (input_section->output_section->vma
1432 + input_section->output_offset
1433 + (int_rel.r_vaddr
1434 - input_section->vma)
1435 + adjust)))
1436 return false;
1437
1438 /* We must adjust everything else up a notch. */
1439 adjust += PCREL16_EXPANSION_ADJUSTMENT;
1440
1441 /* mips_relax_pcrel16 handles all the details of this
1442 relocation. */
1443 continue;
1444 }
1445 }
1446
4991ebb9
ILT
1447 if (info->relocateable)
1448 {
1449 /* We are generating relocateable output, and must convert
1450 the existing reloc. */
1451 if (int_rel.r_extern)
1452 {
1453 if (h->root.type == bfd_link_hash_defined)
1454 {
4991ebb9 1455 const char *name;
de17306e 1456
4991ebb9
ILT
1457 /* This symbol is defined in the output. Convert
1458 the reloc from being against the symbol to being
1459 against the section. */
de17306e 1460
4991ebb9
ILT
1461 /* Clear the r_extern bit. */
1462 int_rel.r_extern = 0;
de17306e 1463
4991ebb9 1464 /* Compute a new r_symndx value. */
a3a33af3 1465 s = h->root.u.def.section;
4991ebb9 1466 name = bfd_get_section_name (output_bfd,
a3a33af3 1467 s->output_section);
de17306e 1468
4991ebb9
ILT
1469 int_rel.r_symndx = -1;
1470 switch (name[1])
1471 {
1472 case 'b':
1473 if (strcmp (name, ".bss") == 0)
1474 int_rel.r_symndx = RELOC_SECTION_BSS;
1475 break;
1476 case 'd':
1477 if (strcmp (name, ".data") == 0)
1478 int_rel.r_symndx = RELOC_SECTION_DATA;
1479 break;
1480 case 'f':
1481 if (strcmp (name, ".fini") == 0)
1482 int_rel.r_symndx = RELOC_SECTION_FINI;
1483 break;
1484 case 'i':
1485 if (strcmp (name, ".init") == 0)
1486 int_rel.r_symndx = RELOC_SECTION_INIT;
1487 break;
1488 case 'l':
1489 if (strcmp (name, ".lit8") == 0)
1490 int_rel.r_symndx = RELOC_SECTION_LIT8;
1491 else if (strcmp (name, ".lit4") == 0)
1492 int_rel.r_symndx = RELOC_SECTION_LIT4;
1493 break;
1494 case 'r':
1495 if (strcmp (name, ".rdata") == 0)
1496 int_rel.r_symndx = RELOC_SECTION_RDATA;
1497 break;
1498 case 's':
1499 if (strcmp (name, ".sdata") == 0)
1500 int_rel.r_symndx = RELOC_SECTION_SDATA;
1501 else if (strcmp (name, ".sbss") == 0)
1502 int_rel.r_symndx = RELOC_SECTION_SBSS;
1503 break;
1504 case 't':
1505 if (strcmp (name, ".text") == 0)
1506 int_rel.r_symndx = RELOC_SECTION_TEXT;
1507 break;
1508 }
1509
1510 if (int_rel.r_symndx == -1)
1511 abort ();
1512
1513 /* Add the section VMA and the symbol value. */
1514 relocation = (h->root.u.def.value
a3a33af3
ILT
1515 + s->output_section->vma
1516 + s->output_offset);
1517
1518 /* For a PC relative relocation, the object file
1519 currently holds just the addend. We must adjust
1520 by the address to get the right value. */
1521 if (howto->pc_relative)
4f996613
ILT
1522 {
1523 relocation -= int_rel.r_vaddr - input_section->vma;
1524
1525 /* If we are converting a RELHI or RELLO reloc
1526 from being against an external symbol to
1527 being against a section, we must put a
1528 special value into the r_offset field. This
1529 value is the old addend. The r_offset for
1530 both the RELOHI and RELLO relocs are the
1531 same, and we set both when we see RELHI. */
1532 if (int_rel.r_type == MIPS_R_RELHI)
1533 {
1534 long addhi, addlo;
1535
1536 addhi = bfd_get_32 (input_bfd,
1537 (contents
1538 + adjust
1539 + int_rel.r_vaddr
1540 - input_section->vma));
1541 addhi &= 0xffff;
1542 if (addhi & 0x8000)
1543 addhi -= 0x10000;
1544 addhi <<= 16;
1545
1546 addlo = bfd_get_32 (input_bfd,
1547 (contents
1548 + adjust
1549 + lo_int_rel.r_vaddr
1550 - input_section->vma));
1551 addlo &= 0xffff;
1552 if (addlo & 0x8000)
1553 addlo -= 0x10000;
1554
1555 int_rel.r_offset = addhi + addlo;
1556 lo_int_rel.r_offset = int_rel.r_offset;
1557 }
1558 }
a3a33af3
ILT
1559
1560 h = NULL;
4991ebb9
ILT
1561 }
1562 else
1563 {
1564 /* Change the symndx value to the right one for the
1565 output BFD. */
1566 int_rel.r_symndx = h->indx;
1567 if (int_rel.r_symndx == -1)
1568 {
1569 /* This symbol is not being written out. */
1570 if (! ((*info->callbacks->unattached_reloc)
1571 (info, h->root.root.string, input_bfd,
1572 input_section,
1573 int_rel.r_vaddr - input_section->vma)))
