]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf32-arm.c
Debug info is lost for functions only called from functions marked with cmse_nonsecur...
[thirdparty/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
d87bef3a 2 Copyright (C) 1998-2023 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
6e6718a3 21#include "sysdep.h"
2468f9c9
PB
22#include <limits.h>
23
3db64b00 24#include "bfd.h"
00a97672 25#include "libiberty.h"
7f266840
DJ
26#include "libbfd.h"
27#include "elf-bfd.h"
b38cadfb 28#include "elf-nacl.h"
00a97672 29#include "elf-vxworks.h"
ee065d83 30#include "elf/arm.h"
f37164d7
AM
31#include "elf32-arm.h"
32#include "cpu-arm.h"
7f266840 33
00a97672
RS
34/* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36#define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39/* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41#define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46/* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48#define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53/* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55#define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
f3185997 60#define elf_info_to_howto NULL
07d6d2b8 61#define elf_info_to_howto_rel elf32_arm_info_to_howto
7f266840
DJ
62
63#define ARM_ELF_ABI_VERSION 0
64#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
79f08007
YZ
66/* The Adjusted Place, as defined by AAELF. */
67#define Pa(X) ((X) & 0xfffffffc)
68
0a1b45a2
AM
69static bool elf32_arm_write_section (bfd *output_bfd,
70 struct bfd_link_info *link_info,
71 asection *sec,
72 bfd_byte *contents);
3e6b1042 73
7f266840
DJ
74/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
76 in that slot. */
77
c19d1205 78static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 79{
8029a119 80 /* No relocation. */
7f266840
DJ
81 HOWTO (R_ARM_NONE, /* type */
82 0, /* rightshift */
c94cb026 83 0, /* size */
7f266840 84 0, /* bitsize */
0a1b45a2 85 false, /* pc_relative */
7f266840
DJ
86 0, /* bitpos */
87 complain_overflow_dont,/* complain_on_overflow */
88 bfd_elf_generic_reloc, /* special_function */
89 "R_ARM_NONE", /* name */
0a1b45a2 90 false, /* partial_inplace */
7f266840
DJ
91 0, /* src_mask */
92 0, /* dst_mask */
0a1b45a2 93 false), /* pcrel_offset */
7f266840
DJ
94
95 HOWTO (R_ARM_PC24, /* type */
96 2, /* rightshift */
c94cb026 97 4, /* size */
7f266840 98 24, /* bitsize */
0a1b45a2 99 true, /* pc_relative */
7f266840
DJ
100 0, /* bitpos */
101 complain_overflow_signed,/* complain_on_overflow */
102 bfd_elf_generic_reloc, /* special_function */
103 "R_ARM_PC24", /* name */
0a1b45a2 104 false, /* partial_inplace */
7f266840
DJ
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
0a1b45a2 107 true), /* pcrel_offset */
7f266840
DJ
108
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32, /* type */
111 0, /* rightshift */
c94cb026 112 4, /* size */
7f266840 113 32, /* bitsize */
0a1b45a2 114 false, /* pc_relative */
7f266840
DJ
115 0, /* bitpos */
116 complain_overflow_bitfield,/* complain_on_overflow */
117 bfd_elf_generic_reloc, /* special_function */
118 "R_ARM_ABS32", /* name */
0a1b45a2 119 false, /* partial_inplace */
7f266840
DJ
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
0a1b45a2 122 false), /* pcrel_offset */
7f266840
DJ
123
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32, /* type */
126 0, /* rightshift */
c94cb026 127 4, /* size */
7f266840 128 32, /* bitsize */
0a1b45a2 129 true, /* pc_relative */
7f266840
DJ
130 0, /* bitpos */
131 complain_overflow_bitfield,/* complain_on_overflow */
132 bfd_elf_generic_reloc, /* special_function */
133 "R_ARM_REL32", /* name */
0a1b45a2 134 false, /* partial_inplace */
7f266840
DJ
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
0a1b45a2 137 true), /* pcrel_offset */
7f266840 138
c19d1205 139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 140 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840 141 0, /* rightshift */
c94cb026 142 1, /* size */
4962c51a 143 32, /* bitsize */
0a1b45a2 144 true, /* pc_relative */
7f266840 145 0, /* bitpos */
4962c51a 146 complain_overflow_dont,/* complain_on_overflow */
7f266840 147 bfd_elf_generic_reloc, /* special_function */
4962c51a 148 "R_ARM_LDR_PC_G0", /* name */
0a1b45a2 149 false, /* partial_inplace */
4962c51a
MS
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
0a1b45a2 152 true), /* pcrel_offset */
7f266840
DJ
153
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16, /* type */
156 0, /* rightshift */
c94cb026 157 2, /* size */
7f266840 158 16, /* bitsize */
0a1b45a2 159 false, /* pc_relative */
7f266840
DJ
160 0, /* bitpos */
161 complain_overflow_bitfield,/* complain_on_overflow */
162 bfd_elf_generic_reloc, /* special_function */
163 "R_ARM_ABS16", /* name */
0a1b45a2 164 false, /* partial_inplace */
7f266840
DJ
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
0a1b45a2 167 false), /* pcrel_offset */
7f266840
DJ
168
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12, /* type */
171 0, /* rightshift */
c94cb026 172 4, /* size */
7f266840 173 12, /* bitsize */
0a1b45a2 174 false, /* pc_relative */
7f266840
DJ
175 0, /* bitpos */
176 complain_overflow_bitfield,/* complain_on_overflow */
177 bfd_elf_generic_reloc, /* special_function */
178 "R_ARM_ABS12", /* name */
0a1b45a2 179 false, /* partial_inplace */
00a97672
RS
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
0a1b45a2 182 false), /* pcrel_offset */
7f266840
DJ
183
184 HOWTO (R_ARM_THM_ABS5, /* type */
185 6, /* rightshift */
c94cb026 186 2, /* size */
7f266840 187 5, /* bitsize */
0a1b45a2 188 false, /* pc_relative */
7f266840
DJ
189 0, /* bitpos */
190 complain_overflow_bitfield,/* complain_on_overflow */
191 bfd_elf_generic_reloc, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
0a1b45a2 193 false, /* partial_inplace */
7f266840
DJ
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
0a1b45a2 196 false), /* pcrel_offset */
7f266840
DJ
197
198 /* 8 bit absolute */
199 HOWTO (R_ARM_ABS8, /* type */
200 0, /* rightshift */
c94cb026 201 1, /* size */
7f266840 202 8, /* bitsize */
0a1b45a2 203 false, /* pc_relative */
7f266840
DJ
204 0, /* bitpos */
205 complain_overflow_bitfield,/* complain_on_overflow */
206 bfd_elf_generic_reloc, /* special_function */
207 "R_ARM_ABS8", /* name */
0a1b45a2 208 false, /* partial_inplace */
7f266840
DJ
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
0a1b45a2 211 false), /* pcrel_offset */
7f266840
DJ
212
213 HOWTO (R_ARM_SBREL32, /* type */
214 0, /* rightshift */
c94cb026 215 4, /* size */
7f266840 216 32, /* bitsize */
0a1b45a2 217 false, /* pc_relative */
7f266840
DJ
218 0, /* bitpos */
219 complain_overflow_dont,/* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_ARM_SBREL32", /* name */
0a1b45a2 222 false, /* partial_inplace */
7f266840
DJ
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
0a1b45a2 225 false), /* pcrel_offset */
7f266840 226
c19d1205 227 HOWTO (R_ARM_THM_CALL, /* type */
7f266840 228 1, /* rightshift */
c94cb026 229 4, /* size */
f6ebfac0 230 24, /* bitsize */
0a1b45a2 231 true, /* pc_relative */
7f266840
DJ
232 0, /* bitpos */
233 complain_overflow_signed,/* complain_on_overflow */
234 bfd_elf_generic_reloc, /* special_function */
c19d1205 235 "R_ARM_THM_CALL", /* name */
0a1b45a2 236 false, /* partial_inplace */
7f6ab9f8
AM
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
0a1b45a2 239 true), /* pcrel_offset */
7f266840 240
07d6d2b8 241 HOWTO (R_ARM_THM_PC8, /* type */
7f266840 242 1, /* rightshift */
c94cb026 243 2, /* size */
7f266840 244 8, /* bitsize */
0a1b45a2 245 true, /* pc_relative */
7f266840
DJ
246 0, /* bitpos */
247 complain_overflow_signed,/* complain_on_overflow */
248 bfd_elf_generic_reloc, /* special_function */
249 "R_ARM_THM_PC8", /* name */
0a1b45a2 250 false, /* partial_inplace */
7f266840
DJ
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
0a1b45a2 253 true), /* pcrel_offset */
7f266840 254
c19d1205 255 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840 256 1, /* rightshift */
c94cb026 257 2, /* size */
c19d1205 258 32, /* bitsize */
0a1b45a2 259 false, /* pc_relative */
7f266840
DJ
260 0, /* bitpos */
261 complain_overflow_signed,/* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
c19d1205 263 "R_ARM_BREL_ADJ", /* name */
0a1b45a2 264 false, /* partial_inplace */
c19d1205
ZW
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
0a1b45a2 267 false), /* pcrel_offset */
7f266840 268
0855e32b 269 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 270 0, /* rightshift */
c94cb026 271 4, /* size */
0855e32b 272 32, /* bitsize */
0a1b45a2 273 false, /* pc_relative */
7f266840 274 0, /* bitpos */
0855e32b 275 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 276 bfd_elf_generic_reloc, /* special_function */
0855e32b 277 "R_ARM_TLS_DESC", /* name */
0a1b45a2 278 false, /* partial_inplace */
0855e32b
NS
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
0a1b45a2 281 false), /* pcrel_offset */
7f266840
DJ
282
283 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* rightshift */
5d0feb98 285 0, /* size */
7f266840 286 0, /* bitsize */
0a1b45a2 287 false, /* pc_relative */
7f266840
DJ
288 0, /* bitpos */
289 complain_overflow_signed,/* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_ARM_SWI8", /* name */
0a1b45a2 292 false, /* partial_inplace */
7f266840
DJ
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
0a1b45a2 295 false), /* pcrel_offset */
7f266840
DJ
296
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25, /* type */
299 2, /* rightshift */
c94cb026 300 4, /* size */
7f6ab9f8 301 24, /* bitsize */
0a1b45a2 302 true, /* pc_relative */
7f266840
DJ
303 0, /* bitpos */
304 complain_overflow_signed,/* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_ARM_XPC25", /* name */
0a1b45a2 307 false, /* partial_inplace */
7f266840
DJ
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
0a1b45a2 310 true), /* pcrel_offset */
7f266840
DJ
311
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* rightshift */
c94cb026 315 4, /* size */
7f6ab9f8 316 24, /* bitsize */
0a1b45a2 317 true, /* pc_relative */
7f266840
DJ
318 0, /* bitpos */
319 complain_overflow_signed,/* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
0a1b45a2 322 false, /* partial_inplace */
7f6ab9f8
AM
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
0a1b45a2 325 true), /* pcrel_offset */
7f266840 326
ba93b8ac 327 /* Dynamic TLS relocations. */
7f266840 328
ba93b8ac 329 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
07d6d2b8 330 0, /* rightshift */
c94cb026 331 4, /* size */
07d6d2b8 332 32, /* bitsize */
0a1b45a2 333 false, /* pc_relative */
07d6d2b8 334 0, /* bitpos */
99059e56
RM
335 complain_overflow_bitfield,/* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
0a1b45a2 338 true, /* partial_inplace */
99059e56
RM
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
0a1b45a2 341 false), /* pcrel_offset */
7f266840 342
ba93b8ac 343 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
07d6d2b8 344 0, /* rightshift */
c94cb026 345 4, /* size */
07d6d2b8 346 32, /* bitsize */
0a1b45a2 347 false, /* pc_relative */
07d6d2b8 348 0, /* bitpos */
99059e56
RM
349 complain_overflow_bitfield,/* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
0a1b45a2 352 true, /* partial_inplace */
99059e56
RM
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
0a1b45a2 355 false), /* pcrel_offset */
7f266840 356
ba93b8ac 357 HOWTO (R_ARM_TLS_TPOFF32, /* type */
07d6d2b8 358 0, /* rightshift */
c94cb026 359 4, /* size */
07d6d2b8 360 32, /* bitsize */
0a1b45a2 361 false, /* pc_relative */
07d6d2b8 362 0, /* bitpos */
99059e56
RM
363 complain_overflow_bitfield,/* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
0a1b45a2 366 true, /* partial_inplace */
99059e56
RM
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
0a1b45a2 369 false), /* pcrel_offset */
7f266840
DJ
370
371 /* Relocs used in ARM Linux */
372
373 HOWTO (R_ARM_COPY, /* type */
07d6d2b8 374 0, /* rightshift */
c94cb026 375 4, /* size */
07d6d2b8 376 32, /* bitsize */
0a1b45a2 377 false, /* pc_relative */
07d6d2b8 378 0, /* bitpos */
99059e56
RM
379 complain_overflow_bitfield,/* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_ARM_COPY", /* name */
0a1b45a2 382 true, /* partial_inplace */
99059e56
RM
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
0a1b45a2 385 false), /* pcrel_offset */
7f266840
DJ
386
387 HOWTO (R_ARM_GLOB_DAT, /* type */
07d6d2b8 388 0, /* rightshift */
c94cb026 389 4, /* size */
07d6d2b8 390 32, /* bitsize */
0a1b45a2 391 false, /* pc_relative */
07d6d2b8 392 0, /* bitpos */
99059e56
RM
393 complain_overflow_bitfield,/* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
0a1b45a2 396 true, /* partial_inplace */
99059e56
RM
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
0a1b45a2 399 false), /* pcrel_offset */
7f266840
DJ
400
401 HOWTO (R_ARM_JUMP_SLOT, /* type */
07d6d2b8 402 0, /* rightshift */
c94cb026 403 4, /* size */
07d6d2b8 404 32, /* bitsize */
0a1b45a2 405 false, /* pc_relative */
07d6d2b8 406 0, /* bitpos */
99059e56
RM
407 complain_overflow_bitfield,/* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
0a1b45a2 410 true, /* partial_inplace */
99059e56
RM
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
0a1b45a2 413 false), /* pcrel_offset */
7f266840
DJ
414
415 HOWTO (R_ARM_RELATIVE, /* type */
07d6d2b8 416 0, /* rightshift */
c94cb026 417 4, /* size */
07d6d2b8 418 32, /* bitsize */
0a1b45a2 419 false, /* pc_relative */
07d6d2b8 420 0, /* bitpos */
99059e56
RM
421 complain_overflow_bitfield,/* complain_on_overflow */
422 bfd_elf_generic_reloc, /* special_function */
423 "R_ARM_RELATIVE", /* name */
0a1b45a2 424 true, /* partial_inplace */
99059e56
RM
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
0a1b45a2 427 false), /* pcrel_offset */
7f266840 428
c19d1205 429 HOWTO (R_ARM_GOTOFF32, /* type */
07d6d2b8 430 0, /* rightshift */
c94cb026 431 4, /* size */
07d6d2b8 432 32, /* bitsize */
0a1b45a2 433 false, /* pc_relative */
07d6d2b8 434 0, /* bitpos */
99059e56
RM
435 complain_overflow_bitfield,/* complain_on_overflow */
436 bfd_elf_generic_reloc, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
0a1b45a2 438 true, /* partial_inplace */
99059e56
RM
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
0a1b45a2 441 false), /* pcrel_offset */
7f266840
DJ
442
443 HOWTO (R_ARM_GOTPC, /* type */
07d6d2b8 444 0, /* rightshift */
c94cb026 445 4, /* size */
07d6d2b8 446 32, /* bitsize */
0a1b45a2 447 true, /* pc_relative */
07d6d2b8 448 0, /* bitpos */
99059e56
RM
449 complain_overflow_bitfield,/* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_ARM_GOTPC", /* name */
0a1b45a2 452 true, /* partial_inplace */
99059e56
RM
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
0a1b45a2 455 true), /* pcrel_offset */
7f266840
DJ
456
457 HOWTO (R_ARM_GOT32, /* type */
07d6d2b8 458 0, /* rightshift */
c94cb026 459 4, /* size */
07d6d2b8 460 32, /* bitsize */
0a1b45a2 461 false, /* pc_relative */
07d6d2b8 462 0, /* bitpos */
99059e56
RM
463 complain_overflow_bitfield,/* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 "R_ARM_GOT32", /* name */
0a1b45a2 466 true, /* partial_inplace */
99059e56
RM
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
0a1b45a2 469 false), /* pcrel_offset */
7f266840
DJ
470
471 HOWTO (R_ARM_PLT32, /* type */
07d6d2b8 472 2, /* rightshift */
c94cb026 473 4, /* size */
07d6d2b8 474 24, /* bitsize */
0a1b45a2 475 true, /* pc_relative */
07d6d2b8 476 0, /* bitpos */
99059e56
RM
477 complain_overflow_bitfield,/* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 "R_ARM_PLT32", /* name */
0a1b45a2 480 false, /* partial_inplace */
99059e56
RM
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
0a1b45a2 483 true), /* pcrel_offset */
7f266840
DJ
484
485 HOWTO (R_ARM_CALL, /* type */
486 2, /* rightshift */
c94cb026 487 4, /* size */
7f266840 488 24, /* bitsize */
0a1b45a2 489 true, /* pc_relative */
7f266840
DJ
490 0, /* bitpos */
491 complain_overflow_signed,/* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 "R_ARM_CALL", /* name */
0a1b45a2 494 false, /* partial_inplace */
7f266840
DJ
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
0a1b45a2 497 true), /* pcrel_offset */
7f266840
DJ
498
499 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* rightshift */
c94cb026 501 4, /* size */
7f266840 502 24, /* bitsize */
0a1b45a2 503 true, /* pc_relative */
7f266840
DJ
504 0, /* bitpos */
505 complain_overflow_signed,/* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 "R_ARM_JUMP24", /* name */
0a1b45a2 508 false, /* partial_inplace */
7f266840
DJ
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
0a1b45a2 511 true), /* pcrel_offset */
7f266840 512
c19d1205
ZW
513 HOWTO (R_ARM_THM_JUMP24, /* type */
514 1, /* rightshift */
c94cb026 515 4, /* size */
c19d1205 516 24, /* bitsize */
0a1b45a2 517 true, /* pc_relative */
7f266840 518 0, /* bitpos */
c19d1205 519 complain_overflow_signed,/* complain_on_overflow */
7f266840 520 bfd_elf_generic_reloc, /* special_function */
c19d1205 521 "R_ARM_THM_JUMP24", /* name */
0a1b45a2 522 false, /* partial_inplace */
c19d1205
ZW
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
0a1b45a2 525 true), /* pcrel_offset */
7f266840 526
c19d1205 527 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 528 0, /* rightshift */
c94cb026 529 4, /* size */
c19d1205 530 32, /* bitsize */
0a1b45a2 531 false, /* pc_relative */
7f266840
DJ
532 0, /* bitpos */
533 complain_overflow_dont,/* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
c19d1205 535 "R_ARM_BASE_ABS", /* name */
0a1b45a2 536 false, /* partial_inplace */
c19d1205
ZW
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
0a1b45a2 539 false), /* pcrel_offset */
7f266840
DJ
540
541 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 0, /* rightshift */
c94cb026 543 4, /* size */
7f266840 544 12, /* bitsize */
0a1b45a2 545 true, /* pc_relative */
7f266840
DJ
546 0, /* bitpos */
547 complain_overflow_dont,/* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
0a1b45a2 550 false, /* partial_inplace */
7f266840
DJ
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
0a1b45a2 553 true), /* pcrel_offset */
7f266840
DJ
554
555 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 0, /* rightshift */
c94cb026 557 4, /* size */
7f266840 558 12, /* bitsize */
0a1b45a2 559 true, /* pc_relative */
7f266840
DJ
560 8, /* bitpos */
561 complain_overflow_dont,/* complain_on_overflow */
562 bfd_elf_generic_reloc, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
0a1b45a2 564 false, /* partial_inplace */
7f266840
DJ
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
0a1b45a2 567 true), /* pcrel_offset */
7f266840
DJ
568
569 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 0, /* rightshift */
c94cb026 571 4, /* size */
7f266840 572 12, /* bitsize */
0a1b45a2 573 true, /* pc_relative */
7f266840
DJ
574 16, /* bitpos */
575 complain_overflow_dont,/* complain_on_overflow */
576 bfd_elf_generic_reloc, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
0a1b45a2 578 false, /* partial_inplace */
7f266840
DJ
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
0a1b45a2 581 true), /* pcrel_offset */
7f266840
DJ
582
583 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 0, /* rightshift */
c94cb026 585 4, /* size */
7f266840 586 12, /* bitsize */
0a1b45a2 587 false, /* pc_relative */
7f266840
DJ
588 0, /* bitpos */
589 complain_overflow_dont,/* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
0a1b45a2 592 false, /* partial_inplace */
7f266840
DJ
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
0a1b45a2 595 false), /* pcrel_offset */
7f266840
DJ
596
597 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 0, /* rightshift */
c94cb026 599 4, /* size */
7f266840 600 8, /* bitsize */
0a1b45a2 601 false, /* pc_relative */
7f266840
DJ
602 12, /* bitpos */
603 complain_overflow_dont,/* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
0a1b45a2 606 false, /* partial_inplace */
7f266840
DJ
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
0a1b45a2 609 false), /* pcrel_offset */
7f266840
DJ
610
611 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 0, /* rightshift */
c94cb026 613 4, /* size */
7f266840 614 8, /* bitsize */
0a1b45a2 615 false, /* pc_relative */
7f266840
DJ
616 20, /* bitpos */
617 complain_overflow_dont,/* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
0a1b45a2 620 false, /* partial_inplace */
7f266840
DJ
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
0a1b45a2 623 false), /* pcrel_offset */
7f266840
DJ
624
625 HOWTO (R_ARM_TARGET1, /* type */
626 0, /* rightshift */
c94cb026 627 4, /* size */
7f266840 628 32, /* bitsize */
0a1b45a2 629 false, /* pc_relative */
7f266840
DJ
630 0, /* bitpos */
631 complain_overflow_dont,/* complain_on_overflow */
632 bfd_elf_generic_reloc, /* special_function */
633 "R_ARM_TARGET1", /* name */
0a1b45a2 634 false, /* partial_inplace */
7f266840
DJ
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
0a1b45a2 637 false), /* pcrel_offset */
7f266840
DJ
638
639 HOWTO (R_ARM_ROSEGREL32, /* type */
640 0, /* rightshift */
c94cb026 641 4, /* size */
7f266840 642 32, /* bitsize */
0a1b45a2 643 false, /* pc_relative */
7f266840
DJ
644 0, /* bitpos */
645 complain_overflow_dont,/* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
0a1b45a2 648 false, /* partial_inplace */
7f266840
DJ
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
0a1b45a2 651 false), /* pcrel_offset */
7f266840
DJ
652
653 HOWTO (R_ARM_V4BX, /* type */
654 0, /* rightshift */
c94cb026 655 4, /* size */
7f266840 656 32, /* bitsize */
0a1b45a2 657 false, /* pc_relative */
7f266840
DJ
658 0, /* bitpos */
659 complain_overflow_dont,/* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 "R_ARM_V4BX", /* name */
0a1b45a2 662 false, /* partial_inplace */
7f266840
DJ
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
0a1b45a2 665 false), /* pcrel_offset */
7f266840
DJ
666
667 HOWTO (R_ARM_TARGET2, /* type */
668 0, /* rightshift */
c94cb026 669 4, /* size */
7f266840 670 32, /* bitsize */
0a1b45a2 671 false, /* pc_relative */
7f266840
DJ
672 0, /* bitpos */
673 complain_overflow_signed,/* complain_on_overflow */
674 bfd_elf_generic_reloc, /* special_function */
675 "R_ARM_TARGET2", /* name */
0a1b45a2 676 false, /* partial_inplace */
7f266840
DJ
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
0a1b45a2 679 true), /* pcrel_offset */
7f266840
DJ
680
681 HOWTO (R_ARM_PREL31, /* type */
682 0, /* rightshift */
c94cb026 683 4, /* size */
7f266840 684 31, /* bitsize */
0a1b45a2 685 true, /* pc_relative */
7f266840
DJ
686 0, /* bitpos */
687 complain_overflow_signed,/* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 "R_ARM_PREL31", /* name */
0a1b45a2 690 false, /* partial_inplace */
7f266840
DJ
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
0a1b45a2 693 true), /* pcrel_offset */
c19d1205
ZW
694
695 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 0, /* rightshift */
c94cb026 697 4, /* size */
c19d1205 698 16, /* bitsize */
0a1b45a2 699 false, /* pc_relative */
c19d1205
ZW
700 0, /* bitpos */
701 complain_overflow_dont,/* complain_on_overflow */
702 bfd_elf_generic_reloc, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
0a1b45a2 704 false, /* partial_inplace */
39623e12
PB
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
0a1b45a2 707 false), /* pcrel_offset */
c19d1205
ZW
708
709 HOWTO (R_ARM_MOVT_ABS, /* type */
710 0, /* rightshift */
c94cb026 711 4, /* size */
c19d1205 712 16, /* bitsize */
0a1b45a2 713 false, /* pc_relative */
c19d1205
ZW
714 0, /* bitpos */
715 complain_overflow_bitfield,/* complain_on_overflow */
716 bfd_elf_generic_reloc, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
0a1b45a2 718 false, /* partial_inplace */
39623e12
PB
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
0a1b45a2 721 false), /* pcrel_offset */
c19d1205
ZW
722
723 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 0, /* rightshift */
c94cb026 725 4, /* size */
c19d1205 726 16, /* bitsize */
0a1b45a2 727 true, /* pc_relative */
c19d1205
ZW
728 0, /* bitpos */
729 complain_overflow_dont,/* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
0a1b45a2 732 false, /* partial_inplace */
39623e12
PB
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
0a1b45a2 735 true), /* pcrel_offset */
c19d1205
ZW
736
737 HOWTO (R_ARM_MOVT_PREL, /* type */
738 0, /* rightshift */
c94cb026 739 4, /* size */
c19d1205 740 16, /* bitsize */
0a1b45a2 741 true, /* pc_relative */
c19d1205
ZW
742 0, /* bitpos */
743 complain_overflow_bitfield,/* complain_on_overflow */
744 bfd_elf_generic_reloc, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
0a1b45a2 746 false, /* partial_inplace */
39623e12
PB
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
0a1b45a2 749 true), /* pcrel_offset */
c19d1205
ZW
750
751 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 0, /* rightshift */
c94cb026 753 4, /* size */
c19d1205 754 16, /* bitsize */
0a1b45a2 755 false, /* pc_relative */
c19d1205
ZW
756 0, /* bitpos */
757 complain_overflow_dont,/* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
0a1b45a2 760 false, /* partial_inplace */
c19d1205
ZW
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
0a1b45a2 763 false), /* pcrel_offset */
c19d1205
ZW
764
765 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 0, /* rightshift */
c94cb026 767 4, /* size */
c19d1205 768 16, /* bitsize */
0a1b45a2 769 false, /* pc_relative */
c19d1205
ZW
770 0, /* bitpos */
771 complain_overflow_bitfield,/* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
0a1b45a2 774 false, /* partial_inplace */
c19d1205
ZW
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
0a1b45a2 777 false), /* pcrel_offset */
c19d1205
ZW
778
779 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 0, /* rightshift */
c94cb026 781 4, /* size */
c19d1205 782 16, /* bitsize */
0a1b45a2 783 true, /* pc_relative */
c19d1205
ZW
784 0, /* bitpos */
785 complain_overflow_dont,/* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
0a1b45a2 788 false, /* partial_inplace */
c19d1205
ZW
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
0a1b45a2 791 true), /* pcrel_offset */
c19d1205
ZW
792
793 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 0, /* rightshift */
c94cb026 795 4, /* size */
c19d1205 796 16, /* bitsize */
0a1b45a2 797 true, /* pc_relative */
c19d1205
ZW
798 0, /* bitpos */
799 complain_overflow_bitfield,/* complain_on_overflow */
800 bfd_elf_generic_reloc, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
0a1b45a2 802 false, /* partial_inplace */
c19d1205
ZW
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
0a1b45a2 805 true), /* pcrel_offset */
c19d1205
ZW
806
807 HOWTO (R_ARM_THM_JUMP19, /* type */
808 1, /* rightshift */
c94cb026 809 4, /* size */
c19d1205 810 19, /* bitsize */
0a1b45a2 811 true, /* pc_relative */
c19d1205
ZW
812 0, /* bitpos */
813 complain_overflow_signed,/* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
0a1b45a2 816 false, /* partial_inplace */
c19d1205
ZW
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
0a1b45a2 819 true), /* pcrel_offset */
c19d1205
ZW
820
821 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* rightshift */
c94cb026 823 2, /* size */
c19d1205 824 6, /* bitsize */
0a1b45a2 825 true, /* pc_relative */
c19d1205
ZW
826 0, /* bitpos */
827 complain_overflow_unsigned,/* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
0a1b45a2 830 false, /* partial_inplace */
c19d1205
ZW
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
0a1b45a2 833 true), /* pcrel_offset */
c19d1205
ZW
834
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 versa. */
838 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 0, /* rightshift */
c94cb026 840 4, /* size */
c19d1205 841 13, /* bitsize */
0a1b45a2 842 true, /* pc_relative */
c19d1205 843 0, /* bitpos */
2cab6cc3 844 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
845 bfd_elf_generic_reloc, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
0a1b45a2 847 false, /* partial_inplace */
2cab6cc3
MS
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
0a1b45a2 850 true), /* pcrel_offset */
c19d1205
ZW
851
852 HOWTO (R_ARM_THM_PC12, /* type */
853 0, /* rightshift */
c94cb026 854 4, /* size */
c19d1205 855 13, /* bitsize */
0a1b45a2 856 true, /* pc_relative */
c19d1205 857 0, /* bitpos */
2cab6cc3 858 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
859 bfd_elf_generic_reloc, /* special_function */
860 "R_ARM_THM_PC12", /* name */
0a1b45a2 861 false, /* partial_inplace */
2cab6cc3
MS
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
0a1b45a2 864 true), /* pcrel_offset */
c19d1205
ZW
865
866 HOWTO (R_ARM_ABS32_NOI, /* type */
867 0, /* rightshift */
c94cb026 868 4, /* size */
c19d1205 869 32, /* bitsize */
0a1b45a2 870 false, /* pc_relative */
c19d1205
ZW
871 0, /* bitpos */
872 complain_overflow_dont,/* complain_on_overflow */
873 bfd_elf_generic_reloc, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
0a1b45a2 875 false, /* partial_inplace */
c19d1205
ZW
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
0a1b45a2 878 false), /* pcrel_offset */
c19d1205
ZW
879
880 HOWTO (R_ARM_REL32_NOI, /* type */
881 0, /* rightshift */
c94cb026 882 4, /* size */
c19d1205 883 32, /* bitsize */
0a1b45a2 884 true, /* pc_relative */
c19d1205
ZW
885 0, /* bitpos */
886 complain_overflow_dont,/* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
0a1b45a2 889 false, /* partial_inplace */
c19d1205
ZW
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
0a1b45a2 892 false), /* pcrel_offset */
7f266840 893
4962c51a
MS
894 /* Group relocations. */
895
896 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 0, /* rightshift */
c94cb026 898 4, /* size */
4962c51a 899 32, /* bitsize */
0a1b45a2 900 true, /* pc_relative */
4962c51a
MS
901 0, /* bitpos */
902 complain_overflow_dont,/* complain_on_overflow */
903 bfd_elf_generic_reloc, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
0a1b45a2 905 false, /* partial_inplace */
4962c51a
MS
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
0a1b45a2 908 true), /* pcrel_offset */
4962c51a 909
07d6d2b8 910 HOWTO (R_ARM_ALU_PC_G0, /* type */
4962c51a 911 0, /* rightshift */
c94cb026 912 4, /* size */
4962c51a 913 32, /* bitsize */
0a1b45a2 914 true, /* pc_relative */
4962c51a
MS
915 0, /* bitpos */
916 complain_overflow_dont,/* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 918 "R_ARM_ALU_PC_G0", /* name */
0a1b45a2 919 false, /* partial_inplace */
4962c51a
MS
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
0a1b45a2 922 true), /* pcrel_offset */
4962c51a
MS
923
924 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 0, /* rightshift */
c94cb026 926 4, /* size */
4962c51a 927 32, /* bitsize */
0a1b45a2 928 true, /* pc_relative */
4962c51a
MS
929 0, /* bitpos */
930 complain_overflow_dont,/* complain_on_overflow */
931 bfd_elf_generic_reloc, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
0a1b45a2 933 false, /* partial_inplace */
4962c51a
MS
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
0a1b45a2 936 true), /* pcrel_offset */
4962c51a 937
07d6d2b8 938 HOWTO (R_ARM_ALU_PC_G1, /* type */
4962c51a 939 0, /* rightshift */
c94cb026 940 4, /* size */
4962c51a 941 32, /* bitsize */
0a1b45a2 942 true, /* pc_relative */
4962c51a
MS
943 0, /* bitpos */
944 complain_overflow_dont,/* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 946 "R_ARM_ALU_PC_G1", /* name */
0a1b45a2 947 false, /* partial_inplace */
4962c51a
MS
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
0a1b45a2 950 true), /* pcrel_offset */
4962c51a 951
07d6d2b8 952 HOWTO (R_ARM_ALU_PC_G2, /* type */
4962c51a 953 0, /* rightshift */
c94cb026 954 4, /* size */
4962c51a 955 32, /* bitsize */
0a1b45a2 956 true, /* pc_relative */
4962c51a
MS
957 0, /* bitpos */
958 complain_overflow_dont,/* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 960 "R_ARM_ALU_PC_G2", /* name */
0a1b45a2 961 false, /* partial_inplace */
4962c51a
MS
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
0a1b45a2 964 true), /* pcrel_offset */
4962c51a 965
07d6d2b8 966 HOWTO (R_ARM_LDR_PC_G1, /* type */
4962c51a 967 0, /* rightshift */
c94cb026 968 4, /* size */
4962c51a 969 32, /* bitsize */
0a1b45a2 970 true, /* pc_relative */
4962c51a
MS
971 0, /* bitpos */
972 complain_overflow_dont,/* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 974 "R_ARM_LDR_PC_G1", /* name */
0a1b45a2 975 false, /* partial_inplace */
4962c51a
MS
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
0a1b45a2 978 true), /* pcrel_offset */
4962c51a 979
07d6d2b8 980 HOWTO (R_ARM_LDR_PC_G2, /* type */
4962c51a 981 0, /* rightshift */
c94cb026 982 4, /* size */
4962c51a 983 32, /* bitsize */
0a1b45a2 984 true, /* pc_relative */
4962c51a
MS
985 0, /* bitpos */
986 complain_overflow_dont,/* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 988 "R_ARM_LDR_PC_G2", /* name */
0a1b45a2 989 false, /* partial_inplace */
4962c51a
MS
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
0a1b45a2 992 true), /* pcrel_offset */
4962c51a 993
07d6d2b8 994 HOWTO (R_ARM_LDRS_PC_G0, /* type */
4962c51a 995 0, /* rightshift */
c94cb026 996 4, /* size */
4962c51a 997 32, /* bitsize */
0a1b45a2 998 true, /* pc_relative */
4962c51a
MS
999 0, /* bitpos */
1000 complain_overflow_dont,/* complain_on_overflow */
1001 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1002 "R_ARM_LDRS_PC_G0", /* name */
0a1b45a2 1003 false, /* partial_inplace */
4962c51a
MS
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
0a1b45a2 1006 true), /* pcrel_offset */
4962c51a 1007
07d6d2b8 1008 HOWTO (R_ARM_LDRS_PC_G1, /* type */
4962c51a 1009 0, /* rightshift */
c94cb026 1010 4, /* size */
4962c51a 1011 32, /* bitsize */
0a1b45a2 1012 true, /* pc_relative */
4962c51a
MS
1013 0, /* bitpos */
1014 complain_overflow_dont,/* complain_on_overflow */
1015 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1016 "R_ARM_LDRS_PC_G1", /* name */
0a1b45a2 1017 false, /* partial_inplace */
4962c51a
MS
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
0a1b45a2 1020 true), /* pcrel_offset */
4962c51a 1021
07d6d2b8 1022 HOWTO (R_ARM_LDRS_PC_G2, /* type */
4962c51a 1023 0, /* rightshift */
c94cb026 1024 4, /* size */
4962c51a 1025 32, /* bitsize */
0a1b45a2 1026 true, /* pc_relative */
4962c51a
MS
1027 0, /* bitpos */
1028 complain_overflow_dont,/* complain_on_overflow */
1029 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1030 "R_ARM_LDRS_PC_G2", /* name */
0a1b45a2 1031 false, /* partial_inplace */
4962c51a
MS
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
0a1b45a2 1034 true), /* pcrel_offset */
4962c51a 1035
07d6d2b8 1036 HOWTO (R_ARM_LDC_PC_G0, /* type */
4962c51a 1037 0, /* rightshift */
c94cb026 1038 4, /* size */
4962c51a 1039 32, /* bitsize */
0a1b45a2 1040 true, /* pc_relative */
4962c51a
MS
1041 0, /* bitpos */
1042 complain_overflow_dont,/* complain_on_overflow */
1043 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1044 "R_ARM_LDC_PC_G0", /* name */
0a1b45a2 1045 false, /* partial_inplace */
4962c51a
MS
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
0a1b45a2 1048 true), /* pcrel_offset */
4962c51a 1049
07d6d2b8 1050 HOWTO (R_ARM_LDC_PC_G1, /* type */
4962c51a 1051 0, /* rightshift */
c94cb026 1052 4, /* size */
4962c51a 1053 32, /* bitsize */
0a1b45a2 1054 true, /* pc_relative */
4962c51a
MS
1055 0, /* bitpos */
1056 complain_overflow_dont,/* complain_on_overflow */
1057 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1058 "R_ARM_LDC_PC_G1", /* name */
0a1b45a2 1059 false, /* partial_inplace */
4962c51a
MS
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
0a1b45a2 1062 true), /* pcrel_offset */
4962c51a 1063
07d6d2b8 1064 HOWTO (R_ARM_LDC_PC_G2, /* type */
4962c51a 1065 0, /* rightshift */
c94cb026 1066 4, /* size */
4962c51a 1067 32, /* bitsize */
0a1b45a2 1068 true, /* pc_relative */
4962c51a
MS
1069 0, /* bitpos */
1070 complain_overflow_dont,/* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1072 "R_ARM_LDC_PC_G2", /* name */
0a1b45a2 1073 false, /* partial_inplace */
4962c51a
MS
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
0a1b45a2 1076 true), /* pcrel_offset */
4962c51a 1077
07d6d2b8 1078 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
4962c51a 1079 0, /* rightshift */
c94cb026 1080 4, /* size */
4962c51a 1081 32, /* bitsize */
0a1b45a2 1082 true, /* pc_relative */
4962c51a
MS
1083 0, /* bitpos */
1084 complain_overflow_dont,/* complain_on_overflow */
1085 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1086 "R_ARM_ALU_SB_G0_NC", /* name */
0a1b45a2 1087 false, /* partial_inplace */
4962c51a
MS
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
0a1b45a2 1090 true), /* pcrel_offset */
4962c51a 1091
07d6d2b8 1092 HOWTO (R_ARM_ALU_SB_G0, /* type */
4962c51a 1093 0, /* rightshift */
c94cb026 1094 4, /* size */
4962c51a 1095 32, /* bitsize */
0a1b45a2 1096 true, /* pc_relative */
4962c51a
MS
1097 0, /* bitpos */
1098 complain_overflow_dont,/* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1100 "R_ARM_ALU_SB_G0", /* name */
0a1b45a2 1101 false, /* partial_inplace */
4962c51a
MS
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
0a1b45a2 1104 true), /* pcrel_offset */
4962c51a 1105
07d6d2b8 1106 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
4962c51a 1107 0, /* rightshift */
c94cb026 1108 4, /* size */
4962c51a 1109 32, /* bitsize */
0a1b45a2 1110 true, /* pc_relative */
4962c51a
MS
1111 0, /* bitpos */
1112 complain_overflow_dont,/* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1114 "R_ARM_ALU_SB_G1_NC", /* name */
0a1b45a2 1115 false, /* partial_inplace */
4962c51a
MS
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
0a1b45a2 1118 true), /* pcrel_offset */
4962c51a 1119
07d6d2b8 1120 HOWTO (R_ARM_ALU_SB_G1, /* type */
4962c51a 1121 0, /* rightshift */
c94cb026 1122 4, /* size */
4962c51a 1123 32, /* bitsize */
0a1b45a2 1124 true, /* pc_relative */
4962c51a
MS
1125 0, /* bitpos */
1126 complain_overflow_dont,/* complain_on_overflow */
1127 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1128 "R_ARM_ALU_SB_G1", /* name */
0a1b45a2 1129 false, /* partial_inplace */
4962c51a
MS
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
0a1b45a2 1132 true), /* pcrel_offset */
4962c51a 1133
07d6d2b8 1134 HOWTO (R_ARM_ALU_SB_G2, /* type */
4962c51a 1135 0, /* rightshift */
c94cb026 1136 4, /* size */
4962c51a 1137 32, /* bitsize */
0a1b45a2 1138 true, /* pc_relative */
4962c51a
MS
1139 0, /* bitpos */
1140 complain_overflow_dont,/* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1142 "R_ARM_ALU_SB_G2", /* name */
0a1b45a2 1143 false, /* partial_inplace */
4962c51a
MS
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
0a1b45a2 1146 true), /* pcrel_offset */
4962c51a 1147
07d6d2b8 1148 HOWTO (R_ARM_LDR_SB_G0, /* type */
4962c51a 1149 0, /* rightshift */
c94cb026 1150 4, /* size */
4962c51a 1151 32, /* bitsize */
0a1b45a2 1152 true, /* pc_relative */
4962c51a
MS
1153 0, /* bitpos */
1154 complain_overflow_dont,/* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1156 "R_ARM_LDR_SB_G0", /* name */
0a1b45a2 1157 false, /* partial_inplace */
4962c51a
MS
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
0a1b45a2 1160 true), /* pcrel_offset */
4962c51a 1161
07d6d2b8 1162 HOWTO (R_ARM_LDR_SB_G1, /* type */
4962c51a 1163 0, /* rightshift */
c94cb026 1164 4, /* size */
4962c51a 1165 32, /* bitsize */
0a1b45a2 1166 true, /* pc_relative */
4962c51a
MS
1167 0, /* bitpos */
1168 complain_overflow_dont,/* complain_on_overflow */
1169 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1170 "R_ARM_LDR_SB_G1", /* name */
0a1b45a2 1171 false, /* partial_inplace */
4962c51a
MS
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
0a1b45a2 1174 true), /* pcrel_offset */
4962c51a 1175
07d6d2b8 1176 HOWTO (R_ARM_LDR_SB_G2, /* type */
4962c51a 1177 0, /* rightshift */
c94cb026 1178 4, /* size */
4962c51a 1179 32, /* bitsize */
0a1b45a2 1180 true, /* pc_relative */
4962c51a
MS
1181 0, /* bitpos */
1182 complain_overflow_dont,/* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1184 "R_ARM_LDR_SB_G2", /* name */
0a1b45a2 1185 false, /* partial_inplace */
4962c51a
MS
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
0a1b45a2 1188 true), /* pcrel_offset */
4962c51a 1189
07d6d2b8 1190 HOWTO (R_ARM_LDRS_SB_G0, /* type */
4962c51a 1191 0, /* rightshift */
c94cb026 1192 4, /* size */
4962c51a 1193 32, /* bitsize */
0a1b45a2 1194 true, /* pc_relative */
4962c51a
MS
1195 0, /* bitpos */
1196 complain_overflow_dont,/* complain_on_overflow */
1197 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1198 "R_ARM_LDRS_SB_G0", /* name */
0a1b45a2 1199 false, /* partial_inplace */
4962c51a
MS
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
0a1b45a2 1202 true), /* pcrel_offset */
4962c51a 1203
07d6d2b8 1204 HOWTO (R_ARM_LDRS_SB_G1, /* type */
4962c51a 1205 0, /* rightshift */
c94cb026 1206 4, /* size */
4962c51a 1207 32, /* bitsize */
0a1b45a2 1208 true, /* pc_relative */
4962c51a
MS
1209 0, /* bitpos */
1210 complain_overflow_dont,/* complain_on_overflow */
1211 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1212 "R_ARM_LDRS_SB_G1", /* name */
0a1b45a2 1213 false, /* partial_inplace */
4962c51a
MS
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
0a1b45a2 1216 true), /* pcrel_offset */
4962c51a 1217
07d6d2b8 1218 HOWTO (R_ARM_LDRS_SB_G2, /* type */
4962c51a 1219 0, /* rightshift */
c94cb026 1220 4, /* size */
4962c51a 1221 32, /* bitsize */
0a1b45a2 1222 true, /* pc_relative */
4962c51a
MS
1223 0, /* bitpos */
1224 complain_overflow_dont,/* complain_on_overflow */
1225 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1226 "R_ARM_LDRS_SB_G2", /* name */
0a1b45a2 1227 false, /* partial_inplace */
4962c51a
MS
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
0a1b45a2 1230 true), /* pcrel_offset */
4962c51a 1231
07d6d2b8 1232 HOWTO (R_ARM_LDC_SB_G0, /* type */
4962c51a 1233 0, /* rightshift */
c94cb026 1234 4, /* size */
4962c51a 1235 32, /* bitsize */
0a1b45a2 1236 true, /* pc_relative */
4962c51a
MS
1237 0, /* bitpos */
1238 complain_overflow_dont,/* complain_on_overflow */
1239 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1240 "R_ARM_LDC_SB_G0", /* name */
0a1b45a2 1241 false, /* partial_inplace */
4962c51a
MS
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
0a1b45a2 1244 true), /* pcrel_offset */
4962c51a 1245
07d6d2b8 1246 HOWTO (R_ARM_LDC_SB_G1, /* type */
4962c51a 1247 0, /* rightshift */
c94cb026 1248 4, /* size */
4962c51a 1249 32, /* bitsize */
0a1b45a2 1250 true, /* pc_relative */
4962c51a
MS
1251 0, /* bitpos */
1252 complain_overflow_dont,/* complain_on_overflow */
1253 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1254 "R_ARM_LDC_SB_G1", /* name */
0a1b45a2 1255 false, /* partial_inplace */
4962c51a
MS
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
0a1b45a2 1258 true), /* pcrel_offset */
4962c51a 1259
07d6d2b8 1260 HOWTO (R_ARM_LDC_SB_G2, /* type */
4962c51a 1261 0, /* rightshift */
c94cb026 1262 4, /* size */
4962c51a 1263 32, /* bitsize */
0a1b45a2 1264 true, /* pc_relative */
4962c51a
MS
1265 0, /* bitpos */
1266 complain_overflow_dont,/* complain_on_overflow */
1267 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1268 "R_ARM_LDC_SB_G2", /* name */
0a1b45a2 1269 false, /* partial_inplace */
4962c51a
MS
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
0a1b45a2 1272 true), /* pcrel_offset */
4962c51a
MS
1273
1274 /* End of group relocations. */
c19d1205 1275
c19d1205
ZW
1276 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 0, /* rightshift */
c94cb026 1278 4, /* size */
c19d1205 1279 16, /* bitsize */
0a1b45a2 1280 false, /* pc_relative */
c19d1205
ZW
1281 0, /* bitpos */
1282 complain_overflow_dont,/* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
0a1b45a2 1285 false, /* partial_inplace */
c19d1205
ZW
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
0a1b45a2 1288 false), /* pcrel_offset */
c19d1205
ZW
1289
1290 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 0, /* rightshift */
c94cb026 1292 4, /* size */
c19d1205 1293 16, /* bitsize */
0a1b45a2 1294 false, /* pc_relative */
c19d1205
ZW
1295 0, /* bitpos */
1296 complain_overflow_bitfield,/* complain_on_overflow */
1297 bfd_elf_generic_reloc, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
0a1b45a2 1299 false, /* partial_inplace */
c19d1205
ZW
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
0a1b45a2 1302 false), /* pcrel_offset */
c19d1205
ZW
1303
1304 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 0, /* rightshift */
c94cb026 1306 4, /* size */
c19d1205 1307 16, /* bitsize */
0a1b45a2 1308 false, /* pc_relative */
c19d1205
ZW
1309 0, /* bitpos */
1310 complain_overflow_dont,/* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
0a1b45a2 1313 false, /* partial_inplace */
c19d1205
ZW
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
0a1b45a2 1316 false), /* pcrel_offset */
c19d1205
ZW
1317
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 0, /* rightshift */
c94cb026 1320 4, /* size */
c19d1205 1321 16, /* bitsize */
0a1b45a2 1322 false, /* pc_relative */
c19d1205
ZW
1323 0, /* bitpos */
1324 complain_overflow_dont,/* complain_on_overflow */
1325 bfd_elf_generic_reloc, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
0a1b45a2 1327 false, /* partial_inplace */
c19d1205
ZW
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
0a1b45a2 1330 false), /* pcrel_offset */
c19d1205
ZW
1331
1332 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 0, /* rightshift */
c94cb026 1334 4, /* size */
c19d1205 1335 16, /* bitsize */
0a1b45a2 1336 false, /* pc_relative */
c19d1205
ZW
1337 0, /* bitpos */
1338 complain_overflow_bitfield,/* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
0a1b45a2 1341 false, /* partial_inplace */
c19d1205
ZW
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
0a1b45a2 1344 false), /* pcrel_offset */
c19d1205
ZW
1345
1346 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 0, /* rightshift */
c94cb026 1348 4, /* size */
c19d1205 1349 16, /* bitsize */
0a1b45a2 1350 false, /* pc_relative */
c19d1205
ZW
1351 0, /* bitpos */
1352 complain_overflow_dont,/* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
0a1b45a2 1355 false, /* partial_inplace */
c19d1205
ZW
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
0a1b45a2 1358 false), /* pcrel_offset */
c19d1205 1359
0855e32b
NS
1360 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 0, /* rightshift */
c94cb026 1362 4, /* size */
0855e32b 1363 32, /* bitsize */
0a1b45a2 1364 false, /* pc_relative */
0855e32b
NS
1365 0, /* bitpos */
1366 complain_overflow_bitfield,/* complain_on_overflow */
1367 NULL, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
0a1b45a2 1369 true, /* partial_inplace */
0855e32b
NS
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
0a1b45a2 1372 false), /* pcrel_offset */
0855e32b
NS
1373
1374 HOWTO (R_ARM_TLS_CALL, /* type */
1375 0, /* rightshift */
c94cb026 1376 4, /* size */
0855e32b 1377 24, /* bitsize */
0a1b45a2 1378 false, /* pc_relative */
0855e32b
NS
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
0a1b45a2 1383 false, /* partial_inplace */
0855e32b
NS
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
0a1b45a2 1386 false), /* pcrel_offset */
0855e32b
NS
1387
1388 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 0, /* rightshift */
c94cb026 1390 4, /* size */
0855e32b 1391 0, /* bitsize */
0a1b45a2 1392 false, /* pc_relative */
0855e32b 1393 0, /* bitpos */
821e059c 1394 complain_overflow_dont,/* complain_on_overflow */
0855e32b
NS
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
0a1b45a2 1397 false, /* partial_inplace */
0855e32b
NS
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
0a1b45a2 1400 false), /* pcrel_offset */
0855e32b
NS
1401
1402 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 0, /* rightshift */
c94cb026 1404 4, /* size */
0855e32b 1405 24, /* bitsize */
0a1b45a2 1406 false, /* pc_relative */
0855e32b
NS
1407 0, /* bitpos */
1408 complain_overflow_dont,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
0a1b45a2 1411 false, /* partial_inplace */
0855e32b
NS
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
0a1b45a2 1414 false), /* pcrel_offset */
c19d1205
ZW
1415
1416 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 0, /* rightshift */
c94cb026 1418 4, /* size */
c19d1205 1419 32, /* bitsize */
0a1b45a2 1420 false, /* pc_relative */
c19d1205
ZW
1421 0, /* bitpos */
1422 complain_overflow_dont,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
0a1b45a2 1425 false, /* partial_inplace */
c19d1205
ZW
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
0a1b45a2 1428 false), /* pcrel_offset */
c19d1205
ZW
1429
1430 HOWTO (R_ARM_GOT_ABS, /* type */
1431 0, /* rightshift */
c94cb026 1432 4, /* size */
c19d1205 1433 32, /* bitsize */
0a1b45a2 1434 false, /* pc_relative */
c19d1205
ZW
1435 0, /* bitpos */
1436 complain_overflow_dont,/* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
0a1b45a2 1439 false, /* partial_inplace */
c19d1205
ZW
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
0a1b45a2 1442 false), /* pcrel_offset */
c19d1205
ZW
1443
1444 HOWTO (R_ARM_GOT_PREL, /* type */
1445 0, /* rightshift */
c94cb026 1446 4, /* size */
c19d1205 1447 32, /* bitsize */
0a1b45a2 1448 true, /* pc_relative */
c19d1205
ZW
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
0a1b45a2 1453 false, /* partial_inplace */
c19d1205
ZW
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
0a1b45a2 1456 true), /* pcrel_offset */
c19d1205
ZW
1457
1458 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 0, /* rightshift */
c94cb026 1460 4, /* size */
c19d1205 1461 12, /* bitsize */
0a1b45a2 1462 false, /* pc_relative */
c19d1205
ZW
1463 0, /* bitpos */
1464 complain_overflow_bitfield,/* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
0a1b45a2 1467 false, /* partial_inplace */
c19d1205
ZW
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
0a1b45a2 1470 false), /* pcrel_offset */
c19d1205
ZW
1471
1472 HOWTO (R_ARM_GOTOFF12, /* type */
1473 0, /* rightshift */
c94cb026 1474 4, /* size */
c19d1205 1475 12, /* bitsize */
0a1b45a2 1476 false, /* pc_relative */
c19d1205
ZW
1477 0, /* bitpos */
1478 complain_overflow_bitfield,/* complain_on_overflow */
1479 bfd_elf_generic_reloc, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
0a1b45a2 1481 false, /* partial_inplace */
c19d1205
ZW
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
0a1b45a2 1484 false), /* pcrel_offset */
c19d1205 1485
07d6d2b8 1486 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
c19d1205
ZW
1487
1488 /* GNU extension to record C++ vtable member usage */
07d6d2b8
AM
1489 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 0, /* rightshift */
c94cb026 1491 4, /* size */
07d6d2b8 1492 0, /* bitsize */
0a1b45a2 1493 false, /* pc_relative */
07d6d2b8 1494 0, /* bitpos */
99059e56 1495 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8
AM
1496 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
0a1b45a2 1498 false, /* partial_inplace */
07d6d2b8
AM
1499 0, /* src_mask */
1500 0, /* dst_mask */
0a1b45a2 1501 false), /* pcrel_offset */
c19d1205
ZW
1502
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
07d6d2b8 1505 0, /* rightshift */
c94cb026 1506 4, /* size */
07d6d2b8 1507 0, /* bitsize */
0a1b45a2 1508 false, /* pc_relative */
07d6d2b8 1509 0, /* bitpos */
99059e56 1510 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8 1511 NULL, /* special_function */
99059e56 1512 "R_ARM_GNU_VTINHERIT", /* name */
0a1b45a2 1513 false, /* partial_inplace */
07d6d2b8
AM
1514 0, /* src_mask */
1515 0, /* dst_mask */
0a1b45a2 1516 false), /* pcrel_offset */
c19d1205
ZW
1517
1518 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* rightshift */
c94cb026 1520 2, /* size */
c19d1205 1521 11, /* bitsize */
0a1b45a2 1522 true, /* pc_relative */
c19d1205
ZW
1523 0, /* bitpos */
1524 complain_overflow_signed, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
0a1b45a2 1527 false, /* partial_inplace */
c19d1205
ZW
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
0a1b45a2 1530 true), /* pcrel_offset */
c19d1205
ZW
1531
1532 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* rightshift */
c94cb026 1534 2, /* size */
c19d1205 1535 8, /* bitsize */
0a1b45a2 1536 true, /* pc_relative */
c19d1205
ZW
1537 0, /* bitpos */
1538 complain_overflow_signed, /* complain_on_overflow */
1539 bfd_elf_generic_reloc, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
0a1b45a2 1541 false, /* partial_inplace */
c19d1205
ZW
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
0a1b45a2 1544 true), /* pcrel_offset */
ba93b8ac 1545
c19d1205
ZW
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32, /* type */
07d6d2b8 1548 0, /* rightshift */
c94cb026 1549 4, /* size */
07d6d2b8 1550 32, /* bitsize */
0a1b45a2 1551 false, /* pc_relative */
07d6d2b8 1552 0, /* bitpos */
99059e56
RM
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 NULL, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
0a1b45a2 1556 true, /* partial_inplace */
99059e56
RM
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
0a1b45a2 1559 false), /* pcrel_offset */
ba93b8ac 1560
ba93b8ac 1561 HOWTO (R_ARM_TLS_LDM32, /* type */
07d6d2b8 1562 0, /* rightshift */
c94cb026 1563 4, /* size */
07d6d2b8 1564 32, /* bitsize */
0a1b45a2 1565 false, /* pc_relative */
07d6d2b8 1566 0, /* bitpos */
99059e56
RM
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
0a1b45a2 1570 true, /* partial_inplace */
99059e56
RM
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
0a1b45a2 1573 false), /* pcrel_offset */
ba93b8ac 1574
c19d1205 1575 HOWTO (R_ARM_TLS_LDO32, /* type */
07d6d2b8 1576 0, /* rightshift */
c94cb026 1577 4, /* size */
07d6d2b8 1578 32, /* bitsize */
0a1b45a2 1579 false, /* pc_relative */
07d6d2b8 1580 0, /* bitpos */
99059e56
RM
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
0a1b45a2 1584 true, /* partial_inplace */
99059e56
RM
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
0a1b45a2 1587 false), /* pcrel_offset */
ba93b8ac 1588
ba93b8ac 1589 HOWTO (R_ARM_TLS_IE32, /* type */
07d6d2b8 1590 0, /* rightshift */
c94cb026 1591 4, /* size */
07d6d2b8 1592 32, /* bitsize */
0a1b45a2 1593 false, /* pc_relative */
07d6d2b8 1594 0, /* bitpos */
99059e56
RM
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 NULL, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
0a1b45a2 1598 true, /* partial_inplace */
99059e56
RM
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
0a1b45a2 1601 false), /* pcrel_offset */
7f266840 1602
c19d1205 1603 HOWTO (R_ARM_TLS_LE32, /* type */
07d6d2b8 1604 0, /* rightshift */
c94cb026 1605 4, /* size */
07d6d2b8 1606 32, /* bitsize */
0a1b45a2 1607 false, /* pc_relative */
07d6d2b8 1608 0, /* bitpos */
99059e56 1609 complain_overflow_bitfield,/* complain_on_overflow */
07d6d2b8 1610 NULL, /* special_function */
99059e56 1611 "R_ARM_TLS_LE32", /* name */
0a1b45a2 1612 true, /* partial_inplace */
99059e56
RM
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
0a1b45a2 1615 false), /* pcrel_offset */
7f266840 1616
c19d1205
ZW
1617 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 0, /* rightshift */
c94cb026 1619 4, /* size */
c19d1205 1620 12, /* bitsize */
0a1b45a2 1621 false, /* pc_relative */
7f266840 1622 0, /* bitpos */
c19d1205 1623 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1624 bfd_elf_generic_reloc, /* special_function */
c19d1205 1625 "R_ARM_TLS_LDO12", /* name */
0a1b45a2 1626 false, /* partial_inplace */
c19d1205
ZW
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
0a1b45a2 1629 false), /* pcrel_offset */
7f266840 1630
c19d1205
ZW
1631 HOWTO (R_ARM_TLS_LE12, /* type */
1632 0, /* rightshift */
c94cb026 1633 4, /* size */
c19d1205 1634 12, /* bitsize */
0a1b45a2 1635 false, /* pc_relative */
7f266840 1636 0, /* bitpos */
c19d1205 1637 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1638 bfd_elf_generic_reloc, /* special_function */
c19d1205 1639 "R_ARM_TLS_LE12", /* name */
0a1b45a2 1640 false, /* partial_inplace */
c19d1205
ZW
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
0a1b45a2 1643 false), /* pcrel_offset */
7f266840 1644
c19d1205 1645 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840 1646 0, /* rightshift */
c94cb026 1647 4, /* size */
c19d1205 1648 12, /* bitsize */
0a1b45a2 1649 false, /* pc_relative */
7f266840 1650 0, /* bitpos */
c19d1205 1651 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1652 bfd_elf_generic_reloc, /* special_function */
c19d1205 1653 "R_ARM_TLS_IE12GP", /* name */
0a1b45a2 1654 false, /* partial_inplace */
c19d1205
ZW
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
0a1b45a2 1657 false), /* pcrel_offset */
0855e32b 1658
34e77a92 1659 /* 112-127 private relocations. */
0855e32b
NS
1660 EMPTY_HOWTO (112),
1661 EMPTY_HOWTO (113),
1662 EMPTY_HOWTO (114),
1663 EMPTY_HOWTO (115),
1664 EMPTY_HOWTO (116),
1665 EMPTY_HOWTO (117),
1666 EMPTY_HOWTO (118),
1667 EMPTY_HOWTO (119),
1668 EMPTY_HOWTO (120),
1669 EMPTY_HOWTO (121),
1670 EMPTY_HOWTO (122),
1671 EMPTY_HOWTO (123),
1672 EMPTY_HOWTO (124),
1673 EMPTY_HOWTO (125),
1674 EMPTY_HOWTO (126),
1675 EMPTY_HOWTO (127),
34e77a92
RS
1676
1677 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1678 EMPTY_HOWTO (128),
1679
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 0, /* rightshift */
c94cb026 1682 2, /* size */
0855e32b 1683 0, /* bitsize */
0a1b45a2 1684 false, /* pc_relative */
0855e32b 1685 0, /* bitpos */
821e059c 1686 complain_overflow_dont,/* complain_on_overflow */
0855e32b
NS
1687 bfd_elf_generic_reloc, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
0a1b45a2 1689 false, /* partial_inplace */
0855e32b
NS
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
0a1b45a2 1692 false), /* pcrel_offset */
72d98d16
MG
1693 EMPTY_HOWTO (130),
1694 EMPTY_HOWTO (131),
1695 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1696 0, /* rightshift. */
c94cb026 1697 2, /* size. */
72d98d16 1698 16, /* bitsize. */
0a1b45a2 1699 false, /* pc_relative. */
72d98d16
MG
1700 0, /* bitpos. */
1701 complain_overflow_bitfield,/* complain_on_overflow. */
1702 bfd_elf_generic_reloc, /* special_function. */
1703 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
0a1b45a2 1704 false, /* partial_inplace. */
72d98d16
MG
1705 0x00000000, /* src_mask. */
1706 0x00000000, /* dst_mask. */
0a1b45a2 1707 false), /* pcrel_offset. */
72d98d16
MG
1708 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1709 0, /* rightshift. */
c94cb026 1710 2, /* size. */
72d98d16 1711 16, /* bitsize. */
0a1b45a2 1712 false, /* pc_relative. */
72d98d16
MG
1713 0, /* bitpos. */
1714 complain_overflow_bitfield,/* complain_on_overflow. */
1715 bfd_elf_generic_reloc, /* special_function. */
1716 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
0a1b45a2 1717 false, /* partial_inplace. */
72d98d16
MG
1718 0x00000000, /* src_mask. */
1719 0x00000000, /* dst_mask. */
0a1b45a2 1720 false), /* pcrel_offset. */
72d98d16
MG
1721 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1722 0, /* rightshift. */
c94cb026 1723 2, /* size. */
72d98d16 1724 16, /* bitsize. */
0a1b45a2 1725 false, /* pc_relative. */
72d98d16
MG
1726 0, /* bitpos. */
1727 complain_overflow_bitfield,/* complain_on_overflow. */
1728 bfd_elf_generic_reloc, /* special_function. */
1729 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
0a1b45a2 1730 false, /* partial_inplace. */
72d98d16
MG
1731 0x00000000, /* src_mask. */
1732 0x00000000, /* dst_mask. */
0a1b45a2 1733 false), /* pcrel_offset. */
72d98d16
MG
1734 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1735 0, /* rightshift. */
c94cb026 1736 2, /* size. */
72d98d16 1737 16, /* bitsize. */
0a1b45a2 1738 false, /* pc_relative. */
72d98d16
MG
1739 0, /* bitpos. */
1740 complain_overflow_bitfield,/* complain_on_overflow. */
1741 bfd_elf_generic_reloc, /* special_function. */
1742 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
0a1b45a2 1743 false, /* partial_inplace. */
72d98d16
MG
1744 0x00000000, /* src_mask. */
1745 0x00000000, /* dst_mask. */
0a1b45a2 1746 false), /* pcrel_offset. */
e5d6e09e
AV
1747 /* Relocations for Armv8.1-M Mainline. */
1748 HOWTO (R_ARM_THM_BF16, /* type. */
1749 0, /* rightshift. */
c94cb026 1750 2, /* size. */
e5d6e09e 1751 16, /* bitsize. */
0a1b45a2 1752 true, /* pc_relative. */
e5d6e09e
AV
1753 0, /* bitpos. */
1754 complain_overflow_dont,/* do not complain_on_overflow. */
1755 bfd_elf_generic_reloc, /* special_function. */
1756 "R_ARM_THM_BF16", /* name. */
0a1b45a2 1757 false, /* partial_inplace. */
e5d6e09e
AV
1758 0x001f0ffe, /* src_mask. */
1759 0x001f0ffe, /* dst_mask. */
0a1b45a2 1760 true), /* pcrel_offset. */
1889da70
AV
1761 HOWTO (R_ARM_THM_BF12, /* type. */
1762 0, /* rightshift. */
c94cb026 1763 2, /* size. */
1889da70 1764 12, /* bitsize. */
0a1b45a2 1765 true, /* pc_relative. */
1889da70
AV
1766 0, /* bitpos. */
1767 complain_overflow_dont,/* do not complain_on_overflow. */
1768 bfd_elf_generic_reloc, /* special_function. */
1769 "R_ARM_THM_BF12", /* name. */
0a1b45a2 1770 false, /* partial_inplace. */
1889da70
AV
1771 0x00010ffe, /* src_mask. */
1772 0x00010ffe, /* dst_mask. */
0a1b45a2 1773 true), /* pcrel_offset. */
1caf72a5
AV
1774 HOWTO (R_ARM_THM_BF18, /* type. */
1775 0, /* rightshift. */
c94cb026 1776 2, /* size. */
1caf72a5 1777 18, /* bitsize. */
0a1b45a2 1778 true, /* pc_relative. */
1caf72a5
AV
1779 0, /* bitpos. */
1780 complain_overflow_dont,/* do not complain_on_overflow. */
1781 bfd_elf_generic_reloc, /* special_function. */
1782 "R_ARM_THM_BF18", /* name. */
0a1b45a2 1783 false, /* partial_inplace. */
1caf72a5
AV
1784 0x007f0ffe, /* src_mask. */
1785 0x007f0ffe, /* dst_mask. */
0a1b45a2 1786 true), /* pcrel_offset. */
c19d1205
ZW
1787};
1788
34e77a92 1789/* 160 onwards: */
5c5a4843 1790static reloc_howto_type elf32_arm_howto_table_2[8] =
34e77a92
RS
1791{
1792 HOWTO (R_ARM_IRELATIVE, /* type */
07d6d2b8 1793 0, /* rightshift */
c94cb026 1794 4, /* size */
07d6d2b8 1795 32, /* bitsize */
0a1b45a2 1796 false, /* pc_relative */
07d6d2b8 1797 0, /* bitpos */
99059e56
RM
1798 complain_overflow_bitfield,/* complain_on_overflow */
1799 bfd_elf_generic_reloc, /* special_function */
1800 "R_ARM_IRELATIVE", /* name */
0a1b45a2 1801 true, /* partial_inplace */
99059e56
RM
1802 0xffffffff, /* src_mask */
1803 0xffffffff, /* dst_mask */
0a1b45a2 1804 false), /* pcrel_offset */
188fd7ae
CL
1805 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1806 0, /* rightshift */
c94cb026 1807 4, /* size */
188fd7ae 1808 32, /* bitsize */
0a1b45a2 1809 false, /* pc_relative */
188fd7ae
CL
1810 0, /* bitpos */
1811 complain_overflow_bitfield,/* complain_on_overflow */
1812 bfd_elf_generic_reloc, /* special_function */
1813 "R_ARM_GOTFUNCDESC", /* name */
0a1b45a2 1814 false, /* partial_inplace */
188fd7ae
CL
1815 0, /* src_mask */
1816 0xffffffff, /* dst_mask */
0a1b45a2 1817 false), /* pcrel_offset */
188fd7ae
CL
1818 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1819 0, /* rightshift */
c94cb026 1820 4, /* size */
188fd7ae 1821 32, /* bitsize */
0a1b45a2 1822 false, /* pc_relative */
188fd7ae
CL
1823 0, /* bitpos */
1824 complain_overflow_bitfield,/* complain_on_overflow */
1825 bfd_elf_generic_reloc, /* special_function */
1826 "R_ARM_GOTOFFFUNCDESC",/* name */
0a1b45a2 1827 false, /* partial_inplace */
188fd7ae
CL
1828 0, /* src_mask */
1829 0xffffffff, /* dst_mask */
0a1b45a2 1830 false), /* pcrel_offset */
188fd7ae
CL
1831 HOWTO (R_ARM_FUNCDESC, /* type */
1832 0, /* rightshift */
c94cb026 1833 4, /* size */
188fd7ae 1834 32, /* bitsize */
0a1b45a2 1835 false, /* pc_relative */
188fd7ae
CL
1836 0, /* bitpos */
1837 complain_overflow_bitfield,/* complain_on_overflow */
1838 bfd_elf_generic_reloc, /* special_function */
1839 "R_ARM_FUNCDESC", /* name */
0a1b45a2 1840 false, /* partial_inplace */
188fd7ae
CL
1841 0, /* src_mask */
1842 0xffffffff, /* dst_mask */
0a1b45a2 1843 false), /* pcrel_offset */
188fd7ae
CL
1844 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1845 0, /* rightshift */
c94cb026 1846 4, /* size */
188fd7ae 1847 64, /* bitsize */
0a1b45a2 1848 false, /* pc_relative */
188fd7ae
CL
1849 0, /* bitpos */
1850 complain_overflow_bitfield,/* complain_on_overflow */
1851 bfd_elf_generic_reloc, /* special_function */
1852 "R_ARM_FUNCDESC_VALUE",/* name */
0a1b45a2 1853 false, /* partial_inplace */
188fd7ae
CL
1854 0, /* src_mask */
1855 0xffffffff, /* dst_mask */
0a1b45a2 1856 false), /* pcrel_offset */
5c5a4843
CL
1857 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1858 0, /* rightshift */
c94cb026 1859 4, /* size */
5c5a4843 1860 32, /* bitsize */
0a1b45a2 1861 false, /* pc_relative */
5c5a4843
CL
1862 0, /* bitpos */
1863 complain_overflow_bitfield,/* complain_on_overflow */
1864 bfd_elf_generic_reloc, /* special_function */
1865 "R_ARM_TLS_GD32_FDPIC",/* name */
0a1b45a2 1866 false, /* partial_inplace */
5c5a4843
CL
1867 0, /* src_mask */
1868 0xffffffff, /* dst_mask */
0a1b45a2 1869 false), /* pcrel_offset */
5c5a4843
CL
1870 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1871 0, /* rightshift */
c94cb026 1872 4, /* size */
5c5a4843 1873 32, /* bitsize */
0a1b45a2 1874 false, /* pc_relative */
5c5a4843
CL
1875 0, /* bitpos */
1876 complain_overflow_bitfield,/* complain_on_overflow */
1877 bfd_elf_generic_reloc, /* special_function */
1878 "R_ARM_TLS_LDM32_FDPIC",/* name */
0a1b45a2 1879 false, /* partial_inplace */
5c5a4843
CL
1880 0, /* src_mask */
1881 0xffffffff, /* dst_mask */
0a1b45a2 1882 false), /* pcrel_offset */
5c5a4843
CL
1883 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1884 0, /* rightshift */
c94cb026 1885 4, /* size */
5c5a4843 1886 32, /* bitsize */
0a1b45a2 1887 false, /* pc_relative */
5c5a4843
CL
1888 0, /* bitpos */
1889 complain_overflow_bitfield,/* complain_on_overflow */
1890 bfd_elf_generic_reloc, /* special_function */
1891 "R_ARM_TLS_IE32_FDPIC",/* name */
0a1b45a2 1892 false, /* partial_inplace */
5c5a4843
CL
1893 0, /* src_mask */
1894 0xffffffff, /* dst_mask */
0a1b45a2 1895 false), /* pcrel_offset */
34e77a92 1896};
c19d1205 1897
34e77a92
RS
1898/* 249-255 extended, currently unused, relocations: */
1899static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1900{
1901 HOWTO (R_ARM_RREL32, /* type */
1902 0, /* rightshift */
5d0feb98 1903 0, /* size */
7f266840 1904 0, /* bitsize */
0a1b45a2 1905 false, /* pc_relative */
7f266840
DJ
1906 0, /* bitpos */
1907 complain_overflow_dont,/* complain_on_overflow */
1908 bfd_elf_generic_reloc, /* special_function */
1909 "R_ARM_RREL32", /* name */
0a1b45a2 1910 false, /* partial_inplace */
7f266840
DJ
1911 0, /* src_mask */
1912 0, /* dst_mask */
0a1b45a2 1913 false), /* pcrel_offset */
7f266840
DJ
1914
1915 HOWTO (R_ARM_RABS32, /* type */
1916 0, /* rightshift */
5d0feb98 1917 0, /* size */
7f266840 1918 0, /* bitsize */
0a1b45a2 1919 false, /* pc_relative */
7f266840
DJ
1920 0, /* bitpos */
1921 complain_overflow_dont,/* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 "R_ARM_RABS32", /* name */
0a1b45a2 1924 false, /* partial_inplace */
7f266840
DJ
1925 0, /* src_mask */
1926 0, /* dst_mask */
0a1b45a2 1927 false), /* pcrel_offset */
7f266840
DJ
1928
1929 HOWTO (R_ARM_RPC24, /* type */
1930 0, /* rightshift */
5d0feb98 1931 0, /* size */
7f266840 1932 0, /* bitsize */
0a1b45a2 1933 false, /* pc_relative */
7f266840
DJ
1934 0, /* bitpos */
1935 complain_overflow_dont,/* complain_on_overflow */
1936 bfd_elf_generic_reloc, /* special_function */
1937 "R_ARM_RPC24", /* name */
0a1b45a2 1938 false, /* partial_inplace */
7f266840
DJ
1939 0, /* src_mask */
1940 0, /* dst_mask */
0a1b45a2 1941 false), /* pcrel_offset */
7f266840
DJ
1942
1943 HOWTO (R_ARM_RBASE, /* type */
1944 0, /* rightshift */
5d0feb98 1945 0, /* size */
7f266840 1946 0, /* bitsize */
0a1b45a2 1947 false, /* pc_relative */
7f266840
DJ
1948 0, /* bitpos */
1949 complain_overflow_dont,/* complain_on_overflow */
1950 bfd_elf_generic_reloc, /* special_function */
1951 "R_ARM_RBASE", /* name */
0a1b45a2 1952 false, /* partial_inplace */
7f266840
DJ
1953 0, /* src_mask */
1954 0, /* dst_mask */
0a1b45a2 1955 false) /* pcrel_offset */
7f266840
DJ
1956};
1957
1958static reloc_howto_type *
1959elf32_arm_howto_from_type (unsigned int r_type)
1960{
906e58ca 1961 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1962 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1963
188fd7ae
CL
1964 if (r_type >= R_ARM_IRELATIVE
1965 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
34e77a92
RS
1966 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1967
c19d1205 1968 if (r_type >= R_ARM_RREL32
34e77a92
RS
1969 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1970 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1971
c19d1205 1972 return NULL;
7f266840
DJ
1973}
1974
0a1b45a2 1975static bool
f3185997 1976elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
7f266840
DJ
1977 Elf_Internal_Rela * elf_reloc)
1978{
1979 unsigned int r_type;
1980
1981 r_type = ELF32_R_TYPE (elf_reloc->r_info);
f3185997
NC
1982 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1983 {
1984 /* xgettext:c-format */
1985 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1986 abfd, r_type);
1987 bfd_set_error (bfd_error_bad_value);
0a1b45a2 1988 return false;
f3185997 1989 }
0a1b45a2 1990 return true;
7f266840
DJ
1991}
1992
1993struct elf32_arm_reloc_map
1994 {
1995 bfd_reloc_code_real_type bfd_reloc_val;
07d6d2b8 1996 unsigned char elf_reloc_val;
7f266840
DJ
1997 };
1998
1999/* All entries in this list must also be present in elf32_arm_howto_table. */
2000static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
2001 {
07d6d2b8 2002 {BFD_RELOC_NONE, R_ARM_NONE},
7f266840 2003 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
2004 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2005 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
07d6d2b8
AM
2006 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2007 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2008 {BFD_RELOC_32, R_ARM_ABS32},
2009 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2010 {BFD_RELOC_8, R_ARM_ABS8},
2011 {BFD_RELOC_16, R_ARM_ABS16},
2012 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
7f266840 2013 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
2014 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2018 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2019 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
07d6d2b8
AM
2020 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2021 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2022 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2023 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2024 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2025 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2026 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2027 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
7f266840
DJ
2028 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2029 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2030 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2031 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac 2032 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
07d6d2b8
AM
2033 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2034 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2035 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
0855e32b 2036 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
07d6d2b8 2037 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
0855e32b 2038 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
07d6d2b8 2039 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
2040 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2041 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2042 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2043 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2044 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
07d6d2b8
AM
2045 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2046 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2047 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2048 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
188fd7ae
CL
2049 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2050 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2051 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2052 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
5c5a4843
CL
2053 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2054 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2055 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
c19d1205
ZW
2056 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2057 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
2058 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2059 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2060 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2061 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2062 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2064 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2065 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
2066 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2068 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2069 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2070 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2071 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2072 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2073 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2074 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2075 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2076 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2077 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2078 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2079 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2080 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2082 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2083 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2084 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2085 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2086 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2087 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2088 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2089 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2090 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2091 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2092 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6 2093 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
72d98d16
MG
2094 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2097 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
e5d6e09e 2098 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
1caf72a5 2099 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
1889da70 2100 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
1caf72a5 2101 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
7f266840
DJ
2102 };
2103
2104static reloc_howto_type *
f1c71a59
ZW
2105elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2106 bfd_reloc_code_real_type code)
7f266840
DJ
2107{
2108 unsigned int i;
8029a119 2109
906e58ca 2110 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
2111 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2112 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 2113
c19d1205 2114 return NULL;
7f266840
DJ
2115}
2116
157090f7
AM
2117static reloc_howto_type *
2118elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2119 const char *r_name)
2120{
2121 unsigned int i;
2122
906e58ca 2123 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
2124 if (elf32_arm_howto_table_1[i].name != NULL
2125 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2126 return &elf32_arm_howto_table_1[i];
2127
906e58ca 2128 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
2129 if (elf32_arm_howto_table_2[i].name != NULL
2130 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2131 return &elf32_arm_howto_table_2[i];
2132
34e77a92
RS
2133 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2134 if (elf32_arm_howto_table_3[i].name != NULL
2135 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2136 return &elf32_arm_howto_table_3[i];
2137
157090f7
AM
2138 return NULL;
2139}
2140
906e58ca
NC
2141/* Support for core dump NOTE sections. */
2142
0a1b45a2 2143static bool
f1c71a59 2144elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2145{
2146 int offset;
2147 size_t size;
2148
2149 switch (note->descsz)
2150 {
2151 default:
0a1b45a2 2152 return false;
7f266840 2153
8029a119 2154 case 148: /* Linux/ARM 32-bit. */
7f266840 2155 /* pr_cursig */
228e534f 2156 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
7f266840
DJ
2157
2158 /* pr_pid */
228e534f 2159 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
2160
2161 /* pr_reg */
2162 offset = 72;
2163 size = 72;
2164
2165 break;
2166 }
2167
2168 /* Make a ".reg/999" section. */
2169 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2170 size, note->descpos + offset);
2171}
2172
0a1b45a2 2173static bool
f1c71a59 2174elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2175{
2176 switch (note->descsz)
2177 {
2178 default:
0a1b45a2 2179 return false;
7f266840 2180
8029a119 2181 case 124: /* Linux/ARM elf_prpsinfo. */
228e534f 2182 elf_tdata (abfd)->core->pid
4395ee08 2183 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 2184 elf_tdata (abfd)->core->program
7f266840 2185 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 2186 elf_tdata (abfd)->core->command
7f266840
DJ
2187 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2188 }
2189
2190 /* Note that for some reason, a spurious space is tacked
2191 onto the end of the args in some (at least one anyway)
2192 implementations, so strip it off if it exists. */
7f266840 2193 {
228e534f 2194 char *command = elf_tdata (abfd)->core->command;
7f266840
DJ
2195 int n = strlen (command);
2196
2197 if (0 < n && command[n - 1] == ' ')
2198 command[n - 1] = '\0';
2199 }
2200
0a1b45a2 2201 return true;
7f266840
DJ
2202}
2203
1f20dca5
UW
2204static char *
2205elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2206 int note_type, ...)
2207{
2208 switch (note_type)
2209 {
2210 default:
2211 return NULL;
2212
2213 case NT_PRPSINFO:
2214 {
602f1657 2215 char data[124] ATTRIBUTE_NONSTRING;
1f20dca5
UW
2216 va_list ap;
2217
2218 va_start (ap, note_type);
2219 memset (data, 0, sizeof (data));
2220 strncpy (data + 28, va_arg (ap, const char *), 16);
be3e27bb 2221#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2222 DIAGNOSTIC_PUSH;
be3e27bb 2223 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
95da9854
L
2224 -Wstringop-truncation:
2225 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2226 */
95da9854
L
2227 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2228#endif
1f20dca5 2229 strncpy (data + 44, va_arg (ap, const char *), 80);
be3e27bb 2230#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2231 DIAGNOSTIC_POP;
fe75810f 2232#endif
1f20dca5
UW
2233 va_end (ap);
2234
2235 return elfcore_write_note (abfd, buf, bufsiz,
2236 "CORE", note_type, data, sizeof (data));
2237 }
2238
2239 case NT_PRSTATUS:
2240 {
2241 char data[148];
2242 va_list ap;
2243 long pid;
2244 int cursig;
2245 const void *greg;
2246
2247 va_start (ap, note_type);
2248 memset (data, 0, sizeof (data));
2249 pid = va_arg (ap, long);
2250 bfd_put_32 (abfd, pid, data + 24);
2251 cursig = va_arg (ap, int);
2252 bfd_put_16 (abfd, cursig, data + 12);
2253 greg = va_arg (ap, const void *);
2254 memcpy (data + 72, greg, 72);
2255 va_end (ap);
2256
2257 return elfcore_write_note (abfd, buf, bufsiz,
2258 "CORE", note_type, data, sizeof (data));
2259 }
2260 }
2261}
2262
07d6d2b8
AM
2263#define TARGET_LITTLE_SYM arm_elf32_le_vec
2264#define TARGET_LITTLE_NAME "elf32-littlearm"
2265#define TARGET_BIG_SYM arm_elf32_be_vec
2266#define TARGET_BIG_NAME "elf32-bigarm"
7f266840
DJ
2267
2268#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2269#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2270#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2271
252b5132
RH
2272typedef unsigned long int insn32;
2273typedef unsigned short int insn16;
2274
3a4a14e9
PB
2275/* In lieu of proper flags, assume all EABIv4 or later objects are
2276 interworkable. */
57e8b36a 2277#define INTERWORK_FLAG(abfd) \
3a4a14e9 2278 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2279 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2280 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2281
252b5132
RH
2282/* The linker script knows the section names for placement.
2283 The entry_names are used to do simple name mangling on the stubs.
2284 Given a function name, and its type, the stub can be found. The
9b485d32 2285 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2286#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2287#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2288
2289#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2290#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2291
c7b8f16e
JB
2292#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2293#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2294
a504d23a
LA
2295#define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2296#define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2297
845b51d6
PB
2298#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2299#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2300
7413f23f
DJ
2301#define STUB_ENTRY_NAME "__%s_veneer"
2302
4ba2ef8f
TP
2303#define CMSE_PREFIX "__acle_se_"
2304
4d83e8d9
CL
2305#define CMSE_STUB_NAME ".gnu.sgstubs"
2306
252b5132
RH
2307/* The name of the dynamic interpreter. This is put in the .interp
2308 section. */
2309#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2310
cb10292c
CL
2311/* FDPIC default stack size. */
2312#define DEFAULT_STACK_SIZE 0x8000
2313
0855e32b 2314static const unsigned long tls_trampoline [] =
b38cadfb
NC
2315{
2316 0xe08e0000, /* add r0, lr, r0 */
2317 0xe5901004, /* ldr r1, [r0,#4] */
2318 0xe12fff11, /* bx r1 */
2319};
0855e32b
NS
2320
2321static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2322{
2323 0xe52d2004, /* push {r2} */
2324 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2325 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2326 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2327 0xe081100f, /* 2: add r1, pc */
2328 0xe12fff12, /* bx r2 */
2329 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
99059e56 2330 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2331 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2332};
0855e32b 2333
b4e87f2c
TC
2334/* NOTE: [Thumb nop sequence]
2335 When adding code that transitions from Thumb to Arm the instruction that
2336 should be used for the alignment padding should be 0xe7fd (b .-2) instead of
2337 a nop for performance reasons. */
2338
7801f98f
CL
2339/* ARM FDPIC PLT entry. */
2340/* The last 5 words contain PLT lazy fragment code and data. */
2341static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2342 {
2343 0xe59fc008, /* ldr r12, .L1 */
2344 0xe08cc009, /* add r12, r12, r9 */
2345 0xe59c9004, /* ldr r9, [r12, #4] */
2346 0xe59cf000, /* ldr pc, [r12] */
2347 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2348 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2349 0xe51fc00c, /* ldr r12, [pc, #-12] */
2350 0xe92d1000, /* push {r12} */
2351 0xe599c004, /* ldr r12, [r9, #4] */
2352 0xe599f000, /* ldr pc, [r9] */
2353 };
2354
59029f57
CL
2355/* Thumb FDPIC PLT entry. */
2356/* The last 5 words contain PLT lazy fragment code and data. */
2357static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2358 {
2359 0xc00cf8df, /* ldr.w r12, .L1 */
2360 0x0c09eb0c, /* add.w r12, r12, r9 */
2361 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2362 0xf000f8dc, /* ldr.w pc, [r12] */
2363 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2364 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2365 0xc008f85f, /* ldr.w r12, .L2 */
2366 0xcd04f84d, /* push {r12} */
2367 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2368 0xf000f8d9, /* ldr.w pc, [r9] */
2369 };
2370
5e681ec4
PB
2371#ifdef FOUR_WORD_PLT
2372
252b5132
RH
2373/* The first entry in a procedure linkage table looks like
2374 this. It is set up so that any shared library function that is
59f2c4e7 2375 called before the relocation has been set up calls the dynamic
9b485d32 2376 linker first. */
e5a52504 2377static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2378{
2379 0xe52de004, /* str lr, [sp, #-4]! */
2380 0xe59fe010, /* ldr lr, [pc, #16] */
2381 0xe08fe00e, /* add lr, pc, lr */
2382 0xe5bef008, /* ldr pc, [lr, #8]! */
2383};
5e681ec4
PB
2384
2385/* Subsequent entries in a procedure linkage table look like
2386 this. */
e5a52504 2387static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2388{
2389 0xe28fc600, /* add ip, pc, #NN */
2390 0xe28cca00, /* add ip, ip, #NN */
2391 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2392 0x00000000, /* unused */
2393};
5e681ec4 2394
eed94f8f 2395#else /* not FOUR_WORD_PLT */
5e681ec4 2396
5e681ec4
PB
2397/* The first entry in a procedure linkage table looks like
2398 this. It is set up so that any shared library function that is
2399 called before the relocation has been set up calls the dynamic
2400 linker first. */
e5a52504 2401static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb 2402{
07d6d2b8
AM
2403 0xe52de004, /* str lr, [sp, #-4]! */
2404 0xe59fe004, /* ldr lr, [pc, #4] */
2405 0xe08fe00e, /* add lr, pc, lr */
2406 0xe5bef008, /* ldr pc, [lr, #8]! */
2407 0x00000000, /* &GOT[0] - . */
b38cadfb 2408};
252b5132 2409
1db37fe6
YG
2410/* By default subsequent entries in a procedure linkage table look like
2411 this. Offsets that don't fit into 28 bits will cause link error. */
2412static const bfd_vma elf32_arm_plt_entry_short [] =
b38cadfb
NC
2413{
2414 0xe28fc600, /* add ip, pc, #0xNN00000 */
2415 0xe28cca00, /* add ip, ip, #0xNN000 */
2416 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2417};
5e681ec4 2418
1db37fe6
YG
2419/* When explicitly asked, we'll use this "long" entry format
2420 which can cope with arbitrary displacements. */
2421static const bfd_vma elf32_arm_plt_entry_long [] =
2422{
07d6d2b8
AM
2423 0xe28fc200, /* add ip, pc, #0xN0000000 */
2424 0xe28cc600, /* add ip, ip, #0xNN00000 */
1db37fe6
YG
2425 0xe28cca00, /* add ip, ip, #0xNN000 */
2426 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2427};
2428
0a1b45a2 2429static bool elf32_arm_use_long_plt_entry = false;
1db37fe6 2430
eed94f8f
NC
2431#endif /* not FOUR_WORD_PLT */
2432
2433/* The first entry in a procedure linkage table looks like this.
2434 It is set up so that any shared library function that is called before the
2435 relocation has been set up calls the dynamic linker first. */
2436static const bfd_vma elf32_thumb2_plt0_entry [] =
2437{
2438 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2439 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2440 0xf8dfb500, /* push {lr} */
2441 0x44fee008, /* ldr.w lr, [pc, #8] */
2442 /* add lr, pc */
eed94f8f 2443 0xff08f85e, /* ldr.w pc, [lr, #8]! */
07d6d2b8 2444 0x00000000, /* &GOT[0] - . */
eed94f8f
NC
2445};
2446
2447/* Subsequent entries in a procedure linkage table for thumb only target
2448 look like this. */
2449static const bfd_vma elf32_thumb2_plt_entry [] =
2450{
2451 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2452 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2453 0x0c00f240, /* movw ip, #0xNNNN */
2454 0x0c00f2c0, /* movt ip, #0xNNNN */
2455 0xf8dc44fc, /* add ip, pc */
15ccbdd7
TC
2456 0xe7fcf000 /* ldr.w pc, [ip] */
2457 /* b .-4 */
eed94f8f 2458};
252b5132 2459
00a97672
RS
2460/* The format of the first entry in the procedure linkage table
2461 for a VxWorks executable. */
2462static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb 2463{
07d6d2b8
AM
2464 0xe52dc008, /* str ip,[sp,#-8]! */
2465 0xe59fc000, /* ldr ip,[pc] */
2466 0xe59cf008, /* ldr pc,[ip,#8] */
2467 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
b38cadfb 2468};
00a97672
RS
2469
2470/* The format of subsequent entries in a VxWorks executable. */
2471static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb 2472{
07d6d2b8
AM
2473 0xe59fc000, /* ldr ip,[pc] */
2474 0xe59cf000, /* ldr pc,[ip] */
2475 0x00000000, /* .long @got */
2476 0xe59fc000, /* ldr ip,[pc] */
2477 0xea000000, /* b _PLT */
2478 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2479};
00a97672
RS
2480
2481/* The format of entries in a VxWorks shared library. */
2482static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb 2483{
07d6d2b8
AM
2484 0xe59fc000, /* ldr ip,[pc] */
2485 0xe79cf009, /* ldr pc,[ip,r9] */
2486 0x00000000, /* .long @got */
2487 0xe59fc000, /* ldr ip,[pc] */
2488 0xe599f008, /* ldr pc,[r9,#8] */
2489 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2490};
00a97672 2491
b7693d02
DJ
2492/* An initial stub used if the PLT entry is referenced from Thumb code. */
2493#define PLT_THUMB_STUB_SIZE 4
2494static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2495{
2496 0x4778, /* bx pc */
b4e87f2c 2497 0xe7fd /* b .-2 */
b38cadfb 2498};
b7693d02 2499
b38cadfb
NC
2500/* The first entry in a procedure linkage table looks like
2501 this. It is set up so that any shared library function that is
2502 called before the relocation has been set up calls the dynamic
2503 linker first. */
2504static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2505{
2506 /* First bundle: */
2507 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2508 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2509 0xe08cc00f, /* add ip, ip, pc */
2510 0xe52dc008, /* str ip, [sp, #-8]! */
2511 /* Second bundle: */
edccdf7c
RM
2512 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2513 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2514 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2515 0xe12fff1c, /* bx ip */
b38cadfb 2516 /* Third bundle: */
edccdf7c
RM
2517 0xe320f000, /* nop */
2518 0xe320f000, /* nop */
2519 0xe320f000, /* nop */
b38cadfb
NC
2520 /* .Lplt_tail: */
2521 0xe50dc004, /* str ip, [sp, #-4] */
2522 /* Fourth bundle: */
edccdf7c
RM
2523 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2524 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2525 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2526 0xe12fff1c, /* bx ip */
b38cadfb
NC
2527};
2528#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2529
2530/* Subsequent entries in a procedure linkage table look like this. */
2531static const bfd_vma elf32_arm_nacl_plt_entry [] =
2532{
2533 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2534 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2535 0xe08cc00f, /* add ip, ip, pc */
2536 0xea000000, /* b .Lplt_tail */
2537};
e5a52504 2538
a747a286
VP
2539/* PR 28924:
2540 There was a bug due to too high values of THM_MAX_FWD_BRANCH_OFFSET and
2541 THM2_MAX_FWD_BRANCH_OFFSET. The first macro concerns the case when Thumb-2
2542 is not available, and second macro when Thumb-2 is available. Among other
2543 things, they affect the range of branches represented as BLX instructions
2544 in Encoding T2 defined in Section A8.8.25 of the ARM Architecture
2545 Reference Manual ARMv7-A and ARMv7-R edition issue C.d. Such branches are
2546 specified there to have a maximum forward offset that is a multiple of 4.
