]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf32-arm.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
fd67aa11 2 Copyright (C) 1998-2024 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
6e6718a3 21#include "sysdep.h"
2468f9c9
PB
22#include <limits.h>
23
3db64b00 24#include "bfd.h"
00a97672 25#include "libiberty.h"
7f266840
DJ
26#include "libbfd.h"
27#include "elf-bfd.h"
b38cadfb 28#include "elf-nacl.h"
00a97672 29#include "elf-vxworks.h"
ee065d83 30#include "elf/arm.h"
f37164d7
AM
31#include "elf32-arm.h"
32#include "cpu-arm.h"
7f266840 33
00a97672
RS
34/* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36#define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39/* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41#define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46/* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48#define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53/* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55#define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
f3185997 60#define elf_info_to_howto NULL
07d6d2b8 61#define elf_info_to_howto_rel elf32_arm_info_to_howto
7f266840
DJ
62
63#define ARM_ELF_ABI_VERSION 0
64#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
79f08007
YZ
66/* The Adjusted Place, as defined by AAELF. */
67#define Pa(X) ((X) & 0xfffffffc)
68
0a1b45a2
AM
69static bool elf32_arm_write_section (bfd *output_bfd,
70 struct bfd_link_info *link_info,
71 asection *sec,
72 bfd_byte *contents);
3e6b1042 73
7f266840
DJ
74/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
76 in that slot. */
77
c19d1205 78static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 79{
8029a119 80 /* No relocation. */
7f266840
DJ
81 HOWTO (R_ARM_NONE, /* type */
82 0, /* rightshift */
c94cb026 83 0, /* size */
7f266840 84 0, /* bitsize */
0a1b45a2 85 false, /* pc_relative */
7f266840
DJ
86 0, /* bitpos */
87 complain_overflow_dont,/* complain_on_overflow */
88 bfd_elf_generic_reloc, /* special_function */
89 "R_ARM_NONE", /* name */
0a1b45a2 90 false, /* partial_inplace */
7f266840
DJ
91 0, /* src_mask */
92 0, /* dst_mask */
0a1b45a2 93 false), /* pcrel_offset */
7f266840
DJ
94
95 HOWTO (R_ARM_PC24, /* type */
96 2, /* rightshift */
c94cb026 97 4, /* size */
7f266840 98 24, /* bitsize */
0a1b45a2 99 true, /* pc_relative */
7f266840
DJ
100 0, /* bitpos */
101 complain_overflow_signed,/* complain_on_overflow */
102 bfd_elf_generic_reloc, /* special_function */
103 "R_ARM_PC24", /* name */
0a1b45a2 104 false, /* partial_inplace */
7f266840
DJ
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
0a1b45a2 107 true), /* pcrel_offset */
7f266840
DJ
108
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32, /* type */
111 0, /* rightshift */
c94cb026 112 4, /* size */
7f266840 113 32, /* bitsize */
0a1b45a2 114 false, /* pc_relative */
7f266840
DJ
115 0, /* bitpos */
116 complain_overflow_bitfield,/* complain_on_overflow */
117 bfd_elf_generic_reloc, /* special_function */
118 "R_ARM_ABS32", /* name */
0a1b45a2 119 false, /* partial_inplace */
7f266840
DJ
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
0a1b45a2 122 false), /* pcrel_offset */
7f266840
DJ
123
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32, /* type */
126 0, /* rightshift */
c94cb026 127 4, /* size */
7f266840 128 32, /* bitsize */
0a1b45a2 129 true, /* pc_relative */
7f266840
DJ
130 0, /* bitpos */
131 complain_overflow_bitfield,/* complain_on_overflow */
132 bfd_elf_generic_reloc, /* special_function */
133 "R_ARM_REL32", /* name */
0a1b45a2 134 false, /* partial_inplace */
7f266840
DJ
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
0a1b45a2 137 true), /* pcrel_offset */
7f266840 138
c19d1205 139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 140 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840 141 0, /* rightshift */
c94cb026 142 1, /* size */
4962c51a 143 32, /* bitsize */
0a1b45a2 144 true, /* pc_relative */
7f266840 145 0, /* bitpos */
4962c51a 146 complain_overflow_dont,/* complain_on_overflow */
7f266840 147 bfd_elf_generic_reloc, /* special_function */