1574 return false;
1575 int_rel.r_symndx = 0;
1576 }
1577 relocation = 0;
1578 }
1579 }
1580 else
1581 {
1582 /* This is a relocation against a section. Adjust the
1583 value by the amount the section moved. */
1584 relocation = (s->output_section->vma
1585 + s->output_offset
1586 - s->vma);
1587 }
de17306e 1588
4991ebb9 1589 relocation += addend;
de17306e 1590
a3a33af3
ILT
1591 /* Adjust a PC relative relocation by removing the reference
1592 to the original address in the section and including the
4f996613
ILT
1593 reference to the new address. However, external RELHI
1594 and RELLO relocs are PC relative, but don't include any
1595 reference to the address. The addend is merely an
1596 addend. */
1597 if (howto->pc_relative
1598 && (! int_rel.r_extern
1599 || (int_rel.r_type != MIPS_R_RELHI
1600 && int_rel.r_type != MIPS_R_RELLO)))
a3a33af3
ILT
1601 relocation -= (input_section->output_section->vma
1602 + input_section->output_offset
1603 - input_section->vma);
1604
4991ebb9
ILT
1605 /* Adjust the contents. */
1606 if (relocation == 0)
1607 r = bfd_reloc_ok;
1608 else
1609 {
4f996613
ILT
1610 if (int_rel.r_type != MIPS_R_REFHI
1611 && int_rel.r_type != MIPS_R_RELHI)
4991ebb9
ILT
1612 r = _bfd_relocate_contents (howto, input_bfd, relocation,
1613 (contents
a3a33af3 1614 + adjust
4991ebb9
ILT
1615 + int_rel.r_vaddr
1616 - input_section->vma));
1617 else
1618 {
4f996613
ILT
1619 mips_relocate_hi (&int_rel, &lo_int_rel,
1620 input_bfd, input_section, contents,
1621 adjust, relocation,
1622 int_rel.r_type == MIPS_R_RELHI);
4991ebb9
ILT
1623 r = bfd_reloc_ok;
1624 }
1625 }
de17306e 1626
4991ebb9
ILT
1627 /* Adjust the reloc address. */
1628 int_rel.r_vaddr += (input_section->output_section->vma
1629 + input_section->output_offset
1630 - input_section->vma);
de17306e 1631
4991ebb9
ILT
1632 /* Save the changed reloc information. */
1633 mips_ecoff_swap_reloc_out (input_bfd, &int_rel, (PTR) ext_rel);
1634 }
1635 else
1636 {
1637 /* We are producing a final executable. */
1638 if (int_rel.r_extern)
1639 {
1640 /* This is a reloc against a symbol. */
1641 if (h->root.type == bfd_link_hash_defined)
1642 {
1643 asection *hsec;
de17306e 1644
4991ebb9
ILT
1645 hsec = h->root.u.def.section;
1646 relocation = (h->root.u.def.value
1647 + hsec->output_section->vma
1648 + hsec->output_offset);
1649 }
1650 else
1651 {
1652 if (! ((*info->callbacks->undefined_symbol)
1653 (info, h->root.root.string, input_bfd,
1654 input_section,
1655 int_rel.r_vaddr - input_section->vma)))
1656 return false;
1657 relocation = 0;
1658 }
1659 }
1660 else
1661 {
1662 /* This is a reloc against a section. */
1663 relocation = (s->output_section->vma
1664 + s->output_offset
1665 - s->vma);
1666
a3a33af3
ILT
1667 /* A PC relative reloc is already correct in the object
1668 file. Make it look like a pcrel_offset relocation by
1669 adding in the start address. */
4991ebb9 1670 if (howto->pc_relative)
4f996613
ILT
1671 {
1672 if (int_rel.r_type != MIPS_R_RELHI)
1673 relocation += int_rel.r_vaddr + adjust;
1674 else
1675 relocation += lo_int_rel.r_vaddr + adjust;
1676 }
4991ebb9 1677 }
de17306e 1678
4f996613
ILT
1679 if (int_rel.r_type != MIPS_R_REFHI
1680 && int_rel.r_type != MIPS_R_RELHI)
4991ebb9
ILT
1681 r = _bfd_final_link_relocate (howto,
1682 input_bfd,
1683 input_section,
1684 contents,
a3a33af3
ILT
1685 (int_rel.r_vaddr
1686 - input_section->vma
1687 + adjust),
4991ebb9
ILT
1688 relocation,
1689 addend);
1690 else
1691 {
4f996613
ILT
1692 mips_relocate_hi (&int_rel, &lo_int_rel, input_bfd,
1693 input_section, contents, adjust,
1694 relocation,
1695 int_rel.r_type == MIPS_R_RELHI);
4991ebb9
ILT
1696 r = bfd_reloc_ok;
1697 }
1698 }
1699
1700 if (r != bfd_reloc_ok)
1701 {
1702 switch (r)
1703 {
1704 default:
1705 case bfd_reloc_outofrange:
1706 abort ();
1707 case bfd_reloc_overflow:
1708 {
1709 const char *name;
1710
1711 if (int_rel.r_extern)
1712 name = h->root.root.string;
1713 else
1714 name = bfd_section_name (input_bfd, s);
1715 if (! ((*info->callbacks->reloc_overflow)