2547 Previously, the respective values defined here were multiples of 2 but not
2548 4 and they are included in comments for reference. */
906e58ca 2549#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
a747a286
VP
2550#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2551#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) - 4 + 4)
2552/* #def THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) - 2 + 4) */
906e58ca 2553#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
a747a286
VP
2554#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 4) + 4)
2555/* #def THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4) */
906e58ca 2556#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
c5423981
TG
2557#define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2558#define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
906e58ca 2559
461a49ca 2560enum stub_insn_type
b38cadfb
NC
2561{
2562 THUMB16_TYPE = 1,
2563 THUMB32_TYPE,
2564 ARM_TYPE,
2565 DATA_TYPE
2566};
461a49ca 2567
48229727
JB
2568#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2569/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2570 is inserted in arm_build_one_stub(). */
2571#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2572#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
d5a67c02
AV
2573#define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2574#define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
48229727
JB
2575#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2576#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2577#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2578#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2579
2580typedef struct
2581{
07d6d2b8 2582 bfd_vma data;
b38cadfb 2583 enum stub_insn_type type;
07d6d2b8
AM
2584 unsigned int r_type;
2585 int reloc_addend;
461a49ca
DJ
2586} insn_sequence;
2587
b4e87f2c
TC
2588/* See note [Thumb nop sequence] when adding a veneer. */
2589
fea2b4d6
CL
2590/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2591 to reach the stub if necessary. */
461a49ca 2592static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb 2593{
07d6d2b8 2594 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2595 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2596};
906e58ca 2597
fea2b4d6
CL
2598/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2599 available. */
461a49ca 2600static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb 2601{
07d6d2b8
AM
2602 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2603 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2604 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2605};
906e58ca 2606
d3626fb0 2607/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2608static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb 2609{
07d6d2b8
AM
2610 THUMB16_INSN (0xb401), /* push {r0} */
2611 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2612 THUMB16_INSN (0x4684), /* mov ip, r0 */
2613 THUMB16_INSN (0xbc01), /* pop {r0} */
2614 THUMB16_INSN (0x4760), /* bx ip */
2615 THUMB16_INSN (0xbf00), /* nop */
b38cadfb
NC
2616 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2617};
906e58ca 2618
80c135e5
TP
2619/* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2620static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2621{
07d6d2b8 2622 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
80c135e5
TP
2623 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2624};
2625
d5a67c02
AV
2626/* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2627 M-profile architectures. */
2628static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2629{
2630 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2631 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
07d6d2b8 2632 THUMB16_INSN (0x4760), /* bx ip */
d5a67c02
AV
2633};
2634
d3626fb0
CL
2635/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2636 allowed. */
2637static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb 2638{
07d6d2b8 2639 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2640 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2641 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2642 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2643 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2644};
d3626fb0 2645
fea2b4d6
CL
2646/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2647 available. */
461a49ca 2648static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb 2649{
07d6d2b8 2650 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2651 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8 2652 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2653 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2654};
906e58ca 2655
fea2b4d6
CL
2656/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2657 one, when the destination is close enough. */
461a49ca 2658static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb 2659{
07d6d2b8 2660 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2661 THUMB16_INSN (0xe7fd), /* b .-2 */
b38cadfb
NC
2662 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2663};
c820be07 2664
cf3eccff 2665/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2666 blx to reach the stub if necessary. */
cf3eccff 2667static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb 2668{
07d6d2b8
AM
2669 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2670 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
b38cadfb
NC
2671 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2672};
906e58ca 2673
cf3eccff
DJ
2674/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2675 blx to reach the stub if necessary. We can not add into pc;
2676 it is not guaranteed to mode switch (different in ARMv6 and
2677 ARMv7). */
2678static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb 2679{
07d6d2b8
AM
2680 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2681 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2682 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2683 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2684};
cf3eccff 2685
ebe24dd4
CL
2686/* V4T ARM -> ARM long branch stub, PIC. */
2687static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb 2688{
07d6d2b8
AM
2689 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2690 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2691 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2692 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2693};
ebe24dd4
CL
2694
2695/* V4T Thumb -> ARM long branch stub, PIC. */
2696static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb 2697{
07d6d2b8 2698 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2699 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2700 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2701 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
b38cadfb
NC
2702 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2703};
ebe24dd4 2704
d3626fb0
CL
2705/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2706 architectures. */
ebe24dd4 2707static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb 2708{
07d6d2b8
AM
2709 THUMB16_INSN (0xb401), /* push {r0} */
2710 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2711 THUMB16_INSN (0x46fc), /* mov ip, pc */
2712 THUMB16_INSN (0x4484), /* add ip, r0 */
2713 THUMB16_INSN (0xbc01), /* pop {r0} */
2714 THUMB16_INSN (0x4760), /* bx ip */
b38cadfb
NC
2715 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2716};
ebe24dd4 2717
d3626fb0
CL
2718/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2719 allowed. */
2720static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb 2721{
07d6d2b8 2722 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2723 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2724 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2725 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2726 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2727 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2728};
d3626fb0 2729
0855e32b
NS
2730/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2731 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2732static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2733{
07d6d2b8
AM
2734 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2735 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
b38cadfb 2736 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2737};
2738
2739/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2740 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2741static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2742{
07d6d2b8 2743 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2744 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2745 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2746 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
b38cadfb 2747 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2748};
2749
7a89b94e
NC
2750/* NaCl ARM -> ARM long branch stub. */
2751static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2752{
2753 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2754 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2755 ARM_INSN (0xe12fff1c), /* bx ip */
2756 ARM_INSN (0xe320f000), /* nop */
2757 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2758 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2759 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2760 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2761};
2762
2763/* NaCl ARM -> ARM long branch stub, PIC. */
2764static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2765{
2766 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
07d6d2b8 2767 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
7a89b94e 2768 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2769 ARM_INSN (0xe12fff1c), /* bx ip */
2770 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2771 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2772 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2773 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2774};
2775
4ba2ef8f
TP
2776/* Stub used for transition to secure state (aka SG veneer). */
2777static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2778{
2779 THUMB32_INSN (0xe97fe97f), /* sg. */
2780 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2781};
2782
7a89b94e 2783
48229727
JB
2784/* Cortex-A8 erratum-workaround stubs. */
2785
2786/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2787 can't use a conditional branch to reach this stub). */
2788
2789static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb 2790{
07d6d2b8 2791 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
b38cadfb
NC
2792 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2793 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2794};
48229727
JB
2795
2796/* Stub used for b.w and bl.w instructions. */
2797
2798static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2799{
2800 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2801};
48229727
JB
2802
2803static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2804{
2805 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2806};
48229727
JB
2807
2808/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2809 instruction (which switches to ARM mode) to point to this stub. Jump to the
2810 real destination using an ARM-mode branch. */
2811
2812static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2813{
2814 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2815};
48229727 2816
9553db3c
NC
2817/* For each section group there can be a specially created linker section
2818 to hold the stubs for that group. The name of the stub section is based
2819 upon the name of another section within that group with the suffix below
2820 applied.
2821
2822 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2823 create what appeared to be a linker stub section when it actually
2824 contained user code/data. For example, consider this fragment:
b38cadfb 2825
9553db3c
NC
2826 const char * stubborn_problems[] = { "np" };
2827
2828 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2829 section called:
2830
2831 .data.rel.local.stubborn_problems
2832
2833 This then causes problems in arm32_arm_build_stubs() as it triggers:
2834
2835 // Ignore non-stub sections.
2836 if (!strstr (stub_sec->name, STUB_SUFFIX))
2837 continue;
2838
2839 And so the section would be ignored instead of being processed. Hence
2840 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2841 C identifier. */
2842#define STUB_SUFFIX ".__stub"
906e58ca 2843
738a79f6
CL
2844/* One entry per long/short branch stub defined above. */
2845#define DEF_STUBS \
cc850f74
NC
2846 DEF_STUB (long_branch_any_any) \
2847 DEF_STUB (long_branch_v4t_arm_thumb) \
2848 DEF_STUB (long_branch_thumb_only) \
2849 DEF_STUB (long_branch_v4t_thumb_thumb) \
2850 DEF_STUB (long_branch_v4t_thumb_arm) \
2851 DEF_STUB (short_branch_v4t_thumb_arm) \
2852 DEF_STUB (long_branch_any_arm_pic) \
2853 DEF_STUB (long_branch_any_thumb_pic) \
2854 DEF_STUB (long_branch_v4t_thumb_thumb_pic) \
2855 DEF_STUB (long_branch_v4t_arm_thumb_pic) \
2856 DEF_STUB (long_branch_v4t_thumb_arm_pic) \
2857 DEF_STUB (long_branch_thumb_only_pic) \
2858 DEF_STUB (long_branch_any_tls_pic) \
2859 DEF_STUB (long_branch_v4t_thumb_tls_pic) \
2860 DEF_STUB (long_branch_arm_nacl) \
2861 DEF_STUB (long_branch_arm_nacl_pic) \
2862 DEF_STUB (cmse_branch_thumb_only) \
2863 DEF_STUB (a8_veneer_b_cond) \
2864 DEF_STUB (a8_veneer_b) \
2865 DEF_STUB (a8_veneer_bl) \
2866 DEF_STUB (a8_veneer_blx) \
2867 DEF_STUB (long_branch_thumb2_only) \
2868 DEF_STUB (long_branch_thumb2_only_pure)
738a79f6
CL
2869
2870#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2871enum elf32_arm_stub_type
2872{
906e58ca 2873 arm_stub_none,
738a79f6 2874 DEF_STUBS
4f4faa4d 2875 max_stub_type
738a79f6
CL
2876};
2877#undef DEF_STUB
2878
8d9d9490
TP
2879/* Note the first a8_veneer type. */
2880const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2881
738a79f6
CL
2882typedef struct
2883{
d3ce72d0 2884 const insn_sequence* template_sequence;
738a79f6
CL
2885 int template_size;
2886} stub_def;
2887
2888#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2889static const stub_def stub_definitions[] =
2890{
738a79f6
CL
2891 {NULL, 0},
2892 DEF_STUBS
906e58ca
NC
2893};
2894
2895struct elf32_arm_stub_hash_entry
2896{
2897 /* Base hash table entry structure. */
2898 struct bfd_hash_entry root;
2899
2900 /* The stub section. */
2901 asection *stub_sec;
2902
2903 /* Offset within stub_sec of the beginning of this stub. */
2904 bfd_vma stub_offset;
2905
2906 /* Given the symbol's value and its section we can determine its final
2907 value when building the stubs (so the stub knows where to jump). */
2908 bfd_vma target_value;
2909 asection *target_section;
2910
8d9d9490
TP
2911 /* Same as above but for the source of the branch to the stub. Used for
2912 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2913 such, source section does not need to be recorded since Cortex-A8 erratum
2914 workaround stubs are only generated when both source and target are in the
2915 same section. */
2916 bfd_vma source_value;
48229727
JB
2917
2918 /* The instruction which caused this stub to be generated (only valid for
2919 Cortex-A8 erratum workaround stubs at present). */
2920 unsigned long orig_insn;
2921
461a49ca 2922 /* The stub type. */
906e58ca 2923 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2924 /* Its encoding size in bytes. */
2925 int stub_size;
2926 /* Its template. */
2927 const insn_sequence *stub_template;
2928 /* The size of the template (number of entries). */
2929 int stub_template_size;
906e58ca
NC
2930
2931 /* The symbol table entry, if any, that this was derived from. */
2932 struct elf32_arm_link_hash_entry *h;
2933
35fc36a8
RS
2934 /* Type of branch. */
2935 enum arm_st_branch_type branch_type;
906e58ca
NC
2936
2937 /* Where this stub is being called from, or, in the case of combined
2938 stub sections, the first input section in the group. */
2939 asection *id_sec;
7413f23f
DJ
2940
2941 /* The name for the local symbol at the start of this stub. The
2942 stub name in the hash table has to be unique; this does not, so
2943 it can be friendlier. */
2944 char *output_name;
906e58ca
NC
2945};
2946
e489d0ae
PB
2947/* Used to build a map of a section. This is required for mixed-endian
2948 code/data. */
2949
2950typedef struct elf32_elf_section_map
2951{
2952 bfd_vma vma;
2953 char type;
2954}
2955elf32_arm_section_map;
2956
c7b8f16e
JB
2957/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2958
2959typedef enum
2960{
2961 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2962 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2963 VFP11_ERRATUM_ARM_VENEER,
2964 VFP11_ERRATUM_THUMB_VENEER
2965}
2966elf32_vfp11_erratum_type;
2967
2968typedef struct elf32_vfp11_erratum_list
2969{
2970 struct elf32_vfp11_erratum_list *next;
2971 bfd_vma vma;
2972 union
2973 {
2974 struct
2975 {
2976 struct elf32_vfp11_erratum_list *veneer;
2977 unsigned int vfp_insn;
2978 } b;
2979 struct
2980 {
2981 struct elf32_vfp11_erratum_list *branch;
2982 unsigned int id;
2983 } v;
2984 } u;
2985 elf32_vfp11_erratum_type type;
2986}
2987elf32_vfp11_erratum_list;
2988
a504d23a
LA
2989/* Information about a STM32L4XX erratum veneer, or a branch to such a
2990 veneer. */
2991typedef enum
2992{
2993 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2994 STM32L4XX_ERRATUM_VENEER
2995}
2996elf32_stm32l4xx_erratum_type;
2997
2998typedef struct elf32_stm32l4xx_erratum_list
2999{
3000 struct elf32_stm32l4xx_erratum_list *next;
3001 bfd_vma vma;
3002 union
3003 {
3004 struct
3005 {
3006 struct elf32_stm32l4xx_erratum_list *veneer;
3007 unsigned int insn;
3008 } b;
3009 struct
3010 {
3011 struct elf32_stm32l4xx_erratum_list *branch;
3012 unsigned int id;
3013 } v;
3014 } u;
3015 elf32_stm32l4xx_erratum_type type;
3016}
3017elf32_stm32l4xx_erratum_list;
3018
2468f9c9
PB
3019typedef enum
3020{
3021 DELETE_EXIDX_ENTRY,
3022 INSERT_EXIDX_CANTUNWIND_AT_END
3023}
3024arm_unwind_edit_type;
3025
3026/* A (sorted) list of edits to apply to an unwind table. */
3027typedef struct arm_unwind_table_edit
3028{
3029 arm_unwind_edit_type type;
3030 /* Note: we sometimes want to insert an unwind entry corresponding to a
3031 section different from the one we're currently writing out, so record the
3032 (text) section this edit relates to here. */
3033 asection *linked_section;
3034 unsigned int index;
3035 struct arm_unwind_table_edit *next;
3036}
3037arm_unwind_table_edit;
3038
8e3de13a 3039typedef struct _arm_elf_section_data
e489d0ae 3040{
2468f9c9 3041 /* Information about mapping symbols. */
e489d0ae 3042 struct bfd_elf_section_data elf;
8e3de13a 3043 unsigned int mapcount;
c7b8f16e 3044 unsigned int mapsize;
e489d0ae 3045 elf32_arm_section_map *map;
2468f9c9 3046 /* Information about CPU errata. */
c7b8f16e
JB
3047 unsigned int erratumcount;
3048 elf32_vfp11_erratum_list *erratumlist;
a504d23a
LA
3049 unsigned int stm32l4xx_erratumcount;
3050 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
491d01d3 3051 unsigned int additional_reloc_count;
2468f9c9
PB
3052 /* Information about unwind tables. */
3053 union
3054 {
3055 /* Unwind info attached to a text section. */
3056 struct
3057 {
3058 asection *arm_exidx_sec;
3059 } text;
3060
3061 /* Unwind info attached to an .ARM.exidx section. */
3062 struct
3063 {
3064 arm_unwind_table_edit *unwind_edit_list;
3065 arm_unwind_table_edit *unwind_edit_tail;
3066 } exidx;
3067 } u;
8e3de13a
NC
3068}
3069_arm_elf_section_data;
e489d0ae
PB
3070
3071#define elf32_arm_section_data(sec) \
8e3de13a 3072 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 3073
48229727
JB
3074/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3075 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3076 so may be created multiple times: we use an array of these entries whilst
3077 relaxing which we can refresh easily, then create stubs for each potentially
3078 erratum-triggering instruction once we've settled on a solution. */
3079
b38cadfb
NC
3080struct a8_erratum_fix
3081{
48229727
JB
3082 bfd *input_bfd;
3083 asection *section;
3084 bfd_vma offset;
8d9d9490 3085 bfd_vma target_offset;
48229727
JB
3086 unsigned long orig_insn;
3087 char *stub_name;
3088 enum elf32_arm_stub_type stub_type;
35fc36a8 3089 enum arm_st_branch_type branch_type;
48229727
JB
3090};
3091
3092/* A table of relocs applied to branches which might trigger Cortex-A8
3093 erratum. */
3094
b38cadfb
NC
3095struct a8_erratum_reloc
3096{
48229727
JB
3097 bfd_vma from;
3098 bfd_vma destination;
92750f34
DJ
3099 struct elf32_arm_link_hash_entry *hash;
3100 const char *sym_name;
48229727 3101 unsigned int r_type;
35fc36a8 3102 enum arm_st_branch_type branch_type;
0a1b45a2 3103 bool non_a8_stub;
48229727
JB
3104};
3105
ba93b8ac
DJ
3106/* The size of the thread control block. */
3107#define TCB_SIZE 8
3108
34e77a92
RS
3109/* ARM-specific information about a PLT entry, over and above the usual
3110 gotplt_union. */
b38cadfb
NC
3111struct arm_plt_info
3112{
34e77a92
RS
3113 /* We reference count Thumb references to a PLT entry separately,
3114 so that we can emit the Thumb trampoline only if needed. */
3115 bfd_signed_vma thumb_refcount;
3116
3117 /* Some references from Thumb code may be eliminated by BL->BLX
3118 conversion, so record them separately. */
3119 bfd_signed_vma maybe_thumb_refcount;
3120
3121 /* How many of the recorded PLT accesses were from non-call relocations.
3122 This information is useful when deciding whether anything takes the
3123 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3124 non-call references to the function should resolve directly to the
3125 real runtime target. */
3126 unsigned int noncall_refcount;
3127
3128 /* Since PLT entries have variable size if the Thumb prologue is
3129 used, we need to record the index into .got.plt instead of
3130 recomputing it from the PLT offset. */
3131 bfd_signed_vma got_offset;
3132};
3133
3134/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
3135struct arm_local_iplt_info
3136{
34e77a92
RS
3137 /* The information that is usually found in the generic ELF part of
3138 the hash table entry. */
3139 union gotplt_union root;
3140
3141 /* The information that is usually found in the ARM-specific part of
3142 the hash table entry. */
3143 struct arm_plt_info arm;
3144
3145 /* A list of all potential dynamic relocations against this symbol. */
3146 struct elf_dyn_relocs *dyn_relocs;
3147};
3148
e8b09b87 3149/* Structure to handle FDPIC support for local functions. */
cc850f74
NC
3150struct fdpic_local
3151{
e8b09b87
CL
3152 unsigned int funcdesc_cnt;
3153 unsigned int gotofffuncdesc_cnt;
3154 int funcdesc_offset;
3155};
3156
0ffa91dd 3157struct elf_arm_obj_tdata
ba93b8ac
DJ
3158{
3159 struct elf_obj_tdata root;
3160
cc850f74
NC
3161 /* Zero to warn when linking objects with incompatible enum sizes. */
3162 int no_enum_size_warning;
3163
3164 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3165 int no_wchar_size_warning;
3166
74fd118f
NC
3167 /* The number of entries in each of the arrays in this strcuture.
3168 Used to avoid buffer overruns. */
3169 bfd_size_type num_entries;
3170
ba93b8ac
DJ
3171 /* tls_type for each local got entry. */
3172 char *local_got_tls_type;
ee065d83 3173
0855e32b
NS
3174 /* GOTPLT entries for TLS descriptors. */
3175 bfd_vma *local_tlsdesc_gotent;
3176
34e77a92
RS
3177 /* Information for local symbols that need entries in .iplt. */
3178 struct arm_local_iplt_info **local_iplt;
3179
e8b09b87
CL
3180 /* Maintains FDPIC counters and funcdesc info. */
3181 struct fdpic_local *local_fdpic_cnts;
ba93b8ac
DJ
3182};
3183
0ffa91dd
NC
3184#define elf_arm_tdata(bfd) \
3185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 3186
74fd118f
NC
3187#define elf32_arm_num_entries(bfd) \
3188 (elf_arm_tdata (bfd)->num_entries)
3189
0ffa91dd
NC
3190#define elf32_arm_local_got_tls_type(bfd) \
3191 (elf_arm_tdata (bfd)->local_got_tls_type)
3192
0855e32b
NS
3193#define elf32_arm_local_tlsdesc_gotent(bfd) \
3194 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3195
34e77a92
RS
3196#define elf32_arm_local_iplt(bfd) \
3197 (elf_arm_tdata (bfd)->local_iplt)
3198
e8b09b87
CL
3199#define elf32_arm_local_fdpic_cnts(bfd) \
3200 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3201
0ffa91dd
NC
3202#define is_arm_elf(bfd) \
3203 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3204 && elf_tdata (bfd) != NULL \
4dfe6ac6 3205 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac 3206
0a1b45a2 3207static bool
ba93b8ac
DJ
3208elf32_arm_mkobject (bfd *abfd)
3209{
0ffa91dd 3210 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 3211 ARM_ELF_DATA);
ba93b8ac
DJ
3212}
3213
ba93b8ac
DJ
3214#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3215
e8b09b87
CL
3216/* Structure to handle FDPIC support for extern functions. */
3217struct fdpic_global {
3218 unsigned int gotofffuncdesc_cnt;
3219 unsigned int gotfuncdesc_cnt;
3220 unsigned int funcdesc_cnt;
3221 int funcdesc_offset;
3222 int gotfuncdesc_offset;
3223};
3224
ba96a88f 3225/* Arm ELF linker hash entry. */
252b5132 3226struct elf32_arm_link_hash_entry
b38cadfb
NC
3227{
3228 struct elf_link_hash_entry root;
252b5132 3229
b38cadfb
NC
3230 /* ARM-specific PLT information. */
3231 struct arm_plt_info plt;
ba93b8ac
DJ
3232
3233#define GOT_UNKNOWN 0
3234#define GOT_NORMAL 1
3235#define GOT_TLS_GD 2
3236#define GOT_TLS_IE 4
0855e32b
NS
3237#define GOT_TLS_GDESC 8
3238#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 3239 unsigned int tls_type : 8;
34e77a92 3240
b38cadfb
NC
3241 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3242 unsigned int is_iplt : 1;
34e77a92 3243
b38cadfb 3244 unsigned int unused : 23;
a4fd1a8e 3245
b38cadfb
NC
3246 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3247 starting at the end of the jump table. */
3248 bfd_vma tlsdesc_got;
0855e32b 3249
b38cadfb
NC
3250 /* The symbol marking the real symbol location for exported thumb
3251 symbols with Arm stubs. */
3252 struct elf_link_hash_entry *export_glue;
906e58ca 3253
b38cadfb 3254 /* A pointer to the most recently used stub hash entry against this
8029a119 3255 symbol. */
b38cadfb 3256 struct elf32_arm_stub_hash_entry *stub_cache;
e8b09b87
CL
3257
3258 /* Counter for FDPIC relocations against this symbol. */
3259 struct fdpic_global fdpic_cnts;
b38cadfb 3260};
252b5132 3261
252b5132 3262/* Traverse an arm ELF linker hash table. */
252b5132
RH
3263#define elf32_arm_link_hash_traverse(table, func, info) \
3264 (elf_link_hash_traverse \
3265 (&(table)->root, \
0a1b45a2 3266 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
3267 (info)))
3268
3269/* Get the ARM elf linker hash table from a link_info structure. */
0f55320b
AM
3270#define elf32_arm_hash_table(p) \
3271 ((is_elf_hash_table ((p)->hash) \
3272 && elf_hash_table_id (elf_hash_table (p)) == ARM_ELF_DATA) \
3273 ? (struct elf32_arm_link_hash_table *) (p)->hash : NULL)
252b5132 3274
906e58ca
NC
3275#define arm_stub_hash_lookup(table, string, create, copy) \
3276 ((struct elf32_arm_stub_hash_entry *) \
3277 bfd_hash_lookup ((table), (string), (create), (copy)))
3278
21d799b5
NC
3279/* Array to keep track of which stub sections have been created, and
3280 information on stub grouping. */
3281struct map_stub
3282{
3283 /* This is the section to which stubs in the group will be
3284 attached. */
3285 asection *link_sec;
3286 /* The stub section. */
3287 asection *stub_sec;
3288};
3289
0855e32b
NS
3290#define elf32_arm_compute_jump_table_size(htab) \
3291 ((htab)->next_tls_desc_index * 4)
3292
9b485d32 3293/* ARM ELF linker hash table. */
252b5132 3294struct elf32_arm_link_hash_table
906e58ca
NC
3295{
3296 /* The main hash table. */
3297 struct elf_link_hash_table root;
252b5132 3298
906e58ca
NC
3299 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3300 bfd_size_type thumb_glue_size;
252b5132 3301
906e58ca
NC
3302 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3303 bfd_size_type arm_glue_size;
252b5132 3304
906e58ca
NC
3305 /* The size in bytes of section containing the ARMv4 BX veneers. */
3306 bfd_size_type bx_glue_size;
845b51d6 3307
906e58ca
NC
3308 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3309 veneer has been populated. */
3310 bfd_vma bx_glue_offset[15];
845b51d6 3311
906e58ca
NC
3312 /* The size in bytes of the section containing glue for VFP11 erratum
3313 veneers. */
3314 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 3315
a504d23a
LA
3316 /* The size in bytes of the section containing glue for STM32L4XX erratum
3317 veneers. */
3318 bfd_size_type stm32l4xx_erratum_glue_size;
3319
48229727
JB
3320 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3321 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3322 elf32_arm_write_section(). */
3323 struct a8_erratum_fix *a8_erratum_fixes;
3324 unsigned int num_a8_erratum_fixes;
3325
906e58ca
NC
3326 /* An arbitrary input BFD chosen to hold the glue sections. */
3327 bfd * bfd_of_glue_owner;
ba96a88f 3328
906e58ca
NC
3329 /* Nonzero to output a BE8 image. */
3330 int byteswap_code;
e489d0ae 3331
906e58ca
NC
3332 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3333 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3334 int target1_is_rel;
9c504268 3335
906e58ca
NC
3336 /* The relocation to use for R_ARM_TARGET2 relocations. */
3337 int target2_reloc;
eb043451 3338
906e58ca
NC
3339 /* 0 = Ignore R_ARM_V4BX.
3340 1 = Convert BX to MOV PC.
3341 2 = Generate v4 interworing stubs. */
3342 int fix_v4bx;
319850b4 3343
48229727
JB
3344 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3345 int fix_cortex_a8;
3346
2de70689
MGD
3347 /* Whether we should fix the ARM1176 BLX immediate issue. */
3348 int fix_arm1176;
3349
906e58ca
NC
3350 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3351 int use_blx;
33bfe774 3352
906e58ca
NC
3353 /* What sort of code sequences we should look for which may trigger the
3354 VFP11 denorm erratum. */
3355 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 3356
906e58ca
NC
3357 /* Global counter for the number of fixes we have emitted. */
3358 int num_vfp11_fixes;
c7b8f16e 3359
a504d23a
LA
3360 /* What sort of code sequences we should look for which may trigger the
3361 STM32L4XX erratum. */
3362 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3363
3364 /* Global counter for the number of fixes we have emitted. */
3365 int num_stm32l4xx_fixes;
3366
906e58ca
NC
3367 /* Nonzero to force PIC branch veneers. */
3368 int pic_veneer;
27e55c4d 3369
906e58ca
NC
3370 /* The number of bytes in the initial entry in the PLT. */
3371 bfd_size_type plt_header_size;
e5a52504 3372
906e58ca
NC
3373 /* The number of bytes in the subsequent PLT etries. */
3374 bfd_size_type plt_entry_size;
e5a52504 3375
906e58ca 3376 /* True if the target uses REL relocations. */
0a1b45a2 3377 bool use_rel;
4e7fd91e 3378
54ddd295
TP
3379 /* Nonzero if import library must be a secure gateway import library
3380 as per ARMv8-M Security Extensions. */
3381 int cmse_implib;
3382
0955507f
TP
3383 /* The import library whose symbols' address must remain stable in
3384 the import library generated. */
3385 bfd *in_implib_bfd;
3386
0855e32b
NS
3387 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3388 bfd_vma next_tls_desc_index;
3389
3390 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3391 bfd_vma num_tls_desc;
3392
906e58ca
NC
3393 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3394 asection *srelplt2;
00a97672 3395
0855e32b
NS
3396 /* Offset in .plt section of tls_arm_trampoline. */
3397 bfd_vma tls_trampoline;
3398
5c5a4843 3399 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
906e58ca
NC
3400 union
3401 {
3402 bfd_signed_vma refcount;
3403 bfd_vma offset;
3404 } tls_ldm_got;
b7693d02 3405
906e58ca
NC
3406 /* For convenience in allocate_dynrelocs. */
3407 bfd * obfd;
3408
0855e32b
NS
3409 /* The amount of space used by the reserved portion of the sgotplt
3410 section, plus whatever space is used by the jump slots. */
3411 bfd_vma sgotplt_jump_table_size;
3412
906e58ca
NC
3413 /* The stub hash table. */
3414 struct bfd_hash_table stub_hash_table;
3415
3416 /* Linker stub bfd. */
3417 bfd *stub_bfd;
3418
3419 /* Linker call-backs. */
6bde4c52
TP
3420 asection * (*add_stub_section) (const char *, asection *, asection *,
3421 unsigned int);
906e58ca
NC
3422 void (*layout_sections_again) (void);
3423
3424 /* Array to keep track of which stub sections have been created, and
3425 information on stub grouping. */
21d799b5 3426 struct map_stub *stub_group;
906e58ca 3427
4ba2ef8f
TP
3428 /* Input stub section holding secure gateway veneers. */
3429 asection *cmse_stub_sec;
3430
0955507f
TP
3431 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3432 start to be allocated. */
3433 bfd_vma new_cmse_stub_offset;
3434
fe33d2fa 3435 /* Number of elements in stub_group. */
7292b3ac 3436 unsigned int top_id;
fe33d2fa 3437
906e58ca
NC
3438 /* Assorted information used by elf32_arm_size_stubs. */
3439 unsigned int bfd_count;
7292b3ac 3440 unsigned int top_index;
906e58ca 3441 asection **input_list;
617a5ada
CL
3442
3443 /* True if the target system uses FDPIC. */
3444 int fdpic_p;
e8b09b87
CL
3445
3446 /* Fixup section. Used for FDPIC. */
3447 asection *srofixup;
906e58ca 3448};
252b5132 3449
e8b09b87
CL
3450/* Add an FDPIC read-only fixup. */
3451static void
3452arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3453{
3454 bfd_vma fixup_offset;
3455
3456 fixup_offset = srofixup->reloc_count++ * 4;
3457 BFD_ASSERT (fixup_offset < srofixup->size);
3458 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3459}
3460
a504d23a
LA
3461static inline int
3462ctz (unsigned int mask)
3463{
3464#if GCC_VERSION >= 3004
3465 return __builtin_ctz (mask);
3466#else
3467 unsigned int i;
3468
3469 for (i = 0; i < 8 * sizeof (mask); i++)
3470 {
3471 if (mask & 0x1)
3472 break;
3473 mask = (mask >> 1);
3474 }
3475 return i;
3476#endif
3477}
3478
3479static inline int
b25e998d 3480elf32_arm_popcount (unsigned int mask)
a504d23a
LA
3481{
3482#if GCC_VERSION >= 3004
3483 return __builtin_popcount (mask);
3484#else
b25e998d
CG
3485 unsigned int i;
3486 int sum = 0;
a504d23a
LA
3487
3488 for (i = 0; i < 8 * sizeof (mask); i++)
3489 {
3490 if (mask & 0x1)
3491 sum++;
3492 mask = (mask >> 1);
3493 }
3494 return sum;
3495#endif
3496}
3497
e8b09b87
CL
3498static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3499 asection *sreloc, Elf_Internal_Rela *rel);
3500
3501static void
cc850f74
NC
3502arm_elf_fill_funcdesc (bfd *output_bfd,
3503 struct bfd_link_info *info,
3504 int *funcdesc_offset,
3505 int dynindx,
3506 int offset,
3507 bfd_vma addr,
3508 bfd_vma dynreloc_value,
3509 bfd_vma seg)
e8b09b87
CL
3510{
3511 if ((*funcdesc_offset & 1) == 0)
3512 {
3513 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3514 asection *sgot = globals->root.sgot;
3515
cc850f74 3516 if (bfd_link_pic (info))
e8b09b87
CL
3517 {
3518 asection *srelgot = globals->root.srelgot;
3519 Elf_Internal_Rela outrel;
3520
3521 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3522 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3523 outrel.r_addend = 0;
3524
3525 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3526 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3527 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3528 }
3529 else
3530 {
3531 struct elf_link_hash_entry *hgot = globals->root.hgot;
3532 bfd_vma got_value = hgot->root.u.def.value
3533 + hgot->root.u.def.section->output_section->vma
3534 + hgot->root.u.def.section->output_offset;
3535
cc850f74
NC
3536 arm_elf_add_rofixup (output_bfd, globals->srofixup,
3537 sgot->output_section->vma + sgot->output_offset
3538 + offset);
3539 arm_elf_add_rofixup (output_bfd, globals->srofixup,
3540 sgot->output_section->vma + sgot->output_offset
3541 + offset + 4);
e8b09b87
CL
3542 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3543 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3544 }
3545 *funcdesc_offset |= 1;
3546 }
3547}
3548
780a67af
NC
3549/* Create an entry in an ARM ELF linker hash table. */
3550
3551static struct bfd_hash_entry *
57e8b36a 3552elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
99059e56
RM
3553 struct bfd_hash_table * table,
3554 const char * string)
780a67af
NC
3555{
3556 struct elf32_arm_link_hash_entry * ret =
3557 (struct elf32_arm_link_hash_entry *) entry;
3558
3559 /* Allocate the structure if it has not already been allocated by a
3560 subclass. */
906e58ca 3561 if (ret == NULL)
21d799b5 3562 ret = (struct elf32_arm_link_hash_entry *)
99059e56 3563 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3564 if (ret == NULL)
780a67af
NC
3565 return (struct bfd_hash_entry *) ret;
3566
3567 /* Call the allocation method of the superclass. */
3568 ret = ((struct elf32_arm_link_hash_entry *)
3569 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3570 table, string));
57e8b36a 3571 if (ret != NULL)
b7693d02 3572 {
ba93b8ac 3573 ret->tls_type = GOT_UNKNOWN;
0855e32b 3574 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3575 ret->plt.thumb_refcount = 0;
3576 ret->plt.maybe_thumb_refcount = 0;
3577 ret->plt.noncall_refcount = 0;
3578 ret->plt.got_offset = -1;
0a1b45a2 3579 ret->is_iplt = false;
a4fd1a8e 3580 ret->export_glue = NULL;
906e58ca
NC
3581
3582 ret->stub_cache = NULL;
e8b09b87
CL
3583
3584 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3585 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3586 ret->fdpic_cnts.funcdesc_cnt = 0;
3587 ret->fdpic_cnts.funcdesc_offset = -1;
3588 ret->fdpic_cnts.gotfuncdesc_offset = -1;
b7693d02 3589 }
780a67af
NC
3590
3591 return (struct bfd_hash_entry *) ret;
3592}
3593
34e77a92
RS
3594/* Ensure that we have allocated bookkeeping structures for ABFD's local
3595 symbols. */
3596
0a1b45a2 3597static bool
34e77a92
RS
3598elf32_arm_allocate_local_sym_info (bfd *abfd)
3599{
3600 if (elf_local_got_refcounts (abfd) == NULL)
3601 {
3602 bfd_size_type num_syms;
74fd118f
NC
3603
3604 elf32_arm_num_entries (abfd) = 0;
3605
3606 /* Whilst it might be tempting to allocate a single block of memory and
3607 then divide it up amoungst the arrays in the elf_arm_obj_tdata
3608 structure, this interferes with the work of memory checkers looking
3609 for buffer overruns. So allocate each array individually. */
34e77a92
RS
3610
3611 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
74fd118f
NC
3612
3613 elf_local_got_refcounts (abfd) = bfd_zalloc
3614 (abfd, num_syms * sizeof (* elf_local_got_refcounts (abfd)));
3615
3616 if (elf_local_got_refcounts (abfd) == NULL)
0a1b45a2 3617 return false;
34e77a92 3618
74fd118f
NC
3619 elf32_arm_local_tlsdesc_gotent (abfd) = bfd_zalloc
3620 (abfd, num_syms * sizeof (* elf32_arm_local_tlsdesc_gotent (abfd)));
34e77a92 3621
74fd118f
NC
3622 if (elf32_arm_local_tlsdesc_gotent (abfd) == NULL)
3623 return false;
f911bb22 3624
74fd118f
NC
3625 elf32_arm_local_iplt (abfd) = bfd_zalloc
3626 (abfd, num_syms * sizeof (* elf32_arm_local_iplt (abfd)));
34e77a92 3627
74fd118f
NC
3628 if (elf32_arm_local_iplt (abfd) == NULL)
3629 return false;
3630
3631 elf32_arm_local_fdpic_cnts (abfd) = bfd_zalloc
3632 (abfd, num_syms * sizeof (* elf32_arm_local_fdpic_cnts (abfd)));
3633
3634 if (elf32_arm_local_fdpic_cnts (abfd) == NULL)
3635 return false;
3636
3637 elf32_arm_local_got_tls_type (abfd) = bfd_zalloc
3638 (abfd, num_syms * sizeof (* elf32_arm_local_got_tls_type (abfd)));
3639
3640 if (elf32_arm_local_got_tls_type (abfd) == NULL)
3641 return false;
3642
3643 elf32_arm_num_entries (abfd) = num_syms;
34e77a92 3644
f911bb22
AM
3645#if GCC_VERSION >= 3000
3646 BFD_ASSERT (__alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd))
3647 <= __alignof__ (*elf_local_got_refcounts (abfd)));
3648 BFD_ASSERT (__alignof__ (*elf32_arm_local_iplt (abfd))
3649 <= __alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd)));
3650 BFD_ASSERT (__alignof__ (*elf32_arm_local_fdpic_cnts (abfd))
3651 <= __alignof__ (*elf32_arm_local_iplt (abfd)));
3652 BFD_ASSERT (__alignof__ (*elf32_arm_local_got_tls_type (abfd))
3653 <= __alignof__ (*elf32_arm_local_fdpic_cnts (abfd)));
3654#endif
34e77a92 3655 }
0a1b45a2 3656 return true;
34e77a92
RS
3657}
3658
3659/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3660 to input bfd ABFD. Create the information if it doesn't already exist.
3661 Return null if an allocation fails. */
3662
3663static struct arm_local_iplt_info *
3664elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3665{
3666 struct arm_local_iplt_info **ptr;
3667
3668 if (!elf32_arm_allocate_local_sym_info (abfd))
3669 return NULL;
3670
3671 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
74fd118f 3672 BFD_ASSERT (r_symndx < elf32_arm_num_entries (abfd));
34e77a92
RS
3673 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3674 if (*ptr == NULL)
3675 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3676 return *ptr;
3677}
3678
3679/* Try to obtain PLT information for the symbol with index R_SYMNDX
3680 in ABFD's symbol table. If the symbol is global, H points to its
3681 hash table entry, otherwise H is null.
3682
3683 Return true if the symbol does have PLT information. When returning
3684 true, point *ROOT_PLT at the target-independent reference count/offset
3685 union and *ARM_PLT at the ARM-specific information. */
3686
0a1b45a2 3687static bool
4ba2ef8f
TP
3688elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3689 struct elf32_arm_link_hash_entry *h,
34e77a92
RS
3690 unsigned long r_symndx, union gotplt_union **root_plt,
3691 struct arm_plt_info **arm_plt)
3692{
3693 struct arm_local_iplt_info *local_iplt;
3694
4ba2ef8f 3695 if (globals->root.splt == NULL && globals->root.iplt == NULL)
0a1b45a2 3696 return false;
4ba2ef8f 3697
34e77a92
RS
3698 if (h != NULL)
3699 {
3700 *root_plt = &h->root.plt;
3701 *arm_plt = &h->plt;
0a1b45a2 3702 return true;
34e77a92
RS
3703 }
3704
3705 if (elf32_arm_local_iplt (abfd) == NULL)
0a1b45a2 3706 return false;
34e77a92 3707
74fd118f
NC
3708 if (r_symndx >= elf32_arm_num_entries (abfd))
3709 return false;
3710
34e77a92
RS
3711 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3712 if (local_iplt == NULL)
0a1b45a2 3713 return false;
34e77a92
RS
3714
3715 *root_plt = &local_iplt->root;
3716 *arm_plt = &local_iplt->arm;
0a1b45a2 3717 return true;
34e77a92
RS
3718}
3719
0a1b45a2 3720static bool using_thumb_only (struct elf32_arm_link_hash_table *globals);
59029f57 3721
34e77a92
RS
3722/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3723 before it. */
3724
0a1b45a2 3725static bool
34e77a92
RS
3726elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3727 struct arm_plt_info *arm_plt)
3728{
3729 struct elf32_arm_link_hash_table *htab;
3730
3731 htab = elf32_arm_hash_table (info);
59029f57 3732
cc850f74 3733 return (!using_thumb_only (htab) && (arm_plt->thumb_refcount != 0
59029f57 3734 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
34e77a92
RS
3735}
3736
3737/* Return a pointer to the head of the dynamic reloc list that should
3738 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3739 ABFD's symbol table. Return null if an error occurs. */
3740
3741static struct elf_dyn_relocs **
3742elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3743 Elf_Internal_Sym *isym)
3744{
3745 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3746 {
3747 struct arm_local_iplt_info *local_iplt;
3748
3749 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3750 if (local_iplt == NULL)
3751 return NULL;
3752 return &local_iplt->dyn_relocs;
3753 }
3754 else
3755 {
3756 /* Track dynamic relocs needed for local syms too.
3757 We really need local syms available to do this
3758 easily. Oh well. */
3759 asection *s;
3760 void *vpp;
3761
3762 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3763 if (s == NULL)
cc850f74 3764 return NULL;
34e77a92
RS
3765
3766 vpp = &elf_section_data (s)->local_dynrel;
3767 return (struct elf_dyn_relocs **) vpp;
3768 }
3769}
3770
906e58ca
NC
3771/* Initialize an entry in the stub hash table. */
3772
3773static struct bfd_hash_entry *
3774stub_hash_newfunc (struct bfd_hash_entry *entry,
3775 struct bfd_hash_table *table,
3776 const char *string)
3777{
3778 /* Allocate the structure if it has not already been allocated by a
3779 subclass. */
3780 if (entry == NULL)
3781 {
21d799b5 3782 entry = (struct bfd_hash_entry *)
99059e56 3783 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3784 if (entry == NULL)
3785 return entry;
3786 }
3787
3788 /* Call the allocation method of the superclass. */
3789 entry = bfd_hash_newfunc (entry, table, string);
3790 if (entry != NULL)
3791 {
3792 struct elf32_arm_stub_hash_entry *eh;
3793
3794 /* Initialize the local fields. */
3795 eh = (struct elf32_arm_stub_hash_entry *) entry;
3796 eh->stub_sec = NULL;
0955507f 3797 eh->stub_offset = (bfd_vma) -1;
8d9d9490 3798 eh->source_value = 0;
906e58ca
NC
3799 eh->target_value = 0;
3800 eh->target_section = NULL;
cedfb179 3801 eh->orig_insn = 0;
906e58ca 3802 eh->stub_type = arm_stub_none;
461a49ca
DJ
3803 eh->stub_size = 0;
3804 eh->stub_template = NULL;
0955507f 3805 eh->stub_template_size = -1;
906e58ca
NC
3806 eh->h = NULL;
3807 eh->id_sec = NULL;
d8d2f433 3808 eh->output_name = NULL;
906e58ca
NC
3809 }
3810
3811 return entry;
3812}
3813
00a97672 3814/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3815 shortcuts to them in our hash table. */
3816
0a1b45a2 3817static bool
57e8b36a 3818create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3819{
3820 struct elf32_arm_link_hash_table *htab;
3821
e5a52504 3822 htab = elf32_arm_hash_table (info);
4dfe6ac6 3823 if (htab == NULL)
0a1b45a2 3824 return false;
4dfe6ac6 3825
5e681ec4 3826 if (! _bfd_elf_create_got_section (dynobj, info))
0a1b45a2 3827 return false;
5e681ec4 3828
e8b09b87
CL
3829 /* Also create .rofixup. */
3830 if (htab->fdpic_p)
3831 {
3832 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3833 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3834 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
fd361982
AM
3835 if (htab->srofixup == NULL
3836 || !bfd_set_section_alignment (htab->srofixup, 2))
0a1b45a2 3837 return false;
e8b09b87
CL
3838 }
3839
0a1b45a2 3840 return true;
5e681ec4
PB
3841}
3842
34e77a92
RS
3843/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3844
0a1b45a2 3845static bool
34e77a92
RS
3846create_ifunc_sections (struct bfd_link_info *info)
3847{
3848 struct elf32_arm_link_hash_table *htab;
3849 const struct elf_backend_data *bed;
3850 bfd *dynobj;
3851 asection *s;
3852 flagword flags;
b38cadfb 3853
34e77a92
RS
3854 htab = elf32_arm_hash_table (info);
3855 dynobj = htab->root.dynobj;
3856 bed = get_elf_backend_data (dynobj);
3857 flags = bed->dynamic_sec_flags;
3858
3859 if (htab->root.iplt == NULL)
3860 {
3d4d4302
AM
3861 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3862 flags | SEC_READONLY | SEC_CODE);
34e77a92 3863 if (s == NULL
fd361982 3864 || !bfd_set_section_alignment (s, bed->plt_alignment))
0a1b45a2 3865 return false;
34e77a92
RS
3866 htab->root.iplt = s;
3867 }
3868
3869 if (htab->root.irelplt == NULL)
3870 {
3d4d4302
AM
3871 s = bfd_make_section_anyway_with_flags (dynobj,
3872 RELOC_SECTION (htab, ".iplt"),
3873 flags | SEC_READONLY);
34e77a92 3874 if (s == NULL
fd361982 3875 || !bfd_set_section_alignment (s, bed->s->log_file_align))
0a1b45a2 3876 return false;
34e77a92
RS
3877 htab->root.irelplt = s;
3878 }
3879
3880 if (htab->root.igotplt == NULL)
3881 {
3d4d4302 3882 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92 3883 if (s == NULL
fd361982 3884 || !bfd_set_section_alignment (s, bed->s->log_file_align))
0a1b45a2 3885 return false;
34e77a92
RS
3886 htab->root.igotplt = s;
3887 }
0a1b45a2 3888 return true;
34e77a92
RS
3889}
3890
eed94f8f
NC
3891/* Determine if we're dealing with a Thumb only architecture. */
3892
0a1b45a2 3893static bool
eed94f8f
NC
3894using_thumb_only (struct elf32_arm_link_hash_table *globals)
3895{
2fd158eb
TP
3896 int arch;
3897 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3898 Tag_CPU_arch_profile);
eed94f8f 3899
2fd158eb
TP
3900 if (profile)
3901 return profile == 'M';
eed94f8f 3902
2fd158eb 3903 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
eed94f8f 3904
60a019a0 3905 /* Force return logic to be reviewed for each new architecture. */
031254f2 3906 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0 3907
2fd158eb
TP
3908 if (arch == TAG_CPU_ARCH_V6_M
3909 || arch == TAG_CPU_ARCH_V6S_M
3910 || arch == TAG_CPU_ARCH_V7E_M
3911 || arch == TAG_CPU_ARCH_V8M_BASE
031254f2
AV
3912 || arch == TAG_CPU_ARCH_V8M_MAIN
3913 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
0a1b45a2 3914 return true;
eed94f8f 3915
0a1b45a2 3916 return false;
eed94f8f
NC
3917}
3918
3919/* Determine if we're dealing with a Thumb-2 object. */
3920
0a1b45a2 3921static bool
eed94f8f
NC
3922using_thumb2 (struct elf32_arm_link_hash_table *globals)
3923{
60a019a0
TP
3924 int arch;
3925 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3926 Tag_THUMB_ISA_use);
3927
d8147d70
RE
3928 /* No use of thumb permitted, or a legacy thumb-1/2 definition. */
3929 if (thumb_isa < 3)
60a019a0
TP
3930 return thumb_isa == 2;
3931
d8147d70 3932 /* Variant of thumb is described by the architecture tag. */
60a019a0
TP
3933 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3934
3935 /* Force return logic to be reviewed for each new architecture. */
031254f2 3936 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0
TP
3937
3938 return (arch == TAG_CPU_ARCH_V6T2
3939 || arch == TAG_CPU_ARCH_V7
3940 || arch == TAG_CPU_ARCH_V7E_M
3941 || arch == TAG_CPU_ARCH_V8
bff0500d 3942 || arch == TAG_CPU_ARCH_V8R
031254f2
AV
3943 || arch == TAG_CPU_ARCH_V8M_MAIN
3944 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
eed94f8f
NC
3945}
3946
5e866f5a
TP
3947/* Determine whether Thumb-2 BL instruction is available. */
3948
0a1b45a2 3949static bool
5e866f5a
TP
3950using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3951{
3952 int arch =
3953 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3954
3955 /* Force return logic to be reviewed for each new architecture. */
3197e593 3956 BFD_ASSERT (arch <= TAG_CPU_ARCH_V9);
5e866f5a
TP
3957
3958 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3959 return (arch == TAG_CPU_ARCH_V6T2
3960 || arch >= TAG_CPU_ARCH_V7);
3961}
3962
00a97672
RS
3963/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3964 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3965 hash table. */
3966
0a1b45a2 3967static bool
57e8b36a 3968elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3969{
3970 struct elf32_arm_link_hash_table *htab;
3971
3972 htab = elf32_arm_hash_table (info);
4dfe6ac6 3973 if (htab == NULL)
0a1b45a2 3974 return false;
4dfe6ac6 3975
362d30a1 3976 if (!htab->root.sgot && !create_got_section (dynobj, info))
0a1b45a2 3977 return false;
5e681ec4
PB
3978
3979 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
0a1b45a2 3980 return false;
5e681ec4 3981
90c14f0c 3982 if (htab->root.target_os == is_vxworks)
00a97672
RS
3983 {
3984 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
0a1b45a2 3985 return false;
00a97672 3986
0e1862bb 3987 if (bfd_link_pic (info))
00a97672
RS
3988 {
3989 htab->plt_header_size = 0;
3990 htab->plt_entry_size
3991 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3992 }
3993 else
3994 {
3995 htab->plt_header_size
3996 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3997 htab->plt_entry_size
3998 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3999 }
aebf9be7
NC
4000
4001 if (elf_elfheader (dynobj))
4002 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
00a97672 4003 }
eed94f8f
NC
4004 else
4005 {
4006 /* PR ld/16017
4007 Test for thumb only architectures. Note - we cannot just call
4008 using_thumb_only() as the attributes in the output bfd have not been
4009 initialised at this point, so instead we use the input bfd. */
4010 bfd * saved_obfd = htab->obfd;
4011
4012 htab->obfd = dynobj;
4013 if (using_thumb_only (htab))
4014 {
4015 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
4016 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
4017 }
4018 htab->obfd = saved_obfd;
4019 }
5e681ec4 4020
7801f98f
CL
4021 if (htab->fdpic_p) {
4022 htab->plt_header_size = 0;
4023 if (info->flags & DF_BIND_NOW)
cc850f74 4024 htab->plt_entry_size = 4 * (ARRAY_SIZE (elf32_arm_fdpic_plt_entry) - 5);
7801f98f 4025 else
cc850f74 4026 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_fdpic_plt_entry);
7801f98f
CL
4027 }
4028
362d30a1
RS
4029 if (!htab->root.splt
4030 || !htab->root.srelplt
9d19e4fd
AM
4031 || !htab->root.sdynbss
4032 || (!bfd_link_pic (info) && !htab->root.srelbss))
5e681ec4
PB
4033 abort ();
4034
0a1b45a2 4035 return true;
5e681ec4
PB
4036}
4037
906e58ca
NC
4038/* Copy the extra info we tack onto an elf_link_hash_entry. */
4039
4040static void
4041elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4042 struct elf_link_hash_entry *dir,
4043 struct elf_link_hash_entry *ind)
4044{
4045 struct elf32_arm_link_hash_entry *edir, *eind;
4046
4047 edir = (struct elf32_arm_link_hash_entry *) dir;
4048 eind = (struct elf32_arm_link_hash_entry *) ind;
4049
906e58ca
NC
4050 if (ind->root.type == bfd_link_hash_indirect)
4051 {
4052 /* Copy over PLT info. */
34e77a92
RS
4053 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4054 eind->plt.thumb_refcount = 0;
4055 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4056 eind->plt.maybe_thumb_refcount = 0;
4057 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4058 eind->plt.noncall_refcount = 0;
4059
e8b09b87
CL
4060 /* Copy FDPIC counters. */
4061 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4062 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4063 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4064
34e77a92
RS
4065 /* We should only allocate a function to .iplt once the final
4066 symbol information is known. */
4067 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
4068
4069 if (dir->got.refcount <= 0)
4070 {
4071 edir->tls_type = eind->tls_type;
4072 eind->tls_type = GOT_UNKNOWN;
4073 }
4074 }
4075
4076 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4077}
4078
68faa637
AM
4079/* Destroy an ARM elf linker hash table. */
4080
4081static void
d495ab0d 4082elf32_arm_link_hash_table_free (bfd *obfd)
68faa637
AM
4083{
4084 struct elf32_arm_link_hash_table *ret
d495ab0d 4085 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
68faa637
AM
4086
4087 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 4088 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
4089}
4090
906e58ca
NC
4091/* Create an ARM elf linker hash table. */
4092
4093static struct bfd_link_hash_table *
4094elf32_arm_link_hash_table_create (bfd *abfd)
4095{
4096 struct elf32_arm_link_hash_table *ret;
986f0783 4097 size_t amt = sizeof (struct elf32_arm_link_hash_table);
906e58ca 4098
7bf52ea2 4099 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
906e58ca
NC
4100 if (ret == NULL)
4101 return NULL;
4102
4103 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4104 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
4105 sizeof (struct elf32_arm_link_hash_entry),
4106 ARM_ELF_DATA))
906e58ca
NC
4107 {
4108 free (ret);
4109 return NULL;
4110 }
4111
906e58ca 4112 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
a504d23a 4113 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
906e58ca
NC
4114#ifdef FOUR_WORD_PLT
4115 ret->plt_header_size = 16;
4116 ret->plt_entry_size = 16;
4117#else
4118 ret->plt_header_size = 20;
1db37fe6 4119 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
906e58ca 4120#endif
0a1b45a2 4121 ret->use_rel = true;
906e58ca 4122 ret->obfd = abfd;
617a5ada 4123 ret->fdpic_p = 0;
906e58ca
NC
4124
4125 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4126 sizeof (struct elf32_arm_stub_hash_entry)))
4127 {
d495ab0d 4128 _bfd_elf_link_hash_table_free (abfd);
906e58ca
NC
4129 return NULL;
4130 }
d495ab0d 4131 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
906e58ca
NC
4132
4133 return &ret->root.root;
4134}
4135
cd1dac3d
DG
4136/* Determine what kind of NOPs are available. */
4137
0a1b45a2 4138static bool
cd1dac3d
DG
4139arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4140{
4141 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4142 Tag_CPU_arch);
cd1dac3d 4143
60a019a0 4144 /* Force return logic to be reviewed for each new architecture. */
3197e593 4145 BFD_ASSERT (arch <= TAG_CPU_ARCH_V9);
60a019a0
TP
4146
4147 return (arch == TAG_CPU_ARCH_V6T2
4148 || arch == TAG_CPU_ARCH_V6K
4149 || arch == TAG_CPU_ARCH_V7
bff0500d 4150 || arch == TAG_CPU_ARCH_V8
3197e593
PW
4151 || arch == TAG_CPU_ARCH_V8R
4152 || arch == TAG_CPU_ARCH_V9);
cd1dac3d
DG
4153}
4154
0a1b45a2 4155static bool
f4ac8484
DJ
4156arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4157{
4158 switch (stub_type)
4159 {
fea2b4d6 4160 case arm_stub_long_branch_thumb_only:
80c135e5 4161 case arm_stub_long_branch_thumb2_only:
d5a67c02 4162 case arm_stub_long_branch_thumb2_only_pure:
fea2b4d6
CL
4163 case arm_stub_long_branch_v4t_thumb_arm:
4164 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 4165 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 4166 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 4167 case arm_stub_long_branch_thumb_only_pic:
4ba2ef8f 4168 case arm_stub_cmse_branch_thumb_only:
0a1b45a2 4169 return true;
f4ac8484
DJ
4170 case arm_stub_none:
4171 BFD_FAIL ();
0a1b45a2 4172 return false;
f4ac8484
DJ
4173 break;
4174 default:
0a1b45a2 4175 return false;
f4ac8484
DJ
4176 }
4177}
4178
906e58ca
NC
4179/* Determine the type of stub needed, if any, for a call. */
4180
4181static enum elf32_arm_stub_type
4182arm_type_of_stub (struct bfd_link_info *info,
4183 asection *input_sec,
4184 const Elf_Internal_Rela *rel,
34e77a92 4185 unsigned char st_type,
35fc36a8 4186 enum arm_st_branch_type *actual_branch_type,
906e58ca 4187 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
4188 bfd_vma destination,
4189 asection *sym_sec,
4190 bfd *input_bfd,
4191 const char *name)
906e58ca
NC
4192{
4193 bfd_vma location;
4194 bfd_signed_vma branch_offset;
4195 unsigned int r_type;
4196 struct elf32_arm_link_hash_table * globals;
0a1b45a2 4197 bool thumb2, thumb2_bl, thumb_only;
906e58ca 4198 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 4199 int use_plt = 0;
35fc36a8 4200 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
4201 union gotplt_union *root_plt;
4202 struct arm_plt_info *arm_plt;
d5a67c02
AV
4203 int arch;
4204 int thumb2_movw;
906e58ca 4205
35fc36a8 4206 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
4207 return stub_type;
4208
906e58ca 4209 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4210 if (globals == NULL)
4211 return stub_type;
906e58ca
NC
4212
4213 thumb_only = using_thumb_only (globals);
906e58ca 4214 thumb2 = using_thumb2 (globals);
5e866f5a 4215 thumb2_bl = using_thumb2_bl (globals);
906e58ca 4216
d5a67c02
AV
4217 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4218
4219 /* True for architectures that implement the thumb2 movw instruction. */
4220 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4221
906e58ca
NC
4222 /* Determine where the call point is. */
4223 location = (input_sec->output_offset
4224 + input_sec->output_section->vma
4225 + rel->r_offset);
4226
906e58ca
NC
4227 r_type = ELF32_R_TYPE (rel->r_info);
4228
39f21624
NC
4229 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4230 are considering a function call relocation. */
c5423981 4231 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
07d6d2b8 4232 || r_type == R_ARM_THM_JUMP19)
39f21624
NC
4233 && branch_type == ST_BRANCH_TO_ARM)
4234 branch_type = ST_BRANCH_TO_THUMB;
4235
34e77a92
RS
4236 /* For TLS call relocs, it is the caller's responsibility to provide
4237 the address of the appropriate trampoline. */
4238 if (r_type != R_ARM_TLS_CALL
4239 && r_type != R_ARM_THM_TLS_CALL
4ba2ef8f
TP
4240 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4241 ELF32_R_SYM (rel->r_info), &root_plt,
4242 &arm_plt)
34e77a92 4243 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 4244 {
34e77a92 4245 asection *splt;
fe33d2fa 4246
34e77a92
RS
4247 if (hash == NULL || hash->is_iplt)
4248 splt = globals->root.iplt;
4249 else
4250 splt = globals->root.splt;
4251 if (splt != NULL)
b38cadfb 4252 {
34e77a92
RS
4253 use_plt = 1;
4254
4255 /* Note when dealing with PLT entries: the main PLT stub is in
4256 ARM mode, so if the branch is in Thumb mode, another
4257 Thumb->ARM stub will be inserted later just before the ARM
2df2751d
CL
4258 PLT stub. If a long branch stub is needed, we'll add a
4259 Thumb->Arm one and branch directly to the ARM PLT entry.
4260 Here, we have to check if a pre-PLT Thumb->ARM stub
4261 is needed and if it will be close enough. */
34e77a92
RS
4262
4263 destination = (splt->output_section->vma
4264 + splt->output_offset
4265 + root_plt->offset);
4266 st_type = STT_FUNC;
2df2751d
CL
4267
4268 /* Thumb branch/call to PLT: it can become a branch to ARM
4269 or to Thumb. We must perform the same checks and
4270 corrections as in elf32_arm_final_link_relocate. */
4271 if ((r_type == R_ARM_THM_CALL)
4272 || (r_type == R_ARM_THM_JUMP24))
4273 {
4274 if (globals->use_blx
4275 && r_type == R_ARM_THM_CALL
4276 && !thumb_only)
4277 {
4278 /* If the Thumb BLX instruction is available, convert
4279 the BL to a BLX instruction to call the ARM-mode
4280 PLT entry. */
4281 branch_type = ST_BRANCH_TO_ARM;
4282 }
4283 else
4284 {
4285 if (!thumb_only)
4286 /* Target the Thumb stub before the ARM PLT entry. */
4287 destination -= PLT_THUMB_STUB_SIZE;
4288 branch_type = ST_BRANCH_TO_THUMB;
4289 }
4290 }
4291 else
4292 {
4293 branch_type = ST_BRANCH_TO_ARM;
4294 }
34e77a92 4295 }
5fa9e92f 4296 }
34e77a92
RS
4297 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4298 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 4299
fe33d2fa
CL
4300 branch_offset = (bfd_signed_vma)(destination - location);
4301
0855e32b 4302 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
c5423981 4303 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
906e58ca 4304 {
5fa9e92f
CL
4305 /* Handle cases where:
4306 - this call goes too far (different Thumb/Thumb2 max
99059e56 4307 distance)
155d87d7 4308 - it's a Thumb->Arm call and blx is not available, or it's a
99059e56
RM
4309 Thumb->Arm branch (not bl). A stub is needed in this case,
4310 but only if this call is not through a PLT entry. Indeed,
695344c0 4311 PLT stubs handle mode switching already. */
5e866f5a 4312 if ((!thumb2_bl
906e58ca
NC
4313 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4314 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
5e866f5a 4315 || (thumb2_bl
906e58ca
NC
4316 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4317 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
c5423981
TG
4318 || (thumb2
4319 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4320 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4321 && (r_type == R_ARM_THM_JUMP19))
35fc36a8 4322 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
4323 && (((r_type == R_ARM_THM_CALL
4324 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
c5423981 4325 || (r_type == R_ARM_THM_JUMP24)
07d6d2b8 4326 || (r_type == R_ARM_THM_JUMP19))
5fa9e92f 4327 && !use_plt))
906e58ca 4328 {
2df2751d
CL
4329 /* If we need to insert a Thumb-Thumb long branch stub to a
4330 PLT, use one that branches directly to the ARM PLT
4331 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4332 stub, undo this now. */
695344c0
NC
4333 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4334 {
4335 branch_type = ST_BRANCH_TO_ARM;
4336 branch_offset += PLT_THUMB_STUB_SIZE;
4337 }
2df2751d 4338
35fc36a8 4339 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4340 {
4341 /* Thumb to thumb. */
4342 if (!thumb_only)
4343 {
d5a67c02 4344 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4345 _bfd_error_handler
871b3ab2 4346 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4347 " section with SHF_ARM_PURECODE section"
4348 " attribute is only supported for M-profile"
90b6238f 4349 " targets that implement the movw instruction"),
10463f39 4350 input_bfd, input_sec);
d5a67c02 4351
0e1862bb 4352 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4353 /* PIC stubs. */
155d87d7 4354 ? ((globals->use_blx
9553db3c 4355 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
4356 /* V5T and above. Stub starts with ARM code, so
4357 we must be able to switch mode before
4358 reaching it, which is only possible for 'bl'
4359 (ie R_ARM_THM_CALL relocation). */
cf3eccff 4360 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 4361 /* On V4T, use Thumb code only. */
d3626fb0 4362 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
4363
4364 /* non-PIC stubs. */
155d87d7 4365 : ((globals->use_blx
9553db3c 4366 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
4367 /* V5T and above. */
4368 ? arm_stub_long_branch_any_any
4369 /* V4T. */
d3626fb0 4370 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
4371 }
4372 else
4373 {
d5a67c02
AV
4374 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4375 stub_type = arm_stub_long_branch_thumb2_only_pure;
4376 else
4377 {
4378 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4379 _bfd_error_handler
871b3ab2 4380 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4381 " section with SHF_ARM_PURECODE section"
4382 " attribute is only supported for M-profile"
90b6238f 4383 " targets that implement the movw instruction"),
10463f39 4384 input_bfd, input_sec);
d5a67c02
AV
4385
4386 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4387 /* PIC stub. */
4388 ? arm_stub_long_branch_thumb_only_pic
4389 /* non-PIC stub. */
4390 : (thumb2 ? arm_stub_long_branch_thumb2_only
4391 : arm_stub_long_branch_thumb_only);
4392 }
906e58ca
NC
4393 }
4394 }
4395 else
4396 {
d5a67c02 4397 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4398 _bfd_error_handler
871b3ab2 4399 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4400 " section with SHF_ARM_PURECODE section"
4401 " attribute is only supported" " for M-profile"
90b6238f 4402 " targets that implement the movw instruction"),
10463f39 4403 input_bfd, input_sec);
d5a67c02 4404
906e58ca 4405 /* Thumb to arm. */
c820be07
NC
4406 if (sym_sec != NULL
4407 && sym_sec->owner != NULL
4408 && !INTERWORK_FLAG (sym_sec->owner))
4409 {
4eca0228 4410 _bfd_error_handler
90b6238f
AM
4411 (_("%pB(%s): warning: interworking not enabled;"
4412 " first occurrence: %pB: %s call to %s"),
4413 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
c820be07
NC
4414 }
4415
0855e32b 4416 stub_type =
0e1862bb 4417 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4418 /* PIC stubs. */
0855e32b 4419 ? (r_type == R_ARM_THM_TLS_CALL
6a631e86 4420 /* TLS PIC stubs. */
0855e32b
NS
4421 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4422 : arm_stub_long_branch_v4t_thumb_tls_pic)
4423 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4424 /* V5T PIC and above. */
4425 ? arm_stub_long_branch_any_arm_pic
4426 /* V4T PIC stub. */
4427 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
4428
4429 /* non-PIC stubs. */
0855e32b 4430 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
4431 /* V5T and above. */
4432 ? arm_stub_long_branch_any_any
4433 /* V4T. */
4434 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
4435
4436 /* Handle v4t short branches. */
fea2b4d6 4437 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
4438 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4439 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 4440 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
4441 }
4442 }
4443 }
fe33d2fa
CL
4444 else if (r_type == R_ARM_CALL
4445 || r_type == R_ARM_JUMP24
0855e32b
NS
4446 || r_type == R_ARM_PLT32
4447 || r_type == R_ARM_TLS_CALL)
906e58ca 4448 {
d5a67c02 4449 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4450 _bfd_error_handler
871b3ab2 4451 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4452 " section with SHF_ARM_PURECODE section"
4453 " attribute is only supported for M-profile"
90b6238f 4454 " targets that implement the movw instruction"),
10463f39 4455 input_bfd, input_sec);
35fc36a8 4456 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4457 {
4458 /* Arm to thumb. */
c820be07
NC
4459
4460 if (sym_sec != NULL
4461 && sym_sec->owner != NULL
4462 && !INTERWORK_FLAG (sym_sec->owner))
4463 {
4eca0228 4464 _bfd_error_handler
90b6238f
AM
4465 (_("%pB(%s): warning: interworking not enabled;"
4466 " first occurrence: %pB: %s call to %s"),
4467 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
c820be07
NC
4468 }
4469
4470 /* We have an extra 2-bytes reach because of
4471 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
4472 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4473 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 4474 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
4475 || (r_type == R_ARM_JUMP24)
4476 || (r_type == R_ARM_PLT32))
906e58ca 4477 {
0e1862bb 4478 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4479 /* PIC stubs. */
ebe24dd4
CL
4480 ? ((globals->use_blx)
4481 /* V5T and above. */
4482 ? arm_stub_long_branch_any_thumb_pic
4483 /* V4T stub. */
4484 : arm_stub_long_branch_v4t_arm_thumb_pic)
4485
c2b4a39d
CL
4486 /* non-PIC stubs. */
4487 : ((globals->use_blx)
4488 /* V5T and above. */
4489 ? arm_stub_long_branch_any_any
4490 /* V4T. */
4491 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
4492 }
4493 }
4494 else
4495 {
4496 /* Arm to arm. */
4497 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4498 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4499 {
0855e32b 4500 stub_type =
0e1862bb 4501 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4502 /* PIC stubs. */
0855e32b 4503 ? (r_type == R_ARM_TLS_CALL
6a631e86 4504 /* TLS PIC Stub. */
0855e32b 4505 ? arm_stub_long_branch_any_tls_pic
90c14f0c 4506 : (globals->root.target_os == is_nacl
7a89b94e
NC
4507 ? arm_stub_long_branch_arm_nacl_pic
4508 : arm_stub_long_branch_any_arm_pic))
c2b4a39d 4509 /* non-PIC stubs. */
90c14f0c 4510 : (globals->root.target_os == is_nacl
7a89b94e
NC
4511 ? arm_stub_long_branch_arm_nacl
4512 : arm_stub_long_branch_any_any);
906e58ca
NC
4513 }
4514 }
4515 }
4516
fe33d2fa
CL
4517 /* If a stub is needed, record the actual destination type. */
4518 if (stub_type != arm_stub_none)
35fc36a8 4519 *actual_branch_type = branch_type;
fe33d2fa 4520
906e58ca
NC
4521 return stub_type;
4522}
4523
4524/* Build a name for an entry in the stub hash table. */
4525
4526static char *
4527elf32_arm_stub_name (const asection *input_section,
4528 const asection *sym_sec,
4529 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
4530 const Elf_Internal_Rela *rel,
4531 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4532{
4533 char *stub_name;
4534 bfd_size_type len;
4535
4536 if (hash)
4537 {
fe33d2fa 4538 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 4539 stub_name = (char *) bfd_malloc (len);
906e58ca 4540 if (stub_name != NULL)
fe33d2fa 4541 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
4542 input_section->id & 0xffffffff,
4543 hash->root.root.root.string,
fe33d2fa
CL
4544 (int) rel->r_addend & 0xffffffff,
4545 (int) stub_type);
906e58ca
NC
4546 }
4547 else
4548 {
fe33d2fa 4549 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 4550 stub_name = (char *) bfd_malloc (len);
906e58ca 4551 if (stub_name != NULL)
fe33d2fa 4552 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
4553 input_section->id & 0xffffffff,
4554 sym_sec->id & 0xffffffff,
0855e32b
NS
4555 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4556 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4557 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
4558 (int) rel->r_addend & 0xffffffff,
4559 (int) stub_type);
906e58ca
NC
4560 }
4561
4562 return stub_name;
4563}
4564
4565/* Look up an entry in the stub hash. Stub entries are cached because
4566 creating the stub name takes a bit of time. */
4567
4568static struct elf32_arm_stub_hash_entry *
4569elf32_arm_get_stub_entry (const asection *input_section,
4570 const asection *sym_sec,
4571 struct elf_link_hash_entry *hash,
4572 const Elf_Internal_Rela *rel,
fe33d2fa
CL
4573 struct elf32_arm_link_hash_table *htab,
4574 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4575{
4576 struct elf32_arm_stub_hash_entry *stub_entry;
4577 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4578 const asection *id_sec;
4579
4580 if ((input_section->flags & SEC_CODE) == 0)
4581 return NULL;
4582
4d83e8d9
CL
4583 /* If the input section is the CMSE stubs one and it needs a long
4584 branch stub to reach it's final destination, give up with an
4585 error message: this is not supported. See PR ld/24709. */
cc850f74 4586 if (!strncmp (input_section->name, CMSE_STUB_NAME, strlen (CMSE_STUB_NAME)))
4d83e8d9
CL
4587 {
4588 bfd *output_bfd = htab->obfd;
4589 asection *out_sec = bfd_get_section_by_name (output_bfd, CMSE_STUB_NAME);
4590
4591 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4592 "(%#" PRIx64 ") from destination (%#" PRIx64 ")"),
4593 CMSE_STUB_NAME,
4594 (uint64_t)out_sec->output_section->vma
4595 + out_sec->output_offset,
4596 (uint64_t)sym_sec->output_section->vma
4597 + sym_sec->output_offset
4598 + h->root.root.u.def.value);
4599 /* Exit, rather than leave incompletely processed
4600 relocations. */
cc850f74 4601 xexit (1);
4d83e8d9
CL
4602 }
4603
906e58ca
NC
4604 /* If this input section is part of a group of sections sharing one
4605 stub section, then use the id of the first section in the group.
4606 Stub names need to include a section id, as there may well be
4607 more than one stub used to reach say, printf, and we need to
4608 distinguish between them. */
c2abbbeb 4609 BFD_ASSERT (input_section->id <= htab->top_id);
906e58ca
NC
4610 id_sec = htab->stub_group[input_section->id].link_sec;
4611
4612 if (h != NULL && h->stub_cache != NULL
4613 && h->stub_cache->h == h
fe33d2fa
CL
4614 && h->stub_cache->id_sec == id_sec
4615 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
4616 {
4617 stub_entry = h->stub_cache;
4618 }
4619 else
4620 {
4621 char *stub_name;
4622
fe33d2fa 4623 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
4624 if (stub_name == NULL)
4625 return NULL;
4626
4627 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
0a1b45a2 4628 stub_name, false, false);
906e58ca
NC
4629 if (h != NULL)
4630 h->stub_cache = stub_entry;
4631
4632 free (stub_name);
4633 }
4634
4635 return stub_entry;
4636}
4637
daa4adae
TP
4638/* Whether veneers of type STUB_TYPE require to be in a dedicated output
4639 section. */
4640
0a1b45a2 4641static bool
daa4adae
TP
4642arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4643{
4644 if (stub_type >= max_stub_type)
4645 abort (); /* Should be unreachable. */
4646
4ba2ef8f
TP
4647 switch (stub_type)
4648 {
4649 case arm_stub_cmse_branch_thumb_only:
0a1b45a2 4650 return true;
4ba2ef8f
TP
4651
4652 default:
0a1b45a2 4653 return false;
4ba2ef8f
TP
4654 }
4655
4656 abort (); /* Should be unreachable. */
daa4adae
TP
4657}
4658
4659/* Required alignment (as a power of 2) for the dedicated section holding
4660 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4661 with input sections. */
4662
4663static int
4664arm_dedicated_stub_output_section_required_alignment
4665 (enum elf32_arm_stub_type stub_type)
4666{
4667 if (stub_type >= max_stub_type)
4668 abort (); /* Should be unreachable. */
4669
4ba2ef8f
TP
4670 switch (stub_type)
4671 {
4672 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4673 boundary. */
4674 case arm_stub_cmse_branch_thumb_only:
4675 return 5;
4676
4677 default:
4678 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4679 return 0;
4680 }
4681
4682 abort (); /* Should be unreachable. */
daa4adae
TP
4683}
4684
4685/* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4686 NULL if veneers of this type are interspersed with input sections. */
4687
4688static const char *
4689arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4690{
4691 if (stub_type >= max_stub_type)
4692 abort (); /* Should be unreachable. */
4693
4ba2ef8f
TP
4694 switch (stub_type)
4695 {
4696 case arm_stub_cmse_branch_thumb_only:
4d83e8d9 4697 return CMSE_STUB_NAME;
4ba2ef8f
TP
4698
4699 default:
4700 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4701 return NULL;
4702 }
4703
4704 abort (); /* Should be unreachable. */
daa4adae
TP
4705}
4706
4707/* If veneers of type STUB_TYPE should go in a dedicated output section,
4708 returns the address of the hash table field in HTAB holding a pointer to the
4709 corresponding input section. Otherwise, returns NULL. */
4710
4711static asection **
4ba2ef8f
TP
4712arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4713 enum elf32_arm_stub_type stub_type)
daa4adae
TP
4714{
4715 if (stub_type >= max_stub_type)
4716 abort (); /* Should be unreachable. */
4717
4ba2ef8f
TP
4718 switch (stub_type)
4719 {
4720 case arm_stub_cmse_branch_thumb_only:
4721 return &htab->cmse_stub_sec;
4722
4723 default:
4724 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4725 return NULL;
4726 }
4727
4728 abort (); /* Should be unreachable. */
daa4adae
TP
4729}
4730
4731/* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4732 is the section that branch into veneer and can be NULL if stub should go in
4733 a dedicated output section. Returns a pointer to the stub section, and the
4734 section to which the stub section will be attached (in *LINK_SEC_P).
48229727 4735 LINK_SEC_P may be NULL. */
906e58ca 4736
48229727
JB
4737static asection *
4738elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
daa4adae
TP
4739 struct elf32_arm_link_hash_table *htab,
4740 enum elf32_arm_stub_type stub_type)
906e58ca 4741{
daa4adae
TP
4742 asection *link_sec, *out_sec, **stub_sec_p;
4743 const char *stub_sec_prefix;
0a1b45a2 4744 bool dedicated_output_section =
daa4adae
TP
4745 arm_dedicated_stub_output_section_required (stub_type);
4746 int align;
906e58ca 4747
daa4adae 4748 if (dedicated_output_section)
906e58ca 4749 {
daa4adae
TP
4750 bfd *output_bfd = htab->obfd;
4751 const char *out_sec_name =
4752 arm_dedicated_stub_output_section_name (stub_type);
4753 link_sec = NULL;
4754 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4755 stub_sec_prefix = out_sec_name;
4756 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4757 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4758 if (out_sec == NULL)
906e58ca 4759 {
90b6238f 4760 _bfd_error_handler (_("no address assigned to the veneers output "
4eca0228 4761 "section %s"), out_sec_name);
daa4adae 4762 return NULL;
906e58ca 4763 }
daa4adae
TP
4764 }
4765 else
4766 {
c2abbbeb 4767 BFD_ASSERT (section->id <= htab->top_id);
daa4adae
TP
4768 link_sec = htab->stub_group[section->id].link_sec;
4769 BFD_ASSERT (link_sec != NULL);
4770 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4771 if (*stub_sec_p == NULL)
4772 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4773 stub_sec_prefix = link_sec->name;
4774 out_sec = link_sec->output_section;
90c14f0c 4775 align = htab->root.target_os == is_nacl ? 4 : 3;
906e58ca 4776 }
b38cadfb 4777
daa4adae
TP
4778 if (*stub_sec_p == NULL)
4779 {
4780 size_t namelen;
4781 bfd_size_type len;
4782 char *s_name;
4783
4784 namelen = strlen (stub_sec_prefix);
4785 len = namelen + sizeof (STUB_SUFFIX);
4786 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4787 if (s_name == NULL)
4788 return NULL;
4789
4790 memcpy (s_name, stub_sec_prefix, namelen);
4791 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4792 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4793 align);
4794 if (*stub_sec_p == NULL)
4795 return NULL;
4796
4797 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4798 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4799 | SEC_KEEP;
4800 }
4801
4802 if (!dedicated_output_section)
4803 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4804
48229727
JB
4805 if (link_sec_p)
4806 *link_sec_p = link_sec;
b38cadfb 4807
daa4adae 4808 return *stub_sec_p;
48229727
JB
4809}
4810
4811/* Add a new stub entry to the stub hash. Not all fields of the new
4812 stub entry are initialised. */
4813
4814static struct elf32_arm_stub_hash_entry *
daa4adae
TP
4815elf32_arm_add_stub (const char *stub_name, asection *section,
4816 struct elf32_arm_link_hash_table *htab,
4817 enum elf32_arm_stub_type stub_type)
48229727
JB
4818{
4819 asection *link_sec;
4820 asection *stub_sec;
4821 struct elf32_arm_stub_hash_entry *stub_entry;
4822
daa4adae
TP
4823 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4824 stub_type);
48229727
JB
4825 if (stub_sec == NULL)
4826 return NULL;
906e58ca
NC
4827
4828 /* Enter this entry into the linker stub hash table. */
4829 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
0a1b45a2 4830 true, false);
906e58ca
NC
4831 if (stub_entry == NULL)
4832 {
6bde4c52
TP
4833 if (section == NULL)
4834 section = stub_sec;
871b3ab2 4835 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 4836 section->owner, stub_name);
906e58ca
NC
4837 return NULL;
4838 }
4839
4840 stub_entry->stub_sec = stub_sec;
0955507f 4841 stub_entry->stub_offset = (bfd_vma) -1;
906e58ca
NC
4842 stub_entry->id_sec = link_sec;
4843
906e58ca
NC
4844 return stub_entry;
4845}
4846
4847/* Store an Arm insn into an output section not processed by
4848 elf32_arm_write_section. */
4849
4850static void
8029a119
NC
4851put_arm_insn (struct elf32_arm_link_hash_table * htab,
4852 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4853{
4854 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4855 bfd_putl32 (val, ptr);
4856 else
4857 bfd_putb32 (val, ptr);
4858}
4859
4860/* Store a 16-bit Thumb insn into an output section not processed by
4861 elf32_arm_write_section. */
4862
4863static void
8029a119
NC
4864put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4865 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4866{
4867 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4868 bfd_putl16 (val, ptr);
4869 else
4870 bfd_putb16 (val, ptr);
4871}
4872
a504d23a
LA
4873/* Store a Thumb2 insn into an output section not processed by
4874 elf32_arm_write_section. */
4875
4876static void
4877put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
b98e6871 4878 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
a504d23a
LA
4879{
4880 /* T2 instructions are 16-bit streamed. */
4881 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4882 {
4883 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4884 bfd_putl16 ((val & 0xffff), ptr + 2);
4885 }
4886 else
4887 {
4888 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4889 bfd_putb16 ((val & 0xffff), ptr + 2);
4890 }
4891}
4892
0855e32b
NS
4893/* If it's possible to change R_TYPE to a more efficient access
4894 model, return the new reloc type. */
4895
4896static unsigned
b38cadfb 4897elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4898 struct elf_link_hash_entry *h)
4899{
4900 int is_local = (h == NULL);
4901
9cb09e33 4902 if (bfd_link_dll (info)
0e1862bb 4903 || (h && h->root.type == bfd_link_hash_undefweak))
0855e32b
NS
4904 return r_type;
4905
b38cadfb 4906 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4907 switch (r_type)
4908 {
4909 case R_ARM_TLS_GOTDESC:
4910 case R_ARM_TLS_CALL:
4911 case R_ARM_THM_TLS_CALL:
4912 case R_ARM_TLS_DESCSEQ:
4913 case R_ARM_THM_TLS_DESCSEQ:
4914 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4915 }
4916
4917 return r_type;
4918}
4919
48229727
JB
4920static bfd_reloc_status_type elf32_arm_final_link_relocate
4921 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4922 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92 4923 const char *, unsigned char, enum arm_st_branch_type,
0a1b45a2 4924 struct elf_link_hash_entry *, bool *, char **);
48229727 4925
4563a860
JB
4926static unsigned int
4927arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4928{
4929 switch (stub_type)
4930 {
4931 case arm_stub_a8_veneer_b_cond:
4932 case arm_stub_a8_veneer_b:
4933 case arm_stub_a8_veneer_bl:
4934 return 2;
4935
4936 case arm_stub_long_branch_any_any:
4937 case arm_stub_long_branch_v4t_arm_thumb:
4938 case arm_stub_long_branch_thumb_only:
80c135e5 4939 case arm_stub_long_branch_thumb2_only:
d5a67c02 4940 case arm_stub_long_branch_thumb2_only_pure:
4563a860
JB
4941 case arm_stub_long_branch_v4t_thumb_thumb:
4942 case arm_stub_long_branch_v4t_thumb_arm:
4943 case arm_stub_short_branch_v4t_thumb_arm:
4944 case arm_stub_long_branch_any_arm_pic:
4945 case arm_stub_long_branch_any_thumb_pic:
4946 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4947 case arm_stub_long_branch_v4t_arm_thumb_pic:
4948 case arm_stub_long_branch_v4t_thumb_arm_pic:
4949 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4950 case arm_stub_long_branch_any_tls_pic:
4951 case arm_stub_long_branch_v4t_thumb_tls_pic:
4ba2ef8f 4952 case arm_stub_cmse_branch_thumb_only:
4563a860
JB
4953 case arm_stub_a8_veneer_blx:
4954 return 4;
b38cadfb 4955
7a89b94e
NC
4956 case arm_stub_long_branch_arm_nacl:
4957 case arm_stub_long_branch_arm_nacl_pic:
4958 return 16;
4959
4563a860
JB
4960 default:
4961 abort (); /* Should be unreachable. */
4962 }
4963}
4964
4f4faa4d
TP
4965/* Returns whether stubs of type STUB_TYPE take over the symbol they are
4966 veneering (TRUE) or have their own symbol (FALSE). */
4967
0a1b45a2 4968static bool
4f4faa4d
TP
4969arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4970{
4971 if (stub_type >= max_stub_type)
4972 abort (); /* Should be unreachable. */
4973
4ba2ef8f
TP
4974 switch (stub_type)
4975 {
4976 case arm_stub_cmse_branch_thumb_only:
0a1b45a2 4977 return true;
4ba2ef8f
TP
4978
4979 default:
0a1b45a2 4980 return false;
4ba2ef8f
TP
4981 }
4982
4983 abort (); /* Should be unreachable. */
4f4faa4d
TP
4984}
4985
d7c5bd02
TP
4986/* Returns the padding needed for the dedicated section used stubs of type
4987 STUB_TYPE. */
4988
4989static int
4990arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4991{
4992 if (stub_type >= max_stub_type)
4993 abort (); /* Should be unreachable. */
4994
4ba2ef8f
TP
4995 switch (stub_type)
4996 {
4997 case arm_stub_cmse_branch_thumb_only:
4998 return 32;
4999
5000 default:
5001 return 0;
5002 }
5003
5004 abort (); /* Should be unreachable. */
d7c5bd02
TP
5005}
5006
0955507f
TP
5007/* If veneers of type STUB_TYPE should go in a dedicated output section,
5008 returns the address of the hash table field in HTAB holding the offset at
5009 which new veneers should be layed out in the stub section. */
5010
5011static bfd_vma*
5012arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
5013 enum elf32_arm_stub_type stub_type)
5014{
5015 switch (stub_type)
5016 {
5017 case arm_stub_cmse_branch_thumb_only:
5018 return &htab->new_cmse_stub_offset;
5019
5020 default:
5021 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
5022 return NULL;
5023 }
5024}
5025
0a1b45a2 5026static bool
906e58ca
NC
5027arm_build_one_stub (struct bfd_hash_entry *gen_entry,
5028 void * in_arg)
5029{
7a89b94e 5030#define MAXRELOCS 3
0a1b45a2 5031 bool removed_sg_veneer;
906e58ca 5032 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 5033 struct elf32_arm_link_hash_table *globals;
906e58ca 5034 struct bfd_link_info *info;
906e58ca
NC
5035 asection *stub_sec;
5036 bfd *stub_bfd;
906e58ca
NC
5037 bfd_byte *loc;
5038 bfd_vma sym_value;
5039 int template_size;
5040 int size;
d3ce72d0 5041 const insn_sequence *template_sequence;
906e58ca 5042 int i;
48229727
JB
5043 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5044 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5045 int nrelocs = 0;
0955507f 5046 int just_allocated = 0;
906e58ca
NC
5047
5048 /* Massage our args to the form they really have. */
5049 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5050 info = (struct bfd_link_info *) in_arg;
5051
abf874aa
CL
5052 /* Fail if the target section could not be assigned to an output
5053 section. The user should fix his linker script. */
5054 if (stub_entry->target_section->output_section == NULL
5055 && info->non_contiguous_regions)
c63d4862 5056 info->callbacks->einfo (_("%F%P: Could not assign `%pA' to an output section. "
53215f21
CL
5057 "Retry without --enable-non-contiguous-regions.\n"),
5058 stub_entry->target_section);
abf874aa 5059
906e58ca 5060 globals = elf32_arm_hash_table (info);
4dfe6ac6 5061 if (globals == NULL)
0a1b45a2 5062 return false;
906e58ca 5063
906e58ca
NC
5064 stub_sec = stub_entry->stub_sec;
5065
4dfe6ac6 5066 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
5067 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5068 /* We have to do less-strictly-aligned fixes last. */
0a1b45a2 5069 return true;
fe33d2fa 5070
0955507f
TP
5071 /* Assign a slot at the end of section if none assigned yet. */
5072 if (stub_entry->stub_offset == (bfd_vma) -1)
5073 {
5074 stub_entry->stub_offset = stub_sec->size;
5075 just_allocated = 1;
5076 }
906e58ca
NC
5077 loc = stub_sec->contents + stub_entry->stub_offset;
5078
5079 stub_bfd = stub_sec->owner;
5080
906e58ca
NC
5081 /* This is the address of the stub destination. */
5082 sym_value = (stub_entry->target_value
5083 + stub_entry->target_section->output_offset
5084 + stub_entry->target_section->output_section->vma);
5085
d3ce72d0 5086 template_sequence = stub_entry->stub_template;
461a49ca 5087 template_size = stub_entry->stub_template_size;
906e58ca
NC
5088
5089 size = 0;
461a49ca 5090 for (i = 0; i < template_size; i++)
906e58ca 5091 {
d3ce72d0 5092 switch (template_sequence[i].type)
461a49ca
DJ
5093 {
5094 case THUMB16_TYPE:
48229727 5095 {
d3ce72d0
NC
5096 bfd_vma data = (bfd_vma) template_sequence[i].data;
5097 if (template_sequence[i].reloc_addend != 0)
48229727 5098 {
99059e56
RM
5099 /* We've borrowed the reloc_addend field to mean we should
5100 insert a condition code into this (Thumb-1 branch)
5101 instruction. See THUMB16_BCOND_INSN. */
5102 BFD_ASSERT ((data & 0xff00) == 0xd000);
5103 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
48229727 5104 }
fe33d2fa 5105 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
5106 size += 2;
5107 }
461a49ca 5108 break;
906e58ca 5109
48229727 5110 case THUMB32_TYPE:
fe33d2fa
CL
5111 bfd_put_16 (stub_bfd,
5112 (template_sequence[i].data >> 16) & 0xffff,
5113 loc + size);
5114 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5115 loc + size + 2);
99059e56
RM
5116 if (template_sequence[i].r_type != R_ARM_NONE)
5117 {
5118 stub_reloc_idx[nrelocs] = i;
5119 stub_reloc_offset[nrelocs++] = size;
5120 }
5121 size += 4;
5122 break;
48229727 5123
461a49ca 5124 case ARM_TYPE:
fe33d2fa
CL
5125 bfd_put_32 (stub_bfd, template_sequence[i].data,
5126 loc + size);
461a49ca
DJ
5127 /* Handle cases where the target is encoded within the
5128 instruction. */
d3ce72d0 5129 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 5130 {
48229727
JB
5131 stub_reloc_idx[nrelocs] = i;
5132 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5133 }
5134 size += 4;
5135 break;
5136
5137 case DATA_TYPE:
d3ce72d0 5138 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
5139 stub_reloc_idx[nrelocs] = i;
5140 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5141 size += 4;
5142 break;
5143
5144 default:
5145 BFD_FAIL ();
0a1b45a2 5146 return false;
461a49ca 5147 }
906e58ca 5148 }
461a49ca 5149
0955507f
TP
5150 if (just_allocated)
5151 stub_sec->size += size;
906e58ca 5152
461a49ca
DJ
5153 /* Stub size has already been computed in arm_size_one_stub. Check
5154 consistency. */
5155 BFD_ASSERT (size == stub_entry->stub_size);
5156
906e58ca 5157 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 5158 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
5159 sym_value |= 1;
5160
0955507f
TP
5161 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5162 to relocate in each stub. */
5163 removed_sg_veneer =
5164 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5165 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
c820be07 5166
48229727 5167 for (i = 0; i < nrelocs; i++)
8d9d9490
TP
5168 {
5169 Elf_Internal_Rela rel;
0a1b45a2 5170 bool unresolved_reloc;
8d9d9490
TP
5171 char *error_message;
5172 bfd_vma points_to =
5173 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5174
5175 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5176 rel.r_info = ELF32_R_INFO (0,
5177 template_sequence[stub_reloc_idx[i]].r_type);
5178 rel.r_addend = 0;
5179
5180 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5181 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5182 template should refer back to the instruction after the original
5183 branch. We use target_section as Cortex-A8 erratum workaround stubs
5184 are only generated when both source and target are in the same
5185 section. */
5186 points_to = stub_entry->target_section->output_section->vma
5187 + stub_entry->target_section->output_offset
5188 + stub_entry->source_value;
5189
5190 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5191 (template_sequence[stub_reloc_idx[i]].r_type),
5192 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5193 points_to, info, stub_entry->target_section, "", STT_FUNC,
5194 stub_entry->branch_type,
5195 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5196 &error_message);
5197 }
906e58ca 5198
0a1b45a2 5199 return true;
48229727 5200#undef MAXRELOCS
906e58ca
NC
5201}
5202
48229727
JB
5203/* Calculate the template, template size and instruction size for a stub.