4962c51a 148 "R_ARM_LDR_PC_G0", /* name */
0a1b45a2 149 false, /* partial_inplace */
4962c51a
MS
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
0a1b45a2 152 true), /* pcrel_offset */
7f266840
DJ
153
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16, /* type */
156 0, /* rightshift */
c94cb026 157 2, /* size */
7f266840 158 16, /* bitsize */
0a1b45a2 159 false, /* pc_relative */
7f266840
DJ
160 0, /* bitpos */
161 complain_overflow_bitfield,/* complain_on_overflow */
162 bfd_elf_generic_reloc, /* special_function */
163 "R_ARM_ABS16", /* name */
0a1b45a2 164 false, /* partial_inplace */
7f266840
DJ
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
0a1b45a2 167 false), /* pcrel_offset */
7f266840
DJ
168
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12, /* type */
171 0, /* rightshift */
c94cb026 172 4, /* size */
7f266840 173 12, /* bitsize */
0a1b45a2 174 false, /* pc_relative */
7f266840
DJ
175 0, /* bitpos */
176 complain_overflow_bitfield,/* complain_on_overflow */
177 bfd_elf_generic_reloc, /* special_function */
178 "R_ARM_ABS12", /* name */
0a1b45a2 179 false, /* partial_inplace */
00a97672
RS
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
0a1b45a2 182 false), /* pcrel_offset */
7f266840
DJ
183
184 HOWTO (R_ARM_THM_ABS5, /* type */
185 6, /* rightshift */
c94cb026 186 2, /* size */
7f266840 187 5, /* bitsize */
0a1b45a2 188 false, /* pc_relative */
7f266840
DJ
189 0, /* bitpos */
190 complain_overflow_bitfield,/* complain_on_overflow */
191 bfd_elf_generic_reloc, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
0a1b45a2 193 false, /* partial_inplace */
7f266840
DJ
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
0a1b45a2 196 false), /* pcrel_offset */
7f266840
DJ
197
198 /* 8 bit absolute */
199 HOWTO (R_ARM_ABS8, /* type */
200 0, /* rightshift */
c94cb026 201 1, /* size */
7f266840 202 8, /* bitsize */
0a1b45a2 203 false, /* pc_relative */
7f266840
DJ
204 0, /* bitpos */
205 complain_overflow_bitfield,/* complain_on_overflow */
206 bfd_elf_generic_reloc, /* special_function */
207 "R_ARM_ABS8", /* name */
0a1b45a2 208 false, /* partial_inplace */
7f266840
DJ
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
0a1b45a2 211 false), /* pcrel_offset */
7f266840
DJ
212
213 HOWTO (R_ARM_SBREL32, /* type */
214 0, /* rightshift */
c94cb026 215 4, /* size */
7f266840 216 32, /* bitsize */
0a1b45a2 217 false, /* pc_relative */
7f266840
DJ
218 0, /* bitpos */
219 complain_overflow_dont,/* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_ARM_SBREL32", /* name */
0a1b45a2 222 false, /* partial_inplace */
7f266840
DJ
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
0a1b45a2 225 false), /* pcrel_offset */
7f266840 226
c19d1205 227 HOWTO (R_ARM_THM_CALL, /* type */
7f266840 228 1, /* rightshift */
c94cb026 229 4, /* size */
f6ebfac0 230 24, /* bitsize */
0a1b45a2 231 true, /* pc_relative */
7f266840
DJ
232 0, /* bitpos */
233 complain_overflow_signed,/* complain_on_overflow */
234 bfd_elf_generic_reloc, /* special_function */
c19d1205 235 "R_ARM_THM_CALL", /* name */
0a1b45a2 236 false, /* partial_inplace */
7f6ab9f8
AM
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
0a1b45a2 239 true), /* pcrel_offset */
7f266840 240
07d6d2b8 241 HOWTO (R_ARM_THM_PC8, /* type */
7f266840 242 1, /* rightshift */
c94cb026 243 2, /* size */
7f266840 244 8, /* bitsize */
0a1b45a2 245 true, /* pc_relative */
7f266840
DJ
246 0, /* bitpos */
247 complain_overflow_signed,/* complain_on_overflow */
248 bfd_elf_generic_reloc, /* special_function */
249 "R_ARM_THM_PC8", /* name */
0a1b45a2 250 false, /* partial_inplace */
7f266840
DJ
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
0a1b45a2 253 true), /* pcrel_offset */
7f266840 254
c19d1205 255 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840 256 1, /* rightshift */
c94cb026 257 2, /* size */
c19d1205 258 32, /* bitsize */
0a1b45a2 259 false, /* pc_relative */
7f266840
DJ
260 0, /* bitpos */
261 complain_overflow_signed,/* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
c19d1205 263 "R_ARM_BREL_ADJ", /* name */