1716 (info, name, howto->name, (bfd_vma) 0,
1717 input_bfd, input_section,
1718 int_rel.r_vaddr - input_section->vma)))
1719 return false;
1720 }
1721 break;
1722 }
1723 }
1724 }
1725
1726 return true;
de17306e 1727}
de17306e 1728\f
a3a33af3
ILT
1729/* Relax a section when linking a MIPS ECOFF file. This is used for
1730 embedded PIC code, which always uses PC relative branches which
1731 only have an 18 bit range on MIPS. If a branch is not in range, we
1732 generate a long instruction sequence to compensate. Each time we
1733 find a branch to expand, we have to check all the others again to
1734 make sure they are still in range. This is slow, but it only has
1735 to be done when -relax is passed to the linker.
1736
1737 This routine figures out which branches need to expand; the actual
1738 expansion is done in mips_relocate_section when the section
1739 contents are relocated. The information is stored in the offsets
1740 field of the ecoff_section_tdata structure. An offset of 1 means
1741 that the branch must be expanded into a multi-instruction PC
1742 relative branch (such an offset will only occur for a PC relative
1743 branch to an external symbol). Any other offset must be a multiple
1744 of four, and is the amount to change the branch by (such an offset
1745 will only occur for a PC relative branch within the same section).
1746
1747 We do not modify the section relocs or contents themselves so that
1748 if memory usage becomes an issue we can discard them and read them
1749 again. The only information we must save in memory between this
1750 routine and the mips_relocate_section routine is the table of
1751 offsets. */
1752
1753static boolean
1754mips_relax_section (abfd, sec, info, again)
1755 bfd *abfd;
1756 asection *sec;
1757 struct bfd_link_info *info;
1758 boolean *again;
1759{
1760 struct ecoff_section_tdata *section_tdata;
1761 bfd_byte *contents = NULL;
1762 long *offsets;
1763 struct external_reloc *ext_rel;
1764 struct external_reloc *ext_rel_end;
1765 unsigned int i;
1766
1767 /* Assume we are not going to need another pass. */
1768 *again = false;
1769
1770 /* If we are not generating an ECOFF file, this is much too
1771 confusing to deal with. */
1772 if (info->hash->creator->flavour != bfd_get_flavour (abfd))
1773 return true;
1774
1775 /* If there are no relocs, there is nothing to do. */
1776 if (sec->reloc_count == 0)
1777 return true;
1778
1779 /* We are only interested in PC relative relocs, and why would there
1780 ever be one from anything but the .text section? */
1781 if (strcmp (bfd_get_section_name (abfd, sec), ".text") != 0)
1782 return true;
1783
1784 /* Read in the relocs, if we haven't already got them. */
1785 section_tdata = ecoff_section_data (abfd, sec);
1786 if (section_tdata == (struct ecoff_section_tdata *) NULL)
1787 {
1788 bfd_size_type external_reloc_size;
1789 bfd_size_type external_relocs_size;
1790
1791 sec->used_by_bfd =
1792 (PTR) bfd_alloc_by_size_t (abfd, sizeof (struct ecoff_section_tdata));
1793 if (sec->used_by_bfd == NULL)
1794 {
1795 bfd_set_error (bfd_error_no_memory);
1796 goto error_return;
1797 }
1798
1799 section_tdata = ecoff_section_data (abfd, sec);
1800 section_tdata->contents = NULL;
1801 section_tdata->offsets = NULL;
1802
1803 external_reloc_size = ecoff_backend (abfd)->external_reloc_size;
1804 external_relocs_size = external_reloc_size * sec->reloc_count;
1805
1806 section_tdata->external_relocs =
1807 (PTR) bfd_alloc (abfd, external_relocs_size);
1808 if (section_tdata->external_relocs == NULL && external_relocs_size != 0)
1809 {
1810 bfd_set_error (bfd_error_no_memory);
1811 goto error_return;
1812 }
1813
1814 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1815 || (bfd_read (section_tdata->external_relocs, 1,
1816 external_relocs_size, abfd)
1817 != external_relocs_size))
1818 goto error_return;
1819
1820 /* We must initialize _cooked_size only the first time we are
1821 called. */
1822 sec->_cooked_size = sec->_raw_size;
1823 }
1824
1825 contents = section_tdata->contents;