5204 Return value is the instruction size. */
906e58ca 5205
48229727
JB
5206static unsigned int
5207find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5208 const insn_sequence **stub_template,
5209 int *stub_template_size)
906e58ca 5210{
d3ce72d0 5211 const insn_sequence *template_sequence = NULL;
48229727
JB
5212 int template_size = 0, i;
5213 unsigned int size;
906e58ca 5214
d3ce72d0 5215 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
5216 if (stub_template)
5217 *stub_template = template_sequence;
5218
48229727 5219 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
5220 if (stub_template_size)
5221 *stub_template_size = template_size;
906e58ca
NC
5222
5223 size = 0;
461a49ca
DJ
5224 for (i = 0; i < template_size; i++)
5225 {
d3ce72d0 5226 switch (template_sequence[i].type)
461a49ca
DJ
5227 {
5228 case THUMB16_TYPE:
5229 size += 2;
5230 break;
5231
5232 case ARM_TYPE:
48229727 5233 case THUMB32_TYPE:
461a49ca
DJ
5234 case DATA_TYPE:
5235 size += 4;
5236 break;
5237
5238 default:
5239 BFD_FAIL ();
2a229407 5240 return 0;
461a49ca
DJ
5241 }
5242 }
5243
48229727
JB
5244 return size;
5245}
5246
5247/* As above, but don't actually build the stub. Just bump offset so
5248 we know stub section sizes. */
5249
0a1b45a2 5250static bool
48229727 5251arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 5252 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
5253{
5254 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 5255 const insn_sequence *template_sequence;
48229727
JB
5256 int template_size, size;
5257
5258 /* Massage our args to the form they really have. */
5259 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727 5260
cc850f74
NC
5261 BFD_ASSERT ((stub_entry->stub_type > arm_stub_none)
5262 && stub_entry->stub_type < ARRAY_SIZE (stub_definitions));
48229727 5263
d3ce72d0 5264 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
5265 &template_size);
5266
0955507f
TP
5267 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5268 if (stub_entry->stub_template_size)
5269 {
5270 stub_entry->stub_size = size;
5271 stub_entry->stub_template = template_sequence;
5272 stub_entry->stub_template_size = template_size;
5273 }
5274
5275 /* Already accounted for. */
5276 if (stub_entry->stub_offset != (bfd_vma) -1)
0a1b45a2 5277 return true;
461a49ca 5278
906e58ca
NC
5279 size = (size + 7) & ~7;
5280 stub_entry->stub_sec->size += size;
461a49ca 5281
0a1b45a2 5282 return true;
906e58ca
NC
5283}
5284
5285/* External entry points for sizing and building linker stubs. */
5286
5287/* Set up various things so that we can make a list of input sections
5288 for each output section included in the link. Returns -1 on error,
5289 0 when no stubs will be needed, and 1 on success. */
5290
5291int
5292elf32_arm_setup_section_lists (bfd *output_bfd,
5293 struct bfd_link_info *info)
5294{
5295 bfd *input_bfd;
5296 unsigned int bfd_count;
7292b3ac 5297 unsigned int top_id, top_index;
906e58ca
NC
5298 asection *section;
5299 asection **input_list, **list;
986f0783 5300 size_t amt;
906e58ca
NC
5301 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5302
4dfe6ac6
NC
5303 if (htab == NULL)
5304 return 0;
906e58ca
NC
5305
5306 /* Count the number of input BFDs and find the top input section id. */
5307 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5308 input_bfd != NULL;
c72f2fb2 5309 input_bfd = input_bfd->link.next)
906e58ca
NC
5310 {
5311 bfd_count += 1;
5312 for (section = input_bfd->sections;
5313 section != NULL;
5314 section = section->next)
5315 {
5316 if (top_id < section->id)
5317 top_id = section->id;
5318 }
5319 }
5320 htab->bfd_count = bfd_count;
5321
5322 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 5323 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
5324 if (htab->stub_group == NULL)
5325 return -1;
fe33d2fa 5326 htab->top_id = top_id;
906e58ca
NC
5327
5328 /* We can't use output_bfd->section_count here to find the top output
5329 section index as some sections may have been removed, and
5330 _bfd_strip_section_from_output doesn't renumber the indices. */
5331 for (section = output_bfd->sections, top_index = 0;
5332 section != NULL;
5333 section = section->next)
5334 {
5335 if (top_index < section->index)
5336 top_index = section->index;
5337 }
5338
5339 htab->top_index = top_index;
5340 amt = sizeof (asection *) * (top_index + 1);
21d799b5 5341 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
5342 htab->input_list = input_list;
5343 if (input_list == NULL)
5344 return -1;
5345
5346 /* For sections we aren't interested in, mark their entries with a
5347 value we can check later. */
5348 list = input_list + top_index;
5349 do
5350 *list = bfd_abs_section_ptr;
5351 while (list-- != input_list);
5352
5353 for (section = output_bfd->sections;
5354 section != NULL;
5355 section = section->next)
5356 {
5357 if ((section->flags & SEC_CODE) != 0)
5358 input_list[section->index] = NULL;
5359 }
5360
5361 return 1;
5362}
5363
5364/* The linker repeatedly calls this function for each input section,
5365 in the order that input sections are linked into output sections.
5366 Build lists of input sections to determine groupings between which
5367 we may insert linker stubs. */
5368
5369void
5370elf32_arm_next_input_section (struct bfd_link_info *info,
5371 asection *isec)
5372{
5373 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5374
4dfe6ac6
NC
5375 if (htab == NULL)
5376 return;
5377
906e58ca
NC
5378 if (isec->output_section->index <= htab->top_index)
5379 {
5380 asection **list = htab->input_list + isec->output_section->index;
5381
a7470592 5382 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
5383 {
5384 /* Steal the link_sec pointer for our list. */
5385#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5386 /* This happens to make the list in reverse order,
07d72278 5387 which we reverse later. */
906e58ca
NC
5388 PREV_SEC (isec) = *list;
5389 *list = isec;
5390 }
5391 }
5392}
5393
5394/* See whether we can group stub sections together. Grouping stub
5395 sections may result in fewer stubs. More importantly, we need to
07d72278 5396 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
5397 .fini output sections respectively, because glibc splits the
5398 _init and _fini functions into multiple parts. Putting a stub in
5399 the middle of a function is not a good idea. */
5400
5401static void
5402group_sections (struct elf32_arm_link_hash_table *htab,
5403 bfd_size_type stub_group_size,
0a1b45a2 5404 bool stubs_always_after_branch)
906e58ca 5405{
07d72278 5406 asection **list = htab->input_list;
906e58ca
NC
5407
5408 do
5409 {
5410 asection *tail = *list;
07d72278 5411 asection *head;
906e58ca
NC
5412
5413 if (tail == bfd_abs_section_ptr)
5414 continue;
5415
07d72278
DJ
5416 /* Reverse the list: we must avoid placing stubs at the
5417 beginning of the section because the beginning of the text
5418 section may be required for an interrupt vector in bare metal
5419 code. */
5420#define NEXT_SEC PREV_SEC
e780aef2
CL
5421 head = NULL;
5422 while (tail != NULL)
99059e56
RM
5423 {
5424 /* Pop from tail. */
5425 asection *item = tail;
5426 tail = PREV_SEC (item);
e780aef2 5427
99059e56
RM
5428 /* Push on head. */
5429 NEXT_SEC (item) = head;
5430 head = item;
5431 }
07d72278
DJ
5432
5433 while (head != NULL)
906e58ca
NC
5434 {
5435 asection *curr;
07d72278 5436 asection *next;
e780aef2
CL
5437 bfd_vma stub_group_start = head->output_offset;
5438 bfd_vma end_of_next;
906e58ca 5439
07d72278 5440 curr = head;
e780aef2 5441 while (NEXT_SEC (curr) != NULL)
8cd931b7 5442 {
e780aef2
CL
5443 next = NEXT_SEC (curr);
5444 end_of_next = next->output_offset + next->size;
5445 if (end_of_next - stub_group_start >= stub_group_size)
5446 /* End of NEXT is too far from start, so stop. */
8cd931b7 5447 break;
e780aef2
CL
5448 /* Add NEXT to the group. */
5449 curr = next;
8cd931b7 5450 }
906e58ca 5451
07d72278 5452 /* OK, the size from the start to the start of CURR is less
906e58ca 5453 than stub_group_size and thus can be handled by one stub
07d72278 5454 section. (Or the head section is itself larger than
906e58ca
NC
5455 stub_group_size, in which case we may be toast.)
5456 We should really be keeping track of the total size of
5457 stubs added here, as stubs contribute to the final output
7fb9f789 5458 section size. */
906e58ca
NC
5459 do
5460 {
07d72278 5461 next = NEXT_SEC (head);
906e58ca 5462 /* Set up this stub group. */
07d72278 5463 htab->stub_group[head->id].link_sec = curr;
906e58ca 5464 }
07d72278 5465 while (head != curr && (head = next) != NULL);
906e58ca
NC
5466
5467 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
5468 bytes after the stub section can be handled by it too. */
5469 if (!stubs_always_after_branch)
906e58ca 5470 {
e780aef2
CL
5471 stub_group_start = curr->output_offset + curr->size;
5472
8cd931b7 5473 while (next != NULL)
906e58ca 5474 {
e780aef2
CL
5475 end_of_next = next->output_offset + next->size;
5476 if (end_of_next - stub_group_start >= stub_group_size)
5477 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 5478 break;
e780aef2 5479 /* Add NEXT to the stub group. */
07d72278
DJ
5480 head = next;
5481 next = NEXT_SEC (head);
5482 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
5483 }
5484 }
07d72278 5485 head = next;
906e58ca
NC
5486 }
5487 }
07d72278 5488 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
5489
5490 free (htab->input_list);
5491#undef PREV_SEC
07d72278 5492#undef NEXT_SEC
906e58ca
NC
5493}
5494
48229727
JB
5495/* Comparison function for sorting/searching relocations relating to Cortex-A8
5496 erratum fix. */
5497
5498static int
5499a8_reloc_compare (const void *a, const void *b)
5500{
21d799b5
NC
5501 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5502 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
5503
5504 if (ra->from < rb->from)
5505 return -1;
5506 else if (ra->from > rb->from)
5507 return 1;
5508 else
5509 return 0;
5510}
5511
5512static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5513 const char *, char **);
5514
5515/* Helper function to scan code for sequences which might trigger the Cortex-A8
5516 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 5517 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
5518 otherwise. */
5519
0a1b45a2 5520static bool
81694485
NC
5521cortex_a8_erratum_scan (bfd *input_bfd,
5522 struct bfd_link_info *info,
48229727
JB
5523 struct a8_erratum_fix **a8_fixes_p,
5524 unsigned int *num_a8_fixes_p,
5525 unsigned int *a8_fix_table_size_p,
5526 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
5527 unsigned int num_a8_relocs,
5528 unsigned prev_num_a8_fixes,
0a1b45a2 5529 bool *stub_changed_p)
48229727
JB
5530{
5531 asection *section;
5532 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5533 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5534 unsigned int num_a8_fixes = *num_a8_fixes_p;
5535 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5536
4dfe6ac6 5537 if (htab == NULL)
0a1b45a2 5538 return false;
4dfe6ac6 5539
48229727
JB
5540 for (section = input_bfd->sections;
5541 section != NULL;
5542 section = section->next)
5543 {
5544 bfd_byte *contents = NULL;
5545 struct _arm_elf_section_data *sec_data;
5546 unsigned int span;
5547 bfd_vma base_vma;
5548
5549 if (elf_section_type (section) != SHT_PROGBITS
99059e56
RM
5550 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5551 || (section->flags & SEC_EXCLUDE) != 0
5552 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5553 || (section->output_section == bfd_abs_section_ptr))
5554 continue;
48229727
JB
5555
5556 base_vma = section->output_section->vma + section->output_offset;
5557
5558 if (elf_section_data (section)->this_hdr.contents != NULL)
99059e56 5559 contents = elf_section_data (section)->this_hdr.contents;
48229727 5560 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
0a1b45a2 5561 return true;
48229727
JB
5562
5563 sec_data = elf32_arm_section_data (section);
5564
5565 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
5566 {
5567 unsigned int span_start = sec_data->map[span].vma;
5568 unsigned int span_end = (span == sec_data->mapcount - 1)
5569 ? section->size : sec_data->map[span + 1].vma;
5570 unsigned int i;
5571 char span_type = sec_data->map[span].type;
0a1b45a2 5572 bool last_was_32bit = false, last_was_branch = false;
99059e56
RM
5573
5574 if (span_type != 't')
5575 continue;
5576
5577 /* Span is entirely within a single 4KB region: skip scanning. */
5578 if (((base_vma + span_start) & ~0xfff)
48229727 5579 == ((base_vma + span_end) & ~0xfff))
99059e56
RM
5580 continue;
5581
5582 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5583
5584 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5585 * The branch target is in the same 4KB region as the
5586 first half of the branch.
5587 * The instruction before the branch is a 32-bit
5588 length non-branch instruction. */
5589 for (i = span_start; i < span_end;)
5590 {
5591 unsigned int insn = bfd_getl16 (&contents[i]);
0a1b45a2
AM
5592 bool insn_32bit = false, is_blx = false, is_b = false;
5593 bool is_bl = false, is_bcc = false, is_32bit_branch;
48229727 5594
99059e56 5595 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
0a1b45a2 5596 insn_32bit = true;
48229727
JB
5597
5598 if (insn_32bit)
99059e56
RM
5599 {
5600 /* Load the rest of the insn (in manual-friendly order). */
5601 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5602
5603 /* Encoding T4: B<c>.W. */
5604 is_b = (insn & 0xf800d000) == 0xf0009000;
5605 /* Encoding T1: BL<c>.W. */
5606 is_bl = (insn & 0xf800d000) == 0xf000d000;
5607 /* Encoding T2: BLX<c>.W. */
5608 is_blx = (insn & 0xf800d000) == 0xf000c000;
48229727
JB
5609 /* Encoding T3: B<c>.W (not permitted in IT block). */
5610 is_bcc = (insn & 0xf800d000) == 0xf0008000
5611 && (insn & 0x07f00000) != 0x03800000;
5612 }
5613
5614 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 5615
99059e56 5616 if (((base_vma + i) & 0xfff) == 0xffe
81694485
NC
5617 && insn_32bit
5618 && is_32bit_branch
5619 && last_was_32bit
5620 && ! last_was_branch)
99059e56
RM
5621 {
5622 bfd_signed_vma offset = 0;
0a1b45a2
AM
5623 bool force_target_arm = false;
5624 bool force_target_thumb = false;
99059e56
RM
5625 bfd_vma target;
5626 enum elf32_arm_stub_type stub_type = arm_stub_none;
5627 struct a8_erratum_reloc key, *found;
0a1b45a2 5628 bool use_plt = false;
48229727 5629
99059e56
RM
5630 key.from = base_vma + i;
5631 found = (struct a8_erratum_reloc *)
5632 bsearch (&key, a8_relocs, num_a8_relocs,
5633 sizeof (struct a8_erratum_reloc),
5634 &a8_reloc_compare);
48229727
JB
5635
5636 if (found)
5637 {
5638 char *error_message = NULL;
5639 struct elf_link_hash_entry *entry;
5640
5641 /* We don't care about the error returned from this
99059e56 5642 function, only if there is glue or not. */
48229727
JB
5643 entry = find_thumb_glue (info, found->sym_name,
5644 &error_message);
5645
5646 if (entry)
0a1b45a2 5647 found->non_a8_stub = true;
48229727 5648
92750f34 5649 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 5650 if (htab->root.splt != NULL && found->hash != NULL
92750f34 5651 && found->hash->root.plt.offset != (bfd_vma) -1)
0a1b45a2 5652 use_plt = true;
92750f34
DJ
5653
5654 if (found->r_type == R_ARM_THM_CALL)
5655 {
35fc36a8
RS
5656 if (found->branch_type == ST_BRANCH_TO_ARM
5657 || use_plt)
0a1b45a2 5658 force_target_arm = true;
92750f34 5659 else
0a1b45a2 5660 force_target_thumb = true;
92750f34 5661 }
48229727
JB
5662 }
5663
99059e56 5664 /* Check if we have an offending branch instruction. */
48229727
JB
5665
5666 if (found && found->non_a8_stub)
5667 /* We've already made a stub for this instruction, e.g.
5668 it's a long branch or a Thumb->ARM stub. Assume that
5669 stub will suffice to work around the A8 erratum (see
5670 setting of always_after_branch above). */
5671 ;
99059e56
RM
5672 else if (is_bcc)
5673 {
5674 offset = (insn & 0x7ff) << 1;
5675 offset |= (insn & 0x3f0000) >> 4;
5676 offset |= (insn & 0x2000) ? 0x40000 : 0;
5677 offset |= (insn & 0x800) ? 0x80000 : 0;
5678 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5679 if (offset & 0x100000)
5680 offset |= ~ ((bfd_signed_vma) 0xfffff);
5681 stub_type = arm_stub_a8_veneer_b_cond;
5682 }
5683 else if (is_b || is_bl || is_blx)
5684 {
5685 int s = (insn & 0x4000000) != 0;
5686 int j1 = (insn & 0x2000) != 0;
5687 int j2 = (insn & 0x800) != 0;
5688 int i1 = !(j1 ^ s);
5689 int i2 = !(j2 ^ s);
5690
5691 offset = (insn & 0x7ff) << 1;
5692 offset |= (insn & 0x3ff0000) >> 4;
5693 offset |= i2 << 22;
5694 offset |= i1 << 23;
5695 offset |= s << 24;
5696 if (offset & 0x1000000)
5697 offset |= ~ ((bfd_signed_vma) 0xffffff);
5698
5699 if (is_blx)
5700 offset &= ~ ((bfd_signed_vma) 3);
5701
5702 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5703 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5704 }
5705
5706 if (stub_type != arm_stub_none)
5707 {
5708 bfd_vma pc_for_insn = base_vma + i + 4;
48229727
JB
5709
5710 /* The original instruction is a BL, but the target is
99059e56 5711 an ARM instruction. If we were not making a stub,
48229727
JB
5712 the BL would have been converted to a BLX. Use the
5713 BLX stub instead in that case. */
5714 if (htab->use_blx && force_target_arm
5715 && stub_type == arm_stub_a8_veneer_bl)
5716 {
5717 stub_type = arm_stub_a8_veneer_blx;
0a1b45a2
AM
5718 is_blx = true;
5719 is_bl = false;
48229727
JB
5720 }
5721 /* Conversely, if the original instruction was
5722 BLX but the target is Thumb mode, use the BL
5723 stub. */
5724 else if (force_target_thumb
5725 && stub_type == arm_stub_a8_veneer_blx)
5726 {
5727 stub_type = arm_stub_a8_veneer_bl;
0a1b45a2
AM
5728 is_blx = false;
5729 is_bl = true;
48229727
JB
5730 }
5731
99059e56
RM
5732 if (is_blx)
5733 pc_for_insn &= ~ ((bfd_vma) 3);
48229727 5734
99059e56
RM
5735 /* If we found a relocation, use the proper destination,
5736 not the offset in the (unrelocated) instruction.
48229727
JB
5737 Note this is always done if we switched the stub type
5738 above. */
99059e56
RM
5739 if (found)
5740 offset =
81694485 5741 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 5742
99059e56
RM
5743 /* If the stub will use a Thumb-mode branch to a
5744 PLT target, redirect it to the preceding Thumb
5745 entry point. */
5746 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5747 offset -= PLT_THUMB_STUB_SIZE;
7d24e6a6 5748
99059e56 5749 target = pc_for_insn + offset;
48229727 5750
99059e56
RM
5751 /* The BLX stub is ARM-mode code. Adjust the offset to
5752 take the different PC value (+8 instead of +4) into
48229727 5753 account. */
99059e56
RM
5754 if (stub_type == arm_stub_a8_veneer_blx)
5755 offset += 4;
5756
5757 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5758 {
5759 char *stub_name = NULL;
5760
5761 if (num_a8_fixes == a8_fix_table_size)
5762 {
5763 a8_fix_table_size *= 2;
5764 a8_fixes = (struct a8_erratum_fix *)
5765 bfd_realloc (a8_fixes,
5766 sizeof (struct a8_erratum_fix)
5767 * a8_fix_table_size);
5768 }
48229727 5769
eb7c4339
NS
5770 if (num_a8_fixes < prev_num_a8_fixes)
5771 {
5772 /* If we're doing a subsequent scan,
5773 check if we've found the same fix as
5774 before, and try and reuse the stub
5775 name. */
5776 stub_name = a8_fixes[num_a8_fixes].stub_name;
5777 if ((a8_fixes[num_a8_fixes].section != section)
5778 || (a8_fixes[num_a8_fixes].offset != i))
5779 {
5780 free (stub_name);
5781 stub_name = NULL;
0a1b45a2 5782 *stub_changed_p = true;
eb7c4339
NS
5783 }
5784 }
5785
5786 if (!stub_name)
5787 {
21d799b5 5788 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
5789 if (stub_name != NULL)
5790 sprintf (stub_name, "%x:%x", section->id, i);
5791 }
48229727 5792
99059e56
RM
5793 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5794 a8_fixes[num_a8_fixes].section = section;
5795 a8_fixes[num_a8_fixes].offset = i;
8d9d9490
TP
5796 a8_fixes[num_a8_fixes].target_offset =
5797 target - base_vma;
99059e56
RM
5798 a8_fixes[num_a8_fixes].orig_insn = insn;
5799 a8_fixes[num_a8_fixes].stub_name = stub_name;
5800 a8_fixes[num_a8_fixes].stub_type = stub_type;
5801 a8_fixes[num_a8_fixes].branch_type =
35fc36a8 5802 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727 5803
99059e56
RM
5804 num_a8_fixes++;
5805 }
5806 }
5807 }
48229727 5808
99059e56
RM
5809 i += insn_32bit ? 4 : 2;
5810 last_was_32bit = insn_32bit;
48229727 5811 last_was_branch = is_32bit_branch;
99059e56
RM
5812 }
5813 }
48229727
JB
5814
5815 if (elf_section_data (section)->this_hdr.contents == NULL)
99059e56 5816 free (contents);
48229727 5817 }
fe33d2fa 5818
48229727
JB
5819 *a8_fixes_p = a8_fixes;
5820 *num_a8_fixes_p = num_a8_fixes;
5821 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 5822
0a1b45a2 5823 return false;
48229727
JB
5824}
5825
b715f643
TP
5826/* Create or update a stub entry depending on whether the stub can already be
5827 found in HTAB. The stub is identified by:
5828 - its type STUB_TYPE
5829 - its source branch (note that several can share the same stub) whose
5830 section and relocation (if any) are given by SECTION and IRELA
5831 respectively
5832 - its target symbol whose input section, hash, name, value and branch type
5833 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5834 respectively
5835
5836 If found, the value of the stub's target symbol is updated from SYM_VALUE
5837 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5838 TRUE and the stub entry is initialized.
5839
0955507f
TP
5840 Returns the stub that was created or updated, or NULL if an error
5841 occurred. */
b715f643 5842
0955507f 5843static struct elf32_arm_stub_hash_entry *
b715f643
TP
5844elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5845 enum elf32_arm_stub_type stub_type, asection *section,
5846 Elf_Internal_Rela *irela, asection *sym_sec,
5847 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5848 bfd_vma sym_value, enum arm_st_branch_type branch_type,
0a1b45a2 5849 bool *new_stub)
b715f643
TP
5850{
5851 const asection *id_sec;
5852 char *stub_name;
5853 struct elf32_arm_stub_hash_entry *stub_entry;
5854 unsigned int r_type;
0a1b45a2 5855 bool sym_claimed = arm_stub_sym_claimed (stub_type);
b715f643
TP
5856
5857 BFD_ASSERT (stub_type != arm_stub_none);
0a1b45a2 5858 *new_stub = false;
b715f643 5859
4f4faa4d
TP
5860 if (sym_claimed)
5861 stub_name = sym_name;
5862 else
5863 {
5864 BFD_ASSERT (irela);
5865 BFD_ASSERT (section);
c2abbbeb 5866 BFD_ASSERT (section->id <= htab->top_id);
b715f643 5867
4f4faa4d
TP
5868 /* Support for grouping stub sections. */
5869 id_sec = htab->stub_group[section->id].link_sec;
b715f643 5870
4f4faa4d
TP
5871 /* Get the name of this stub. */
5872 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5873 stub_type);
5874 if (!stub_name)
0955507f 5875 return NULL;
4f4faa4d 5876 }
b715f643 5877
0a1b45a2
AM
5878 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, false,
5879 false);
b715f643
TP
5880 /* The proper stub has already been created, just update its value. */
5881 if (stub_entry != NULL)
5882 {
4f4faa4d
TP
5883 if (!sym_claimed)
5884 free (stub_name);
b715f643 5885 stub_entry->target_value = sym_value;
0955507f 5886 return stub_entry;
b715f643
TP
5887 }
5888
daa4adae 5889 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
b715f643
TP
5890 if (stub_entry == NULL)
5891 {
4f4faa4d
TP
5892 if (!sym_claimed)
5893 free (stub_name);
0955507f 5894 return NULL;
b715f643
TP
5895 }
5896
5897 stub_entry->target_value = sym_value;
5898 stub_entry->target_section = sym_sec;
5899 stub_entry->stub_type = stub_type;
5900 stub_entry->h = hash;
5901 stub_entry->branch_type = branch_type;
5902
4f4faa4d
TP
5903 if (sym_claimed)
5904 stub_entry->output_name = sym_name;
5905 else
b715f643 5906 {
4f4faa4d
TP
5907 if (sym_name == NULL)
5908 sym_name = "unnamed";
5909 stub_entry->output_name = (char *)
5910 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5911 + strlen (sym_name));
5912 if (stub_entry->output_name == NULL)
5913 {
5914 free (stub_name);
0955507f 5915 return NULL;
4f4faa4d 5916 }
b715f643 5917
4f4faa4d
TP
5918 /* For historical reasons, use the existing names for ARM-to-Thumb and
5919 Thumb-to-ARM stubs. */
5920 r_type = ELF32_R_TYPE (irela->r_info);
5921 if ((r_type == (unsigned int) R_ARM_THM_CALL
5922 || r_type == (unsigned int) R_ARM_THM_JUMP24
5923 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5924 && branch_type == ST_BRANCH_TO_ARM)
5925 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5926 else if ((r_type == (unsigned int) R_ARM_CALL
5927 || r_type == (unsigned int) R_ARM_JUMP24)
5928 && branch_type == ST_BRANCH_TO_THUMB)
5929 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5930 else
5931 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5932 }
b715f643 5933
0a1b45a2 5934 *new_stub = true;
0955507f 5935 return stub_entry;
b715f643
TP
5936}
5937
4ba2ef8f
TP
5938/* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5939 gateway veneer to transition from non secure to secure state and create them
5940 accordingly.
5941
5942 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5943 defines the conditions that govern Secure Gateway veneer creation for a
5944 given symbol <SYM> as follows:
5945 - it has function type
5946 - it has non local binding
5947 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5948 same type, binding and value as <SYM> (called normal symbol).
5949 An entry function can handle secure state transition itself in which case
5950 its special symbol would have a different value from the normal symbol.
5951
5952 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5953 entry mapping while HTAB gives the name to hash entry mapping.
0955507f
TP
5954 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5955 created.
4ba2ef8f 5956
0955507f 5957 The return value gives whether a stub failed to be allocated. */
4ba2ef8f 5958
0a1b45a2 5959static bool
4ba2ef8f
TP
5960cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5961 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
0955507f 5962 int *cmse_stub_created)
4ba2ef8f
TP
5963{
5964 const struct elf_backend_data *bed;
5965 Elf_Internal_Shdr *symtab_hdr;
5966 unsigned i, j, sym_count, ext_start;
5967 Elf_Internal_Sym *cmse_sym, *local_syms;
5968 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5969 enum arm_st_branch_type branch_type;
5970 char *sym_name, *lsym_name;
5971 bfd_vma sym_value;
5972 asection *section;
0955507f 5973 struct elf32_arm_stub_hash_entry *stub_entry;
0a1b45a2 5974 bool is_v8m, new_stub, cmse_invalid, ret = true;
4ba2ef8f
TP
5975
5976 bed = get_elf_backend_data (input_bfd);
5977 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5978 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5979 ext_start = symtab_hdr->sh_info;
5980 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5981 && out_attr[Tag_CPU_arch_profile].i == 'M');
5982
5983 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5984 if (local_syms == NULL)
5985 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5986 symtab_hdr->sh_info, 0, NULL, NULL,
5987 NULL);
5988 if (symtab_hdr->sh_info && local_syms == NULL)
0a1b45a2 5989 return false;
4ba2ef8f
TP
5990
5991 /* Scan symbols. */
5992 for (i = 0; i < sym_count; i++)
5993 {
0a1b45a2 5994 cmse_invalid = false;
4ba2ef8f
TP
5995
5996 if (i < ext_start)
5997 {
5998 cmse_sym = &local_syms[i];
4ba2ef8f
TP
5999 sym_name = bfd_elf_string_from_elf_section (input_bfd,
6000 symtab_hdr->sh_link,
6001 cmse_sym->st_name);
08dedd66 6002 if (!sym_name || !startswith (sym_name, CMSE_PREFIX))
baf46cd7
AM
6003 continue;
6004
4ba2ef8f 6005 /* Special symbol with local binding. */
0a1b45a2 6006 cmse_invalid = true;
4ba2ef8f
TP
6007 }
6008 else
6009 {
6010 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
83f18e5e
NC
6011 if (cmse_hash == NULL)
6012 continue;
6013
4ba2ef8f 6014 sym_name = (char *) cmse_hash->root.root.root.string;
08dedd66 6015 if (!startswith (sym_name, CMSE_PREFIX))
4ba2ef8f
TP
6016 continue;
6017
6018 /* Special symbol has incorrect binding or type. */
6019 if ((cmse_hash->root.root.type != bfd_link_hash_defined
6020 && cmse_hash->root.root.type != bfd_link_hash_defweak)
6021 || cmse_hash->root.type != STT_FUNC)
0a1b45a2 6022 cmse_invalid = true;
4ba2ef8f
TP
6023 }
6024
6025 if (!is_v8m)
6026 {
90b6238f
AM
6027 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6028 "ARMv8-M architecture or later"),
4eca0228 6029 input_bfd, sym_name);
0a1b45a2
AM
6030 is_v8m = true; /* Avoid multiple warning. */
6031 ret = false;
4ba2ef8f
TP
6032 }
6033
6034 if (cmse_invalid)
6035 {
90b6238f
AM
6036 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6037 " a global or weak function symbol"),
4eca0228 6038 input_bfd, sym_name);
0a1b45a2 6039 ret = false;
4ba2ef8f
TP
6040 if (i < ext_start)
6041 continue;
6042 }
6043
6044 sym_name += strlen (CMSE_PREFIX);
6045 hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 6046 elf_link_hash_lookup (&(htab)->root, sym_name, false, false, true);
4ba2ef8f
TP
6047
6048 /* No associated normal symbol or it is neither global nor weak. */
6049 if (!hash
6050 || (hash->root.root.type != bfd_link_hash_defined
6051 && hash->root.root.type != bfd_link_hash_defweak)
6052 || hash->root.type != STT_FUNC)
6053 {
6054 /* Initialize here to avoid warning about use of possibly
6055 uninitialized variable. */
6056 j = 0;
6057
6058 if (!hash)
6059 {
6060 /* Searching for a normal symbol with local binding. */
6061 for (; j < ext_start; j++)
6062 {
6063 lsym_name =
6064 bfd_elf_string_from_elf_section (input_bfd,
6065 symtab_hdr->sh_link,
6066 local_syms[j].st_name);
6067 if (!strcmp (sym_name, lsym_name))
6068 break;
6069 }
6070 }
6071
6072 if (hash || j < ext_start)
6073 {
4eca0228 6074 _bfd_error_handler
90b6238f
AM
6075 (_("%pB: invalid standard symbol `%s'; it must be "
6076 "a global or weak function symbol"),
6077 input_bfd, sym_name);
4ba2ef8f
TP
6078 }
6079 else
4eca0228 6080 _bfd_error_handler
90b6238f 6081 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
0a1b45a2 6082 ret = false;
4ba2ef8f
TP
6083 if (!hash)
6084 continue;
6085 }
6086
6087 sym_value = hash->root.root.u.def.value;
6088 section = hash->root.root.u.def.section;
6089
6090 if (cmse_hash->root.root.u.def.section != section)
6091 {
4eca0228 6092 _bfd_error_handler
90b6238f 6093 (_("%pB: `%s' and its special symbol are in different sections"),
4ba2ef8f 6094 input_bfd, sym_name);
0a1b45a2 6095 ret = false;
4ba2ef8f
TP
6096 }
6097 if (cmse_hash->root.root.u.def.value != sym_value)
6098 continue; /* Ignore: could be an entry function starting with SG. */
6099
6100 /* If this section is a link-once section that will be discarded, then
6101 don't create any stubs. */
6102 if (section->output_section == NULL)
6103 {
4eca0228 6104 _bfd_error_handler
90b6238f 6105 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
4ba2ef8f
TP
6106 continue;
6107 }
6108
6109 if (hash->root.size == 0)
6110 {
4eca0228 6111 _bfd_error_handler
90b6238f 6112 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
0a1b45a2 6113 ret = false;
4ba2ef8f
TP
6114 }
6115
6116 if (!ret)
6117 continue;
6118 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
0955507f 6119 stub_entry
4ba2ef8f
TP
6120 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6121 NULL, NULL, section, hash, sym_name,
6122 sym_value, branch_type, &new_stub);
6123
0955507f 6124 if (stub_entry == NULL)
0a1b45a2 6125 ret = false;
4ba2ef8f
TP
6126 else
6127 {
6128 BFD_ASSERT (new_stub);
0955507f 6129 (*cmse_stub_created)++;
4ba2ef8f
TP
6130 }
6131 }
6132
6133 if (!symtab_hdr->contents)
6134 free (local_syms);
6135 return ret;
6136}
6137
0955507f
TP
6138/* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6139 code entry function, ie can be called from non secure code without using a
6140 veneer. */
6141
0a1b45a2 6142static bool
0955507f
TP
6143cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6144{
42484486 6145 bfd_byte contents[4];
0955507f
TP
6146 uint32_t first_insn;
6147 asection *section;
6148 file_ptr offset;
6149 bfd *abfd;
6150
6151 /* Defined symbol of function type. */
6152 if (hash->root.root.type != bfd_link_hash_defined
6153 && hash->root.root.type != bfd_link_hash_defweak)
0a1b45a2 6154 return false;
0955507f 6155 if (hash->root.type != STT_FUNC)
0a1b45a2 6156 return false;
0955507f
TP
6157
6158 /* Read first instruction. */
6159 section = hash->root.root.u.def.section;
6160 abfd = section->owner;
6161 offset = hash->root.root.u.def.value - section->vma;
42484486
TP
6162 if (!bfd_get_section_contents (abfd, section, contents, offset,
6163 sizeof (contents)))
0a1b45a2 6164 return false;
0955507f 6165
42484486
TP
6166 first_insn = bfd_get_32 (abfd, contents);
6167
6168 /* Starts by SG instruction. */
0955507f
TP
6169 return first_insn == 0xe97fe97f;
6170}
6171
6172/* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6173 secure gateway veneers (ie. the veneers was not in the input import library)
6174 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6175
0a1b45a2 6176static bool
0955507f
TP
6177arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6178{
6179 struct elf32_arm_stub_hash_entry *stub_entry;
6180 struct bfd_link_info *info;
6181
6182 /* Massage our args to the form they really have. */
6183 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6184 info = (struct bfd_link_info *) gen_info;
6185
6186 if (info->out_implib_bfd)
0a1b45a2 6187 return true;
0955507f
TP
6188
6189 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
0a1b45a2 6190 return true;
0955507f
TP
6191
6192 if (stub_entry->stub_offset == (bfd_vma) -1)
4eca0228 6193 _bfd_error_handler (" %s", stub_entry->output_name);
0955507f 6194
0a1b45a2 6195 return true;
0955507f
TP
6196}
6197
6198/* Set offset of each secure gateway veneers so that its address remain
6199 identical to the one in the input import library referred by
6200 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6201 (present in input import library but absent from the executable being
6202 linked) or if new veneers appeared and there is no output import library
6203 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6204 number of secure gateway veneers found in the input import library.
6205
6206 The function returns whether an error occurred. If no error occurred,
6207 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6208 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6209 veneer observed set for new veneers to be layed out after. */
6210
0a1b45a2 6211static bool
0955507f
TP
6212set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6213 struct elf32_arm_link_hash_table *htab,
6214 int *cmse_stub_created)
6215{
6216 long symsize;
6217 char *sym_name;
6218 flagword flags;
6219 long i, symcount;
6220 bfd *in_implib_bfd;
6221 asection *stub_out_sec;
0a1b45a2 6222 bool ret = true;
0955507f
TP
6223 Elf_Internal_Sym *intsym;
6224 const char *out_sec_name;
6225 bfd_size_type cmse_stub_size;
6226 asymbol **sympp = NULL, *sym;
6227 struct elf32_arm_link_hash_entry *hash;
6228 const insn_sequence *cmse_stub_template;
6229 struct elf32_arm_stub_hash_entry *stub_entry;
6230 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6231 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6232 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6233
6234 /* No input secure gateway import library. */
6235 if (!htab->in_implib_bfd)
0a1b45a2 6236 return true;
0955507f
TP
6237
6238 in_implib_bfd = htab->in_implib_bfd;
6239 if (!htab->cmse_implib)
6240 {
871b3ab2 6241 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
90b6238f 6242 "Gateway import libraries"), in_implib_bfd);
0a1b45a2 6243 return false;
0955507f
TP
6244 }
6245
6246 /* Get symbol table size. */
6247 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6248 if (symsize < 0)
0a1b45a2 6249 return false;
0955507f
TP
6250
6251 /* Read in the input secure gateway import library's symbol table. */
9a733151
AM
6252 sympp = (asymbol **) bfd_malloc (symsize);
6253 if (sympp == NULL)
0a1b45a2 6254 return false;
9a733151 6255
0955507f
TP
6256 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6257 if (symcount < 0)
6258 {
0a1b45a2 6259 ret = false;
0955507f
TP
6260 goto free_sym_buf;
6261 }
6262
6263 htab->new_cmse_stub_offset = 0;
6264 cmse_stub_size =
6265 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6266 &cmse_stub_template,
6267 &cmse_stub_template_size);
6268 out_sec_name =
6269 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6270 stub_out_sec =
6271 bfd_get_section_by_name (htab->obfd, out_sec_name);
6272 if (stub_out_sec != NULL)
6273 cmse_stub_sec_vma = stub_out_sec->vma;
6274
6275 /* Set addresses of veneers mentionned in input secure gateway import
6276 library's symbol table. */
6277 for (i = 0; i < symcount; i++)
6278 {
6279 sym = sympp[i];
6280 flags = sym->flags;
6281 sym_name = (char *) bfd_asymbol_name (sym);
6282 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6283
6284 if (sym->section != bfd_abs_section_ptr
6285 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6286 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6287 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6288 != ST_BRANCH_TO_THUMB))
6289 {
90b6238f
AM
6290 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6291 "symbol should be absolute, global and "
6292 "refer to Thumb functions"),
4eca0228 6293 in_implib_bfd, sym_name);
0a1b45a2 6294 ret = false;
0955507f
TP
6295 continue;
6296 }
6297
6298 veneer_value = bfd_asymbol_value (sym);
6299 stub_offset = veneer_value - cmse_stub_sec_vma;
6300 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
0a1b45a2 6301 false, false);
0955507f 6302 hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 6303 elf_link_hash_lookup (&(htab)->root, sym_name, false, false, true);
0955507f
TP
6304
6305 /* Stub entry should have been created by cmse_scan or the symbol be of
6306 a secure function callable from non secure code. */
6307 if (!stub_entry && !hash)
6308 {
0a1b45a2 6309 bool new_stub;
0955507f 6310
4eca0228 6311 _bfd_error_handler
90b6238f 6312 (_("entry function `%s' disappeared from secure code"), sym_name);
0955507f 6313 hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 6314 elf_link_hash_lookup (&(htab)->root, sym_name, true, true, true);
0955507f
TP
6315 stub_entry
6316 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6317 NULL, NULL, bfd_abs_section_ptr, hash,
6318 sym_name, veneer_value,
6319 ST_BRANCH_TO_THUMB, &new_stub);
6320 if (stub_entry == NULL)
0a1b45a2 6321 ret = false;
0955507f
TP
6322 else
6323 {
6324 BFD_ASSERT (new_stub);
6325 new_cmse_stubs_created++;
6326 (*cmse_stub_created)++;
6327 }
6328 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6329 stub_entry->stub_offset = stub_offset;
6330 }
6331 /* Symbol found is not callable from non secure code. */
6332 else if (!stub_entry)
6333 {
6334 if (!cmse_entry_fct_p (hash))
6335 {
90b6238f 6336 _bfd_error_handler (_("`%s' refers to a non entry function"),
4eca0228 6337 sym_name);
0a1b45a2 6338 ret = false;
0955507f
TP
6339 }
6340 continue;
6341 }
6342 else
6343 {
6344 /* Only stubs for SG veneers should have been created. */
6345 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6346
6347 /* Check visibility hasn't changed. */
6348 if (!!(flags & BSF_GLOBAL)
6349 != (hash->root.root.type == bfd_link_hash_defined))
4eca0228 6350 _bfd_error_handler
90b6238f 6351 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
0955507f
TP
6352 sym_name);
6353
6354 stub_entry->stub_offset = stub_offset;
6355 }
6356
6357 /* Size should match that of a SG veneer. */
6358 if (intsym->st_size != cmse_stub_size)
6359 {
90b6238f 6360 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
4eca0228 6361 in_implib_bfd, sym_name);
0a1b45a2 6362 ret = false;
0955507f
TP
6363 }
6364
6365 /* Previous veneer address is before current SG veneer section. */
6366 if (veneer_value < cmse_stub_sec_vma)
6367 {
6368 /* Avoid offset underflow. */
6369 if (stub_entry)
6370 stub_entry->stub_offset = 0;
6371 stub_offset = 0;
0a1b45a2 6372 ret = false;
0955507f
TP
6373 }
6374
6375 /* Complain if stub offset not a multiple of stub size. */
6376 if (stub_offset % cmse_stub_size)
6377 {
4eca0228 6378 _bfd_error_handler
90b6238f
AM
6379 (_("offset of veneer for entry function `%s' not a multiple of "
6380 "its size"), sym_name);
0a1b45a2 6381 ret = false;
0955507f
TP
6382 }
6383
6384 if (!ret)
6385 continue;
6386
6387 new_cmse_stubs_created--;
6388 if (veneer_value < cmse_stub_array_start)
6389 cmse_stub_array_start = veneer_value;
6390 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6391 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6392 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6393 }
6394
6395 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6396 {
6397 BFD_ASSERT (new_cmse_stubs_created > 0);
4eca0228 6398 _bfd_error_handler
0955507f
TP
6399 (_("new entry function(s) introduced but no output import library "
6400 "specified:"));
6401 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6402 }
6403
6404 if (cmse_stub_array_start != cmse_stub_sec_vma)
6405 {
4eca0228 6406 _bfd_error_handler
90b6238f 6407 (_("start address of `%s' is different from previous link"),
0955507f 6408 out_sec_name);
0a1b45a2 6409 ret = false;
0955507f
TP
6410 }
6411
dc1e8a47 6412 free_sym_buf:
0955507f
TP
6413 free (sympp);
6414 return ret;
6415}
6416
906e58ca
NC
6417/* Determine and set the size of the stub section for a final link.
6418
6419 The basic idea here is to examine all the relocations looking for
6420 PC-relative calls to a target that is unreachable with a "bl"
6421 instruction. */
6422
0a1b45a2 6423bool
906e58ca
NC
6424elf32_arm_size_stubs (bfd *output_bfd,
6425 bfd *stub_bfd,
6426 struct bfd_link_info *info,
6427 bfd_signed_vma group_size,
7a89b94e 6428 asection * (*add_stub_section) (const char *, asection *,
6bde4c52 6429 asection *,
7a89b94e 6430 unsigned int),
906e58ca
NC
6431 void (*layout_sections_again) (void))
6432{
0a1b45a2 6433 bool ret = true;
4ba2ef8f 6434 obj_attribute *out_attr;
0955507f 6435 int cmse_stub_created = 0;
906e58ca 6436 bfd_size_type stub_group_size;
0a1b45a2 6437 bool m_profile, stubs_always_after_branch, first_veneer_scan = true;
906e58ca 6438 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 6439 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 6440 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
6441 struct a8_erratum_reloc *a8_relocs = NULL;
6442 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6443
4dfe6ac6 6444 if (htab == NULL)
0a1b45a2 6445 return false;
4dfe6ac6 6446
48229727
JB
6447 if (htab->fix_cortex_a8)
6448 {
21d799b5 6449 a8_fixes = (struct a8_erratum_fix *)
99059e56 6450 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
21d799b5 6451 a8_relocs = (struct a8_erratum_reloc *)
99059e56 6452 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 6453 }
906e58ca
NC
6454
6455 /* Propagate mach to stub bfd, because it may not have been
6456 finalized when we created stub_bfd. */
6457 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6458 bfd_get_mach (output_bfd));
6459
6460 /* Stash our params away. */
6461 htab->stub_bfd = stub_bfd;
6462 htab->add_stub_section = add_stub_section;
6463 htab->layout_sections_again = layout_sections_again;
07d72278 6464 stubs_always_after_branch = group_size < 0;
48229727 6465
4ba2ef8f
TP
6466 out_attr = elf_known_obj_attributes_proc (output_bfd);
6467 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
0955507f 6468
48229727
JB
6469 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6470 as the first half of a 32-bit branch straddling two 4K pages. This is a
6471 crude way of enforcing that. */
6472 if (htab->fix_cortex_a8)
6473 stubs_always_after_branch = 1;
6474
906e58ca
NC
6475 if (group_size < 0)
6476 stub_group_size = -group_size;
6477 else
6478 stub_group_size = group_size;
6479
6480 if (stub_group_size == 1)
6481 {
6482 /* Default values. */
6483 /* Thumb branch range is +-4MB has to be used as the default
6484 maximum size (a given section can contain both ARM and Thumb
6485 code, so the worst case has to be taken into account).
6486
6487 This value is 24K less than that, which allows for 2025
6488 12-byte stubs. If we exceed that, then we will fail to link.
6489 The user will have to relink with an explicit group size
6490 option. */
6491 stub_group_size = 4170000;
6492 }
6493
07d72278 6494 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 6495
3ae046cc
NS
6496 /* If we're applying the cortex A8 fix, we need to determine the
6497 program header size now, because we cannot change it later --
6498 that could alter section placements. Notice the A8 erratum fix
6499 ends up requiring the section addresses to remain unchanged
6500 modulo the page size. That's something we cannot represent
6501 inside BFD, and we don't want to force the section alignment to
6502 be the page size. */
6503 if (htab->fix_cortex_a8)
6504 (*htab->layout_sections_again) ();
6505
906e58ca
NC
6506 while (1)
6507 {
6508 bfd *input_bfd;
6509 unsigned int bfd_indx;
6510 asection *stub_sec;
d7c5bd02 6511 enum elf32_arm_stub_type stub_type;
0a1b45a2 6512 bool stub_changed = false;
eb7c4339 6513 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 6514
48229727 6515 num_a8_fixes = 0;
906e58ca
NC
6516 for (input_bfd = info->input_bfds, bfd_indx = 0;
6517 input_bfd != NULL;
c72f2fb2 6518 input_bfd = input_bfd->link.next, bfd_indx++)
906e58ca
NC
6519 {
6520 Elf_Internal_Shdr *symtab_hdr;
6521 asection *section;
6522 Elf_Internal_Sym *local_syms = NULL;
6523
73d5efd7
AM
6524 if (!is_arm_elf (input_bfd))
6525 continue;
6526 if ((input_bfd->flags & DYNAMIC) != 0
6527 && (elf_sym_hashes (input_bfd) == NULL
6528 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0))
99059e56 6529 continue;
adbcc655 6530
48229727
JB
6531 num_a8_relocs = 0;
6532
906e58ca
NC
6533 /* We'll need the symbol table in a second. */
6534 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6535 if (symtab_hdr->sh_info == 0)
6536 continue;
6537
4ba2ef8f
TP
6538 /* Limit scan of symbols to object file whose profile is
6539 Microcontroller to not hinder performance in the general case. */
6540 if (m_profile && first_veneer_scan)
6541 {
6542 struct elf_link_hash_entry **sym_hashes;
6543
6544 sym_hashes = elf_sym_hashes (input_bfd);
6545 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
0955507f 6546 &cmse_stub_created))
4ba2ef8f 6547 goto error_ret_free_local;
0955507f
TP
6548
6549 if (cmse_stub_created != 0)
0a1b45a2 6550 stub_changed = true;
4ba2ef8f
TP
6551 }
6552
906e58ca
NC
6553 /* Walk over each section attached to the input bfd. */
6554 for (section = input_bfd->sections;
6555 section != NULL;
6556 section = section->next)
6557 {
6558 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6559
6560 /* If there aren't any relocs, then there's nothing more
6561 to do. */
6562 if ((section->flags & SEC_RELOC) == 0
6563 || section->reloc_count == 0
6564 || (section->flags & SEC_CODE) == 0)
6565 continue;
6566
6567 /* If this section is a link-once section that will be
6568 discarded, then don't create any stubs. */
6569 if (section->output_section == NULL
6570 || section->output_section->owner != output_bfd)
6571 continue;
6572
6573 /* Get the relocs. */
6574 internal_relocs
6575 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6576 NULL, info->keep_memory);
6577 if (internal_relocs == NULL)
6578 goto error_ret_free_local;
6579
6580 /* Now examine each relocation. */
6581 irela = internal_relocs;
6582 irelaend = irela + section->reloc_count;
6583 for (; irela < irelaend; irela++)
6584 {
6585 unsigned int r_type, r_indx;
906e58ca
NC
6586 asection *sym_sec;
6587 bfd_vma sym_value;
6588 bfd_vma destination;
6589 struct elf32_arm_link_hash_entry *hash;
7413f23f 6590 const char *sym_name;
34e77a92 6591 unsigned char st_type;
35fc36a8 6592 enum arm_st_branch_type branch_type;
0a1b45a2 6593 bool created_stub = false;
906e58ca
NC
6594
6595 r_type = ELF32_R_TYPE (irela->r_info);
6596 r_indx = ELF32_R_SYM (irela->r_info);
6597
6598 if (r_type >= (unsigned int) R_ARM_max)
6599 {
6600 bfd_set_error (bfd_error_bad_value);
6601 error_ret_free_internal:
6602 if (elf_section_data (section)->relocs == NULL)
6603 free (internal_relocs);
15dd01b1
TP
6604 /* Fall through. */
6605 error_ret_free_local:
c9594989 6606 if (symtab_hdr->contents != (unsigned char *) local_syms)
15dd01b1 6607 free (local_syms);
0a1b45a2 6608 return false;
906e58ca 6609 }
b38cadfb 6610
0855e32b
NS
6611 hash = NULL;
6612 if (r_indx >= symtab_hdr->sh_info)
6613 hash = elf32_arm_hash_entry
6614 (elf_sym_hashes (input_bfd)
6615 [r_indx - symtab_hdr->sh_info]);
b38cadfb 6616
0855e32b
NS
6617 /* Only look for stubs on branch instructions, or
6618 non-relaxed TLSCALL */
906e58ca 6619 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
6620 && (r_type != (unsigned int) R_ARM_THM_CALL)
6621 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
6622 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6623 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 6624 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
6625 && (r_type != (unsigned int) R_ARM_PLT32)
6626 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6627 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
c9f9a78d
AM
6628 && r_type == (elf32_arm_tls_transition
6629 (info, r_type,
6630 (struct elf_link_hash_entry *) hash))
0855e32b
NS
6631 && ((hash ? hash->tls_type
6632 : (elf32_arm_local_got_tls_type
6633 (input_bfd)[r_indx]))
6634 & GOT_TLS_GDESC) != 0))
906e58ca
NC
6635 continue;
6636
6637 /* Now determine the call target, its name, value,
6638 section. */
6639 sym_sec = NULL;
6640 sym_value = 0;
6641 destination = 0;
7413f23f 6642 sym_name = NULL;
b38cadfb 6643
0855e32b
NS
6644 if (r_type == (unsigned int) R_ARM_TLS_CALL
6645 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6646 {
6647 /* A non-relaxed TLS call. The target is the
6648 plt-resident trampoline and nothing to do
6649 with the symbol. */
6650 BFD_ASSERT (htab->tls_trampoline > 0);
6651 sym_sec = htab->root.splt;
6652 sym_value = htab->tls_trampoline;
6653 hash = 0;
34e77a92 6654 st_type = STT_FUNC;
35fc36a8 6655 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
6656 }
6657 else if (!hash)
906e58ca
NC
6658 {
6659 /* It's a local symbol. */
6660 Elf_Internal_Sym *sym;
906e58ca
NC
6661
6662 if (local_syms == NULL)
6663 {
6664 local_syms
6665 = (Elf_Internal_Sym *) symtab_hdr->contents;
6666 if (local_syms == NULL)
6667 local_syms
6668 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6669 symtab_hdr->sh_info, 0,
6670 NULL, NULL, NULL);
6671 if (local_syms == NULL)
6672 goto error_ret_free_internal;
6673 }
6674
6675 sym = local_syms + r_indx;
f6d250ce
TS
6676 if (sym->st_shndx == SHN_UNDEF)
6677 sym_sec = bfd_und_section_ptr;
6678 else if (sym->st_shndx == SHN_ABS)
6679 sym_sec = bfd_abs_section_ptr;
6680 else if (sym->st_shndx == SHN_COMMON)
6681 sym_sec = bfd_com_section_ptr;
6682 else
6683 sym_sec =
6684 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6685
ffcb4889
NS
6686 if (!sym_sec)
6687 /* This is an undefined symbol. It can never
6a631e86 6688 be resolved. */
ffcb4889 6689 continue;
fe33d2fa 6690
906e58ca
NC
6691 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6692 sym_value = sym->st_value;
6693 destination = (sym_value + irela->r_addend
6694 + sym_sec->output_offset
6695 + sym_sec->output_section->vma);
34e77a92 6696 st_type = ELF_ST_TYPE (sym->st_info);
39d911fc
TP
6697 branch_type =
6698 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
7413f23f
DJ
6699 sym_name
6700 = bfd_elf_string_from_elf_section (input_bfd,
6701 symtab_hdr->sh_link,
6702 sym->st_name);
906e58ca
NC
6703 }
6704 else
6705 {
6706 /* It's an external symbol. */
906e58ca
NC
6707 while (hash->root.root.type == bfd_link_hash_indirect
6708 || hash->root.root.type == bfd_link_hash_warning)
6709 hash = ((struct elf32_arm_link_hash_entry *)
6710 hash->root.root.u.i.link);
6711
6712 if (hash->root.root.type == bfd_link_hash_defined
6713 || hash->root.root.type == bfd_link_hash_defweak)
6714 {
6715 sym_sec = hash->root.root.u.def.section;
6716 sym_value = hash->root.root.u.def.value;
022f8312
CL
6717
6718 struct elf32_arm_link_hash_table *globals =
6719 elf32_arm_hash_table (info);
6720
6721 /* For a destination in a shared library,
6722 use the PLT stub as target address to
6723 decide whether a branch stub is
6724 needed. */
4dfe6ac6 6725 if (globals != NULL
362d30a1 6726 && globals->root.splt != NULL
4dfe6ac6 6727 && hash != NULL
022f8312
CL
6728 && hash->root.plt.offset != (bfd_vma) -1)
6729 {
362d30a1 6730 sym_sec = globals->root.splt;
022f8312
CL
6731 sym_value = hash->root.plt.offset;
6732 if (sym_sec->output_section != NULL)
6733 destination = (sym_value
6734 + sym_sec->output_offset
6735 + sym_sec->output_section->vma);
6736 }
6737 else if (sym_sec->output_section != NULL)
906e58ca
NC
6738 destination = (sym_value + irela->r_addend
6739 + sym_sec->output_offset
6740 + sym_sec->output_section->vma);
6741 }
69c5861e
CL
6742 else if ((hash->root.root.type == bfd_link_hash_undefined)
6743 || (hash->root.root.type == bfd_link_hash_undefweak))
6744 {
6745 /* For a shared library, use the PLT stub as
6746 target address to decide whether a long
6747 branch stub is needed.
6748 For absolute code, they cannot be handled. */
6749 struct elf32_arm_link_hash_table *globals =
6750 elf32_arm_hash_table (info);
6751
4dfe6ac6 6752 if (globals != NULL
362d30a1 6753 && globals->root.splt != NULL
4dfe6ac6 6754 && hash != NULL
69c5861e
CL
6755 && hash->root.plt.offset != (bfd_vma) -1)
6756 {
362d30a1 6757 sym_sec = globals->root.splt;
69c5861e
CL
6758 sym_value = hash->root.plt.offset;
6759 if (sym_sec->output_section != NULL)
6760 destination = (sym_value
6761 + sym_sec->output_offset
6762 + sym_sec->output_section->vma);
6763 }
6764 else
6765 continue;
6766 }
906e58ca
NC
6767 else
6768 {
6769 bfd_set_error (bfd_error_bad_value);
6770 goto error_ret_free_internal;
6771 }
34e77a92 6772 st_type = hash->root.type;
39d911fc
TP
6773 branch_type =
6774 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
7413f23f 6775 sym_name = hash->root.root.root.string;
906e58ca
NC
6776 }
6777
48229727 6778 do
7413f23f 6779 {
0a1b45a2 6780 bool new_stub;
0955507f 6781 struct elf32_arm_stub_hash_entry *stub_entry;
b715f643 6782
48229727
JB
6783 /* Determine what (if any) linker stub is needed. */
6784 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
6785 st_type, &branch_type,
6786 hash, destination, sym_sec,
48229727
JB
6787 input_bfd, sym_name);
6788 if (stub_type == arm_stub_none)
6789 break;
6790
48229727
JB
6791 /* We've either created a stub for this reloc already,
6792 or we are about to. */
0955507f 6793 stub_entry =
b715f643
TP
6794 elf32_arm_create_stub (htab, stub_type, section, irela,
6795 sym_sec, hash,
6796 (char *) sym_name, sym_value,
6797 branch_type, &new_stub);
7413f23f 6798
0955507f 6799 created_stub = stub_entry != NULL;
b715f643
TP
6800 if (!created_stub)
6801 goto error_ret_free_internal;
6802 else if (!new_stub)
6803 break;
99059e56 6804 else
0a1b45a2 6805 stub_changed = true;
99059e56
RM
6806 }
6807 while (0);
6808
6809 /* Look for relocations which might trigger Cortex-A8
6810 erratum. */
6811 if (htab->fix_cortex_a8
6812 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6813 || r_type == (unsigned int) R_ARM_THM_JUMP19
6814 || r_type == (unsigned int) R_ARM_THM_CALL
6815 || r_type == (unsigned int) R_ARM_THM_XPC22))
6816 {
6817 bfd_vma from = section->output_section->vma
6818 + section->output_offset
6819 + irela->r_offset;
6820
6821 if ((from & 0xfff) == 0xffe)
6822 {
6823 /* Found a candidate. Note we haven't checked the
6824 destination is within 4K here: if we do so (and
6825 don't create an entry in a8_relocs) we can't tell
6826 that a branch should have been relocated when
6827 scanning later. */
6828 if (num_a8_relocs == a8_reloc_table_size)
6829 {
6830 a8_reloc_table_size *= 2;
6831 a8_relocs = (struct a8_erratum_reloc *)
6832 bfd_realloc (a8_relocs,
6833 sizeof (struct a8_erratum_reloc)
6834 * a8_reloc_table_size);
6835 }
6836
6837 a8_relocs[num_a8_relocs].from = from;
6838 a8_relocs[num_a8_relocs].destination = destination;
6839 a8_relocs[num_a8_relocs].r_type = r_type;
6840 a8_relocs[num_a8_relocs].branch_type = branch_type;
6841 a8_relocs[num_a8_relocs].sym_name = sym_name;
6842 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6843 a8_relocs[num_a8_relocs].hash = hash;
6844
6845 num_a8_relocs++;
6846 }
6847 }
906e58ca
NC
6848 }
6849
99059e56
RM
6850 /* We're done with the internal relocs, free them. */
6851 if (elf_section_data (section)->relocs == NULL)
6852 free (internal_relocs);
6853 }
48229727 6854
99059e56 6855 if (htab->fix_cortex_a8)
48229727 6856 {
99059e56
RM
6857 /* Sort relocs which might apply to Cortex-A8 erratum. */
6858 qsort (a8_relocs, num_a8_relocs,
eb7c4339 6859 sizeof (struct a8_erratum_reloc),
99059e56 6860 &a8_reloc_compare);
48229727 6861
99059e56
RM
6862 /* Scan for branches which might trigger Cortex-A8 erratum. */
6863 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
48229727 6864 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
6865 a8_relocs, num_a8_relocs,
6866 prev_num_a8_fixes, &stub_changed)
6867 != 0)
48229727 6868 goto error_ret_free_local;
5e681ec4 6869 }
7f991970
AM
6870
6871 if (local_syms != NULL
6872 && symtab_hdr->contents != (unsigned char *) local_syms)
6873 {
6874 if (!info->keep_memory)
6875 free (local_syms);
6876 else
6877 symtab_hdr->contents = (unsigned char *) local_syms;
6878 }
5e681ec4
PB
6879 }
6880
0955507f
TP
6881 if (first_veneer_scan
6882 && !set_cmse_veneer_addr_from_implib (info, htab,
6883 &cmse_stub_created))
0a1b45a2 6884 ret = false;
0955507f 6885
eb7c4339 6886 if (prev_num_a8_fixes != num_a8_fixes)
0a1b45a2 6887 stub_changed = true;
48229727 6888
906e58ca
NC
6889 if (!stub_changed)
6890 break;
5e681ec4 6891
906e58ca
NC
6892 /* OK, we've added some stubs. Find out the new size of the
6893 stub sections. */
6894 for (stub_sec = htab->stub_bfd->sections;
6895 stub_sec != NULL;
6896 stub_sec = stub_sec->next)
3e6b1042
DJ
6897 {
6898 /* Ignore non-stub sections. */
6899 if (!strstr (stub_sec->name, STUB_SUFFIX))
6900 continue;
6901
6902 stub_sec->size = 0;
6903 }
b34b2d70 6904
0955507f
TP
6905 /* Add new SG veneers after those already in the input import
6906 library. */
6907 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6908 stub_type++)
6909 {
6910 bfd_vma *start_offset_p;
6911 asection **stub_sec_p;
6912
6913 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6914 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6915 if (start_offset_p == NULL)
6916 continue;
6917
6918 BFD_ASSERT (stub_sec_p != NULL);
6919 if (*stub_sec_p != NULL)
6920 (*stub_sec_p)->size = *start_offset_p;
6921 }
6922
d7c5bd02 6923 /* Compute stub section size, considering padding. */
906e58ca 6924 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
d7c5bd02
TP
6925 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6926 stub_type++)
6927 {
6928 int size, padding;
6929 asection **stub_sec_p;
6930
6931 padding = arm_dedicated_stub_section_padding (stub_type);
6932 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6933 /* Skip if no stub input section or no stub section padding
6934 required. */
6935 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6936 continue;
6937 /* Stub section padding required but no dedicated section. */
6938 BFD_ASSERT (stub_sec_p);
6939
6940 size = (*stub_sec_p)->size;
6941 size = (size + padding - 1) & ~(padding - 1);
6942 (*stub_sec_p)->size = size;
6943 }
906e58ca 6944
48229727
JB
6945 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6946 if (htab->fix_cortex_a8)
99059e56
RM
6947 for (i = 0; i < num_a8_fixes; i++)
6948 {
48229727 6949 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
daa4adae 6950 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
48229727
JB
6951
6952 if (stub_sec == NULL)
0a1b45a2 6953 return false;
48229727 6954
99059e56
RM
6955 stub_sec->size
6956 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6957 NULL);
6958 }
48229727
JB
6959
6960
906e58ca
NC
6961 /* Ask the linker to do its stuff. */
6962 (*htab->layout_sections_again) ();
0a1b45a2 6963 first_veneer_scan = false;
ba93b8ac
DJ
6964 }
6965
48229727
JB
6966 /* Add stubs for Cortex-A8 erratum fixes now. */
6967 if (htab->fix_cortex_a8)
6968 {
6969 for (i = 0; i < num_a8_fixes; i++)
99059e56
RM
6970 {
6971 struct elf32_arm_stub_hash_entry *stub_entry;
6972 char *stub_name = a8_fixes[i].stub_name;
6973 asection *section = a8_fixes[i].section;
6974 unsigned int section_id = a8_fixes[i].section->id;
6975 asection *link_sec = htab->stub_group[section_id].link_sec;
6976 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6977 const insn_sequence *template_sequence;
6978 int template_size, size = 0;
6979
6980 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
0a1b45a2 6981 true, false);
99059e56
RM
6982 if (stub_entry == NULL)
6983 {
871b3ab2 6984 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 6985 section->owner, stub_name);
0a1b45a2 6986 return false;
99059e56
RM
6987 }
6988
6989 stub_entry->stub_sec = stub_sec;
0955507f 6990 stub_entry->stub_offset = (bfd_vma) -1;
99059e56
RM
6991 stub_entry->id_sec = link_sec;
6992 stub_entry->stub_type = a8_fixes[i].stub_type;
8d9d9490 6993 stub_entry->source_value = a8_fixes[i].offset;
99059e56 6994 stub_entry->target_section = a8_fixes[i].section;
8d9d9490 6995 stub_entry->target_value = a8_fixes[i].target_offset;
99059e56 6996 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 6997 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 6998
99059e56
RM
6999 size = find_stub_size_and_template (a8_fixes[i].stub_type,
7000 &template_sequence,
7001 &template_size);
48229727 7002
99059e56
RM
7003 stub_entry->stub_size = size;
7004 stub_entry->stub_template = template_sequence;
7005 stub_entry->stub_template_size = template_size;
7006 }
48229727
JB
7007
7008 /* Stash the Cortex-A8 erratum fix array for use later in
99059e56 7009 elf32_arm_write_section(). */
48229727
JB
7010 htab->a8_erratum_fixes = a8_fixes;
7011 htab->num_a8_erratum_fixes = num_a8_fixes;
7012 }
7013 else
7014 {
7015 htab->a8_erratum_fixes = NULL;
7016 htab->num_a8_erratum_fixes = 0;
7017 }
0955507f 7018 return ret;
5e681ec4
PB
7019}
7020
906e58ca
NC
7021/* Build all the stubs associated with the current output file. The
7022 stubs are kept in a hash table attached to the main linker hash
7023 table. We also set up the .plt entries for statically linked PIC
7024 functions here. This function is called via arm_elf_finish in the
7025 linker. */
252b5132 7026
0a1b45a2 7027bool
906e58ca 7028elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 7029{
906e58ca
NC
7030 asection *stub_sec;
7031 struct bfd_hash_table *table;
0955507f 7032 enum elf32_arm_stub_type stub_type;
906e58ca 7033 struct elf32_arm_link_hash_table *htab;
252b5132 7034
906e58ca 7035 htab = elf32_arm_hash_table (info);
4dfe6ac6 7036 if (htab == NULL)
0a1b45a2 7037 return false;
252b5132 7038
906e58ca
NC
7039 for (stub_sec = htab->stub_bfd->sections;
7040 stub_sec != NULL;
7041 stub_sec = stub_sec->next)
252b5132 7042 {
906e58ca
NC
7043 bfd_size_type size;
7044
8029a119 7045 /* Ignore non-stub sections. */
906e58ca
NC
7046 if (!strstr (stub_sec->name, STUB_SUFFIX))
7047 continue;
7048
d7c5bd02 7049 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
0955507f
TP
7050 must at least be done for stub section requiring padding and for SG
7051 veneers to ensure that a non secure code branching to a removed SG
7052 veneer causes an error. */
906e58ca 7053 size = stub_sec->size;
21d799b5 7054 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca 7055 if (stub_sec->contents == NULL && size != 0)
0a1b45a2 7056 return false;
0955507f 7057
906e58ca 7058 stub_sec->size = 0;
252b5132
RH
7059 }
7060
0955507f
TP
7061 /* Add new SG veneers after those already in the input import library. */
7062 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7063 {
7064 bfd_vma *start_offset_p;
7065 asection **stub_sec_p;
7066
7067 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7068 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7069 if (start_offset_p == NULL)
7070 continue;
7071
7072 BFD_ASSERT (stub_sec_p != NULL);
7073 if (*stub_sec_p != NULL)
7074 (*stub_sec_p)->size = *start_offset_p;
7075 }
7076
906e58ca
NC
7077 /* Build the stubs as directed by the stub hash table. */
7078 table = &htab->stub_hash_table;
7079 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
7080 if (htab->fix_cortex_a8)
7081 {
7082 /* Place the cortex a8 stubs last. */
7083 htab->fix_cortex_a8 = -1;
7084 bfd_hash_traverse (table, arm_build_one_stub, info);
7085 }
252b5132 7086
0a1b45a2 7087 return true;
252b5132
RH
7088}
7089
9b485d32
NC
7090/* Locate the Thumb encoded calling stub for NAME. */
7091
252b5132 7092static struct elf_link_hash_entry *
57e8b36a
NC
7093find_thumb_glue (struct bfd_link_info *link_info,
7094 const char *name,
f2a9dd69 7095 char **error_message)
252b5132
RH
7096{
7097 char *tmp_name;
7098 struct elf_link_hash_entry *hash;
7099 struct elf32_arm_link_hash_table *hash_table;
7100
7101 /* We need a pointer to the armelf specific hash table. */
7102 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7103 if (hash_table == NULL)
7104 return NULL;
252b5132 7105
21d799b5 7106 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7107 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7108
7109 BFD_ASSERT (tmp_name);
7110
7111 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7112
7113 hash = elf_link_hash_lookup
0a1b45a2 7114 (&(hash_table)->root, tmp_name, false, false, true);
252b5132 7115
b1657152 7116 if (hash == NULL
90b6238f
AM
7117 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7118 "Thumb", tmp_name, name) == -1)
b1657152 7119 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
7120
7121 free (tmp_name);
7122
7123 return hash;
7124}
7125
9b485d32
NC
7126/* Locate the ARM encoded calling stub for NAME. */
7127
252b5132 7128static struct elf_link_hash_entry *
57e8b36a
NC
7129find_arm_glue (struct bfd_link_info *link_info,
7130 const char *name,
f2a9dd69 7131 char **error_message)
252b5132
RH
7132{
7133 char *tmp_name;
7134 struct elf_link_hash_entry *myh;
7135 struct elf32_arm_link_hash_table *hash_table;
7136
7137 /* We need a pointer to the elfarm specific hash table. */
7138 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7139 if (hash_table == NULL)
7140 return NULL;
252b5132 7141
21d799b5 7142 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7143 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7144 BFD_ASSERT (tmp_name);
7145
7146 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7147
7148 myh = elf_link_hash_lookup
0a1b45a2 7149 (&(hash_table)->root, tmp_name, false, false, true);
252b5132 7150
b1657152 7151 if (myh == NULL
90b6238f
AM
7152 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7153 "ARM", tmp_name, name) == -1)
b1657152 7154 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
7155
7156 free (tmp_name);
7157
7158 return myh;
7159}
7160
8f6277f5 7161/* ARM->Thumb glue (static images):
252b5132
RH
7162
7163 .arm
7164 __func_from_arm:
7165 ldr r12, __func_addr
7166 bx r12
7167 __func_addr:
906e58ca 7168 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 7169
26079076
PB
7170 (v5t static images)
7171 .arm
7172 __func_from_arm:
7173 ldr pc, __func_addr
7174 __func_addr:
906e58ca 7175 .word func @ behave as if you saw a ARM_32 reloc.
26079076 7176
8f6277f5
PB
7177 (relocatable images)
7178 .arm
7179 __func_from_arm:
7180 ldr r12, __func_offset
7181 add r12, r12, pc
7182 bx r12
7183 __func_offset:
8029a119 7184 .word func - . */
8f6277f5
PB
7185
7186#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
7187static const insn32 a2t1_ldr_insn = 0xe59fc000;
7188static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7189static const insn32 a2t3_func_addr_insn = 0x00000001;
7190
26079076
PB
7191#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7192static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7193static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7194
8f6277f5
PB
7195#define ARM2THUMB_PIC_GLUE_SIZE 16
7196static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7197static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7198static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7199
07d6d2b8 7200/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 7201
07d6d2b8
AM
7202 .thumb .thumb
7203 .align 2 .align 2
7204 __func_from_thumb: __func_from_thumb:
7205 bx pc push {r6, lr}
7206 nop ldr r6, __func_addr
7207 .arm mov lr, pc
7208 b func bx r6
99059e56
RM
7209 .arm
7210 ;; back_to_thumb
7211 ldmia r13! {r6, lr}
7212 bx lr
7213 __func_addr:
07d6d2b8 7214 .word func */
252b5132
RH
7215
7216#define THUMB2ARM_GLUE_SIZE 8
7217static const insn16 t2a1_bx_pc_insn = 0x4778;
7218static const insn16 t2a2_noop_insn = 0x46c0;
7219static const insn32 t2a3_b_insn = 0xea000000;
7220
c7b8f16e 7221#define VFP11_ERRATUM_VENEER_SIZE 8
a504d23a
LA
7222#define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7223#define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
c7b8f16e 7224
845b51d6
PB
7225#define ARM_BX_VENEER_SIZE 12
7226static const insn32 armbx1_tst_insn = 0xe3100001;
7227static const insn32 armbx2_moveq_insn = 0x01a0f000;
7228static const insn32 armbx3_bx_insn = 0xe12fff10;
7229
7e392df6 7230#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
7231static void
7232arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
7233{
7234 asection * s;
8029a119 7235 bfd_byte * contents;
252b5132 7236
8029a119 7237 if (size == 0)
3e6b1042
DJ
7238 {
7239 /* Do not include empty glue sections in the output. */
7240 if (abfd != NULL)
7241 {
3d4d4302 7242 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
7243 if (s != NULL)
7244 s->flags |= SEC_EXCLUDE;
7245 }
7246 return;
7247 }
252b5132 7248
8029a119 7249 BFD_ASSERT (abfd != NULL);
252b5132 7250
3d4d4302 7251 s = bfd_get_linker_section (abfd, name);
8029a119 7252 BFD_ASSERT (s != NULL);
252b5132 7253
b0f4fbf8 7254 contents = (bfd_byte *) bfd_zalloc (abfd, size);
252b5132 7255
8029a119
NC
7256 BFD_ASSERT (s->size == size);
7257 s->contents = contents;
7258}
906e58ca 7259
0a1b45a2 7260bool
8029a119
NC
7261bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7262{
7263 struct elf32_arm_link_hash_table * globals;
906e58ca 7264
8029a119
NC
7265 globals = elf32_arm_hash_table (info);
7266 BFD_ASSERT (globals != NULL);
906e58ca 7267
8029a119
NC
7268 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7269 globals->arm_glue_size,
7270 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 7271
8029a119
NC
7272 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7273 globals->thumb_glue_size,
7274 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 7275
8029a119
NC
7276 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7277 globals->vfp11_erratum_glue_size,
7278 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 7279
a504d23a
LA
7280 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7281 globals->stm32l4xx_erratum_glue_size,
7282 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7283
8029a119
NC
7284 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7285 globals->bx_glue_size,
845b51d6
PB
7286 ARM_BX_GLUE_SECTION_NAME);
7287
0a1b45a2 7288 return true;
252b5132
RH
7289}
7290
a4fd1a8e 7291/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
7292 returns the symbol identifying the stub. */
7293
a4fd1a8e 7294static struct elf_link_hash_entry *
57e8b36a
NC
7295record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7296 struct elf_link_hash_entry * h)
252b5132
RH
7297{
7298 const char * name = h->root.root.string;
63b0f745 7299 asection * s;
252b5132
RH
7300 char * tmp_name;
7301 struct elf_link_hash_entry * myh;
14a793b2 7302 struct bfd_link_hash_entry * bh;
252b5132 7303 struct elf32_arm_link_hash_table * globals;
dc810e39 7304 bfd_vma val;
2f475487 7305 bfd_size_type size;
252b5132
RH
7306
7307 globals = elf32_arm_hash_table (link_info);
252b5132
RH
7308 BFD_ASSERT (globals != NULL);
7309 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7310
3d4d4302 7311 s = bfd_get_linker_section
252b5132
RH
7312 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7313
252b5132
RH
7314 BFD_ASSERT (s != NULL);
7315
21d799b5 7316 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7317 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7318 BFD_ASSERT (tmp_name);
7319
7320 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7321
7322 myh = elf_link_hash_lookup
0a1b45a2 7323 (&(globals)->root, tmp_name, false, false, true);
252b5132
RH
7324
7325 if (myh != NULL)
7326 {
9b485d32 7327 /* We've already seen this guy. */
252b5132 7328 free (tmp_name);
a4fd1a8e 7329 return myh;
252b5132
RH
7330 }
7331
57e8b36a
NC
7332 /* The only trick here is using hash_table->arm_glue_size as the value.
7333 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
7334 putting it. The +1 on the value marks that the stub has not been
7335 output yet - not that it is a Thumb function. */
14a793b2 7336 bh = NULL;
dc810e39
AM
7337 val = globals->arm_glue_size + 1;
7338 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7339 tmp_name, BSF_GLOBAL, s, val,
0a1b45a2 7340 NULL, true, false, &bh);
252b5132 7341
b7693d02
DJ
7342 myh = (struct elf_link_hash_entry *) bh;
7343 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7344 myh->forced_local = 1;
7345
252b5132
RH
7346 free (tmp_name);
7347
0e1862bb
L
7348 if (bfd_link_pic (link_info)
7349 || globals->root.is_relocatable_executable
27e55c4d 7350 || globals->pic_veneer)
2f475487 7351 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
7352 else if (globals->use_blx)
7353 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 7354 else
2f475487
AM
7355 size = ARM2THUMB_STATIC_GLUE_SIZE;
7356
7357 s->size += size;
7358 globals->arm_glue_size += size;
252b5132 7359
a4fd1a8e 7360 return myh;
252b5132
RH
7361}
7362
845b51d6
PB
7363/* Allocate space for ARMv4 BX veneers. */
7364
7365static void
7366record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7367{
7368 asection * s;
7369 struct elf32_arm_link_hash_table *globals;
7370 char *tmp_name;
7371 struct elf_link_hash_entry *myh;
7372 struct bfd_link_hash_entry *bh;
7373 bfd_vma val;
7374
7375 /* BX PC does not need a veneer. */
7376 if (reg == 15)
7377 return;
7378
7379 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
7380 BFD_ASSERT (globals != NULL);
7381 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7382
7383 /* Check if this veneer has already been allocated. */
7384 if (globals->bx_glue_offset[reg])
7385 return;
7386
3d4d4302 7387 s = bfd_get_linker_section
845b51d6
PB
7388 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7389
7390 BFD_ASSERT (s != NULL);
7391
7392 /* Add symbol for veneer. */
21d799b5
NC
7393 tmp_name = (char *)
7394 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
845b51d6 7395 BFD_ASSERT (tmp_name);
906e58ca 7396
845b51d6 7397 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 7398
845b51d6 7399 myh = elf_link_hash_lookup
0a1b45a2 7400 (&(globals)->root, tmp_name, false, false, false);
906e58ca 7401
845b51d6 7402 BFD_ASSERT (myh == NULL);
906e58ca 7403
845b51d6
PB
7404 bh = NULL;
7405 val = globals->bx_glue_size;
7406 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
99059e56 7407 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
0a1b45a2 7408 NULL, true, false, &bh);
845b51d6
PB
7409
7410 myh = (struct elf_link_hash_entry *) bh;
7411 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7412 myh->forced_local = 1;
7413
7414 s->size += ARM_BX_VENEER_SIZE;
7415 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7416 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7417}
7418
7419
c7b8f16e
JB
7420/* Add an entry to the code/data map for section SEC. */
7421
7422static void
7423elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7424{
7425 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7426 unsigned int newidx;
906e58ca 7427
c7b8f16e
JB
7428 if (sec_data->map == NULL)
7429 {
21d799b5 7430 sec_data->map = (elf32_arm_section_map *)
99059e56 7431 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
7432 sec_data->mapcount = 0;
7433 sec_data->mapsize = 1;
7434 }
906e58ca 7435
c7b8f16e 7436 newidx = sec_data->mapcount++;
906e58ca 7437
c7b8f16e
JB
7438 if (sec_data->mapcount > sec_data->mapsize)
7439 {
7440 sec_data->mapsize *= 2;
21d799b5 7441 sec_data->map = (elf32_arm_section_map *)
99059e56
RM
7442 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7443 * sizeof (elf32_arm_section_map));
515ef31d
NC
7444 }
7445
7446 if (sec_data->map)
7447 {
7448 sec_data->map[newidx].vma = vma;
7449 sec_data->map[newidx].type = type;
c7b8f16e 7450 }
c7b8f16e
JB
7451}
7452
7453
7454/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7455 veneers are handled for now. */
7456
7457static bfd_vma
7458record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
99059e56
RM
7459 elf32_vfp11_erratum_list *branch,
7460 bfd *branch_bfd,
7461 asection *branch_sec,
7462 unsigned int offset)
c7b8f16e
JB
7463{
7464 asection *s;
7465 struct elf32_arm_link_hash_table *hash_table;
7466 char *tmp_name;
7467 struct elf_link_hash_entry *myh;
7468 struct bfd_link_hash_entry *bh;
7469 bfd_vma val;
7470 struct _arm_elf_section_data *sec_data;
c7b8f16e 7471 elf32_vfp11_erratum_list *newerr;
906e58ca 7472
c7b8f16e 7473 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
7474 BFD_ASSERT (hash_table != NULL);
7475 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 7476
3d4d4302 7477 s = bfd_get_linker_section
c7b8f16e 7478 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 7479
c7b8f16e 7480 sec_data = elf32_arm_section_data (s);
906e58ca 7481
c7b8f16e 7482 BFD_ASSERT (s != NULL);
906e58ca 7483
21d799b5 7484 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 7485 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e 7486 BFD_ASSERT (tmp_name);
906e58ca 7487
c7b8f16e
JB
7488 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7489 hash_table->num_vfp11_fixes);
906e58ca 7490
c7b8f16e 7491 myh = elf_link_hash_lookup
0a1b45a2 7492 (&(hash_table)->root, tmp_name, false, false, false);
906e58ca 7493
c7b8f16e 7494 BFD_ASSERT (myh == NULL);
906e58ca 7495
c7b8f16e
JB
7496 bh = NULL;
7497 val = hash_table->vfp11_erratum_glue_size;
7498 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
99059e56 7499 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
0a1b45a2 7500 NULL, true, false, &bh);
c7b8f16e
JB
7501
7502 myh = (struct elf_link_hash_entry *) bh;
7503 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7504 myh->forced_local = 1;
7505
7506 /* Link veneer back to calling location. */
c7e2358a 7507 sec_data->erratumcount += 1;
21d799b5
NC
7508 newerr = (elf32_vfp11_erratum_list *)
7509 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 7510
c7b8f16e
JB
7511 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7512 newerr->vma = -1;
7513 newerr->u.v.branch = branch;
7514 newerr->u.v.id = hash_table->num_vfp11_fixes;
7515 branch->u.b.veneer = newerr;
7516
7517 newerr->next = sec_data->erratumlist;
7518 sec_data->erratumlist = newerr;
7519
7520 /* A symbol for the return from the veneer. */
7521 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7522 hash_table->num_vfp11_fixes);
7523
7524 myh = elf_link_hash_lookup
0a1b45a2 7525 (&(hash_table)->root, tmp_name, false, false, false);
906e58ca 7526
c7b8f16e
JB
7527 if (myh != NULL)
7528 abort ();
7529
7530 bh = NULL;
7531 val = offset + 4;
7532 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
0a1b45a2 7533 branch_sec, val, NULL, true, false, &bh);
906e58ca 7534
c7b8f16e
JB
7535 myh = (struct elf_link_hash_entry *) bh;
7536 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7537 myh->forced_local = 1;
7538
7539 free (tmp_name);
906e58ca 7540
c7b8f16e
JB
7541 /* Generate a mapping symbol for the veneer section, and explicitly add an
7542 entry for that symbol to the code/data map for the section. */
7543 if (hash_table->vfp11_erratum_glue_size == 0)
7544 {
7545 bh = NULL;
7546 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
99059e56 7547 ever requires this erratum fix. */
c7b8f16e
JB
7548 _bfd_generic_link_add_one_symbol (link_info,
7549 hash_table->bfd_of_glue_owner, "$a",
7550 BSF_LOCAL, s, 0, NULL,
0a1b45a2 7551 true, false, &bh);
c7b8f16e
JB
7552
7553 myh = (struct elf_link_hash_entry *) bh;
7554 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7555 myh->forced_local = 1;
906e58ca 7556
c7b8f16e 7557 /* The elf32_arm_init_maps function only cares about symbols from input
99059e56
RM
7558 BFDs. We must make a note of this generated mapping symbol
7559 ourselves so that code byteswapping works properly in
7560 elf32_arm_write_section. */
c7b8f16e
JB
7561 elf32_arm_section_map_add (s, 'a', 0);
7562 }
906e58ca 7563
c7b8f16e
JB
7564 s->size += VFP11_ERRATUM_VENEER_SIZE;
7565 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7566 hash_table->num_vfp11_fixes++;
906e58ca 7567
c7b8f16e
JB
7568 /* The offset of the veneer. */
7569 return val;
7570}
7571
a504d23a
LA
7572/* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7573 veneers need to be handled because used only in Cortex-M. */
7574
7575static bfd_vma
7576record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7577 elf32_stm32l4xx_erratum_list *branch,
7578 bfd *branch_bfd,
7579 asection *branch_sec,
7580 unsigned int offset,
7581 bfd_size_type veneer_size)
7582{
7583 asection *s;
7584 struct elf32_arm_link_hash_table *hash_table;
7585 char *tmp_name;
7586 struct elf_link_hash_entry *myh;
7587 struct bfd_link_hash_entry *bh;
7588 bfd_vma val;
7589 struct _arm_elf_section_data *sec_data;
7590 elf32_stm32l4xx_erratum_list *newerr;
7591
7592 hash_table = elf32_arm_hash_table (link_info);
7593 BFD_ASSERT (hash_table != NULL);
7594 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7595
7596 s = bfd_get_linker_section
7597 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7598
7599 BFD_ASSERT (s != NULL);
7600
7601 sec_data = elf32_arm_section_data (s);
7602
7603 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7604 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
a504d23a
LA
7605 BFD_ASSERT (tmp_name);
7606
7607 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7608 hash_table->num_stm32l4xx_fixes);
7609
7610 myh = elf_link_hash_lookup
0a1b45a2 7611 (&(hash_table)->root, tmp_name, false, false, false);
a504d23a
LA
7612
7613 BFD_ASSERT (myh == NULL);
7614
7615 bh = NULL;
7616 val = hash_table->stm32l4xx_erratum_glue_size;
7617 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7618 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
0a1b45a2 7619 NULL, true, false, &bh);
a504d23a
LA
7620
7621 myh = (struct elf_link_hash_entry *) bh;
7622 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7623 myh->forced_local = 1;
7624
7625 /* Link veneer back to calling location. */
7626 sec_data->stm32l4xx_erratumcount += 1;
7627 newerr = (elf32_stm32l4xx_erratum_list *)
7628 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7629
7630 newerr->type = STM32L4XX_ERRATUM_VENEER;
7631 newerr->vma = -1;
7632 newerr->u.v.branch = branch;
7633 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7634 branch->u.b.veneer = newerr;
7635
7636 newerr->next = sec_data->stm32l4xx_erratumlist;
7637 sec_data->stm32l4xx_erratumlist = newerr;
7638
7639 /* A symbol for the return from the veneer. */
7640 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7641 hash_table->num_stm32l4xx_fixes);
7642
7643 myh = elf_link_hash_lookup
0a1b45a2 7644 (&(hash_table)->root, tmp_name, false, false, false);
a504d23a
LA
7645
7646 if (myh != NULL)
7647 abort ();
7648
7649 bh = NULL;
7650 val = offset + 4;
7651 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
0a1b45a2 7652 branch_sec, val, NULL, true, false, &bh);
a504d23a
LA
7653
7654 myh = (struct elf_link_hash_entry *) bh;
7655 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7656 myh->forced_local = 1;
7657
7658 free (tmp_name);
7659
7660 /* Generate a mapping symbol for the veneer section, and explicitly add an
7661 entry for that symbol to the code/data map for the section. */
7662 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7663 {
7664 bh = NULL;
7665 /* Creates a THUMB symbol since there is no other choice. */
7666 _bfd_generic_link_add_one_symbol (link_info,
7667 hash_table->bfd_of_glue_owner, "$t",
7668 BSF_LOCAL, s, 0, NULL,
0a1b45a2 7669 true, false, &bh);
a504d23a
LA
7670
7671 myh = (struct elf_link_hash_entry *) bh;
7672 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7673 myh->forced_local = 1;
7674
7675 /* The elf32_arm_init_maps function only cares about symbols from input
7676 BFDs. We must make a note of this generated mapping symbol
7677 ourselves so that code byteswapping works properly in
7678 elf32_arm_write_section. */
7679 elf32_arm_section_map_add (s, 't', 0);
7680 }
7681
7682 s->size += veneer_size;
7683 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7684 hash_table->num_stm32l4xx_fixes++;
7685
7686 /* The offset of the veneer. */
7687 return val;
7688}
7689
8029a119 7690#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
7691 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7692 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
7693
7694/* Create a fake section for use by the ARM backend of the linker. */
7695
0a1b45a2 7696static bool
8029a119
NC
7697arm_make_glue_section (bfd * abfd, const char * name)
7698{
7699 asection * sec;
7700
3d4d4302 7701 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
7702 if (sec != NULL)
7703 /* Already made. */
0a1b45a2 7704 return true;
8029a119 7705
3d4d4302 7706 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
7707
7708 if (sec == NULL
fd361982 7709 || !bfd_set_section_alignment (sec, 2))
0a1b45a2 7710 return false;
8029a119
NC
7711
7712 /* Set the gc mark to prevent the section from being removed by garbage
7713 collection, despite the fact that no relocs refer to this section. */
7714 sec->gc_mark = 1;
7715
0a1b45a2 7716 return true;
8029a119
NC
7717}
7718
1db37fe6
YG
7719/* Set size of .plt entries. This function is called from the
7720 linker scripts in ld/emultempl/{armelf}.em. */
7721
7722void
7723bfd_elf32_arm_use_long_plt (void)
7724{
0a1b45a2 7725 elf32_arm_use_long_plt_entry = true;
1db37fe6
YG
7726}
7727
8afb0e02
NC
7728/* Add the glue sections to ABFD. This function is called from the
7729 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 7730
0a1b45a2 7731bool
57e8b36a
NC
7732bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7733 struct bfd_link_info *info)
252b5132 7734{
a504d23a 7735 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
0a1b45a2 7736 bool dostm32l4xx = globals
a504d23a 7737 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
0a1b45a2 7738 bool addglue;
a504d23a 7739
8afb0e02
NC
7740 /* If we are only performing a partial
7741 link do not bother adding the glue. */
0e1862bb 7742 if (bfd_link_relocatable (info))
0a1b45a2 7743 return true;
252b5132 7744
a504d23a 7745 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
8029a119
NC
7746 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7747 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7748 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
a504d23a
LA
7749
7750 if (!dostm32l4xx)
7751 return addglue;
7752
7753 return addglue
7754 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
8afb0e02
NC
7755}
7756
daa4adae
TP
7757/* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7758 ensures they are not marked for deletion by
7759 strip_excluded_output_sections () when veneers are going to be created
7760 later. Not doing so would trigger assert on empty section size in
7761 lang_size_sections_1 (). */
7762
7763void
7764bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7765{
7766 enum elf32_arm_stub_type stub_type;
7767
7768 /* If we are only performing a partial
7769 link do not bother adding the glue. */
7770 if (bfd_link_relocatable (info))
7771 return;
7772
7773 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7774 {
7775 asection *out_sec;
7776 const char *out_sec_name;
7777
7778 if (!arm_dedicated_stub_output_section_required (stub_type))
7779 continue;
7780
7781 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7782 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7783 if (out_sec != NULL)
7784 out_sec->flags |= SEC_KEEP;
7785 }
7786}
7787
8afb0e02
NC
7788/* Select a BFD to be used to hold the sections used by the glue code.