1826 offsets = section_tdata->offsets;
1827
1828 /* Look for any external PC relative relocs. Internal PC relative
1829 relocs are already correct in the object file, so they certainly
1830 can not overflow. */
1831 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
1832 ext_rel_end = ext_rel + sec->reloc_count;
1833 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1834 {
1835 struct internal_reloc int_rel;
1836 struct ecoff_link_hash_entry *h;
1837 asection *hsec;
1838 bfd_signed_vma relocation;
1839 struct external_reloc *adj_ext_rel;
1840 unsigned int adj_i;
1841 unsigned long ext_count;
1842 struct ecoff_link_hash_entry **adj_h_ptr;
1843 struct ecoff_link_hash_entry **adj_h_ptr_end;
1844 struct ecoff_value_adjust *adjust;
1845
1846 /* If we have already expanded this reloc, we certainly don't
1847 need to do it again. */
1848 if (offsets != (long *) NULL && offsets[i] == 1)
1849 continue;
1850
1851 /* Quickly check that this reloc is external PCREL16. */
1852 if (abfd->xvec->header_byteorder_big_p)
1853 {
1854 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_BIG) == 0
1855 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_BIG)
1856 >> RELOC_BITS3_TYPE_SH_BIG)
1857 != MIPS_R_PCREL16))
1858 continue;
1859 }
1860 else
1861 {
1862 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) == 0
1863 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
1864 >> RELOC_BITS3_TYPE_SH_LITTLE)
1865 != MIPS_R_PCREL16))
1866 continue;
1867 }
1868
1869 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
1870
1871 h = ecoff_data (abfd)->sym_hashes[int_rel.r_symndx];
1872 if (h == (struct ecoff_link_hash_entry *) NULL)
1873 abort ();
1874
1875 if (h->root.type != bfd_link_hash_defined)
1876 {
1877 /* Just ignore undefined symbols. These will presumably
1878 generate an error later in the link. */
1879 continue;
1880 }
1881
1882 /* Get the value of the symbol. */
1883 hsec = h->root.u.def.section;
1884 relocation = (h->root.u.def.value
1885 + hsec->output_section->vma
1886 + hsec->output_offset);
1887
1888 /* Subtract out the current address. */
1889 relocation -= (sec->output_section->vma
1890 + sec->output_offset
1891 + (int_rel.r_vaddr - sec->vma));
1892
1893 /* The addend is stored in the object file. In the normal case
1894 of ``bal symbol'', the addend will be -4. It will only be
1895 different in the case of ``bal symbol+constant''. To avoid
1896 always reading in the section contents, we don't check the
1897 addend in the object file (we could easily check the contents
1898 if we happen to have already read them in, but I fear that
1899 this could be confusing). This means we will screw up if
1900 there is a branch to a symbol that is in range, but added to
1901 a constant which puts it out of range; in such a case the
1902 link will fail with a reloc overflow error. Since the
1903 compiler will never generate such code, it should be easy
1904 enough to work around it by changing the assembly code in the
1905 source file. */
1906 relocation -= 4;
1907
1908 /* Now RELOCATION is the number we want to put in the object
1909 file. See whether it fits. */
1910 if (relocation >= -0x20000 && relocation < 0x20000)
1911 continue;
1912
1913 /* Now that we know this reloc needs work, which will rarely
1914 happen, go ahead and grab the section contents. */
1915 if (contents == (bfd_byte *) NULL)
1916 {
1917 if (info->keep_memory)
1918 contents = (bfd_byte *) bfd_alloc (abfd, sec->_raw_size);
1919 else
1920 contents = (bfd_byte *) malloc (sec->_raw_size);
1921 if (contents == (bfd_byte *) NULL)
1922 {
1923 bfd_set_error (bfd_error_no_memory);
1924 goto error_return;
1925 }
1926 if (! bfd_get_section_contents (abfd, sec, (PTR) contents,
1927 (file_ptr) 0, sec->_raw_size))
1928 goto error_return;
1929 if (info->keep_memory)
1930 section_tdata->contents = contents;
1931 }
1932
1933 /* We only support changing the bal instruction. It would be
1934 possible to handle other PC relative branches, but some of
1935 them (the conditional branches) would require a different