7789 This function is called from the linker scripts in ld/emultempl/
8029a119 7790 {armelf/pe}.em. */
8afb0e02 7791
0a1b45a2 7792bool
57e8b36a 7793bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
7794{
7795 struct elf32_arm_link_hash_table *globals;
7796
7797 /* If we are only performing a partial link
7798 do not bother getting a bfd to hold the glue. */
0e1862bb 7799 if (bfd_link_relocatable (info))
0a1b45a2 7800 return true;
8afb0e02 7801
b7693d02
DJ
7802 /* Make sure we don't attach the glue sections to a dynamic object. */
7803 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7804
8afb0e02 7805 globals = elf32_arm_hash_table (info);
8afb0e02
NC
7806 BFD_ASSERT (globals != NULL);
7807
7808 if (globals->bfd_of_glue_owner != NULL)
0a1b45a2 7809 return true;
8afb0e02 7810
252b5132
RH
7811 /* Save the bfd for later use. */
7812 globals->bfd_of_glue_owner = abfd;
cedb70c5 7813
0a1b45a2 7814 return true;
252b5132
RH
7815}
7816
906e58ca
NC
7817static void
7818check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 7819{
2de70689
MGD
7820 int cpu_arch;
7821
b38cadfb 7822 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
7823 Tag_CPU_arch);
7824
7825 if (globals->fix_arm1176)
7826 {
7827 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7828 globals->use_blx = 1;
7829 }
7830 else
7831 {
7832 if (cpu_arch > TAG_CPU_ARCH_V4T)
7833 globals->use_blx = 1;
7834 }
39b41c9c
PB
7835}
7836
0a1b45a2 7837bool
57e8b36a 7838bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 7839 struct bfd_link_info *link_info)
252b5132
RH
7840{
7841 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 7842 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
7843 Elf_Internal_Rela *irel, *irelend;
7844 bfd_byte *contents = NULL;
252b5132
RH
7845
7846 asection *sec;
7847 struct elf32_arm_link_hash_table *globals;
7848
7849 /* If we are only performing a partial link do not bother
7850 to construct any glue. */
0e1862bb 7851 if (bfd_link_relocatable (link_info))
0a1b45a2 7852 return true;
252b5132 7853
39ce1a6a
NC
7854 /* Here we have a bfd that is to be included on the link. We have a
7855 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 7856 globals = elf32_arm_hash_table (link_info);
252b5132 7857 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
7858
7859 check_use_blx (globals);
252b5132 7860
d504ffc8 7861 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 7862 {
90b6238f 7863 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
d003868e 7864 abfd);
0a1b45a2 7865 return false;
e489d0ae 7866 }
f21f3fe0 7867
39ce1a6a
NC
7868 /* PR 5398: If we have not decided to include any loadable sections in
7869 the output then we will not have a glue owner bfd. This is OK, it
7870 just means that there is nothing else for us to do here. */
7871 if (globals->bfd_of_glue_owner == NULL)
0a1b45a2 7872 return true;
39ce1a6a 7873
252b5132
RH
7874 /* Rummage around all the relocs and map the glue vectors. */
7875 sec = abfd->sections;
7876
7877 if (sec == NULL)
0a1b45a2 7878 return true;
252b5132
RH
7879
7880 for (; sec != NULL; sec = sec->next)
7881 {
7882 if (sec->reloc_count == 0)
7883 continue;
7884
81ff113f
AM
7885 if ((sec->flags & SEC_EXCLUDE) != 0
7886 || (sec->flags & SEC_HAS_CONTENTS) == 0)
2f475487
AM
7887 continue;
7888
0ffa91dd 7889 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 7890
9b485d32 7891 /* Load the relocs. */
6cdc0ccc 7892 internal_relocs
0a1b45a2 7893 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, false);
252b5132 7894
6cdc0ccc
AM
7895 if (internal_relocs == NULL)
7896 goto error_return;
252b5132 7897
6cdc0ccc
AM
7898 irelend = internal_relocs + sec->reloc_count;
7899 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
7900 {
7901 long r_type;
7902 unsigned long r_index;
252b5132
RH
7903
7904 struct elf_link_hash_entry *h;
7905
7906 r_type = ELF32_R_TYPE (irel->r_info);
7907 r_index = ELF32_R_SYM (irel->r_info);
7908
9b485d32 7909 /* These are the only relocation types we care about. */
ba96a88f 7910 if ( r_type != R_ARM_PC24
845b51d6 7911 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
7912 continue;
7913
7914 /* Get the section contents if we haven't done so already. */
7915 if (contents == NULL)
7916 {
7917 /* Get cached copy if it exists. */
7918 if (elf_section_data (sec)->this_hdr.contents != NULL)
7919 contents = elf_section_data (sec)->this_hdr.contents;
7920 else
7921 {
7922 /* Go get them off disk. */
57e8b36a 7923 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
7924 goto error_return;
7925 }
7926 }
7927
845b51d6
PB
7928 if (r_type == R_ARM_V4BX)
7929 {
7930 int reg;
7931
7932 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7933 record_arm_bx_glue (link_info, reg);
7934 continue;
7935 }
7936
a7c10850 7937 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
7938 h = NULL;
7939
9b485d32 7940 /* We don't care about local symbols. */
252b5132
RH
7941 if (r_index < symtab_hdr->sh_info)
7942 continue;
7943
9b485d32 7944 /* This is an external symbol. */
252b5132
RH
7945 r_index -= symtab_hdr->sh_info;
7946 h = (struct elf_link_hash_entry *)
7947 elf_sym_hashes (abfd)[r_index];
7948
7949 /* If the relocation is against a static symbol it must be within
7950 the current section and so cannot be a cross ARM/Thumb relocation. */
7951 if (h == NULL)
7952 continue;
7953
d504ffc8
DJ
7954 /* If the call will go through a PLT entry then we do not need
7955 glue. */
362d30a1 7956 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
7957 continue;
7958
252b5132
RH
7959 switch (r_type)
7960 {
7961 case R_ARM_PC24:
7962 /* This one is a call from arm code. We need to look up
99059e56
RM
7963 the target of the call. If it is a thumb target, we
7964 insert glue. */
39d911fc
TP
7965 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7966 == ST_BRANCH_TO_THUMB)
252b5132
RH
7967 record_arm_to_thumb_glue (link_info, h);
7968 break;
7969
252b5132 7970 default:
c6596c5e 7971 abort ();
252b5132
RH
7972 }
7973 }
6cdc0ccc 7974
c9594989 7975 if (elf_section_data (sec)->this_hdr.contents != contents)
6cdc0ccc
AM
7976 free (contents);
7977 contents = NULL;
7978
c9594989 7979 if (elf_section_data (sec)->relocs != internal_relocs)
6cdc0ccc
AM
7980 free (internal_relocs);
7981 internal_relocs = NULL;
252b5132
RH
7982 }
7983
0a1b45a2 7984 return true;
9a5aca8c 7985
dc1e8a47 7986 error_return:
c9594989 7987 if (elf_section_data (sec)->this_hdr.contents != contents)
6cdc0ccc 7988 free (contents);
c9594989 7989 if (elf_section_data (sec)->relocs != internal_relocs)
6cdc0ccc 7990 free (internal_relocs);
9a5aca8c 7991
0a1b45a2 7992 return false;
252b5132 7993}
7e392df6 7994#endif
252b5132 7995
eb043451 7996
c7b8f16e
JB
7997/* Initialise maps of ARM/Thumb/data for input BFDs. */
7998
7999void
8000bfd_elf32_arm_init_maps (bfd *abfd)
8001{
8002 Elf_Internal_Sym *isymbuf;
8003 Elf_Internal_Shdr *hdr;
8004 unsigned int i, localsyms;
8005
af1f4419
NC
8006 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
8007 if (! is_arm_elf (abfd))
8008 return;
8009
c7b8f16e
JB
8010 if ((abfd->flags & DYNAMIC) != 0)
8011 return;
8012
0ffa91dd 8013 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
8014 localsyms = hdr->sh_info;
8015
8016 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
8017 should contain the number of local symbols, which should come before any
8018 global symbols. Mapping symbols are always local. */
8019 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
8020 NULL);
8021
8022 /* No internal symbols read? Skip this BFD. */
8023 if (isymbuf == NULL)
8024 return;
8025
8026 for (i = 0; i < localsyms; i++)
8027 {
8028 Elf_Internal_Sym *isym = &isymbuf[i];
8029 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
8030 const char *name;
906e58ca 8031
c7b8f16e 8032 if (sec != NULL
99059e56
RM
8033 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8034 {
8035 name = bfd_elf_string_from_elf_section (abfd,
8036 hdr->sh_link, isym->st_name);
906e58ca 8037
99059e56 8038 if (bfd_is_arm_special_symbol_name (name,
c7b8f16e 8039 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
99059e56
RM
8040 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8041 }
c7b8f16e
JB
8042 }
8043}
8044
8045
48229727
JB
8046/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8047 say what they wanted. */
8048
8049void
8050bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8051{
8052 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8053 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8054
4dfe6ac6
NC
8055 if (globals == NULL)
8056 return;
8057
48229727
JB
8058 if (globals->fix_cortex_a8 == -1)
8059 {
8060 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8061 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8062 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8063 || out_attr[Tag_CPU_arch_profile].i == 0))
8064 globals->fix_cortex_a8 = 1;
8065 else
8066 globals->fix_cortex_a8 = 0;
8067 }
8068}
8069
8070
c7b8f16e
JB
8071void
8072bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8073{
8074 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 8075 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 8076
4dfe6ac6
NC
8077 if (globals == NULL)
8078 return;
c7b8f16e
JB
8079 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8080 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8081 {
8082 switch (globals->vfp11_fix)
99059e56
RM
8083 {
8084 case BFD_ARM_VFP11_FIX_DEFAULT:
8085 case BFD_ARM_VFP11_FIX_NONE:
8086 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8087 break;
8088
8089 default:
8090 /* Give a warning, but do as the user requests anyway. */
871b3ab2 8091 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
99059e56
RM
8092 "workaround is not necessary for target architecture"), obfd);
8093 }
c7b8f16e
JB
8094 }
8095 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8096 /* For earlier architectures, we might need the workaround, but do not
8097 enable it by default. If users is running with broken hardware, they
8098 must enable the erratum fix explicitly. */
8099 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8100}
8101
a504d23a
LA
8102void
8103bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8104{
8105 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8106 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8107
8108 if (globals == NULL)
8109 return;
8110
8111 /* We assume only Cortex-M4 may require the fix. */
8112 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8113 || out_attr[Tag_CPU_arch_profile].i != 'M')
8114 {
8115 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8116 /* Give a warning, but do as the user requests anyway. */
4eca0228 8117 _bfd_error_handler
871b3ab2 8118 (_("%pB: warning: selected STM32L4XX erratum "
a504d23a
LA
8119 "workaround is not necessary for target architecture"), obfd);
8120 }
8121}
c7b8f16e 8122
906e58ca
NC
8123enum bfd_arm_vfp11_pipe
8124{
c7b8f16e
JB
8125 VFP11_FMAC,
8126 VFP11_LS,
8127 VFP11_DS,
8128 VFP11_BAD
8129};
8130
8131/* Return a VFP register number. This is encoded as RX:X for single-precision
8132 registers, or X:RX for double-precision registers, where RX is the group of
8133 four bits in the instruction encoding and X is the single extension bit.
8134 RX and X fields are specified using their lowest (starting) bit. The return
8135 value is:
8136
8137 0...31: single-precision registers s0...s31
8138 32...63: double-precision registers d0...d31.
906e58ca 8139
c7b8f16e
JB
8140 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8141 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 8142
c7b8f16e 8143static unsigned int
0a1b45a2 8144bfd_arm_vfp11_regno (unsigned int insn, bool is_double, unsigned int rx,
99059e56 8145 unsigned int x)
c7b8f16e
JB
8146{
8147 if (is_double)
8148 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8149 else
8150 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8151}
8152
8153/* Set bits in *WMASK according to a register number REG as encoded by
8154 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8155
8156static void
8157bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8158{
8159 if (reg < 32)
8160 *wmask |= 1 << reg;
8161 else if (reg < 48)
8162 *wmask |= 3 << ((reg - 32) * 2);
8163}
8164
8165/* Return TRUE if WMASK overwrites anything in REGS. */
8166
0a1b45a2 8167static bool
c7b8f16e
JB
8168bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8169{
8170 int i;
906e58ca 8171
c7b8f16e
JB
8172 for (i = 0; i < numregs; i++)
8173 {
8174 unsigned int reg = regs[i];
8175
8176 if (reg < 32 && (wmask & (1 << reg)) != 0)
0a1b45a2 8177 return true;
906e58ca 8178
c7b8f16e
JB
8179 reg -= 32;
8180
8181 if (reg >= 16)
99059e56 8182 continue;
906e58ca 8183
c7b8f16e 8184 if ((wmask & (3 << (reg * 2))) != 0)
0a1b45a2 8185 return true;
c7b8f16e 8186 }
906e58ca 8187
0a1b45a2 8188 return false;
c7b8f16e
JB
8189}
8190
8191/* In this function, we're interested in two things: finding input registers
8192 for VFP data-processing instructions, and finding the set of registers which
8193 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8194 hold the written set, so FLDM etc. are easy to deal with (we're only
8195 interested in 32 SP registers or 16 dp registers, due to the VFP version
8196 implemented by the chip in question). DP registers are marked by setting
8197 both SP registers in the write mask). */
8198
8199static enum bfd_arm_vfp11_pipe
8200bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
99059e56 8201 int *numregs)
c7b8f16e 8202{
91d6fa6a 8203 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
0a1b45a2 8204 bool is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
c7b8f16e
JB
8205
8206 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8207 {
8208 unsigned int pqrs;
8209 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8210 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8211
8212 pqrs = ((insn & 0x00800000) >> 20)
99059e56
RM
8213 | ((insn & 0x00300000) >> 19)
8214 | ((insn & 0x00000040) >> 6);
c7b8f16e
JB
8215
8216 switch (pqrs)
99059e56
RM
8217 {
8218 case 0: /* fmac[sd]. */
8219 case 1: /* fnmac[sd]. */
8220 case 2: /* fmsc[sd]. */
8221 case 3: /* fnmsc[sd]. */
8222 vpipe = VFP11_FMAC;
8223 bfd_arm_vfp11_write_mask (destmask, fd);
8224 regs[0] = fd;
8225 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8226 regs[2] = fm;
8227 *numregs = 3;
8228 break;
8229
8230 case 4: /* fmul[sd]. */
8231 case 5: /* fnmul[sd]. */
8232 case 6: /* fadd[sd]. */
8233 case 7: /* fsub[sd]. */
8234 vpipe = VFP11_FMAC;
8235 goto vfp_binop;
8236
8237 case 8: /* fdiv[sd]. */
8238 vpipe = VFP11_DS;
8239 vfp_binop:
8240 bfd_arm_vfp11_write_mask (destmask, fd);
8241 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8242 regs[1] = fm;
8243 *numregs = 2;
8244 break;
8245
8246 case 15: /* extended opcode. */
8247 {
8248 unsigned int extn = ((insn >> 15) & 0x1e)
8249 | ((insn >> 7) & 1);
8250
8251 switch (extn)
8252 {
8253 case 0: /* fcpy[sd]. */
8254 case 1: /* fabs[sd]. */
8255 case 2: /* fneg[sd]. */
8256 case 8: /* fcmp[sd]. */
8257 case 9: /* fcmpe[sd]. */
8258 case 10: /* fcmpz[sd]. */
8259 case 11: /* fcmpez[sd]. */
8260 case 16: /* fuito[sd]. */
8261 case 17: /* fsito[sd]. */
8262 case 24: /* ftoui[sd]. */
8263 case 25: /* ftouiz[sd]. */
8264 case 26: /* ftosi[sd]. */
8265 case 27: /* ftosiz[sd]. */
8266 /* These instructions will not bounce due to underflow. */
8267 *numregs = 0;
8268 vpipe = VFP11_FMAC;
8269 break;
8270
8271 case 3: /* fsqrt[sd]. */
8272 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8273 registers to cause the erratum in previous instructions. */
8274 bfd_arm_vfp11_write_mask (destmask, fd);
8275 vpipe = VFP11_DS;
8276 break;
8277
8278 case 15: /* fcvt{ds,sd}. */
8279 {
8280 int rnum = 0;
8281
8282 bfd_arm_vfp11_write_mask (destmask, fd);
c7b8f16e
JB
8283
8284 /* Only FCVTSD can underflow. */
99059e56
RM
8285 if ((insn & 0x100) != 0)
8286 regs[rnum++] = fm;
c7b8f16e 8287
99059e56 8288 *numregs = rnum;
c7b8f16e 8289
99059e56
RM
8290 vpipe = VFP11_FMAC;
8291 }
8292 break;
c7b8f16e 8293
99059e56
RM
8294 default:
8295 return VFP11_BAD;
8296 }
8297 }
8298 break;
c7b8f16e 8299
99059e56
RM
8300 default:
8301 return VFP11_BAD;
8302 }
c7b8f16e
JB
8303 }
8304 /* Two-register transfer. */
8305 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8306 {
8307 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 8308
c7b8f16e
JB
8309 if ((insn & 0x100000) == 0)
8310 {
99059e56
RM
8311 if (is_double)
8312 bfd_arm_vfp11_write_mask (destmask, fm);
8313 else
8314 {
8315 bfd_arm_vfp11_write_mask (destmask, fm);
8316 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8317 }
c7b8f16e
JB
8318 }
8319
91d6fa6a 8320 vpipe = VFP11_LS;
c7b8f16e
JB
8321 }
8322 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8323 {
8324 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8325 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 8326
c7b8f16e 8327 switch (puw)
99059e56
RM
8328 {
8329 case 0: /* Two-reg transfer. We should catch these above. */
8330 abort ();
906e58ca 8331
99059e56
RM
8332 case 2: /* fldm[sdx]. */
8333 case 3:
8334 case 5:
8335 {
8336 unsigned int i, offset = insn & 0xff;
c7b8f16e 8337
99059e56
RM
8338 if (is_double)
8339 offset >>= 1;
c7b8f16e 8340
99059e56
RM
8341 for (i = fd; i < fd + offset; i++)
8342 bfd_arm_vfp11_write_mask (destmask, i);
8343 }
8344 break;
906e58ca 8345
99059e56
RM
8346 case 4: /* fld[sd]. */
8347 case 6:
8348 bfd_arm_vfp11_write_mask (destmask, fd);
8349 break;
906e58ca 8350
99059e56
RM
8351 default:
8352 return VFP11_BAD;
8353 }
c7b8f16e 8354
91d6fa6a 8355 vpipe = VFP11_LS;
c7b8f16e
JB
8356 }
8357 /* Single-register transfer. Note L==0. */
8358 else if ((insn & 0x0f100e10) == 0x0e000a10)
8359 {
8360 unsigned int opcode = (insn >> 21) & 7;
8361 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8362
8363 switch (opcode)
99059e56
RM
8364 {
8365 case 0: /* fmsr/fmdlr. */
8366 case 1: /* fmdhr. */
8367 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8368 destination register. I don't know if this is exactly right,
8369 but it is the conservative choice. */
8370 bfd_arm_vfp11_write_mask (destmask, fn);
8371 break;
8372
8373 case 7: /* fmxr. */
8374 break;
8375 }
c7b8f16e 8376
91d6fa6a 8377 vpipe = VFP11_LS;
c7b8f16e
JB
8378 }
8379
91d6fa6a 8380 return vpipe;
c7b8f16e
JB
8381}
8382
8383
8384static int elf32_arm_compare_mapping (const void * a, const void * b);
8385
8386
8387/* Look for potentially-troublesome code sequences which might trigger the
8388 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8389 (available from ARM) for details of the erratum. A short version is
8390 described in ld.texinfo. */
8391
0a1b45a2 8392bool
c7b8f16e
JB
8393bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8394{
8395 asection *sec;
8396 bfd_byte *contents = NULL;
8397 int state = 0;
8398 int regs[3], numregs = 0;
8399 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8400 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 8401
4dfe6ac6 8402 if (globals == NULL)
0a1b45a2 8403 return false;
4dfe6ac6 8404
c7b8f16e
JB
8405 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8406 The states transition as follows:
906e58ca 8407
c7b8f16e 8408 0 -> 1 (vector) or 0 -> 2 (scalar)
99059e56
RM
8409 A VFP FMAC-pipeline instruction has been seen. Fill
8410 regs[0]..regs[numregs-1] with its input operands. Remember this
8411 instruction in 'first_fmac'.
c7b8f16e
JB
8412
8413 1 -> 2
99059e56
RM
8414 Any instruction, except for a VFP instruction which overwrites
8415 regs[*].
906e58ca 8416
c7b8f16e
JB
8417 1 -> 3 [ -> 0 ] or
8418 2 -> 3 [ -> 0 ]
99059e56
RM
8419 A VFP instruction has been seen which overwrites any of regs[*].
8420 We must make a veneer! Reset state to 0 before examining next
8421 instruction.
906e58ca 8422
c7b8f16e 8423 2 -> 0
99059e56
RM
8424 If we fail to match anything in state 2, reset to state 0 and reset
8425 the instruction pointer to the instruction after 'first_fmac'.
c7b8f16e
JB
8426
8427 If the VFP11 vector mode is in use, there must be at least two unrelated
8428 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 8429 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
8430
8431 /* If we are only performing a partial link do not bother
8432 to construct any glue. */
0e1862bb 8433 if (bfd_link_relocatable (link_info))
0a1b45a2 8434 return true;
c7b8f16e 8435
0ffa91dd
NC
8436 /* Skip if this bfd does not correspond to an ELF image. */
8437 if (! is_arm_elf (abfd))
0a1b45a2 8438 return true;
906e58ca 8439
c7b8f16e
JB
8440 /* We should have chosen a fix type by the time we get here. */
8441 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8442
8443 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
0a1b45a2 8444 return true;
2e6030b9 8445
33a7ffc2
JM
8446 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8447 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
0a1b45a2 8448 return true;
33a7ffc2 8449
c7b8f16e
JB
8450 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8451 {
8452 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8453 struct _arm_elf_section_data *sec_data;
8454
8455 /* If we don't have executable progbits, we're not interested in this
99059e56 8456 section. Also skip if section is to be excluded. */
c7b8f16e 8457 if (elf_section_type (sec) != SHT_PROGBITS
99059e56
RM
8458 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8459 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 8460 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 8461 || sec->output_section == bfd_abs_section_ptr
99059e56
RM
8462 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8463 continue;
c7b8f16e
JB
8464
8465 sec_data = elf32_arm_section_data (sec);
906e58ca 8466
c7b8f16e 8467 if (sec_data->mapcount == 0)
99059e56 8468 continue;
906e58ca 8469
c7b8f16e
JB
8470 if (elf_section_data (sec)->this_hdr.contents != NULL)
8471 contents = elf_section_data (sec)->this_hdr.contents;
8472 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8473 goto error_return;
8474
8475 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8476 elf32_arm_compare_mapping);
8477
8478 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
8479 {
8480 unsigned int span_start = sec_data->map[span].vma;
8481 unsigned int span_end = (span == sec_data->mapcount - 1)
c7b8f16e 8482 ? sec->size : sec_data->map[span + 1].vma;
99059e56
RM
8483 char span_type = sec_data->map[span].type;
8484
8485 /* FIXME: Only ARM mode is supported at present. We may need to
8486 support Thumb-2 mode also at some point. */
8487 if (span_type != 'a')
8488 continue;
8489
8490 for (i = span_start; i < span_end;)
8491 {
8492 unsigned int next_i = i + 4;
8493 unsigned int insn = bfd_big_endian (abfd)
13c9c485
AM
8494 ? (((unsigned) contents[i] << 24)
8495 | (contents[i + 1] << 16)
8496 | (contents[i + 2] << 8)
8497 | contents[i + 3])
8498 : (((unsigned) contents[i + 3] << 24)
8499 | (contents[i + 2] << 16)
8500 | (contents[i + 1] << 8)
8501 | contents[i]);
99059e56
RM
8502 unsigned int writemask = 0;
8503 enum bfd_arm_vfp11_pipe vpipe;
8504
8505 switch (state)
8506 {
8507 case 0:
8508 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8509 &numregs);
8510 /* I'm assuming the VFP11 erratum can trigger with denorm
8511 operands on either the FMAC or the DS pipeline. This might
8512 lead to slightly overenthusiastic veneer insertion. */
8513 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8514 {
8515 state = use_vector ? 1 : 2;
8516 first_fmac = i;
8517 veneer_of_insn = insn;
8518 }
8519 break;
8520
8521 case 1:
8522 {
8523 int other_regs[3], other_numregs;
8524 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8525 other_regs,
99059e56
RM
8526 &other_numregs);
8527 if (vpipe != VFP11_BAD
8528 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8529 numregs))
99059e56
RM
8530 state = 3;
8531 else
8532 state = 2;
8533 }
8534 break;
8535
8536 case 2:
8537 {
8538 int other_regs[3], other_numregs;
8539 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8540 other_regs,
99059e56
RM
8541 &other_numregs);
8542 if (vpipe != VFP11_BAD
8543 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8544 numregs))
99059e56
RM
8545 state = 3;
8546 else
8547 {
8548 state = 0;
8549 next_i = first_fmac + 4;
8550 }
8551 }
8552 break;
8553
8554 case 3:
8555 abort (); /* Should be unreachable. */
8556 }
8557
8558 if (state == 3)
8559 {
8560 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8561 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8562
8563 elf32_arm_section_data (sec)->erratumcount += 1;
8564
8565 newerr->u.b.vfp_insn = veneer_of_insn;
8566
8567 switch (span_type)
8568 {
8569 case 'a':
8570 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8571 break;
8572
8573 default:
8574 abort ();
8575 }
8576
8577 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
c7b8f16e
JB
8578 first_fmac);
8579
99059e56 8580 newerr->vma = -1;
c7b8f16e 8581
99059e56
RM
8582 newerr->next = sec_data->erratumlist;
8583 sec_data->erratumlist = newerr;
c7b8f16e 8584
99059e56
RM
8585 state = 0;
8586 }
c7b8f16e 8587
99059e56
RM
8588 i = next_i;
8589 }
8590 }
906e58ca 8591
c9594989 8592 if (elf_section_data (sec)->this_hdr.contents != contents)
99059e56 8593 free (contents);
c7b8f16e
JB
8594 contents = NULL;
8595 }
8596
0a1b45a2 8597 return true;
c7b8f16e 8598
dc1e8a47 8599 error_return:
c9594989 8600 if (elf_section_data (sec)->this_hdr.contents != contents)
c7b8f16e 8601 free (contents);
906e58ca 8602
0a1b45a2 8603 return false;
c7b8f16e
JB
8604}
8605
8606/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8607 after sections have been laid out, using specially-named symbols. */
8608
8609void
8610bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8611 struct bfd_link_info *link_info)
8612{
8613 asection *sec;
8614 struct elf32_arm_link_hash_table *globals;
8615 char *tmp_name;
906e58ca 8616
0e1862bb 8617 if (bfd_link_relocatable (link_info))
c7b8f16e 8618 return;
2e6030b9
MS
8619
8620 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 8621 if (! is_arm_elf (abfd))
2e6030b9
MS
8622 return;
8623
c7b8f16e 8624 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
8625 if (globals == NULL)
8626 return;
906e58ca 8627
21d799b5 8628 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 8629 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7a0fb7be 8630 BFD_ASSERT (tmp_name);
c7b8f16e
JB
8631
8632 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8633 {
8634 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8635 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 8636
c7b8f16e 8637 for (; errnode != NULL; errnode = errnode->next)
99059e56
RM
8638 {
8639 struct elf_link_hash_entry *myh;
8640 bfd_vma vma;
8641
8642 switch (errnode->type)
8643 {
8644 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8645 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8646 /* Find veneer symbol. */
8647 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
c7b8f16e
JB
8648 errnode->u.b.veneer->u.v.id);
8649
99059e56 8650 myh = elf_link_hash_lookup
0a1b45a2 8651 (&(globals)->root, tmp_name, false, false, true);
c7b8f16e 8652
a504d23a 8653 if (myh == NULL)
90b6238f
AM
8654 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8655 abfd, "VFP11", tmp_name);
a504d23a
LA
8656
8657 vma = myh->root.u.def.section->output_section->vma
8658 + myh->root.u.def.section->output_offset
8659 + myh->root.u.def.value;
8660
8661 errnode->u.b.veneer->vma = vma;
8662 break;
8663
8664 case VFP11_ERRATUM_ARM_VENEER:
8665 case VFP11_ERRATUM_THUMB_VENEER:
8666 /* Find return location. */
8667 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8668 errnode->u.v.id);
8669
8670 myh = elf_link_hash_lookup
0a1b45a2 8671 (&(globals)->root, tmp_name, false, false, true);
a504d23a
LA
8672
8673 if (myh == NULL)
90b6238f
AM
8674 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8675 abfd, "VFP11", tmp_name);
a504d23a
LA
8676
8677 vma = myh->root.u.def.section->output_section->vma
8678 + myh->root.u.def.section->output_offset
8679 + myh->root.u.def.value;
8680
8681 errnode->u.v.branch->vma = vma;
8682 break;
8683
8684 default:
8685 abort ();
8686 }
8687 }
8688 }
8689
8690 free (tmp_name);
8691}
8692
8693/* Find virtual-memory addresses for STM32L4XX erratum veneers and
8694 return locations after sections have been laid out, using
8695 specially-named symbols. */
8696
8697void
8698bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8699 struct bfd_link_info *link_info)
8700{
8701 asection *sec;
8702 struct elf32_arm_link_hash_table *globals;
8703 char *tmp_name;
8704
8705 if (bfd_link_relocatable (link_info))
8706 return;
8707
8708 /* Skip if this bfd does not correspond to an ELF image. */
8709 if (! is_arm_elf (abfd))
8710 return;
8711
8712 globals = elf32_arm_hash_table (link_info);
8713 if (globals == NULL)
8714 return;
8715
8716 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8717 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7a0fb7be 8718 BFD_ASSERT (tmp_name);
a504d23a
LA
8719
8720 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8721 {
8722 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8723 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8724
8725 for (; errnode != NULL; errnode = errnode->next)
8726 {
8727 struct elf_link_hash_entry *myh;
8728 bfd_vma vma;
8729
8730 switch (errnode->type)
8731 {
8732 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8733 /* Find veneer symbol. */
8734 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8735 errnode->u.b.veneer->u.v.id);
8736
8737 myh = elf_link_hash_lookup
0a1b45a2 8738 (&(globals)->root, tmp_name, false, false, true);
a504d23a
LA
8739
8740 if (myh == NULL)
90b6238f
AM
8741 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8742 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8743
8744 vma = myh->root.u.def.section->output_section->vma
8745 + myh->root.u.def.section->output_offset
8746 + myh->root.u.def.value;
8747
8748 errnode->u.b.veneer->vma = vma;
8749 break;
8750
8751 case STM32L4XX_ERRATUM_VENEER:
8752 /* Find return location. */
8753 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8754 errnode->u.v.id);
8755
8756 myh = elf_link_hash_lookup
0a1b45a2 8757 (&(globals)->root, tmp_name, false, false, true);
a504d23a
LA
8758
8759 if (myh == NULL)
90b6238f
AM
8760 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8761 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8762
8763 vma = myh->root.u.def.section->output_section->vma
8764 + myh->root.u.def.section->output_offset
8765 + myh->root.u.def.value;
8766
8767 errnode->u.v.branch->vma = vma;
8768 break;
8769
8770 default:
8771 abort ();
8772 }
8773 }
8774 }
8775
8776 free (tmp_name);
8777}
8778
0a1b45a2 8779static inline bool
a504d23a
LA
8780is_thumb2_ldmia (const insn32 insn)
8781{
8782 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8783 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8784 return (insn & 0xffd02000) == 0xe8900000;
8785}
8786
0a1b45a2 8787static inline bool
a504d23a
LA
8788is_thumb2_ldmdb (const insn32 insn)
8789{
8790 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8791 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8792 return (insn & 0xffd02000) == 0xe9100000;
8793}
8794
0a1b45a2 8795static inline bool
a504d23a
LA
8796is_thumb2_vldm (const insn32 insn)
8797{
8798 /* A6.5 Extension register load or store instruction
8799 A7.7.229
9239bbd3
CM
8800 We look for SP 32-bit and DP 64-bit registers.
8801 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8802 <list> is consecutive 64-bit registers
8803 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
a504d23a
LA
8804 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8805 <list> is consecutive 32-bit registers
8806 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8807 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8808 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8809 return
9239bbd3
CM
8810 (((insn & 0xfe100f00) == 0xec100b00) ||
8811 ((insn & 0xfe100f00) == 0xec100a00))
a504d23a
LA
8812 && /* (IA without !). */
8813 (((((insn << 7) >> 28) & 0xd) == 0x4)
9239bbd3 8814 /* (IA with !), includes VPOP (when reg number is SP). */
a504d23a
LA
8815 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8816 /* (DB with !). */
8817 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8818}
8819
8820/* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8821 VLDM opcode and:
8822 - computes the number and the mode of memory accesses
8823 - decides if the replacement should be done:
8824 . replaces only if > 8-word accesses
8825 . or (testing purposes only) replaces all accesses. */
8826
0a1b45a2 8827static bool
a504d23a
LA
8828stm32l4xx_need_create_replacing_stub (const insn32 insn,
8829 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8830{
9239bbd3 8831 int nb_words = 0;
a504d23a
LA
8832
8833 /* The field encoding the register list is the same for both LDMIA
8834 and LDMDB encodings. */
8835 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
b25e998d 8836 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
a504d23a 8837 else if (is_thumb2_vldm (insn))
9239bbd3 8838 nb_words = (insn & 0xff);
a504d23a
LA
8839
8840 /* DEFAULT mode accounts for the real bug condition situation,
8841 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
63b4cc53
AM
8842 return (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT
8843 ? nb_words > 8
8844 : stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL);
a504d23a
LA
8845}
8846
8847/* Look for potentially-troublesome code sequences which might trigger
8848 the STM STM32L4XX erratum. */
8849
0a1b45a2 8850bool
a504d23a
LA
8851bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8852 struct bfd_link_info *link_info)
8853{
8854 asection *sec;
8855 bfd_byte *contents = NULL;
8856 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8857
8858 if (globals == NULL)
0a1b45a2 8859 return false;
a504d23a
LA
8860
8861 /* If we are only performing a partial link do not bother
8862 to construct any glue. */
8863 if (bfd_link_relocatable (link_info))
0a1b45a2 8864 return true;
a504d23a
LA
8865
8866 /* Skip if this bfd does not correspond to an ELF image. */
8867 if (! is_arm_elf (abfd))
0a1b45a2 8868 return true;
a504d23a
LA
8869
8870 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
0a1b45a2 8871 return true;
a504d23a
LA
8872
8873 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8874 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
0a1b45a2 8875 return true;
a504d23a
LA
8876
8877 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8878 {
8879 unsigned int i, span;
8880 struct _arm_elf_section_data *sec_data;
8881
8882 /* If we don't have executable progbits, we're not interested in this
8883 section. Also skip if section is to be excluded. */
8884 if (elf_section_type (sec) != SHT_PROGBITS
8885 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8886 || (sec->flags & SEC_EXCLUDE) != 0
8887 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8888 || sec->output_section == bfd_abs_section_ptr
8889 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8890 continue;
8891
8892 sec_data = elf32_arm_section_data (sec);
c7b8f16e 8893
a504d23a
LA
8894 if (sec_data->mapcount == 0)
8895 continue;
c7b8f16e 8896
a504d23a
LA
8897 if (elf_section_data (sec)->this_hdr.contents != NULL)
8898 contents = elf_section_data (sec)->this_hdr.contents;
8899 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8900 goto error_return;
c7b8f16e 8901
a504d23a
LA
8902 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8903 elf32_arm_compare_mapping);
c7b8f16e 8904
a504d23a
LA
8905 for (span = 0; span < sec_data->mapcount; span++)
8906 {
8907 unsigned int span_start = sec_data->map[span].vma;
8908 unsigned int span_end = (span == sec_data->mapcount - 1)
8909 ? sec->size : sec_data->map[span + 1].vma;
8910 char span_type = sec_data->map[span].type;
8911 int itblock_current_pos = 0;
c7b8f16e 8912
a504d23a
LA
8913 /* Only Thumb2 mode need be supported with this CM4 specific
8914 code, we should not encounter any arm mode eg span_type
8915 != 'a'. */
8916 if (span_type != 't')
8917 continue;
c7b8f16e 8918
a504d23a
LA
8919 for (i = span_start; i < span_end;)
8920 {
8921 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
0a1b45a2
AM
8922 bool insn_32bit = false;
8923 bool is_ldm = false;
8924 bool is_vldm = false;
8925 bool is_not_last_in_it_block = false;
a504d23a
LA
8926
8927 /* The first 16-bits of all 32-bit thumb2 instructions start
8928 with opcode[15..13]=0b111 and the encoded op1 can be anything
8929 except opcode[12..11]!=0b00.
8930 See 32-bit Thumb instruction encoding. */
8931 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
0a1b45a2 8932 insn_32bit = true;
c7b8f16e 8933
a504d23a
LA
8934 /* Compute the predicate that tells if the instruction
8935 is concerned by the IT block
8936 - Creates an error if there is a ldm that is not
8937 last in the IT block thus cannot be replaced
8938 - Otherwise we can create a branch at the end of the
8939 IT block, it will be controlled naturally by IT
8940 with the proper pseudo-predicate
8941 - So the only interesting predicate is the one that
8942 tells that we are not on the last item of an IT
8943 block. */
8944 if (itblock_current_pos != 0)
8945 is_not_last_in_it_block = !!--itblock_current_pos;
906e58ca 8946
a504d23a
LA
8947 if (insn_32bit)
8948 {
8949 /* Load the rest of the insn (in manual-friendly order). */
8950 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8951 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8952 is_vldm = is_thumb2_vldm (insn);
8953
8954 /* Veneers are created for (v)ldm depending on
8955 option flags and memory accesses conditions; but
8956 if the instruction is not the last instruction of
8957 an IT block, we cannot create a jump there, so we
8958 bail out. */
5025eb7c
AO
8959 if ((is_ldm || is_vldm)
8960 && stm32l4xx_need_create_replacing_stub
a504d23a
LA
8961 (insn, globals->stm32l4xx_fix))
8962 {
8963 if (is_not_last_in_it_block)
8964 {
4eca0228 8965 _bfd_error_handler
695344c0 8966 /* xgettext:c-format */
871b3ab2 8967 (_("%pB(%pA+%#x): error: multiple load detected"
90b6238f
AM
8968 " in non-last IT block instruction:"
8969 " STM32L4XX veneer cannot be generated; "
8970 "use gcc option -mrestrict-it to generate"
8971 " only one instruction per IT block"),
d42c267e 8972 abfd, sec, i);
a504d23a
LA
8973 }
8974 else
8975 {
8976 elf32_stm32l4xx_erratum_list *newerr =
8977 (elf32_stm32l4xx_erratum_list *)
8978 bfd_zmalloc
8979 (sizeof (elf32_stm32l4xx_erratum_list));
8980
8981 elf32_arm_section_data (sec)
8982 ->stm32l4xx_erratumcount += 1;
8983 newerr->u.b.insn = insn;
8984 /* We create only thumb branches. */
8985 newerr->type =
8986 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8987 record_stm32l4xx_erratum_veneer
8988 (link_info, newerr, abfd, sec,
8989 i,
8990 is_ldm ?
8991 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8992 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8993 newerr->vma = -1;
8994 newerr->next = sec_data->stm32l4xx_erratumlist;
8995 sec_data->stm32l4xx_erratumlist = newerr;
8996 }
8997 }
8998 }
8999 else
9000 {
9001 /* A7.7.37 IT p208
9002 IT blocks are only encoded in T1
9003 Encoding T1: IT{x{y{z}}} <firstcond>
9004 1 0 1 1 - 1 1 1 1 - firstcond - mask
9005 if mask = '0000' then see 'related encodings'
9006 We don't deal with UNPREDICTABLE, just ignore these.
9007 There can be no nested IT blocks so an IT block
9008 is naturally a new one for which it is worth
9009 computing its size. */
0a1b45a2 9010 bool is_newitblock = ((insn & 0xff00) == 0xbf00)
5025eb7c 9011 && ((insn & 0x000f) != 0x0000);
a504d23a
LA
9012 /* If we have a new IT block we compute its size. */
9013 if (is_newitblock)
9014 {
9015 /* Compute the number of instructions controlled
9016 by the IT block, it will be used to decide
9017 whether we are inside an IT block or not. */
9018 unsigned int mask = insn & 0x000f;
9019 itblock_current_pos = 4 - ctz (mask);
9020 }
9021 }
9022
9023 i += insn_32bit ? 4 : 2;
99059e56
RM
9024 }
9025 }
a504d23a 9026
c9594989 9027 if (elf_section_data (sec)->this_hdr.contents != contents)
a504d23a
LA
9028 free (contents);
9029 contents = NULL;
c7b8f16e 9030 }
906e58ca 9031
0a1b45a2 9032 return true;
a504d23a 9033
dc1e8a47 9034 error_return:
c9594989 9035 if (elf_section_data (sec)->this_hdr.contents != contents)
a504d23a 9036 free (contents);
c7b8f16e 9037
0a1b45a2 9038 return false;
a504d23a 9039}
c7b8f16e 9040
eb043451
PB
9041/* Set target relocation values needed during linking. */
9042
9043void
68c39892 9044bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
bf21ed78 9045 struct bfd_link_info *link_info,
68c39892 9046 struct elf32_arm_params *params)
eb043451
PB
9047{
9048 struct elf32_arm_link_hash_table *globals;
9049
9050 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9051 if (globals == NULL)
9052 return;
eb043451 9053
68c39892 9054 globals->target1_is_rel = params->target1_is_rel;
29e9b073
CL
9055 if (globals->fdpic_p)
9056 globals->target2_reloc = R_ARM_GOT32;
9057 else if (strcmp (params->target2_type, "rel") == 0)
eb043451 9058 globals->target2_reloc = R_ARM_REL32;
68c39892 9059 else if (strcmp (params->target2_type, "abs") == 0)
eeac373a 9060 globals->target2_reloc = R_ARM_ABS32;
68c39892 9061 else if (strcmp (params->target2_type, "got-rel") == 0)
eb043451
PB
9062 globals->target2_reloc = R_ARM_GOT_PREL;
9063 else
9064 {
90b6238f 9065 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
68c39892 9066 params->target2_type);
eb043451 9067 }
68c39892
TP
9068 globals->fix_v4bx = params->fix_v4bx;
9069 globals->use_blx |= params->use_blx;
9070 globals->vfp11_fix = params->vfp11_denorm_fix;
9071 globals->stm32l4xx_fix = params->stm32l4xx_fix;
e8b09b87
CL
9072 if (globals->fdpic_p)
9073 globals->pic_veneer = 1;
9074 else
9075 globals->pic_veneer = params->pic_veneer;
68c39892
TP
9076 globals->fix_cortex_a8 = params->fix_cortex_a8;
9077 globals->fix_arm1176 = params->fix_arm1176;
9078 globals->cmse_implib = params->cmse_implib;
9079 globals->in_implib_bfd = params->in_implib_bfd;
bf21ed78 9080
0ffa91dd 9081 BFD_ASSERT (is_arm_elf (output_bfd));
68c39892
TP
9082 elf_arm_tdata (output_bfd)->no_enum_size_warning
9083 = params->no_enum_size_warning;
9084 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9085 = params->no_wchar_size_warning;
eb043451 9086}
eb043451 9087
12a0a0fd 9088/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 9089
12a0a0fd
PB
9090static void
9091insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9092{
9093 bfd_vma upper;
9094 bfd_vma lower;
9095 int reloc_sign;
9096
9097 BFD_ASSERT ((offset & 1) == 0);
9098
9099 upper = bfd_get_16 (abfd, insn);
9100 lower = bfd_get_16 (abfd, insn + 2);
9101 reloc_sign = (offset < 0) ? 1 : 0;
9102 upper = (upper & ~(bfd_vma) 0x7ff)
9103 | ((offset >> 12) & 0x3ff)
9104 | (reloc_sign << 10);
906e58ca 9105 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
9106 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9107 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9108 | ((offset >> 1) & 0x7ff);
9109 bfd_put_16 (abfd, upper, insn);
9110 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
9111}
9112
9b485d32
NC
9113/* Thumb code calling an ARM function. */
9114
252b5132 9115static int
57e8b36a 9116elf32_thumb_to_arm_stub (struct bfd_link_info * info,
07d6d2b8
AM
9117 const char * name,
9118 bfd * input_bfd,
9119 bfd * output_bfd,
9120 asection * input_section,
9121 bfd_byte * hit_data,
9122 asection * sym_sec,
9123 bfd_vma offset,
9124 bfd_signed_vma addend,
9125 bfd_vma val,
f2a9dd69 9126 char **error_message)
252b5132 9127{
bcbdc74c 9128 asection * s = 0;
dc810e39 9129 bfd_vma my_offset;
252b5132 9130 long int ret_offset;
bcbdc74c
NC
9131 struct elf_link_hash_entry * myh;
9132 struct elf32_arm_link_hash_table * globals;
252b5132 9133
f2a9dd69 9134 myh = find_thumb_glue (info, name, error_message);
252b5132 9135 if (myh == NULL)
0a1b45a2 9136 return false;
252b5132
RH
9137
9138 globals = elf32_arm_hash_table (info);
252b5132
RH
9139 BFD_ASSERT (globals != NULL);
9140 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9141
9142 my_offset = myh->root.u.def.value;
9143
3d4d4302
AM
9144 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9145 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
9146
9147 BFD_ASSERT (s != NULL);
9148 BFD_ASSERT (s->contents != NULL);
9149 BFD_ASSERT (s->output_section != NULL);
9150
9151 if ((my_offset & 0x01) == 0x01)
9152 {
9153 if (sym_sec != NULL
9154 && sym_sec->owner != NULL
9155 && !INTERWORK_FLAG (sym_sec->owner))
9156 {
4eca0228 9157 _bfd_error_handler
90b6238f
AM
9158 (_("%pB(%s): warning: interworking not enabled;"
9159 " first occurrence: %pB: %s call to %s"),
9160 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
252b5132 9161
0a1b45a2 9162 return false;
252b5132
RH
9163 }
9164
9165 --my_offset;
9166 myh->root.u.def.value = my_offset;
9167
52ab56c2
PB
9168 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9169 s->contents + my_offset);
252b5132 9170
52ab56c2
PB
9171 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9172 s->contents + my_offset + 2);
252b5132
RH
9173
9174 ret_offset =
9b485d32
NC
9175 /* Address of destination of the stub. */
9176 ((bfd_signed_vma) val)
252b5132 9177 - ((bfd_signed_vma)
57e8b36a
NC
9178 /* Offset from the start of the current section
9179 to the start of the stubs. */
9b485d32
NC
9180 (s->output_offset
9181 /* Offset of the start of this stub from the start of the stubs. */
9182 + my_offset
9183 /* Address of the start of the current section. */
9184 + s->output_section->vma)
9185 /* The branch instruction is 4 bytes into the stub. */
9186 + 4
9187 /* ARM branches work from the pc of the instruction + 8. */
9188 + 8);
252b5132 9189
52ab56c2
PB
9190 put_arm_insn (globals, output_bfd,
9191 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9192 s->contents + my_offset + 4);
252b5132
RH
9193 }
9194
9195 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9196
427bfd90
NC
9197 /* Now go back and fix up the original BL insn to point to here. */
9198 ret_offset =
9199 /* Address of where the stub is located. */
9200 (s->output_section->vma + s->output_offset + my_offset)
9201 /* Address of where the BL is located. */
57e8b36a
NC
9202 - (input_section->output_section->vma + input_section->output_offset
9203 + offset)
427bfd90
NC
9204 /* Addend in the relocation. */
9205 - addend
9206 /* Biassing for PC-relative addressing. */
9207 - 8;
252b5132 9208
12a0a0fd 9209 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 9210
0a1b45a2 9211 return true;
252b5132
RH
9212}
9213
a4fd1a8e 9214/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 9215
a4fd1a8e
PB
9216static struct elf_link_hash_entry *
9217elf32_arm_create_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9218 const char * name,
9219 bfd * input_bfd,
9220 bfd * output_bfd,
9221 asection * sym_sec,
9222 bfd_vma val,
9223 asection * s,
9224 char ** error_message)
252b5132 9225{
dc810e39 9226 bfd_vma my_offset;
252b5132 9227 long int ret_offset;
bcbdc74c
NC
9228 struct elf_link_hash_entry * myh;
9229 struct elf32_arm_link_hash_table * globals;
252b5132 9230
f2a9dd69 9231 myh = find_arm_glue (info, name, error_message);
252b5132 9232 if (myh == NULL)
a4fd1a8e 9233 return NULL;
252b5132
RH
9234
9235 globals = elf32_arm_hash_table (info);
252b5132
RH
9236 BFD_ASSERT (globals != NULL);
9237 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9238
9239 my_offset = myh->root.u.def.value;
252b5132
RH
9240
9241 if ((my_offset & 0x01) == 0x01)
9242 {
9243 if (sym_sec != NULL
9244 && sym_sec->owner != NULL
9245 && !INTERWORK_FLAG (sym_sec->owner))
9246 {
4eca0228 9247 _bfd_error_handler
90b6238f
AM
9248 (_("%pB(%s): warning: interworking not enabled;"
9249 " first occurrence: %pB: %s call to %s"),
9250 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
252b5132 9251 }
9b485d32 9252
252b5132
RH
9253 --my_offset;
9254 myh->root.u.def.value = my_offset;
9255
0e1862bb
L
9256 if (bfd_link_pic (info)
9257 || globals->root.is_relocatable_executable
27e55c4d 9258 || globals->pic_veneer)
8f6277f5
PB
9259 {
9260 /* For relocatable objects we can't use absolute addresses,
9261 so construct the address from a relative offset. */
9262 /* TODO: If the offset is small it's probably worth
9263 constructing the address with adds. */
52ab56c2
PB
9264 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9265 s->contents + my_offset);
9266 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9267 s->contents + my_offset + 4);
9268 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9269 s->contents + my_offset + 8);
8f6277f5
PB
9270 /* Adjust the offset by 4 for the position of the add,
9271 and 8 for the pipeline offset. */
9272 ret_offset = (val - (s->output_offset
9273 + s->output_section->vma
9274 + my_offset + 12))
9275 | 1;
9276 bfd_put_32 (output_bfd, ret_offset,
9277 s->contents + my_offset + 12);
9278 }
26079076
PB
9279 else if (globals->use_blx)
9280 {
9281 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9282 s->contents + my_offset);
9283
9284 /* It's a thumb address. Add the low order bit. */
9285 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9286 s->contents + my_offset + 4);
9287 }
8f6277f5
PB
9288 else
9289 {
52ab56c2
PB
9290 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9291 s->contents + my_offset);
252b5132 9292
52ab56c2
PB
9293 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9294 s->contents + my_offset + 4);
252b5132 9295
8f6277f5
PB
9296 /* It's a thumb address. Add the low order bit. */
9297 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9298 s->contents + my_offset + 8);
8029a119
NC
9299
9300 my_offset += 12;
8f6277f5 9301 }
252b5132
RH
9302 }
9303
9304 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9305
a4fd1a8e
PB
9306 return myh;
9307}
9308
9309/* Arm code calling a Thumb function. */
9310
9311static int
9312elf32_arm_to_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9313 const char * name,
9314 bfd * input_bfd,
9315 bfd * output_bfd,
9316 asection * input_section,
9317 bfd_byte * hit_data,
9318 asection * sym_sec,
9319 bfd_vma offset,
9320 bfd_signed_vma addend,
9321 bfd_vma val,
f2a9dd69 9322 char **error_message)
a4fd1a8e
PB
9323{
9324 unsigned long int tmp;
9325 bfd_vma my_offset;
9326 asection * s;
9327 long int ret_offset;
9328 struct elf_link_hash_entry * myh;
9329 struct elf32_arm_link_hash_table * globals;
9330
9331 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9332 BFD_ASSERT (globals != NULL);
9333 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9334
3d4d4302
AM
9335 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9336 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9337 BFD_ASSERT (s != NULL);
9338 BFD_ASSERT (s->contents != NULL);
9339 BFD_ASSERT (s->output_section != NULL);
9340
9341 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 9342 sym_sec, val, s, error_message);
a4fd1a8e 9343 if (!myh)
0a1b45a2 9344 return false;
a4fd1a8e
PB
9345
9346 my_offset = myh->root.u.def.value;
252b5132
RH
9347 tmp = bfd_get_32 (input_bfd, hit_data);
9348 tmp = tmp & 0xFF000000;
9349
9b485d32 9350 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
9351 ret_offset = (s->output_offset
9352 + my_offset
9353 + s->output_section->vma
9354 - (input_section->output_offset
9355 + input_section->output_section->vma
9356 + offset + addend)
9357 - 8);
9a5aca8c 9358
252b5132
RH
9359 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9360
dc810e39 9361 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 9362
0a1b45a2 9363 return true;
252b5132
RH
9364}
9365
a4fd1a8e
PB
9366/* Populate Arm stub for an exported Thumb function. */
9367
0a1b45a2 9368static bool
a4fd1a8e
PB
9369elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9370{
9371 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9372 asection * s;
9373 struct elf_link_hash_entry * myh;
9374 struct elf32_arm_link_hash_entry *eh;
9375 struct elf32_arm_link_hash_table * globals;
9376 asection *sec;
9377 bfd_vma val;
f2a9dd69 9378 char *error_message;
a4fd1a8e 9379
906e58ca 9380 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
9381 /* Allocate stubs for exported Thumb functions on v4t. */
9382 if (eh->export_glue == NULL)
0a1b45a2 9383 return true;
a4fd1a8e
PB
9384
9385 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9386 BFD_ASSERT (globals != NULL);
9387 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9388
3d4d4302
AM
9389 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9390 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9391 BFD_ASSERT (s != NULL);
9392 BFD_ASSERT (s->contents != NULL);
9393 BFD_ASSERT (s->output_section != NULL);
9394
9395 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
9396
9397 BFD_ASSERT (sec->output_section != NULL);
9398
a4fd1a8e
PB
9399 val = eh->export_glue->root.u.def.value + sec->output_offset
9400 + sec->output_section->vma;
8029a119 9401
a4fd1a8e
PB
9402 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9403 h->root.u.def.section->owner,
f2a9dd69
DJ
9404 globals->obfd, sec, val, s,
9405 &error_message);
a4fd1a8e 9406 BFD_ASSERT (myh);
0a1b45a2 9407 return true;
a4fd1a8e
PB
9408}
9409
845b51d6
PB
9410/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9411
9412static bfd_vma
9413elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9414{
9415 bfd_byte *p;
9416 bfd_vma glue_addr;
9417 asection *s;
9418 struct elf32_arm_link_hash_table *globals;
9419
9420 globals = elf32_arm_hash_table (info);
845b51d6
PB
9421 BFD_ASSERT (globals != NULL);
9422 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9423
3d4d4302
AM
9424 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9425 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
9426 BFD_ASSERT (s != NULL);
9427 BFD_ASSERT (s->contents != NULL);
9428 BFD_ASSERT (s->output_section != NULL);
9429
9430 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9431
9432 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9433
9434 if ((globals->bx_glue_offset[reg] & 1) == 0)
9435 {
9436 p = s->contents + glue_addr;
9437 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9438 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9439 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9440 globals->bx_glue_offset[reg] |= 1;
9441 }
9442
9443 return glue_addr + s->output_section->vma + s->output_offset;
9444}
9445
a4fd1a8e
PB
9446/* Generate Arm stubs for exported Thumb symbols. */
9447static void
906e58ca 9448elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
9449 struct bfd_link_info *link_info)
9450{
9451 struct elf32_arm_link_hash_table * globals;
9452
8029a119
NC
9453 if (link_info == NULL)
9454 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
9455 return;
9456
9457 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9458 if (globals == NULL)
9459 return;
9460
84c08195
PB
9461 /* If blx is available then exported Thumb symbols are OK and there is
9462 nothing to do. */
a4fd1a8e
PB
9463 if (globals->use_blx)
9464 return;
9465
9466 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9467 link_info);
9468}
9469
47beaa6a
RS
9470/* Reserve space for COUNT dynamic relocations in relocation selection
9471 SRELOC. */
9472
9473static void
9474elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9475 bfd_size_type count)
9476{
9477 struct elf32_arm_link_hash_table *htab;
9478
9479 htab = elf32_arm_hash_table (info);
9480 BFD_ASSERT (htab->root.dynamic_sections_created);
9481 if (sreloc == NULL)
9482 abort ();
9483 sreloc->size += RELOC_SIZE (htab) * count;
9484}
9485
34e77a92
RS
9486/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9487 dynamic, the relocations should go in SRELOC, otherwise they should
9488 go in the special .rel.iplt section. */
9489
9490static void
9491elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9492 bfd_size_type count)
9493{
9494 struct elf32_arm_link_hash_table *htab;
9495
9496 htab = elf32_arm_hash_table (info);
9497 if (!htab->root.dynamic_sections_created)
9498 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9499 else
9500 {
9501 BFD_ASSERT (sreloc != NULL);
9502 sreloc->size += RELOC_SIZE (htab) * count;
9503 }
9504}
9505
47beaa6a
RS
9506/* Add relocation REL to the end of relocation section SRELOC. */
9507
9508static void
9509elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9510 asection *sreloc, Elf_Internal_Rela *rel)
9511{
9512 bfd_byte *loc;
9513 struct elf32_arm_link_hash_table *htab;
9514
9515 htab = elf32_arm_hash_table (info);
34e77a92
RS
9516 if (!htab->root.dynamic_sections_created
9517 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9518 sreloc = htab->root.irelplt;
47beaa6a
RS
9519 if (sreloc == NULL)
9520 abort ();
9521 loc = sreloc->contents;
9522 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9523 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9524 abort ();
9525 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9526}
9527
34e77a92
RS
9528/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9529 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9530 to .plt. */
9531
9532static void
9533elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
0a1b45a2 9534 bool is_iplt_entry,
34e77a92
RS
9535 union gotplt_union *root_plt,
9536 struct arm_plt_info *arm_plt)
9537{
9538 struct elf32_arm_link_hash_table *htab;
9539 asection *splt;
9540 asection *sgotplt;
9541
9542 htab = elf32_arm_hash_table (info);
9543
9544 if (is_iplt_entry)
9545 {
9546 splt = htab->root.iplt;
9547 sgotplt = htab->root.igotplt;
9548
99059e56 9549 /* NaCl uses a special first entry in .iplt too. */
90c14f0c 9550 if (htab->root.target_os == is_nacl && splt->size == 0)
99059e56
RM
9551 splt->size += htab->plt_header_size;
9552
34e77a92
RS
9553 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9554 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9555 }
9556 else
9557 {
9558 splt = htab->root.splt;
9559 sgotplt = htab->root.sgotplt;
9560
7801f98f
CL
9561 if (htab->fdpic_p)
9562 {
9563 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9564 /* For lazy binding, relocations will be put into .rel.plt, in
9565 .rel.got otherwise. */
9566 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9567 if (info->flags & DF_BIND_NOW)
9568 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9569 else
9570 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9571 }
9572 else
9573 {
9574 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9575 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9576 }
34e77a92
RS
9577
9578 /* If this is the first .plt entry, make room for the special
9579 first entry. */
9580 if (splt->size == 0)
9581 splt->size += htab->plt_header_size;
9f19ab6d
WN
9582
9583 htab->next_tls_desc_index++;
34e77a92
RS
9584 }
9585
9586 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9587 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9588 splt->size += PLT_THUMB_STUB_SIZE;
9589 root_plt->offset = splt->size;
9590 splt->size += htab->plt_entry_size;
9591
a57d1773
AM
9592 /* We also need to make an entry in the .got.plt section, which
9593 will be placed in the .got section by the linker script. */
9594 if (is_iplt_entry)
9595 arm_plt->got_offset = sgotplt->size;
9596 else
9597 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9598 if (htab->fdpic_p)
9599 /* Function descriptor takes 64 bits in GOT. */
9600 sgotplt->size += 8;
9601 else
9602 sgotplt->size += 4;
34e77a92
RS
9603}
9604
b38cadfb
NC
9605static bfd_vma
9606arm_movw_immediate (bfd_vma value)
9607{
9608 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9609}
9610
9611static bfd_vma
9612arm_movt_immediate (bfd_vma value)
9613{
9614 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9615}
9616
34e77a92
RS
9617/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9618 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9619 Otherwise, DYNINDX is the index of the symbol in the dynamic
9620 symbol table and SYM_VALUE is undefined.
9621
9622 ROOT_PLT points to the offset of the PLT entry from the start of its
9623 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
57460bcf 9624 bookkeeping information.
34e77a92 9625
57460bcf
NC
9626 Returns FALSE if there was a problem. */
9627
0a1b45a2 9628static bool
34e77a92
RS
9629elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9630 union gotplt_union *root_plt,
9631 struct arm_plt_info *arm_plt,
9632 int dynindx, bfd_vma sym_value)
9633{
9634 struct elf32_arm_link_hash_table *htab;
9635 asection *sgot;
9636 asection *splt;
9637 asection *srel;
9638 bfd_byte *loc;
9639 bfd_vma plt_index;
9640 Elf_Internal_Rela rel;
34e77a92
RS
9641 bfd_vma got_header_size;
9642
9643 htab = elf32_arm_hash_table (info);
9644
9645 /* Pick the appropriate sections and sizes. */
9646 if (dynindx == -1)
9647 {
9648 splt = htab->root.iplt;
9649 sgot = htab->root.igotplt;
9650 srel = htab->root.irelplt;
9651
9652 /* There are no reserved entries in .igot.plt, and no special
9653 first entry in .iplt. */
9654 got_header_size = 0;
34e77a92
RS
9655 }
9656 else
9657 {
9658 splt = htab->root.splt;
9659 sgot = htab->root.sgotplt;
9660 srel = htab->root.srelplt;
9661
9662 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
34e77a92
RS
9663 }
9664 BFD_ASSERT (splt != NULL && srel != NULL);
9665
a57d1773
AM
9666 bfd_vma got_offset, got_address, plt_address;
9667 bfd_vma got_displacement, initial_got_entry;
9668 bfd_byte * ptr;
9669
9670 BFD_ASSERT (sgot != NULL);
9671
9672 /* Get the offset into the .(i)got.plt table of the entry that
9673 corresponds to this function. */
9674 got_offset = (arm_plt->got_offset & -2);
9675
9676 /* Get the index in the procedure linkage table which
9677 corresponds to this symbol. This is the index of this symbol
9678 in all the symbols for which we are making plt entries.
9679 After the reserved .got.plt entries, all symbols appear in
9680 the same order as in .plt. */
9681 if (htab->fdpic_p)
9682 /* Function descriptor takes 8 bytes. */
9683 plt_index = (got_offset - got_header_size) / 8;
9684 else
9685 plt_index = (got_offset - got_header_size) / 4;
9686
9687 /* Calculate the address of the GOT entry. */
9688 got_address = (sgot->output_section->vma
9689 + sgot->output_offset
9690 + got_offset);
9691
9692 /* ...and the address of the PLT entry. */
9693 plt_address = (splt->output_section->vma
9694 + splt->output_offset
9695 + root_plt->offset);
9696
9697 ptr = splt->contents + root_plt->offset;
9698 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
34e77a92 9699 {
a57d1773
AM
9700 unsigned int i;
9701 bfd_vma val;
9702
9703 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9704 {
9705 val = elf32_arm_vxworks_shared_plt_entry[i];
9706 if (i == 2)
9707 val |= got_address - sgot->output_section->vma;
9708 if (i == 5)
9709 val |= plt_index * RELOC_SIZE (htab);
9710 if (i == 2 || i == 5)
9711 bfd_put_32 (output_bfd, val, ptr);
9712 else
9713 put_arm_insn (htab, output_bfd, val, ptr);
9714 }
34e77a92 9715 }
a57d1773 9716 else if (htab->root.target_os == is_vxworks)
34e77a92 9717 {
a57d1773
AM
9718 unsigned int i;
9719 bfd_vma val;
34e77a92 9720
a57d1773
AM
9721 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9722 {
9723 val = elf32_arm_vxworks_exec_plt_entry[i];
9724 if (i == 2)
9725 val |= got_address;
9726 if (i == 4)
9727 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9728 if (i == 5)
9729 val |= plt_index * RELOC_SIZE (htab);
9730 if (i == 2 || i == 5)
9731 bfd_put_32 (output_bfd, val, ptr);
9732 else
9733 put_arm_insn (htab, output_bfd, val, ptr);
9734 }
34e77a92 9735
a57d1773
AM
9736 loc = (htab->srelplt2->contents
9737 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
34e77a92 9738
a57d1773
AM
9739 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9740 referencing the GOT for this PLT entry. */
9741 rel.r_offset = plt_address + 8;
9742 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9743 rel.r_addend = got_offset;
9744 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9745 loc += RELOC_SIZE (htab);
34e77a92 9746
a57d1773
AM
9747 /* Create the R_ARM_ABS32 relocation referencing the
9748 beginning of the PLT for this GOT entry. */
9749 rel.r_offset = got_address;
9750 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9751 rel.r_addend = 0;
9752 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9753 }
9754 else if (htab->root.target_os == is_nacl)
9755 {
9756 /* Calculate the displacement between the PLT slot and the
9757 common tail that's part of the special initial PLT slot. */
9758 int32_t tail_displacement
9759 = ((splt->output_section->vma + splt->output_offset
9760 + ARM_NACL_PLT_TAIL_OFFSET)
9761 - (plt_address + htab->plt_entry_size + 4));
9762 BFD_ASSERT ((tail_displacement & 3) == 0);
9763 tail_displacement >>= 2;
34e77a92 9764
a57d1773
AM
9765 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9766 || (-tail_displacement & 0xff000000) == 0);
34e77a92 9767
a57d1773
AM
9768 /* Calculate the displacement between the PLT slot and the entry
9769 in the GOT. The offset accounts for the value produced by
9770 adding to pc in the penultimate instruction of the PLT stub. */
9771 got_displacement = (got_address
9772 - (plt_address + htab->plt_entry_size));
34e77a92 9773
a57d1773
AM
9774 /* NaCl does not support interworking at all. */
9775 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9776
9777 put_arm_insn (htab, output_bfd,
9778 elf32_arm_nacl_plt_entry[0]
9779 | arm_movw_immediate (got_displacement),
9780 ptr + 0);
9781 put_arm_insn (htab, output_bfd,
9782 elf32_arm_nacl_plt_entry[1]
9783 | arm_movt_immediate (got_displacement),
9784 ptr + 4);
9785 put_arm_insn (htab, output_bfd,
9786 elf32_arm_nacl_plt_entry[2],
9787 ptr + 8);
9788 put_arm_insn (htab, output_bfd,
9789 elf32_arm_nacl_plt_entry[3]
9790 | (tail_displacement & 0x00ffffff),
9791 ptr + 12);
9792 }
9793 else if (htab->fdpic_p)
9794 {
cc850f74 9795 const bfd_vma *plt_entry = using_thumb_only (htab)
a57d1773
AM
9796 ? elf32_arm_fdpic_thumb_plt_entry
9797 : elf32_arm_fdpic_plt_entry;
9798
9799 /* Fill-up Thumb stub if needed. */
9800 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9801 {
9802 put_thumb_insn (htab, output_bfd,
9803 elf32_arm_plt_thumb_stub[0], ptr - 4);
9804 put_thumb_insn (htab, output_bfd,
9805 elf32_arm_plt_thumb_stub[1], ptr - 2);
34e77a92 9806 }
a57d1773
AM
9807 /* As we are using 32 bit instructions even for the Thumb
9808 version, we have to use 'put_arm_insn' instead of
9809 'put_thumb_insn'. */
cc850f74
NC
9810 put_arm_insn (htab, output_bfd, plt_entry[0], ptr + 0);
9811 put_arm_insn (htab, output_bfd, plt_entry[1], ptr + 4);
9812 put_arm_insn (htab, output_bfd, plt_entry[2], ptr + 8);
9813 put_arm_insn (htab, output_bfd, plt_entry[3], ptr + 12);
a57d1773
AM
9814 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9815
9816 if (!(info->flags & DF_BIND_NOW))
34e77a92 9817 {
a57d1773
AM
9818 /* funcdesc_value_reloc_offset. */
9819 bfd_put_32 (output_bfd,
9820 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9821 ptr + 20);
cc850f74
NC
9822 put_arm_insn (htab, output_bfd, plt_entry[6], ptr + 24);
9823 put_arm_insn (htab, output_bfd, plt_entry[7], ptr + 28);
9824 put_arm_insn (htab, output_bfd, plt_entry[8], ptr + 32);
9825 put_arm_insn (htab, output_bfd, plt_entry[9], ptr + 36);
a57d1773
AM
9826 }
9827 }
9828 else if (using_thumb_only (htab))
9829 {
9830 /* PR ld/16017: Generate thumb only PLT entries. */
9831 if (!using_thumb2 (htab))
9832 {
9833 /* FIXME: We ought to be able to generate thumb-1 PLT
9834 instructions... */
9835 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9836 output_bfd);
0a1b45a2 9837 return false;
a57d1773 9838 }
34e77a92 9839
a57d1773
AM
9840 /* Calculate the displacement between the PLT slot and the entry in
9841 the GOT. The 12-byte offset accounts for the value produced by
9842 adding to pc in the 3rd instruction of the PLT stub. */
9843 got_displacement = got_address - (plt_address + 12);
34e77a92 9844
a57d1773
AM
9845 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9846 instead of 'put_thumb_insn'. */
9847 put_arm_insn (htab, output_bfd,
9848 elf32_thumb2_plt_entry[0]
9849 | ((got_displacement & 0x000000ff) << 16)
9850 | ((got_displacement & 0x00000700) << 20)
9851 | ((got_displacement & 0x00000800) >> 1)
9852 | ((got_displacement & 0x0000f000) >> 12),
9853 ptr + 0);
9854 put_arm_insn (htab, output_bfd,
9855 elf32_thumb2_plt_entry[1]
9856 | ((got_displacement & 0x00ff0000) )
9857 | ((got_displacement & 0x07000000) << 4)
9858 | ((got_displacement & 0x08000000) >> 17)
9859 | ((got_displacement & 0xf0000000) >> 28),
9860 ptr + 4);
9861 put_arm_insn (htab, output_bfd,
9862 elf32_thumb2_plt_entry[2],
9863 ptr + 8);
9864 put_arm_insn (htab, output_bfd,
9865 elf32_thumb2_plt_entry[3],
9866 ptr + 12);
9867 }
9868 else
9869 {
9870 /* Calculate the displacement between the PLT slot and the
9871 entry in the GOT. The eight-byte offset accounts for the
9872 value produced by adding to pc in the first instruction
9873 of the PLT stub. */
9874 got_displacement = got_address - (plt_address + 8);
34e77a92 9875
a57d1773
AM
9876 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9877 {
9878 put_thumb_insn (htab, output_bfd,
9879 elf32_arm_plt_thumb_stub[0], ptr - 4);
9880 put_thumb_insn (htab, output_bfd,
9881 elf32_arm_plt_thumb_stub[1], ptr - 2);
34e77a92 9882 }
a57d1773
AM
9883
9884 if (!elf32_arm_use_long_plt_entry)
b38cadfb 9885 {
a57d1773 9886 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
b38cadfb
NC
9887
9888 put_arm_insn (htab, output_bfd,
a57d1773
AM
9889 elf32_arm_plt_entry_short[0]
9890 | ((got_displacement & 0x0ff00000) >> 20),
b38cadfb
NC
9891 ptr + 0);
9892 put_arm_insn (htab, output_bfd,
a57d1773
AM
9893 elf32_arm_plt_entry_short[1]
9894 | ((got_displacement & 0x000ff000) >> 12),
9895 ptr+ 4);
b38cadfb 9896 put_arm_insn (htab, output_bfd,
a57d1773
AM
9897 elf32_arm_plt_entry_short[2]
9898 | (got_displacement & 0x00000fff),
b38cadfb 9899 ptr + 8);
a57d1773
AM
9900#ifdef FOUR_WORD_PLT
9901 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9902#endif
7801f98f 9903 }
a57d1773 9904 else
57460bcf 9905 {
eed94f8f 9906 put_arm_insn (htab, output_bfd,
a57d1773
AM
9907 elf32_arm_plt_entry_long[0]
9908 | ((got_displacement & 0xf0000000) >> 28),
eed94f8f
NC
9909 ptr + 0);
9910 put_arm_insn (htab, output_bfd,
a57d1773
AM
9911 elf32_arm_plt_entry_long[1]
9912 | ((got_displacement & 0x0ff00000) >> 20),
eed94f8f
NC
9913 ptr + 4);
9914 put_arm_insn (htab, output_bfd,
a57d1773
AM
9915 elf32_arm_plt_entry_long[2]
9916 | ((got_displacement & 0x000ff000) >> 12),
9917 ptr+ 8);
eed94f8f 9918 put_arm_insn (htab, output_bfd,
a57d1773
AM
9919 elf32_arm_plt_entry_long[3]
9920 | (got_displacement & 0x00000fff),
eed94f8f 9921 ptr + 12);
57460bcf 9922 }
a57d1773 9923 }
34e77a92 9924
a57d1773
AM
9925 /* Fill in the entry in the .rel(a).(i)plt section. */
9926 rel.r_offset = got_address;
9927 rel.r_addend = 0;
9928 if (dynindx == -1)
9929 {
9930 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9931 The dynamic linker or static executable then calls SYM_VALUE
9932 to determine the correct run-time value of the .igot.plt entry. */
9933 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9934 initial_got_entry = sym_value;
9935 }
9936 else
9937 {
9938 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9939 used by PLT entry. */
9940 if (htab->fdpic_p)
34e77a92 9941 {
a57d1773
AM
9942 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9943 initial_got_entry = 0;
34e77a92
RS
9944 }
9945 else
9946 {
a57d1773
AM
9947 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9948 initial_got_entry = (splt->output_section->vma
9949 + splt->output_offset);
9950
9951 /* PR ld/16017
9952 When thumb only we need to set the LSB for any address that
9953 will be used with an interworking branch instruction. */
9954 if (using_thumb_only (htab))
9955 initial_got_entry |= 1;
34e77a92 9956 }
a57d1773 9957 }
34e77a92 9958
a57d1773
AM
9959 /* Fill in the entry in the global offset table. */
9960 bfd_put_32 (output_bfd, initial_got_entry,
9961 sgot->contents + got_offset);
9962
9963 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9964 {
9965 /* Setup initial funcdesc value. */
9966 /* FIXME: we don't support lazy binding because there is a
9967 race condition between both words getting written and
9968 some other thread attempting to read them. The ARM
9969 architecture does not have an atomic 64 bit load/store
9970 instruction that could be used to prevent it; it is
9971 recommended that threaded FDPIC applications run with the
9972 LD_BIND_NOW environment variable set. */
cc850f74
NC
9973 bfd_put_32 (output_bfd, plt_address + 0x18,
9974 sgot->contents + got_offset);
9975 bfd_put_32 (output_bfd, -1 /*TODO*/,
9976 sgot->contents + got_offset + 4);
34e77a92
RS
9977 }
9978
aba8c3de
WN
9979 if (dynindx == -1)
9980 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9981 else
9982 {
7801f98f
CL
9983 if (htab->fdpic_p)
9984 {
9985 /* For FDPIC we put PLT relocationss into .rel.got when not
9986 lazy binding otherwise we put them in .rel.plt. For now,
9987 we don't support lazy binding so put it in .rel.got. */
9988 if (info->flags & DF_BIND_NOW)
cc850f74 9989 elf32_arm_add_dynreloc (output_bfd, info, htab->root.srelgot, &rel);
7801f98f 9990 else
cc850f74 9991 elf32_arm_add_dynreloc (output_bfd, info, htab->root.srelplt, &rel);
7801f98f
CL
9992 }
9993 else
9994 {
9995 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9996 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9997 }
aba8c3de 9998 }
57460bcf 9999
0a1b45a2 10000 return true;
34e77a92
RS
10001}
10002
eb043451
PB
10003/* Some relocations map to different relocations depending on the
10004 target. Return the real relocation. */
8029a119 10005
eb043451
PB
10006static int
10007arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10008 int r_type)
10009{
10010 switch (r_type)
10011 {
10012 case R_ARM_TARGET1:
10013 if (globals->target1_is_rel)
10014 return R_ARM_REL32;
10015 else
10016 return R_ARM_ABS32;
10017
10018 case R_ARM_TARGET2:
10019 return globals->target2_reloc;
10020
10021 default:
10022 return r_type;
10023 }
10024}
eb043451 10025
ba93b8ac
DJ
10026/* Return the base VMA address which should be subtracted from real addresses
10027 when resolving @dtpoff relocation.
10028 This is PT_TLS segment p_vaddr. */
10029
10030static bfd_vma
10031dtpoff_base (struct bfd_link_info *info)
10032{
10033 /* If tls_sec is NULL, we should have signalled an error already. */
10034 if (elf_hash_table (info)->tls_sec == NULL)
10035 return 0;
10036 return elf_hash_table (info)->tls_sec->vma;
10037}
10038
10039/* Return the relocation value for @tpoff relocation
10040 if STT_TLS virtual address is ADDRESS. */
10041
10042static bfd_vma
10043tpoff (struct bfd_link_info *info, bfd_vma address)
10044{
10045 struct elf_link_hash_table *htab = elf_hash_table (info);
10046 bfd_vma base;
10047
10048 /* If tls_sec is NULL, we should have signalled an error already. */
10049 if (htab->tls_sec == NULL)
10050 return 0;
10051 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10052 return address - htab->tls_sec->vma + base;
10053}
10054
00a97672
RS
10055/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10056 VALUE is the relocation value. */
10057
10058static bfd_reloc_status_type
10059elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10060{
10061 if (value > 0xfff)
10062 return bfd_reloc_overflow;
10063
10064 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10065 bfd_put_32 (abfd, value, data);
10066 return bfd_reloc_ok;
10067}
10068
0855e32b
NS
10069/* Handle TLS relaxations. Relaxing is possible for symbols that use
10070 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10071 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10072
10073 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10074 is to then call final_link_relocate. Return other values in the
62672b10
NS
10075 case of error.
10076
10077 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10078 the pre-relaxed code. It would be nice if the relocs were updated
10079 to match the optimization. */
0855e32b 10080
b38cadfb 10081static bfd_reloc_status_type
0855e32b 10082elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 10083 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
10084 Elf_Internal_Rela *rel, unsigned long is_local)
10085{
10086 unsigned long insn;
b38cadfb 10087
0855e32b
NS
10088 switch (ELF32_R_TYPE (rel->r_info))
10089 {
10090 default:
10091 return bfd_reloc_notsupported;
b38cadfb 10092
0855e32b
NS
10093 case R_ARM_TLS_GOTDESC:
10094 if (is_local)
10095 insn = 0;
10096 else
10097 {
10098 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10099 if (insn & 1)
10100 insn -= 5; /* THUMB */
10101 else
10102 insn -= 8; /* ARM */
10103 }
10104 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10105 return bfd_reloc_continue;
10106
10107 case R_ARM_THM_TLS_DESCSEQ:
10108 /* Thumb insn. */
10109 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10110 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10111 {
10112 if (is_local)
10113 /* nop */
10114 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10115 }
10116 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10117 {
10118 if (is_local)
10119 /* nop */
10120 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10121 else
10122 /* ldr rx,[ry] */
10123 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10124 }
10125 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10126 {
10127 if (is_local)
10128 /* nop */
10129 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10130 else
10131 /* mov r0, rx */
10132 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10133 contents + rel->r_offset);
10134 }
10135 else
10136 {
10137 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10138 /* It's a 32 bit instruction, fetch the rest of it for
10139 error generation. */
10140 insn = (insn << 16)
10141 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
4eca0228 10142 _bfd_error_handler
695344c0 10143 /* xgettext:c-format */
2dcf00ce 10144 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10145 "unexpected %s instruction '%#lx' in TLS trampoline"),
10146 input_bfd, input_sec, (uint64_t) rel->r_offset,
10147 "Thumb", insn);
0855e32b
NS
10148 return bfd_reloc_notsupported;
10149 }
10150 break;
b38cadfb 10151
0855e32b
NS
10152 case R_ARM_TLS_DESCSEQ:
10153 /* arm insn. */
10154 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10155 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10156 {
10157 if (is_local)
10158 /* mov rx, ry */
10159 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10160 contents + rel->r_offset);
10161 }
10162 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10163 {
10164 if (is_local)
10165 /* nop */
10166 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10167 else
10168 /* ldr rx,[ry] */
10169 bfd_put_32 (input_bfd, insn & 0xfffff000,
10170 contents + rel->r_offset);
10171 }
10172 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10173 {
10174 if (is_local)
10175 /* nop */
10176 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10177 else
10178 /* mov r0, rx */
10179 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10180 contents + rel->r_offset);
10181 }
10182 else
10183 {
4eca0228 10184 _bfd_error_handler
695344c0 10185 /* xgettext:c-format */
2dcf00ce 10186 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10187 "unexpected %s instruction '%#lx' in TLS trampoline"),
10188 input_bfd, input_sec, (uint64_t) rel->r_offset,
10189 "ARM", insn);
0855e32b
NS
10190 return bfd_reloc_notsupported;
10191 }
10192 break;
10193
10194 case R_ARM_TLS_CALL:
10195 /* GD->IE relaxation, turn the instruction into 'nop' or
10196 'ldr r0, [pc,r0]' */
10197 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10198 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10199 break;
b38cadfb 10200
0855e32b 10201 case R_ARM_THM_TLS_CALL:
6a631e86 10202 /* GD->IE relaxation. */
0855e32b
NS
10203 if (!is_local)
10204 /* add r0,pc; ldr r0, [r0] */
10205 insn = 0x44786800;
60a019a0 10206 else if (using_thumb2 (globals))
0855e32b
NS
10207 /* nop.w */
10208 insn = 0xf3af8000;
10209 else
10210 /* nop; nop */
10211 insn = 0xbf00bf00;
b38cadfb 10212
0855e32b
NS
10213 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10214 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10215 break;
10216 }
10217 return bfd_reloc_ok;
10218}
10219
4962c51a
MS
10220/* For a given value of n, calculate the value of G_n as required to
10221 deal with group relocations. We return it in the form of an
10222 encoded constant-and-rotation, together with the final residual. If n is
10223 specified as less than zero, then final_residual is filled with the
10224 input value and no further action is performed. */
10225
10226static bfd_vma
10227calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10228{
10229 int current_n;
10230 bfd_vma g_n;
10231 bfd_vma encoded_g_n = 0;
10232 bfd_vma residual = value; /* Also known as Y_n. */
10233
10234 for (current_n = 0; current_n <= n; current_n++)
10235 {
10236 int shift;
10237
10238 /* Calculate which part of the value to mask. */
10239 if (residual == 0)
99059e56 10240 shift = 0;
4962c51a 10241 else
99059e56
RM
10242 {
10243 int msb;
10244
10245 /* Determine the most significant bit in the residual and
10246 align the resulting value to a 2-bit boundary. */
10247 for (msb = 30; msb >= 0; msb -= 2)
00c91124 10248 if (residual & (3u << msb))
99059e56
RM
10249 break;
10250
10251 /* The desired shift is now (msb - 6), or zero, whichever
10252 is the greater. */
10253 shift = msb - 6;
10254 if (shift < 0)
10255 shift = 0;
10256 }
4962c51a
MS
10257
10258 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10259 g_n = residual & (0xff << shift);
10260 encoded_g_n = (g_n >> shift)
99059e56 10261 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4962c51a
MS
10262
10263 /* Calculate the residual for the next time around. */
10264 residual &= ~g_n;
10265 }
10266
10267 *final_residual = residual;
10268
10269 return encoded_g_n;
10270}
10271
10272/* Given an ARM instruction, determine whether it is an ADD or a SUB.