1936 length instruction sequence which would complicate both this
1937 routine and mips_relax_pcrel16. It could be written if
1938 somebody felt it were important. Ignoring this reloc will
1939 presumably cause a reloc overflow error later on. */
1940 if (bfd_get_32 (abfd, contents + int_rel.r_vaddr - sec->vma)
1941 != 0x0411ffff) /* bgezal $0,. == bal . */
1942 continue;
1943
1944 /* Bother. We need to expand this reloc, and we will need to
1945 make another relaxation pass since this change may put other
1946 relocs out of range. We need to examine the local branches
1947 and we need to allocate memory to hold the offsets we must
1948 add to them. We also need to adjust the values of all
1949 symbols in the object file following this location. */
1950
1951 sec->_cooked_size += PCREL16_EXPANSION_ADJUSTMENT;
1952 *again = true;
1953
1954 if (offsets == (long *) NULL)
1955 {
1956 size_t size;
1957
1958 size = sec->reloc_count * sizeof (long);
1959 offsets = (long *) bfd_alloc_by_size_t (abfd, size);
1960 if (offsets == (long *) NULL)
1961 {
1962 bfd_set_error (bfd_error_no_memory);
1963 goto error_return;
1964 }
1965 memset (offsets, 0, size);
1966 section_tdata->offsets = offsets;
1967 }
1968
1969 offsets[i] = 1;
1970
4f996613
ILT
1971 /* Now look for all PC relative references that cross this reloc
1972 and adjust their offsets. */
a3a33af3
ILT
1973 adj_ext_rel = (struct external_reloc *) section_tdata->external_relocs;
1974 for (adj_i = 0; adj_ext_rel < ext_rel_end; adj_ext_rel++, adj_i++)
1975 {
1976 struct internal_reloc adj_int_rel;
4f996613
ILT
1977 bfd_vma start, stop;
1978 int change;
a3a33af3
ILT
1979
1980 mips_ecoff_swap_reloc_in (abfd, (PTR) adj_ext_rel, &adj_int_rel);
1981
4f996613 1982 if (adj_int_rel.r_type == MIPS_R_PCREL16)
dabf906e
ILT
1983 {
1984 unsigned long insn;
4f996613
ILT
1985
1986 /* We only care about local references. External ones
1987 will be relocated correctly anyhow. */
1988 if (adj_int_rel.r_extern)
1989 continue;
dabf906e
ILT
1990
1991 /* We are only interested in a PC relative reloc within
1992 this section. FIXME: Cross section PC relative
1993 relocs may not be handled correctly; does anybody
1994 care? */
1995 if (adj_int_rel.r_symndx != RELOC_SECTION_TEXT)
1996 continue;
a3a33af3 1997
4f996613
ILT
1998 start = adj_int_rel.r_vaddr;
1999
dabf906e
ILT
2000 insn = bfd_get_32 (abfd,
2001 contents + adj_int_rel.r_vaddr - sec->vma);
2002
4f996613
ILT
2003 stop = (insn & 0xffff) << 2;
2004 if ((stop & 0x20000) != 0)
2005 stop -= 0x40000;
2006 stop += adj_int_rel.r_vaddr + 4;
dabf906e 2007 }
4f996613
ILT
2008 else if (adj_int_rel.r_type == MIPS_R_RELHI)
2009 {
2010 struct internal_reloc rello;
2011 long addhi, addlo;
2012
2013 /* The next reloc must be MIPS_R_RELLO, and we handle
2014 them together. */
2015 BFD_ASSERT (adj_ext_rel + 1 < ext_rel_end);
2016
2017 mips_ecoff_swap_reloc_in (abfd, (PTR) (adj_ext_rel + 1), &rello);
2018
2019 BFD_ASSERT (rello.r_type == MIPS_R_RELLO);
2020
2021 addhi = bfd_get_32 (abfd,
2022 contents + adj_int_rel.r_vaddr - sec->vma);
2023 addhi &= 0xffff;
2024 if (addhi & 0x8000)
2025 addhi -= 0x10000;
2026 addhi <<= 16;
2027
2028 addlo = bfd_get_32 (abfd, contents + rello.r_vaddr - sec->vma);
2029 addlo &= 0xffff;
2030 if (addlo & 0x8000)
2031 addlo -= 0x10000;
2032
2033 if (adj_int_rel.r_extern)
2034 {
2035 /* The value we want here is
2036 sym - RELLOaddr + addend
2037 which we can express as
2038 sym - (RELLOaddr - addend)
2039 Therefore if we are expanding the area between
2040 RELLOaddr and RELLOaddr - addend we must adjust
2041 the addend. This is admittedly ambiguous, since
2042 we might mean (sym + addend) - RELLOaddr, but in
2043 practice we don't, and there is no way to handle
2044 that case correctly since at this point we have
2045 no idea whether any reloc is being expanded
2046 between sym and sym + addend. */
2047 start = rello.r_vaddr - (addhi + addlo);
2048 stop = rello.r_vaddr;
2049 }
2050 else
2051 {
2052 /* An internal RELHI/RELLO pair represents the
2053 difference between two addresses, $LC0 - foo.