10273 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 10274
4962c51a 10275static int
906e58ca 10276identify_add_or_sub (bfd_vma insn)
4962c51a
MS
10277{
10278 int opcode = insn & 0x1e00000;
10279
10280 if (opcode == 1 << 23) /* ADD */
10281 return 1;
10282
10283 if (opcode == 1 << 22) /* SUB */
10284 return -1;
10285
10286 return 0;
10287}
10288
252b5132 10289/* Perform a relocation as part of a final link. */
9b485d32 10290
252b5132 10291static bfd_reloc_status_type
07d6d2b8
AM
10292elf32_arm_final_link_relocate (reloc_howto_type * howto,
10293 bfd * input_bfd,
10294 bfd * output_bfd,
10295 asection * input_section,
10296 bfd_byte * contents,
10297 Elf_Internal_Rela * rel,
10298 bfd_vma value,
10299 struct bfd_link_info * info,
10300 asection * sym_sec,
10301 const char * sym_name,
10302 unsigned char st_type,
10303 enum arm_st_branch_type branch_type,
0945cdfd 10304 struct elf_link_hash_entry * h,
0a1b45a2 10305 bool * unresolved_reloc_p,
07d6d2b8
AM
10306 char ** error_message)
10307{
10308 unsigned long r_type = howto->type;
10309 unsigned long r_symndx;
10310 bfd_byte * hit_data = contents + rel->r_offset;
10311 bfd_vma * local_got_offsets;
10312 bfd_vma * local_tlsdesc_gotents;
10313 asection * sgot;
10314 asection * splt;
10315 asection * sreloc = NULL;
10316 asection * srelgot;
10317 bfd_vma addend;
10318 bfd_signed_vma signed_addend;
10319 unsigned char dynreloc_st_type;
10320 bfd_vma dynreloc_value;
ba96a88f 10321 struct elf32_arm_link_hash_table * globals;
34e77a92 10322 struct elf32_arm_link_hash_entry *eh;
07d6d2b8
AM
10323 union gotplt_union *root_plt;
10324 struct arm_plt_info *arm_plt;
10325 bfd_vma plt_offset;
10326 bfd_vma gotplt_offset;
0a1b45a2
AM
10327 bool has_iplt_entry;
10328 bool resolved_to_zero;
f21f3fe0 10329
9c504268 10330 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
10331 if (globals == NULL)
10332 return bfd_reloc_notsupported;
9c504268 10333
0ffa91dd 10334 BFD_ASSERT (is_arm_elf (input_bfd));
47aeb64c 10335 BFD_ASSERT (howto != NULL);
0ffa91dd
NC
10336
10337 /* Some relocation types map to different relocations depending on the
9c504268 10338 target. We pick the right one here. */
eb043451 10339 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
10340
10341 /* It is possible to have linker relaxations on some TLS access
10342 models. Update our information here. */
10343 r_type = elf32_arm_tls_transition (info, r_type, h);
10344
eb043451
PB
10345 if (r_type != howto->type)
10346 howto = elf32_arm_howto_from_type (r_type);
9c504268 10347
34e77a92 10348 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 10349 sgot = globals->root.sgot;
252b5132 10350 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
10351 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10352
34e77a92
RS
10353 if (globals->root.dynamic_sections_created)
10354 srelgot = globals->root.srelgot;
10355 else
10356 srelgot = NULL;
10357
252b5132
RH
10358 r_symndx = ELF32_R_SYM (rel->r_info);
10359
4e7fd91e 10360 if (globals->use_rel)
ba96a88f 10361 {
d2327e47 10362 bfd_vma sign;
4e7fd91e 10363
57698478 10364 switch (bfd_get_reloc_size (howto))
4e7fd91e 10365 {
57698478
AM
10366 case 1: addend = bfd_get_8 (input_bfd, hit_data); break;
10367 case 2: addend = bfd_get_16 (input_bfd, hit_data); break;
10368 case 4: addend = bfd_get_32 (input_bfd, hit_data); break;
d2327e47 10369 default: addend = 0; break;
4e7fd91e 10370 }
d2327e47
AM
10371 /* Note: the addend and signed_addend calculated here are
10372 incorrect for any split field. */
10373 addend &= howto->src_mask;
10374 sign = howto->src_mask & ~(howto->src_mask >> 1);
10375 signed_addend = (addend ^ sign) - sign;
10376 signed_addend = (bfd_vma) signed_addend << howto->rightshift;
10377 addend <<= howto->rightshift;
ba96a88f
NC
10378 }
10379 else
4e7fd91e 10380 addend = signed_addend = rel->r_addend;
f21f3fe0 10381
39f21624
NC
10382 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10383 are resolving a function call relocation. */
10384 if (using_thumb_only (globals)
10385 && (r_type == R_ARM_THM_CALL
10386 || r_type == R_ARM_THM_JUMP24)
10387 && branch_type == ST_BRANCH_TO_ARM)
10388 branch_type = ST_BRANCH_TO_THUMB;
10389
34e77a92
RS
10390 /* Record the symbol information that should be used in dynamic
10391 relocations. */
10392 dynreloc_st_type = st_type;
10393 dynreloc_value = value;
10394 if (branch_type == ST_BRANCH_TO_THUMB)
10395 dynreloc_value |= 1;
10396
10397 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10398 VALUE appropriately for relocations that we resolve at link time. */
0a1b45a2 10399 has_iplt_entry = false;
4ba2ef8f
TP
10400 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10401 &arm_plt)
34e77a92
RS
10402 && root_plt->offset != (bfd_vma) -1)
10403 {
10404 plt_offset = root_plt->offset;
10405 gotplt_offset = arm_plt->got_offset;
10406
10407 if (h == NULL || eh->is_iplt)
10408 {
0a1b45a2 10409 has_iplt_entry = true;
34e77a92
RS
10410 splt = globals->root.iplt;
10411
10412 /* Populate .iplt entries here, because not all of them will
10413 be seen by finish_dynamic_symbol. The lower bit is set if
10414 we have already populated the entry. */
10415 if (plt_offset & 1)
10416 plt_offset--;
10417 else
10418 {
57460bcf
NC
10419 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10420 -1, dynreloc_value))
10421 root_plt->offset |= 1;
10422 else
10423 return bfd_reloc_notsupported;
34e77a92
RS
10424 }
10425
10426 /* Static relocations always resolve to the .iplt entry. */
10427 st_type = STT_FUNC;
10428 value = (splt->output_section->vma
10429 + splt->output_offset
10430 + plt_offset);
10431 branch_type = ST_BRANCH_TO_ARM;
10432
10433 /* If there are non-call relocations that resolve to the .iplt
10434 entry, then all dynamic ones must too. */
10435 if (arm_plt->noncall_refcount != 0)
10436 {
10437 dynreloc_st_type = st_type;
10438 dynreloc_value = value;
10439 }
10440 }
10441 else
10442 /* We populate the .plt entry in finish_dynamic_symbol. */
10443 splt = globals->root.splt;
10444 }
10445 else
10446 {
10447 splt = NULL;
10448 plt_offset = (bfd_vma) -1;
10449 gotplt_offset = (bfd_vma) -1;
10450 }
10451
95b03e4a
L
10452 resolved_to_zero = (h != NULL
10453 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10454
252b5132
RH
10455 switch (r_type)
10456 {
10457 case R_ARM_NONE:
28a094c2
DJ
10458 /* We don't need to find a value for this symbol. It's just a
10459 marker. */
0a1b45a2 10460 *unresolved_reloc_p = false;
252b5132
RH
10461 return bfd_reloc_ok;
10462
00a97672 10463 case R_ARM_ABS12:
90c14f0c 10464 if (globals->root.target_os != is_vxworks)
00a97672 10465 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
1a0670f3 10466 /* Fall through. */
00a97672 10467
252b5132
RH
10468 case R_ARM_PC24:
10469 case R_ARM_ABS32:
bb224fc3 10470 case R_ARM_ABS32_NOI:
252b5132 10471 case R_ARM_REL32:
bb224fc3 10472 case R_ARM_REL32_NOI:
5b5bb741
PB
10473 case R_ARM_CALL:
10474 case R_ARM_JUMP24:
dfc5f959 10475 case R_ARM_XPC25:
eb043451 10476 case R_ARM_PREL31:
7359ea65 10477 case R_ARM_PLT32:
7359ea65
DJ
10478 /* Handle relocations which should use the PLT entry. ABS32/REL32
10479 will use the symbol's value, which may point to a PLT entry, but we
10480 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
10481 branches in this object should go to it, except if the PLT is too
10482 far away, in which case a long branch stub should be inserted. */
bb224fc3 10483 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
99059e56 10484 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
10485 && r_type != R_ARM_CALL
10486 && r_type != R_ARM_JUMP24
10487 && r_type != R_ARM_PLT32)
34e77a92 10488 && plt_offset != (bfd_vma) -1)
7359ea65 10489 {
34e77a92
RS
10490 /* If we've created a .plt section, and assigned a PLT entry
10491 to this function, it must either be a STT_GNU_IFUNC reference
10492 or not be known to bind locally. In other cases, we should
10493 have cleared the PLT entry by now. */
10494 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
10495
10496 value = (splt->output_section->vma
10497 + splt->output_offset
34e77a92 10498 + plt_offset);
0a1b45a2 10499 *unresolved_reloc_p = false;
7359ea65
DJ
10500 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10501 contents, rel->r_offset, value,
00a97672 10502 rel->r_addend);
7359ea65
DJ
10503 }
10504
67687978
PB
10505 /* When generating a shared object or relocatable executable, these
10506 relocations are copied into the output file to be resolved at
10507 run time. */
0e1862bb 10508 if ((bfd_link_pic (info)
e8b09b87
CL
10509 || globals->root.is_relocatable_executable
10510 || globals->fdpic_p)
7359ea65 10511 && (input_section->flags & SEC_ALLOC)
90c14f0c 10512 && !(globals->root.target_os == is_vxworks
3348747a
NS
10513 && strcmp (input_section->output_section->name,
10514 ".tls_vars") == 0)
bb224fc3 10515 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 10516 || !SYMBOL_CALLS_LOCAL (info, h))
ca6b5f82
AM
10517 && !(input_bfd == globals->stub_bfd
10518 && strstr (input_section->name, STUB_SUFFIX))
7359ea65 10519 && (h == NULL
95b03e4a
L
10520 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10521 && !resolved_to_zero)
7359ea65
DJ
10522 || h->root.type != bfd_link_hash_undefweak)
10523 && r_type != R_ARM_PC24
5b5bb741
PB
10524 && r_type != R_ARM_CALL
10525 && r_type != R_ARM_JUMP24
ee06dc07 10526 && r_type != R_ARM_PREL31
7359ea65 10527 && r_type != R_ARM_PLT32)
252b5132 10528 {
947216bf 10529 Elf_Internal_Rela outrel;
0a1b45a2 10530 bool skip, relocate;
e8b09b87 10531 int isrofixup = 0;
f21f3fe0 10532
52db4ec2
JW
10533 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10534 && !h->def_regular)
10535 {
10536 char *v = _("shared object");
10537
0e1862bb 10538 if (bfd_link_executable (info))
52db4ec2
JW
10539 v = _("PIE executable");
10540
4eca0228 10541 _bfd_error_handler
871b3ab2 10542 (_("%pB: relocation %s against external or undefined symbol `%s'"
52db4ec2
JW
10543 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10544 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10545 return bfd_reloc_notsupported;
10546 }
10547
0a1b45a2 10548 *unresolved_reloc_p = false;
0945cdfd 10549
34e77a92 10550 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 10551 {
83bac4b0
NC
10552 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10553 ! globals->use_rel);
f21f3fe0 10554
83bac4b0 10555 if (sreloc == NULL)
252b5132 10556 return bfd_reloc_notsupported;
252b5132 10557 }
f21f3fe0 10558
0a1b45a2
AM
10559 skip = false;
10560 relocate = false;
f21f3fe0 10561
00a97672 10562 outrel.r_addend = addend;
c629eae0
JJ
10563 outrel.r_offset =
10564 _bfd_elf_section_offset (output_bfd, info, input_section,
10565 rel->r_offset);
10566 if (outrel.r_offset == (bfd_vma) -1)
0a1b45a2 10567 skip = true;
0bb2d96a 10568 else if (outrel.r_offset == (bfd_vma) -2)
0a1b45a2 10569 skip = true, relocate = true;
252b5132
RH
10570 outrel.r_offset += (input_section->output_section->vma
10571 + input_section->output_offset);
f21f3fe0 10572
252b5132 10573 if (skip)
0bb2d96a 10574 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
10575 else if (h != NULL
10576 && h->dynindx != -1
0e1862bb 10577 && (!bfd_link_pic (info)
1dcb9720
JW
10578 || !(bfd_link_pie (info)
10579 || SYMBOLIC_BIND (info, h))
f5385ebf 10580 || !h->def_regular))
5e681ec4 10581 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
10582 else
10583 {
a16385dc
MM
10584 int symbol;
10585
5e681ec4 10586 /* This symbol is local, or marked to become local. */
e8b09b87 10587 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
cc850f74 10588 || (globals->fdpic_p && !bfd_link_pic (info)));
a57d1773
AM
10589 /* On SVR4-ish systems, the dynamic loader cannot
10590 relocate the text and data segments independently,
10591 so the symbol does not matter. */
10592 symbol = 0;
34e77a92
RS
10593 if (dynreloc_st_type == STT_GNU_IFUNC)
10594 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10595 to the .iplt entry. Instead, every non-call reference
10596 must use an R_ARM_IRELATIVE relocation to obtain the
10597 correct run-time address. */
10598 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
cc850f74 10599 else if (globals->fdpic_p && !bfd_link_pic (info))
e8b09b87 10600 isrofixup = 1;
34e77a92
RS
10601 else
10602 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672 10603 if (globals->use_rel)
0a1b45a2 10604 relocate = true;
00a97672 10605 else
34e77a92 10606 outrel.r_addend += dynreloc_value;
252b5132 10607 }
f21f3fe0 10608
e8b09b87 10609 if (isrofixup)
cc850f74 10610 arm_elf_add_rofixup (output_bfd, globals->srofixup, outrel.r_offset);
e8b09b87
CL
10611 else
10612 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 10613
f21f3fe0 10614 /* If this reloc is against an external symbol, we do not want to
252b5132 10615 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 10616 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
10617 if (! relocate)
10618 return bfd_reloc_ok;
9a5aca8c 10619
f21f3fe0 10620 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
10621 contents, rel->r_offset,
10622 dynreloc_value, (bfd_vma) 0);
252b5132
RH
10623 }
10624 else switch (r_type)
10625 {
00a97672
RS
10626 case R_ARM_ABS12:
10627 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10628
dfc5f959 10629 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
10630 case R_ARM_CALL:
10631 case R_ARM_JUMP24:
8029a119 10632 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 10633 case R_ARM_PLT32:
906e58ca 10634 {
906e58ca
NC
10635 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10636
dfc5f959 10637 if (r_type == R_ARM_XPC25)
252b5132 10638 {
dfc5f959
NC
10639 /* Check for Arm calling Arm function. */
10640 /* FIXME: Should we translate the instruction into a BL
10641 instruction instead ? */
35fc36a8 10642 if (branch_type != ST_BRANCH_TO_THUMB)
4eca0228 10643 _bfd_error_handler
90b6238f
AM
10644 (_("\%pB: warning: %s BLX instruction targets"
10645 " %s function '%s'"),
10646 input_bfd, "ARM",
10647 "ARM", h ? h->root.root.string : "(local)");
dfc5f959 10648 }
155d87d7 10649 else if (r_type == R_ARM_PC24)
dfc5f959
NC
10650 {
10651 /* Check for Arm calling Thumb function. */
35fc36a8 10652 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 10653 {
f2a9dd69
DJ
10654 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10655 output_bfd, input_section,
10656 hit_data, sym_sec, rel->r_offset,
10657 signed_addend, value,
10658 error_message))
10659 return bfd_reloc_ok;
10660 else
10661 return bfd_reloc_dangerous;
dfc5f959 10662 }
252b5132 10663 }
ba96a88f 10664
906e58ca 10665 /* Check if a stub has to be inserted because the
8029a119 10666 destination is too far or we are changing mode. */
155d87d7
CL
10667 if ( r_type == R_ARM_CALL
10668 || r_type == R_ARM_JUMP24
10669 || r_type == R_ARM_PLT32)
906e58ca 10670 {
fe33d2fa
CL
10671 enum elf32_arm_stub_type stub_type = arm_stub_none;
10672 struct elf32_arm_link_hash_entry *hash;
10673
10674 hash = (struct elf32_arm_link_hash_entry *) h;
10675 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
10676 st_type, &branch_type,
10677 hash, value, sym_sec,
fe33d2fa 10678 input_bfd, sym_name);
5fa9e92f 10679
fe33d2fa 10680 if (stub_type != arm_stub_none)
906e58ca
NC
10681 {
10682 /* The target is out of reach, so redirect the
10683 branch to the local stub for this function. */
906e58ca
NC
10684 stub_entry = elf32_arm_get_stub_entry (input_section,
10685 sym_sec, h,
fe33d2fa
CL
10686 rel, globals,
10687 stub_type);
9cd3e4e5
NC
10688 {
10689 if (stub_entry != NULL)
10690 value = (stub_entry->stub_offset
10691 + stub_entry->stub_sec->output_offset
10692 + stub_entry->stub_sec->output_section->vma);
10693
10694 if (plt_offset != (bfd_vma) -1)
0a1b45a2 10695 *unresolved_reloc_p = false;
9cd3e4e5 10696 }
906e58ca 10697 }
fe33d2fa
CL
10698 else
10699 {
10700 /* If the call goes through a PLT entry, make sure to
10701 check distance to the right destination address. */
34e77a92 10702 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
10703 {
10704 value = (splt->output_section->vma
10705 + splt->output_offset
34e77a92 10706 + plt_offset);
0a1b45a2 10707 *unresolved_reloc_p = false;
fe33d2fa
CL
10708 /* The PLT entry is in ARM mode, regardless of the
10709 target function. */
35fc36a8 10710 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
10711 }
10712 }
906e58ca
NC
10713 }
10714
dea514f5
PB
10715 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10716 where:
10717 S is the address of the symbol in the relocation.
10718 P is address of the instruction being relocated.
10719 A is the addend (extracted from the instruction) in bytes.
10720
10721 S is held in 'value'.
10722 P is the base address of the section containing the
10723 instruction plus the offset of the reloc into that
10724 section, ie:
10725 (input_section->output_section->vma +
10726 input_section->output_offset +
10727 rel->r_offset).
10728 A is the addend, converted into bytes, ie:
10729 (signed_addend * 4)
10730
10731 Note: None of these operations have knowledge of the pipeline
10732 size of the processor, thus it is up to the assembler to
10733 encode this information into the addend. */
10734 value -= (input_section->output_section->vma
10735 + input_section->output_offset);
10736 value -= rel->r_offset;
d2327e47 10737 value += signed_addend;
23080146 10738
dcb5e6e6
NC
10739 signed_addend = value;
10740 signed_addend >>= howto->rightshift;
9a5aca8c 10741
5ab79981 10742 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 10743 the next instruction unless a PLT entry will be created.
77b4f08f 10744 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
10745 The jump to the next instruction is optimized as a NOP depending
10746 on the architecture. */
ffcb4889 10747 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 10748 && plt_offset == (bfd_vma) -1)
77b4f08f 10749 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 10750 {
cd1dac3d
DG
10751 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10752
10753 if (arch_has_arm_nop (globals))
10754 value |= 0x0320f000;
10755 else
10756 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
10757 }
10758 else
59f2c4e7 10759 {
9b485d32 10760 /* Perform a signed range check. */
dcb5e6e6 10761 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
10762 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10763 return bfd_reloc_overflow;
9a5aca8c 10764
5ab79981 10765 addend = (value & 2);
39b41c9c 10766
5ab79981
PB
10767 value = (signed_addend & howto->dst_mask)
10768 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 10769
5ab79981
PB
10770 if (r_type == R_ARM_CALL)
10771 {
155d87d7 10772 /* Set the H bit in the BLX instruction. */
35fc36a8 10773 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
10774 {
10775 if (addend)
10776 value |= (1 << 24);
10777 else
10778 value &= ~(bfd_vma)(1 << 24);
10779 }
10780
5ab79981 10781 /* Select the correct instruction (BL or BLX). */
906e58ca 10782 /* Only if we are not handling a BL to a stub. In this
8029a119 10783 case, mode switching is performed by the stub. */
35fc36a8 10784 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 10785 value |= (1 << 28);
63e1a0fc 10786 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
10787 {
10788 value &= ~(bfd_vma)(1 << 28);
10789 value |= (1 << 24);
10790 }
39b41c9c
PB
10791 }
10792 }
906e58ca 10793 }
252b5132 10794 break;
f21f3fe0 10795
252b5132
RH
10796 case R_ARM_ABS32:
10797 value += addend;
35fc36a8 10798 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
10799 value |= 1;
10800 break;
f21f3fe0 10801
bb224fc3
MS
10802 case R_ARM_ABS32_NOI:
10803 value += addend;
10804 break;
10805
252b5132 10806 case R_ARM_REL32:
a8bc6c78 10807 value += addend;
35fc36a8 10808 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 10809 value |= 1;
252b5132 10810 value -= (input_section->output_section->vma
62efb346 10811 + input_section->output_offset + rel->r_offset);
252b5132 10812 break;
eb043451 10813
bb224fc3
MS
10814 case R_ARM_REL32_NOI:
10815 value += addend;
10816 value -= (input_section->output_section->vma
10817 + input_section->output_offset + rel->r_offset);
10818 break;
10819
eb043451
PB
10820 case R_ARM_PREL31:
10821 value -= (input_section->output_section->vma
10822 + input_section->output_offset + rel->r_offset);
10823 value += signed_addend;
10824 if (! h || h->root.type != bfd_link_hash_undefweak)
10825 {
8029a119 10826 /* Check for overflow. */
eb043451
PB
10827 if ((value ^ (value >> 1)) & (1 << 30))
10828 return bfd_reloc_overflow;
10829 }
10830 value &= 0x7fffffff;
10831 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 10832 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
10833 value |= 1;
10834 break;
252b5132 10835 }
f21f3fe0 10836
252b5132
RH
10837 bfd_put_32 (input_bfd, value, hit_data);
10838 return bfd_reloc_ok;
10839
10840 case R_ARM_ABS8:
10841 value += addend;
4e67d4ca
DG
10842
10843 /* There is no way to tell whether the user intended to use a signed or
10844 unsigned addend. When checking for overflow we accept either,
10845 as specified by the AAELF. */
10846 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
10847 return bfd_reloc_overflow;
10848
10849 bfd_put_8 (input_bfd, value, hit_data);
10850 return bfd_reloc_ok;
10851
10852 case R_ARM_ABS16:
10853 value += addend;
10854
4e67d4ca
DG
10855 /* See comment for R_ARM_ABS8. */
10856 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
10857 return bfd_reloc_overflow;
10858
10859 bfd_put_16 (input_bfd, value, hit_data);
10860 return bfd_reloc_ok;
10861
252b5132 10862 case R_ARM_THM_ABS5:
9b485d32 10863 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
10864 if (globals->use_rel)
10865 {
10866 /* Need to refetch addend. */
10867 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10868 /* ??? Need to determine shift amount from operand size. */
10869 addend >>= howto->rightshift;
10870 }
252b5132
RH
10871 value += addend;
10872
10873 /* ??? Isn't value unsigned? */
10874 if ((long) value > 0x1f || (long) value < -0x10)
10875 return bfd_reloc_overflow;
10876
10877 /* ??? Value needs to be properly shifted into place first. */
10878 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10879 bfd_put_16 (input_bfd, value, hit_data);
10880 return bfd_reloc_ok;
10881
2cab6cc3
MS
10882 case R_ARM_THM_ALU_PREL_11_0:
10883 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10884 {
10885 bfd_vma insn;
10886 bfd_signed_vma relocation;
10887
10888 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10889 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10890
99059e56
RM
10891 if (globals->use_rel)
10892 {
10893 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10894 | ((insn & (1 << 26)) >> 15);
10895 if (insn & 0xf00000)
10896 signed_addend = -signed_addend;
10897 }
2cab6cc3
MS
10898
10899 relocation = value + signed_addend;
79f08007 10900 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10901 + input_section->output_offset
10902 + rel->r_offset);
2cab6cc3 10903
8c65b54f
CS
10904 /* PR 21523: Use an absolute value. The user of this reloc will
10905 have already selected an ADD or SUB insn appropriately. */
453f8e1e 10906 value = llabs (relocation);
2cab6cc3 10907
99059e56
RM
10908 if (value >= 0x1000)
10909 return bfd_reloc_overflow;
2cab6cc3 10910
e645cf40
AG
10911 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10912 if (branch_type == ST_BRANCH_TO_THUMB)
10913 value |= 1;
10914
2cab6cc3 10915 insn = (insn & 0xfb0f8f00) | (value & 0xff)
99059e56
RM
10916 | ((value & 0x700) << 4)
10917 | ((value & 0x800) << 15);
10918 if (relocation < 0)
10919 insn |= 0xa00000;
2cab6cc3
MS
10920
10921 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10922 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10923
99059e56 10924 return bfd_reloc_ok;
2cab6cc3
MS
10925 }
10926
e1ec24c6
NC
10927 case R_ARM_THM_PC8:
10928 /* PR 10073: This reloc is not generated by the GNU toolchain,
10929 but it is supported for compatibility with third party libraries
10930 generated by other compilers, specifically the ARM/IAR. */
10931 {
10932 bfd_vma insn;
10933 bfd_signed_vma relocation;
10934
10935 insn = bfd_get_16 (input_bfd, hit_data);
10936
99059e56 10937 if (globals->use_rel)
79f08007 10938 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
10939
10940 relocation = value + addend;
79f08007 10941 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10942 + input_section->output_offset
10943 + rel->r_offset);
e1ec24c6 10944
b6518b38 10945 value = relocation;
e1ec24c6
NC
10946
10947 /* We do not check for overflow of this reloc. Although strictly
10948 speaking this is incorrect, it appears to be necessary in order
10949 to work with IAR generated relocs. Since GCC and GAS do not
10950 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10951 a problem for them. */
10952 value &= 0x3fc;
10953
10954 insn = (insn & 0xff00) | (value >> 2);
10955
10956 bfd_put_16 (input_bfd, insn, hit_data);
10957
99059e56 10958 return bfd_reloc_ok;
e1ec24c6
NC
10959 }
10960
2cab6cc3
MS
10961 case R_ARM_THM_PC12:
10962 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10963 {
10964 bfd_vma insn;
10965 bfd_signed_vma relocation;
10966
10967 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10968 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10969
99059e56
RM
10970 if (globals->use_rel)
10971 {
10972 signed_addend = insn & 0xfff;
10973 if (!(insn & (1 << 23)))
10974 signed_addend = -signed_addend;
10975 }
2cab6cc3
MS
10976
10977 relocation = value + signed_addend;
79f08007 10978 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10979 + input_section->output_offset
10980 + rel->r_offset);
2cab6cc3 10981
b6518b38 10982 value = relocation;
2cab6cc3 10983
99059e56
RM
10984 if (value >= 0x1000)
10985 return bfd_reloc_overflow;
2cab6cc3
MS
10986
10987 insn = (insn & 0xff7ff000) | value;
99059e56
RM
10988 if (relocation >= 0)
10989 insn |= (1 << 23);
2cab6cc3
MS
10990
10991 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10992 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10993
99059e56 10994 return bfd_reloc_ok;
2cab6cc3
MS
10995 }
10996
dfc5f959 10997 case R_ARM_THM_XPC22:
c19d1205 10998 case R_ARM_THM_CALL:
bd97cb95 10999 case R_ARM_THM_JUMP24:
dfc5f959 11000 /* Thumb BL (branch long instruction). */
252b5132 11001 {
b34976b6 11002 bfd_vma relocation;
99059e56 11003 bfd_vma reloc_sign;
0a1b45a2 11004 bool overflow = false;
b34976b6
AM
11005 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11006 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
11007 bfd_signed_vma reloc_signed_max;
11008 bfd_signed_vma reloc_signed_min;
b34976b6 11009 bfd_vma check;
252b5132 11010 bfd_signed_vma signed_check;
e95de063 11011 int bitsize;
cd1dac3d 11012 const int thumb2 = using_thumb2 (globals);
5e866f5a 11013 const int thumb2_bl = using_thumb2_bl (globals);
252b5132 11014
5ab79981 11015 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
11016 the next instruction unless a PLT entry will be created.
11017 The jump to the next instruction is optimized as a NOP.W for
11018 Thumb-2 enabled architectures. */
19540007 11019 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 11020 && plt_offset == (bfd_vma) -1)
5ab79981 11021 {
60a019a0 11022 if (thumb2)
cd1dac3d
DG
11023 {
11024 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11025 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11026 }
11027 else
11028 {
11029 bfd_put_16 (input_bfd, 0xe000, hit_data);
11030 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11031 }
5ab79981
PB
11032 return bfd_reloc_ok;
11033 }
11034
e95de063 11035 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
99059e56 11036 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
11037 if (globals->use_rel)
11038 {
99059e56
RM
11039 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11040 bfd_vma upper = upper_insn & 0x3ff;
11041 bfd_vma lower = lower_insn & 0x7ff;
e95de063
MS
11042 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11043 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
99059e56
RM
11044 bfd_vma i1 = j1 ^ s ? 0 : 1;
11045 bfd_vma i2 = j2 ^ s ? 0 : 1;
e95de063 11046
99059e56
RM
11047 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11048 /* Sign extend. */
11049 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
e95de063 11050
4e7fd91e
PB
11051 signed_addend = addend;
11052 }
cb1afa5c 11053
dfc5f959
NC
11054 if (r_type == R_ARM_THM_XPC22)
11055 {
11056 /* Check for Thumb to Thumb call. */
11057 /* FIXME: Should we translate the instruction into a BL
11058 instruction instead ? */
35fc36a8 11059 if (branch_type == ST_BRANCH_TO_THUMB)
4eca0228 11060 _bfd_error_handler
90b6238f
AM
11061 (_("%pB: warning: %s BLX instruction targets"
11062 " %s function '%s'"),
11063 input_bfd, "Thumb",
11064 "Thumb", h ? h->root.root.string : "(local)");
dfc5f959
NC
11065 }
11066 else
252b5132 11067 {
dfc5f959
NC
11068 /* If it is not a call to Thumb, assume call to Arm.
11069 If it is a call relative to a section name, then it is not a
b7693d02
DJ
11070 function call at all, but rather a long jump. Calls through
11071 the PLT do not require stubs. */
34e77a92 11072 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 11073 {
bd97cb95 11074 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11075 {
11076 /* Convert BL to BLX. */
11077 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11078 }
155d87d7
CL
11079 else if (( r_type != R_ARM_THM_CALL)
11080 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
11081 {
11082 if (elf32_thumb_to_arm_stub
11083 (info, sym_name, input_bfd, output_bfd, input_section,
11084 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11085 error_message))
11086 return bfd_reloc_ok;
11087 else
11088 return bfd_reloc_dangerous;
11089 }
da5938a2 11090 }
35fc36a8
RS
11091 else if (branch_type == ST_BRANCH_TO_THUMB
11092 && globals->use_blx
bd97cb95 11093 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11094 {
11095 /* Make sure this is a BL. */
11096 lower_insn |= 0x1800;
11097 }
252b5132 11098 }
f21f3fe0 11099
fe33d2fa 11100 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 11101 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
11102 {
11103 /* Check if a stub has to be inserted because the destination
8029a119 11104 is too far. */
fe33d2fa
CL
11105 struct elf32_arm_stub_hash_entry *stub_entry;
11106 struct elf32_arm_link_hash_entry *hash;
11107
11108 hash = (struct elf32_arm_link_hash_entry *) h;
11109
11110 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
11111 st_type, &branch_type,
11112 hash, value, sym_sec,
fe33d2fa
CL
11113 input_bfd, sym_name);
11114
11115 if (stub_type != arm_stub_none)
906e58ca
NC
11116 {
11117 /* The target is out of reach or we are changing modes, so
11118 redirect the branch to the local stub for this
11119 function. */
11120 stub_entry = elf32_arm_get_stub_entry (input_section,
11121 sym_sec, h,
fe33d2fa
CL
11122 rel, globals,
11123 stub_type);
906e58ca 11124 if (stub_entry != NULL)
9cd3e4e5
NC
11125 {
11126 value = (stub_entry->stub_offset
11127 + stub_entry->stub_sec->output_offset
11128 + stub_entry->stub_sec->output_section->vma);
11129
11130 if (plt_offset != (bfd_vma) -1)
0a1b45a2 11131 *unresolved_reloc_p = false;
9cd3e4e5 11132 }
906e58ca 11133
f4ac8484 11134 /* If this call becomes a call to Arm, force BLX. */
155d87d7 11135 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
11136 {
11137 if ((stub_entry
11138 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 11139 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
11140 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11141 }
906e58ca
NC
11142 }
11143 }
11144
fe33d2fa 11145 /* Handle calls via the PLT. */
34e77a92 11146 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
11147 {
11148 value = (splt->output_section->vma
11149 + splt->output_offset
34e77a92 11150 + plt_offset);
fe33d2fa 11151
eed94f8f
NC
11152 if (globals->use_blx
11153 && r_type == R_ARM_THM_CALL
11154 && ! using_thumb_only (globals))
fe33d2fa
CL
11155 {
11156 /* If the Thumb BLX instruction is available, convert
11157 the BL to a BLX instruction to call the ARM-mode
11158 PLT entry. */
11159 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 11160 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
11161 }
11162 else
11163 {
eed94f8f
NC
11164 if (! using_thumb_only (globals))
11165 /* Target the Thumb stub before the ARM PLT entry. */
11166 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 11167 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa 11168 }
0a1b45a2 11169 *unresolved_reloc_p = false;
fe33d2fa
CL
11170 }
11171
ba96a88f 11172 relocation = value + signed_addend;
f21f3fe0 11173
252b5132 11174 relocation -= (input_section->output_section->vma
ba96a88f
NC
11175 + input_section->output_offset
11176 + rel->r_offset);
9a5aca8c 11177
252b5132
RH
11178 check = relocation >> howto->rightshift;
11179
11180 /* If this is a signed value, the rightshift just dropped
11181 leading 1 bits (assuming twos complement). */
11182 if ((bfd_signed_vma) relocation >= 0)
11183 signed_check = check;
11184 else
11185 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11186
e95de063
MS
11187 /* Calculate the permissable maximum and minimum values for
11188 this relocation according to whether we're relocating for
11189 Thumb-2 or not. */
11190 bitsize = howto->bitsize;
5e866f5a 11191 if (!thumb2_bl)
e95de063 11192 bitsize -= 2;
f6ebfac0 11193 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
11194 reloc_signed_min = ~reloc_signed_max;
11195
252b5132 11196 /* Assumes two's complement. */
ba96a88f 11197 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
0a1b45a2 11198 overflow = true;
252b5132 11199
bd97cb95 11200 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
11201 /* For a BLX instruction, make sure that the relocation is rounded up
11202 to a word boundary. This follows the semantics of the instruction
11203 which specifies that bit 1 of the target address will come from bit
11204 1 of the base address. */
11205 relocation = (relocation + 2) & ~ 3;
cb1afa5c 11206
e95de063
MS
11207 /* Put RELOCATION back into the insn. Assumes two's complement.
11208 We use the Thumb-2 encoding, which is safe even if dealing with
11209 a Thumb-1 instruction by virtue of our overflow check above. */
99059e56 11210 reloc_sign = (signed_check < 0) ? 1 : 0;
e95de063 11211 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
99059e56
RM
11212 | ((relocation >> 12) & 0x3ff)
11213 | (reloc_sign << 10);
906e58ca 11214 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
99059e56
RM
11215 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11216 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11217 | ((relocation >> 1) & 0x7ff);
c62e1cc3 11218
252b5132
RH
11219 /* Put the relocated value back in the object file: */
11220 bfd_put_16 (input_bfd, upper_insn, hit_data);
11221 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11222
11223 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11224 }
11225 break;
11226
c19d1205
ZW
11227 case R_ARM_THM_JUMP19:
11228 /* Thumb32 conditional branch instruction. */
11229 {
11230 bfd_vma relocation;
0a1b45a2 11231 bool overflow = false;
c19d1205
ZW
11232 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11233 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
11234 bfd_signed_vma reloc_signed_max = 0xffffe;
11235 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205 11236 bfd_signed_vma signed_check;
07d6d2b8 11237 enum elf32_arm_stub_type stub_type = arm_stub_none;
c5423981
TG
11238 struct elf32_arm_stub_hash_entry *stub_entry;
11239 struct elf32_arm_link_hash_entry *hash;
c19d1205
ZW
11240
11241 /* Need to refetch the addend, reconstruct the top three bits,
11242 and squish the two 11 bit pieces together. */
11243 if (globals->use_rel)
11244 {
11245 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 11246 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
11247 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11248 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11249 bfd_vma lower = (lower_insn & 0x07ff);
11250
a00a1f35
MS
11251 upper |= J1 << 6;
11252 upper |= J2 << 7;
11253 upper |= (!S) << 8;
c19d1205
ZW
11254 upper -= 0x0100; /* Sign extend. */
11255
11256 addend = (upper << 12) | (lower << 1);
11257 signed_addend = addend;
11258 }
11259
bd97cb95 11260 /* Handle calls via the PLT. */
34e77a92 11261 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
11262 {
11263 value = (splt->output_section->vma
11264 + splt->output_offset
34e77a92 11265 + plt_offset);
bd97cb95
DJ
11266 /* Target the Thumb stub before the ARM PLT entry. */
11267 value -= PLT_THUMB_STUB_SIZE;
0a1b45a2 11268 *unresolved_reloc_p = false;
bd97cb95
DJ
11269 }
11270
c5423981
TG
11271 hash = (struct elf32_arm_link_hash_entry *)h;
11272
11273 stub_type = arm_type_of_stub (info, input_section, rel,
07d6d2b8
AM
11274 st_type, &branch_type,
11275 hash, value, sym_sec,
11276 input_bfd, sym_name);
c5423981
TG
11277 if (stub_type != arm_stub_none)
11278 {
11279 stub_entry = elf32_arm_get_stub_entry (input_section,
07d6d2b8
AM
11280 sym_sec, h,
11281 rel, globals,
11282 stub_type);
c5423981
TG
11283 if (stub_entry != NULL)
11284 {
07d6d2b8
AM
11285 value = (stub_entry->stub_offset
11286 + stub_entry->stub_sec->output_offset
11287 + stub_entry->stub_sec->output_section->vma);
c5423981
TG
11288 }
11289 }
c19d1205 11290
99059e56 11291 relocation = value + signed_addend;
c19d1205
ZW
11292 relocation -= (input_section->output_section->vma
11293 + input_section->output_offset
11294 + rel->r_offset);
a00a1f35 11295 signed_check = (bfd_signed_vma) relocation;
c19d1205 11296
c19d1205 11297 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
0a1b45a2 11298 overflow = true;
c19d1205
ZW
11299
11300 /* Put RELOCATION back into the insn. */
11301 {
11302 bfd_vma S = (relocation & 0x00100000) >> 20;
11303 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11304 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11305 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11306 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11307
a00a1f35 11308 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
11309 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11310 }
11311
11312 /* Put the relocated value back in the object file: */
11313 bfd_put_16 (input_bfd, upper_insn, hit_data);
11314 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11315
11316 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11317 }
11318
11319 case R_ARM_THM_JUMP11:
11320 case R_ARM_THM_JUMP8:
11321 case R_ARM_THM_JUMP6:
51c5503b
NC
11322 /* Thumb B (branch) instruction). */
11323 {
6cf9e9fe 11324 bfd_signed_vma relocation;
51c5503b
NC
11325 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11326 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
11327 bfd_signed_vma signed_check;
11328
c19d1205
ZW
11329 /* CZB cannot jump backward. */
11330 if (r_type == R_ARM_THM_JUMP6)
6cf9e9fe 11331 {
d2327e47
AM
11332 reloc_signed_min = 0;
11333 if (globals->use_rel)
11334 signed_addend = ((addend & 0x200) >> 3) | ((addend & 0xf8) >> 2);
6cf9e9fe 11335 }
d2327e47 11336
6cf9e9fe 11337 relocation = value + signed_addend;
51c5503b
NC
11338
11339 relocation -= (input_section->output_section->vma
11340 + input_section->output_offset
11341 + rel->r_offset);
11342
6cf9e9fe
NC
11343 relocation >>= howto->rightshift;
11344 signed_check = relocation;
c19d1205
ZW
11345
11346 if (r_type == R_ARM_THM_JUMP6)
11347 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11348 else
11349 relocation &= howto->dst_mask;
51c5503b 11350 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 11351
51c5503b
NC
11352 bfd_put_16 (input_bfd, relocation, hit_data);
11353
11354 /* Assumes two's complement. */
11355 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11356 return bfd_reloc_overflow;
11357
11358 return bfd_reloc_ok;
11359 }
cedb70c5 11360
8375c36b
PB
11361 case R_ARM_ALU_PCREL7_0:
11362 case R_ARM_ALU_PCREL15_8:
11363 case R_ARM_ALU_PCREL23_15:
11364 {
11365 bfd_vma insn;
11366 bfd_vma relocation;
11367
11368 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
11369 if (globals->use_rel)
11370 {
11371 /* Extract the addend. */
11372 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11373 signed_addend = addend;
11374 }
8375c36b
PB
11375 relocation = value + signed_addend;
11376
11377 relocation -= (input_section->output_section->vma
11378 + input_section->output_offset
11379 + rel->r_offset);
11380 insn = (insn & ~0xfff)
11381 | ((howto->bitpos << 7) & 0xf00)
11382 | ((relocation >> howto->bitpos) & 0xff);
11383 bfd_put_32 (input_bfd, value, hit_data);
11384 }
11385 return bfd_reloc_ok;
11386
252b5132
RH
11387 case R_ARM_GNU_VTINHERIT:
11388 case R_ARM_GNU_VTENTRY:
11389 return bfd_reloc_ok;
11390
c19d1205 11391 case R_ARM_GOTOFF32:
252b5132 11392 /* Relocation is relative to the start of the
99059e56 11393 global offset table. */
252b5132
RH
11394
11395 BFD_ASSERT (sgot != NULL);
11396 if (sgot == NULL)
99059e56 11397 return bfd_reloc_notsupported;
9a5aca8c 11398
cedb70c5 11399 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
11400 address by one, so that attempts to call the function pointer will
11401 correctly interpret it as Thumb code. */
35fc36a8 11402 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
11403 value += 1;
11404
252b5132 11405 /* Note that sgot->output_offset is not involved in this
99059e56
RM
11406 calculation. We always want the start of .got. If we
11407 define _GLOBAL_OFFSET_TABLE in a different way, as is
11408 permitted by the ABI, we might have to change this
11409 calculation. */
252b5132 11410 value -= sgot->output_section->vma;
f21f3fe0 11411 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11412 contents, rel->r_offset, value,
00a97672 11413 rel->r_addend);
252b5132
RH
11414
11415 case R_ARM_GOTPC:
a7c10850 11416 /* Use global offset table as symbol value. */
252b5132 11417 BFD_ASSERT (sgot != NULL);
f21f3fe0 11418
252b5132 11419 if (sgot == NULL)
99059e56 11420 return bfd_reloc_notsupported;
252b5132 11421
0a1b45a2 11422 *unresolved_reloc_p = false;
252b5132 11423 value = sgot->output_section->vma;
f21f3fe0 11424 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11425 contents, rel->r_offset, value,
00a97672 11426 rel->r_addend);
f21f3fe0 11427
252b5132 11428 case R_ARM_GOT32:
eb043451 11429 case R_ARM_GOT_PREL:
252b5132 11430 /* Relocation is to the entry for this symbol in the
99059e56 11431 global offset table. */
252b5132
RH
11432 if (sgot == NULL)
11433 return bfd_reloc_notsupported;
f21f3fe0 11434
34e77a92
RS
11435 if (dynreloc_st_type == STT_GNU_IFUNC
11436 && plt_offset != (bfd_vma) -1
11437 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11438 {
11439 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11440 symbol, and the relocation resolves directly to the runtime
11441 target rather than to the .iplt entry. This means that any
11442 .got entry would be the same value as the .igot.plt entry,
11443 so there's no point creating both. */
11444 sgot = globals->root.igotplt;
11445 value = sgot->output_offset + gotplt_offset;
11446 }
11447 else if (h != NULL)
252b5132
RH
11448 {
11449 bfd_vma off;
f21f3fe0 11450
252b5132
RH
11451 off = h->got.offset;
11452 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 11453 if ((off & 1) != 0)
252b5132 11454 {
b436d854
RS
11455 /* We have already processsed one GOT relocation against
11456 this symbol. */
11457 off &= ~1;
11458 if (globals->root.dynamic_sections_created
11459 && !SYMBOL_REFERENCES_LOCAL (info, h))
0a1b45a2 11460 *unresolved_reloc_p = false;
b436d854
RS
11461 }
11462 else
11463 {
11464 Elf_Internal_Rela outrel;
e8b09b87 11465 int isrofixup = 0;
b436d854 11466
e8b09b87
CL
11467 if (((h->dynindx != -1) || globals->fdpic_p)
11468 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
11469 {
11470 /* If the symbol doesn't resolve locally in a static
11471 object, we have an undefined reference. If the
11472 symbol doesn't resolve locally in a dynamic object,
11473 it should be resolved by the dynamic linker. */
11474 if (globals->root.dynamic_sections_created)
11475 {
11476 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
0a1b45a2 11477 *unresolved_reloc_p = false;
b436d854
RS
11478 }
11479 else
11480 outrel.r_info = 0;
11481 outrel.r_addend = 0;
11482 }
252b5132
RH
11483 else
11484 {
34e77a92 11485 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 11486 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
5025eb7c 11487 else if (bfd_link_pic (info)
7f026732 11488 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
99059e56
RM
11489 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11490 else
2376f038
EB
11491 {
11492 outrel.r_info = 0;
11493 if (globals->fdpic_p)
11494 isrofixup = 1;
11495 }
34e77a92 11496 outrel.r_addend = dynreloc_value;
b436d854 11497 }
ee29b9fb 11498
b436d854
RS
11499 /* The GOT entry is initialized to zero by default.
11500 See if we should install a different value. */
11501 if (outrel.r_addend != 0
2376f038 11502 && (globals->use_rel || outrel.r_info == 0))
b436d854
RS
11503 {
11504 bfd_put_32 (output_bfd, outrel.r_addend,
11505 sgot->contents + off);
11506 outrel.r_addend = 0;
252b5132 11507 }
f21f3fe0 11508
2376f038
EB
11509 if (isrofixup)
11510 arm_elf_add_rofixup (output_bfd,
cc850f74 11511 elf32_arm_hash_table (info)->srofixup,
2376f038
EB
11512 sgot->output_section->vma
11513 + sgot->output_offset + off);
11514
11515 else if (outrel.r_info != 0)
b436d854
RS
11516 {
11517 outrel.r_offset = (sgot->output_section->vma
11518 + sgot->output_offset
11519 + off);
11520 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11521 }
2376f038 11522
b436d854
RS
11523 h->got.offset |= 1;
11524 }
252b5132
RH
11525 value = sgot->output_offset + off;
11526 }
11527 else
11528 {
11529 bfd_vma off;
f21f3fe0 11530
5025eb7c
AO
11531 BFD_ASSERT (local_got_offsets != NULL
11532 && local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 11533
252b5132 11534 off = local_got_offsets[r_symndx];
f21f3fe0 11535
252b5132
RH
11536 /* The offset must always be a multiple of 4. We use the
11537 least significant bit to record whether we have already
9b485d32 11538 generated the necessary reloc. */
252b5132
RH
11539 if ((off & 1) != 0)
11540 off &= ~1;
11541 else
11542 {
2376f038
EB
11543 Elf_Internal_Rela outrel;
11544 int isrofixup = 0;
f21f3fe0 11545
2376f038
EB
11546 if (dynreloc_st_type == STT_GNU_IFUNC)
11547 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11548 else if (bfd_link_pic (info))
11549 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11550 else
252b5132 11551 {
2376f038
EB
11552 outrel.r_info = 0;
11553 if (globals->fdpic_p)
11554 isrofixup = 1;
11555 }
11556
11557 /* The GOT entry is initialized to zero by default.
11558 See if we should install a different value. */
11559 if (globals->use_rel || outrel.r_info == 0)
11560 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11561
11562 if (isrofixup)
11563 arm_elf_add_rofixup (output_bfd,
11564 globals->srofixup,
11565 sgot->output_section->vma
11566 + sgot->output_offset + off);
f21f3fe0 11567
2376f038
EB
11568 else if (outrel.r_info != 0)
11569 {
34e77a92 11570 outrel.r_addend = addend + dynreloc_value;
252b5132 11571 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 11572 + sgot->output_offset
252b5132 11573 + off);
47beaa6a 11574 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 11575 }
f21f3fe0 11576
252b5132
RH
11577 local_got_offsets[r_symndx] |= 1;
11578 }
f21f3fe0 11579
252b5132
RH
11580 value = sgot->output_offset + off;
11581 }
eb043451
PB
11582 if (r_type != R_ARM_GOT32)
11583 value += sgot->output_section->vma;
9a5aca8c 11584
f21f3fe0 11585 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11586 contents, rel->r_offset, value,
00a97672 11587 rel->r_addend);
f21f3fe0 11588
ba93b8ac
DJ
11589 case R_ARM_TLS_LDO32:
11590 value = value - dtpoff_base (info);
11591
11592 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
11593 contents, rel->r_offset, value,
11594 rel->r_addend);
ba93b8ac
DJ
11595
11596 case R_ARM_TLS_LDM32:
5c5a4843 11597 case R_ARM_TLS_LDM32_FDPIC:
ba93b8ac
DJ
11598 {
11599 bfd_vma off;
11600
362d30a1 11601 if (sgot == NULL)
ba93b8ac
DJ
11602 abort ();
11603
11604 off = globals->tls_ldm_got.offset;
11605
11606 if ((off & 1) != 0)
11607 off &= ~1;
11608 else
11609 {
11610 /* If we don't know the module number, create a relocation
11611 for it. */
9cb09e33 11612 if (bfd_link_dll (info))
ba93b8ac
DJ
11613 {
11614 Elf_Internal_Rela outrel;
ba93b8ac 11615
362d30a1 11616 if (srelgot == NULL)
ba93b8ac
DJ
11617 abort ();
11618
00a97672 11619 outrel.r_addend = 0;
362d30a1
RS
11620 outrel.r_offset = (sgot->output_section->vma
11621 + sgot->output_offset + off);
ba93b8ac
DJ
11622 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11623
00a97672
RS
11624 if (globals->use_rel)
11625 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11626 sgot->contents + off);
ba93b8ac 11627
47beaa6a 11628 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11629 }
11630 else
362d30a1 11631 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
11632
11633 globals->tls_ldm_got.offset |= 1;
11634 }
11635
5c5a4843 11636 if (r_type == R_ARM_TLS_LDM32_FDPIC)
e8b09b87 11637 {
cc850f74
NC
11638 bfd_put_32 (output_bfd,
11639 globals->root.sgot->output_offset + off,
11640 contents + rel->r_offset);
e8b09b87
CL
11641
11642 return bfd_reloc_ok;
11643 }
11644 else
11645 {
11646 value = sgot->output_section->vma + sgot->output_offset + off
11647 - (input_section->output_section->vma
11648 + input_section->output_offset + rel->r_offset);
ba93b8ac 11649
e8b09b87
CL
11650 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11651 contents, rel->r_offset, value,
11652 rel->r_addend);
11653 }
ba93b8ac
DJ
11654 }
11655
0855e32b
NS
11656 case R_ARM_TLS_CALL:
11657 case R_ARM_THM_TLS_CALL:
ba93b8ac 11658 case R_ARM_TLS_GD32:
5c5a4843 11659 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 11660 case R_ARM_TLS_IE32:
5c5a4843 11661 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
11662 case R_ARM_TLS_GOTDESC:
11663 case R_ARM_TLS_DESCSEQ:
11664 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 11665 {
0855e32b
NS
11666 bfd_vma off, offplt;
11667 int indx = 0;
ba93b8ac
DJ
11668 char tls_type;
11669
0855e32b 11670 BFD_ASSERT (sgot != NULL);
ba93b8ac 11671
ba93b8ac
DJ
11672 if (h != NULL)
11673 {
0a1b45a2 11674 bool dyn;
ba93b8ac 11675 dyn = globals->root.dynamic_sections_created;
0e1862bb
L
11676 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11677 bfd_link_pic (info),
11678 h)
11679 && (!bfd_link_pic (info)
ba93b8ac
DJ
11680 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11681 {
0a1b45a2 11682 *unresolved_reloc_p = false;
ba93b8ac
DJ
11683 indx = h->dynindx;
11684 }
11685 off = h->got.offset;
0855e32b 11686 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
11687 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11688 }
11689 else
11690 {
0855e32b 11691 BFD_ASSERT (local_got_offsets != NULL);
cc850f74 11692
74fd118f
NC
11693 if (r_symndx >= elf32_arm_num_entries (input_bfd))
11694 {
11695 _bfd_error_handler (_("\
11696%pB: expected symbol index in range 0..%lu but found local symbol with index %lu"),
11697 input_bfd,
11698 (unsigned long) elf32_arm_num_entries (input_bfd),
11699 r_symndx);
11700 return false;
11701 }
ba93b8ac 11702 off = local_got_offsets[r_symndx];
0855e32b 11703 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
11704 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11705 }
11706
0855e32b 11707 /* Linker relaxations happens from one of the
b38cadfb 11708 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
cc850f74 11709 if (ELF32_R_TYPE (rel->r_info) != r_type)
b38cadfb 11710 tls_type = GOT_TLS_IE;
0855e32b
NS
11711
11712 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
11713
11714 if ((off & 1) != 0)
11715 off &= ~1;
11716 else
11717 {
0a1b45a2 11718 bool need_relocs = false;
ba93b8ac 11719 Elf_Internal_Rela outrel;
ba93b8ac
DJ
11720 int cur_off = off;
11721
11722 /* The GOT entries have not been initialized yet. Do it
11723 now, and emit any relocations. If both an IE GOT and a
11724 GD GOT are necessary, we emit the GD first. */
11725
9cb09e33 11726 if ((bfd_link_dll (info) || indx != 0)
ba93b8ac 11727 && (h == NULL
95b03e4a
L
11728 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11729 && !resolved_to_zero)
ba93b8ac
DJ
11730 || h->root.type != bfd_link_hash_undefweak))
11731 {
0a1b45a2 11732 need_relocs = true;
0855e32b 11733 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
11734 }
11735
0855e32b
NS
11736 if (tls_type & GOT_TLS_GDESC)
11737 {
47beaa6a
RS
11738 bfd_byte *loc;
11739
0855e32b
NS
11740 /* We should have relaxed, unless this is an undefined
11741 weak symbol. */
11742 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9cb09e33 11743 || bfd_link_dll (info));
0855e32b 11744 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
99059e56 11745 <= globals->root.sgotplt->size);
0855e32b
NS
11746
11747 outrel.r_addend = 0;
11748 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11749 + globals->root.sgotplt->output_offset
11750 + offplt
11751 + globals->sgotplt_jump_table_size);
b38cadfb 11752
0855e32b
NS
11753 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11754 sreloc = globals->root.srelplt;
11755 loc = sreloc->contents;
11756 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11757 BFD_ASSERT (loc + RELOC_SIZE (globals)
99059e56 11758 <= sreloc->contents + sreloc->size);
0855e32b
NS
11759
11760 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11761
11762 /* For globals, the first word in the relocation gets
11763 the relocation index and the top bit set, or zero,
11764 if we're binding now. For locals, it gets the
11765 symbol's offset in the tls section. */
99059e56 11766 bfd_put_32 (output_bfd,
0855e32b
NS
11767 !h ? value - elf_hash_table (info)->tls_sec->vma
11768 : info->flags & DF_BIND_NOW ? 0
11769 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
11770 globals->root.sgotplt->contents + offplt
11771 + globals->sgotplt_jump_table_size);
11772
0855e32b 11773 /* Second word in the relocation is always zero. */
99059e56 11774 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
11775 globals->root.sgotplt->contents + offplt
11776 + globals->sgotplt_jump_table_size + 4);
0855e32b 11777 }
ba93b8ac
DJ
11778 if (tls_type & GOT_TLS_GD)
11779 {
11780 if (need_relocs)
11781 {
00a97672 11782 outrel.r_addend = 0;
362d30a1
RS
11783 outrel.r_offset = (sgot->output_section->vma
11784 + sgot->output_offset
00a97672 11785 + cur_off);
ba93b8ac 11786 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 11787
00a97672
RS
11788 if (globals->use_rel)
11789 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11790 sgot->contents + cur_off);
00a97672 11791
47beaa6a 11792 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11793
11794 if (indx == 0)
11795 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11796 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11797 else
11798 {
00a97672 11799 outrel.r_addend = 0;
ba93b8ac
DJ
11800 outrel.r_info = ELF32_R_INFO (indx,
11801 R_ARM_TLS_DTPOFF32);
11802 outrel.r_offset += 4;
00a97672
RS
11803
11804 if (globals->use_rel)
11805 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11806 sgot->contents + cur_off + 4);
00a97672 11807
47beaa6a
RS
11808 elf32_arm_add_dynreloc (output_bfd, info,
11809 srelgot, &outrel);
ba93b8ac
DJ
11810 }
11811 }
11812 else
11813 {
11814 /* If we are not emitting relocations for a
11815 general dynamic reference, then we must be in a
11816 static link or an executable link with the
11817 symbol binding locally. Mark it as belonging
11818 to module 1, the executable. */
11819 bfd_put_32 (output_bfd, 1,
362d30a1 11820 sgot->contents + cur_off);
ba93b8ac 11821 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11822 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11823 }
11824
11825 cur_off += 8;
11826 }
11827
11828 if (tls_type & GOT_TLS_IE)
11829 {
11830 if (need_relocs)
11831 {
00a97672
RS
11832 if (indx == 0)
11833 outrel.r_addend = value - dtpoff_base (info);
11834 else
11835 outrel.r_addend = 0;
362d30a1
RS
11836 outrel.r_offset = (sgot->output_section->vma
11837 + sgot->output_offset
ba93b8ac
DJ
11838 + cur_off);
11839 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11840
00a97672
RS
11841 if (globals->use_rel)
11842 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11843 sgot->contents + cur_off);
ba93b8ac 11844
47beaa6a 11845 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11846 }
11847 else
11848 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 11849 sgot->contents + cur_off);
ba93b8ac
DJ
11850 cur_off += 4;
11851 }
11852
11853 if (h != NULL)
11854 h->got.offset |= 1;
11855 else
11856 local_got_offsets[r_symndx] |= 1;
11857 }
11858
5c5a4843 11859 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
ba93b8ac 11860 off += 8;
0855e32b
NS
11861 else if (tls_type & GOT_TLS_GDESC)
11862 off = offplt;
11863
cc850f74
NC
11864 if (ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
11865 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL)
0855e32b
NS
11866 {
11867 bfd_signed_vma offset;
12352d3f
PB
11868 /* TLS stubs are arm mode. The original symbol is a
11869 data object, so branch_type is bogus. */
11870 branch_type = ST_BRANCH_TO_ARM;
0855e32b 11871 enum elf32_arm_stub_type stub_type
34e77a92
RS
11872 = arm_type_of_stub (info, input_section, rel,
11873 st_type, &branch_type,
0855e32b
NS
11874 (struct elf32_arm_link_hash_entry *)h,
11875 globals->tls_trampoline, globals->root.splt,
11876 input_bfd, sym_name);
11877
11878 if (stub_type != arm_stub_none)
11879 {
11880 struct elf32_arm_stub_hash_entry *stub_entry
11881 = elf32_arm_get_stub_entry
11882 (input_section, globals->root.splt, 0, rel,
11883 globals, stub_type);
11884 offset = (stub_entry->stub_offset
11885 + stub_entry->stub_sec->output_offset
11886 + stub_entry->stub_sec->output_section->vma);
11887 }
11888 else
11889 offset = (globals->root.splt->output_section->vma
11890 + globals->root.splt->output_offset
11891 + globals->tls_trampoline);
11892
cc850f74 11893 if (ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL)
0855e32b
NS
11894 {
11895 unsigned long inst;
b38cadfb
NC
11896
11897 offset -= (input_section->output_section->vma
11898 + input_section->output_offset
11899 + rel->r_offset + 8);
0855e32b
NS
11900
11901 inst = offset >> 2;
11902 inst &= 0x00ffffff;
11903 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11904 }
11905 else
11906 {
11907 /* Thumb blx encodes the offset in a complicated
11908 fashion. */
11909 unsigned upper_insn, lower_insn;
11910 unsigned neg;
11911
b38cadfb
NC
11912 offset -= (input_section->output_section->vma
11913 + input_section->output_offset
0855e32b 11914 + rel->r_offset + 4);
b38cadfb 11915
12352d3f
PB
11916 if (stub_type != arm_stub_none
11917 && arm_stub_is_thumb (stub_type))
11918 {
11919 lower_insn = 0xd000;
11920 }
11921 else
11922 {
11923 lower_insn = 0xc000;
6a631e86 11924 /* Round up the offset to a word boundary. */
12352d3f
PB
11925 offset = (offset + 2) & ~2;
11926 }
11927
0855e32b
NS
11928 neg = offset < 0;
11929 upper_insn = (0xf000
11930 | ((offset >> 12) & 0x3ff)
11931 | (neg << 10));
12352d3f 11932 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 11933 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 11934 | ((offset >> 1) & 0x7ff);
0855e32b
NS
11935 bfd_put_16 (input_bfd, upper_insn, hit_data);
11936 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11937 return bfd_reloc_ok;
11938 }
11939 }
11940 /* These relocations needs special care, as besides the fact
11941 they point somewhere in .gotplt, the addend must be
11942 adjusted accordingly depending on the type of instruction
6a631e86 11943 we refer to. */
0855e32b
NS
11944 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11945 {
11946 unsigned long data, insn;
11947 unsigned thumb;
b38cadfb 11948
b627f562 11949 data = bfd_get_signed_32 (input_bfd, hit_data);
0855e32b 11950 thumb = data & 1;
b627f562 11951 data &= ~1ul;
b38cadfb 11952
0855e32b
NS
11953 if (thumb)
11954 {
11955 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11956 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11957 insn = (insn << 16)
11958 | bfd_get_16 (input_bfd,
11959 contents + rel->r_offset - data + 2);
11960 if ((insn & 0xf800c000) == 0xf000c000)
11961 /* bl/blx */
11962 value = -6;
11963 else if ((insn & 0xffffff00) == 0x4400)
11964 /* add */
11965 value = -5;
11966 else
11967 {
4eca0228 11968 _bfd_error_handler
695344c0 11969 /* xgettext:c-format */
2dcf00ce 11970 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 11971 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
11972 "referenced by TLS_GOTDESC"),
11973 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 11974 "Thumb", insn);
0855e32b
NS
11975 return bfd_reloc_notsupported;
11976 }
11977 }
11978 else
11979 {
11980 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11981
11982 switch (insn >> 24)
11983 {
11984 case 0xeb: /* bl */
11985 case 0xfa: /* blx */
11986 value = -4;
11987 break;
11988
11989 case 0xe0: /* add */
11990 value = -8;
11991 break;
b38cadfb 11992
0855e32b 11993 default:
4eca0228 11994 _bfd_error_handler
695344c0 11995 /* xgettext:c-format */
2dcf00ce 11996 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 11997 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
11998 "referenced by TLS_GOTDESC"),
11999 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 12000 "ARM", insn);
0855e32b
NS
12001 return bfd_reloc_notsupported;
12002 }
12003 }
b38cadfb 12004
0855e32b
NS
12005 value += ((globals->root.sgotplt->output_section->vma
12006 + globals->root.sgotplt->output_offset + off)
12007 - (input_section->output_section->vma
12008 + input_section->output_offset
12009 + rel->r_offset)
12010 + globals->sgotplt_jump_table_size);
12011 }
12012 else
12013 value = ((globals->root.sgot->output_section->vma
12014 + globals->root.sgot->output_offset + off)
12015 - (input_section->output_section->vma
12016 + input_section->output_offset + rel->r_offset));
ba93b8ac 12017
5c5a4843
CL
12018 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12019 r_type == R_ARM_TLS_IE32_FDPIC))
e8b09b87
CL
12020 {
12021 /* For FDPIC relocations, resolve to the offset of the GOT
12022 entry from the start of GOT. */
cc850f74
NC
12023 bfd_put_32 (output_bfd,
12024 globals->root.sgot->output_offset + off,
12025 contents + rel->r_offset);
e8b09b87
CL
12026
12027 return bfd_reloc_ok;
12028 }
12029 else
12030 {
12031 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12032 contents, rel->r_offset, value,
12033 rel->r_addend);
12034 }
ba93b8ac
DJ
12035 }
12036
12037 case R_ARM_TLS_LE32:
3cbc1e5e 12038 if (bfd_link_dll (info))
ba93b8ac 12039 {
4eca0228 12040 _bfd_error_handler
695344c0 12041 /* xgettext:c-format */
2dcf00ce
AM
12042 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12043 "in shared object"),
12044 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
46691134 12045 return bfd_reloc_notsupported;
ba93b8ac
DJ
12046 }
12047 else
12048 value = tpoff (info, value);
906e58ca 12049
ba93b8ac 12050 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
12051 contents, rel->r_offset, value,
12052 rel->r_addend);
ba93b8ac 12053
319850b4
JB
12054 case R_ARM_V4BX:
12055 if (globals->fix_v4bx)
845b51d6
PB
12056 {
12057 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 12058
845b51d6
PB
12059 /* Ensure that we have a BX instruction. */
12060 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 12061
845b51d6
PB
12062 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12063 {
12064 /* Branch to veneer. */
12065 bfd_vma glue_addr;
12066 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12067 glue_addr -= input_section->output_section->vma
12068 + input_section->output_offset
12069 + rel->r_offset + 8;
12070 insn = (insn & 0xf0000000) | 0x0a000000
12071 | ((glue_addr >> 2) & 0x00ffffff);
12072 }
12073 else
12074 {
12075 /* Preserve Rm (lowest four bits) and the condition code
12076 (highest four bits). Other bits encode MOV PC,Rm. */
12077 insn = (insn & 0xf000000f) | 0x01a0f000;
12078 }
319850b4 12079
845b51d6
PB
12080 bfd_put_32 (input_bfd, insn, hit_data);
12081 }
319850b4
JB
12082 return bfd_reloc_ok;
12083
b6895b4f
PB
12084 case R_ARM_MOVW_ABS_NC:
12085 case R_ARM_MOVT_ABS:
12086 case R_ARM_MOVW_PREL_NC:
12087 case R_ARM_MOVT_PREL:
92f5d02b
MS
12088 /* Until we properly support segment-base-relative addressing then
12089 we assume the segment base to be zero, as for the group relocations.
12090 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12091 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12092 case R_ARM_MOVW_BREL_NC:
12093 case R_ARM_MOVW_BREL:
12094 case R_ARM_MOVT_BREL:
b6895b4f
PB
12095 {
12096 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12097
12098 if (globals->use_rel)
12099 {
12100 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 12101 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12102 }
92f5d02b 12103
b6895b4f 12104 value += signed_addend;
b6895b4f
PB
12105
12106 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12107 value -= (input_section->output_section->vma
12108 + input_section->output_offset + rel->r_offset);
12109
92f5d02b 12110 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
99059e56 12111 return bfd_reloc_overflow;
92f5d02b 12112
35fc36a8 12113 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12114 value |= 1;
12115
12116 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
99059e56 12117 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
12118 value >>= 16;
12119
12120 insn &= 0xfff0f000;
12121 insn |= value & 0xfff;
12122 insn |= (value & 0xf000) << 4;
12123 bfd_put_32 (input_bfd, insn, hit_data);
12124 }
12125 return bfd_reloc_ok;
12126
12127 case R_ARM_THM_MOVW_ABS_NC:
12128 case R_ARM_THM_MOVT_ABS:
12129 case R_ARM_THM_MOVW_PREL_NC:
12130 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
12131 /* Until we properly support segment-base-relative addressing then
12132 we assume the segment base to be zero, as for the above relocations.
12133 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12134 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12135 as R_ARM_THM_MOVT_ABS. */
12136 case R_ARM_THM_MOVW_BREL_NC:
12137 case R_ARM_THM_MOVW_BREL:
12138 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
12139 {
12140 bfd_vma insn;
906e58ca 12141
b6895b4f
PB
12142 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12143 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12144
12145 if (globals->use_rel)
12146 {
12147 addend = ((insn >> 4) & 0xf000)
12148 | ((insn >> 15) & 0x0800)
12149 | ((insn >> 4) & 0x0700)
07d6d2b8 12150 | (insn & 0x00ff);
39623e12 12151 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12152 }
92f5d02b 12153
b6895b4f 12154 value += signed_addend;
b6895b4f
PB
12155
12156 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12157 value -= (input_section->output_section->vma
12158 + input_section->output_offset + rel->r_offset);
12159
92f5d02b 12160 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
99059e56 12161 return bfd_reloc_overflow;
92f5d02b 12162
35fc36a8 12163 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12164 value |= 1;
12165
12166 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
99059e56 12167 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
12168 value >>= 16;
12169
12170 insn &= 0xfbf08f00;
12171 insn |= (value & 0xf000) << 4;
12172 insn |= (value & 0x0800) << 15;
12173 insn |= (value & 0x0700) << 4;
12174 insn |= (value & 0x00ff);
12175
12176 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12177 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12178 }
12179 return bfd_reloc_ok;
12180
4962c51a
MS
12181 case R_ARM_ALU_PC_G0_NC:
12182 case R_ARM_ALU_PC_G1_NC:
12183 case R_ARM_ALU_PC_G0:
12184 case R_ARM_ALU_PC_G1:
12185 case R_ARM_ALU_PC_G2:
12186 case R_ARM_ALU_SB_G0_NC:
12187 case R_ARM_ALU_SB_G1_NC:
12188 case R_ARM_ALU_SB_G0:
12189 case R_ARM_ALU_SB_G1:
12190 case R_ARM_ALU_SB_G2:
12191 {
12192 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12193 bfd_vma pc = input_section->output_section->vma
4962c51a 12194 + input_section->output_offset + rel->r_offset;
31a91d61 12195 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12196 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56
RM
12197 bfd_vma residual;
12198 bfd_vma g_n;
4962c51a 12199 bfd_signed_vma signed_value;
99059e56
RM
12200 int group = 0;
12201
12202 /* Determine which group of bits to select. */
12203 switch (r_type)
12204 {
12205 case R_ARM_ALU_PC_G0_NC:
12206 case R_ARM_ALU_PC_G0:
12207 case R_ARM_ALU_SB_G0_NC:
12208 case R_ARM_ALU_SB_G0:
12209 group = 0;
12210 break;
12211
12212 case R_ARM_ALU_PC_G1_NC:
12213 case R_ARM_ALU_PC_G1:
12214 case R_ARM_ALU_SB_G1_NC:
12215 case R_ARM_ALU_SB_G1:
12216 group = 1;
12217 break;
12218
12219 case R_ARM_ALU_PC_G2:
12220 case R_ARM_ALU_SB_G2:
12221 group = 2;
12222 break;
12223
12224 default:
12225 abort ();
12226 }
12227
12228 /* If REL, extract the addend from the insn. If RELA, it will
12229 have already been fetched for us. */
4962c51a 12230 if (globals->use_rel)
99059e56
RM
12231 {
12232 int negative;
12233 bfd_vma constant = insn & 0xff;
12234 bfd_vma rotation = (insn & 0xf00) >> 8;
12235
12236 if (rotation == 0)
12237 signed_addend = constant;
12238 else
12239 {
12240 /* Compensate for the fact that in the instruction, the
12241 rotation is stored in multiples of 2 bits. */
12242 rotation *= 2;
12243
12244 /* Rotate "constant" right by "rotation" bits. */
12245 signed_addend = (constant >> rotation) |
12246 (constant << (8 * sizeof (bfd_vma) - rotation));
12247 }
12248
12249 /* Determine if the instruction is an ADD or a SUB.
12250 (For REL, this determines the sign of the addend.) */
12251 negative = identify_add_or_sub (insn);
12252 if (negative == 0)
12253 {
4eca0228 12254 _bfd_error_handler
695344c0 12255 /* xgettext:c-format */
90b6238f 12256 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
2dcf00ce
AM
12257 "are allowed for ALU group relocations"),
12258 input_bfd, input_section, (uint64_t) rel->r_offset);
99059e56
RM
12259 return bfd_reloc_overflow;
12260 }
12261
12262 signed_addend *= negative;
12263 }
4962c51a
MS
12264
12265 /* Compute the value (X) to go in the place. */
99059e56
RM
12266 if (r_type == R_ARM_ALU_PC_G0_NC
12267 || r_type == R_ARM_ALU_PC_G1_NC
12268 || r_type == R_ARM_ALU_PC_G0
12269 || r_type == R_ARM_ALU_PC_G1
12270 || r_type == R_ARM_ALU_PC_G2)
12271 /* PC relative. */
12272 signed_value = value - pc + signed_addend;
12273 else
12274 /* Section base relative. */
12275 signed_value = value - sb + signed_addend;
12276
12277 /* If the target symbol is a Thumb function, then set the
12278 Thumb bit in the address. */
35fc36a8 12279 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
12280 signed_value |= 1;
12281
99059e56
RM
12282 /* Calculate the value of the relevant G_n, in encoded
12283 constant-with-rotation format. */
b6518b38
NC
12284 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12285 group, &residual);
99059e56
RM
12286
12287 /* Check for overflow if required. */
12288 if ((r_type == R_ARM_ALU_PC_G0
12289 || r_type == R_ARM_ALU_PC_G1
12290 || r_type == R_ARM_ALU_PC_G2
12291 || r_type == R_ARM_ALU_SB_G0
12292 || r_type == R_ARM_ALU_SB_G1
12293 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12294 {
4eca0228 12295 _bfd_error_handler
695344c0 12296 /* xgettext:c-format */
90b6238f 12297 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12298 "splitting %#" PRIx64 " for group relocation %s"),
12299 input_bfd, input_section, (uint64_t) rel->r_offset,
12300 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12301 howto->name);
99059e56
RM
12302 return bfd_reloc_overflow;
12303 }
12304
12305 /* Mask out the value and the ADD/SUB part of the opcode; take care
12306 not to destroy the S bit. */
12307 insn &= 0xff1ff000;
12308
12309 /* Set the opcode according to whether the value to go in the
12310 place is negative. */
12311 if (signed_value < 0)
12312 insn |= 1 << 22;
12313 else
12314 insn |= 1 << 23;
12315
12316 /* Encode the offset. */
12317 insn |= g_n;
4962c51a
MS
12318
12319 bfd_put_32 (input_bfd, insn, hit_data);
12320 }
12321 return bfd_reloc_ok;
12322
12323 case R_ARM_LDR_PC_G0:
12324 case R_ARM_LDR_PC_G1:
12325 case R_ARM_LDR_PC_G2:
12326 case R_ARM_LDR_SB_G0:
12327 case R_ARM_LDR_SB_G1:
12328 case R_ARM_LDR_SB_G2:
12329 {
12330 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12331 bfd_vma pc = input_section->output_section->vma
4962c51a 12332 + input_section->output_offset + rel->r_offset;
31a91d61 12333 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12334 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12335 bfd_vma residual;
4962c51a 12336 bfd_signed_vma signed_value;
99059e56
RM
12337 int group = 0;
12338
12339 /* Determine which groups of bits to calculate. */
12340 switch (r_type)
12341 {
12342 case R_ARM_LDR_PC_G0:
12343 case R_ARM_LDR_SB_G0:
12344 group = 0;
12345 break;
12346
12347 case R_ARM_LDR_PC_G1:
12348 case R_ARM_LDR_SB_G1:
12349 group = 1;
12350 break;
12351
12352 case R_ARM_LDR_PC_G2:
12353 case R_ARM_LDR_SB_G2:
12354 group = 2;
12355 break;
12356
12357 default:
12358 abort ();
12359 }
12360
12361 /* If REL, extract the addend from the insn. If RELA, it will
12362 have already been fetched for us. */
4962c51a 12363 if (globals->use_rel)
99059e56
RM
12364 {
12365 int negative = (insn & (1 << 23)) ? 1 : -1;
12366 signed_addend = negative * (insn & 0xfff);
12367 }
4962c51a
MS
12368
12369 /* Compute the value (X) to go in the place. */
99059e56
RM
12370 if (r_type == R_ARM_LDR_PC_G0
12371 || r_type == R_ARM_LDR_PC_G1
12372 || r_type == R_ARM_LDR_PC_G2)
12373 /* PC relative. */
12374 signed_value = value - pc + signed_addend;
12375 else
12376 /* Section base relative. */
12377 signed_value = value - sb + signed_addend;
12378
12379 /* Calculate the value of the relevant G_{n-1} to obtain
12380 the residual at that stage. */
b6518b38
NC
12381 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12382 group - 1, &residual);
99059e56
RM
12383
12384 /* Check for overflow. */
12385 if (residual >= 0x1000)
12386 {
4eca0228 12387 _bfd_error_handler
695344c0 12388 /* xgettext:c-format */
90b6238f 12389 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12390 "splitting %#" PRIx64 " for group relocation %s"),
12391 input_bfd, input_section, (uint64_t) rel->r_offset,
12392 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12393 howto->name);
99059e56
RM
12394 return bfd_reloc_overflow;
12395 }
12396
12397 /* Mask out the value and U bit. */
12398 insn &= 0xff7ff000;
12399
12400 /* Set the U bit if the value to go in the place is non-negative. */
12401 if (signed_value >= 0)
12402 insn |= 1 << 23;
12403
12404 /* Encode the offset. */
12405 insn |= residual;
4962c51a
MS
12406
12407 bfd_put_32 (input_bfd, insn, hit_data);
12408 }
12409 return bfd_reloc_ok;
12410
12411 case R_ARM_LDRS_PC_G0:
12412 case R_ARM_LDRS_PC_G1:
12413 case R_ARM_LDRS_PC_G2:
12414 case R_ARM_LDRS_SB_G0:
12415 case R_ARM_LDRS_SB_G1:
12416 case R_ARM_LDRS_SB_G2:
12417 {
12418 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12419 bfd_vma pc = input_section->output_section->vma
4962c51a 12420 + input_section->output_offset + rel->r_offset;
31a91d61 12421 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12422 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12423 bfd_vma residual;
4962c51a 12424 bfd_signed_vma signed_value;
99059e56
RM
12425 int group = 0;
12426
12427 /* Determine which groups of bits to calculate. */
12428 switch (r_type)
12429 {
12430 case R_ARM_LDRS_PC_G0:
12431 case R_ARM_LDRS_SB_G0:
12432 group = 0;
12433 break;
12434
12435 case R_ARM_LDRS_PC_G1:
12436 case R_ARM_LDRS_SB_G1:
12437 group = 1;
12438 break;
12439
12440 case R_ARM_LDRS_PC_G2:
12441 case R_ARM_LDRS_SB_G2:
12442 group = 2;
12443 break;
12444
12445 default:
12446 abort ();
12447 }
12448
12449 /* If REL, extract the addend from the insn. If RELA, it will
12450 have already been fetched for us. */
4962c51a 12451 if (globals->use_rel)
99059e56
RM
12452 {
12453 int negative = (insn & (1 << 23)) ? 1 : -1;
12454 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12455 }
4962c51a
MS
12456
12457 /* Compute the value (X) to go in the place. */
99059e56
RM
12458 if (r_type == R_ARM_LDRS_PC_G0
12459 || r_type == R_ARM_LDRS_PC_G1
12460 || r_type == R_ARM_LDRS_PC_G2)
12461 /* PC relative. */
12462 signed_value = value - pc + signed_addend;
12463 else
12464 /* Section base relative. */
12465 signed_value = value - sb + signed_addend;
12466
12467 /* Calculate the value of the relevant G_{n-1} to obtain
12468 the residual at that stage. */
b6518b38
NC
12469 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12470 group - 1, &residual);
99059e56
RM
12471
12472 /* Check for overflow. */
12473 if (residual >= 0x100)
12474 {
4eca0228 12475 _bfd_error_handler
695344c0 12476 /* xgettext:c-format */
90b6238f 12477 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12478 "splitting %#" PRIx64 " for group relocation %s"),
12479 input_bfd, input_section, (uint64_t) rel->r_offset,
12480 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12481 howto->name);
99059e56
RM
12482 return bfd_reloc_overflow;
12483 }
12484
12485 /* Mask out the value and U bit. */
12486 insn &= 0xff7ff0f0;
12487
12488 /* Set the U bit if the value to go in the place is non-negative. */
12489 if (signed_value >= 0)
12490 insn |= 1 << 23;
12491
12492 /* Encode the offset. */
12493 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
4962c51a
MS
12494
12495 bfd_put_32 (input_bfd, insn, hit_data);
12496 }
12497 return bfd_reloc_ok;
12498
12499 case R_ARM_LDC_PC_G0:
12500 case R_ARM_LDC_PC_G1:
12501 case R_ARM_LDC_PC_G2:
12502 case R_ARM_LDC_SB_G0:
12503 case R_ARM_LDC_SB_G1:
12504 case R_ARM_LDC_SB_G2:
12505 {
12506 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12507 bfd_vma pc = input_section->output_section->vma
4962c51a 12508 + input_section->output_offset + rel->r_offset;
31a91d61 12509 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12510 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12511 bfd_vma residual;
4962c51a 12512 bfd_signed_vma signed_value;
99059e56
RM
12513 int group = 0;
12514
12515 /* Determine which groups of bits to calculate. */
12516 switch (r_type)
12517 {
12518 case R_ARM_LDC_PC_G0:
12519 case R_ARM_LDC_SB_G0:
12520 group = 0;
12521 break;
12522
12523 case R_ARM_LDC_PC_G1:
12524 case R_ARM_LDC_SB_G1:
12525 group = 1;
12526 break;
12527
12528 case R_ARM_LDC_PC_G2:
12529 case R_ARM_LDC_SB_G2:
12530 group = 2;
12531 break;
12532
12533 default:
12534 abort ();
12535 }
12536
12537 /* If REL, extract the addend from the insn. If RELA, it will
12538 have already been fetched for us. */
4962c51a 12539 if (globals->use_rel)
99059e56
RM
12540 {
12541 int negative = (insn & (1 << 23)) ? 1 : -1;
12542 signed_addend = negative * ((insn & 0xff) << 2);
12543 }
4962c51a
MS
12544
12545 /* Compute the value (X) to go in the place. */
99059e56
RM
12546 if (r_type == R_ARM_LDC_PC_G0
12547 || r_type == R_ARM_LDC_PC_G1
12548 || r_type == R_ARM_LDC_PC_G2)
12549 /* PC relative. */
12550 signed_value = value - pc + signed_addend;
12551 else
12552 /* Section base relative. */
12553 signed_value = value - sb + signed_addend;
12554
12555 /* Calculate the value of the relevant G_{n-1} to obtain
12556 the residual at that stage. */
b6518b38
NC
12557 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12558 group - 1, &residual);
99059e56
RM
12559
12560 /* Check for overflow. (The absolute value to go in the place must be
12561 divisible by four and, after having been divided by four, must
12562 fit in eight bits.) */
12563 if ((residual & 0x3) != 0 || residual >= 0x400)
12564 {
4eca0228 12565 _bfd_error_handler
695344c0 12566 /* xgettext:c-format */
90b6238f 12567 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12568 "splitting %#" PRIx64 " for group relocation %s"),
12569 input_bfd, input_section, (uint64_t) rel->r_offset,
12570 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12571 howto->name);
99059e56
RM
12572 return bfd_reloc_overflow;
12573 }
12574
12575 /* Mask out the value and U bit. */
12576 insn &= 0xff7fff00;
12577
12578 /* Set the U bit if the value to go in the place is non-negative. */
12579 if (signed_value >= 0)
12580 insn |= 1 << 23;
12581
12582 /* Encode the offset. */
12583 insn |= residual >> 2;
4962c51a
MS
12584
12585 bfd_put_32 (input_bfd, insn, hit_data);
12586 }
12587 return bfd_reloc_ok;
12588
72d98d16
MG
12589 case R_ARM_THM_ALU_ABS_G0_NC:
12590 case R_ARM_THM_ALU_ABS_G1_NC:
12591 case R_ARM_THM_ALU_ABS_G2_NC:
12592 case R_ARM_THM_ALU_ABS_G3_NC:
12593 {
12594 const int shift_array[4] = {0, 8, 16, 24};
12595 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12596 bfd_vma addr = value;
12597 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12598
12599 /* Compute address. */
12600 if (globals->use_rel)
12601 signed_addend = insn & 0xff;
12602 addr += signed_addend;
12603 if (branch_type == ST_BRANCH_TO_THUMB)
12604 addr |= 1;
12605 /* Clean imm8 insn. */
12606 insn &= 0xff00;
12607 /* And update with correct part of address. */
12608 insn |= (addr >> shift) & 0xff;
12609 /* Update insn. */
12610 bfd_put_16 (input_bfd, insn, hit_data);
12611 }
12612
0a1b45a2 12613 *unresolved_reloc_p = false;
72d98d16
MG
12614 return bfd_reloc_ok;
12615
e8b09b87
CL
12616 case R_ARM_GOTOFFFUNCDESC:
12617 {
4b24dd1a 12618 if (h == NULL)
e8b09b87 12619 {
cc850f74 12620 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts (input_bfd);
e8b09b87 12621 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
74fd118f
NC
12622
12623 if (r_symndx >= elf32_arm_num_entries (input_bfd))
12624 {
12625 * error_message = _("local symbol index too big");
12626 return bfd_reloc_dangerous;
12627 }
12628
e8b09b87
CL
12629 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12630 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12631 bfd_vma seg = -1;
12632
cc850f74
NC
12633 if (bfd_link_pic (info) && dynindx == 0)
12634 {
12635 * error_message = _("no dynamic index information available");
12636 return bfd_reloc_dangerous;
12637 }
e8b09b87
CL
12638
12639 /* Resolve relocation. */
cc850f74 12640 bfd_put_32 (output_bfd, (offset + sgot->output_offset)
e8b09b87
CL
12641 , contents + rel->r_offset);
12642 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12643 not done yet. */
cc850f74
NC
12644 arm_elf_fill_funcdesc (output_bfd, info,
12645 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12646 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12647 }
12648 else
12649 {
12650 int dynindx;
12651 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12652 bfd_vma addr;
12653 bfd_vma seg = -1;
12654
12655 /* For static binaries, sym_sec can be null. */
12656 if (sym_sec)
12657 {
12658 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12659 addr = dynreloc_value - sym_sec->output_section->vma;
12660 }
12661 else
12662 {
12663 dynindx = 0;
12664 addr = 0;
12665 }
12666
cc850f74
NC
12667 if (bfd_link_pic (info) && dynindx == 0)
12668 {
12669 * error_message = _("no dynamic index information available");
12670 return bfd_reloc_dangerous;
12671 }
e8b09b87
CL
12672
12673 /* This case cannot occur since funcdesc is allocated by
12674 the dynamic loader so we cannot resolve the relocation. */
12675 if (h->dynindx != -1)
cc850f74
NC
12676 {
12677 * error_message = _("invalid dynamic index");
12678 return bfd_reloc_dangerous;
12679 }
e8b09b87
CL
12680
12681 /* Resolve relocation. */
cc850f74
NC
12682 bfd_put_32 (output_bfd, (offset + sgot->output_offset),
12683 contents + rel->r_offset);
e8b09b87 12684 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12685 arm_elf_fill_funcdesc (output_bfd, info,
12686 &eh->fdpic_cnts.funcdesc_offset,
12687 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12688 }
12689 }
0a1b45a2 12690 *unresolved_reloc_p = false;
e8b09b87
CL
12691 return bfd_reloc_ok;
12692
12693 case R_ARM_GOTFUNCDESC:
12694 {
4b24dd1a 12695 if (h != NULL)
e8b09b87
CL
12696 {
12697 Elf_Internal_Rela outrel;
12698
12699 /* Resolve relocation. */
cc850f74
NC
12700 bfd_put_32 (output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12701 + sgot->output_offset),
12702 contents + rel->r_offset);
e8b09b87 12703 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
cc850f74 12704 if (h->dynindx == -1)
e8b09b87
CL
12705 {
12706 int dynindx;
12707 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12708 bfd_vma addr;
12709 bfd_vma seg = -1;
12710
12711 /* For static binaries sym_sec can be null. */
12712 if (sym_sec)
12713 {
12714 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12715 addr = dynreloc_value - sym_sec->output_section->vma;
12716 }
12717 else
12718 {
12719 dynindx = 0;
12720 addr = 0;
12721 }
12722
12723 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12724 arm_elf_fill_funcdesc (output_bfd, info,
12725 &eh->fdpic_cnts.funcdesc_offset,
12726 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12727 }
12728
12729 /* Add a dynamic relocation on GOT entry if not already done. */
12730 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12731 {
12732 if (h->dynindx == -1)
12733 {
12734 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12735 if (h->root.type == bfd_link_hash_undefweak)
cc850f74
NC
12736 bfd_put_32 (output_bfd, 0, sgot->contents
12737 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
e8b09b87 12738 else
cc850f74
NC
12739 bfd_put_32 (output_bfd, sgot->output_section->vma
12740 + sgot->output_offset
12741 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12742 sgot->contents
12743 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
e8b09b87
CL
12744 }
12745 else
12746 {
12747 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12748 }
12749 outrel.r_offset = sgot->output_section->vma
12750 + sgot->output_offset
12751 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12752 outrel.r_addend = 0;
cc850f74 12753 if (h->dynindx == -1 && !bfd_link_pic (info))
e8b09b87 12754 if (h->root.type == bfd_link_hash_undefweak)
cc850f74 12755 arm_elf_add_rofixup (output_bfd, globals->srofixup, -1);
e8b09b87 12756 else
cc850f74
NC
12757 arm_elf_add_rofixup (output_bfd, globals->srofixup,
12758 outrel.r_offset);
e8b09b87
CL
12759 else
12760 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12761 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12762 }
12763 }
12764 else
12765 {
12766 /* Such relocation on static function should not have been
12767 emitted by the compiler. */
cc850f74 12768 return bfd_reloc_notsupported;
e8b09b87
CL
12769 }
12770 }
0a1b45a2 12771 *unresolved_reloc_p = false;
e8b09b87
CL
12772 return bfd_reloc_ok;
12773
12774 case R_ARM_FUNCDESC:
12775 {
4b24dd1a 12776 if (h == NULL)
e8b09b87 12777 {
cc850f74 12778 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts (input_bfd);
e8b09b87
CL
12779 Elf_Internal_Rela outrel;
12780 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
74fd118f
NC
12781
12782 if (r_symndx >= elf32_arm_num_entries (input_bfd))
12783 {
12784 * error_message = _("local symbol index too big");
12785 return bfd_reloc_dangerous;
12786 }
12787
e8b09b87
CL
12788 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12789 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12790 bfd_vma seg = -1;
12791
cc850f74
NC
12792 if (bfd_link_pic (info) && dynindx == 0)
12793 {
12794 * error_message = _("dynamic index information not available");
12795 return bfd_reloc_dangerous;
12796 }
e8b09b87
CL
12797
12798 /* Replace static FUNCDESC relocation with a
12799 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12800 executable. */
12801 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12802 outrel.r_offset = input_section->output_section->vma
12803 + input_section->output_offset + rel->r_offset;
12804 outrel.r_addend = 0;
cc850f74 12805 if (bfd_link_pic (info))
e8b09b87
CL
12806 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12807 else
cc850f74 12808 arm_elf_add_rofixup (output_bfd, globals->srofixup, outrel.r_offset);
e8b09b87
CL
12809
12810 bfd_put_32 (input_bfd, sgot->output_section->vma
12811 + sgot->output_offset + offset, hit_data);
12812
12813 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12814 arm_elf_fill_funcdesc (output_bfd, info,
12815 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12816 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12817 }
12818 else
12819 {
12820 if (h->dynindx == -1)
12821 {
12822 int dynindx;
12823 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12824 bfd_vma addr;
12825 bfd_vma seg = -1;
12826 Elf_Internal_Rela outrel;
12827
12828 /* For static binaries sym_sec can be null. */
12829 if (sym_sec)
12830 {
12831 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12832 addr = dynreloc_value - sym_sec->output_section->vma;
12833 }
12834 else
12835 {
12836 dynindx = 0;
12837 addr = 0;
12838 }
12839
cc850f74
NC
12840 if (bfd_link_pic (info) && dynindx == 0)
12841 abort ();
e8b09b87
CL
12842
12843 /* Replace static FUNCDESC relocation with a
12844 R_ARM_RELATIVE dynamic relocation. */
12845 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12846 outrel.r_offset = input_section->output_section->vma
12847 + input_section->output_offset + rel->r_offset;
12848 outrel.r_addend = 0;
cc850f74 12849 if (bfd_link_pic (info))
e8b09b87
CL
12850 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12851 else
cc850f74 12852 arm_elf_add_rofixup (output_bfd, globals->srofixup, outrel.r_offset);
e8b09b87
CL
12853
12854 bfd_put_32 (input_bfd, sgot->output_section->vma
12855 + sgot->output_offset + offset, hit_data);
12856
12857 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12858 arm_elf_fill_funcdesc (output_bfd, info,
12859 &eh->fdpic_cnts.funcdesc_offset,
12860 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12861 }
12862 else
12863 {
12864 Elf_Internal_Rela outrel;
12865
12866 /* Add a dynamic relocation. */
12867 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12868 outrel.r_offset = input_section->output_section->vma
12869 + input_section->output_offset + rel->r_offset;
12870 outrel.r_addend = 0;
12871 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12872 }
12873 }
12874 }
0a1b45a2 12875 *unresolved_reloc_p = false;
e8b09b87
CL
12876 return bfd_reloc_ok;
12877
e5d6e09e
AV
12878 case R_ARM_THM_BF16:
12879 {
12880 bfd_vma relocation;
12881 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12882 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12883
12884 if (globals->use_rel)
12885 {
12886 bfd_vma immA = (upper_insn & 0x001f);
12887 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12888 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12889 addend = (immA << 12);
12890 addend |= (immB << 2);
12891 addend |= (immC << 1);
12892 addend |= 1;
12893 /* Sign extend. */
e6f65e75 12894 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
e5d6e09e
AV
12895 }
12896
e6f65e75 12897 relocation = value + signed_addend;
e5d6e09e
AV
12898 relocation -= (input_section->output_section->vma
12899 + input_section->output_offset
12900 + rel->r_offset);
12901
12902 /* Put RELOCATION back into the insn. */
12903 {
12904 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12905 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12906 bfd_vma immC = (relocation & 0x00000002) >> 1;
12907
12908 upper_insn = (upper_insn & 0xffe0) | immA;
12909 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12910 }
12911
12912 /* Put the relocated value back in the object file: */
12913 bfd_put_16 (input_bfd, upper_insn, hit_data);
12914 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12915
12916 return bfd_reloc_ok;
12917 }
12918
1889da70
AV
12919 case R_ARM_THM_BF12:
12920 {
12921 bfd_vma relocation;
12922 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12923 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12924
12925 if (globals->use_rel)
12926 {
12927 bfd_vma immA = (upper_insn & 0x0001);
12928 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12929 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12930 addend = (immA << 12);
12931 addend |= (immB << 2);
12932 addend |= (immC << 1);
12933 addend |= 1;
12934 /* Sign extend. */
12935 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
e6f65e75 12936 signed_addend = addend;
1889da70
AV
12937 }
12938
e6f65e75 12939 relocation = value + signed_addend;
1889da70
AV
12940 relocation -= (input_section->output_section->vma
12941 + input_section->output_offset
12942 + rel->r_offset);
12943
12944 /* Put RELOCATION back into the insn. */
12945 {
12946 bfd_vma immA = (relocation & 0x00001000) >> 12;
12947 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12948 bfd_vma immC = (relocation & 0x00000002) >> 1;
12949
12950 upper_insn = (upper_insn & 0xfffe) | immA;
12951 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12952 }
12953
12954 /* Put the relocated value back in the object file: */
12955 bfd_put_16 (input_bfd, upper_insn, hit_data);
12956 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12957
12958 return bfd_reloc_ok;
12959 }
12960
1caf72a5
AV
12961 case R_ARM_THM_BF18:
12962 {
12963 bfd_vma relocation;
12964 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12965 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12966
12967 if (globals->use_rel)
12968 {
12969 bfd_vma immA = (upper_insn & 0x007f);
12970 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12971 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12972 addend = (immA << 12);
12973 addend |= (immB << 2);
12974 addend |= (immC << 1);
12975 addend |= 1;
12976 /* Sign extend. */
12977 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
e6f65e75 12978 signed_addend = addend;
1caf72a5
AV
12979 }
12980
e6f65e75 12981 relocation = value + signed_addend;
1caf72a5
AV
12982 relocation -= (input_section->output_section->vma
12983 + input_section->output_offset
12984 + rel->r_offset);
12985
12986 /* Put RELOCATION back into the insn. */
12987 {
12988 bfd_vma immA = (relocation & 0x0007f000) >> 12;
12989 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12990 bfd_vma immC = (relocation & 0x00000002) >> 1;
12991
12992 upper_insn = (upper_insn & 0xff80) | immA;
12993 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12994 }
12995
12996 /* Put the relocated value back in the object file: */
12997 bfd_put_16 (input_bfd, upper_insn, hit_data);
12998 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12999
13000 return bfd_reloc_ok;
13001 }
13002
252b5132
RH
13003 default:
13004 return bfd_reloc_notsupported;
13005 }
13006}
13007
98c1d4aa
NC
13008/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13009static void
07d6d2b8
AM
13010arm_add_to_rel (bfd * abfd,
13011 bfd_byte * address,
57e8b36a 13012 reloc_howto_type * howto,
07d6d2b8 13013 bfd_signed_vma increment)
98c1d4aa 13014{
98c1d4aa
NC
13015 bfd_signed_vma addend;
13016
bd97cb95
DJ
13017 if (howto->type == R_ARM_THM_CALL
13018 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 13019 {
9a5aca8c
AM
13020 int upper_insn, lower_insn;
13021 int upper, lower;
98c1d4aa 13022
9a5aca8c
AM
13023 upper_insn = bfd_get_16 (abfd, address);
13024 lower_insn = bfd_get_16 (abfd, address + 2);
13025 upper = upper_insn & 0x7ff;
13026 lower = lower_insn & 0x7ff;
13027
13028 addend = (upper << 12) | (lower << 1);
ddda4409 13029 addend += increment;
9a5aca8c 13030 addend >>= 1;
98c1d4aa 13031
9a5aca8c
AM
13032 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13033 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13034
dc810e39
AM
13035 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13036 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
13037 }
13038 else
13039 {
07d6d2b8 13040 bfd_vma contents;
9a5aca8c
AM
13041
13042 contents = bfd_get_32 (abfd, address);
13043
13044 /* Get the (signed) value from the instruction. */
13045 addend = contents & howto->src_mask;
13046 if (addend & ((howto->src_mask + 1) >> 1))
13047 {
13048 bfd_signed_vma mask;
13049
13050 mask = -1;
13051 mask &= ~ howto->src_mask;
13052 addend |= mask;
13053 }
13054
13055 /* Add in the increment, (which is a byte value). */
13056 switch (howto->type)
13057 {
13058 default:
13059 addend += increment;
13060 break;
13061
13062 case R_ARM_PC24:
c6596c5e 13063 case R_ARM_PLT32:
5b5bb741
PB
13064 case R_ARM_CALL:
13065 case R_ARM_JUMP24:
57698478 13066 addend *= bfd_get_reloc_size (howto);
dc810e39 13067 addend += increment;
9a5aca8c
AM
13068
13069 /* Should we check for overflow here ? */
13070
13071 /* Drop any undesired bits. */
13072 addend >>= howto->rightshift;
13073 break;
13074 }
13075
13076 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13077
13078 bfd_put_32 (abfd, contents, address);
ddda4409 13079 }
98c1d4aa 13080}
252b5132 13081
ba93b8ac
DJ
13082#define IS_ARM_TLS_RELOC(R_TYPE) \
13083 ((R_TYPE) == R_ARM_TLS_GD32 \
5c5a4843 13084 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
ba93b8ac
DJ
13085 || (R_TYPE) == R_ARM_TLS_LDO32 \
13086 || (R_TYPE) == R_ARM_TLS_LDM32 \
5c5a4843 13087 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
ba93b8ac
DJ
13088 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13089 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13090 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13091 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b 13092 || (R_TYPE) == R_ARM_TLS_IE32 \
5c5a4843 13093 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
0855e32b
NS
13094 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13095
13096/* Specific set of relocations for the gnu tls dialect. */
13097#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13098 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13099 || (R_TYPE) == R_ARM_TLS_CALL \
13100 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13101 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13102 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 13103
252b5132 13104/* Relocate an ARM ELF section. */
906e58ca 13105
0f684201 13106static int
07d6d2b8 13107elf32_arm_relocate_section (bfd * output_bfd,
57e8b36a 13108 struct bfd_link_info * info,
07d6d2b8
AM
13109 bfd * input_bfd,
13110 asection * input_section,
13111 bfd_byte * contents,
13112 Elf_Internal_Rela * relocs,
13113 Elf_Internal_Sym * local_syms,
13114 asection ** local_sections)
252b5132 13115{
b34976b6
AM
13116 Elf_Internal_Shdr *symtab_hdr;
13117 struct elf_link_hash_entry **sym_hashes;
13118 Elf_Internal_Rela *rel;
13119 Elf_Internal_Rela *relend;
13120 const char *name;
b32d3aa2 13121 struct elf32_arm_link_hash_table * globals;
252b5132 13122
4e7fd91e 13123 globals = elf32_arm_hash_table (info);
4dfe6ac6 13124 if (globals == NULL)
0a1b45a2 13125 return false;
b491616a 13126
0ffa91dd 13127 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
13128 sym_hashes = elf_sym_hashes (input_bfd);
13129
13130 rel = relocs;
13131 relend = relocs + input_section->reloc_count;
13132 for (; rel < relend; rel++)
13133 {
07d6d2b8
AM
13134 int r_type;
13135 reloc_howto_type * howto;
13136 unsigned long r_symndx;
13137 Elf_Internal_Sym * sym;
13138 asection * sec;
252b5132 13139 struct elf_link_hash_entry * h;
07d6d2b8
AM
13140 bfd_vma relocation;
13141 bfd_reloc_status_type r;
13142 arelent bfd_reloc;
13143 char sym_type;
0a1b45a2 13144 bool unresolved_reloc = false;
f2a9dd69 13145 char *error_message = NULL;
f21f3fe0 13146
252b5132 13147 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 13148 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 13149 r_type = arm_real_reloc_type (globals, r_type);
252b5132 13150
ba96a88f 13151 if ( r_type == R_ARM_GNU_VTENTRY
99059e56
RM
13152 || r_type == R_ARM_GNU_VTINHERIT)
13153 continue;
252b5132 13154
47aeb64c
NC
13155 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13156
13157 if (howto == NULL)
13158 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
252b5132 13159
252b5132
RH
13160 h = NULL;
13161 sym = NULL;
13162 sec = NULL;
9b485d32 13163
252b5132
RH
13164 if (r_symndx < symtab_hdr->sh_info)
13165 {
13166 sym = local_syms + r_symndx;
ba93b8ac 13167 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 13168 sec = local_sections[r_symndx];
ffcb4889
NS
13169
13170 /* An object file might have a reference to a local
13171 undefined symbol. This is a daft object file, but we
13172 should at least do something about it. V4BX & NONE
13173 relocations do not use the symbol and are explicitly
77b4f08f
TS
13174 allowed to use the undefined symbol, so allow those.