2054 The symndx value is actually the difference
2055 between the reloc address and $LC0. This lets us
2056 compute $LC0, and, by considering the addend,
2057 foo. If the reloc we are expanding falls between
2058 those two relocs, we must adjust the addend. At
2059 this point, the symndx value is actually in the
2060 r_offset field, where it was put by
2061 mips_ecoff_swap_reloc_in. */
2062 start = rello.r_vaddr - adj_int_rel.r_offset;
2063 stop = start + addhi + addlo;
2064 }
2065 }
2066 else if (adj_int_rel.r_type == MIPS_R_SWITCH)
dabf906e 2067 {
dabf906e
ILT
2068 /* A MIPS_R_SWITCH reloc represents a word of the form
2069 .word $L3-$LS12
2070 The value in the object file is correct, assuming the
2071 original value of $L3. The symndx value is actually
2072 the difference between the reloc address and $LS12.
2073 This lets us compute the original value of $LS12 as
2074 vaddr - symndx
2075 and the original value of $L3 as
2076 vaddr - symndx + addend
2077 where addend is the value from the object file. At
2078 this point, the symndx value is actually found in the
2079 r_offset field, since it was moved by
2080 mips_ecoff_swap_reloc_in. */
dabf906e
ILT
2081 start = adj_int_rel.r_vaddr - adj_int_rel.r_offset;
2082 stop = start + bfd_get_32 (abfd,
2083 (contents
2084 + adj_int_rel.r_vaddr
2085 - sec->vma));
4f996613
ILT
2086 }
2087 else
2088 continue;
2089
2090 /* If the range expressed by this reloc, which is the
2091 distance between START and STOP crosses the reloc we are
2092 expanding, we must adjust the offset. The sign of the
2093 adjustment depends upon the direction in which the range
2094 crosses the reloc being expanded. */
2095 if (start <= int_rel.r_vaddr && stop > int_rel.r_vaddr)
2096 change = PCREL16_EXPANSION_ADJUSTMENT;
2097 else if (start > int_rel.r_vaddr && stop <= int_rel.r_vaddr)
2098 change = - PCREL16_EXPANSION_ADJUSTMENT;
2099 else
2100 change = 0;
dabf906e 2101
4f996613
ILT
2102 offsets[adj_i] += change;
2103
2104 if (adj_int_rel.r_type == MIPS_R_RELHI)
2105 {
2106 adj_ext_rel++;
2107 adj_i++;
2108 offsets[adj_i] += change;
dabf906e 2109 }
a3a33af3
ILT
2110 }
2111
2112 /* Find all symbols in this section defined by this object file
2113 and adjust their values. Note that we decide whether to
2114 adjust the value based on the value stored in the ECOFF EXTR
2115 structure, because the value stored in the hash table may
2116 have been changed by an earlier expanded reloc and thus may
2117 no longer correctly indicate whether the symbol is before or
2118 after the expanded reloc. */
2119 ext_count = ecoff_data (abfd)->debug_info.symbolic_header.iextMax;
2120 adj_h_ptr = ecoff_data (abfd)->sym_hashes;
2121 adj_h_ptr_end = adj_h_ptr + ext_count;
2122 for (; adj_h_ptr < adj_h_ptr_end; adj_h_ptr++)
2123 {
2124 struct ecoff_link_hash_entry *adj_h;
2125
2126 adj_h = *adj_h_ptr;
2127 if (adj_h != (struct ecoff_link_hash_entry *) NULL
2128 && adj_h->root.type == bfd_link_hash_defined
2129 && adj_h->root.u.def.section == sec
2130 && adj_h->esym.asym.value > int_rel.r_vaddr)
2131 adj_h->root.u.def.value += PCREL16_EXPANSION_ADJUSTMENT;
2132 }
2133
2134 /* Add an entry to the symbol value adjust list. This is used
2135 by bfd_ecoff_debug_accumulate to adjust the values of
2136 internal symbols and FDR's. */
2137 adjust = ((struct ecoff_value_adjust *)
2138 bfd_alloc (abfd, sizeof (struct ecoff_value_adjust)));
2139 if (adjust == (struct ecoff_value_adjust *) NULL)
2140 {
2141 bfd_set_error (bfd_error_no_memory);
2142 goto error_return;
2143 }
2144
2145 adjust->start = int_rel.r_vaddr;
2146 adjust->end = sec->vma + sec->_raw_size;
2147 adjust->adjust = PCREL16_EXPANSION_ADJUSTMENT;
2148
2149 adjust->next = ecoff_data (abfd)->debug_info.adjust;
2150 ecoff_data (abfd)->debug_info.adjust = adjust;
2151 }
2152
2153 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2154 free (contents);
2155
2156 return true;
2157
2158 error_return:
2159 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2160 free (contents);
2161 return false;
2162}
2163
2164/* This routine is called from mips_relocate_section when a PC
2165 relative reloc must be expanded into the five instruction sequence.
2166 It handles all the details of the expansion, including resolving
2167 the reloc. */
2168
2169static boolean
2170mips_relax_pcrel16 (info, input_bfd, input_section, h, location, address)
2171 struct bfd_link_info *info;
2172 bfd *input_bfd;
2173 asection *input_section;
2174 struct ecoff_link_hash_entry *h;
2175 bfd_byte *location;
2176 bfd_vma address;
2177{
2178 bfd_vma relocation;
2179
2180 /* 0x0411ffff is bgezal $0,. == bal . */
2181 BFD_ASSERT (bfd_get_32 (input_bfd, location) == 0x0411ffff);
2182
2183 /* We need to compute the distance between the symbol and the
2184 current address plus eight. */
2185 relocation = (h->root.u.def.value
2186 + h->root.u.def.section->output_section->vma
2187 + h->root.u.def.section->output_offset);
2188 relocation -= address + 8;
2189
2190 /* If the lower half is negative, increment the upper 16 half. */
2191 if ((relocation & 0x8000) != 0)
2192 relocation += 0x10000;
2193
2194 bfd_put_32 (input_bfd, 0x04110001, location); /* bal .+8 */
2195 bfd_put_32 (input_bfd,
2196 0x3c010000 | ((relocation >> 16) & 0xffff), /* lui $at,XX */
2197 location + 4);
2198 bfd_put_32 (input_bfd,
2199 0x24210000 | (relocation & 0xffff), /* addiu $at,$at,XX */
2200 location + 8);
2201 bfd_put_32 (input_bfd, 0x003f0821, location + 12); /* addu $at,$at,$ra */
2202 bfd_put_32 (input_bfd, 0x0020f809, location + 16); /* jalr $at */
2203
2204 return true;
2205}
2206\f
23f44e6f
ILT
2207/* This is the ECOFF backend structure. The backend field of the
2208 target vector points to this. */
2209
2210static const struct ecoff_backend_data mips_ecoff_backend_data =
2211{
2212 /* COFF backend structure. */
2213 {
9783e04a 2214 (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */
23f44e6f
ILT
2215 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */
2216 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */
9783e04a 2217 (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/
23f44e6f
ILT
2218 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */
2219 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */
2220 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */
2221 mips_ecoff_swap_filehdr_out, mips_ecoff_swap_aouthdr_out,
2222 mips_ecoff_swap_scnhdr_out,
2223 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, true,
2224 mips_ecoff_swap_filehdr_in, mips_ecoff_swap_aouthdr_in,
2225 mips_ecoff_swap_scnhdr_in, mips_ecoff_bad_format_hook,
5fa2aaa2 2226 ecoff_set_arch_mach_hook, ecoff_mkobject_hook,
23f44e6f
ILT
2227 ecoff_styp_to_sec_flags, ecoff_make_section_hook, ecoff_set_alignment_hook,
2228 ecoff_slurp_symbol_table, NULL, NULL
2229 },
2230 /* Supported architecture. */
2231 bfd_arch_mips,
23f44e6f
ILT
2232 /* Initial portion of armap string. */
2233 "__________",
23f44e6f
ILT
2234 /* The page boundary used to align sections in a demand-paged
2235 executable file. E.g., 0x1000. */
2236 0x1000,
5fa2aaa2
ILT
2237 /* True if the .rdata section is part of the text segment, as on the
2238 Alpha. False if .rdata is part of the data segment, as on the
2239 MIPS. */
2240 false,
23f44e6f
ILT
2241 /* Bitsize of constructor entries. */
2242 32,
2243 /* Reloc to use for constructor entries. */
2244 &mips_howto_table[MIPS_R_REFWORD],
4991ebb9
ILT
2245 {
2246 /* Symbol table magic number. */
2247 magicSym,
2248 /* Alignment of debugging information. E.g., 4. */
2249 4,
2250 /* Sizes of external symbolic information. */
2251 sizeof (struct hdr_ext),
2252 sizeof (struct dnr_ext),
2253 sizeof (struct pdr_ext),
2254 sizeof (struct sym_ext),
2255 sizeof (struct opt_ext),
2256 sizeof (struct fdr_ext),
2257 sizeof (struct rfd_ext),
2258 sizeof (struct ext_ext),
2259 /* Functions to swap in external symbolic data. */
2260 ecoff_swap_hdr_in,
2261 ecoff_swap_dnr_in,
2262 ecoff_swap_pdr_in,
2263 ecoff_swap_sym_in,
2264 ecoff_swap_opt_in,
2265 ecoff_swap_fdr_in,
2266 ecoff_swap_rfd_in,
2267 ecoff_swap_ext_in,
2268 /* Functions to swap out external symbolic data. */
2269 ecoff_swap_hdr_out,
2270 ecoff_swap_dnr_out,
2271 ecoff_swap_pdr_out,
2272 ecoff_swap_sym_out,
2273 ecoff_swap_opt_out,
2274 ecoff_swap_fdr_out,
2275 ecoff_swap_rfd_out,
2276 ecoff_swap_ext_out
2277 },
23f44e6f
ILT
2278 /* External reloc size. */
2279 RELSZ,
2280 /* Reloc swapping functions. */
2281 mips_ecoff_swap_reloc_in,
2282 mips_ecoff_swap_reloc_out,