13175 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
13176 if (r_type != R_ARM_V4BX
13177 && r_type != R_ARM_NONE
77b4f08f 13178 && r_symndx != STN_UNDEF
ffcb4889
NS
13179 && bfd_is_und_section (sec)
13180 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
1a72702b
AM
13181 (*info->callbacks->undefined_symbol)
13182 (info, bfd_elf_string_from_elf_section
13183 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13184 input_bfd, input_section,
0a1b45a2 13185 rel->r_offset, true);
b38cadfb 13186
4e7fd91e 13187 if (globals->use_rel)
f8df10f4 13188 {
4e7fd91e
PB
13189 relocation = (sec->output_section->vma
13190 + sec->output_offset
13191 + sym->st_value);
0e1862bb 13192 if (!bfd_link_relocatable (info)
ab96bf03
AM
13193 && (sec->flags & SEC_MERGE)
13194 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 13195 {
4e7fd91e
PB
13196 asection *msec;
13197 bfd_vma addend, value;
13198
39623e12 13199 switch (r_type)
4e7fd91e 13200 {
39623e12
PB
13201 case R_ARM_MOVW_ABS_NC:
13202 case R_ARM_MOVT_ABS:
13203 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13204 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13205 addend = (addend ^ 0x8000) - 0x8000;
13206 break;
f8df10f4 13207
39623e12
PB
13208 case R_ARM_THM_MOVW_ABS_NC:
13209 case R_ARM_THM_MOVT_ABS:
13210 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13211 << 16;
13212 value |= bfd_get_16 (input_bfd,
13213 contents + rel->r_offset + 2);
13214 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13215 | ((value & 0x04000000) >> 15);
13216 addend = (addend ^ 0x8000) - 0x8000;
13217 break;
f8df10f4 13218
39623e12
PB
13219 default:
13220 if (howto->rightshift
13221 || (howto->src_mask & (howto->src_mask + 1)))
13222 {
4eca0228 13223 _bfd_error_handler
695344c0 13224 /* xgettext:c-format */
2dcf00ce
AM
13225 (_("%pB(%pA+%#" PRIx64 "): "
13226 "%s relocation against SEC_MERGE section"),
39623e12 13227 input_bfd, input_section,
2dcf00ce 13228 (uint64_t) rel->r_offset, howto->name);
0a1b45a2 13229 return false;
39623e12
PB
13230 }
13231
13232 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13233
13234 /* Get the (signed) value from the instruction. */
13235 addend = value & howto->src_mask;
13236 if (addend & ((howto->src_mask + 1) >> 1))
13237 {
13238 bfd_signed_vma mask;
13239
13240 mask = -1;
13241 mask &= ~ howto->src_mask;
13242 addend |= mask;
13243 }
13244 break;
4e7fd91e 13245 }
39623e12 13246
4e7fd91e
PB
13247 msec = sec;
13248 addend =
13249 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13250 - relocation;
13251 addend += msec->output_section->vma + msec->output_offset;
39623e12 13252
cc643b88 13253 /* Cases here must match those in the preceding
39623e12
PB
13254 switch statement. */
13255 switch (r_type)
13256 {
13257 case R_ARM_MOVW_ABS_NC:
13258 case R_ARM_MOVT_ABS:
13259 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13260 | (addend & 0xfff);
13261 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13262 break;
13263
13264 case R_ARM_THM_MOVW_ABS_NC:
13265 case R_ARM_THM_MOVT_ABS:
13266 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13267 | (addend & 0xff) | ((addend & 0x0800) << 15);
13268 bfd_put_16 (input_bfd, value >> 16,
13269 contents + rel->r_offset);
13270 bfd_put_16 (input_bfd, value,
13271 contents + rel->r_offset + 2);
13272 break;
13273
13274 default:
13275 value = (value & ~ howto->dst_mask)
13276 | (addend & howto->dst_mask);
13277 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13278 break;
13279 }
f8df10f4 13280 }
f8df10f4 13281 }
4e7fd91e
PB
13282 else
13283 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
13284 }
13285 else
13286 {
0a1b45a2 13287 bool warned, ignored;
560e09e9 13288
b2a8e766
AM
13289 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13290 r_symndx, symtab_hdr, sym_hashes,
13291 h, sec, relocation,
62d887d4 13292 unresolved_reloc, warned, ignored);
ba93b8ac
DJ
13293
13294 sym_type = h->type;
252b5132
RH
13295 }
13296
dbaa2011 13297 if (sec != NULL && discarded_section (sec))
e4067dbb 13298 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 13299 rel, 1, relend, howto, 0, contents);
ab96bf03 13300
0e1862bb 13301 if (bfd_link_relocatable (info))
ab96bf03
AM
13302 {
13303 /* This is a relocatable link. We don't have to change
13304 anything, unless the reloc is against a section symbol,
13305 in which case we have to adjust according to where the
13306 section symbol winds up in the output section. */
13307 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13308 {
13309 if (globals->use_rel)
13310 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13311 howto, (bfd_signed_vma) sec->output_offset);
13312 else
13313 rel->r_addend += sec->output_offset;
13314 }
13315 continue;
13316 }
13317
252b5132
RH
13318 if (h != NULL)
13319 name = h->root.root.string;
13320 else
13321 {
13322 name = (bfd_elf_string_from_elf_section
13323 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13324 if (name == NULL || *name == '\0')
fd361982 13325 name = bfd_section_name (sec);
252b5132 13326 }
f21f3fe0 13327
cf35638d 13328 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
13329 && r_type != R_ARM_NONE
13330 && (h == NULL
13331 || h->root.type == bfd_link_hash_defined
13332 || h->root.type == bfd_link_hash_defweak)
13333 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13334 {
4eca0228 13335 _bfd_error_handler
ba93b8ac 13336 ((sym_type == STT_TLS
695344c0 13337 /* xgettext:c-format */
2dcf00ce 13338 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
695344c0 13339 /* xgettext:c-format */
2dcf00ce 13340 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
ba93b8ac
DJ
13341 input_bfd,
13342 input_section,
2dcf00ce 13343 (uint64_t) rel->r_offset,
ba93b8ac
DJ
13344 howto->name,
13345 name);
13346 }
13347
0855e32b 13348 /* We call elf32_arm_final_link_relocate unless we're completely
99059e56
RM
13349 done, i.e., the relaxation produced the final output we want,
13350 and we won't let anybody mess with it. Also, we have to do
13351 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
6a631e86 13352 both in relaxed and non-relaxed cases. */
39d911fc
TP
13353 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13354 || (IS_ARM_TLS_GNU_RELOC (r_type)
13355 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13356 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13357 & GOT_TLS_GDESC)))
13358 {
13359 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13360 contents, rel, h == NULL);
13361 /* This may have been marked unresolved because it came from
13362 a shared library. But we've just dealt with that. */
13363 unresolved_reloc = 0;
13364 }
13365 else
13366 r = bfd_reloc_continue;
b38cadfb 13367
39d911fc
TP
13368 if (r == bfd_reloc_continue)
13369 {
13370 unsigned char branch_type =
13371 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13372 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13373
13374 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13375 input_section, contents, rel,
13376 relocation, info, sec, name,
13377 sym_type, branch_type, h,
13378 &unresolved_reloc,
13379 &error_message);
13380 }
0945cdfd
DJ
13381
13382 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13383 because such sections are not SEC_ALLOC and thus ld.so will
13384 not process them. */
13385 if (unresolved_reloc
99059e56
RM
13386 && !((input_section->flags & SEC_DEBUGGING) != 0
13387 && h->def_dynamic)
1d5316ab
AM
13388 && _bfd_elf_section_offset (output_bfd, info, input_section,
13389 rel->r_offset) != (bfd_vma) -1)
0945cdfd 13390 {
4eca0228 13391 _bfd_error_handler
695344c0 13392 /* xgettext:c-format */
2dcf00ce
AM
13393 (_("%pB(%pA+%#" PRIx64 "): "
13394 "unresolvable %s relocation against symbol `%s'"),
843fe662
L
13395 input_bfd,
13396 input_section,
2dcf00ce 13397 (uint64_t) rel->r_offset,
843fe662
L
13398 howto->name,
13399 h->root.root.string);
0a1b45a2 13400 return false;
0945cdfd 13401 }
252b5132
RH
13402
13403 if (r != bfd_reloc_ok)
13404 {
252b5132
RH
13405 switch (r)
13406 {
13407 case bfd_reloc_overflow:
cf919dfd
PB
13408 /* If the overflowing reloc was to an undefined symbol,
13409 we have already printed one error message and there
13410 is no point complaining again. */
1a72702b
AM
13411 if (!h || h->root.type != bfd_link_hash_undefined)
13412 (*info->callbacks->reloc_overflow)
13413 (info, (h ? &h->root : NULL), name, howto->name,
13414 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
252b5132
RH
13415 break;
13416
13417 case bfd_reloc_undefined:
1a72702b 13418 (*info->callbacks->undefined_symbol)
0a1b45a2 13419 (info, name, input_bfd, input_section, rel->r_offset, true);
252b5132
RH
13420 break;
13421
13422 case bfd_reloc_outofrange:
f2a9dd69 13423 error_message = _("out of range");
252b5132
RH
13424 goto common_error;
13425
13426 case bfd_reloc_notsupported:
f2a9dd69 13427 error_message = _("unsupported relocation");
252b5132
RH
13428 goto common_error;
13429
13430 case bfd_reloc_dangerous:
f2a9dd69 13431 /* error_message should already be set. */
252b5132
RH
13432 goto common_error;
13433
13434 default:
f2a9dd69 13435 error_message = _("unknown error");
8029a119 13436 /* Fall through. */
252b5132
RH
13437
13438 common_error:
f2a9dd69 13439 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13440 (*info->callbacks->reloc_dangerous)
13441 (info, error_message, input_bfd, input_section, rel->r_offset);
252b5132
RH
13442 break;
13443 }
13444 }
13445 }
13446
0a1b45a2 13447 return true;
252b5132
RH
13448}
13449
91d6fa6a 13450/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 13451 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 13452 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
13453 maintaining that condition). */
13454
13455static void
13456add_unwind_table_edit (arm_unwind_table_edit **head,
13457 arm_unwind_table_edit **tail,
13458 arm_unwind_edit_type type,
13459 asection *linked_section,
91d6fa6a 13460 unsigned int tindex)
2468f9c9 13461{
21d799b5
NC
13462 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13463 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 13464
2468f9c9
PB
13465 new_edit->type = type;
13466 new_edit->linked_section = linked_section;
91d6fa6a 13467 new_edit->index = tindex;
b38cadfb 13468
91d6fa6a 13469 if (tindex > 0)
2468f9c9
PB
13470 {
13471 new_edit->next = NULL;
13472
13473 if (*tail)
13474 (*tail)->next = new_edit;
13475
13476 (*tail) = new_edit;
13477
13478 if (!*head)
13479 (*head) = new_edit;
13480 }
13481 else
13482 {
13483 new_edit->next = *head;
13484
13485 if (!*tail)
13486 *tail = new_edit;
13487
13488 *head = new_edit;
13489 }
13490}
13491
13492static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13493
13494/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
cc850f74 13495
2468f9c9 13496static void
cc850f74 13497adjust_exidx_size (asection *exidx_sec, int adjust)
2468f9c9
PB
13498{
13499 asection *out_sec;
13500
13501 if (!exidx_sec->rawsize)
13502 exidx_sec->rawsize = exidx_sec->size;
13503
fd361982 13504 bfd_set_section_size (exidx_sec, exidx_sec->size + adjust);
2468f9c9
PB
13505 out_sec = exidx_sec->output_section;
13506 /* Adjust size of output section. */
cc850f74 13507 bfd_set_section_size (out_sec, out_sec->size + adjust);
2468f9c9
PB
13508}
13509
13510/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
cc850f74 13511
2468f9c9 13512static void
cc850f74 13513insert_cantunwind_after (asection *text_sec, asection *exidx_sec)
2468f9c9
PB
13514{
13515 struct _arm_elf_section_data *exidx_arm_data;
13516
13517 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
cc850f74
NC
13518 add_unwind_table_edit
13519 (&exidx_arm_data->u.exidx.unwind_edit_list,
13520 &exidx_arm_data->u.exidx.unwind_edit_tail,
13521 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
2468f9c9 13522
491d01d3
YU
13523 exidx_arm_data->additional_reloc_count++;
13524
cc850f74 13525 adjust_exidx_size (exidx_sec, 8);
2468f9c9
PB
13526}
13527
13528/* Scan .ARM.exidx tables, and create a list describing edits which should be
13529 made to those tables, such that:
b38cadfb 13530
2468f9c9
PB
13531 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13532 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
99059e56 13533 codes which have been inlined into the index).
2468f9c9 13534
85fdf906
AH
13535 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13536
2468f9c9 13537 The edits are applied when the tables are written
b38cadfb 13538 (in elf32_arm_write_section). */
2468f9c9 13539
0a1b45a2 13540bool
2468f9c9
PB
13541elf32_arm_fix_exidx_coverage (asection **text_section_order,
13542 unsigned int num_text_sections,
85fdf906 13543 struct bfd_link_info *info,
0a1b45a2 13544 bool merge_exidx_entries)
2468f9c9
PB
13545{
13546 bfd *inp;
13547 unsigned int last_second_word = 0, i;
13548 asection *last_exidx_sec = NULL;
13549 asection *last_text_sec = NULL;
13550 int last_unwind_type = -1;
13551
13552 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13553 text sections. */
c72f2fb2 13554 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
2468f9c9
PB
13555 {
13556 asection *sec;
b38cadfb 13557
2468f9c9 13558 for (sec = inp->sections; sec != NULL; sec = sec->next)
99059e56 13559 {
2468f9c9
PB
13560 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13561 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 13562
dec9d5df 13563 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 13564 continue;
b38cadfb 13565
2468f9c9
PB
13566 if (elf_sec->linked_to)
13567 {
13568 Elf_Internal_Shdr *linked_hdr
99059e56 13569 = &elf_section_data (elf_sec->linked_to)->this_hdr;
2468f9c9 13570 struct _arm_elf_section_data *linked_sec_arm_data
99059e56 13571 = get_arm_elf_section_data (linked_hdr->bfd_section);
2468f9c9
PB
13572
13573 if (linked_sec_arm_data == NULL)
99059e56 13574 continue;
2468f9c9
PB
13575
13576 /* Link this .ARM.exidx section back from the text section it
99059e56 13577 describes. */
2468f9c9
PB
13578 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13579 }
13580 }
13581 }
13582
13583 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13584 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 13585 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
13586
13587 for (i = 0; i < num_text_sections; i++)
13588 {
13589 asection *sec = text_section_order[i];
13590 asection *exidx_sec;
13591 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13592 struct _arm_elf_section_data *exidx_arm_data;
13593 bfd_byte *contents = NULL;
13594 int deleted_exidx_bytes = 0;
13595 bfd_vma j;
13596 arm_unwind_table_edit *unwind_edit_head = NULL;
13597 arm_unwind_table_edit *unwind_edit_tail = NULL;
13598 Elf_Internal_Shdr *hdr;
13599 bfd *ibfd;
13600
13601 if (arm_data == NULL)
99059e56 13602 continue;
2468f9c9
PB
13603
13604 exidx_sec = arm_data->u.text.arm_exidx_sec;
13605 if (exidx_sec == NULL)
13606 {
13607 /* Section has no unwind data. */
13608 if (last_unwind_type == 0 || !last_exidx_sec)
13609 continue;
13610
13611 /* Ignore zero sized sections. */
13612 if (sec->size == 0)
13613 continue;
13614
cc850f74 13615 insert_cantunwind_after (last_text_sec, last_exidx_sec);
2468f9c9
PB
13616 last_unwind_type = 0;
13617 continue;
13618 }
13619
22a8f80e
PB
13620 /* Skip /DISCARD/ sections. */
13621 if (bfd_is_abs_section (exidx_sec->output_section))
13622 continue;
13623
2468f9c9
PB
13624 hdr = &elf_section_data (exidx_sec)->this_hdr;
13625 if (hdr->sh_type != SHT_ARM_EXIDX)
99059e56 13626 continue;
b38cadfb 13627
2468f9c9
PB
13628 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13629 if (exidx_arm_data == NULL)
99059e56 13630 continue;
b38cadfb 13631
2468f9c9 13632 ibfd = exidx_sec->owner;
b38cadfb 13633
2468f9c9
PB
13634 if (hdr->contents != NULL)
13635 contents = hdr->contents;
13636 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13637 /* An error? */
13638 continue;
13639
ac06903d
YU
13640 if (last_unwind_type > 0)
13641 {
13642 unsigned int first_word = bfd_get_32 (ibfd, contents);
13643 /* Add cantunwind if first unwind item does not match section
13644 start. */
13645 if (first_word != sec->vma)
13646 {
13647 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13648 last_unwind_type = 0;
13649 }
13650 }
13651
2468f9c9
PB
13652 for (j = 0; j < hdr->sh_size; j += 8)
13653 {
13654 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13655 int unwind_type;
13656 int elide = 0;
13657
13658 /* An EXIDX_CANTUNWIND entry. */
13659 if (second_word == 1)
13660 {
13661 if (last_unwind_type == 0)
13662 elide = 1;
13663 unwind_type = 0;
13664 }
13665 /* Inlined unwinding data. Merge if equal to previous. */
13666 else if ((second_word & 0x80000000) != 0)
13667 {
85fdf906
AH
13668 if (merge_exidx_entries
13669 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
13670 elide = 1;
13671 unwind_type = 1;
13672 last_second_word = second_word;
13673 }
13674 /* Normal table entry. In theory we could merge these too,
13675 but duplicate entries are likely to be much less common. */
13676 else
13677 unwind_type = 2;
13678
491d01d3 13679 if (elide && !bfd_link_relocatable (info))
2468f9c9
PB
13680 {
13681 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13682 DELETE_EXIDX_ENTRY, NULL, j / 8);
13683
13684 deleted_exidx_bytes += 8;
13685 }
13686
13687 last_unwind_type = unwind_type;
13688 }
13689
13690 /* Free contents if we allocated it ourselves. */
13691 if (contents != hdr->contents)
99059e56 13692 free (contents);
2468f9c9
PB
13693
13694 /* Record edits to be applied later (in elf32_arm_write_section). */
13695 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13696 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 13697
2468f9c9 13698 if (deleted_exidx_bytes > 0)
cc850f74 13699 adjust_exidx_size (exidx_sec, - deleted_exidx_bytes);
2468f9c9
PB
13700
13701 last_exidx_sec = exidx_sec;
13702 last_text_sec = sec;
13703 }
13704
13705 /* Add terminating CANTUNWIND entry. */
491d01d3
YU
13706 if (!bfd_link_relocatable (info) && last_exidx_sec
13707 && last_unwind_type != 0)
cc850f74 13708 insert_cantunwind_after (last_text_sec, last_exidx_sec);
2468f9c9 13709
0a1b45a2 13710 return true;
2468f9c9
PB
13711}
13712
0a1b45a2 13713static bool
3e6b1042
DJ
13714elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13715 bfd *ibfd, const char *name)
13716{
13717 asection *sec, *osec;
13718
3d4d4302 13719 sec = bfd_get_linker_section (ibfd, name);
3e6b1042 13720 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
0a1b45a2 13721 return true;
3e6b1042
DJ
13722
13723 osec = sec->output_section;
13724 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
0a1b45a2 13725 return true;
3e6b1042
DJ
13726
13727 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13728 sec->output_offset, sec->size))
0a1b45a2 13729 return false;
3e6b1042 13730
0a1b45a2 13731 return true;
3e6b1042
DJ
13732}
13733
0a1b45a2 13734static bool
3e6b1042
DJ
13735elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13736{
13737 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 13738 asection *sec, *osec;
3e6b1042 13739
4dfe6ac6 13740 if (globals == NULL)
0a1b45a2 13741 return false;
4dfe6ac6 13742
3e6b1042
DJ
13743 /* Invoke the regular ELF backend linker to do all the work. */
13744 if (!bfd_elf_final_link (abfd, info))
0a1b45a2 13745 return false;
3e6b1042 13746
fe33d2fa
CL
13747 /* Process stub sections (eg BE8 encoding, ...). */
13748 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
7292b3ac 13749 unsigned int i;
cdb21a0a
NS
13750 for (i=0; i<htab->top_id; i++)
13751 {
13752 sec = htab->stub_group[i].stub_sec;
13753 /* Only process it once, in its link_sec slot. */
13754 if (sec && i == htab->stub_group[i].link_sec->id)
13755 {
13756 osec = sec->output_section;
13757 elf32_arm_write_section (abfd, info, sec, sec->contents);
13758 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13759 sec->output_offset, sec->size))
0a1b45a2 13760 return false;
cdb21a0a 13761 }
fe33d2fa 13762 }
fe33d2fa 13763
3e6b1042
DJ
13764 /* Write out any glue sections now that we have created all the
13765 stubs. */
13766 if (globals->bfd_of_glue_owner != NULL)
13767 {
13768 if (! elf32_arm_output_glue_section (info, abfd,
13769 globals->bfd_of_glue_owner,
13770 ARM2THUMB_GLUE_SECTION_NAME))
0a1b45a2 13771 return false;
3e6b1042
DJ
13772
13773 if (! elf32_arm_output_glue_section (info, abfd,
13774 globals->bfd_of_glue_owner,
13775 THUMB2ARM_GLUE_SECTION_NAME))
0a1b45a2 13776 return false;
3e6b1042
DJ
13777
13778 if (! elf32_arm_output_glue_section (info, abfd,
13779 globals->bfd_of_glue_owner,
13780 VFP11_ERRATUM_VENEER_SECTION_NAME))
0a1b45a2 13781 return false;
3e6b1042 13782
a504d23a
LA
13783 if (! elf32_arm_output_glue_section (info, abfd,
13784 globals->bfd_of_glue_owner,
13785 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
0a1b45a2 13786 return false;
a504d23a 13787
3e6b1042
DJ
13788 if (! elf32_arm_output_glue_section (info, abfd,
13789 globals->bfd_of_glue_owner,
13790 ARM_BX_GLUE_SECTION_NAME))
0a1b45a2 13791 return false;
3e6b1042
DJ
13792 }
13793
0a1b45a2 13794 return true;
3e6b1042
DJ
13795}
13796
5968a7b8
NC
13797/* Return a best guess for the machine number based on the attributes. */
13798
13799static unsigned int
13800bfd_arm_get_mach_from_attributes (bfd * abfd)
13801{
13802 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13803
13804 switch (arch)
13805 {
c0c468d5 13806 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
5968a7b8
NC
13807 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13808 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13809 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13810
13811 case TAG_CPU_ARCH_V5TE:
13812 {
13813 char * name;
13814
13815 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13816 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13817
13818 if (name)
13819 {
13820 if (strcmp (name, "IWMMXT2") == 0)
13821 return bfd_mach_arm_iWMMXt2;
13822
13823 if (strcmp (name, "IWMMXT") == 0)
6034aab8 13824 return bfd_mach_arm_iWMMXt;
088ca6c1
NC
13825
13826 if (strcmp (name, "XSCALE") == 0)
13827 {
13828 int wmmx;
13829
13830 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13831 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13832 switch (wmmx)
13833 {
13834 case 1: return bfd_mach_arm_iWMMXt;
13835 case 2: return bfd_mach_arm_iWMMXt2;
13836 default: return bfd_mach_arm_XScale;
13837 }
13838 }
5968a7b8
NC
13839 }
13840
13841 return bfd_mach_arm_5TE;
13842 }
13843
c0c468d5
TP
13844 case TAG_CPU_ARCH_V5TEJ:
13845 return bfd_mach_arm_5TEJ;
13846 case TAG_CPU_ARCH_V6:
13847 return bfd_mach_arm_6;
13848 case TAG_CPU_ARCH_V6KZ:
13849 return bfd_mach_arm_6KZ;
13850 case TAG_CPU_ARCH_V6T2:
13851 return bfd_mach_arm_6T2;
13852 case TAG_CPU_ARCH_V6K:
13853 return bfd_mach_arm_6K;
13854 case TAG_CPU_ARCH_V7:
13855 return bfd_mach_arm_7;
13856 case TAG_CPU_ARCH_V6_M:
13857 return bfd_mach_arm_6M;
13858 case TAG_CPU_ARCH_V6S_M:
13859 return bfd_mach_arm_6SM;
13860 case TAG_CPU_ARCH_V7E_M:
13861 return bfd_mach_arm_7EM;
13862 case TAG_CPU_ARCH_V8:
13863 return bfd_mach_arm_8;
13864 case TAG_CPU_ARCH_V8R:
13865 return bfd_mach_arm_8R;
13866 case TAG_CPU_ARCH_V8M_BASE:
13867 return bfd_mach_arm_8M_BASE;
13868 case TAG_CPU_ARCH_V8M_MAIN:
13869 return bfd_mach_arm_8M_MAIN;
031254f2
AV
13870 case TAG_CPU_ARCH_V8_1M_MAIN:
13871 return bfd_mach_arm_8_1M_MAIN;
3197e593
PW
13872 case TAG_CPU_ARCH_V9:
13873 return bfd_mach_arm_9;
c0c468d5 13874
5968a7b8 13875 default:
c0c468d5
TP
13876 /* Force entry to be added for any new known Tag_CPU_arch value. */
13877 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13878
13879 /* Unknown Tag_CPU_arch value. */
5968a7b8
NC
13880 return bfd_mach_arm_unknown;
13881 }
13882}
13883
c178919b
NC
13884/* Set the right machine number. */
13885
0a1b45a2 13886static bool
57e8b36a 13887elf32_arm_object_p (bfd *abfd)
c178919b 13888{
5a6c6817 13889 unsigned int mach;
57e8b36a 13890
5a6c6817 13891 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 13892
5968a7b8
NC
13893 if (mach == bfd_mach_arm_unknown)
13894 {
13895 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13896 mach = bfd_mach_arm_ep9312;
13897 else
13898 mach = bfd_arm_get_mach_from_attributes (abfd);
13899 }
c178919b 13900
5968a7b8 13901 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
0a1b45a2 13902 return true;
c178919b
NC
13903}
13904
fc830a83 13905/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 13906
0a1b45a2 13907static bool
57e8b36a 13908elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
13909{
13910 if (elf_flags_init (abfd)
13911 && elf_elfheader (abfd)->e_flags != flags)
13912 {
fc830a83
NC
13913 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13914 {
fd2ec330 13915 if (flags & EF_ARM_INTERWORK)
4eca0228 13916 _bfd_error_handler
90b6238f 13917 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
d003868e 13918 abfd);
fc830a83 13919 else
d003868e 13920 _bfd_error_handler
90b6238f 13921 (_("warning: clearing the interworking flag of %pB due to outside request"),
d003868e 13922 abfd);
fc830a83 13923 }
252b5132
RH
13924 }
13925 else
13926 {
13927 elf_elfheader (abfd)->e_flags = flags;
0a1b45a2 13928 elf_flags_init (abfd) = true;
252b5132
RH
13929 }
13930
0a1b45a2 13931 return true;
252b5132
RH
13932}
13933
fc830a83 13934/* Copy backend specific data from one object module to another. */
9b485d32 13935
0a1b45a2 13936static bool
57e8b36a 13937elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
13938{
13939 flagword in_flags;
13940 flagword out_flags;
13941
0ffa91dd 13942 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
0a1b45a2 13943 return true;
252b5132 13944
fc830a83 13945 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
13946 out_flags = elf_elfheader (obfd)->e_flags;
13947
fc830a83
NC
13948 if (elf_flags_init (obfd)
13949 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13950 && in_flags != out_flags)
252b5132 13951 {
252b5132 13952 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 13953 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
0a1b45a2 13954 return false;
252b5132
RH
13955
13956 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 13957 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
0a1b45a2 13958 return false;
252b5132
RH
13959
13960 /* If the src and dest have different interworking flags
99059e56 13961 then turn off the interworking bit. */
fd2ec330 13962 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 13963 {
fd2ec330 13964 if (out_flags & EF_ARM_INTERWORK)
d003868e 13965 _bfd_error_handler
90b6238f 13966 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
d003868e 13967 obfd, ibfd);
252b5132 13968
fd2ec330 13969 in_flags &= ~EF_ARM_INTERWORK;
252b5132 13970 }
1006ba19
PB
13971
13972 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
13973 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13974 in_flags &= ~EF_ARM_PIC;
252b5132
RH
13975 }
13976
13977 elf_elfheader (obfd)->e_flags = in_flags;
0a1b45a2 13978 elf_flags_init (obfd) = true;
252b5132 13979
e2349352 13980 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
ee065d83
PB
13981}
13982
13983/* Values for Tag_ABI_PCS_R9_use. */
13984enum
13985{
13986 AEABI_R9_V6,
13987 AEABI_R9_SB,
13988 AEABI_R9_TLS,
13989 AEABI_R9_unused
13990};
13991
13992/* Values for Tag_ABI_PCS_RW_data. */
13993enum
13994{
13995 AEABI_PCS_RW_data_absolute,
13996 AEABI_PCS_RW_data_PCrel,
13997 AEABI_PCS_RW_data_SBrel,
13998 AEABI_PCS_RW_data_unused
13999};
14000
14001/* Values for Tag_ABI_enum_size. */
14002enum
14003{
14004 AEABI_enum_unused,
14005 AEABI_enum_short,
14006 AEABI_enum_wide,
14007 AEABI_enum_forced_wide
14008};
14009
104d59d1
JM
14010/* Determine whether an object attribute tag takes an integer, a
14011 string or both. */
906e58ca 14012
104d59d1
JM
14013static int
14014elf32_arm_obj_attrs_arg_type (int tag)
14015{
14016 if (tag == Tag_compatibility)
3483fe2e 14017 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 14018 else if (tag == Tag_nodefaults)
3483fe2e
AS
14019 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14020 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14021 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 14022 else if (tag < 32)
3483fe2e 14023 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 14024 else
3483fe2e 14025 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
14026}
14027
5aa6ff7c
AS
14028/* The ABI defines that Tag_conformance should be emitted first, and that
14029 Tag_nodefaults should be second (if either is defined). This sets those
14030 two positions, and bumps up the position of all the remaining tags to
14031 compensate. */
14032static int
14033elf32_arm_obj_attrs_order (int num)
14034{
3de4a297 14035 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 14036 return Tag_conformance;
3de4a297 14037 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
14038 return Tag_nodefaults;
14039 if ((num - 2) < Tag_nodefaults)
14040 return num - 2;
14041 if ((num - 1) < Tag_conformance)
14042 return num - 1;
14043 return num;
14044}
14045
e8b36cd1 14046/* Attribute numbers >=64 (mod 128) can be safely ignored. */
0a1b45a2 14047static bool
e8b36cd1
JM
14048elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14049{
14050 if ((tag & 127) < 64)
14051 {
14052 _bfd_error_handler
90b6238f 14053 (_("%pB: unknown mandatory EABI object attribute %d"),
e8b36cd1
JM
14054 abfd, tag);
14055 bfd_set_error (bfd_error_bad_value);
0a1b45a2 14056 return false;
e8b36cd1
JM
14057 }
14058 else
14059 {
14060 _bfd_error_handler
90b6238f 14061 (_("warning: %pB: unknown EABI object attribute %d"),
e8b36cd1 14062 abfd, tag);
0a1b45a2 14063 return true;
e8b36cd1
JM
14064 }
14065}
14066
91e22acd
AS
14067/* Read the architecture from the Tag_also_compatible_with attribute, if any.
14068 Returns -1 if no architecture could be read. */
14069
14070static int
14071get_secondary_compatible_arch (bfd *abfd)
14072{
14073 obj_attribute *attr =
14074 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14075
14076 /* Note: the tag and its argument below are uleb128 values, though
14077 currently-defined values fit in one byte for each. */
14078 if (attr->s
14079 && attr->s[0] == Tag_CPU_arch
14080 && (attr->s[1] & 128) != 128
14081 && attr->s[2] == 0)
14082 return attr->s[1];
14083
14084 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14085 return -1;
14086}
14087
14088/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14089 The tag is removed if ARCH is -1. */
14090
8e79c3df 14091static void
91e22acd 14092set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 14093{
91e22acd
AS
14094 obj_attribute *attr =
14095 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 14096
91e22acd
AS
14097 if (arch == -1)
14098 {
14099 attr->s = NULL;
14100 return;
8e79c3df 14101 }
91e22acd
AS
14102
14103 /* Note: the tag and its argument below are uleb128 values, though
14104 currently-defined values fit in one byte for each. */
14105 if (!attr->s)
21d799b5 14106 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
14107 attr->s[0] = Tag_CPU_arch;
14108 attr->s[1] = arch;
14109 attr->s[2] = '\0';
8e79c3df
CM
14110}
14111
91e22acd
AS
14112/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14113 into account. */
14114
14115static int
14116tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14117 int newtag, int secondary_compat)
8e79c3df 14118{
91e22acd
AS
14119#define T(X) TAG_CPU_ARCH_##X
14120 int tagl, tagh, result;
14121 const int v6t2[] =
14122 {
14123 T(V6T2), /* PRE_V4. */
14124 T(V6T2), /* V4. */
14125 T(V6T2), /* V4T. */
14126 T(V6T2), /* V5T. */
14127 T(V6T2), /* V5TE. */
14128 T(V6T2), /* V5TEJ. */
14129 T(V6T2), /* V6. */
14130 T(V7), /* V6KZ. */
14131 T(V6T2) /* V6T2. */
14132 };
14133 const int v6k[] =
14134 {
14135 T(V6K), /* PRE_V4. */
14136 T(V6K), /* V4. */
14137 T(V6K), /* V4T. */
14138 T(V6K), /* V5T. */
14139 T(V6K), /* V5TE. */
14140 T(V6K), /* V5TEJ. */
14141 T(V6K), /* V6. */
14142 T(V6KZ), /* V6KZ. */
14143 T(V7), /* V6T2. */
14144 T(V6K) /* V6K. */
14145 };
14146 const int v7[] =
14147 {
14148 T(V7), /* PRE_V4. */
14149 T(V7), /* V4. */
14150 T(V7), /* V4T. */
14151 T(V7), /* V5T. */
14152 T(V7), /* V5TE. */
14153 T(V7), /* V5TEJ. */
14154 T(V7), /* V6. */
14155 T(V7), /* V6KZ. */
14156 T(V7), /* V6T2. */
14157 T(V7), /* V6K. */
14158 T(V7) /* V7. */
14159 };
14160 const int v6_m[] =
14161 {
07d6d2b8
AM
14162 -1, /* PRE_V4. */
14163 -1, /* V4. */
91e22acd
AS
14164 T(V6K), /* V4T. */
14165 T(V6K), /* V5T. */
14166 T(V6K), /* V5TE. */
14167 T(V6K), /* V5TEJ. */
14168 T(V6K), /* V6. */
14169 T(V6KZ), /* V6KZ. */
14170 T(V7), /* V6T2. */
14171 T(V6K), /* V6K. */
14172 T(V7), /* V7. */
14173 T(V6_M) /* V6_M. */
14174 };
14175 const int v6s_m[] =
14176 {
07d6d2b8
AM
14177 -1, /* PRE_V4. */
14178 -1, /* V4. */
91e22acd
AS
14179 T(V6K), /* V4T. */
14180 T(V6K), /* V5T. */
14181 T(V6K), /* V5TE. */
14182 T(V6K), /* V5TEJ. */
14183 T(V6K), /* V6. */
14184 T(V6KZ), /* V6KZ. */
14185 T(V7), /* V6T2. */
14186 T(V6K), /* V6K. */
14187 T(V7), /* V7. */
14188 T(V6S_M), /* V6_M. */
14189 T(V6S_M) /* V6S_M. */
14190 };
9e3c6df6
PB
14191 const int v7e_m[] =
14192 {
07d6d2b8
AM
14193 -1, /* PRE_V4. */
14194 -1, /* V4. */
9e3c6df6
PB
14195 T(V7E_M), /* V4T. */
14196 T(V7E_M), /* V5T. */
14197 T(V7E_M), /* V5TE. */
14198 T(V7E_M), /* V5TEJ. */
14199 T(V7E_M), /* V6. */
14200 T(V7E_M), /* V6KZ. */
14201 T(V7E_M), /* V6T2. */
14202 T(V7E_M), /* V6K. */
14203 T(V7E_M), /* V7. */
14204 T(V7E_M), /* V6_M. */
14205 T(V7E_M), /* V6S_M. */
14206 T(V7E_M) /* V7E_M. */
14207 };
bca38921
MGD
14208 const int v8[] =
14209 {
14210 T(V8), /* PRE_V4. */
14211 T(V8), /* V4. */
14212 T(V8), /* V4T. */
14213 T(V8), /* V5T. */
14214 T(V8), /* V5TE. */
14215 T(V8), /* V5TEJ. */
14216 T(V8), /* V6. */
14217 T(V8), /* V6KZ. */
14218 T(V8), /* V6T2. */
14219 T(V8), /* V6K. */
14220 T(V8), /* V7. */
14221 T(V8), /* V6_M. */
14222 T(V8), /* V6S_M. */
14223 T(V8), /* V7E_M. */
3197e593
PW
14224 T(V8), /* V8. */
14225 T(V8), /* V8-R. */
14226 T(V8), /* V8-M.BASE. */
14227 T(V8), /* V8-M.MAIN. */
14228 T(V8), /* V8.1. */
14229 T(V8), /* V8.2. */
14230 T(V8), /* V8.3. */
14231 T(V8), /* V8.1-M.MAIN. */
bca38921 14232 };
bff0500d
TP
14233 const int v8r[] =
14234 {
14235 T(V8R), /* PRE_V4. */
14236 T(V8R), /* V4. */
14237 T(V8R), /* V4T. */
14238 T(V8R), /* V5T. */
14239 T(V8R), /* V5TE. */
14240 T(V8R), /* V5TEJ. */
14241 T(V8R), /* V6. */
14242 T(V8R), /* V6KZ. */
14243 T(V8R), /* V6T2. */
14244 T(V8R), /* V6K. */
14245 T(V8R), /* V7. */
14246 T(V8R), /* V6_M. */
14247 T(V8R), /* V6S_M. */
14248 T(V8R), /* V7E_M. */
14249 T(V8), /* V8. */
14250 T(V8R), /* V8R. */
14251 };
2fd158eb
TP
14252 const int v8m_baseline[] =
14253 {
14254 -1, /* PRE_V4. */
14255 -1, /* V4. */
14256 -1, /* V4T. */
14257 -1, /* V5T. */
14258 -1, /* V5TE. */
14259 -1, /* V5TEJ. */
14260 -1, /* V6. */
14261 -1, /* V6KZ. */
14262 -1, /* V6T2. */
14263 -1, /* V6K. */
14264 -1, /* V7. */
14265 T(V8M_BASE), /* V6_M. */
14266 T(V8M_BASE), /* V6S_M. */
14267 -1, /* V7E_M. */
14268 -1, /* V8. */
bff0500d 14269 -1, /* V8R. */
2fd158eb
TP
14270 T(V8M_BASE) /* V8-M BASELINE. */
14271 };
14272 const int v8m_mainline[] =
14273 {
14274 -1, /* PRE_V4. */
14275 -1, /* V4. */
14276 -1, /* V4T. */
14277 -1, /* V5T. */
14278 -1, /* V5TE. */
14279 -1, /* V5TEJ. */
14280 -1, /* V6. */
14281 -1, /* V6KZ. */
14282 -1, /* V6T2. */
14283 -1, /* V6K. */
14284 T(V8M_MAIN), /* V7. */
14285 T(V8M_MAIN), /* V6_M. */
14286 T(V8M_MAIN), /* V6S_M. */
14287 T(V8M_MAIN), /* V7E_M. */
14288 -1, /* V8. */
bff0500d 14289 -1, /* V8R. */
2fd158eb
TP
14290 T(V8M_MAIN), /* V8-M BASELINE. */
14291 T(V8M_MAIN) /* V8-M MAINLINE. */
14292 };
031254f2
AV
14293 const int v8_1m_mainline[] =
14294 {
14295 -1, /* PRE_V4. */
14296 -1, /* V4. */
14297 -1, /* V4T. */
14298 -1, /* V5T. */
14299 -1, /* V5TE. */
14300 -1, /* V5TEJ. */
14301 -1, /* V6. */
14302 -1, /* V6KZ. */
14303 -1, /* V6T2. */
14304 -1, /* V6K. */
14305 T(V8_1M_MAIN), /* V7. */
14306 T(V8_1M_MAIN), /* V6_M. */
14307 T(V8_1M_MAIN), /* V6S_M. */
14308 T(V8_1M_MAIN), /* V7E_M. */
14309 -1, /* V8. */
14310 -1, /* V8R. */
14311 T(V8_1M_MAIN), /* V8-M BASELINE. */
14312 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14313 -1, /* Unused (18). */
14314 -1, /* Unused (19). */
14315 -1, /* Unused (20). */
14316 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14317 };
3197e593
PW
14318 const int v9[] =
14319 {
14320 T(V9), /* PRE_V4. */
14321 T(V9), /* V4. */
14322 T(V9), /* V4T. */
14323 T(V9), /* V5T. */
14324 T(V9), /* V5TE. */
14325 T(V9), /* V5TEJ. */
14326 T(V9), /* V6. */
14327 T(V9), /* V6KZ. */
14328 T(V9), /* V6T2. */
14329 T(V9), /* V6K. */
14330 T(V9), /* V7. */
14331 T(V9), /* V6_M. */
14332 T(V9), /* V6S_M. */
14333 T(V9), /* V7E_M. */
14334 T(V9), /* V8. */
14335 T(V9), /* V8-R. */
14336 T(V9), /* V8-M.BASE. */
14337 T(V9), /* V8-M.MAIN. */
14338 T(V9), /* V8.1. */
14339 T(V9), /* V8.2. */
14340 T(V9), /* V8.3. */
14341 T(V9), /* V8.1-M.MAIN. */
14342 T(V9), /* V9. */
14343 };
91e22acd
AS
14344 const int v4t_plus_v6_m[] =
14345 {
14346 -1, /* PRE_V4. */
14347 -1, /* V4. */
14348 T(V4T), /* V4T. */
14349 T(V5T), /* V5T. */
14350 T(V5TE), /* V5TE. */
14351 T(V5TEJ), /* V5TEJ. */
14352 T(V6), /* V6. */
14353 T(V6KZ), /* V6KZ. */
14354 T(V6T2), /* V6T2. */
14355 T(V6K), /* V6K. */
14356 T(V7), /* V7. */
14357 T(V6_M), /* V6_M. */
14358 T(V6S_M), /* V6S_M. */
9e3c6df6 14359 T(V7E_M), /* V7E_M. */
bca38921 14360 T(V8), /* V8. */
bff0500d 14361 -1, /* V8R. */
2fd158eb
TP
14362 T(V8M_BASE), /* V8-M BASELINE. */
14363 T(V8M_MAIN), /* V8-M MAINLINE. */
031254f2
AV
14364 -1, /* Unused (18). */
14365 -1, /* Unused (19). */
14366 -1, /* Unused (20). */
14367 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
3197e593 14368 T(V9), /* V9. */
91e22acd
AS
14369 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14370 };
14371 const int *comb[] =
14372 {
14373 v6t2,
14374 v6k,
14375 v7,
14376 v6_m,
14377 v6s_m,
9e3c6df6 14378 v7e_m,
bca38921 14379 v8,
bff0500d 14380 v8r,
2fd158eb
TP
14381 v8m_baseline,
14382 v8m_mainline,
031254f2
AV
14383 NULL,
14384 NULL,
14385 NULL,
14386 v8_1m_mainline,
3197e593 14387 v9,
91e22acd
AS
14388 /* Pseudo-architecture. */
14389 v4t_plus_v6_m
14390 };
14391
14392 /* Check we've not got a higher architecture than we know about. */
14393
9e3c6df6 14394 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 14395 {
90b6238f 14396 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
91e22acd
AS
14397 return -1;
14398 }
14399
14400 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14401
14402 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14403 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14404 oldtag = T(V4T_PLUS_V6_M);
14405
14406 /* And override the new tag if we have a Tag_also_compatible_with on the
14407 input. */
14408
14409 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14410 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14411 newtag = T(V4T_PLUS_V6_M);
14412
14413 tagl = (oldtag < newtag) ? oldtag : newtag;
14414 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14415
14416 /* Architectures before V6KZ add features monotonically. */
14417 if (tagh <= TAG_CPU_ARCH_V6KZ)
14418 return result;
14419
4ed7ed8d 14420 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
91e22acd
AS
14421
14422 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14423 as the canonical version. */
14424 if (result == T(V4T_PLUS_V6_M))
14425 {
14426 result = T(V4T);
14427 *secondary_compat_out = T(V6_M);
14428 }
14429 else
14430 *secondary_compat_out = -1;
14431
14432 if (result == -1)
14433 {
90b6238f 14434 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
91e22acd
AS
14435 ibfd, oldtag, newtag);
14436 return -1;
14437 }
14438
14439 return result;
14440#undef T
8e79c3df
CM
14441}
14442
ac56ee8f
MGD
14443/* Query attributes object to see if integer divide instructions may be
14444 present in an object. */
0a1b45a2 14445static bool
ac56ee8f
MGD
14446elf32_arm_attributes_accept_div (const obj_attribute *attr)
14447{
14448 int arch = attr[Tag_CPU_arch].i;
14449 int profile = attr[Tag_CPU_arch_profile].i;
14450
14451 switch (attr[Tag_DIV_use].i)
14452 {
14453 case 0:
14454 /* Integer divide allowed if instruction contained in archetecture. */
14455 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
0a1b45a2 14456 return true;
ac56ee8f 14457 else if (arch >= TAG_CPU_ARCH_V7E_M)
0a1b45a2 14458 return true;
ac56ee8f 14459 else
0a1b45a2 14460 return false;
ac56ee8f
MGD
14461
14462 case 1:
14463 /* Integer divide explicitly prohibited. */
0a1b45a2 14464 return false;
ac56ee8f
MGD
14465
14466 default:
14467 /* Unrecognised case - treat as allowing divide everywhere. */
14468 case 2:
14469 /* Integer divide allowed in ARM state. */
0a1b45a2 14470 return true;
ac56ee8f
MGD
14471 }
14472}
14473
14474/* Query attributes object to see if integer divide instructions are
14475 forbidden to be in the object. This is not the inverse of
14476 elf32_arm_attributes_accept_div. */
0a1b45a2 14477static bool
ac56ee8f
MGD
14478elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14479{
14480 return attr[Tag_DIV_use].i == 1;
14481}
14482
ee065d83
PB
14483/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14484 are conflicting attributes. */
906e58ca 14485
0a1b45a2 14486static bool
50e03d47 14487elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
ee065d83 14488{
50e03d47 14489 bfd *obfd = info->output_bfd;
104d59d1
JM
14490 obj_attribute *in_attr;
14491 obj_attribute *out_attr;
ee065d83
PB
14492 /* Some tags have 0 = don't care, 1 = strong requirement,
14493 2 = weak requirement. */
91e22acd 14494 static const int order_021[3] = {0, 2, 1};
ee065d83 14495 int i;
0a1b45a2 14496 bool result = true;
9274e9de 14497 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
ee065d83 14498
3e6b1042
DJ
14499 /* Skip the linker stubs file. This preserves previous behavior
14500 of accepting unknown attributes in the first input file - but
14501 is that a bug? */
14502 if (ibfd->flags & BFD_LINKER_CREATED)
0a1b45a2 14503 return true;
3e6b1042 14504
9274e9de
TG
14505 /* Skip any input that hasn't attribute section.
14506 This enables to link object files without attribute section with
14507 any others. */
14508 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
0a1b45a2 14509 return true;
9274e9de 14510
104d59d1 14511 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
14512 {
14513 /* This is the first object. Copy the attributes. */
104d59d1 14514 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 14515
cd21e546
MGD
14516 out_attr = elf_known_obj_attributes_proc (obfd);
14517
004ae526
PB
14518 /* Use the Tag_null value to indicate the attributes have been
14519 initialized. */
cd21e546 14520 out_attr[0].i = 1;
004ae526 14521
cd21e546
MGD
14522 /* We do not output objects with Tag_MPextension_use_legacy - we move
14523 the attribute's value to Tag_MPextension_use. */
14524 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14525 {
14526 if (out_attr[Tag_MPextension_use].i != 0
14527 && out_attr[Tag_MPextension_use_legacy].i
99059e56 14528 != out_attr[Tag_MPextension_use].i)
cd21e546
MGD
14529 {
14530 _bfd_error_handler
871b3ab2 14531 (_("Error: %pB has both the current and legacy "
cd21e546 14532 "Tag_MPextension_use attributes"), ibfd);
0a1b45a2 14533 result = false;
cd21e546
MGD
14534 }
14535
14536 out_attr[Tag_MPextension_use] =
14537 out_attr[Tag_MPextension_use_legacy];
14538 out_attr[Tag_MPextension_use_legacy].type = 0;
14539 out_attr[Tag_MPextension_use_legacy].i = 0;
14540 }
14541
81c9e0f6
NC
14542 /* PR 28859 and 28848: Handle the case where the first input file,
14543 eg crti.o, has a Tag_ABI_HardFP_use of 3 but no Tag_FP_arch set.
14544 Using Tag_ABI_HardFP_use in this way is deprecated, so reset the
14545 attribute to zero.
14546 FIXME: Should we handle other non-zero values of Tag_ABI_HardFO_use ? */
14547 if (out_attr[Tag_ABI_HardFP_use].i == 3 && out_attr[Tag_FP_arch].i == 0)
14548 out_attr[Tag_ABI_HardFP_use].i = 0;
14549
cd21e546 14550 return result;
ee065d83
PB
14551 }
14552
104d59d1
JM
14553 in_attr = elf_known_obj_attributes_proc (ibfd);
14554 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
14555 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14556 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14557 {
5c294fee
TG
14558 /* Ignore mismatches if the object doesn't use floating point or is
14559 floating point ABI independent. */
14560 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14561 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14562 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
ee065d83 14563 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
5c294fee
TG
14564 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14565 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
ee065d83
PB
14566 {
14567 _bfd_error_handler
871b3ab2 14568 (_("error: %pB uses VFP register arguments, %pB does not"),
deddc40b
NS
14569 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14570 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
0a1b45a2 14571 result = false;
ee065d83
PB
14572 }
14573 }
14574
3de4a297 14575 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
14576 {
14577 /* Merge this attribute with existing attributes. */
14578 switch (i)
14579 {
14580 case Tag_CPU_raw_name:
14581 case Tag_CPU_name:
6a631e86 14582 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
14583 break;
14584
14585 case Tag_ABI_optimization_goals:
14586 case Tag_ABI_FP_optimization_goals:
14587 /* Use the first value seen. */
14588 break;
14589
14590 case Tag_CPU_arch:
91e22acd
AS
14591 {
14592 int secondary_compat = -1, secondary_compat_out = -1;
14593 unsigned int saved_out_attr = out_attr[i].i;
70e99720
TG
14594 int arch_attr;
14595 static const char *name_table[] =
14596 {
91e22acd
AS
14597 /* These aren't real CPU names, but we can't guess
14598 that from the architecture version alone. */
14599 "Pre v4",
14600 "ARM v4",
14601 "ARM v4T",
14602 "ARM v5T",
14603 "ARM v5TE",
14604 "ARM v5TEJ",
14605 "ARM v6",
14606 "ARM v6KZ",
14607 "ARM v6T2",
14608 "ARM v6K",
14609 "ARM v7",
14610 "ARM v6-M",
bca38921 14611 "ARM v6S-M",
3197e593 14612 "ARM v7E-M",
2fd158eb 14613 "ARM v8",
3197e593 14614 "ARM v8-R",
2fd158eb
TP
14615 "ARM v8-M.baseline",
14616 "ARM v8-M.mainline",
3197e593
PW
14617 "ARM v8.1-A",
14618 "ARM v8.2-A",
14619 "ARM v8.3-A",
14620 "ARM v8.1-M.mainline",
14621 "ARM v9",
91e22acd
AS
14622 };
14623
14624 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14625 secondary_compat = get_secondary_compatible_arch (ibfd);
14626 secondary_compat_out = get_secondary_compatible_arch (obfd);
70e99720
TG
14627 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14628 &secondary_compat_out,
14629 in_attr[i].i,
14630 secondary_compat);
14631
14632 /* Return with error if failed to merge. */
14633 if (arch_attr == -1)
0a1b45a2 14634 return false;
70e99720
TG
14635
14636 out_attr[i].i = arch_attr;
14637
91e22acd
AS
14638 set_secondary_compatible_arch (obfd, secondary_compat_out);
14639
14640 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14641 if (out_attr[i].i == saved_out_attr)
14642 ; /* Leave the names alone. */
14643 else if (out_attr[i].i == in_attr[i].i)
14644 {
14645 /* The output architecture has been changed to match the
14646 input architecture. Use the input names. */
14647 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14648 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14649 : NULL;
14650 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14651 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14652 : NULL;
14653 }
14654 else
14655 {
14656 out_attr[Tag_CPU_name].s = NULL;
14657 out_attr[Tag_CPU_raw_name].s = NULL;
14658 }
14659
14660 /* If we still don't have a value for Tag_CPU_name,
14661 make one up now. Tag_CPU_raw_name remains blank. */
14662 if (out_attr[Tag_CPU_name].s == NULL
14663 && out_attr[i].i < ARRAY_SIZE (name_table))
14664 out_attr[Tag_CPU_name].s =
14665 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14666 }
14667 break;
14668
ee065d83
PB
14669 case Tag_ARM_ISA_use:
14670 case Tag_THUMB_ISA_use:
ee065d83 14671 case Tag_WMMX_arch:
91e22acd
AS
14672 case Tag_Advanced_SIMD_arch:
14673 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 14674 case Tag_ABI_FP_rounding:
ee065d83
PB
14675 case Tag_ABI_FP_exceptions:
14676 case Tag_ABI_FP_user_exceptions:
14677 case Tag_ABI_FP_number_model:
75375b3e 14678 case Tag_FP_HP_extension:
91e22acd
AS
14679 case Tag_CPU_unaligned_access:
14680 case Tag_T2EE_use:
91e22acd 14681 case Tag_MPextension_use:
a7ad558c 14682 case Tag_MVE_arch:
99db83d0 14683 case Tag_PAC_extension:
4b535030 14684 case Tag_BTI_extension:
b81ee92f 14685 case Tag_BTI_use:
c9fed665 14686 case Tag_PACRET_use:
ee065d83
PB
14687 /* Use the largest value specified. */
14688 if (in_attr[i].i > out_attr[i].i)
14689 out_attr[i].i = in_attr[i].i;
14690 break;
14691
75375b3e 14692 case Tag_ABI_align_preserved:
91e22acd
AS
14693 case Tag_ABI_PCS_RO_data:
14694 /* Use the smallest value specified. */
14695 if (in_attr[i].i < out_attr[i].i)
14696 out_attr[i].i = in_attr[i].i;
14697 break;
14698
75375b3e 14699 case Tag_ABI_align_needed:
91e22acd 14700 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
14701 && (in_attr[Tag_ABI_align_preserved].i == 0
14702 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 14703 {
91e22acd
AS
14704 /* This error message should be enabled once all non-conformant
14705 binaries in the toolchain have had the attributes set
14706 properly.
ee065d83 14707 _bfd_error_handler
871b3ab2 14708 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
91e22acd 14709 obfd, ibfd);
0a1b45a2 14710 result = false; */
ee065d83 14711 }
91e22acd
AS
14712 /* Fall through. */
14713 case Tag_ABI_FP_denormal:
14714 case Tag_ABI_PCS_GOT_use:
14715 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14716 value if greater than 2 (for future-proofing). */
14717 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14718 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14719 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
14720 out_attr[i].i = in_attr[i].i;
14721 break;
91e22acd 14722
75375b3e
MGD
14723 case Tag_Virtualization_use:
14724 /* The virtualization tag effectively stores two bits of
14725 information: the intended use of TrustZone (in bit 0), and the
14726 intended use of Virtualization (in bit 1). */
14727 if (out_attr[i].i == 0)
14728 out_attr[i].i = in_attr[i].i;
14729 else if (in_attr[i].i != 0
14730 && in_attr[i].i != out_attr[i].i)
14731 {
14732 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14733 out_attr[i].i = 3;
14734 else
14735 {
14736 _bfd_error_handler
871b3ab2
AM
14737 (_("error: %pB: unable to merge virtualization attributes "
14738 "with %pB"),
75375b3e 14739 obfd, ibfd);
0a1b45a2 14740 result = false;
75375b3e
MGD
14741 }
14742 }
14743 break;
91e22acd
AS
14744
14745 case Tag_CPU_arch_profile:
14746 if (out_attr[i].i != in_attr[i].i)
14747 {
14748 /* 0 will merge with anything.
14749 'A' and 'S' merge to 'A'.
14750 'R' and 'S' merge to 'R'.
99059e56 14751 'M' and 'A|R|S' is an error. */
91e22acd
AS
14752 if (out_attr[i].i == 0
14753 || (out_attr[i].i == 'S'
14754 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14755 out_attr[i].i = in_attr[i].i;
14756 else if (in_attr[i].i == 0
14757 || (in_attr[i].i == 'S'
14758 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
6a631e86 14759 ; /* Do nothing. */
91e22acd
AS
14760 else
14761 {
14762 _bfd_error_handler
90b6238f 14763 (_("error: %pB: conflicting architecture profiles %c/%c"),
91e22acd
AS
14764 ibfd,
14765 in_attr[i].i ? in_attr[i].i : '0',
14766 out_attr[i].i ? out_attr[i].i : '0');
0a1b45a2 14767 result = false;
91e22acd
AS
14768 }
14769 }
14770 break;
15afaa63
TP
14771
14772 case Tag_DSP_extension:
14773 /* No need to change output value if any of:
14774 - pre (<=) ARMv5T input architecture (do not have DSP)
14775 - M input profile not ARMv7E-M and do not have DSP. */
14776 if (in_attr[Tag_CPU_arch].i <= 3
14777 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14778 && in_attr[Tag_CPU_arch].i != 13
14779 && in_attr[i].i == 0))
14780 ; /* Do nothing. */
14781 /* Output value should be 0 if DSP part of architecture, ie.
14782 - post (>=) ARMv5te architecture output
14783 - A, R or S profile output or ARMv7E-M output architecture. */
14784 else if (out_attr[Tag_CPU_arch].i >= 4
14785 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14786 || out_attr[Tag_CPU_arch_profile].i == 'R'
14787 || out_attr[Tag_CPU_arch_profile].i == 'S'
14788 || out_attr[Tag_CPU_arch].i == 13))
14789 out_attr[i].i = 0;
14790 /* Otherwise, DSP instructions are added and not part of output
14791 architecture. */
14792 else
14793 out_attr[i].i = 1;
14794 break;
14795
75375b3e 14796 case Tag_FP_arch:
62f3b8c8 14797 {
4547cb56
NC
14798 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14799 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14800 when it's 0. It might mean absence of FP hardware if
99654aaf 14801 Tag_FP_arch is zero. */
4547cb56 14802
a715796b 14803#define VFP_VERSION_COUNT 9
62f3b8c8
PB
14804 static const struct
14805 {
14806 int ver;
14807 int regs;
bca38921 14808 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
14809 {
14810 {0, 0},
14811 {1, 16},
14812 {2, 16},
14813 {3, 32},
14814 {3, 16},
14815 {4, 32},
bca38921 14816 {4, 16},
a715796b
TG
14817 {8, 32},
14818 {8, 16}
62f3b8c8
PB
14819 };
14820 int ver;
14821 int regs;
14822 int newval;
14823
4547cb56
NC
14824 /* If the output has no requirement about FP hardware,
14825 follow the requirement of the input. */
14826 if (out_attr[i].i == 0)
14827 {
4ec192e6
RE
14828 /* This assert is still reasonable, we shouldn't
14829 produce the suspicious build attribute
14830 combination (See below for in_attr). */
4547cb56
NC
14831 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14832 out_attr[i].i = in_attr[i].i;
14833 out_attr[Tag_ABI_HardFP_use].i
14834 = in_attr[Tag_ABI_HardFP_use].i;
14835 break;
14836 }
14837 /* If the input has no requirement about FP hardware, do
14838 nothing. */
14839 else if (in_attr[i].i == 0)
14840 {
4ec192e6
RE
14841 /* We used to assert that Tag_ABI_HardFP_use was
14842 zero here, but we should never assert when
14843 consuming an object file that has suspicious
14844 build attributes. The single precision variant
14845 of 'no FP architecture' is still 'no FP
14846 architecture', so we just ignore the tag in this
14847 case. */
4547cb56
NC
14848 break;
14849 }
14850
14851 /* Both the input and the output have nonzero Tag_FP_arch.
99654aaf 14852 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
4547cb56
NC
14853
14854 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14855 do nothing. */
14856 if (in_attr[Tag_ABI_HardFP_use].i == 0
14857 && out_attr[Tag_ABI_HardFP_use].i == 0)
14858 ;
14859 /* If the input and the output have different Tag_ABI_HardFP_use,
99654aaf 14860 the combination of them is 0 (implied by Tag_FP_arch). */
4547cb56
NC
14861 else if (in_attr[Tag_ABI_HardFP_use].i
14862 != out_attr[Tag_ABI_HardFP_use].i)
99654aaf 14863 out_attr[Tag_ABI_HardFP_use].i = 0;
4547cb56
NC
14864
14865 /* Now we can handle Tag_FP_arch. */
14866
bca38921
MGD
14867 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14868 pick the biggest. */
14869 if (in_attr[i].i >= VFP_VERSION_COUNT
14870 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
14871 {
14872 out_attr[i] = in_attr[i];
14873 break;
14874 }
14875 /* The output uses the superset of input features
14876 (ISA version) and registers. */
14877 ver = vfp_versions[in_attr[i].i].ver;
14878 if (ver < vfp_versions[out_attr[i].i].ver)
14879 ver = vfp_versions[out_attr[i].i].ver;
14880 regs = vfp_versions[in_attr[i].i].regs;
14881 if (regs < vfp_versions[out_attr[i].i].regs)
14882 regs = vfp_versions[out_attr[i].i].regs;
14883 /* This assumes all possible supersets are also a valid
99059e56 14884 options. */
bca38921 14885 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
14886 {
14887 if (regs == vfp_versions[newval].regs
14888 && ver == vfp_versions[newval].ver)
14889 break;
14890 }
14891 out_attr[i].i = newval;
14892 }
b1cc4aeb 14893 break;
ee065d83
PB
14894 case Tag_PCS_config:
14895 if (out_attr[i].i == 0)
14896 out_attr[i].i = in_attr[i].i;
b6009aca 14897 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
14898 {
14899 /* It's sometimes ok to mix different configs, so this is only
99059e56 14900 a warning. */
ee065d83 14901 _bfd_error_handler
90b6238f 14902 (_("warning: %pB: conflicting platform configuration"), ibfd);
ee065d83
PB
14903 }
14904 break;
14905 case Tag_ABI_PCS_R9_use:
004ae526
PB
14906 if (in_attr[i].i != out_attr[i].i
14907 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
14908 && in_attr[i].i != AEABI_R9_unused)
14909 {
14910 _bfd_error_handler
90b6238f 14911 (_("error: %pB: conflicting use of R9"), ibfd);
0a1b45a2 14912 result = false;
ee065d83
PB
14913 }
14914 if (out_attr[i].i == AEABI_R9_unused)
14915 out_attr[i].i = in_attr[i].i;
14916 break;
14917 case Tag_ABI_PCS_RW_data:
14918 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14919 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14920 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14921 {
14922 _bfd_error_handler
871b3ab2 14923 (_("error: %pB: SB relative addressing conflicts with use of R9"),
ee065d83 14924 ibfd);
0a1b45a2 14925 result = false;
ee065d83
PB
14926 }
14927 /* Use the smallest value specified. */
14928 if (in_attr[i].i < out_attr[i].i)
14929 out_attr[i].i = in_attr[i].i;
14930 break;
ee065d83 14931 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
14932 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14933 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
14934 {
14935 _bfd_error_handler
871b3ab2 14936 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
a9dc9481 14937 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 14938 }
a9dc9481 14939 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
14940 out_attr[i].i = in_attr[i].i;
14941 break;
ee065d83
PB
14942 case Tag_ABI_enum_size:
14943 if (in_attr[i].i != AEABI_enum_unused)
14944 {
14945 if (out_attr[i].i == AEABI_enum_unused
14946 || out_attr[i].i == AEABI_enum_forced_wide)
14947 {
14948 /* The existing object is compatible with anything.
14949 Use whatever requirements the new object has. */
14950 out_attr[i].i = in_attr[i].i;
14951 }
14952 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 14953 && out_attr[i].i != in_attr[i].i
0ffa91dd 14954 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 14955 {
91e22acd 14956 static const char *aeabi_enum_names[] =
bf21ed78 14957 { "", "variable-size", "32-bit", "" };
91e22acd 14958 const char *in_name =
cc850f74 14959 in_attr[i].i < ARRAY_SIZE (aeabi_enum_names)
91e22acd
AS
14960 ? aeabi_enum_names[in_attr[i].i]
14961 : "<unknown>";
14962 const char *out_name =
cc850f74 14963 out_attr[i].i < ARRAY_SIZE (aeabi_enum_names)
91e22acd
AS
14964 ? aeabi_enum_names[out_attr[i].i]
14965 : "<unknown>";
ee065d83 14966 _bfd_error_handler
871b3ab2 14967 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 14968 ibfd, in_name, out_name);
ee065d83
PB
14969 }
14970 }
14971 break;
14972 case Tag_ABI_VFP_args:
14973 /* Aready done. */
14974 break;
14975 case Tag_ABI_WMMX_args:
14976 if (in_attr[i].i != out_attr[i].i)
14977 {
14978 _bfd_error_handler
871b3ab2 14979 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
ee065d83 14980 ibfd, obfd);
0a1b45a2 14981 result = false;
ee065d83
PB
14982 }
14983 break;
7b86a9fa
AS
14984 case Tag_compatibility:
14985 /* Merged in target-independent code. */
14986 break;
91e22acd 14987 case Tag_ABI_HardFP_use:
4547cb56 14988 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
14989 break;
14990 case Tag_ABI_FP_16bit_format:
14991 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14992 {
14993 if (in_attr[i].i != out_attr[i].i)
14994 {
14995 _bfd_error_handler
871b3ab2 14996 (_("error: fp16 format mismatch between %pB and %pB"),
91e22acd 14997 ibfd, obfd);
0a1b45a2 14998 result = false;
91e22acd
AS
14999 }
15000 }
15001 if (in_attr[i].i != 0)
15002 out_attr[i].i = in_attr[i].i;
15003 break;
7b86a9fa 15004
cd21e546 15005 case Tag_DIV_use:
ac56ee8f
MGD
15006 /* A value of zero on input means that the divide instruction may
15007 be used if available in the base architecture as specified via
15008 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
15009 the user did not want divide instructions. A value of 2
15010 explicitly means that divide instructions were allowed in ARM
15011 and Thumb state. */
15012 if (in_attr[i].i == out_attr[i].i)
15013 /* Do nothing. */ ;
15014 else if (elf32_arm_attributes_forbid_div (in_attr)
15015 && !elf32_arm_attributes_accept_div (out_attr))
15016 out_attr[i].i = 1;
15017 else if (elf32_arm_attributes_forbid_div (out_attr)
15018 && elf32_arm_attributes_accept_div (in_attr))
15019 out_attr[i].i = in_attr[i].i;
15020 else if (in_attr[i].i == 2)
15021 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
15022 break;
15023
15024 case Tag_MPextension_use_legacy:
15025 /* We don't output objects with Tag_MPextension_use_legacy - we
15026 move the value to Tag_MPextension_use. */
15027 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
15028 {
15029 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
15030 {
15031 _bfd_error_handler
871b3ab2 15032 (_("%pB has both the current and legacy "
b38cadfb 15033 "Tag_MPextension_use attributes"),
cd21e546 15034 ibfd);
0a1b45a2 15035 result = false;
cd21e546
MGD
15036 }
15037 }
15038
15039 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15040 out_attr[Tag_MPextension_use] = in_attr[i];
15041
15042 break;
15043
91e22acd 15044 case Tag_nodefaults:
2d0bb761
AS
15045 /* This tag is set if it exists, but the value is unused (and is
15046 typically zero). We don't actually need to do anything here -
15047 the merge happens automatically when the type flags are merged
15048 below. */
91e22acd
AS
15049 break;
15050 case Tag_also_compatible_with:
15051 /* Already done in Tag_CPU_arch. */
15052 break;
15053 case Tag_conformance:
15054 /* Keep the attribute if it matches. Throw it away otherwise.
15055 No attribute means no claim to conform. */
15056 if (!in_attr[i].s || !out_attr[i].s
15057 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15058 out_attr[i].s = NULL;
15059 break;
3cfad14c 15060
91e22acd 15061 default:
e8b36cd1
JM
15062 result
15063 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
15064 }
15065
15066 /* If out_attr was copied from in_attr then it won't have a type yet. */
15067 if (in_attr[i].type && !out_attr[i].type)
15068 out_attr[i].type = in_attr[i].type;
ee065d83
PB
15069 }
15070
104d59d1 15071 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15072 if (!_bfd_elf_merge_object_attributes (ibfd, info))
0a1b45a2 15073 return false;
ee065d83 15074
104d59d1 15075 /* Check for any attributes not known on ARM. */
e8b36cd1 15076 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 15077
91e22acd 15078 return result;
252b5132
RH
15079}
15080
3a4a14e9
PB
15081
15082/* Return TRUE if the two EABI versions are incompatible. */
15083
0a1b45a2 15084static bool
3a4a14e9
PB
15085elf32_arm_versions_compatible (unsigned iver, unsigned over)
15086{
15087 /* v4 and v5 are the same spec before and after it was released,
15088 so allow mixing them. */
15089 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15090 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
0a1b45a2 15091 return true;
3a4a14e9
PB
15092
15093 return (iver == over);
15094}
15095
252b5132
RH
15096/* Merge backend specific data from an object file to the output
15097 object file when linking. */
9b485d32 15098
0a1b45a2 15099static bool
50e03d47 15100elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
252b5132 15101
9b485d32
NC
15102/* Display the flags field. */
15103
0a1b45a2 15104static bool
57e8b36a 15105elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 15106{
fc830a83
NC
15107 FILE * file = (FILE *) ptr;
15108 unsigned long flags;
252b5132
RH
15109
15110 BFD_ASSERT (abfd != NULL && ptr != NULL);
15111
15112 /* Print normal ELF private data. */
15113 _bfd_elf_print_private_bfd_data (abfd, ptr);
15114
fc830a83 15115 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
15116 /* Ignore init flag - it may not be set, despite the flags field
15117 containing valid data. */
252b5132 15118
dbb078f6 15119 fprintf (file, _("private flags = 0x%lx:"), elf_elfheader (abfd)->e_flags);
252b5132 15120
fc830a83
NC
15121 switch (EF_ARM_EABI_VERSION (flags))
15122 {
15123 case EF_ARM_EABI_UNKNOWN:
4cc11e76 15124 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
15125 official ARM ELF extended ABI. Hence they are only decoded if
15126 the EABI version is not set. */
fd2ec330 15127 if (flags & EF_ARM_INTERWORK)
9b485d32 15128 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 15129
fd2ec330 15130 if (flags & EF_ARM_APCS_26)
6c571f00 15131 fprintf (file, " [APCS-26]");
fc830a83 15132 else
6c571f00 15133 fprintf (file, " [APCS-32]");
9a5aca8c 15134
96a846ea
RE
15135 if (flags & EF_ARM_VFP_FLOAT)
15136 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
15137 else if (flags & EF_ARM_MAVERICK_FLOAT)
15138 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
15139 else
15140 fprintf (file, _(" [FPA float format]"));
15141
fd2ec330 15142 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 15143 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 15144
fd2ec330 15145 if (flags & EF_ARM_PIC)
9b485d32 15146 fprintf (file, _(" [position independent]"));
fc830a83 15147
fd2ec330 15148 if (flags & EF_ARM_NEW_ABI)
9b485d32 15149 fprintf (file, _(" [new ABI]"));
9a5aca8c 15150
fd2ec330 15151 if (flags & EF_ARM_OLD_ABI)
9b485d32 15152 fprintf (file, _(" [old ABI]"));
9a5aca8c 15153
fd2ec330 15154 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 15155 fprintf (file, _(" [software FP]"));
9a5aca8c 15156
96a846ea
RE
15157 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15158 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
15159 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15160 | EF_ARM_MAVERICK_FLOAT);
fc830a83 15161 break;
9a5aca8c 15162
fc830a83 15163 case EF_ARM_EABI_VER1:
9b485d32 15164 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 15165
fc830a83 15166 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 15167 fprintf (file, _(" [sorted symbol table]"));
fc830a83 15168 else
9b485d32 15169 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 15170
fc830a83
NC
15171 flags &= ~ EF_ARM_SYMSARESORTED;
15172 break;
9a5aca8c 15173
fd2ec330
PB
15174 case EF_ARM_EABI_VER2:
15175 fprintf (file, _(" [Version2 EABI]"));
15176
15177 if (flags & EF_ARM_SYMSARESORTED)
15178 fprintf (file, _(" [sorted symbol table]"));
15179 else
15180 fprintf (file, _(" [unsorted symbol table]"));
15181
15182 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15183 fprintf (file, _(" [dynamic symbols use segment index]"));
15184
15185 if (flags & EF_ARM_MAPSYMSFIRST)
15186 fprintf (file, _(" [mapping symbols precede others]"));
15187
99e4ae17 15188 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
15189 | EF_ARM_MAPSYMSFIRST);
15190 break;
15191
d507cf36
PB
15192 case EF_ARM_EABI_VER3:
15193 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
15194 break;
15195
15196 case EF_ARM_EABI_VER4:
15197 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 15198 goto eabi;
d507cf36 15199
3a4a14e9
PB
15200 case EF_ARM_EABI_VER5:
15201 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
15202
15203 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15204 fprintf (file, _(" [soft-float ABI]"));
15205
15206 if (flags & EF_ARM_ABI_FLOAT_HARD)
15207 fprintf (file, _(" [hard-float ABI]"));
15208
15209 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15210
3a4a14e9 15211 eabi:
d507cf36
PB
15212 if (flags & EF_ARM_BE8)
15213 fprintf (file, _(" [BE8]"));
15214
15215 if (flags & EF_ARM_LE8)
15216 fprintf (file, _(" [LE8]"));
15217
15218 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15219 break;
15220
fc830a83 15221 default:
9b485d32 15222 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
15223 break;
15224 }
252b5132 15225
fc830a83 15226 flags &= ~ EF_ARM_EABIMASK;
252b5132 15227
fc830a83 15228 if (flags & EF_ARM_RELEXEC)
9b485d32 15229 fprintf (file, _(" [relocatable executable]"));
252b5132 15230
18a20338
CL
15231 if (flags & EF_ARM_PIC)
15232 fprintf (file, _(" [position independent]"));
15233
15234 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15235 fprintf (file, _(" [FDPIC ABI supplement]"));
15236
15237 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
fc830a83
NC
15238
15239 if (flags)
dbb078f6 15240 fprintf (file, _(" <Unrecognised flag bits set>"));
9a5aca8c 15241
252b5132
RH
15242 fputc ('\n', file);
15243
0a1b45a2 15244 return true;
252b5132
RH
15245}
15246
15247static int
57e8b36a 15248elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 15249{
2f0ca46a
NC
15250 switch (ELF_ST_TYPE (elf_sym->st_info))
15251 {
15252 case STT_ARM_TFUNC:
15253 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 15254
2f0ca46a
NC
15255 case STT_ARM_16BIT:
15256 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15257 This allows us to distinguish between data used by Thumb instructions
15258 and non-data (which is probably code) inside Thumb regions of an
15259 executable. */
1a0eb693 15260 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
15261 return ELF_ST_TYPE (elf_sym->st_info);
15262 break;
9a5aca8c 15263
ce855c42
NC
15264 default:
15265 break;
2f0ca46a
NC
15266 }
15267
15268 return type;
252b5132 15269}
f21f3fe0 15270
252b5132 15271static asection *
07adf181
AM
15272elf32_arm_gc_mark_hook (asection *sec,
15273 struct bfd_link_info *info,
15274 Elf_Internal_Rela *rel,
15275 struct elf_link_hash_entry *h,
15276 Elf_Internal_Sym *sym)
252b5132
RH
15277{
15278 if (h != NULL)
07adf181 15279 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
15280 {
15281 case R_ARM_GNU_VTINHERIT:
15282 case R_ARM_GNU_VTENTRY:
07adf181
AM
15283 return NULL;
15284 }
9ad5cbcf 15285
07adf181 15286 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
15287}
15288
780a67af
NC
15289/* Look through the relocs for a section during the first phase. */
15290
0a1b45a2 15291static bool
57e8b36a
NC
15292elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15293 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 15294{
b34976b6
AM
15295 Elf_Internal_Shdr *symtab_hdr;
15296 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
15297 const Elf_Internal_Rela *rel;
15298 const Elf_Internal_Rela *rel_end;
15299 bfd *dynobj;
5e681ec4 15300 asection *sreloc;
5e681ec4 15301 struct elf32_arm_link_hash_table *htab;
0a1b45a2
AM
15302 bool call_reloc_p;
15303 bool may_become_dynamic_p;
15304 bool may_need_local_target_p;
ce98a316 15305 unsigned long nsyms;
9a5aca8c 15306
0e1862bb 15307 if (bfd_link_relocatable (info))
0a1b45a2 15308 return true;
9a5aca8c 15309
0ffa91dd
NC
15310 BFD_ASSERT (is_arm_elf (abfd));
15311
5e681ec4 15312 htab = elf32_arm_hash_table (info);
4dfe6ac6 15313 if (htab == NULL)
0a1b45a2 15314 return false;
4dfe6ac6 15315
5e681ec4 15316 sreloc = NULL;
9a5aca8c 15317
67687978
PB
15318 /* Create dynamic sections for relocatable executables so that we can
15319 copy relocations. */
15320 if (htab->root.is_relocatable_executable
15321 && ! htab->root.dynamic_sections_created)
15322 {
15323 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
0a1b45a2 15324 return false;
67687978
PB
15325 }
15326
cbc704f3
RS
15327 if (htab->root.dynobj == NULL)
15328 htab->root.dynobj = abfd;
34e77a92 15329 if (!create_ifunc_sections (info))
0a1b45a2 15330 return false;
cbc704f3
RS
15331
15332 dynobj = htab->root.dynobj;
15333
0ffa91dd 15334 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 15335 sym_hashes = elf_sym_hashes (abfd);
ce98a316 15336 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 15337
252b5132
RH
15338 rel_end = relocs + sec->reloc_count;
15339 for (rel = relocs; rel < rel_end; rel++)
15340 {
34e77a92 15341 Elf_Internal_Sym *isym;
252b5132 15342 struct elf_link_hash_entry *h;
b7693d02 15343 struct elf32_arm_link_hash_entry *eh;
d42c267e 15344 unsigned int r_symndx;
eb043451 15345 int r_type;
9a5aca8c 15346
252b5132 15347 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 15348 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 15349 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 15350
ce98a316
NC
15351 if (r_symndx >= nsyms
15352 /* PR 9934: It is possible to have relocations that do not
15353 refer to symbols, thus it is also possible to have an
15354 object file containing relocations but no symbol table. */
cf35638d 15355 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac 15356 {
871b3ab2 15357 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
4eca0228 15358 r_symndx);
0a1b45a2 15359 return false;
ba93b8ac
DJ
15360 }
15361
34e77a92
RS
15362 h = NULL;
15363 isym = NULL;
15364 if (nsyms > 0)
973a3492 15365 {
34e77a92
RS
15366 if (r_symndx < symtab_hdr->sh_info)
15367 {
15368 /* A local symbol. */
f1dfbfdb 15369 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache,
34e77a92
RS
15370 abfd, r_symndx);
15371 if (isym == NULL)
0a1b45a2 15372 return false;
34e77a92
RS
15373 }
15374 else
15375 {
15376 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15377 while (h->root.type == bfd_link_hash_indirect
15378 || h->root.type == bfd_link_hash_warning)
15379 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15380 }
973a3492 15381 }
9a5aca8c 15382
b7693d02
DJ
15383 eh = (struct elf32_arm_link_hash_entry *) h;
15384
0a1b45a2
AM
15385 call_reloc_p = false;
15386 may_become_dynamic_p = false;
15387 may_need_local_target_p = false;
f6e32f6d 15388
0855e32b
NS
15389 /* Could be done earlier, if h were already available. */
15390 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 15391 switch (r_type)
99059e56 15392 {
e8b09b87
CL
15393 case R_ARM_GOTOFFFUNCDESC:
15394 {
15395 if (h == NULL)
15396 {
15397 if (!elf32_arm_allocate_local_sym_info (abfd))
0a1b45a2 15398 return false;
74fd118f
NC
15399 if (r_symndx >= elf32_arm_num_entries (abfd))
15400 return false;
cc850f74
NC
15401 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].gotofffuncdesc_cnt += 1;
15402 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].funcdesc_offset = -1;
e8b09b87
CL
15403 }
15404 else
15405 {
15406 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15407 }
15408 }
15409 break;
15410
15411 case R_ARM_GOTFUNCDESC:
15412 {
15413 if (h == NULL)
15414 {
15415 /* Such a relocation is not supposed to be generated
cc850f74 15416 by gcc on a static function. */
e8b09b87 15417 /* Anyway if needed it could be handled. */
cc850f74 15418 return false;
e8b09b87
CL
15419 }
15420 else
15421 {
15422 eh->fdpic_cnts.gotfuncdesc_cnt++;
15423 }
15424 }
15425 break;
15426
15427 case R_ARM_FUNCDESC:
15428 {
15429 if (h == NULL)
15430 {
15431 if (!elf32_arm_allocate_local_sym_info (abfd))
0a1b45a2 15432 return false;
74fd118f
NC
15433 if (r_symndx >= elf32_arm_num_entries (abfd))
15434 return false;
cc850f74
NC
15435 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].funcdesc_cnt += 1;
15436 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].funcdesc_offset = -1;
e8b09b87
CL
15437 }
15438 else
15439 {
15440 eh->fdpic_cnts.funcdesc_cnt++;
15441 }
15442 }
15443 break;
15444
5e681ec4 15445 case R_ARM_GOT32:
eb043451 15446 case R_ARM_GOT_PREL:
ba93b8ac 15447 case R_ARM_TLS_GD32:
5c5a4843 15448 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 15449 case R_ARM_TLS_IE32:
5c5a4843 15450 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
15451 case R_ARM_TLS_GOTDESC:
15452 case R_ARM_TLS_DESCSEQ:
15453 case R_ARM_THM_TLS_DESCSEQ:
15454 case R_ARM_TLS_CALL:
15455 case R_ARM_THM_TLS_CALL:
5e681ec4 15456 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
15457 {
15458 int tls_type, old_tls_type;
5e681ec4 15459
ba93b8ac
DJ
15460 switch (r_type)
15461 {
15462 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
5c5a4843 15463 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
b38cadfb 15464
ba93b8ac 15465 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
5c5a4843 15466 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
b38cadfb 15467
0855e32b
NS
15468 case R_ARM_TLS_GOTDESC:
15469 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15470 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15471 tls_type = GOT_TLS_GDESC; break;
b38cadfb 15472
ba93b8ac
DJ
15473 default: tls_type = GOT_NORMAL; break;
15474 }
252b5132 15475
0e1862bb 15476 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
eea6dad2
KM
15477 info->flags |= DF_STATIC_TLS;
15478
ba93b8ac
DJ
15479 if (h != NULL)
15480 {
15481 h->got.refcount++;
15482 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15483 }
15484 else
15485 {
ba93b8ac 15486 /* This is a global offset table entry for a local symbol. */
34e77a92 15487 if (!elf32_arm_allocate_local_sym_info (abfd))
0a1b45a2 15488 return false;
74fd118f
NC
15489 if (r_symndx >= elf32_arm_num_entries (abfd))
15490 {
15491 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15492 r_symndx);
15493 return false;
15494 }
15495
34e77a92 15496 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
15497 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15498 }
15499
0855e32b 15500 /* If a variable is accessed with both tls methods, two
99059e56 15501 slots may be created. */
0855e32b
NS
15502 if (GOT_TLS_GD_ANY_P (old_tls_type)
15503 && GOT_TLS_GD_ANY_P (tls_type))
15504 tls_type |= old_tls_type;
15505
15506 /* We will already have issued an error message if there
15507 is a TLS/non-TLS mismatch, based on the symbol
15508 type. So just combine any TLS types needed. */
ba93b8ac
DJ
15509 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15510 && tls_type != GOT_NORMAL)
15511 tls_type |= old_tls_type;
15512
0855e32b 15513 /* If the symbol is accessed in both IE and GDESC
99059e56
RM
15514 method, we're able to relax. Turn off the GDESC flag,
15515 without messing up with any other kind of tls types
6a631e86 15516 that may be involved. */
0855e32b
NS
15517 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15518 tls_type &= ~GOT_TLS_GDESC;
15519
ba93b8ac
DJ
15520 if (old_tls_type != tls_type)
15521 {
15522 if (h != NULL)
15523 elf32_arm_hash_entry (h)->tls_type = tls_type;
15524 else
15525 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15526 }
15527 }
8029a119 15528 /* Fall through. */
ba93b8ac
DJ
15529
15530 case R_ARM_TLS_LDM32:
5c5a4843
CL
15531 case R_ARM_TLS_LDM32_FDPIC:
15532 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
ba93b8ac 15533 htab->tls_ldm_got.refcount++;
8029a119 15534 /* Fall through. */
252b5132 15535
c19d1205 15536 case R_ARM_GOTOFF32:
5e681ec4 15537 case R_ARM_GOTPC:
cbc704f3
RS
15538 if (htab->root.sgot == NULL
15539 && !create_got_section (htab->root.dynobj, info))
0a1b45a2 15540 return false;
252b5132
RH
15541 break;
15542
252b5132 15543 case R_ARM_PC24:
7359ea65 15544 case R_ARM_PLT32:
5b5bb741
PB
15545 case R_ARM_CALL:
15546 case R_ARM_JUMP24:
eb043451 15547 case R_ARM_PREL31:
c19d1205 15548 case R_ARM_THM_CALL:
bd97cb95
DJ
15549 case R_ARM_THM_JUMP24:
15550 case R_ARM_THM_JUMP19:
0a1b45a2
AM
15551 call_reloc_p = true;
15552 may_need_local_target_p = true;
f6e32f6d
RS
15553 break;
15554
15555 case R_ARM_ABS12:
15556 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15557 ldr __GOTT_INDEX__ offsets. */
90c14f0c 15558 if (htab->root.target_os != is_vxworks)
f6e32f6d 15559 {
0a1b45a2 15560 may_need_local_target_p = true;
f6e32f6d
RS
15561 break;
15562 }
aebf9be7 15563 else goto jump_over;
9eaff861 15564
f6e32f6d 15565 /* Fall through. */
39623e12 15566
96c23d59
JM
15567 case R_ARM_MOVW_ABS_NC:
15568 case R_ARM_MOVT_ABS:
15569 case R_ARM_THM_MOVW_ABS_NC:
15570 case R_ARM_THM_MOVT_ABS:
0e1862bb 15571 if (bfd_link_pic (info))
96c23d59 15572 {
4eca0228 15573 _bfd_error_handler
871b3ab2 15574 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
96c23d59
JM
15575 abfd, elf32_arm_howto_table_1[r_type].name,
15576 (h) ? h->root.root.string : "a local symbol");
15577 bfd_set_error (bfd_error_bad_value);
0a1b45a2 15578 return false;
96c23d59
JM
15579 }
15580
15581 /* Fall through. */
39623e12
PB
15582 case R_ARM_ABS32:
15583 case R_ARM_ABS32_NOI:
aebf9be7 15584 jump_over:
0e1862bb 15585 if (h != NULL && bfd_link_executable (info))
97323ad1
WN
15586 {
15587 h->pointer_equality_needed = 1;
15588 }
15589 /* Fall through. */
39623e12
PB
15590 case R_ARM_REL32:
15591 case R_ARM_REL32_NOI:
b6895b4f
PB
15592 case R_ARM_MOVW_PREL_NC:
15593 case R_ARM_MOVT_PREL:
b6895b4f
PB
15594 case R_ARM_THM_MOVW_PREL_NC:
15595 case R_ARM_THM_MOVT_PREL:
39623e12 15596
b7693d02 15597 /* Should the interworking branches be listed here? */
e8b09b87
CL
15598 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15599 || htab->fdpic_p)
34e77a92
RS
15600 && (sec->flags & SEC_ALLOC) != 0)
15601 {
15602 if (h == NULL
469a3493 15603 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
15604 {
15605 /* In shared libraries and relocatable executables,
15606 we treat local relative references as calls;
15607 see the related SYMBOL_CALLS_LOCAL code in
15608 allocate_dynrelocs. */
0a1b45a2
AM
15609 call_reloc_p = true;
15610 may_need_local_target_p = true;
34e77a92
RS
15611 }
15612 else
15613 /* We are creating a shared library or relocatable
15614 executable, and this is a reloc against a global symbol,
15615 or a non-PC-relative reloc against a local symbol.
15616 We may need to copy the reloc into the output. */
0a1b45a2 15617 may_become_dynamic_p = true;
34e77a92 15618 }
f6e32f6d 15619 else
0a1b45a2 15620 may_need_local_target_p = true;
252b5132
RH
15621 break;
15622
99059e56
RM
15623 /* This relocation describes the C++ object vtable hierarchy.
15624 Reconstruct it for later use during GC. */
15625 case R_ARM_GNU_VTINHERIT:
15626 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
0a1b45a2 15627 return false;
99059e56
RM
15628 break;
15629
15630 /* This relocation describes which C++ vtable entries are actually
15631 used. Record for later use during GC. */
15632 case R_ARM_GNU_VTENTRY:
a0ea3a14 15633 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
0a1b45a2 15634 return false;
99059e56
RM
15635 break;
15636 }
f6e32f6d
RS
15637
15638 if (h != NULL)
15639 {
15640 if (call_reloc_p)
15641 /* We may need a .plt entry if the function this reloc
15642 refers to is in a different object, regardless of the
15643 symbol's type. We can't tell for sure yet, because
15644 something later might force the symbol local. */
15645 h->needs_plt = 1;
15646 else if (may_need_local_target_p)
15647 /* If this reloc is in a read-only section, we might
15648 need a copy reloc. We can't check reliably at this
15649 stage whether the section is read-only, as input
15650 sections have not yet been mapped to output sections.
15651 Tentatively set the flag for now, and correct in
15652 adjust_dynamic_symbol. */
15653 h->non_got_ref = 1;
15654 }
15655
34e77a92
RS
15656 if (may_need_local_target_p
15657 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 15658 {
34e77a92
RS
15659 union gotplt_union *root_plt;
15660 struct arm_plt_info *arm_plt;
15661 struct arm_local_iplt_info *local_iplt;
15662
15663 if (h != NULL)
15664 {
15665 root_plt = &h->plt;
15666 arm_plt = &eh->plt;
15667 }
15668 else
15669 {
15670 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15671 if (local_iplt == NULL)
0a1b45a2 15672 return false;
34e77a92
RS
15673 root_plt = &local_iplt->root;
15674 arm_plt = &local_iplt->arm;
15675 }
15676
f6e32f6d
RS
15677 /* If the symbol is a function that doesn't bind locally,
15678 this relocation will need a PLT entry. */
a8c887dd
NC
15679 if (root_plt->refcount != -1)
15680 root_plt->refcount += 1;
34e77a92
RS
15681
15682 if (!call_reloc_p)
15683 arm_plt->noncall_refcount++;
f6e32f6d
RS
15684
15685 /* It's too early to use htab->use_blx here, so we have to
15686 record possible blx references separately from
15687 relocs that definitely need a thumb stub. */
15688
15689 if (r_type == R_ARM_THM_CALL)
34e77a92 15690 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
15691
15692 if (r_type == R_ARM_THM_JUMP24
15693 || r_type == R_ARM_THM_JUMP19)
34e77a92 15694 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
15695 }
15696
15697 if (may_become_dynamic_p)
15698 {
15699 struct elf_dyn_relocs *p, **head;
15700
15701 /* Create a reloc section in dynobj. */
15702 if (sreloc == NULL)
15703 {
15704 sreloc = _bfd_elf_make_dynamic_reloc_section
15705 (sec, dynobj, 2, abfd, ! htab->use_rel);
15706
15707 if (sreloc == NULL)
0a1b45a2 15708 return false;
f6e32f6d
RS
15709 }
15710
15711 /* If this is a global symbol, count the number of
15712 relocations we need for this symbol. */
15713 if (h != NULL)
190eb1dd 15714 head = &h->dyn_relocs;
f6e32f6d
RS
15715 else
15716 {
34e77a92
RS
15717 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15718 if (head == NULL)
0a1b45a2 15719 return false;
f6e32f6d
RS
15720 }
15721
15722 p = *head;
15723 if (p == NULL || p->sec != sec)
15724 {
986f0783 15725 size_t amt = sizeof *p;
f6e32f6d
RS
15726
15727 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15728 if (p == NULL)
0a1b45a2 15729 return false;
f6e32f6d
RS
15730 p->next = *head;
15731 *head = p;
15732 p->sec = sec;
15733 p->count = 0;
15734 p->pc_count = 0;
15735 }
15736
469a3493 15737 if (elf32_arm_howto_from_type (r_type)->pc_relative)
f6e32f6d
RS
15738 p->pc_count += 1;
15739 p->count += 1;
cc850f74
NC
15740 if (h == NULL && htab->fdpic_p && !bfd_link_pic (info)
15741 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI)
15742 {
15743 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15744 that will become rofixup. */
15745 /* This is due to the fact that we suppose all will become rofixup. */
15746 _bfd_error_handler
15747 (_("FDPIC does not yet support %s relocation"
15748 " to become dynamic for executable"),
15749 elf32_arm_howto_table_1[r_type].name);
15750 abort ();
15751 }
f6e32f6d 15752 }
252b5132 15753 }
f21f3fe0 15754
0a1b45a2 15755 return true;
252b5132
RH
15756}
15757
9eaff861
AO
15758static void
15759elf32_arm_update_relocs (asection *o,
15760 struct bfd_elf_section_reloc_data *reldata)
15761{
15762 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15763 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15764 const struct elf_backend_data *bed;
15765 _arm_elf_section_data *eado;
15766 struct bfd_link_order *p;
15767 bfd_byte *erela_head, *erela;
15768 Elf_Internal_Rela *irela_head, *irela;
15769 Elf_Internal_Shdr *rel_hdr;
15770 bfd *abfd;
15771 unsigned int count;
15772
15773 eado = get_arm_elf_section_data (o);
15774
15775 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15776 return;
15777
15778 abfd = o->owner;
15779 bed = get_elf_backend_data (abfd);
15780 rel_hdr = reldata->hdr;
15781
15782 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15783 {
15784 swap_in = bed->s->swap_reloc_in;
15785 swap_out = bed->s->swap_reloc_out;
15786 }
15787 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15788 {
15789 swap_in = bed->s->swap_reloca_in;
15790 swap_out = bed->s->swap_reloca_out;
15791 }
15792 else
15793 abort ();
15794
15795 erela_head = rel_hdr->contents;
15796 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15797 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15798
15799 erela = erela_head;
15800 irela = irela_head;
15801 count = 0;
15802
15803 for (p = o->map_head.link_order; p; p = p->next)
15804 {
15805 if (p->type == bfd_section_reloc_link_order
15806 || p->type == bfd_symbol_reloc_link_order)
15807 {
15808 (*swap_in) (abfd, erela, irela);
15809 erela += rel_hdr->sh_entsize;
15810 irela++;
15811 count++;
15812 }
15813 else if (p->type == bfd_indirect_link_order)
15814 {
15815 struct bfd_elf_section_reloc_data *input_reldata;
15816 arm_unwind_table_edit *edit_list, *edit_tail;
15817 _arm_elf_section_data *eadi;
15818 bfd_size_type j;
15819 bfd_vma offset;
15820 asection *i;
15821
15822 i = p->u.indirect.section;
15823
15824 eadi = get_arm_elf_section_data (i);
15825 edit_list = eadi->u.exidx.unwind_edit_list;
15826 edit_tail = eadi->u.exidx.unwind_edit_tail;
539300fb 15827 offset = i->output_offset;
9eaff861
AO
15828
15829 if (eadi->elf.rel.hdr &&
15830 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15831 input_reldata = &eadi->elf.rel;
15832 else if (eadi->elf.rela.hdr &&
15833 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15834 input_reldata = &eadi->elf.rela;
15835 else
15836 abort ();
15837
15838 if (edit_list)
15839 {
15840 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15841 {
15842 arm_unwind_table_edit *edit_node, *edit_next;
15843 bfd_vma bias;
c48182bf 15844 bfd_vma reloc_index;
9eaff861
AO
15845
15846 (*swap_in) (abfd, erela, irela);
c48182bf 15847 reloc_index = (irela->r_offset - offset) / 8;
9eaff861
AO
15848
15849 bias = 0;
15850 edit_node = edit_list;
15851 for (edit_next = edit_list;
c48182bf 15852 edit_next && edit_next->index <= reloc_index;
9eaff861
AO
15853 edit_next = edit_node->next)
15854 {
15855 bias++;
15856 edit_node = edit_next;
15857 }
15858
15859 if (edit_node->type != DELETE_EXIDX_ENTRY
c48182bf 15860 || edit_node->index != reloc_index)
9eaff861
AO
15861 {
15862 irela->r_offset -= bias * 8;
15863 irela++;
15864 count++;
15865 }
15866
15867 erela += rel_hdr->sh_entsize;
15868 }
15869
15870 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15871 {
15872 /* New relocation entity. */
15873 asection *text_sec = edit_tail->linked_section;
15874 asection *text_out = text_sec->output_section;
15875 bfd_vma exidx_offset = offset + i->size - 8;
15876
15877 irela->r_addend = 0;
15878 irela->r_offset = exidx_offset;
15879 irela->r_info = ELF32_R_INFO
15880 (text_out->target_index, R_ARM_PREL31);
15881 irela++;
15882 count++;
15883 }
15884 }
15885 else
15886 {
15887 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15888 {
15889 (*swap_in) (abfd, erela, irela);
15890 erela += rel_hdr->sh_entsize;
15891 irela++;
15892 }
15893
15894 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15895 }
15896 }
15897 }
15898
15899 reldata->count = count;
15900 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15901
15902 erela = erela_head;
15903 irela = irela_head;
15904 while (count > 0)
15905 {
15906 (*swap_out) (abfd, irela, erela);
15907 erela += rel_hdr->sh_entsize;
15908 irela++;
15909 count--;
15910 }
15911
15912 free (irela_head);
15913
15914 /* Hashes are no longer valid. */
15915 free (reldata->hashes);
15916 reldata->hashes = NULL;
15917}
15918
6a5bb875 15919/* Unwinding tables are not referenced directly. This pass marks them as
4ba2ef8f
TP
15920 required if the corresponding code section is marked. Similarly, ARMv8-M
15921 secure entry functions can only be referenced by SG veneers which are
15922 created after the GC process. They need to be marked in case they reside in
15923 their own section (as would be the case if code was compiled with
15924 -ffunction-sections). */
6a5bb875 15925
0a1b45a2 15926static bool
906e58ca
NC
15927elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15928 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
15929{
15930 bfd *sub;
15931 Elf_Internal_Shdr **elf_shdrp;
4ba2ef8f
TP
15932 asection *cmse_sec;
15933 obj_attribute *out_attr;
15934 Elf_Internal_Shdr *symtab_hdr;
15935 unsigned i, sym_count, ext_start;
15936 const struct elf_backend_data *bed;
15937 struct elf_link_hash_entry **sym_hashes;
15938 struct elf32_arm_link_hash_entry *cmse_hash;
0a1b45a2 15939 bool again, is_v8m, first_bfd_browse = true;
e4fbcd83 15940 bool extra_marks_added = false;
bb32413f 15941 asection *isec;
6a5bb875 15942
7f6ab9f8
AM
15943 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15944
4ba2ef8f
TP
15945 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15946 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15947 && out_attr[Tag_CPU_arch_profile].i == 'M';
15948
6a5bb875
PB
15949 /* Marking EH data may cause additional code sections to be marked,
15950 requiring multiple passes. */
0a1b45a2 15951 again = true;
6a5bb875
PB
15952 while (again)
15953 {
0a1b45a2 15954 again = false;
c72f2fb2 15955 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6a5bb875
PB
15956 {
15957 asection *o;
15958
0ffa91dd 15959 if (! is_arm_elf (sub))
6a5bb875
PB
15960 continue;
15961
15962 elf_shdrp = elf_elfsections (sub);
15963 for (o = sub->sections; o != NULL; o = o->next)
15964 {
15965 Elf_Internal_Shdr *hdr;
0ffa91dd 15966
6a5bb875 15967 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
15968 if (hdr->sh_type == SHT_ARM_EXIDX
15969 && hdr->sh_link
15970 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
15971 && !o->gc_mark
15972 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15973 {
0a1b45a2 15974 again = true;
6a5bb875 15975 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
0a1b45a2 15976 return false;
6a5bb875
PB
15977 }
15978 }
4ba2ef8f
TP
15979
15980 /* Mark section holding ARMv8-M secure entry functions. We mark all
15981 of them so no need for a second browsing. */
15982 if (is_v8m && first_bfd_browse)
15983 {
e4fbcd83
NC
15984 bool debug_sec_need_to_be_marked = false;
15985
4ba2ef8f
TP
15986 sym_hashes = elf_sym_hashes (sub);
15987 bed = get_elf_backend_data (sub);
15988 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15989 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15990 ext_start = symtab_hdr->sh_info;
15991
15992 /* Scan symbols. */
15993 for (i = ext_start; i < sym_count; i++)
15994 {
15995 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
83f18e5e
NC
15996 if (cmse_hash == NULL)
15997 continue;
4ba2ef8f
TP
15998
15999 /* Assume it is a special symbol. If not, cmse_scan will
16000 warn about it and user can do something about it. */
08dedd66 16001 if (startswith (cmse_hash->root.root.root.string,
e4fbcd83 16002 CMSE_PREFIX))
4ba2ef8f
TP
16003 {
16004 cmse_sec = cmse_hash->root.root.u.def.section;
5025eb7c
AO
16005 if (!cmse_sec->gc_mark
16006 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
0a1b45a2 16007 return false;
bb32413f
SP
16008 /* The debug sections related to these secure entry
16009 functions are marked on enabling below flag. */
0a1b45a2 16010 debug_sec_need_to_be_marked = true;
4ba2ef8f
TP
16011 }
16012 }
bb32413f
SP
16013
16014 if (debug_sec_need_to_be_marked)
16015 {
16016 /* Looping over all the sections of the object file containing
16017 Armv8-M secure entry functions and marking all the debug
16018 sections. */
16019 for (isec = sub->sections; isec != NULL; isec = isec->next)
16020 {
16021 /* If not a debug sections, skip it. */
16022 if (!isec->gc_mark && (isec->flags & SEC_DEBUGGING))
e4fbcd83
NC
16023 {
16024 isec->gc_mark = 1;
16025 extra_marks_added = true;
16026 }
bb32413f 16027 }
0a1b45a2 16028 debug_sec_need_to_be_marked = false;
bb32413f 16029 }
4ba2ef8f 16030 }
6a5bb875 16031 }
e4fbcd83 16032
0a1b45a2 16033 first_bfd_browse = false;
6a5bb875
PB
16034 }
16035
e4fbcd83
NC
16036 /* PR 30354: If we have added extra marks then make sure that any
16037 dependencies of the newly marked sections are also marked. */
16038 if (extra_marks_added)
16039 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
16040
0a1b45a2 16041 return true;
6a5bb875
PB
16042}
16043
3c9458e9
NC
16044/* Treat mapping symbols as special target symbols. */
16045
0a1b45a2 16046static bool
3c9458e9
NC
16047elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
16048{
b0796911
PB
16049 return bfd_is_arm_special_symbol_name (sym->name,
16050 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
16051}
16052
e7679060
AM
16053/* If the ELF symbol SYM might be a function in SEC, return the
16054 function size and set *CODE_OFF to the function's entry point,
16055 otherwise return zero. */
252b5132 16056
e7679060
AM
16057static bfd_size_type
16058elf32_arm_maybe_function_sym (const asymbol *sym, asection *sec,
16059 bfd_vma *code_off)
16060{
16061 bfd_size_type size;
24aebc79 16062 elf_symbol_type * elf_sym = (elf_symbol_type *) sym;
252b5132 16063
e7679060
AM
16064 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
16065 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
16066 || sym->section != sec)
16067 return 0;
252b5132 16068
24aebc79
NC
16069 size = (sym->flags & BSF_SYNTHETIC) ? 0 : elf_sym->internal_elf_sym.st_size;
16070
e7679060 16071 if (!(sym->flags & BSF_SYNTHETIC))
24aebc79 16072 switch (ELF_ST_TYPE (elf_sym->internal_elf_sym.st_info))
e7679060 16073 {
24aebc79
NC
16074 case STT_NOTYPE:
16075 /* Ignore symbols created by the annobin plugin for gcc and clang.
16076 These symbols are hidden, local, notype and have a size of 0. */
16077 if (size == 0
16078 && sym->flags & BSF_LOCAL
16079 && ELF_ST_VISIBILITY (elf_sym->internal_elf_sym.st_other) == STV_HIDDEN)
16080 return 0;
16081 /* Fall through. */
252b5132
RH
16082 case STT_FUNC:
16083 case STT_ARM_TFUNC:
24aebc79 16084 /* FIXME: Allow STT_GNU_IFUNC as well ? */
252b5132 16085 break;
e7679060
AM
16086 default:
16087 return 0;
16088 }
cc850f74 16089
e7679060
AM
16090 if ((sym->flags & BSF_LOCAL)
16091 && bfd_is_arm_special_symbol_name (sym->name,
16092 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16093 return 0;
0367ecfb 16094
e7679060 16095 *code_off = sym->value;
24aebc79
NC
16096
16097 /* Do not return 0 for the function's size. */
16098 return size ? size : 1;
16099
252b5132
RH
16100}
16101
0a1b45a2 16102static bool
07d6d2b8 16103elf32_arm_find_inliner_info (bfd * abfd,
4ab527b0
FF
16104 const char ** filename_ptr,
16105 const char ** functionname_ptr,
16106 unsigned int * line_ptr)
16107{
0a1b45a2 16108 bool found;
4ab527b0
FF
16109 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16110 functionname_ptr, line_ptr,
16111 & elf_tdata (abfd)->dwarf2_find_line_info);
16112 return found;
16113}
16114
252b5132
RH
16115/* Adjust a symbol defined by a dynamic object and referenced by a
16116 regular object. The current definition is in some section of the
16117 dynamic object, but we're not including those sections. We have to
16118 change the definition to something the rest of the link can
16119 understand. */
16120
0a1b45a2 16121static bool
57e8b36a
NC
16122elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16123 struct elf_link_hash_entry * h)
252b5132
RH
16124{
16125 bfd * dynobj;
5474d94f 16126 asection *s, *srel;
b7693d02 16127 struct elf32_arm_link_hash_entry * eh;
67687978 16128 struct elf32_arm_link_hash_table *globals;
252b5132 16129
67687978 16130 globals = elf32_arm_hash_table (info);
4dfe6ac6 16131 if (globals == NULL)
0a1b45a2 16132 return false;
4dfe6ac6 16133
252b5132
RH
16134 dynobj = elf_hash_table (info)->dynobj;
16135
16136 /* Make sure we know what is going on here. */
16137 BFD_ASSERT (dynobj != NULL
f5385ebf 16138 && (h->needs_plt
34e77a92 16139 || h->type == STT_GNU_IFUNC
60d67dc8 16140 || h->is_weakalias
f5385ebf
AM
16141 || (h->def_dynamic
16142 && h->ref_regular
16143 && !h->def_regular)));
252b5132 16144
b7693d02
DJ
16145 eh = (struct elf32_arm_link_hash_entry *) h;
16146
252b5132
RH
16147 /* If this is a function, put it in the procedure linkage table. We
16148 will fill in the contents of the procedure linkage table later,
16149 when we know the address of the .got section. */
34e77a92 16150 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 16151 {
34e77a92
RS
16152 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16153 symbol binds locally. */
5e681ec4 16154 if (h->plt.refcount <= 0
34e77a92
RS
16155 || (h->type != STT_GNU_IFUNC
16156 && (SYMBOL_CALLS_LOCAL (info, h)
16157 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16158 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
16159 {
16160 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
16161 file, but the symbol was never referred to by a dynamic
16162 object, or if all references were garbage collected. In
16163 such a case, we don't actually need to build a procedure
16164 linkage table, and we can just do a PC24 reloc instead. */
16165 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
16166 eh->plt.thumb_refcount = 0;
16167 eh->plt.maybe_thumb_refcount = 0;
16168 eh->plt.noncall_refcount = 0;
f5385ebf 16169 h->needs_plt = 0;
252b5132
RH
16170 }
16171
0a1b45a2 16172 return true;
252b5132 16173 }
5e681ec4 16174 else
b7693d02
DJ
16175 {
16176 /* It's possible that we incorrectly decided a .plt reloc was
16177 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16178 in check_relocs. We can't decide accurately between function
16179 and non-function syms in check-relocs; Objects loaded later in
16180 the link may change h->type. So fix it now. */
16181 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
16182 eh->plt.thumb_refcount = 0;
16183 eh->plt.maybe_thumb_refcount = 0;
16184 eh->plt.noncall_refcount = 0;
b7693d02 16185 }
252b5132
RH
16186
16187 /* If this is a weak symbol, and there is a real definition, the
16188 processor independent code will have arranged for us to see the
16189 real definition first, and we can just use the same value. */
60d67dc8 16190 if (h->is_weakalias)
252b5132 16191 {
60d67dc8
AM
16192 struct elf_link_hash_entry *def = weakdef (h);
16193 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16194 h->root.u.def.section = def->root.u.def.section;
16195 h->root.u.def.value = def->root.u.def.value;
0a1b45a2 16196 return true;
252b5132
RH
16197 }
16198
ba93b8ac
DJ
16199 /* If there are no non-GOT references, we do not need a copy
16200 relocation. */
16201 if (!h->non_got_ref)
0a1b45a2 16202 return true;
ba93b8ac 16203
252b5132
RH
16204 /* This is a reference to a symbol defined by a dynamic object which
16205 is not a function. */
16206
16207 /* If we are creating a shared library, we must presume that the
16208 only references to the symbol are via the global offset table.
16209 For such cases we need not do anything here; the relocations will
67687978
PB
16210 be handled correctly by relocate_section. Relocatable executables
16211 can reference data in shared objects directly, so we don't need to
16212 do anything here. */
0e1862bb 16213 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
0a1b45a2 16214 return true;
252b5132
RH
16215
16216 /* We must allocate the symbol in our .dynbss section, which will
16217 become part of the .bss section of the executable. There will be
16218 an entry for this symbol in the .dynsym section. The dynamic
16219 object will contain position independent code, so all references
16220 from the dynamic object to this symbol will go through the global
16221 offset table. The dynamic linker will use the .dynsym entry to
16222 determine the address it must put in the global offset table, so
16223 both the dynamic object and the regular object will refer to the
16224 same memory location for the variable. */
5522f910
NC
16225 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16226 linker to copy the initial value out of the dynamic object and into
16227 the runtime process image. We need to remember the offset into the
00a97672 16228 .rel(a).bss section we are going to use. */
5474d94f
AM
16229 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16230 {
16231 s = globals->root.sdynrelro;
16232 srel = globals->root.sreldynrelro;
16233 }
16234 else
16235 {
16236 s = globals->root.sdynbss;
16237 srel = globals->root.srelbss;
16238 }
5522f910
NC
16239 if (info->nocopyreloc == 0
16240 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
5522f910 16241 && h->size != 0)
252b5132 16242 {
47beaa6a 16243 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 16244 h->needs_copy = 1;
252b5132
RH
16245 }
16246
6cabe1ea 16247 return _bfd_elf_adjust_dynamic_copy (info, h, s);
252b5132
RH
16248}
16249
5e681ec4
PB
16250/* Allocate space in .plt, .got and associated reloc sections for
16251 dynamic relocs. */
16252
0a1b45a2 16253static bool
47beaa6a 16254allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
16255{
16256 struct bfd_link_info *info;
16257 struct elf32_arm_link_hash_table *htab;
16258 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 16259 struct elf_dyn_relocs *p;
5e681ec4
PB
16260
16261 if (h->root.type == bfd_link_hash_indirect)
0a1b45a2 16262 return true;
5e681ec4 16263
e6a6bb22
AM
16264 eh = (struct elf32_arm_link_hash_entry *) h;
16265
5e681ec4
PB
16266 info = (struct bfd_link_info *) inf;
16267 htab = elf32_arm_hash_table (info);
4dfe6ac6 16268 if (htab == NULL)
0a1b45a2 16269 return false;
5e681ec4 16270
34e77a92 16271 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
16272 && h->plt.refcount > 0)
16273 {
16274 /* Make sure this symbol is output as a dynamic symbol.
16275 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16276 if (h->dynindx == -1 && !h->forced_local
16277 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16278 {
c152c796 16279 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16280 return false;
5e681ec4
PB
16281 }
16282
34e77a92
RS
16283 /* If the call in the PLT entry binds locally, the associated
16284 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16285 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16286 than the .plt section. */
16287 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16288 {
16289 eh->is_iplt = 1;
16290 if (eh->plt.noncall_refcount == 0
16291 && SYMBOL_REFERENCES_LOCAL (info, h))
16292 /* All non-call references can be resolved directly.
16293 This means that they can (and in some cases, must)
16294 resolve directly to the run-time target, rather than
16295 to the PLT. That in turns means that any .got entry
16296 would be equal to the .igot.plt entry, so there's
16297 no point having both. */
16298 h->got.refcount = 0;
16299 }
16300
0e1862bb 16301 if (bfd_link_pic (info)
34e77a92 16302 || eh->is_iplt
7359ea65 16303 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 16304 {
34e77a92 16305 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 16306
5e681ec4
PB
16307 /* If this symbol is not defined in a regular file, and we are
16308 not generating a shared library, then set the symbol to this
16309 location in the .plt. This is required to make function
16310 pointers compare as equal between the normal executable and
16311 the shared library. */
0e1862bb 16312 if (! bfd_link_pic (info)
f5385ebf 16313 && !h->def_regular)
5e681ec4 16314 {
34e77a92 16315 h->root.u.def.section = htab->root.splt;
5e681ec4 16316 h->root.u.def.value = h->plt.offset;
5e681ec4 16317
67d74e43
DJ
16318 /* Make sure the function is not marked as Thumb, in case
16319 it is the target of an ABS32 relocation, which will
16320 point to the PLT entry. */
39d911fc 16321 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
67d74e43 16322 }
022f8312 16323
00a97672
RS
16324 /* VxWorks executables have a second set of relocations for
16325 each PLT entry. They go in a separate relocation section,
16326 which is processed by the kernel loader. */
90c14f0c 16327 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
00a97672
RS
16328 {
16329 /* There is a relocation for the initial PLT entry:
16330 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16331 if (h->plt.offset == htab->plt_header_size)
47beaa6a 16332 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
16333
16334 /* There are two extra relocations for each subsequent
16335 PLT entry: an R_ARM_32 relocation for the GOT entry,
16336 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 16337 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 16338 }
5e681ec4
PB
16339 }
16340 else
16341 {
16342 h->plt.offset = (bfd_vma) -1;
f5385ebf 16343 h->needs_plt = 0;
5e681ec4
PB
16344 }
16345 }
16346 else
16347 {
16348 h->plt.offset = (bfd_vma) -1;
f5385ebf 16349 h->needs_plt = 0;
5e681ec4
PB
16350 }
16351
0855e32b
NS
16352 eh = (struct elf32_arm_link_hash_entry *) h;
16353 eh->tlsdesc_got = (bfd_vma) -1;
16354
5e681ec4
PB
16355 if (h->got.refcount > 0)
16356 {
16357 asection *s;
0a1b45a2 16358 bool dyn;
ba93b8ac
DJ
16359 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16360 int indx;
5e681ec4
PB
16361
16362 /* Make sure this symbol is output as a dynamic symbol.
16363 Undefined weak syms won't yet be marked as dynamic. */
a57d1773
AM
16364 if (htab->root.dynamic_sections_created
16365 && h->dynindx == -1
16366 && !h->forced_local
6c699715 16367 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16368 {
c152c796 16369 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16370 return false;
5e681ec4
PB
16371 }
16372
a57d1773
AM
16373 s = htab->root.sgot;
16374 h->got.offset = s->size;
ba93b8ac 16375
a57d1773
AM
16376 if (tls_type == GOT_UNKNOWN)
16377 abort ();
ba93b8ac 16378
a57d1773
AM
16379 if (tls_type == GOT_NORMAL)
16380 /* Non-TLS symbols need one GOT slot. */
16381 s->size += 4;
16382 else
16383 {
16384 if (tls_type & GOT_TLS_GDESC)
ba93b8ac 16385 {
a57d1773
AM
16386 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16387 eh->tlsdesc_got
16388 = (htab->root.sgotplt->size
16389 - elf32_arm_compute_jump_table_size (htab));
16390 htab->root.sgotplt->size += 8;
16391 h->got.offset = (bfd_vma) -2;
16392 /* plt.got_offset needs to know there's a TLS_DESC
16393 reloc in the middle of .got.plt. */
16394 htab->num_tls_desc++;
16395 }
0855e32b 16396
a57d1773
AM
16397 if (tls_type & GOT_TLS_GD)
16398 {
16399 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16400 consecutive GOT slots. If the symbol is both GD
16401 and GDESC, got.offset may have been
16402 overwritten. */
16403 h->got.offset = s->size;
16404 s->size += 8;
ba93b8ac
DJ
16405 }
16406
a57d1773
AM
16407 if (tls_type & GOT_TLS_IE)
16408 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16409 slot. */
16410 s->size += 4;
16411 }
ba93b8ac 16412
a57d1773 16413 dyn = htab->root.dynamic_sections_created;
ba93b8ac 16414
a57d1773
AM
16415 indx = 0;
16416 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
16417 && (!bfd_link_pic (info)
16418 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16419 indx = h->dynindx;
ba93b8ac 16420
a57d1773
AM
16421 if (tls_type != GOT_NORMAL
16422 && (bfd_link_dll (info) || indx != 0)
16423 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16424 || h->root.type != bfd_link_hash_undefweak))
16425 {
16426 if (tls_type & GOT_TLS_IE)
16427 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 16428
a57d1773
AM
16429 if (tls_type & GOT_TLS_GD)
16430 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
0855e32b 16431
a57d1773 16432 if (tls_type & GOT_TLS_GDESC)
b436d854 16433 {
a57d1773
AM
16434 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16435 /* GDESC needs a trampoline to jump to. */
16436 htab->tls_trampoline = -1;
b436d854 16437 }
a57d1773
AM
16438
16439 /* Only GD needs it. GDESC just emits one relocation per
16440 2 entries. */
16441 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 16442 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e5a52504 16443 }
a57d1773
AM
16444 else if (((indx != -1) || htab->fdpic_p)
16445 && !SYMBOL_REFERENCES_LOCAL (info, h))
16446 {
16447 if (htab->root.dynamic_sections_created)
16448 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16449 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16450 }
16451 else if (h->type == STT_GNU_IFUNC
16452 && eh->plt.noncall_refcount == 0)
16453 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16454 they all resolve dynamically instead. Reserve room for the
16455 GOT entry's R_ARM_IRELATIVE relocation. */
16456 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16457 else if (bfd_link_pic (info)
16458 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16459 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16460 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16461 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16462 /* Reserve room for rofixup for FDPIC executable. */
16463 /* TLS relocs do not need space since they are completely
16464 resolved. */
16465 htab->srofixup->size += 4;
5e681ec4
PB
16466 }
16467 else
16468 h->got.offset = (bfd_vma) -1;
16469
e8b09b87
CL
16470 /* FDPIC support. */
16471 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16472 {
16473 /* Symbol musn't be exported. */
16474 if (h->dynindx != -1)
cc850f74 16475 abort ();
e8b09b87 16476
a57d1773
AM
16477 /* We only allocate one function descriptor with its associated
16478 relocation. */
e8b09b87
CL
16479 if (eh->fdpic_cnts.funcdesc_offset == -1)
16480 {
16481 asection *s = htab->root.sgot;
16482
16483 eh->fdpic_cnts.funcdesc_offset = s->size;
16484 s->size += 8;
16485 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
cc850f74 16486 if (bfd_link_pic (info))
e8b09b87
CL
16487 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16488 else
16489 htab->srofixup->size += 8;
16490 }
16491 }
16492
16493 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16494 {
16495 asection *s = htab->root.sgot;
16496
16497 if (htab->root.dynamic_sections_created && h->dynindx == -1
16498 && !h->forced_local)
16499 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16500 return false;
e8b09b87
CL
16501
16502 if (h->dynindx == -1)
16503 {
a57d1773
AM
16504 /* We only allocate one function descriptor with its
16505 associated relocation. */
e8b09b87
CL
16506 if (eh->fdpic_cnts.funcdesc_offset == -1)
16507 {
16508
16509 eh->fdpic_cnts.funcdesc_offset = s->size;
16510 s->size += 8;
a57d1773
AM
16511 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two
16512 rofixups. */
cc850f74 16513 if (bfd_link_pic (info))
e8b09b87
CL
16514 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16515 else
16516 htab->srofixup->size += 8;
16517 }
16518 }
16519
16520 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16521 R_ARM_RELATIVE/rofixup relocation on it. */
16522 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16523 s->size += 4;
cc850f74 16524 if (h->dynindx == -1 && !bfd_link_pic (info))
4b24dd1a 16525 htab->srofixup->size += 4;
e8b09b87 16526 else
4b24dd1a 16527 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e8b09b87
CL
16528 }
16529
16530 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16531 {
16532 if (htab->root.dynamic_sections_created && h->dynindx == -1
16533 && !h->forced_local)
16534 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16535 return false;
e8b09b87
CL
16536
16537 if (h->dynindx == -1)
16538 {
a57d1773
AM
16539 /* We only allocate one function descriptor with its
16540 associated relocation. */
e8b09b87
CL
16541 if (eh->fdpic_cnts.funcdesc_offset == -1)
16542 {
16543 asection *s = htab->root.sgot;
16544
16545 eh->fdpic_cnts.funcdesc_offset = s->size;
16546 s->size += 8;
a57d1773
AM
16547 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two
16548 rofixups. */
cc850f74 16549 if (bfd_link_pic (info))
e8b09b87
CL
16550 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16551 else
16552 htab->srofixup->size += 8;
16553 }
16554 }
cc850f74 16555 if (h->dynindx == -1 && !bfd_link_pic (info))
e8b09b87
CL
16556 {
16557 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16558 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16559 }
16560 else
16561 {
16562 /* Will need one dynamic reloc per reference. will be either
16563 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16564 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16565 eh->fdpic_cnts.funcdesc_cnt);
16566 }
16567 }
16568
a4fd1a8e
PB
16569 /* Allocate stubs for exported Thumb functions on v4t. */
16570 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 16571 && h->def_regular
39d911fc 16572 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
16573 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16574 {
16575 struct elf_link_hash_entry * th;
16576 struct bfd_link_hash_entry * bh;
16577 struct elf_link_hash_entry * myh;
16578 char name[1024];
16579 asection *s;
16580 bh = NULL;
16581 /* Create a new symbol to regist the real location of the function. */
16582 s = h->root.u.def.section;
906e58ca 16583 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
16584 _bfd_generic_link_add_one_symbol (info, s->owner,
16585 name, BSF_GLOBAL, s,
16586 h->root.u.def.value,
0a1b45a2 16587 NULL, true, false, &bh);
a4fd1a8e
PB
16588
16589 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 16590 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 16591 myh->forced_local = 1;
39d911fc 16592 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
a4fd1a8e
PB
16593 eh->export_glue = myh;
16594 th = record_arm_to_thumb_glue (info, h);
16595 /* Point the symbol at the stub. */
16596 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
39d911fc 16597 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
a4fd1a8e
PB
16598 h->root.u.def.section = th->root.u.def.section;
16599 h->root.u.def.value = th->root.u.def.value & ~1;
16600 }
16601
190eb1dd 16602 if (h->dyn_relocs == NULL)
0a1b45a2 16603 return true;
5e681ec4
PB
16604
16605 /* In the shared -Bsymbolic case, discard space allocated for
16606 dynamic pc-relative relocs against symbols which turn out to be
16607 defined in regular objects. For the normal shared case, discard
16608 space for pc-relative relocs that have become local due to symbol
16609 visibility changes. */
16610
a57d1773
AM
16611 if (bfd_link_pic (info)
16612 || htab->root.is_relocatable_executable
16613 || htab->fdpic_p)
5e681ec4 16614 {
469a3493
RM
16615 /* Relocs that use pc_count are PC-relative forms, which will appear
16616 on something like ".long foo - ." or "movw REG, foo - .". We want
16617 calls to protected symbols to resolve directly to the function
16618 rather than going via the plt. If people want function pointer
16619 comparisons to work as expected then they should avoid writing
16620 assembly like ".long foo - .". */
ba93b8ac
DJ
16621 if (SYMBOL_CALLS_LOCAL (info, h))
16622 {
0bdcacaf 16623 struct elf_dyn_relocs **pp;
ba93b8ac 16624
190eb1dd 16625 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
16626 {
16627 p->count -= p->pc_count;
16628 p->pc_count = 0;
16629 if (p->count == 0)
16630 *pp = p->next;
16631 else
16632 pp = &p->next;
16633 }
16634 }
16635
90c14f0c 16636 if (htab->root.target_os == is_vxworks)
3348747a 16637 {
0bdcacaf 16638 struct elf_dyn_relocs **pp;
3348747a 16639
190eb1dd 16640 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
3348747a 16641 {
0bdcacaf 16642 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
16643 *pp = p->next;
16644 else
16645 pp = &p->next;
16646 }
16647 }
16648
ba93b8ac 16649 /* Also discard relocs on undefined weak syms with non-default
99059e56 16650 visibility. */
190eb1dd 16651 if (h->dyn_relocs != NULL
5e681ec4 16652 && h->root.type == bfd_link_hash_undefweak)
22d606e9 16653 {
95b03e4a
L
16654 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16655 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
190eb1dd 16656 h->dyn_relocs = NULL;
22d606e9
AM
16657
16658 /* Make sure undefined weak symbols are output as a dynamic
16659 symbol in PIEs. */
e8b09b87 16660 else if (htab->root.dynamic_sections_created && h->dynindx == -1
22d606e9
AM
16661 && !h->forced_local)
16662 {
16663 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16664 return false;
22d606e9
AM
16665 }
16666 }
16667
67687978
PB
16668 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16669 && h->root.type == bfd_link_hash_new)
16670 {
16671 /* Output absolute symbols so that we can create relocations
16672 against them. For normal symbols we output a relocation
16673 against the section that contains them. */
16674 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16675 return false;
67687978
PB
16676 }
16677
5e681ec4
PB
16678 }
16679 else
16680 {
16681 /* For the non-shared case, discard space for relocs against
16682 symbols which turn out to need copy relocs or are not
16683 dynamic. */
16684
f5385ebf
AM
16685 if (!h->non_got_ref
16686 && ((h->def_dynamic
16687 && !h->def_regular)
5e681ec4
PB
16688 || (htab->root.dynamic_sections_created
16689 && (h->root.type == bfd_link_hash_undefweak
16690 || h->root.type == bfd_link_hash_undefined))))
16691 {
16692 /* Make sure this symbol is output as a dynamic symbol.
16693 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16694 if (h->dynindx == -1 && !h->forced_local
16695 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16696 {
c152c796 16697 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16698 return false;
5e681ec4
PB
16699 }
16700
16701 /* If that succeeded, we know we'll be keeping all the
16702 relocs. */
16703 if (h->dynindx != -1)
16704 goto keep;
16705 }
16706
190eb1dd 16707 h->dyn_relocs = NULL;
5e681ec4
PB
16708
16709 keep: ;
16710 }
16711
16712 /* Finally, allocate space. */
190eb1dd 16713 for (p = h->dyn_relocs; p != NULL; p = p->next)
5e681ec4 16714 {
0bdcacaf 16715 asection *sreloc = elf_section_data (p->sec)->sreloc;
e8b09b87 16716
34e77a92
RS
16717 if (h->type == STT_GNU_IFUNC
16718 && eh->plt.noncall_refcount == 0
16719 && SYMBOL_REFERENCES_LOCAL (info, h))
16720 elf32_arm_allocate_irelocs (info, sreloc, p->count);
a57d1773 16721 else if (h->dynindx != -1
cc850f74 16722 && (!bfd_link_pic (info) || !info->symbolic || !h->def_regular))
e8b09b87 16723 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
cc850f74 16724 else if (htab->fdpic_p && !bfd_link_pic (info))
e8b09b87 16725 htab->srofixup->size += 4 * p->count;
34e77a92
RS
16726 else
16727 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
16728 }
16729
0a1b45a2 16730 return true;
5e681ec4
PB
16731}
16732
d504ffc8
DJ
16733void
16734bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16735 int byteswap_code)
16736{
16737 struct elf32_arm_link_hash_table *globals;
16738
16739 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
16740 if (globals == NULL)
16741 return;
16742
d504ffc8
DJ
16743 globals->byteswap_code = byteswap_code;
16744}
16745
252b5132
RH
16746/* Set the sizes of the dynamic sections. */
16747
0a1b45a2 16748static bool
57e8b36a
NC
16749elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16750 struct bfd_link_info * info)
252b5132
RH
16751{
16752 bfd * dynobj;
16753 asection * s;
0a1b45a2 16754 bool relocs;
5e681ec4
PB
16755 bfd *ibfd;
16756 struct elf32_arm_link_hash_table *htab;
252b5132 16757
5e681ec4 16758 htab = elf32_arm_hash_table (info);
4dfe6ac6 16759 if (htab == NULL)
0a1b45a2 16760 return false;
4dfe6ac6 16761
252b5132
RH
16762 dynobj = elf_hash_table (info)->dynobj;
16763 BFD_ASSERT (dynobj != NULL);
39b41c9c 16764 check_use_blx (htab);
252b5132
RH
16765
16766 if (elf_hash_table (info)->dynamic_sections_created)
16767 {
16768 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 16769 if (bfd_link_executable (info) && !info->nointerp)
252b5132 16770 {
3d4d4302 16771 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 16772 BFD_ASSERT (s != NULL);
eea6121a 16773 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
16774 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16775 }
16776 }
5e681ec4
PB
16777
16778 /* Set up .got offsets for local syms, and space for local dynamic
16779 relocs. */
c72f2fb2 16780 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
252b5132 16781 {
5e681ec4
PB
16782 bfd_signed_vma *local_got;
16783 bfd_signed_vma *end_local_got;
34e77a92 16784 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 16785 char *local_tls_type;
0855e32b 16786 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
16787 bfd_size_type locsymcount;
16788 Elf_Internal_Shdr *symtab_hdr;
16789 asection *srel;
34e77a92 16790 unsigned int symndx;
e8b09b87 16791 struct fdpic_local *local_fdpic_cnts;
5e681ec4 16792
0ffa91dd 16793 if (! is_arm_elf (ibfd))
5e681ec4
PB
16794 continue;
16795
16796 for (s = ibfd->sections; s != NULL; s = s->next)
16797 {
0bdcacaf 16798 struct elf_dyn_relocs *p;
5e681ec4 16799
0bdcacaf 16800 for (p = (struct elf_dyn_relocs *)
99059e56 16801 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 16802 {
0bdcacaf
RS
16803 if (!bfd_is_abs_section (p->sec)
16804 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
16805 {
16806 /* Input section has been discarded, either because
16807 it is a copy of a linkonce section or due to
16808 linker script /DISCARD/, so we'll be discarding
16809 the relocs too. */
16810 }
90c14f0c 16811 else if (htab->root.target_os == is_vxworks
0bdcacaf 16812 && strcmp (p->sec->output_section->name,
3348747a
NS
16813 ".tls_vars") == 0)
16814 {
16815 /* Relocations in vxworks .tls_vars sections are
16816 handled specially by the loader. */
16817 }
5e681ec4
PB
16818 else if (p->count != 0)
16819 {
0bdcacaf 16820 srel = elf_section_data (p->sec)->sreloc;
cc850f74 16821 if (htab->fdpic_p && !bfd_link_pic (info))
e8b09b87
CL
16822 htab->srofixup->size += 4 * p->count;
16823 else
16824 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 16825 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
16826 info->flags |= DF_TEXTREL;
16827 }
16828 }
16829 }
16830
16831 local_got = elf_local_got_refcounts (ibfd);
cc850f74 16832 if (local_got == NULL)
5e681ec4
PB
16833 continue;
16834
0ffa91dd 16835 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
16836 locsymcount = symtab_hdr->sh_info;
16837 end_local_got = local_got + locsymcount;
34e77a92 16838 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 16839 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 16840 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
e8b09b87 16841 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
34e77a92 16842 symndx = 0;
362d30a1
RS
16843 s = htab->root.sgot;
16844 srel = htab->root.srelgot;
0855e32b 16845 for (; local_got < end_local_got;
34e77a92 16846 ++local_got, ++local_iplt_ptr, ++local_tls_type,
e8b09b87 16847 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
5e681ec4 16848 {
74fd118f
NC
16849 if (symndx >= elf32_arm_num_entries (ibfd))
16850 return false;
16851
0855e32b 16852 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92 16853 local_iplt = *local_iplt_ptr;
e8b09b87
CL
16854
16855 /* FDPIC support. */
16856 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16857 {
16858 if (local_fdpic_cnts->funcdesc_offset == -1)
16859 {
16860 local_fdpic_cnts->funcdesc_offset = s->size;
16861 s->size += 8;
16862
16863 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
cc850f74 16864 if (bfd_link_pic (info))
e8b09b87
CL
16865 elf32_arm_allocate_dynrelocs (info, srel, 1);
16866 else
16867 htab->srofixup->size += 8;
16868 }
16869 }
16870
16871 if (local_fdpic_cnts->funcdesc_cnt > 0)
16872 {
16873 if (local_fdpic_cnts->funcdesc_offset == -1)
16874 {
16875 local_fdpic_cnts->funcdesc_offset = s->size;
16876 s->size += 8;
16877
16878 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
cc850f74 16879 if (bfd_link_pic (info))
e8b09b87
CL
16880 elf32_arm_allocate_dynrelocs (info, srel, 1);
16881 else
16882 htab->srofixup->size += 8;
16883 }
16884
16885 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
cc850f74 16886 if (bfd_link_pic (info))
e8b09b87
CL
16887 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16888 else
16889 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16890 }
16891
34e77a92
RS
16892 if (local_iplt != NULL)
16893 {
16894 struct elf_dyn_relocs *p;
16895
16896 if (local_iplt->root.refcount > 0)
16897 {
0a1b45a2 16898 elf32_arm_allocate_plt_entry (info, true,
34e77a92
RS
16899 &local_iplt->root,
16900 &local_iplt->arm);
16901 if (local_iplt->arm.noncall_refcount == 0)
16902 /* All references to the PLT are calls, so all
16903 non-call references can resolve directly to the
16904 run-time target. This means that the .got entry
16905 would be the same as the .igot.plt entry, so there's
16906 no point creating both. */
16907 *local_got = 0;
16908 }
16909 else
16910 {
16911 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16912 local_iplt->root.offset = (bfd_vma) -1;
16913 }
16914
16915 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
16916 {
16917 asection *psrel;
16918
16919 psrel = elf_section_data (p->sec)->sreloc;
16920 if (local_iplt->arm.noncall_refcount == 0)
16921 elf32_arm_allocate_irelocs (info, psrel, p->count);
16922 else
16923 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
16924 }
16925 }
5e681ec4
PB
16926 if (*local_got > 0)
16927 {
34e77a92
RS
16928 Elf_Internal_Sym *isym;
16929
eea6121a 16930 *local_got = s->size;
ba93b8ac
DJ
16931 if (*local_tls_type & GOT_TLS_GD)
16932 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16933 s->size += 8;
0855e32b
NS
16934 if (*local_tls_type & GOT_TLS_GDESC)
16935 {
16936 *local_tlsdesc_gotent = htab->root.sgotplt->size
16937 - elf32_arm_compute_jump_table_size (htab);
16938 htab->root.sgotplt->size += 8;
16939 *local_got = (bfd_vma) -2;
34e77a92 16940 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 16941 reloc in the middle of .got.plt. */
99059e56 16942 htab->num_tls_desc++;
0855e32b 16943 }
ba93b8ac
DJ
16944 if (*local_tls_type & GOT_TLS_IE)
16945 s->size += 4;
ba93b8ac 16946
0855e32b
NS
16947 if (*local_tls_type & GOT_NORMAL)
16948 {
16949 /* If the symbol is both GD and GDESC, *local_got
16950 may have been overwritten. */
16951 *local_got = s->size;
16952 s->size += 4;
16953 }
16954
f1dfbfdb
L
16955 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ibfd,
16956 symndx);
34e77a92 16957 if (isym == NULL)
0a1b45a2 16958 return false;
34e77a92
RS
16959
16960 /* If all references to an STT_GNU_IFUNC PLT are calls,
16961 then all non-call references, including this GOT entry,
16962 resolve directly to the run-time target. */
16963 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
16964 && (local_iplt == NULL
16965 || local_iplt->arm.noncall_refcount == 0))
16966 elf32_arm_allocate_irelocs (info, srel, 1);
e8b09b87 16967 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
0855e32b 16968 {
e8b09b87 16969 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
3064e1ff 16970 elf32_arm_allocate_dynrelocs (info, srel, 1);
e8b09b87
CL
16971 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
16972 htab->srofixup->size += 4;
99059e56 16973
e8b09b87
CL
16974 if ((bfd_link_pic (info) || htab->fdpic_p)
16975 && *local_tls_type & GOT_TLS_GDESC)
3064e1ff
JB
16976 {
16977 elf32_arm_allocate_dynrelocs (info,
16978 htab->root.srelplt, 1);
16979 htab->tls_trampoline = -1;
16980 }
0855e32b 16981 }
5e681ec4
PB
16982 }
16983 else
16984 *local_got = (bfd_vma) -1;
16985 }
252b5132
RH
16986 }
16987
ba93b8ac
DJ
16988 if (htab->tls_ldm_got.refcount > 0)
16989 {
16990 /* Allocate two GOT entries and one dynamic relocation (if necessary)
5c5a4843 16991 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
362d30a1
RS
16992 htab->tls_ldm_got.offset = htab->root.sgot->size;
16993 htab->root.sgot->size += 8;
0e1862bb 16994 if (bfd_link_pic (info))
47beaa6a 16995 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
16996 }
16997 else
16998 htab->tls_ldm_got.offset = -1;
16999
e8b09b87
CL
17000 /* At the very end of the .rofixup section is a pointer to the GOT,
17001 reserve space for it. */
17002 if (htab->fdpic_p && htab->srofixup != NULL)
17003 htab->srofixup->size += 4;
17004
5e681ec4
PB
17005 /* Allocate global sym .plt and .got entries, and space for global
17006 sym dynamic relocs. */
47beaa6a 17007 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 17008
d504ffc8 17009 /* Here we rummage through the found bfds to collect glue information. */
c72f2fb2 17010 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
c7b8f16e 17011 {
0ffa91dd 17012 if (! is_arm_elf (ibfd))
e44a2c9c
AM
17013 continue;
17014
c7b8f16e
JB
17015 /* Initialise mapping tables for code/data. */
17016 bfd_elf32_arm_init_maps (ibfd);
906e58ca 17017
c7b8f16e 17018 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
a504d23a
LA
17019 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
17020 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
90b6238f 17021 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
c7b8f16e 17022 }
d504ffc8 17023
3e6b1042
DJ
17024 /* Allocate space for the glue sections now that we've sized them. */
17025 bfd_elf32_arm_allocate_interworking_sections (info);
17026
0855e32b
NS
17027 /* For every jump slot reserved in the sgotplt, reloc_count is
17028 incremented. However, when we reserve space for TLS descriptors,
17029 it's not incremented, so in order to compute the space reserved
17030 for them, it suffices to multiply the reloc count by the jump
17031 slot size. */
17032 if (htab->root.srelplt)
cc850f74 17033 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size (htab);
0855e32b
NS
17034
17035 if (htab->tls_trampoline)
17036 {
17037 if (htab->root.splt->size == 0)
17038 htab->root.splt->size += htab->plt_header_size;
b38cadfb 17039
0855e32b
NS
17040 htab->tls_trampoline = htab->root.splt->size;
17041 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 17042
0855e32b 17043 /* If we're not using lazy TLS relocations, don't generate the
99059e56 17044 PLT and GOT entries they require. */
9bcc30e4
L
17045 if ((info->flags & DF_BIND_NOW))
17046 htab->root.tlsdesc_plt = 0;
17047 else
0855e32b 17048 {
9bcc30e4 17049 htab->root.tlsdesc_got = htab->root.sgot->size;
0855e32b
NS
17050 htab->root.sgot->size += 4;
17051
9bcc30e4 17052 htab->root.tlsdesc_plt = htab->root.splt->size;
0855e32b
NS
17053 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
17054 }
17055 }
17056
252b5132
RH
17057 /* The check_relocs and adjust_dynamic_symbol entry points have
17058 determined the sizes of the various dynamic sections. Allocate
17059 memory for them. */
0a1b45a2 17060 relocs = false;
252b5132
RH
17061 for (s = dynobj->sections; s != NULL; s = s->next)
17062 {
17063 const char * name;
252b5132
RH
17064
17065 if ((s->flags & SEC_LINKER_CREATED) == 0)
17066 continue;
17067
17068 /* It's OK to base decisions on the section name, because none
17069 of the dynobj section names depend upon the input files. */
fd361982 17070 name = bfd_section_name (s);
252b5132 17071
34e77a92 17072 if (s == htab->root.splt)
252b5132 17073 {
c456f082 17074 /* Remember whether there is a PLT. */
3084d7a2 17075 ;
252b5132 17076 }
08dedd66 17077 else if (startswith (name, ".rel"))
252b5132 17078 {
c456f082 17079 if (s->size != 0)
252b5132 17080 {
252b5132 17081 /* Remember whether there are any reloc sections other
00a97672 17082 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 17083 if (s != htab->root.srelplt && s != htab->srelplt2)
0a1b45a2 17084 relocs = true;
252b5132
RH
17085
17086 /* We use the reloc_count field as a counter if we need
17087 to copy relocs into the output file. */
17088 s->reloc_count = 0;
17089 }
17090 }
34e77a92
RS
17091 else if (s != htab->root.sgot
17092 && s != htab->root.sgotplt
17093 && s != htab->root.iplt
17094 && s != htab->root.igotplt
5474d94f 17095 && s != htab->root.sdynbss
e8b09b87
CL
17096 && s != htab->root.sdynrelro
17097 && s != htab->srofixup)
252b5132
RH
17098 {
17099 /* It's not one of our sections, so don't allocate space. */
17100 continue;
17101 }
17102
c456f082 17103 if (s->size == 0)
252b5132 17104 {
c456f082 17105 /* If we don't need this section, strip it from the
00a97672
RS
17106 output file. This is mostly to handle .rel(a).bss and
17107 .rel(a).plt. We must create both sections in
c456f082
AM
17108 create_dynamic_sections, because they must be created
17109 before the linker maps input sections to output
17110 sections. The linker does that before
17111 adjust_dynamic_symbol is called, and it is that
17112 function which decides whether anything needs to go
17113 into these sections. */
8423293d 17114 s->flags |= SEC_EXCLUDE;
252b5132
RH
17115 continue;
17116 }
17117
c456f082
AM
17118 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17119 continue;
17120
252b5132 17121 /* Allocate memory for the section contents. */
21d799b5 17122 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 17123 if (s->contents == NULL)
0a1b45a2 17124 return false;
252b5132
RH
17125 }
17126
3084d7a2
L
17127 return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd, info,
17128 relocs);
252b5132
RH
17129}
17130
0855e32b
NS
17131/* Size sections even though they're not dynamic. We use it to setup
17132 _TLS_MODULE_BASE_, if needed. */
17133
0a1b45a2 17134static bool
0855e32b 17135elf32_arm_always_size_sections (bfd *output_bfd,
99059e56 17136 struct bfd_link_info *info)
0855e32b
NS
17137{
17138 asection *tls_sec;
cb10292c
CL
17139 struct elf32_arm_link_hash_table *htab;
17140
17141 htab = elf32_arm_hash_table (info);
0855e32b 17142
0e1862bb 17143 if (bfd_link_relocatable (info))
0a1b45a2 17144 return true;
0855e32b
NS
17145
17146 tls_sec = elf_hash_table (info)->tls_sec;
17147
17148 if (tls_sec)
17149 {
17150 struct elf_link_hash_entry *tlsbase;
17151
17152 tlsbase = elf_link_hash_lookup
0a1b45a2 17153 (elf_hash_table (info), "_TLS_MODULE_BASE_", true, true, false);
0855e32b
NS
17154
17155 if (tlsbase)
99059e56
RM
17156 {
17157 struct bfd_link_hash_entry *bh = NULL;
0855e32b 17158 const struct elf_backend_data *bed
99059e56 17159 = get_elf_backend_data (output_bfd);
0855e32b 17160
99059e56 17161 if (!(_bfd_generic_link_add_one_symbol
0855e32b 17162 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
0a1b45a2 17163 tls_sec, 0, NULL, false,
0855e32b 17164 bed->collect, &bh)))
0a1b45a2 17165 return false;
b38cadfb 17166
99059e56
RM
17167 tlsbase->type = STT_TLS;
17168 tlsbase = (struct elf_link_hash_entry *)bh;
17169 tlsbase->def_regular = 1;
17170 tlsbase->other = STV_HIDDEN;
0a1b45a2 17171 (*bed->elf_backend_hide_symbol) (info, tlsbase, true);
0855e32b
NS
17172 }
17173 }
cb10292c
CL
17174
17175 if (htab->fdpic_p && !bfd_link_relocatable (info)
17176 && !bfd_elf_stack_segment_size (output_bfd, info,
17177 "__stacksize", DEFAULT_STACK_SIZE))
0a1b45a2 17178 return false;
cb10292c 17179
0a1b45a2 17180 return true;
0855e32b
NS
17181}
17182
252b5132
RH
17183/* Finish up dynamic symbol handling. We set the contents of various
17184 dynamic sections here. */
17185
0a1b45a2 17186static bool
906e58ca
NC
17187elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17188 struct bfd_link_info * info,
17189 struct elf_link_hash_entry * h,
17190 Elf_Internal_Sym * sym)
252b5132 17191{
e5a52504 17192 struct elf32_arm_link_hash_table *htab;
b7693d02 17193 struct elf32_arm_link_hash_entry *eh;
252b5132 17194
e5a52504 17195 htab = elf32_arm_hash_table (info);
4dfe6ac6 17196 if (htab == NULL)
0a1b45a2 17197 return false;
4dfe6ac6 17198
b7693d02 17199 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
17200
17201 if (h->plt.offset != (bfd_vma) -1)
17202 {
34e77a92 17203 if (!eh->is_iplt)
e5a52504 17204 {
34e77a92 17205 BFD_ASSERT (h->dynindx != -1);
57460bcf
NC
17206 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17207 h->dynindx, 0))
0a1b45a2 17208 return false;
e5a52504 17209 }
57e8b36a 17210
f5385ebf 17211 if (!h->def_regular)
252b5132
RH
17212 {
17213 /* Mark the symbol as undefined, rather than as defined in
3a635617 17214 the .plt section. */
252b5132 17215 sym->st_shndx = SHN_UNDEF;
3a635617 17216 /* If the symbol is weak we need to clear the value.
d982ba73
PB
17217 Otherwise, the PLT entry would provide a definition for
17218 the symbol even if the symbol wasn't defined anywhere,
3a635617
WN
17219 and so the symbol would never be NULL. Leave the value if
17220 there were any relocations where pointer equality matters
17221 (this is a clue for the dynamic linker, to make function
17222 pointer comparisons work between an application and shared
17223 library). */
97323ad1 17224 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
d982ba73 17225 sym->st_value = 0;
252b5132 17226 }
34e77a92
RS
17227 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17228 {
17229 /* At least one non-call relocation references this .iplt entry,
17230 so the .iplt entry is the function's canonical address. */
17231 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
39d911fc 17232 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
34e77a92
RS
17233 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17234 (output_bfd, htab->root.iplt->output_section));
17235 sym->st_value = (h->plt.offset
17236 + htab->root.iplt->output_section->vma
17237 + htab->root.iplt->output_offset);
17238 }
252b5132
RH
17239 }
17240
f5385ebf 17241 if (h->needs_copy)
252b5132
RH
17242 {
17243 asection * s;
947216bf 17244 Elf_Internal_Rela rel;
252b5132
RH
17245
17246 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
17247 BFD_ASSERT (h->dynindx != -1
17248 && (h->root.type == bfd_link_hash_defined
17249 || h->root.type == bfd_link_hash_defweak));
17250
00a97672 17251 rel.r_addend = 0;
252b5132
RH
17252 rel.r_offset = (h->root.u.def.value
17253 + h->root.u.def.section->output_section->vma
17254 + h->root.u.def.section->output_offset);
17255 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
afbf7e8e 17256 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
17257 s = htab->root.sreldynrelro;
17258 else
17259 s = htab->root.srelbss;
47beaa6a 17260 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
17261 }
17262
00a97672 17263 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
fac7bd64
CL
17264 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17265 it is relative to the ".got" section. */
9637f6ef 17266 if (h == htab->root.hdynamic
90c14f0c
L
17267 || (!htab->fdpic_p
17268 && htab->root.target_os != is_vxworks
17269 && h == htab->root.hgot))
252b5132
RH
17270 sym->st_shndx = SHN_ABS;
17271
0a1b45a2 17272 return true;
252b5132
RH
17273}
17274
0855e32b
NS
17275static void
17276arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17277 void *contents,
17278 const unsigned long *template, unsigned count)
17279{
17280 unsigned ix;
b38cadfb 17281
0855e32b
NS
17282 for (ix = 0; ix != count; ix++)
17283 {
17284 unsigned long insn = template[ix];
17285
17286 /* Emit mov pc,rx if bx is not permitted. */
17287 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17288 insn = (insn & 0xf000000f) | 0x01a0f000;
17289 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17290 }
17291}
17292
99059e56
RM
17293/* Install the special first PLT entry for elf32-arm-nacl. Unlike
17294 other variants, NaCl needs this entry in a static executable's
17295 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17296 zero. For .iplt really only the last bundle is useful, and .iplt
17297 could have a shorter first entry, with each individual PLT entry's
17298 relative branch calculated differently so it targets the last
17299 bundle instead of the instruction before it (labelled .Lplt_tail
17300 above). But it's simpler to keep the size and layout of PLT0
17301 consistent with the dynamic case, at the cost of some dead code at
17302 the start of .iplt and the one dead store to the stack at the start
17303 of .Lplt_tail. */
17304static void
17305arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17306 asection *plt, bfd_vma got_displacement)
17307{
17308 unsigned int i;
17309
17310 put_arm_insn (htab, output_bfd,
17311 elf32_arm_nacl_plt0_entry[0]
17312 | arm_movw_immediate (got_displacement),
17313 plt->contents + 0);
17314 put_arm_insn (htab, output_bfd,
17315 elf32_arm_nacl_plt0_entry[1]
17316 | arm_movt_immediate (got_displacement),
17317 plt->contents + 4);
17318
17319 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17320 put_arm_insn (htab, output_bfd,
17321 elf32_arm_nacl_plt0_entry[i],
17322 plt->contents + (i * 4));
17323}
17324
252b5132
RH
17325/* Finish up the dynamic sections. */
17326
0a1b45a2 17327static bool
57e8b36a 17328elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
17329{
17330 bfd * dynobj;
17331 asection * sgot;
17332 asection * sdyn;
4dfe6ac6
NC
17333 struct elf32_arm_link_hash_table *htab;
17334
17335 htab = elf32_arm_hash_table (info);
17336 if (htab == NULL)
0a1b45a2 17337 return false;
252b5132
RH
17338
17339 dynobj = elf_hash_table (info)->dynobj;
17340
362d30a1 17341 sgot = htab->root.sgotplt;
894891db
NC
17342 /* A broken linker script might have discarded the dynamic sections.
17343 Catch this here so that we do not seg-fault later on. */
17344 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
0a1b45a2 17345 return false;
3d4d4302 17346 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
17347
17348 if (elf_hash_table (info)->dynamic_sections_created)
17349 {
17350 asection *splt;
17351 Elf32_External_Dyn *dyncon, *dynconend;
17352
362d30a1 17353 splt = htab->root.splt;
24a1ba0f 17354 BFD_ASSERT (splt != NULL && sdyn != NULL);
a57d1773 17355 BFD_ASSERT (sgot != NULL);
252b5132
RH
17356
17357 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 17358 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 17359
252b5132
RH
17360 for (; dyncon < dynconend; dyncon++)
17361 {
17362 Elf_Internal_Dyn dyn;
17363 const char * name;
17364 asection * s;
17365
17366 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17367
17368 switch (dyn.d_tag)
17369 {
17370 default:
90c14f0c 17371 if (htab->root.target_os == is_vxworks
7a2b07ff
NS
17372 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17373 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
17374 break;
17375
229fcec5 17376 case DT_HASH:
229fcec5 17377 case DT_STRTAB:
229fcec5 17378 case DT_SYMTAB:
c0042f5d 17379 case DT_VERSYM:
c0042f5d 17380 case DT_VERDEF:
c0042f5d 17381 case DT_VERNEED:
a57d1773 17382 break;
c0042f5d 17383
252b5132 17384 case DT_PLTGOT:
a57d1773 17385 name = ".got.plt";
252b5132
RH
17386 goto get_vma;
17387 case DT_JMPREL:
00a97672 17388 name = RELOC_SECTION (htab, ".plt");
252b5132 17389 get_vma:
4ade44b7 17390 s = bfd_get_linker_section (dynobj, name);
05456594
NC
17391 if (s == NULL)
17392 {
4eca0228 17393 _bfd_error_handler
4ade44b7 17394 (_("could not find section %s"), name);
05456594 17395 bfd_set_error (bfd_error_invalid_operation);
0a1b45a2 17396 return false;
05456594 17397 }
a57d1773 17398 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
252b5132
RH
17399 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17400 break;
17401
17402 case DT_PLTRELSZ:
362d30a1 17403 s = htab->root.srelplt;
252b5132 17404 BFD_ASSERT (s != NULL);
eea6121a 17405 dyn.d_un.d_val = s->size;
252b5132
RH
17406 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17407 break;
906e58ca 17408
252b5132 17409 case DT_RELSZ:
00a97672 17410 case DT_RELASZ:
229fcec5
MM
17411 case DT_REL:
17412 case DT_RELA:
252b5132 17413 break;
88f7bcd5 17414
0855e32b 17415 case DT_TLSDESC_PLT:
99059e56 17416 s = htab->root.splt;
0855e32b 17417 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
9bcc30e4 17418 + htab->root.tlsdesc_plt);
0855e32b
NS
17419 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17420 break;
17421
17422 case DT_TLSDESC_GOT:
99059e56 17423 s = htab->root.sgot;
0855e32b 17424 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
9bcc30e4 17425 + htab->root.tlsdesc_got);
0855e32b
NS
17426 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17427 break;
17428
88f7bcd5
NC
17429 /* Set the bottom bit of DT_INIT/FINI if the
17430 corresponding function is Thumb. */
17431 case DT_INIT:
17432 name = info->init_function;
17433 goto get_sym;
17434 case DT_FINI:
17435 name = info->fini_function;
17436 get_sym:
17437 /* If it wasn't set by elf_bfd_final_link
4cc11e76 17438 then there is nothing to adjust. */
88f7bcd5
NC
17439 if (dyn.d_un.d_val != 0)
17440 {
17441 struct elf_link_hash_entry * eh;
17442
17443 eh = elf_link_hash_lookup (elf_hash_table (info), name,
0a1b45a2 17444 false, false, true);
39d911fc
TP
17445 if (eh != NULL
17446 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17447 == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
17448 {
17449 dyn.d_un.d_val |= 1;
b34976b6 17450 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
17451 }
17452 }
17453 break;
252b5132
RH
17454 }
17455 }
17456
24a1ba0f 17457 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 17458 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 17459 {
00a97672
RS
17460 const bfd_vma *plt0_entry;
17461 bfd_vma got_address, plt_address, got_displacement;
17462
17463 /* Calculate the addresses of the GOT and PLT. */
17464 got_address = sgot->output_section->vma + sgot->output_offset;
17465 plt_address = splt->output_section->vma + splt->output_offset;
17466
90c14f0c 17467 if (htab->root.target_os == is_vxworks)
00a97672
RS
17468 {
17469 /* The VxWorks GOT is relocated by the dynamic linker.
17470 Therefore, we must emit relocations rather than simply
17471 computing the values now. */
17472 Elf_Internal_Rela rel;
17473
17474 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
17475 put_arm_insn (htab, output_bfd, plt0_entry[0],
17476 splt->contents + 0);
17477 put_arm_insn (htab, output_bfd, plt0_entry[1],
17478 splt->contents + 4);
17479 put_arm_insn (htab, output_bfd, plt0_entry[2],
17480 splt->contents + 8);
00a97672
RS
17481 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17482
8029a119 17483 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
17484 rel.r_offset = plt_address + 12;
17485 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17486 rel.r_addend = 0;
17487 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17488 htab->srelplt2->contents);
17489 }
90c14f0c 17490 else if (htab->root.target_os == is_nacl)
99059e56
RM
17491 arm_nacl_put_plt0 (htab, output_bfd, splt,
17492 got_address + 8 - (plt_address + 16));
eed94f8f
NC
17493 else if (using_thumb_only (htab))
17494 {
17495 got_displacement = got_address - (plt_address + 12);
17496
17497 plt0_entry = elf32_thumb2_plt0_entry;
17498 put_arm_insn (htab, output_bfd, plt0_entry[0],
17499 splt->contents + 0);
17500 put_arm_insn (htab, output_bfd, plt0_entry[1],
17501 splt->contents + 4);
17502 put_arm_insn (htab, output_bfd, plt0_entry[2],
17503 splt->contents + 8);
17504
17505 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17506 }
00a97672
RS
17507 else
17508 {
17509 got_displacement = got_address - (plt_address + 16);
17510
17511 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
17512 put_arm_insn (htab, output_bfd, plt0_entry[0],
17513 splt->contents + 0);
17514 put_arm_insn (htab, output_bfd, plt0_entry[1],
17515 splt->contents + 4);
17516 put_arm_insn (htab, output_bfd, plt0_entry[2],
17517 splt->contents + 8);
17518 put_arm_insn (htab, output_bfd, plt0_entry[3],
17519 splt->contents + 12);
5e681ec4 17520
5e681ec4 17521#ifdef FOUR_WORD_PLT
00a97672
RS
17522 /* The displacement value goes in the otherwise-unused
17523 last word of the second entry. */
17524 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 17525#else
00a97672 17526 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 17527#endif
00a97672 17528 }
f7a74f8c 17529 }
252b5132
RH
17530
17531 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17532 really seem like the right value. */
74541ad4
AM
17533 if (splt->output_section->owner == output_bfd)
17534 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 17535
9bcc30e4 17536 if (htab->root.tlsdesc_plt)
0855e32b
NS
17537 {
17538 bfd_vma got_address
17539 = sgot->output_section->vma + sgot->output_offset;
17540 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17541 + htab->root.sgot->output_offset);
17542 bfd_vma plt_address
17543 = splt->output_section->vma + splt->output_offset;
17544
b38cadfb 17545 arm_put_trampoline (htab, output_bfd,
9bcc30e4 17546 splt->contents + htab->root.tlsdesc_plt,
0855e32b
NS
17547 dl_tlsdesc_lazy_trampoline, 6);
17548
17549 bfd_put_32 (output_bfd,
9bcc30e4
L
17550 gotplt_address + htab->root.tlsdesc_got
17551 - (plt_address + htab->root.tlsdesc_plt)
0855e32b 17552 - dl_tlsdesc_lazy_trampoline[6],
9bcc30e4 17553 splt->contents + htab->root.tlsdesc_plt + 24);
0855e32b 17554 bfd_put_32 (output_bfd,
9bcc30e4 17555 got_address - (plt_address + htab->root.tlsdesc_plt)
0855e32b 17556 - dl_tlsdesc_lazy_trampoline[7],
9bcc30e4 17557 splt->contents + htab->root.tlsdesc_plt + 24 + 4);
0855e32b
NS
17558 }
17559
17560 if (htab->tls_trampoline)
17561 {
b38cadfb 17562 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
17563 splt->contents + htab->tls_trampoline,
17564 tls_trampoline, 3);
17565#ifdef FOUR_WORD_PLT
17566 bfd_put_32 (output_bfd, 0x00000000,
17567 splt->contents + htab->tls_trampoline + 12);
b38cadfb 17568#endif
0855e32b
NS
17569 }
17570
90c14f0c 17571 if (htab->root.target_os == is_vxworks
0e1862bb
L
17572 && !bfd_link_pic (info)
17573 && htab->root.splt->size > 0)
00a97672
RS
17574 {
17575 /* Correct the .rel(a).plt.unloaded relocations. They will have
17576 incorrect symbol indexes. */
17577 int num_plts;
eed62c48 17578 unsigned char *p;
00a97672 17579
362d30a1 17580 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
17581 / htab->plt_entry_size);
17582 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17583
17584 for (; num_plts; num_plts--)
17585 {
17586 Elf_Internal_Rela rel;
17587
17588 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17589 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17590 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17591 p += RELOC_SIZE (htab);
17592
17593 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17594 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17595 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17596 p += RELOC_SIZE (htab);
17597 }
17598 }
252b5132
RH
17599 }
17600
90c14f0c
L
17601 if (htab->root.target_os == is_nacl
17602 && htab->root.iplt != NULL
17603 && htab->root.iplt->size > 0)
99059e56
RM
17604 /* NaCl uses a special first entry in .iplt too. */
17605 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17606
252b5132 17607 /* Fill in the first three entries in the global offset table. */
229fcec5 17608 if (sgot)
252b5132 17609 {
229fcec5
MM
17610 if (sgot->size > 0)
17611 {
17612 if (sdyn == NULL)
17613 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17614 else
17615 bfd_put_32 (output_bfd,
17616 sdyn->output_section->vma + sdyn->output_offset,
17617 sgot->contents);
17618 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17619 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17620 }
252b5132 17621
229fcec5
MM
17622 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17623 }
252b5132 17624
e8b09b87
CL
17625 /* At the very end of the .rofixup section is a pointer to the GOT. */
17626 if (htab->fdpic_p && htab->srofixup != NULL)
17627 {
17628 struct elf_link_hash_entry *hgot = htab->root.hgot;
17629
17630 bfd_vma got_value = hgot->root.u.def.value
17631 + hgot->root.u.def.section->output_section->vma
17632 + hgot->root.u.def.section->output_offset;
17633
cc850f74 17634 arm_elf_add_rofixup (output_bfd, htab->srofixup, got_value);
e8b09b87
CL
17635
17636 /* Make sure we allocated and generated the same number of fixups. */
17637 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17638 }
17639
0a1b45a2 17640 return true;
252b5132
RH
17641}
17642
0a1b45a2 17643static bool
ed7e9d0b 17644elf32_arm_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
ba96a88f 17645{
9b485d32 17646 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 17647 struct elf32_arm_link_hash_table *globals;
ac4c9b04 17648 struct elf_segment_map *m;
ba96a88f 17649
ed7e9d0b 17650 if (!_bfd_elf_init_file_header (abfd, link_info))
0a1b45a2 17651 return false;
ed7e9d0b 17652
ba96a88f
NC
17653 i_ehdrp = elf_elfheader (abfd);
17654
94a3258f
PB
17655 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17656 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
ba96a88f 17657 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 17658
93204d3a
PB
17659 if (link_info)
17660 {
17661 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 17662 if (globals != NULL && globals->byteswap_code)
93204d3a 17663 i_ehdrp->e_flags |= EF_ARM_BE8;
18a20338
CL
17664
17665 if (globals->fdpic_p)
17666 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
93204d3a 17667 }
3bfcb652
NC
17668
17669 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17670 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17671 {
17672 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
5c294fee 17673 if (abi == AEABI_VFP_args_vfp)
3bfcb652
NC
17674 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17675 else
17676 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17677 }
ac4c9b04
MG
17678
17679 /* Scan segment to set p_flags attribute if it contains only sections with
f0728ee3 17680 SHF_ARM_PURECODE flag. */
ac4c9b04
MG
17681 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17682 {
17683 unsigned int j;
17684
17685 if (m->count == 0)
17686 continue;
17687 for (j = 0; j < m->count; j++)
17688 {
f0728ee3 17689 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
ac4c9b04
MG
17690 break;
17691 }
17692 if (j == m->count)
17693 {
17694 m->p_flags = PF_X;
17695 m->p_flags_valid = 1;
17696 }
17697 }
0a1b45a2 17698 return true;
ba96a88f
NC
17699}
17700
99e4ae17 17701static enum elf_reloc_type_class
7e612e98
AM
17702elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17703 const asection *rel_sec ATTRIBUTE_UNUSED,
17704 const Elf_Internal_Rela *rela)
99e4ae17 17705{
2b70b1b8
CL
17706 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
17707
17708 if (htab->root.dynsym != NULL
17709 && htab->root.dynsym->contents != NULL)
17710 {
17711 /* Check relocation against STT_GNU_IFUNC symbol if there are
17712 dynamic symbols. */
17713 bfd *abfd = info->output_bfd;
17714 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
17715 unsigned long r_symndx = ELF32_R_SYM (rela->r_info);
17716 if (r_symndx != STN_UNDEF)
17717 {
17718 Elf_Internal_Sym sym;
17719 if (!bed->s->swap_symbol_in (abfd,
17720 (htab->root.dynsym->contents
17721 + r_symndx * bed->s->sizeof_sym),
17722 0, &sym))
17723 {
17724 /* xgettext:c-format */
17725 _bfd_error_handler (_("%pB symbol number %lu references"
17726 " nonexistent SHT_SYMTAB_SHNDX section"),
17727 abfd, r_symndx);
17728 /* Ideally an error class should be returned here. */
17729 }
17730 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
17731 return reloc_class_ifunc;
17732 }
17733 }
17734
f51e552e 17735 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
17736 {
17737 case R_ARM_RELATIVE:
17738 return reloc_class_relative;
17739 case R_ARM_JUMP_SLOT:
17740 return reloc_class_plt;
17741 case R_ARM_COPY:
17742 return reloc_class_copy;
109575d7
JW
17743 case R_ARM_IRELATIVE:
17744 return reloc_class_ifunc;
99e4ae17
AJ
17745 default:
17746 return reloc_class_normal;
17747 }
17748}
17749
e489d0ae 17750static void
cc364be6 17751arm_final_write_processing (bfd *abfd)
e16bb312 17752{
5a6c6817 17753 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
17754}
17755
0a1b45a2 17756static bool
cc364be6 17757elf32_arm_final_write_processing (bfd *abfd)
06f44071 17758{
cc364be6
AM
17759 arm_final_write_processing (abfd);
17760 return _bfd_elf_final_write_processing (abfd);
06f44071
AM
17761}
17762
40a18ebd
NC
17763/* Return TRUE if this is an unwinding table entry. */
17764
0a1b45a2 17765static bool
40a18ebd
NC
17766is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17767{
08dedd66
ML
17768 return (startswith (name, ELF_STRING_ARM_unwind)
17769 || startswith (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
17770}
17771
17772
17773/* Set the type and flags for an ARM section. We do this by
17774 the section name, which is a hack, but ought to work. */
17775
0a1b45a2 17776static bool
40a18ebd
NC
17777elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17778{
17779 const char * name;
17780
fd361982 17781 name = bfd_section_name (sec);
40a18ebd
NC
17782
17783 if (is_arm_elf_unwind_section_name (abfd, name))
17784 {
17785 hdr->sh_type = SHT_ARM_EXIDX;
17786 hdr->sh_flags |= SHF_LINK_ORDER;
17787 }
ac4c9b04 17788
f0728ee3
AV
17789 if (sec->flags & SEC_ELF_PURECODE)
17790 hdr->sh_flags |= SHF_ARM_PURECODE;
ac4c9b04 17791
0a1b45a2 17792 return true;
40a18ebd
NC
17793}
17794
6dc132d9
L
17795/* Handle an ARM specific section when reading an object file. This is
17796 called when bfd_section_from_shdr finds a section with an unknown
17797 type. */
40a18ebd 17798
0a1b45a2 17799static bool
40a18ebd
NC
17800elf32_arm_section_from_shdr (bfd *abfd,
17801 Elf_Internal_Shdr * hdr,
6dc132d9
L
17802 const char *name,
17803 int shindex)
40a18ebd
NC
17804{
17805 /* There ought to be a place to keep ELF backend specific flags, but
17806 at the moment there isn't one. We just keep track of the
17807 sections by their name, instead. Fortunately, the ABI gives
17808 names for all the ARM specific sections, so we will probably get
17809 away with this. */
17810 switch (hdr->sh_type)
17811 {
17812 case SHT_ARM_EXIDX:
0951f019
RE
17813 case SHT_ARM_PREEMPTMAP:
17814 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
17815 break;
17816
17817 default:
0a1b45a2 17818 return false;
40a18ebd
NC
17819 }
17820
6dc132d9 17821 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
0a1b45a2 17822 return false;
40a18ebd 17823
0a1b45a2 17824 return true;
40a18ebd 17825}
e489d0ae 17826
44444f50
NC
17827static _arm_elf_section_data *
17828get_arm_elf_section_data (asection * sec)
17829{
47b2e99c
JZ
17830 if (sec && sec->owner && is_arm_elf (sec->owner))
17831 return elf32_arm_section_data (sec);
44444f50
NC
17832 else
17833 return NULL;
8e3de13a
NC
17834}
17835
4e617b1e
PB
17836typedef struct
17837{
57402f1e 17838 void *flaginfo;
4e617b1e 17839 struct bfd_link_info *info;
91a5743d
PB
17840 asection *sec;
17841 int sec_shndx;
6e0b88f1
AM
17842 int (*func) (void *, const char *, Elf_Internal_Sym *,
17843 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
17844} output_arch_syminfo;
17845
17846enum map_symbol_type
17847{
17848 ARM_MAP_ARM,
17849 ARM_MAP_THUMB,
17850 ARM_MAP_DATA
17851};
17852
17853
7413f23f 17854/* Output a single mapping symbol. */
4e617b1e 17855
0a1b45a2 17856static bool
7413f23f
DJ
17857elf32_arm_output_map_sym (output_arch_syminfo *osi,
17858 enum map_symbol_type type,
17859 bfd_vma offset)
4e617b1e
PB
17860{
17861 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
17862 Elf_Internal_Sym sym;
17863
91a5743d
PB
17864 sym.st_value = osi->sec->output_section->vma
17865 + osi->sec->output_offset
17866 + offset;
4e617b1e
PB
17867 sym.st_size = 0;
17868 sym.st_other = 0;
17869 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 17870 sym.st_shndx = osi->sec_shndx;
35fc36a8 17871 sym.st_target_internal = 0;
fe33d2fa 17872 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 17873 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
17874}
17875
34e77a92
RS
17876/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17877 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e 17878
0a1b45a2 17879static bool
34e77a92 17880elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
0a1b45a2 17881 bool is_iplt_entry_p,
34e77a92
RS
17882 union gotplt_union *root_plt,
17883 struct arm_plt_info *arm_plt)
4e617b1e 17884{
4e617b1e 17885 struct elf32_arm_link_hash_table *htab;
34e77a92 17886 bfd_vma addr, plt_header_size;
4e617b1e 17887
34e77a92 17888 if (root_plt->offset == (bfd_vma) -1)
0a1b45a2 17889 return true;
4e617b1e 17890
4dfe6ac6
NC
17891 htab = elf32_arm_hash_table (osi->info);
17892 if (htab == NULL)
0a1b45a2 17893 return false;
4dfe6ac6 17894
34e77a92
RS
17895 if (is_iplt_entry_p)
17896 {
17897 osi->sec = htab->root.iplt;
17898 plt_header_size = 0;
17899 }
17900 else
17901 {
17902 osi->sec = htab->root.splt;
17903 plt_header_size = htab->plt_header_size;
17904 }
17905 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
17906 (osi->info->output_bfd, osi->sec->output_section));
17907
17908 addr = root_plt->offset & -2;
a57d1773 17909 if (htab->root.target_os == is_vxworks)
4e617b1e 17910 {
7413f23f 17911 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17912 return false;
7413f23f 17913 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
0a1b45a2 17914 return false;
7413f23f 17915 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
0a1b45a2 17916 return false;
7413f23f 17917 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
0a1b45a2 17918 return false;
4e617b1e 17919 }
90c14f0c 17920 else if (htab->root.target_os == is_nacl)
b38cadfb
NC
17921 {
17922 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17923 return false;
b38cadfb 17924 }
7801f98f
CL
17925 else if (htab->fdpic_p)
17926 {
cc850f74 17927 enum map_symbol_type type = using_thumb_only (htab)
59029f57
CL
17928 ? ARM_MAP_THUMB
17929 : ARM_MAP_ARM;
17930
7801f98f 17931 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
4b24dd1a 17932 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
0a1b45a2 17933 return false;
59029f57 17934 if (!elf32_arm_output_map_sym (osi, type, addr))
0a1b45a2 17935 return false;
7801f98f 17936 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
0a1b45a2 17937 return false;
cc850f74 17938 if (htab->plt_entry_size == 4 * ARRAY_SIZE (elf32_arm_fdpic_plt_entry))
4b24dd1a 17939 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
0a1b45a2 17940 return false;
7801f98f 17941 }
eed94f8f
NC
17942 else if (using_thumb_only (htab))
17943 {
17944 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
0a1b45a2 17945 return false;
6a631e86 17946 }
4e617b1e
PB
17947 else
17948 {
0a1b45a2 17949 bool thumb_stub_p;
bd97cb95 17950
34e77a92
RS
17951 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17952 if (thumb_stub_p)
4e617b1e 17953 {
7413f23f 17954 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
0a1b45a2 17955 return false;
4e617b1e
PB
17956 }
17957#ifdef FOUR_WORD_PLT
7413f23f 17958 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17959 return false;
7413f23f 17960 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
0a1b45a2 17961 return false;
4e617b1e 17962#else
906e58ca 17963 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
17964 so only need to output a mapping symbol for the first PLT entry and
17965 entries with thumb thunks. */
34e77a92 17966 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 17967 {
7413f23f 17968 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17969 return false;
4e617b1e
PB
17970 }
17971#endif
17972 }
17973
0a1b45a2 17974 return true;
4e617b1e
PB
17975}
17976
34e77a92
RS
17977/* Output mapping symbols for PLT entries associated with H. */
17978
0a1b45a2 17979static bool
34e77a92
RS
17980elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17981{
17982 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17983 struct elf32_arm_link_hash_entry *eh;
17984
17985 if (h->root.type == bfd_link_hash_indirect)
0a1b45a2 17986 return true;
34e77a92
RS
17987
17988 if (h->root.type == bfd_link_hash_warning)
17989 /* When warning symbols are created, they **replace** the "real"
17990 entry in the hash table, thus we never get to see the real
17991 symbol in a hash traversal. So look at it now. */
17992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17993
17994 eh = (struct elf32_arm_link_hash_entry *) h;
17995 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17996 &h->plt, &eh->plt);
17997}
17998
4f4faa4d
TP
17999/* Bind a veneered symbol to its veneer identified by its hash entry
18000 STUB_ENTRY. The veneered location thus loose its symbol. */
18001
18002static void
18003arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
18004{
18005 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
18006
18007 BFD_ASSERT (hash);
18008 hash->root.root.u.def.section = stub_entry->stub_sec;
18009 hash->root.root.u.def.value = stub_entry->stub_offset;
18010 hash->root.size = stub_entry->stub_size;
18011}
18012
7413f23f
DJ
18013/* Output a single local symbol for a generated stub. */
18014
0a1b45a2 18015static bool
7413f23f
DJ
18016elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
18017 bfd_vma offset, bfd_vma size)
18018{
7413f23f
DJ
18019 Elf_Internal_Sym sym;
18020
7413f23f
DJ
18021 sym.st_value = osi->sec->output_section->vma
18022 + osi->sec->output_offset
18023 + offset;
18024 sym.st_size = size;
18025 sym.st_other = 0;
18026 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
18027 sym.st_shndx = osi->sec_shndx;
35fc36a8 18028 sym.st_target_internal = 0;
57402f1e 18029 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 18030}
4e617b1e 18031
0a1b45a2 18032static bool
8029a119
NC
18033arm_map_one_stub (struct bfd_hash_entry * gen_entry,
18034 void * in_arg)
da5938a2
NC
18035{
18036 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
18037 asection *stub_sec;
18038 bfd_vma addr;
7413f23f 18039 char *stub_name;
9a008db3 18040 output_arch_syminfo *osi;
d3ce72d0 18041 const insn_sequence *template_sequence;
461a49ca
DJ
18042 enum stub_insn_type prev_type;
18043 int size;
18044 int i;
18045 enum map_symbol_type sym_type;
da5938a2
NC
18046
18047 /* Massage our args to the form they really have. */
18048 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 18049 osi = (output_arch_syminfo *) in_arg;
da5938a2 18050
da5938a2
NC
18051 stub_sec = stub_entry->stub_sec;
18052
18053 /* Ensure this stub is attached to the current section being
7413f23f 18054 processed. */
da5938a2 18055 if (stub_sec != osi->sec)
0a1b45a2 18056 return true;
da5938a2 18057
7413f23f 18058 addr = (bfd_vma) stub_entry->stub_offset;
d3ce72d0 18059 template_sequence = stub_entry->stub_template;
4f4faa4d
TP
18060
18061 if (arm_stub_sym_claimed (stub_entry->stub_type))
18062 arm_stub_claim_sym (stub_entry);
18063 else
7413f23f 18064 {
4f4faa4d
TP
18065 stub_name = stub_entry->output_name;
18066 switch (template_sequence[0].type)
18067 {
18068 case ARM_TYPE:
18069 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18070 stub_entry->stub_size))
0a1b45a2 18071 return false;
4f4faa4d
TP
18072 break;
18073 case THUMB16_TYPE:
18074 case THUMB32_TYPE:
18075 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18076 stub_entry->stub_size))
0a1b45a2 18077 return false;
4f4faa4d
TP
18078 break;
18079 default:
18080 BFD_FAIL ();
18081 return 0;
18082 }
7413f23f 18083 }
da5938a2 18084
461a49ca
DJ
18085 prev_type = DATA_TYPE;
18086 size = 0;
18087 for (i = 0; i < stub_entry->stub_template_size; i++)
18088 {
d3ce72d0 18089 switch (template_sequence[i].type)
461a49ca
DJ
18090 {
18091 case ARM_TYPE:
18092 sym_type = ARM_MAP_ARM;
18093 break;
18094
18095 case THUMB16_TYPE:
48229727 18096 case THUMB32_TYPE:
461a49ca
DJ
18097 sym_type = ARM_MAP_THUMB;
18098 break;
18099
18100 case DATA_TYPE:
18101 sym_type = ARM_MAP_DATA;
18102 break;
18103
18104 default:
18105 BFD_FAIL ();
0a1b45a2 18106 return false;
461a49ca
DJ
18107 }
18108
d3ce72d0 18109 if (template_sequence[i].type != prev_type)
461a49ca 18110 {
d3ce72d0 18111 prev_type = template_sequence[i].type;
461a49ca 18112 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
0a1b45a2 18113 return false;
461a49ca
DJ
18114 }
18115
d3ce72d0 18116 switch (template_sequence[i].type)
461a49ca
DJ
18117 {
18118 case ARM_TYPE:
48229727 18119 case THUMB32_TYPE:
461a49ca
DJ
18120 size += 4;
18121 break;
18122
18123 case THUMB16_TYPE:
18124 size += 2;
18125 break;
18126
18127 case DATA_TYPE:
18128 size += 4;
18129 break;
18130
18131 default:
18132 BFD_FAIL ();
0a1b45a2 18133 return false;
461a49ca
DJ
18134 }
18135 }
18136
0a1b45a2 18137 return true;
da5938a2
NC
18138}
18139
33811162
DG
18140/* Output mapping symbols for linker generated sections,
18141 and for those data-only sections that do not have a
18142 $d. */
4e617b1e 18143
0a1b45a2 18144static bool
4e617b1e 18145elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 18146 struct bfd_link_info *info,
57402f1e 18147 void *flaginfo,
6e0b88f1
AM
18148 int (*func) (void *, const char *,
18149 Elf_Internal_Sym *,
18150 asection *,
18151 struct elf_link_hash_entry *))
4e617b1e
PB
18152{
18153 output_arch_syminfo osi;
18154 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
18155 bfd_vma offset;
18156 bfd_size_type size;
33811162 18157 bfd *input_bfd;
4e617b1e 18158
25d17459
L
18159 if (info->strip == strip_all
18160 && !info->emitrelocations
18161 && !bfd_link_relocatable (info))
18162 return true;
18163
4e617b1e 18164 htab = elf32_arm_hash_table (info);
4dfe6ac6 18165 if (htab == NULL)
0a1b45a2 18166 return false;
4dfe6ac6 18167
906e58ca 18168 check_use_blx (htab);
91a5743d 18169
57402f1e 18170 osi.flaginfo = flaginfo;
4e617b1e
PB
18171 osi.info = info;
18172 osi.func = func;
906e58ca 18173
33811162
DG
18174 /* Add a $d mapping symbol to data-only sections that
18175 don't have any mapping symbol. This may result in (harmless) redundant
18176 mapping symbols. */
18177 for (input_bfd = info->input_bfds;
18178 input_bfd != NULL;
c72f2fb2 18179 input_bfd = input_bfd->link.next)
33811162
DG
18180 {
18181 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18182 for (osi.sec = input_bfd->sections;
18183 osi.sec != NULL;
18184 osi.sec = osi.sec->next)
18185 {
18186 if (osi.sec->output_section != NULL
f7dd8c79
DJ
18187 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18188 != 0)
33811162
DG
18189 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18190 == SEC_HAS_CONTENTS
18191 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 18192 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
18193 && osi.sec->size > 0
18194 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
18195 {
18196 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18197 (output_bfd, osi.sec->output_section);
18198 if (osi.sec_shndx != (int)SHN_BAD)
18199 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18200 }
18201 }
18202 }
18203
91a5743d
PB
18204 /* ARM->Thumb glue. */
18205 if (htab->arm_glue_size > 0)
18206 {
3d4d4302
AM
18207 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18208 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
18209
18210 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18211 (output_bfd, osi.sec->output_section);
0e1862bb 18212 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
91a5743d
PB
18213 || htab->pic_veneer)
18214 size = ARM2THUMB_PIC_GLUE_SIZE;
18215 else if (htab->use_blx)
18216 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18217 else
18218 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 18219
91a5743d
PB
18220 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18221 {
7413f23f
DJ
18222 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18223 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
18224 }
18225 }
18226
18227 /* Thumb->ARM glue. */
18228 if (htab->thumb_glue_size > 0)
18229 {
3d4d4302
AM
18230 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18231 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
18232
18233 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18234 (output_bfd, osi.sec->output_section);
18235 size = THUMB2ARM_GLUE_SIZE;
18236
18237 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18238 {
7413f23f
DJ
18239 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18240 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
18241 }
18242 }
18243
845b51d6
PB
18244 /* ARMv4 BX veneers. */
18245 if (htab->bx_glue_size > 0)
18246 {
3d4d4302
AM
18247 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18248 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
18249
18250 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18251 (output_bfd, osi.sec->output_section);
18252
7413f23f 18253 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
18254 }
18255
8029a119
NC
18256 /* Long calls stubs. */
18257 if (htab->stub_bfd && htab->stub_bfd->sections)
18258 {
da5938a2 18259 asection* stub_sec;
8029a119 18260
da5938a2
NC
18261 for (stub_sec = htab->stub_bfd->sections;
18262 stub_sec != NULL;
8029a119
NC
18263 stub_sec = stub_sec->next)
18264 {
18265 /* Ignore non-stub sections. */
18266 if (!strstr (stub_sec->name, STUB_SUFFIX))
18267 continue;
da5938a2 18268
8029a119 18269 osi.sec = stub_sec;
da5938a2 18270
8029a119
NC
18271 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18272 (output_bfd, osi.sec->output_section);
da5938a2 18273
8029a119
NC
18274 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18275 }
18276 }
da5938a2 18277
91a5743d 18278 /* Finally, output mapping symbols for the PLT. */
34e77a92 18279 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 18280 {
34e77a92
RS
18281 osi.sec = htab->root.splt;
18282 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18283 (output_bfd, osi.sec->output_section));
18284
a57d1773 18285 /* Output mapping symbols for the plt header. */
90c14f0c 18286 if (htab->root.target_os == is_vxworks)
34e77a92
RS
18287 {
18288 /* VxWorks shared libraries have no PLT header. */
0e1862bb 18289 if (!bfd_link_pic (info))
34e77a92
RS
18290 {
18291 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18292 return false;
34e77a92 18293 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
0a1b45a2 18294 return false;
34e77a92
RS
18295 }
18296 }
90c14f0c 18297 else if (htab->root.target_os == is_nacl)
b38cadfb
NC
18298 {
18299 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18300 return false;
b38cadfb 18301 }
59029f57 18302 else if (using_thumb_only (htab) && !htab->fdpic_p)
eed94f8f
NC
18303 {
18304 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
0a1b45a2 18305 return false;
eed94f8f 18306 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
0a1b45a2 18307 return false;
eed94f8f 18308 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
0a1b45a2 18309 return false;
eed94f8f 18310 }
a57d1773 18311 else if (!htab->fdpic_p)
4e617b1e 18312 {
7413f23f 18313 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18314 return false;
34e77a92
RS
18315#ifndef FOUR_WORD_PLT
18316 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
0a1b45a2 18317 return false;
34e77a92 18318#endif
4e617b1e
PB
18319 }
18320 }
90c14f0c
L
18321 if (htab->root.target_os == is_nacl
18322 && htab->root.iplt
18323 && htab->root.iplt->size > 0)
99059e56
RM
18324 {
18325 /* NaCl uses a special first entry in .iplt too. */
18326 osi.sec = htab->root.iplt;
18327 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18328 (output_bfd, osi.sec->output_section));
18329 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18330 return false;
99059e56 18331 }
34e77a92
RS
18332 if ((htab->root.splt && htab->root.splt->size > 0)
18333 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 18334 {
34e77a92
RS
18335 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18336 for (input_bfd = info->input_bfds;
18337 input_bfd != NULL;
c72f2fb2 18338 input_bfd = input_bfd->link.next)
34e77a92
RS
18339 {
18340 struct arm_local_iplt_info **local_iplt;
18341 unsigned int i, num_syms;
4e617b1e 18342
34e77a92
RS
18343 local_iplt = elf32_arm_local_iplt (input_bfd);
18344 if (local_iplt != NULL)
18345 {
18346 num_syms = elf_symtab_hdr (input_bfd).sh_info;
74fd118f
NC
18347 if (num_syms > elf32_arm_num_entries (input_bfd))
18348 {
18349 _bfd_error_handler (_("\
18350%pB: Number of symbols in input file has increased from %lu to %u\n"),
18351 input_bfd,
18352 (unsigned long) elf32_arm_num_entries (input_bfd),
18353 num_syms);
18354 return false;
18355 }
34e77a92
RS
18356 for (i = 0; i < num_syms; i++)
18357 if (local_iplt[i] != NULL
0a1b45a2 18358 && !elf32_arm_output_plt_map_1 (&osi, true,
34e77a92
RS
18359 &local_iplt[i]->root,
18360 &local_iplt[i]->arm))
0a1b45a2 18361 return false;
34e77a92
RS
18362 }
18363 }
18364 }
9bcc30e4 18365 if (htab->root.tlsdesc_plt != 0)
0855e32b
NS
18366 {
18367 /* Mapping symbols for the lazy tls trampoline. */
9bcc30e4
L
18368 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM,
18369 htab->root.tlsdesc_plt))
0a1b45a2 18370 return false;
b38cadfb 18371
0855e32b 18372 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
9bcc30e4 18373 htab->root.tlsdesc_plt + 24))
0a1b45a2 18374 return false;
0855e32b
NS
18375 }
18376 if (htab->tls_trampoline != 0)
18377 {
18378 /* Mapping symbols for the tls trampoline. */
18379 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
0a1b45a2 18380 return false;
0855e32b
NS
18381#ifdef FOUR_WORD_PLT
18382 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18383 htab->tls_trampoline + 12))
0a1b45a2 18384 return false;
b38cadfb 18385#endif
0855e32b 18386 }
b38cadfb 18387
0a1b45a2 18388 return true;
4e617b1e
PB
18389}
18390
54ddd295
TP
18391/* Filter normal symbols of CMSE entry functions of ABFD to include in
18392 the import library. All SYMCOUNT symbols of ABFD can be examined
18393 from their pointers in SYMS. Pointers of symbols to keep should be
18394 stored continuously at the beginning of that array.