2283 /* Backend reloc tweaking. */
5fa2aaa2 2284 mips_adjust_reloc_in,
4991ebb9
ILT
2285 mips_adjust_reloc_out,
2286 /* Relocate section contents while linking. */
2287 mips_relocate_section
515c4292
ILT
2288};
2289
23f44e6f
ILT
2290/* Looking up a reloc type is MIPS specific. */
2291#define ecoff_bfd_reloc_type_lookup mips_bfd_reloc_type_lookup
2292
5fa2aaa2
ILT
2293/* Getting relocated section contents is generic. */
2294#define ecoff_bfd_get_relocated_section_contents \
2295 bfd_generic_get_relocated_section_contents
2296
a3a33af3
ILT
2297/* Relaxing sections is MIPS specific. */
2298#define ecoff_bfd_relax_section mips_relax_section
2299
1327fb29 2300bfd_target ecoff_little_vec =
294eaca4
SC
2301{
2302 "ecoff-littlemips", /* name */
515c4292 2303 bfd_target_ecoff_flavour,
294eaca4
SC
2304 false, /* data byte order is little */
2305 false, /* header byte order is little */
2306
2307 (HAS_RELOC | EXEC_P | /* object flags */
2308 HAS_LINENO | HAS_DEBUG |
4991ebb9 2309 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
294eaca4
SC
2310
2311 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* sect
2312 flags */
2313 0, /* leading underscore */
de17306e 2314 ' ', /* ar_pad_char */
294eaca4 2315 15, /* ar_max_namelen */
de17306e 2316 4, /* minimum alignment power */
23f44e6f
ILT
2317 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2318 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2319 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2320 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2321 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2322 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
294eaca4 2323
515c4292 2324 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
c3fe0c41 2325 ecoff_archive_p, _bfd_dummy_target},
23f44e6f 2326 {bfd_false, ecoff_mkobject, /* bfd_set_format */
dae31cf5 2327 _bfd_generic_mkarchive, bfd_false},
c3fe0c41
ILT
2328 {bfd_false, ecoff_write_object_contents, /* bfd_write_contents */
2329 _bfd_write_archive_contents, bfd_false},
6812b607
ILT
2330
2331 BFD_JUMP_TABLE_GENERIC (ecoff),
2332 BFD_JUMP_TABLE_COPY (ecoff),
2333 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2334 BFD_JUMP_TABLE_ARCHIVE (ecoff),
2335 BFD_JUMP_TABLE_SYMBOLS (ecoff),
2336 BFD_JUMP_TABLE_RELOCS (ecoff),
2337 BFD_JUMP_TABLE_WRITE (ecoff),
2338 BFD_JUMP_TABLE_LINK (ecoff),
dfc1c006 2339 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6812b607 2340
23f44e6f 2341 (PTR) &mips_ecoff_backend_data
515c4292 2342};
1327fb29
SC
2343
2344bfd_target ecoff_big_vec =
294eaca4
SC
2345{
2346 "ecoff-bigmips", /* name */
515c4292 2347 bfd_target_ecoff_flavour,
294eaca4
SC
2348 true, /* data byte order is big */
2349 true, /* header byte order is big */
2350
2351 (HAS_RELOC | EXEC_P | /* object flags */
2352 HAS_LINENO | HAS_DEBUG |
4991ebb9 2353 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
294eaca4
SC
2354
2355 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* sect flags */
2356 0, /* leading underscore */
2357 ' ', /* ar_pad_char */
de17306e
ILT
2358 15, /* ar_max_namelen */
2359 4, /* minimum alignment power */
23f44e6f
ILT
2360 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2361 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2362 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2363 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2364 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2365 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
294eaca4 2366 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
6812b607 2367 ecoff_archive_p, _bfd_dummy_target},
23f44e6f 2368 {bfd_false, ecoff_mkobject, /* bfd_set_format */
dae31cf5 2369 _bfd_generic_mkarchive, bfd_false},
515c4292 2370 {bfd_false, ecoff_write_object_contents, /* bfd_write_contents */
c3fe0c41 2371 _bfd_write_archive_contents, bfd_false},
6812b607
ILT
2372
2373 BFD_JUMP_TABLE_GENERIC (ecoff),
2374 BFD_JUMP_TABLE_COPY (ecoff),
2375 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2376 BFD_JUMP_TABLE_ARCHIVE (ecoff),
2377 BFD_JUMP_TABLE_SYMBOLS (ecoff),
2378 BFD_JUMP_TABLE_RELOCS (ecoff),
2379 BFD_JUMP_TABLE_WRITE (ecoff),
2380 BFD_JUMP_TABLE_LINK (ecoff),
dfc1c006 2381 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6812b607 2382
23f44e6f 2383 (PTR) &mips_ecoff_backend_data
515c4292 2384};