18395
18396 Returns the number of symbols to keep. */
18397
18398static unsigned int
18399elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18400 struct bfd_link_info *info,
18401 asymbol **syms, long symcount)
18402{
18403 size_t maxnamelen;
18404 char *cmse_name;
18405 long src_count, dst_count = 0;
18406 struct elf32_arm_link_hash_table *htab;
18407
18408 htab = elf32_arm_hash_table (info);
18409 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18410 symcount = 0;
18411
18412 maxnamelen = 128;
18413 cmse_name = (char *) bfd_malloc (maxnamelen);
7a0fb7be
NC
18414 BFD_ASSERT (cmse_name);
18415
54ddd295
TP
18416 for (src_count = 0; src_count < symcount; src_count++)
18417 {
18418 struct elf32_arm_link_hash_entry *cmse_hash;
18419 asymbol *sym;
18420 flagword flags;
18421 char *name;
18422 size_t namelen;
18423
18424 sym = syms[src_count];
18425 flags = sym->flags;
18426 name = (char *) bfd_asymbol_name (sym);
18427
18428 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18429 continue;
18430 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18431 continue;
18432
18433 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18434 if (namelen > maxnamelen)
18435 {
18436 cmse_name = (char *)
18437 bfd_realloc (cmse_name, namelen);
18438 maxnamelen = namelen;
18439 }
18440 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18441 cmse_hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 18442 elf_link_hash_lookup (&(htab)->root, cmse_name, false, false, true);
54ddd295
TP
18443
18444 if (!cmse_hash
18445 || (cmse_hash->root.root.type != bfd_link_hash_defined
18446 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18447 || cmse_hash->root.type != STT_FUNC)
18448 continue;
18449
54ddd295
TP
18450 syms[dst_count++] = sym;
18451 }
18452 free (cmse_name);
18453
18454 syms[dst_count] = NULL;
18455
18456 return dst_count;
18457}
18458
18459/* Filter symbols of ABFD to include in the import library. All
18460 SYMCOUNT symbols of ABFD can be examined from their pointers in
18461 SYMS. Pointers of symbols to keep should be stored continuously at
18462 the beginning of that array.
18463
18464 Returns the number of symbols to keep. */
18465
18466static unsigned int
18467elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18468 struct bfd_link_info *info,
18469 asymbol **syms, long symcount)
18470{
18471 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18472
046734ff
TP
18473 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18474 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18475 library to be a relocatable object file. */
18476 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
54ddd295
TP
18477 if (globals->cmse_implib)
18478 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18479 else
18480 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18481}
18482
e489d0ae
PB
18483/* Allocate target specific section data. */
18484
0a1b45a2 18485static bool
e489d0ae
PB
18486elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18487{
f592407e
AM
18488 if (!sec->used_by_bfd)
18489 {
18490 _arm_elf_section_data *sdata;
986f0783 18491 size_t amt = sizeof (*sdata);
e489d0ae 18492
21d799b5 18493 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e 18494 if (sdata == NULL)
0a1b45a2 18495 return false;
f592407e
AM
18496 sec->used_by_bfd = sdata;
18497 }
e489d0ae
PB
18498
18499 return _bfd_elf_new_section_hook (abfd, sec);
18500}
18501
18502
18503/* Used to order a list of mapping symbols by address. */
18504
18505static int
18506elf32_arm_compare_mapping (const void * a, const void * b)
18507{
7f6a71ff
JM
18508 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18509 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18510
18511 if (amap->vma > bmap->vma)
18512 return 1;
18513 else if (amap->vma < bmap->vma)
18514 return -1;
18515 else if (amap->type > bmap->type)
18516 /* Ensure results do not depend on the host qsort for objects with
18517 multiple mapping symbols at the same address by sorting on type
18518 after vma. */
18519 return 1;
18520 else if (amap->type < bmap->type)
18521 return -1;
18522 else
18523 return 0;
e489d0ae
PB
18524}
18525
2468f9c9
PB
18526/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18527
18528static unsigned long
18529offset_prel31 (unsigned long addr, bfd_vma offset)
18530{
18531 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18532}
18533
18534/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18535 relocations. */
18536
18537static void
18538copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18539{
18540 unsigned long first_word = bfd_get_32 (output_bfd, from);
18541 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 18542
2468f9c9
PB
18543 /* High bit of first word is supposed to be zero. */
18544 if ((first_word & 0x80000000ul) == 0)
18545 first_word = offset_prel31 (first_word, offset);
b38cadfb 18546
2468f9c9
PB
18547 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18548 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18549 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18550 second_word = offset_prel31 (second_word, offset);
b38cadfb 18551
2468f9c9
PB
18552 bfd_put_32 (output_bfd, first_word, to);
18553 bfd_put_32 (output_bfd, second_word, to + 4);
18554}
e489d0ae 18555
48229727
JB
18556/* Data for make_branch_to_a8_stub(). */
18557
b38cadfb
NC
18558struct a8_branch_to_stub_data
18559{
48229727
JB
18560 asection *writing_section;
18561 bfd_byte *contents;
18562};
18563
18564
18565/* Helper to insert branches to Cortex-A8 erratum stubs in the right
18566 places for a particular section. */
18567
0a1b45a2 18568static bool
48229727 18569make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
99059e56 18570 void *in_arg)
48229727
JB
18571{
18572 struct elf32_arm_stub_hash_entry *stub_entry;
18573 struct a8_branch_to_stub_data *data;
18574 bfd_byte *contents;
18575 unsigned long branch_insn;
18576 bfd_vma veneered_insn_loc, veneer_entry_loc;
18577 bfd_signed_vma branch_offset;
18578 bfd *abfd;
8d9d9490 18579 unsigned int loc;
48229727
JB
18580
18581 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18582 data = (struct a8_branch_to_stub_data *) in_arg;
18583
18584 if (stub_entry->target_section != data->writing_section
4563a860 18585 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
0a1b45a2 18586 return true;
48229727
JB
18587
18588 contents = data->contents;
18589
8d9d9490
TP
18590 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18591 generated when both source and target are in the same section. */
48229727
JB
18592 veneered_insn_loc = stub_entry->target_section->output_section->vma
18593 + stub_entry->target_section->output_offset
8d9d9490 18594 + stub_entry->source_value;
48229727
JB
18595
18596 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18597 + stub_entry->stub_sec->output_offset
18598 + stub_entry->stub_offset;
18599
18600 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18601 veneered_insn_loc &= ~3u;
18602
18603 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18604
18605 abfd = stub_entry->target_section->owner;
8d9d9490 18606 loc = stub_entry->source_value;
48229727
JB
18607
18608 /* We attempt to avoid this condition by setting stubs_always_after_branch
18609 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18610 This check is just to be on the safe side... */
18611 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18612 {
871b3ab2 18613 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
4eca0228 18614 "allocated in unsafe location"), abfd);
0a1b45a2 18615 return false;
48229727
JB
18616 }
18617
18618 switch (stub_entry->stub_type)
18619 {
18620 case arm_stub_a8_veneer_b:
18621 case arm_stub_a8_veneer_b_cond:
18622 branch_insn = 0xf0009000;
18623 goto jump24;
18624
18625 case arm_stub_a8_veneer_blx:
18626 branch_insn = 0xf000e800;
18627 goto jump24;
18628
18629 case arm_stub_a8_veneer_bl:
18630 {
18631 unsigned int i1, j1, i2, j2, s;
18632
18633 branch_insn = 0xf000d000;
18634
18635 jump24:
18636 if (branch_offset < -16777216 || branch_offset > 16777214)
18637 {
18638 /* There's not much we can do apart from complain if this
18639 happens. */
871b3ab2 18640 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
4eca0228 18641 "of range (input file too large)"), abfd);
0a1b45a2 18642 return false;
48229727
JB
18643 }
18644
18645 /* i1 = not(j1 eor s), so:
18646 not i1 = j1 eor s
18647 j1 = (not i1) eor s. */
18648
18649 branch_insn |= (branch_offset >> 1) & 0x7ff;
18650 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18651 i2 = (branch_offset >> 22) & 1;
18652 i1 = (branch_offset >> 23) & 1;
18653 s = (branch_offset >> 24) & 1;
18654 j1 = (!i1) ^ s;
18655 j2 = (!i2) ^ s;
18656 branch_insn |= j2 << 11;
18657 branch_insn |= j1 << 13;
18658 branch_insn |= s << 26;
18659 }
18660 break;
18661
18662 default:
18663 BFD_FAIL ();
0a1b45a2 18664 return false;
48229727
JB
18665 }
18666
8d9d9490
TP
18667 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18668 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
48229727 18669
0a1b45a2 18670 return true;
48229727
JB
18671}
18672
a504d23a
LA
18673/* Beginning of stm32l4xx work-around. */
18674
18675/* Functions encoding instructions necessary for the emission of the
18676 fix-stm32l4xx-629360.
18677 Encoding is extracted from the
18678 ARM (C) Architecture Reference Manual
18679 ARMv7-A and ARMv7-R edition
18680 ARM DDI 0406C.b (ID072512). */
18681
18682static inline bfd_vma
82188b29 18683create_instruction_branch_absolute (int branch_offset)
a504d23a
LA
18684{
18685 /* A8.8.18 B (A8-334)
18686 B target_address (Encoding T4). */
18687 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18688 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18689 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18690
a504d23a
LA
18691 int s = ((branch_offset & 0x1000000) >> 24);
18692 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18693 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18694
18695 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18696 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18697
18698 bfd_vma patched_inst = 0xf0009000
18699 | s << 26 /* S. */
18700 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18701 | j1 << 13 /* J1. */
18702 | j2 << 11 /* J2. */
18703 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18704
18705 return patched_inst;
18706}
18707
18708static inline bfd_vma
18709create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18710{
18711 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18712 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18713 bfd_vma patched_inst = 0xe8900000
18714 | (/*W=*/wback << 21)
18715 | (base_reg << 16)
18716 | (reg_mask & 0x0000ffff);
18717
18718 return patched_inst;
18719}
18720
18721static inline bfd_vma
18722create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18723{
18724 /* A8.8.60 LDMDB/LDMEA (A8-402)
18725 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18726 bfd_vma patched_inst = 0xe9100000
18727 | (/*W=*/wback << 21)
18728 | (base_reg << 16)
18729 | (reg_mask & 0x0000ffff);
18730
18731 return patched_inst;
18732}
18733
18734static inline bfd_vma
18735create_instruction_mov (int target_reg, int source_reg)
18736{
18737 /* A8.8.103 MOV (register) (A8-486)
18738 MOV Rd, Rm (Encoding T1). */
18739 bfd_vma patched_inst = 0x4600
18740 | (target_reg & 0x7)
18741 | ((target_reg & 0x8) >> 3) << 7
18742 | (source_reg << 3);
18743
18744 return patched_inst;
18745}
18746
18747static inline bfd_vma
18748create_instruction_sub (int target_reg, int source_reg, int value)
18749{
18750 /* A8.8.221 SUB (immediate) (A8-708)
18751 SUB Rd, Rn, #value (Encoding T3). */
18752 bfd_vma patched_inst = 0xf1a00000
18753 | (target_reg << 8)
18754 | (source_reg << 16)
18755 | (/*S=*/0 << 20)
18756 | ((value & 0x800) >> 11) << 26
18757 | ((value & 0x700) >> 8) << 12
18758 | (value & 0x0ff);
18759
18760 return patched_inst;
18761}
18762
18763static inline bfd_vma
9239bbd3 18764create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
a504d23a
LA
18765 int first_reg)
18766{
18767 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18768 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18769 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
a504d23a
LA
18770 | (/*W=*/wback << 21)
18771 | (base_reg << 16)
9239bbd3
CM
18772 | (num_words & 0x000000ff)
18773 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
a504d23a
LA
18774 | (first_reg & 0x00000001) << 22;
18775
18776 return patched_inst;
18777}
18778
18779static inline bfd_vma
9239bbd3
CM
18780create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18781 int first_reg)
a504d23a
LA
18782{
18783 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18784 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18785 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
a504d23a 18786 | (base_reg << 16)
9239bbd3
CM
18787 | (num_words & 0x000000ff)
18788 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
a504d23a
LA
18789 | (first_reg & 0x00000001) << 22;
18790
18791 return patched_inst;
18792}
18793
18794static inline bfd_vma
18795create_instruction_udf_w (int value)
18796{
18797 /* A8.8.247 UDF (A8-758)
18798 Undefined (Encoding T2). */
18799 bfd_vma patched_inst = 0xf7f0a000
18800 | (value & 0x00000fff)
18801 | (value & 0x000f0000) << 16;
18802
18803 return patched_inst;
18804}
18805
18806static inline bfd_vma
18807create_instruction_udf (int value)
18808{
18809 /* A8.8.247 UDF (A8-758)
18810 Undefined (Encoding T1). */
18811 bfd_vma patched_inst = 0xde00
18812 | (value & 0xff);
18813
18814 return patched_inst;
18815}
18816
18817/* Functions writing an instruction in memory, returning the next
18818 memory position to write to. */
18819
18820static inline bfd_byte *
18821push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18822 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18823{
18824 put_thumb2_insn (htab, output_bfd, insn, pt);
18825 return pt + 4;
18826}
18827
18828static inline bfd_byte *
18829push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18830 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18831{
18832 put_thumb_insn (htab, output_bfd, insn, pt);
18833 return pt + 2;
18834}
18835
18836/* Function filling up a region in memory with T1 and T2 UDFs taking
18837 care of alignment. */
18838
18839static bfd_byte *
18840stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
07d6d2b8
AM
18841 bfd * output_bfd,
18842 const bfd_byte * const base_stub_contents,
18843 bfd_byte * const from_stub_contents,
18844 const bfd_byte * const end_stub_contents)
a504d23a
LA
18845{
18846 bfd_byte *current_stub_contents = from_stub_contents;
18847
18848 /* Fill the remaining of the stub with deterministic contents : UDF
18849 instructions.
18850 Check if realignment is needed on modulo 4 frontier using T1, to
18851 further use T2. */
18852 if ((current_stub_contents < end_stub_contents)
18853 && !((current_stub_contents - base_stub_contents) % 2)
18854 && ((current_stub_contents - base_stub_contents) % 4))
18855 current_stub_contents =
18856 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18857 create_instruction_udf (0));
18858
18859 for (; current_stub_contents < end_stub_contents;)
18860 current_stub_contents =
18861 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18862 create_instruction_udf_w (0));
18863
18864 return current_stub_contents;
18865}
18866
18867/* Functions writing the stream of instructions equivalent to the
18868 derived sequence for ldmia, ldmdb, vldm respectively. */
18869
18870static void
18871stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
18872 bfd * output_bfd,
18873 const insn32 initial_insn,
18874 const bfd_byte *const initial_insn_addr,
18875 bfd_byte *const base_stub_contents)
18876{
18877 int wback = (initial_insn & 0x00200000) >> 21;
18878 int ri, rn = (initial_insn & 0x000F0000) >> 16;
18879 int insn_all_registers = initial_insn & 0x0000ffff;
18880 int insn_low_registers, insn_high_registers;
18881 int usable_register_mask;
b25e998d 18882 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
18883 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18884 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18885 bfd_byte *current_stub_contents = base_stub_contents;
18886
18887 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
18888
18889 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18890 smaller than 8 registers load sequences that do not cause the
18891 hardware issue. */
18892 if (nb_registers <= 8)
18893 {
18894 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18895 current_stub_contents =
18896 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18897 initial_insn);
18898
18899 /* B initial_insn_addr+4. */
18900 if (!restore_pc)
18901 current_stub_contents =
18902 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18903 create_instruction_branch_absolute
82188b29 18904 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18905
18906 /* Fill the remaining of the stub with deterministic contents. */
18907 current_stub_contents =
18908 stm32l4xx_fill_stub_udf (htab, output_bfd,
18909 base_stub_contents, current_stub_contents,
18910 base_stub_contents +
18911 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18912
18913 return;
18914 }
18915
18916 /* - reg_list[13] == 0. */
18917 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
18918
18919 /* - reg_list[14] & reg_list[15] != 1. */
18920 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18921
18922 /* - if (wback==1) reg_list[rn] == 0. */
18923 BFD_ASSERT (!wback || !restore_rn);
18924
18925 /* - nb_registers > 8. */
b25e998d 18926 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
18927
18928 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18929
18930 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
18931 - One with the 7 lowest registers (register mask 0x007F)
18932 This LDM will finally contain between 2 and 7 registers
18933 - One with the 7 highest registers (register mask 0xDF80)
18934 This ldm will finally contain between 2 and 7 registers. */
18935 insn_low_registers = insn_all_registers & 0x007F;
18936 insn_high_registers = insn_all_registers & 0xDF80;
18937
18938 /* A spare register may be needed during this veneer to temporarily
18939 handle the base register. This register will be restored with the
18940 last LDM operation.
18941 The usable register may be any general purpose register (that
18942 excludes PC, SP, LR : register mask is 0x1FFF). */
18943 usable_register_mask = 0x1FFF;
18944
18945 /* Generate the stub function. */
18946 if (wback)
18947 {
18948 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
18949 current_stub_contents =
18950 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18951 create_instruction_ldmia
18952 (rn, /*wback=*/1, insn_low_registers));
18953
18954 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
18955 current_stub_contents =
18956 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18957 create_instruction_ldmia
18958 (rn, /*wback=*/1, insn_high_registers));
18959 if (!restore_pc)
18960 {
18961 /* B initial_insn_addr+4. */
18962 current_stub_contents =
18963 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18964 create_instruction_branch_absolute
82188b29 18965 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18966 }
18967 }
18968 else /* if (!wback). */
18969 {
18970 ri = rn;
18971
18972 /* If Rn is not part of the high-register-list, move it there. */
18973 if (!(insn_high_registers & (1 << rn)))
18974 {
18975 /* Choose a Ri in the high-register-list that will be restored. */
18976 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18977
18978 /* MOV Ri, Rn. */
18979 current_stub_contents =
18980 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18981 create_instruction_mov (ri, rn));
18982 }
18983
18984 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18985 current_stub_contents =
18986 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18987 create_instruction_ldmia
18988 (ri, /*wback=*/1, insn_low_registers));
18989
18990 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18991 current_stub_contents =
18992 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18993 create_instruction_ldmia
18994 (ri, /*wback=*/0, insn_high_registers));
18995
18996 if (!restore_pc)
18997 {
18998 /* B initial_insn_addr+4. */
18999 current_stub_contents =
19000 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19001 create_instruction_branch_absolute
82188b29 19002 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19003 }
19004 }
19005
19006 /* Fill the remaining of the stub with deterministic contents. */
19007 current_stub_contents =
19008 stm32l4xx_fill_stub_udf (htab, output_bfd,
19009 base_stub_contents, current_stub_contents,
19010 base_stub_contents +
19011 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19012}
19013
19014static void
19015stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
19016 bfd * output_bfd,
19017 const insn32 initial_insn,
19018 const bfd_byte *const initial_insn_addr,
19019 bfd_byte *const base_stub_contents)
19020{
19021 int wback = (initial_insn & 0x00200000) >> 21;
19022 int ri, rn = (initial_insn & 0x000f0000) >> 16;
19023 int insn_all_registers = initial_insn & 0x0000ffff;
19024 int insn_low_registers, insn_high_registers;
19025 int usable_register_mask;
19026 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19027 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
b25e998d 19028 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
19029 bfd_byte *current_stub_contents = base_stub_contents;
19030
19031 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
19032
19033 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19034 smaller than 8 registers load sequences that do not cause the
19035 hardware issue. */
19036 if (nb_registers <= 8)
19037 {
19038 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19039 current_stub_contents =
19040 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19041 initial_insn);
19042
19043 /* B initial_insn_addr+4. */
19044 current_stub_contents =
19045 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19046 create_instruction_branch_absolute
82188b29 19047 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19048
19049 /* Fill the remaining of the stub with deterministic contents. */
19050 current_stub_contents =
19051 stm32l4xx_fill_stub_udf (htab, output_bfd,
19052 base_stub_contents, current_stub_contents,
19053 base_stub_contents +
19054 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19055
19056 return;
19057 }
19058
19059 /* - reg_list[13] == 0. */
19060 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19061
19062 /* - reg_list[14] & reg_list[15] != 1. */
19063 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19064
19065 /* - if (wback==1) reg_list[rn] == 0. */
19066 BFD_ASSERT (!wback || !restore_rn);
19067
19068 /* - nb_registers > 8. */
b25e998d 19069 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
19070
19071 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19072
19073 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19074 - One with the 7 lowest registers (register mask 0x007F)
19075 This LDM will finally contain between 2 and 7 registers
19076 - One with the 7 highest registers (register mask 0xDF80)
19077 This ldm will finally contain between 2 and 7 registers. */
19078 insn_low_registers = insn_all_registers & 0x007F;
19079 insn_high_registers = insn_all_registers & 0xDF80;
19080
19081 /* A spare register may be needed during this veneer to temporarily
19082 handle the base register. This register will be restored with
19083 the last LDM operation.
19084 The usable register may be any general purpose register (that excludes
19085 PC, SP, LR : register mask is 0x1FFF). */
19086 usable_register_mask = 0x1FFF;
19087
19088 /* Generate the stub function. */
19089 if (!wback && !restore_pc && !restore_rn)
19090 {
19091 /* Choose a Ri in the low-register-list that will be restored. */
19092 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19093
19094 /* MOV Ri, Rn. */
19095 current_stub_contents =
19096 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19097 create_instruction_mov (ri, rn));
19098
19099 /* LDMDB Ri!, {R-high-register-list}. */
19100 current_stub_contents =
19101 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19102 create_instruction_ldmdb
19103 (ri, /*wback=*/1, insn_high_registers));
19104
19105 /* LDMDB Ri, {R-low-register-list}. */
19106 current_stub_contents =
19107 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19108 create_instruction_ldmdb
19109 (ri, /*wback=*/0, insn_low_registers));
19110
19111 /* B initial_insn_addr+4. */
19112 current_stub_contents =
19113 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19114 create_instruction_branch_absolute
82188b29 19115 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19116 }
19117 else if (wback && !restore_pc && !restore_rn)
19118 {
19119 /* LDMDB Rn!, {R-high-register-list}. */
19120 current_stub_contents =
19121 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19122 create_instruction_ldmdb
19123 (rn, /*wback=*/1, insn_high_registers));
19124
19125 /* LDMDB Rn!, {R-low-register-list}. */
19126 current_stub_contents =
19127 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19128 create_instruction_ldmdb
19129 (rn, /*wback=*/1, insn_low_registers));
19130
19131 /* B initial_insn_addr+4. */
19132 current_stub_contents =
19133 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19134 create_instruction_branch_absolute
82188b29 19135 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19136 }
19137 else if (!wback && restore_pc && !restore_rn)
19138 {
19139 /* Choose a Ri in the high-register-list that will be restored. */
19140 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19141
19142 /* SUB Ri, Rn, #(4*nb_registers). */
19143 current_stub_contents =
19144 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19145 create_instruction_sub (ri, rn, (4 * nb_registers)));
19146
19147 /* LDMIA Ri!, {R-low-register-list}. */
19148 current_stub_contents =
19149 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19150 create_instruction_ldmia
19151 (ri, /*wback=*/1, insn_low_registers));
19152
19153 /* LDMIA Ri, {R-high-register-list}. */
19154 current_stub_contents =
19155 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19156 create_instruction_ldmia
19157 (ri, /*wback=*/0, insn_high_registers));
19158 }
19159 else if (wback && restore_pc && !restore_rn)
19160 {
19161 /* Choose a Ri in the high-register-list that will be restored. */
19162 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19163
19164 /* SUB Rn, Rn, #(4*nb_registers) */
19165 current_stub_contents =
19166 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19167 create_instruction_sub (rn, rn, (4 * nb_registers)));
19168
19169 /* MOV Ri, Rn. */
19170 current_stub_contents =
19171 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19172 create_instruction_mov (ri, rn));
19173
19174 /* LDMIA Ri!, {R-low-register-list}. */
19175 current_stub_contents =
19176 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19177 create_instruction_ldmia
19178 (ri, /*wback=*/1, insn_low_registers));
19179
19180 /* LDMIA Ri, {R-high-register-list}. */
19181 current_stub_contents =
19182 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19183 create_instruction_ldmia
19184 (ri, /*wback=*/0, insn_high_registers));
19185 }
19186 else if (!wback && !restore_pc && restore_rn)
19187 {
19188 ri = rn;
19189 if (!(insn_low_registers & (1 << rn)))
19190 {
19191 /* Choose a Ri in the low-register-list that will be restored. */
19192 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19193
19194 /* MOV Ri, Rn. */
19195 current_stub_contents =
19196 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19197 create_instruction_mov (ri, rn));
19198 }
19199
19200 /* LDMDB Ri!, {R-high-register-list}. */
19201 current_stub_contents =
19202 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19203 create_instruction_ldmdb
19204 (ri, /*wback=*/1, insn_high_registers));
19205
19206 /* LDMDB Ri, {R-low-register-list}. */
19207 current_stub_contents =
19208 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19209 create_instruction_ldmdb
19210 (ri, /*wback=*/0, insn_low_registers));
19211
19212 /* B initial_insn_addr+4. */
19213 current_stub_contents =
19214 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19215 create_instruction_branch_absolute
82188b29 19216 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19217 }
19218 else if (!wback && restore_pc && restore_rn)
19219 {
19220 ri = rn;
19221 if (!(insn_high_registers & (1 << rn)))
19222 {
19223 /* Choose a Ri in the high-register-list that will be restored. */
19224 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19225 }
19226
19227 /* SUB Ri, Rn, #(4*nb_registers). */
19228 current_stub_contents =
19229 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19230 create_instruction_sub (ri, rn, (4 * nb_registers)));
19231
19232 /* LDMIA Ri!, {R-low-register-list}. */
19233 current_stub_contents =
19234 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19235 create_instruction_ldmia
19236 (ri, /*wback=*/1, insn_low_registers));
19237
19238 /* LDMIA Ri, {R-high-register-list}. */
19239 current_stub_contents =
19240 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19241 create_instruction_ldmia
19242 (ri, /*wback=*/0, insn_high_registers));
19243 }
19244 else if (wback && restore_rn)
19245 {
19246 /* The assembler should not have accepted to encode this. */
19247 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19248 "undefined behavior.\n");
19249 }
19250
19251 /* Fill the remaining of the stub with deterministic contents. */
19252 current_stub_contents =
19253 stm32l4xx_fill_stub_udf (htab, output_bfd,
19254 base_stub_contents, current_stub_contents,
19255 base_stub_contents +
19256 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19257
19258}
19259
19260static void
19261stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19262 bfd * output_bfd,
19263 const insn32 initial_insn,
19264 const bfd_byte *const initial_insn_addr,
19265 bfd_byte *const base_stub_contents)
19266{
13c9c485 19267 int num_words = initial_insn & 0xff;
a504d23a
LA
19268 bfd_byte *current_stub_contents = base_stub_contents;
19269
19270 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19271
19272 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
9239bbd3 19273 smaller than 8 words load sequences that do not cause the
a504d23a 19274 hardware issue. */
9239bbd3 19275 if (num_words <= 8)
a504d23a
LA
19276 {
19277 /* Untouched instruction. */
19278 current_stub_contents =
19279 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19280 initial_insn);
19281
19282 /* B initial_insn_addr+4. */
19283 current_stub_contents =
19284 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19285 create_instruction_branch_absolute
82188b29 19286 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19287 }
19288 else
19289 {
0a1b45a2 19290 bool is_dp = /* DP encoding. */
9239bbd3 19291 (initial_insn & 0xfe100f00) == 0xec100b00;
0a1b45a2 19292 bool is_ia_nobang = /* (IA without !). */
a504d23a 19293 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
0a1b45a2 19294 bool is_ia_bang = /* (IA with !) - includes VPOP. */
a504d23a 19295 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
0a1b45a2 19296 bool is_db_bang = /* (DB with !). */
a504d23a 19297 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
9239bbd3 19298 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
a504d23a 19299 /* d = UInt (Vd:D);. */
9239bbd3 19300 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
a504d23a
LA
19301 | (((unsigned int)initial_insn << 9) >> 31);
19302
9239bbd3
CM
19303 /* Compute the number of 8-words chunks needed to split. */
19304 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
a504d23a
LA
19305 int chunk;
19306
19307 /* The test coverage has been done assuming the following
19308 hypothesis that exactly one of the previous is_ predicates is
19309 true. */
9239bbd3
CM
19310 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19311 && !(is_ia_nobang & is_ia_bang & is_db_bang));
a504d23a 19312
9239bbd3 19313 /* We treat the cutting of the words in one pass for all
a504d23a
LA
19314 cases, then we emit the adjustments:
19315
19316 vldm rx, {...}
19317 -> vldm rx!, {8_words_or_less} for each needed 8_word
19318 -> sub rx, rx, #size (list)
19319
19320 vldm rx!, {...}
19321 -> vldm rx!, {8_words_or_less} for each needed 8_word
19322 This also handles vpop instruction (when rx is sp)
19323
19324 vldmd rx!, {...}
19325 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
9239bbd3 19326 for (chunk = 0; chunk < chunks; ++chunk)
a504d23a 19327 {
9239bbd3
CM
19328 bfd_vma new_insn = 0;
19329
a504d23a
LA
19330 if (is_ia_nobang || is_ia_bang)
19331 {
9239bbd3
CM
19332 new_insn = create_instruction_vldmia
19333 (base_reg,
19334 is_dp,
19335 /*wback= . */1,
19336 chunks - (chunk + 1) ?
19337 8 : num_words - chunk * 8,
19338 first_reg + chunk * 8);
a504d23a
LA
19339 }
19340 else if (is_db_bang)
19341 {
9239bbd3
CM
19342 new_insn = create_instruction_vldmdb
19343 (base_reg,
19344 is_dp,
19345 chunks - (chunk + 1) ?
19346 8 : num_words - chunk * 8,
19347 first_reg + chunk * 8);
a504d23a 19348 }
9239bbd3
CM
19349
19350 if (new_insn)
19351 current_stub_contents =
19352 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19353 new_insn);
a504d23a
LA
19354 }
19355
19356 /* Only this case requires the base register compensation
19357 subtract. */
19358 if (is_ia_nobang)
19359 {
19360 current_stub_contents =
19361 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19362 create_instruction_sub
9239bbd3 19363 (base_reg, base_reg, 4*num_words));
a504d23a
LA
19364 }
19365
19366 /* B initial_insn_addr+4. */
19367 current_stub_contents =
19368 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19369 create_instruction_branch_absolute
82188b29 19370 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19371 }
19372
19373 /* Fill the remaining of the stub with deterministic contents. */
19374 current_stub_contents =
19375 stm32l4xx_fill_stub_udf (htab, output_bfd,
19376 base_stub_contents, current_stub_contents,
19377 base_stub_contents +
19378 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19379}
19380
19381static void
19382stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19383 bfd * output_bfd,
19384 const insn32 wrong_insn,
19385 const bfd_byte *const wrong_insn_addr,
19386 bfd_byte *const stub_contents)
19387{
19388 if (is_thumb2_ldmia (wrong_insn))
19389 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19390 wrong_insn, wrong_insn_addr,
19391 stub_contents);
19392 else if (is_thumb2_ldmdb (wrong_insn))
19393 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19394 wrong_insn, wrong_insn_addr,
19395 stub_contents);
19396 else if (is_thumb2_vldm (wrong_insn))
19397 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19398 wrong_insn, wrong_insn_addr,
19399 stub_contents);
19400}
19401
19402/* End of stm32l4xx work-around. */
19403
19404
e489d0ae
PB
19405/* Do code byteswapping. Return FALSE afterwards so that the section is
19406 written out as normal. */
19407
0a1b45a2 19408static bool
c7b8f16e 19409elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
19410 struct bfd_link_info *link_info,
19411 asection *sec,
e489d0ae
PB
19412 bfd_byte *contents)
19413{
48229727 19414 unsigned int mapcount, errcount;
8e3de13a 19415 _arm_elf_section_data *arm_data;
c7b8f16e 19416 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 19417 elf32_arm_section_map *map;
c7b8f16e 19418 elf32_vfp11_erratum_list *errnode;
a504d23a 19419 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
e489d0ae
PB
19420 bfd_vma ptr;
19421 bfd_vma end;
c7b8f16e 19422 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 19423 bfd_byte tmp;
48229727 19424 unsigned int i;
57e8b36a 19425
4dfe6ac6 19426 if (globals == NULL)
0a1b45a2 19427 return false;
4dfe6ac6 19428
8e3de13a
NC
19429 /* If this section has not been allocated an _arm_elf_section_data
19430 structure then we cannot record anything. */
19431 arm_data = get_arm_elf_section_data (sec);
19432 if (arm_data == NULL)
0a1b45a2 19433 return false;
8e3de13a
NC
19434
19435 mapcount = arm_data->mapcount;
19436 map = arm_data->map;
c7b8f16e
JB
19437 errcount = arm_data->erratumcount;
19438
19439 if (errcount != 0)
19440 {
19441 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19442
19443 for (errnode = arm_data->erratumlist; errnode != 0;
99059e56
RM
19444 errnode = errnode->next)
19445 {
19446 bfd_vma target = errnode->vma - offset;
19447
19448 switch (errnode->type)
19449 {
19450 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19451 {
19452 bfd_vma branch_to_veneer;
19453 /* Original condition code of instruction, plus bit mask for
19454 ARM B instruction. */
19455 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19456 | 0x0a000000;
c7b8f16e
JB
19457
19458 /* The instruction is before the label. */
91d6fa6a 19459 target -= 4;
c7b8f16e
JB
19460
19461 /* Above offset included in -4 below. */
19462 branch_to_veneer = errnode->u.b.veneer->vma
99059e56 19463 - errnode->vma - 4;
c7b8f16e
JB
19464
19465 if ((signed) branch_to_veneer < -(1 << 25)
19466 || (signed) branch_to_veneer >= (1 << 25))
871b3ab2 19467 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19468 "range"), output_bfd);
c7b8f16e 19469
99059e56
RM
19470 insn |= (branch_to_veneer >> 2) & 0xffffff;
19471 contents[endianflip ^ target] = insn & 0xff;
19472 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19473 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19474 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19475 }
19476 break;
c7b8f16e
JB
19477
19478 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
19479 {
19480 bfd_vma branch_from_veneer;
19481 unsigned int insn;
c7b8f16e 19482
99059e56
RM
19483 /* Take size of veneer into account. */
19484 branch_from_veneer = errnode->u.v.branch->vma
19485 - errnode->vma - 12;
c7b8f16e
JB
19486
19487 if ((signed) branch_from_veneer < -(1 << 25)
19488 || (signed) branch_from_veneer >= (1 << 25))
871b3ab2 19489 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19490 "range"), output_bfd);
c7b8f16e 19491
99059e56
RM
19492 /* Original instruction. */
19493 insn = errnode->u.v.branch->u.b.vfp_insn;
19494 contents[endianflip ^ target] = insn & 0xff;
19495 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19496 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19497 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19498
19499 /* Branch back to insn after original insn. */
19500 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19501 contents[endianflip ^ (target + 4)] = insn & 0xff;
19502 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19503 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19504 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19505 }
19506 break;
c7b8f16e 19507
99059e56
RM
19508 default:
19509 abort ();
19510 }
19511 }
c7b8f16e 19512 }
e489d0ae 19513
a504d23a
LA
19514 if (arm_data->stm32l4xx_erratumcount != 0)
19515 {
19516 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19517 stm32l4xx_errnode != 0;
19518 stm32l4xx_errnode = stm32l4xx_errnode->next)
19519 {
19520 bfd_vma target = stm32l4xx_errnode->vma - offset;
19521
19522 switch (stm32l4xx_errnode->type)
19523 {
19524 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19525 {
19526 unsigned int insn;
19527 bfd_vma branch_to_veneer =
19528 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19529
19530 if ((signed) branch_to_veneer < -(1 << 24)
19531 || (signed) branch_to_veneer >= (1 << 24))
19532 {
19533 bfd_vma out_of_range =
19534 ((signed) branch_to_veneer < -(1 << 24)) ?
19535 - branch_to_veneer - (1 << 24) :
19536 ((signed) branch_to_veneer >= (1 << 24)) ?
19537 branch_to_veneer - (1 << 24) : 0;
19538
4eca0228 19539 _bfd_error_handler
2dcf00ce 19540 (_("%pB(%#" PRIx64 "): error: "
90b6238f
AM
19541 "cannot create STM32L4XX veneer; "
19542 "jump out of range by %" PRId64 " bytes; "
19543 "cannot encode branch instruction"),
a504d23a 19544 output_bfd,
2dcf00ce
AM
19545 (uint64_t) (stm32l4xx_errnode->vma - 4),
19546 (int64_t) out_of_range);
a504d23a
LA
19547 continue;
19548 }
19549
19550 insn = create_instruction_branch_absolute
82188b29 19551 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
a504d23a 19552
a2699ef2
AM
19553 /* The instruction is before the label. */
19554 target -= 4;
19555
a504d23a
LA
19556 put_thumb2_insn (globals, output_bfd,
19557 (bfd_vma) insn, contents + target);
19558 }
19559 break;
19560
19561 case STM32L4XX_ERRATUM_VENEER:
19562 {
82188b29
NC
19563 bfd_byte * veneer;
19564 bfd_byte * veneer_r;
a504d23a
LA
19565 unsigned int insn;
19566
82188b29
NC
19567 veneer = contents + target;
19568 veneer_r = veneer
19569 + stm32l4xx_errnode->u.b.veneer->vma
19570 - stm32l4xx_errnode->vma - 4;
a504d23a
LA
19571
19572 if ((signed) (veneer_r - veneer -
19573 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19574 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19575 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19576 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19577 || (signed) (veneer_r - veneer) >= (1 << 24))
19578 {
90b6238f
AM
19579 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19580 "veneer"), output_bfd);
a504d23a
LA
19581 continue;
19582 }
19583
19584 /* Original instruction. */
19585 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19586
19587 stm32l4xx_create_replacing_stub
19588 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19589 }
19590 break;
19591
19592 default:
19593 abort ();
19594 }
19595 }
19596 }
19597
2468f9c9
PB
19598 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19599 {
19600 arm_unwind_table_edit *edit_node
99059e56 19601 = arm_data->u.exidx.unwind_edit_list;
2468f9c9 19602 /* Now, sec->size is the size of the section we will write. The original
99059e56 19603 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
2468f9c9
PB
19604 markers) was sec->rawsize. (This isn't the case if we perform no
19605 edits, then rawsize will be zero and we should use size). */
21d799b5 19606 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
19607 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19608 unsigned int in_index, out_index;
19609 bfd_vma add_to_offsets = 0;
19610
7a0fb7be 19611 if (edited_contents == NULL)
0a1b45a2 19612 return false;
2468f9c9 19613 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
99059e56 19614 {
2468f9c9
PB
19615 if (edit_node)
19616 {
19617 unsigned int edit_index = edit_node->index;
b38cadfb 19618
2468f9c9 19619 if (in_index < edit_index && in_index * 8 < input_size)
99059e56 19620 {
2468f9c9
PB
19621 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19622 contents + in_index * 8, add_to_offsets);
19623 out_index++;
19624 in_index++;
19625 }
19626 else if (in_index == edit_index
19627 || (in_index * 8 >= input_size
19628 && edit_index == UINT_MAX))
99059e56 19629 {
2468f9c9
PB
19630 switch (edit_node->type)
19631 {
19632 case DELETE_EXIDX_ENTRY:
19633 in_index++;
19634 add_to_offsets += 8;
19635 break;
b38cadfb 19636
2468f9c9
PB
19637 case INSERT_EXIDX_CANTUNWIND_AT_END:
19638 {
99059e56 19639 asection *text_sec = edit_node->linked_section;
2468f9c9
PB
19640 bfd_vma text_offset = text_sec->output_section->vma
19641 + text_sec->output_offset
19642 + text_sec->size;
19643 bfd_vma exidx_offset = offset + out_index * 8;
99059e56 19644 unsigned long prel31_offset;
2468f9c9
PB
19645
19646 /* Note: this is meant to be equivalent to an
19647 R_ARM_PREL31 relocation. These synthetic
19648 EXIDX_CANTUNWIND markers are not relocated by the
19649 usual BFD method. */
19650 prel31_offset = (text_offset - exidx_offset)
19651 & 0x7ffffffful;
491d01d3
YU
19652 if (bfd_link_relocatable (link_info))
19653 {
19654 /* Here relocation for new EXIDX_CANTUNWIND is
19655 created, so there is no need to
19656 adjust offset by hand. */
19657 prel31_offset = text_sec->output_offset
19658 + text_sec->size;
491d01d3 19659 }
2468f9c9
PB
19660
19661 /* First address we can't unwind. */
19662 bfd_put_32 (output_bfd, prel31_offset,
19663 &edited_contents[out_index * 8]);
19664
19665 /* Code for EXIDX_CANTUNWIND. */
19666 bfd_put_32 (output_bfd, 0x1,
19667 &edited_contents[out_index * 8 + 4]);
19668
19669 out_index++;
19670 add_to_offsets -= 8;
19671 }
19672 break;
19673 }
b38cadfb 19674
2468f9c9
PB
19675 edit_node = edit_node->next;
19676 }
19677 }
19678 else
19679 {
19680 /* No more edits, copy remaining entries verbatim. */
19681 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19682 contents + in_index * 8, add_to_offsets);
19683 out_index++;
19684 in_index++;
19685 }
19686 }
19687
19688 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19689 bfd_set_section_contents (output_bfd, sec->output_section,
19690 edited_contents,
19691 (file_ptr) sec->output_offset, sec->size);
19692
0a1b45a2 19693 return true;
2468f9c9
PB
19694 }
19695
48229727
JB
19696 /* Fix code to point to Cortex-A8 erratum stubs. */
19697 if (globals->fix_cortex_a8)
19698 {
19699 struct a8_branch_to_stub_data data;
19700
19701 data.writing_section = sec;
19702 data.contents = contents;
19703
a504d23a
LA
19704 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19705 & data);
48229727
JB
19706 }
19707
e489d0ae 19708 if (mapcount == 0)
0a1b45a2 19709 return false;
e489d0ae 19710
c7b8f16e 19711 if (globals->byteswap_code)
e489d0ae 19712 {
c7b8f16e 19713 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 19714
c7b8f16e
JB
19715 ptr = map[0].vma;
19716 for (i = 0; i < mapcount; i++)
99059e56
RM
19717 {
19718 if (i == mapcount - 1)
c7b8f16e 19719 end = sec->size;
99059e56
RM
19720 else
19721 end = map[i + 1].vma;
e489d0ae 19722
99059e56 19723 switch (map[i].type)
e489d0ae 19724 {
c7b8f16e
JB
19725 case 'a':
19726 /* Byte swap code words. */
19727 while (ptr + 3 < end)
99059e56
RM
19728 {
19729 tmp = contents[ptr];
19730 contents[ptr] = contents[ptr + 3];
19731 contents[ptr + 3] = tmp;
19732 tmp = contents[ptr + 1];
19733 contents[ptr + 1] = contents[ptr + 2];
19734 contents[ptr + 2] = tmp;
19735 ptr += 4;
19736 }
c7b8f16e 19737 break;
e489d0ae 19738
c7b8f16e
JB
19739 case 't':
19740 /* Byte swap code halfwords. */
19741 while (ptr + 1 < end)
99059e56
RM
19742 {
19743 tmp = contents[ptr];
19744 contents[ptr] = contents[ptr + 1];
19745 contents[ptr + 1] = tmp;
19746 ptr += 2;
19747 }
c7b8f16e
JB
19748 break;
19749
19750 case 'd':
19751 /* Leave data alone. */
19752 break;
19753 }
99059e56
RM
19754 ptr = end;
19755 }
e489d0ae 19756 }
8e3de13a 19757
93204d3a 19758 free (map);
47b2e99c 19759 arm_data->mapcount = -1;
c7b8f16e 19760 arm_data->mapsize = 0;
8e3de13a 19761 arm_data->map = NULL;
8e3de13a 19762
0a1b45a2 19763 return false;
e489d0ae
PB
19764}
19765
0beaef2b
PB
19766/* Mangle thumb function symbols as we read them in. */
19767
0a1b45a2 19768static bool
0beaef2b
PB
19769elf32_arm_swap_symbol_in (bfd * abfd,
19770 const void *psrc,
19771 const void *pshn,
19772 Elf_Internal_Sym *dst)
19773{
8384fb8f 19774 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
0a1b45a2 19775 return false;
39d911fc 19776 dst->st_target_internal = 0;
0beaef2b
PB
19777
19778 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 19779 the address. */
63e1a0fc
PB
19780 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19781 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 19782 {
63e1a0fc
PB
19783 if (dst->st_value & 1)
19784 {
19785 dst->st_value &= ~(bfd_vma) 1;
39d911fc
TP
19786 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19787 ST_BRANCH_TO_THUMB);
63e1a0fc
PB
19788 }
19789 else
39d911fc 19790 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
35fc36a8
RS
19791 }
19792 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19793 {
19794 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
39d911fc 19795 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
0beaef2b 19796 }
35fc36a8 19797 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
39d911fc 19798 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
35fc36a8 19799 else
39d911fc 19800 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
35fc36a8 19801
0a1b45a2 19802 return true;
0beaef2b
PB
19803}
19804
19805
19806/* Mangle thumb function symbols as we write them out. */
19807
19808static void
19809elf32_arm_swap_symbol_out (bfd *abfd,
19810 const Elf_Internal_Sym *src,
19811 void *cdst,
19812 void *shndx)
19813{
19814 Elf_Internal_Sym newsym;
19815
19816 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19817 of the address set, as per the new EABI. We do this unconditionally
19818 because objcopy does not set the elf header flags until after
19819 it writes out the symbol table. */
39d911fc 19820 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
0beaef2b
PB
19821 {
19822 newsym = *src;
34e77a92
RS
19823 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19824 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad 19825 if (newsym.st_shndx != SHN_UNDEF)
99059e56
RM
19826 {
19827 /* Do this only for defined symbols. At link type, the static
19828 linker will simulate the work of dynamic linker of resolving
19829 symbols and will carry over the thumbness of found symbols to
19830 the output symbol table. It's not clear how it happens, but
19831 the thumbness of undefined symbols can well be different at
19832 runtime, and writing '1' for them will be confusing for users
19833 and possibly for dynamic linker itself.
19834 */
19835 newsym.st_value |= 1;
19836 }
906e58ca 19837
0beaef2b
PB
19838 src = &newsym;
19839 }
19840 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
19841}
19842
b294bdf8
MM
19843/* Add the PT_ARM_EXIDX program header. */
19844
0a1b45a2 19845static bool
906e58ca 19846elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
19847 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19848{
19849 struct elf_segment_map *m;
19850 asection *sec;
19851
19852 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19853 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19854 {
19855 /* If there is already a PT_ARM_EXIDX header, then we do not
19856 want to add another one. This situation arises when running
19857 "strip"; the input binary already has the header. */
12bd6957 19858 m = elf_seg_map (abfd);
b294bdf8
MM
19859 while (m && m->p_type != PT_ARM_EXIDX)
19860 m = m->next;
19861 if (!m)
19862 {
21d799b5 19863 m = (struct elf_segment_map *)
99059e56 19864 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8 19865 if (m == NULL)
0a1b45a2 19866 return false;
b294bdf8
MM
19867 m->p_type = PT_ARM_EXIDX;
19868 m->count = 1;
19869 m->sections[0] = sec;
19870
12bd6957
AM
19871 m->next = elf_seg_map (abfd);
19872 elf_seg_map (abfd) = m;
b294bdf8
MM
19873 }
19874 }
19875
0a1b45a2 19876 return true;
b294bdf8
MM
19877}
19878
19879/* We may add a PT_ARM_EXIDX program header. */
19880
19881static int
a6b96beb
AM
19882elf32_arm_additional_program_headers (bfd *abfd,
19883 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
19884{
19885 asection *sec;
19886
19887 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19888 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19889 return 1;
19890 else
19891 return 0;
19892}
19893
34e77a92
RS
19894/* Hook called by the linker routine which adds symbols from an object
19895 file. */
19896
0a1b45a2 19897static bool
34e77a92
RS
19898elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
19899 Elf_Internal_Sym *sym, const char **namep,
19900 flagword *flagsp, asection **secp, bfd_vma *valp)
19901{
c792917c 19902 if (elf32_arm_hash_table (info) == NULL)
0a1b45a2 19903 return false;
c792917c 19904
90c14f0c 19905 if (elf32_arm_hash_table (info)->root.target_os == is_vxworks
34e77a92
RS
19906 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
19907 flagsp, secp, valp))
0a1b45a2 19908 return false;
34e77a92 19909
0a1b45a2 19910 return true;
34e77a92
RS
19911}
19912
0beaef2b 19913/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
19914const struct elf_size_info elf32_arm_size_info =
19915{
0beaef2b
PB
19916 sizeof (Elf32_External_Ehdr),
19917 sizeof (Elf32_External_Phdr),
19918 sizeof (Elf32_External_Shdr),
19919 sizeof (Elf32_External_Rel),
19920 sizeof (Elf32_External_Rela),
19921 sizeof (Elf32_External_Sym),
19922 sizeof (Elf32_External_Dyn),
19923 sizeof (Elf_External_Note),
19924 4,
19925 1,
19926 32, 2,
19927 ELFCLASS32, EV_CURRENT,
19928 bfd_elf32_write_out_phdrs,
19929 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 19930 bfd_elf32_checksum_contents,
0beaef2b
PB
19931 bfd_elf32_write_relocs,
19932 elf32_arm_swap_symbol_in,
19933 elf32_arm_swap_symbol_out,
19934 bfd_elf32_slurp_reloc_table,
19935 bfd_elf32_slurp_symbol_table,
19936 bfd_elf32_swap_dyn_in,
19937 bfd_elf32_swap_dyn_out,
19938 bfd_elf32_swap_reloc_in,
19939 bfd_elf32_swap_reloc_out,
19940 bfd_elf32_swap_reloca_in,
19941 bfd_elf32_swap_reloca_out
19942};
19943
685e70ae
VK
19944static bfd_vma
19945read_code32 (const bfd *abfd, const bfd_byte *addr)
19946{
19947 /* V7 BE8 code is always little endian. */
19948 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19949 return bfd_getl32 (addr);
19950
19951 return bfd_get_32 (abfd, addr);
19952}
19953
19954static bfd_vma
19955read_code16 (const bfd *abfd, const bfd_byte *addr)
19956{
19957 /* V7 BE8 code is always little endian. */
19958 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19959 return bfd_getl16 (addr);
19960
19961 return bfd_get_16 (abfd, addr);
19962}
19963
6a631e86
YG
19964/* Return size of plt0 entry starting at ADDR
19965 or (bfd_vma) -1 if size can not be determined. */
19966
19967static bfd_vma
19968elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19969{
19970 bfd_vma first_word;
19971 bfd_vma plt0_size;
19972
685e70ae 19973 first_word = read_code32 (abfd, addr);
6a631e86
YG
19974
19975 if (first_word == elf32_arm_plt0_entry[0])
19976 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19977 else if (first_word == elf32_thumb2_plt0_entry[0])
19978 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19979 else
19980 /* We don't yet handle this PLT format. */
19981 return (bfd_vma) -1;
19982
19983 return plt0_size;
19984}
19985
19986/* Return size of plt entry starting at offset OFFSET
19987 of plt section located at address START
19988 or (bfd_vma) -1 if size can not be determined. */
19989
19990static bfd_vma
19991elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19992{
19993 bfd_vma first_insn;
19994 bfd_vma plt_size = 0;
19995 const bfd_byte *addr = start + offset;
19996
19997 /* PLT entry size if fixed on Thumb-only platforms. */
685e70ae 19998 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
6a631e86
YG
19999 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
20000
20001 /* Respect Thumb stub if necessary. */
685e70ae 20002 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
6a631e86 20003 {
cc850f74 20004 plt_size += 2 * ARRAY_SIZE (elf32_arm_plt_thumb_stub);
6a631e86
YG
20005 }
20006
20007 /* Strip immediate from first add. */
685e70ae 20008 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
6a631e86
YG
20009
20010#ifdef FOUR_WORD_PLT
20011 if (first_insn == elf32_arm_plt_entry[0])
20012 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
20013#else
20014 if (first_insn == elf32_arm_plt_entry_long[0])
20015 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
20016 else if (first_insn == elf32_arm_plt_entry_short[0])
20017 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
20018#endif
20019 else
20020 /* We don't yet handle this PLT format. */
20021 return (bfd_vma) -1;
20022
20023 return plt_size;
20024}
20025
20026/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20027
20028static long
20029elf32_arm_get_synthetic_symtab (bfd *abfd,
20030 long symcount ATTRIBUTE_UNUSED,
20031 asymbol **syms ATTRIBUTE_UNUSED,
20032 long dynsymcount,
20033 asymbol **dynsyms,
20034 asymbol **ret)
20035{
20036 asection *relplt;
20037 asymbol *s;
20038 arelent *p;
20039 long count, i, n;
20040 size_t size;
20041 Elf_Internal_Shdr *hdr;
20042 char *names;
20043 asection *plt;
20044 bfd_vma offset;
20045 bfd_byte *data;
20046
20047 *ret = NULL;
20048
20049 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20050 return 0;
20051
20052 if (dynsymcount <= 0)
20053 return 0;
20054
20055 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20056 if (relplt == NULL)
20057 return 0;
20058
20059 hdr = &elf_section_data (relplt)->this_hdr;
20060 if (hdr->sh_link != elf_dynsymtab (abfd)
20061 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20062 return 0;
20063
20064 plt = bfd_get_section_by_name (abfd, ".plt");
20065 if (plt == NULL)
20066 return 0;
20067
0a1b45a2 20068 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, true))
6a631e86
YG
20069 return -1;
20070
20071 data = plt->contents;
20072 if (data == NULL)
20073 {
206e9791
AM
20074 if (!bfd_get_full_section_contents (abfd, plt, &data)
20075 || data == NULL)
6a631e86 20076 return -1;
206e9791
AM
20077 plt->contents = data;
20078 plt->flags |= SEC_IN_MEMORY;
6a631e86
YG
20079 }
20080
93c6e8c3 20081 count = NUM_SHDR_ENTRIES (hdr);
6a631e86
YG
20082 size = count * sizeof (asymbol);
20083 p = relplt->relocation;
20084 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20085 {
20086 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20087 if (p->addend != 0)
20088 size += sizeof ("+0x") - 1 + 8;
20089 }
20090
20091 s = *ret = (asymbol *) bfd_malloc (size);
20092 if (s == NULL)
20093 return -1;
20094
20095 offset = elf32_arm_plt0_size (abfd, data);
20096 if (offset == (bfd_vma) -1)
20097 return -1;
20098
20099 names = (char *) (s + count);
20100 p = relplt->relocation;
20101 n = 0;
20102 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20103 {
20104 size_t len;
20105
20106 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20107 if (plt_size == (bfd_vma) -1)
20108 break;
20109
20110 *s = **p->sym_ptr_ptr;
20111 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20112 we are defining a symbol, ensure one of them is set. */
20113 if ((s->flags & BSF_LOCAL) == 0)
20114 s->flags |= BSF_GLOBAL;
20115 s->flags |= BSF_SYNTHETIC;
20116 s->section = plt;
20117 s->value = offset;
20118 s->name = names;
20119 s->udata.p = NULL;
20120 len = strlen ((*p->sym_ptr_ptr)->name);
20121 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20122 names += len;
20123 if (p->addend != 0)
20124 {
20125 char buf[30], *a;
20126
20127 memcpy (names, "+0x", sizeof ("+0x") - 1);
20128 names += sizeof ("+0x") - 1;
20129 bfd_sprintf_vma (abfd, buf, p->addend);
20130 for (a = buf; *a == '0'; ++a)
20131 ;
20132 len = strlen (a);
20133 memcpy (names, a, len);
20134 names += len;
20135 }
20136 memcpy (names, "@plt", sizeof ("@plt"));
20137 names += sizeof ("@plt");
20138 ++s, ++n;
20139 offset += plt_size;
20140 }
20141
20142 return n;
20143}
20144
0a1b45a2 20145static bool
8c803a2d 20146elf32_arm_section_flags (const Elf_Internal_Shdr *hdr)
ac4c9b04 20147{
f0728ee3 20148 if (hdr->sh_flags & SHF_ARM_PURECODE)
8c803a2d 20149 hdr->bfd_section->flags |= SEC_ELF_PURECODE;
0a1b45a2 20150 return true;
ac4c9b04
MG
20151}
20152
20153static flagword
20154elf32_arm_lookup_section_flags (char *flag_name)
20155{
f0728ee3
AV
20156 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20157 return SHF_ARM_PURECODE;
ac4c9b04
MG
20158
20159 return SEC_NO_FLAGS;
20160}
20161
491d01d3
YU
20162static unsigned int
20163elf32_arm_count_additional_relocs (asection *sec)
20164{
20165 struct _arm_elf_section_data *arm_data;
20166 arm_data = get_arm_elf_section_data (sec);
5025eb7c 20167
6342be70 20168 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
491d01d3
YU
20169}
20170
5522f910 20171/* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
9eaff861 20172 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
5522f910
NC
20173 FALSE otherwise. ISECTION is the best guess matching section from the
20174 input bfd IBFD, but it might be NULL. */
20175
0a1b45a2 20176static bool
5522f910
NC
20177elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20178 bfd *obfd ATTRIBUTE_UNUSED,
20179 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20180 Elf_Internal_Shdr *osection)
20181{
20182 switch (osection->sh_type)
20183 {
20184 case SHT_ARM_EXIDX:
20185 {
20186 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20187 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20188 unsigned i = 0;
20189
20190 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20191 osection->sh_info = 0;
20192
20193 /* The sh_link field must be set to the text section associated with
20194 this index section. Unfortunately the ARM EHABI does not specify
20195 exactly how to determine this association. Our caller does try
20196 to match up OSECTION with its corresponding input section however
20197 so that is a good first guess. */
20198 if (isection != NULL
20199 && osection->bfd_section != NULL
20200 && isection->bfd_section != NULL
20201 && isection->bfd_section->output_section != NULL
20202 && isection->bfd_section->output_section == osection->bfd_section
20203 && iheaders != NULL
20204 && isection->sh_link > 0
20205 && isection->sh_link < elf_numsections (ibfd)
20206 && iheaders[isection->sh_link]->bfd_section != NULL
20207 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20208 )
20209 {
20210 for (i = elf_numsections (obfd); i-- > 0;)
20211 if (oheaders[i]->bfd_section
20212 == iheaders[isection->sh_link]->bfd_section->output_section)
20213 break;
20214 }
9eaff861 20215
5522f910
NC
20216 if (i == 0)
20217 {
20218 /* Failing that we have to find a matching section ourselves. If
20219 we had the output section name available we could compare that
20220 with input section names. Unfortunately we don't. So instead
20221 we use a simple heuristic and look for the nearest executable
20222 section before this one. */
20223 for (i = elf_numsections (obfd); i-- > 0;)
20224 if (oheaders[i] == osection)
20225 break;
20226 if (i == 0)
20227 break;
20228
20229 while (i-- > 0)
20230 if (oheaders[i]->sh_type == SHT_PROGBITS
20231 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20232 == (SHF_ALLOC | SHF_EXECINSTR))
20233 break;
20234 }
20235
20236 if (i)
20237 {
20238 osection->sh_link = i;
20239 /* If the text section was part of a group
20240 then the index section should be too. */
20241 if (oheaders[i]->sh_flags & SHF_GROUP)
20242 osection->sh_flags |= SHF_GROUP;
0a1b45a2 20243 return true;
5522f910
NC
20244 }
20245 }
20246 break;
20247
20248 case SHT_ARM_PREEMPTMAP:
20249 osection->sh_flags = SHF_ALLOC;
20250 break;
20251
20252 case SHT_ARM_ATTRIBUTES:
20253 case SHT_ARM_DEBUGOVERLAY:
20254 case SHT_ARM_OVERLAYSECTION:
20255 default:
20256 break;
20257 }
20258
0a1b45a2 20259 return false;
5522f910
NC
20260}
20261
d691934d
NC
20262/* Returns TRUE if NAME is an ARM mapping symbol.
20263 Traditionally the symbols $a, $d and $t have been used.
20264 The ARM ELF standard also defines $x (for A64 code). It also allows a
20265 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20266 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20267 not support them here. $t.x indicates the start of ThumbEE instructions. */
20268
0a1b45a2 20269static bool
d691934d
NC
20270is_arm_mapping_symbol (const char * name)
20271{
20272 return name != NULL /* Paranoia. */
20273 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20274 the mapping symbols could have acquired a prefix.
20275 We do not support this here, since such symbols no
20276 longer conform to the ARM ELF ABI. */
20277 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20278 && (name[2] == 0 || name[2] == '.');
20279 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20280 any characters that follow the period are legal characters for the body
20281 of a symbol's name. For now we just assume that this is the case. */
20282}
20283
fca2a38f
NC
20284/* Make sure that mapping symbols in object files are not removed via the
20285 "strip --strip-unneeded" tool. These symbols are needed in order to
20286 correctly generate interworking veneers, and for byte swapping code
20287 regions. Once an object file has been linked, it is safe to remove the
20288 symbols as they will no longer be needed. */
20289
20290static void
20291elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20292{
20293 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
fca2a38f 20294 && sym->section != bfd_abs_section_ptr
d691934d 20295 && is_arm_mapping_symbol (sym->name))
fca2a38f
NC
20296 sym->flags |= BSF_KEEP;
20297}
20298
5522f910
NC
20299#undef elf_backend_copy_special_section_fields
20300#define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20301
252b5132 20302#define ELF_ARCH bfd_arch_arm
ae95ffa6 20303#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 20304#define ELF_MACHINE_CODE EM_ARM
d0facd1b 20305#define ELF_MAXPAGESIZE 0x1000
24718e3b 20306#define ELF_COMMONPAGESIZE 0x1000
252b5132 20307
07d6d2b8 20308#define bfd_elf32_mkobject elf32_arm_mkobject
ba93b8ac 20309
99e4ae17
AJ
20310#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20311#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
20312#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20313#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
07d6d2b8 20314#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
dc810e39 20315#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 20316#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
07d6d2b8 20317#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 20318#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 20319#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 20320#define bfd_elf32_bfd_final_link elf32_arm_final_link
07d6d2b8 20321#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
252b5132 20322
07d6d2b8 20323#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
e7679060 20324#define elf_backend_maybe_function_sym elf32_arm_maybe_function_sym
07d6d2b8 20325#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 20326#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
07d6d2b8 20327#define elf_backend_check_relocs elf32_arm_check_relocs
9eaff861 20328#define elf_backend_update_relocs elf32_arm_update_relocs
dc810e39 20329#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 20330#define elf_backend_write_section elf32_arm_write_section
252b5132 20331#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
07d6d2b8 20332#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
20333#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20334#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20335#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 20336#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 20337#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ed7e9d0b 20338#define elf_backend_init_file_header elf32_arm_init_file_header
99e4ae17 20339#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 20340#define elf_backend_object_p elf32_arm_object_p
07d6d2b8
AM
20341#define elf_backend_fake_sections elf32_arm_fake_sections
20342#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20343#define elf_backend_final_write_processing elf32_arm_final_write_processing
20344#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 20345#define elf_backend_size_info elf32_arm_size_info
b294bdf8 20346#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
07d6d2b8
AM
20347#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20348#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
54ddd295 20349#define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
07d6d2b8 20350#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 20351#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
491d01d3 20352#define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
fca2a38f 20353#define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
906e58ca
NC
20354
20355#define elf_backend_can_refcount 1
20356#define elf_backend_can_gc_sections 1
20357#define elf_backend_plt_readonly 1
20358#define elf_backend_want_got_plt 1
20359#define elf_backend_want_plt_sym 0
5474d94f 20360#define elf_backend_want_dynrelro 1
906e58ca
NC
20361#define elf_backend_may_use_rel_p 1
20362#define elf_backend_may_use_rela_p 0
4e7fd91e 20363#define elf_backend_default_use_rela_p 0
64f52338 20364#define elf_backend_dtrel_excludes_plt 1
252b5132 20365
04f7c78d 20366#define elf_backend_got_header_size 12
af9bf9cb 20367#define elf_backend_extern_protected_data 0
04f7c78d 20368
07d6d2b8 20369#undef elf_backend_obj_attrs_vendor
906e58ca 20370#define elf_backend_obj_attrs_vendor "aeabi"
07d6d2b8 20371#undef elf_backend_obj_attrs_section
906e58ca 20372#define elf_backend_obj_attrs_section ".ARM.attributes"
07d6d2b8 20373#undef elf_backend_obj_attrs_arg_type
906e58ca 20374#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
07d6d2b8 20375#undef elf_backend_obj_attrs_section_type
104d59d1 20376#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb 20377#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
07d6d2b8 20378#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 20379
07d6d2b8 20380#undef elf_backend_section_flags
ac4c9b04 20381#define elf_backend_section_flags elf32_arm_section_flags
07d6d2b8
AM
20382#undef elf_backend_lookup_section_flags_hook
20383#define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
ac4c9b04 20384
0a1b45a2 20385#define elf_backend_linux_prpsinfo32_ugid16 true
a2f63b2e 20386
252b5132 20387#include "elf32-target.h"
7f266840 20388
b38cadfb
NC
20389/* Native Client targets. */
20390
20391#undef TARGET_LITTLE_SYM
6d00b590 20392#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
b38cadfb
NC
20393#undef TARGET_LITTLE_NAME
20394#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20395#undef TARGET_BIG_SYM
6d00b590 20396#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
b38cadfb
NC
20397#undef TARGET_BIG_NAME
20398#define TARGET_BIG_NAME "elf32-bigarm-nacl"
20399
20400/* Like elf32_arm_link_hash_table_create -- but overrides
20401 appropriately for NaCl. */
20402
20403static struct bfd_link_hash_table *
20404elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20405{
20406 struct bfd_link_hash_table *ret;
20407
20408 ret = elf32_arm_link_hash_table_create (abfd);
20409 if (ret)
20410 {
20411 struct elf32_arm_link_hash_table *htab
20412 = (struct elf32_arm_link_hash_table *) ret;
20413
b38cadfb
NC
20414 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20415 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20416 }
20417 return ret;
20418}
20419
20420/* Since NaCl doesn't use the ARM-specific unwind format, we don't
20421 really need to use elf32_arm_modify_segment_map. But we do it
20422 anyway just to reduce gratuitous differences with the stock ARM backend. */
20423
0a1b45a2 20424static bool
b38cadfb
NC
20425elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20426{
20427 return (elf32_arm_modify_segment_map (abfd, info)
20428 && nacl_modify_segment_map (abfd, info));
20429}
20430
0a1b45a2 20431static bool
cc364be6 20432elf32_arm_nacl_final_write_processing (bfd *abfd)
887badb3 20433{
cc364be6
AM
20434 arm_final_write_processing (abfd);
20435 return nacl_final_write_processing (abfd);
887badb3
RM
20436}
20437
6a631e86
YG
20438static bfd_vma
20439elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20440 const arelent *rel ATTRIBUTE_UNUSED)
20441{
20442 return plt->vma
20443 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20444 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20445}
887badb3 20446
b38cadfb 20447#undef elf32_bed
6a631e86 20448#define elf32_bed elf32_arm_nacl_bed
b38cadfb
NC
20449#undef bfd_elf32_bfd_link_hash_table_create
20450#define bfd_elf32_bfd_link_hash_table_create \
20451 elf32_arm_nacl_link_hash_table_create
20452#undef elf_backend_plt_alignment
6a631e86 20453#define elf_backend_plt_alignment 4
b38cadfb
NC
20454#undef elf_backend_modify_segment_map
20455#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
6d6c25c8
AM
20456#undef elf_backend_modify_headers
20457#define elf_backend_modify_headers nacl_modify_headers
887badb3
RM
20458#undef elf_backend_final_write_processing
20459#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
6a631e86
YG
20460#undef bfd_elf32_get_synthetic_symtab
20461#undef elf_backend_plt_sym_val
20462#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
5522f910 20463#undef elf_backend_copy_special_section_fields
b38cadfb 20464
887badb3
RM
20465#undef ELF_MINPAGESIZE
20466#undef ELF_COMMONPAGESIZE
20467
90c14f0c
L
20468#undef ELF_TARGET_OS
20469#define ELF_TARGET_OS is_nacl
b38cadfb
NC
20470
20471#include "elf32-target.h"
20472
20473/* Reset to defaults. */
20474#undef elf_backend_plt_alignment
20475#undef elf_backend_modify_segment_map
20476#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
6d6c25c8 20477#undef elf_backend_modify_headers
887badb3
RM
20478#undef elf_backend_final_write_processing
20479#define elf_backend_final_write_processing elf32_arm_final_write_processing
20480#undef ELF_MINPAGESIZE
887badb3
RM
20481#undef ELF_COMMONPAGESIZE
20482#define ELF_COMMONPAGESIZE 0x1000
20483
b38cadfb 20484
617a5ada
CL
20485/* FDPIC Targets. */
20486
20487#undef TARGET_LITTLE_SYM
20488#define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20489#undef TARGET_LITTLE_NAME
20490#define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20491#undef TARGET_BIG_SYM
20492#define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20493#undef TARGET_BIG_NAME
20494#define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20495#undef elf_match_priority
20496#define elf_match_priority 128
18a20338
CL
20497#undef ELF_OSABI
20498#define ELF_OSABI ELFOSABI_ARM_FDPIC
617a5ada
CL
20499
20500/* Like elf32_arm_link_hash_table_create -- but overrides
20501 appropriately for FDPIC. */
20502
20503static struct bfd_link_hash_table *
20504elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20505{
20506 struct bfd_link_hash_table *ret;
20507
20508 ret = elf32_arm_link_hash_table_create (abfd);
20509 if (ret)
20510 {
20511 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20512
20513 htab->fdpic_p = 1;
20514 }
20515 return ret;
20516}
20517
e8b09b87
CL
20518/* We need dynamic symbols for every section, since segments can
20519 relocate independently. */
0a1b45a2 20520static bool
e8b09b87
CL
20521elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20522 struct bfd_link_info *info
20523 ATTRIBUTE_UNUSED,
20524 asection *p ATTRIBUTE_UNUSED)
20525{
20526 switch (elf_section_data (p)->this_hdr.sh_type)
20527 {
20528 case SHT_PROGBITS:
20529 case SHT_NOBITS:
20530 /* If sh_type is yet undecided, assume it could be
20531 SHT_PROGBITS/SHT_NOBITS. */
20532 case SHT_NULL:
0a1b45a2 20533 return false;
e8b09b87
CL
20534
20535 /* There shouldn't be section relative relocations
20536 against any other section. */
20537 default:
0a1b45a2 20538 return true;
e8b09b87
CL
20539 }
20540}
20541
617a5ada
CL
20542#undef elf32_bed
20543#define elf32_bed elf32_arm_fdpic_bed
20544
20545#undef bfd_elf32_bfd_link_hash_table_create
4b24dd1a 20546#define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
617a5ada 20547
e8b09b87
CL
20548#undef elf_backend_omit_section_dynsym
20549#define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20550
90c14f0c
L
20551#undef ELF_TARGET_OS
20552
617a5ada 20553#include "elf32-target.h"
e8b09b87 20554
617a5ada 20555#undef elf_match_priority
18a20338 20556#undef ELF_OSABI
e8b09b87 20557#undef elf_backend_omit_section_dynsym
617a5ada 20558
906e58ca 20559/* VxWorks Targets. */
4e7fd91e 20560
07d6d2b8
AM
20561#undef TARGET_LITTLE_SYM
20562#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20563#undef TARGET_LITTLE_NAME
20564#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20565#undef TARGET_BIG_SYM
20566#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20567#undef TARGET_BIG_NAME
20568#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
4e7fd91e
PB
20569
20570/* Like elf32_arm_link_hash_table_create -- but overrides
20571 appropriately for VxWorks. */
906e58ca 20572
4e7fd91e
PB
20573static struct bfd_link_hash_table *
20574elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20575{
20576 struct bfd_link_hash_table *ret;
20577
20578 ret = elf32_arm_link_hash_table_create (abfd);
20579 if (ret)
20580 {
20581 struct elf32_arm_link_hash_table *htab
00a97672 20582 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e
PB
20583 htab->use_rel = 0;
20584 }
20585 return ret;
906e58ca 20586}
4e7fd91e 20587
0a1b45a2 20588static bool
cc364be6 20589elf32_arm_vxworks_final_write_processing (bfd *abfd)
00a97672 20590{
cc364be6
AM
20591 arm_final_write_processing (abfd);
20592 return elf_vxworks_final_write_processing (abfd);
00a97672
RS
20593}
20594
906e58ca 20595#undef elf32_bed
4e7fd91e
PB
20596#define elf32_bed elf32_arm_vxworks_bed
20597
906e58ca
NC
20598#undef bfd_elf32_bfd_link_hash_table_create
20599#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
20600#undef elf_backend_final_write_processing
20601#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20602#undef elf_backend_emit_relocs
9eaff861 20603#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 20604
906e58ca 20605#undef elf_backend_may_use_rel_p
00a97672 20606#define elf_backend_may_use_rel_p 0
906e58ca 20607#undef elf_backend_may_use_rela_p
00a97672 20608#define elf_backend_may_use_rela_p 1
906e58ca 20609#undef elf_backend_default_use_rela_p
00a97672 20610#define elf_backend_default_use_rela_p 1
906e58ca 20611#undef elf_backend_want_plt_sym
00a97672 20612#define elf_backend_want_plt_sym 1
906e58ca 20613#undef ELF_MAXPAGESIZE
00a97672 20614#define ELF_MAXPAGESIZE 0x1000
90c14f0c
L
20615#undef ELF_TARGET_OS
20616#define ELF_TARGET_OS is_vxworks
4e7fd91e
PB
20617
20618#include "elf32-target.h"
20619
20620
21d799b5
NC
20621/* Merge backend specific data from an object file to the output
20622 object file when linking. */
20623
0a1b45a2 20624static bool
50e03d47 20625elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
21d799b5 20626{
50e03d47 20627 bfd *obfd = info->output_bfd;
21d799b5
NC
20628 flagword out_flags;
20629 flagword in_flags;
0a1b45a2 20630 bool flags_compatible = true;
21d799b5
NC
20631 asection *sec;
20632
cc643b88 20633 /* Check if we have the same endianness. */
50e03d47 20634 if (! _bfd_generic_verify_endian_match (ibfd, info))
0a1b45a2 20635 return false;
21d799b5
NC
20636
20637 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
0a1b45a2 20638 return true;
21d799b5 20639
50e03d47 20640 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
0a1b45a2 20641 return false;
21d799b5
NC
20642
20643 /* The input BFD must have had its flags initialised. */
20644 /* The following seems bogus to me -- The flags are initialized in
20645 the assembler but I don't think an elf_flags_init field is
20646 written into the object. */
20647 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20648
20649 in_flags = elf_elfheader (ibfd)->e_flags;
20650 out_flags = elf_elfheader (obfd)->e_flags;
20651
20652 /* In theory there is no reason why we couldn't handle this. However
20653 in practice it isn't even close to working and there is no real
20654 reason to want it. */
20655 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20656 && !(ibfd->flags & DYNAMIC)
20657 && (in_flags & EF_ARM_BE8))
20658 {
871b3ab2 20659 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
21d799b5 20660 ibfd);
0a1b45a2 20661 return false;
21d799b5
NC
20662 }
20663
20664 if (!elf_flags_init (obfd))
20665 {
20666 /* If the input is the default architecture and had the default
20667 flags then do not bother setting the flags for the output
20668 architecture, instead allow future merges to do this. If no
20669 future merges ever set these flags then they will retain their
99059e56
RM
20670 uninitialised values, which surprise surprise, correspond
20671 to the default values. */
21d799b5
NC
20672 if (bfd_get_arch_info (ibfd)->the_default
20673 && elf_elfheader (ibfd)->e_flags == 0)
0a1b45a2 20674 return true;
21d799b5 20675
0a1b45a2 20676 elf_flags_init (obfd) = true;
21d799b5
NC
20677 elf_elfheader (obfd)->e_flags = in_flags;
20678
20679 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20680 && bfd_get_arch_info (obfd)->the_default)
20681 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20682
0a1b45a2 20683 return true;
21d799b5
NC
20684 }
20685
20686 /* Determine what should happen if the input ARM architecture
20687 does not match the output ARM architecture. */
20688 if (! bfd_arm_merge_machines (ibfd, obfd))
0a1b45a2 20689 return false;
21d799b5
NC
20690
20691 /* Identical flags must be compatible. */
20692 if (in_flags == out_flags)
0a1b45a2 20693 return true;
21d799b5
NC
20694
20695 /* Check to see if the input BFD actually contains any sections. If
20696 not, its flags may not have been initialised either, but it
20697 cannot actually cause any incompatiblity. Do not short-circuit
20698 dynamic objects; their section list may be emptied by
20699 elf_link_add_object_symbols.
20700
20701 Also check to see if there are no code sections in the input.
20702 In this case there is no need to check for code specific flags.
20703 XXX - do we need to worry about floating-point format compatability
20704 in data sections ? */
20705 if (!(ibfd->flags & DYNAMIC))
20706 {
0a1b45a2
AM
20707 bool null_input_bfd = true;
20708 bool only_data_sections = true;
21d799b5
NC
20709
20710 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20711 {
20712 /* Ignore synthetic glue sections. */
20713 if (strcmp (sec->name, ".glue_7")
20714 && strcmp (sec->name, ".glue_7t"))
20715 {
fd361982 20716 if ((bfd_section_flags (sec)
21d799b5
NC
20717 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20718 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
0a1b45a2 20719 only_data_sections = false;
21d799b5 20720
0a1b45a2 20721 null_input_bfd = false;
21d799b5
NC
20722 break;
20723 }
20724 }
20725
20726 if (null_input_bfd || only_data_sections)
0a1b45a2 20727 return true;
21d799b5
NC
20728 }
20729
20730 /* Complain about various flag mismatches. */
20731 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20732 EF_ARM_EABI_VERSION (out_flags)))
20733 {
20734 _bfd_error_handler
90b6238f 20735 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
c08bb8dd
AM
20736 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20737 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
0a1b45a2 20738 return false;
21d799b5
NC
20739 }
20740
20741 /* Not sure what needs to be checked for EABI versions >= 1. */
20742 /* VxWorks libraries do not use these flags. */
20743 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20744 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20745 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20746 {
20747 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20748 {
20749 _bfd_error_handler
871b3ab2 20750 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
c08bb8dd
AM
20751 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20752 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
0a1b45a2 20753 flags_compatible = false;
21d799b5
NC
20754 }
20755
20756 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20757 {
20758 if (in_flags & EF_ARM_APCS_FLOAT)
20759 _bfd_error_handler
871b3ab2 20760 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
21d799b5
NC
20761 ibfd, obfd);
20762 else
20763 _bfd_error_handler
871b3ab2 20764 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
21d799b5
NC
20765 ibfd, obfd);
20766
0a1b45a2 20767 flags_compatible = false;
21d799b5
NC
20768 }
20769
20770 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20771 {
20772 if (in_flags & EF_ARM_VFP_FLOAT)
20773 _bfd_error_handler
90b6238f
AM
20774 (_("error: %pB uses %s instructions, whereas %pB does not"),
20775 ibfd, "VFP", obfd);
21d799b5
NC
20776 else
20777 _bfd_error_handler
90b6238f
AM
20778 (_("error: %pB uses %s instructions, whereas %pB does not"),
20779 ibfd, "FPA", obfd);
21d799b5 20780
0a1b45a2 20781 flags_compatible = false;
21d799b5
NC
20782 }
20783
20784 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20785 {
20786 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20787 _bfd_error_handler
90b6238f
AM
20788 (_("error: %pB uses %s instructions, whereas %pB does not"),
20789 ibfd, "Maverick", obfd);
21d799b5
NC
20790 else
20791 _bfd_error_handler
90b6238f
AM
20792 (_("error: %pB does not use %s instructions, whereas %pB does"),
20793 ibfd, "Maverick", obfd);
21d799b5 20794
0a1b45a2 20795 flags_compatible = false;
21d799b5
NC
20796 }
20797
20798#ifdef EF_ARM_SOFT_FLOAT
20799 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20800 {
20801 /* We can allow interworking between code that is VFP format
20802 layout, and uses either soft float or integer regs for
20803 passing floating point arguments and results. We already
20804 know that the APCS_FLOAT flags match; similarly for VFP
20805 flags. */
20806 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20807 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20808 {
20809 if (in_flags & EF_ARM_SOFT_FLOAT)
20810 _bfd_error_handler
871b3ab2 20811 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
21d799b5
NC
20812 ibfd, obfd);
20813 else
20814 _bfd_error_handler
871b3ab2 20815 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
21d799b5
NC
20816 ibfd, obfd);
20817
0a1b45a2 20818 flags_compatible = false;
21d799b5
NC
20819 }
20820 }
20821#endif
20822
20823 /* Interworking mismatch is only a warning. */
20824 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20825 {
20826 if (in_flags & EF_ARM_INTERWORK)
20827 {
20828 _bfd_error_handler
90b6238f 20829 (_("warning: %pB supports interworking, whereas %pB does not"),
21d799b5
NC
20830 ibfd, obfd);
20831 }
20832 else
20833 {
20834 _bfd_error_handler
90b6238f 20835 (_("warning: %pB does not support interworking, whereas %pB does"),
21d799b5
NC
20836 ibfd, obfd);
20837 }
20838 }
20839 }
20840
20841 return flags_compatible;
20842}