0a1b45a2 264 false, /* partial_inplace */
c19d1205
ZW
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
0a1b45a2 267 false), /* pcrel_offset */
7f266840 268
0855e32b 269 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 270 0, /* rightshift */
c94cb026 271 4, /* size */
0855e32b 272 32, /* bitsize */
0a1b45a2 273 false, /* pc_relative */
7f266840 274 0, /* bitpos */
0855e32b 275 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 276 bfd_elf_generic_reloc, /* special_function */
0855e32b 277 "R_ARM_TLS_DESC", /* name */
0a1b45a2 278 false, /* partial_inplace */
0855e32b
NS
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
0a1b45a2 281 false), /* pcrel_offset */
7f266840
DJ
282
283 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* rightshift */
5d0feb98 285 0, /* size */
7f266840 286 0, /* bitsize */
0a1b45a2 287 false, /* pc_relative */
7f266840
DJ
288 0, /* bitpos */
289 complain_overflow_signed,/* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_ARM_SWI8", /* name */
0a1b45a2 292 false, /* partial_inplace */
7f266840
DJ
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
0a1b45a2 295 false), /* pcrel_offset */
7f266840
DJ
296
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25, /* type */
299 2, /* rightshift */
c94cb026 300 4, /* size */
7f6ab9f8 301 24, /* bitsize */
0a1b45a2 302 true, /* pc_relative */
7f266840
DJ
303 0, /* bitpos */
304 complain_overflow_signed,/* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_ARM_XPC25", /* name */
0a1b45a2 307 false, /* partial_inplace */
7f266840
DJ
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
0a1b45a2 310 true), /* pcrel_offset */
7f266840
DJ
311
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* rightshift */
c94cb026 315 4, /* size */
7f6ab9f8 316 24, /* bitsize */
0a1b45a2 317 true, /* pc_relative */
7f266840
DJ
318 0, /* bitpos */
319 complain_overflow_signed,/* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
0a1b45a2 322 false, /* partial_inplace */
7f6ab9f8
AM
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
0a1b45a2 325 true), /* pcrel_offset */
7f266840 326
ba93b8ac 327 /* Dynamic TLS relocations. */
7f266840 328
ba93b8ac 329 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
07d6d2b8 330 0, /* rightshift */
c94cb026 331 4, /* size */
07d6d2b8 332 32, /* bitsize */
0a1b45a2 333 false, /* pc_relative */
07d6d2b8 334 0, /* bitpos */
99059e56
RM
335 complain_overflow_bitfield,/* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
0a1b45a2 338 true, /* partial_inplace */
99059e56
RM
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
0a1b45a2 341 false), /* pcrel_offset */
7f266840 342
ba93b8ac 343 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
07d6d2b8 344 0, /* rightshift */
c94cb026 345 4, /* size */
07d6d2b8 346 32, /* bitsize */
0a1b45a2 347 false, /* pc_relative */
07d6d2b8 348 0, /* bitpos */
99059e56
RM
349 complain_overflow_bitfield,/* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
0a1b45a2 352 true, /* partial_inplace */
99059e56
RM
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
0a1b45a2 355 false), /* pcrel_offset */
7f266840 356
ba93b8ac 357 HOWTO (R_ARM_TLS_TPOFF32, /* type */
07d6d2b8 358 0, /* rightshift */
c94cb026 359 4, /* size */
07d6d2b8 360 32, /* bitsize */
0a1b45a2 361 false, /* pc_relative */
07d6d2b8 362 0, /* bitpos */
99059e56
RM
363 complain_overflow_bitfield,/* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
0a1b45a2 366 true, /* partial_inplace */
99059e56
RM
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
0a1b45a2 369 false), /* pcrel_offset */
7f266840
DJ
370
371 /* Relocs used in ARM Linux */
372
373 HOWTO (R_ARM_COPY, /* type */
07d6d2b8 374 0, /* rightshift */
c94cb026 375 4, /* size */
07d6d2b8 376 32, /* bitsize */
0a1b45a2 377 false, /* pc_relative */
07d6d2b8 378 0, /* bitpos */
99059e56
RM
379 complain_overflow_bitfield,/* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_ARM_COPY", /* name */
0a1b45a2 382 true, /* partial_inplace */
99059e56
RM
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
0a1b45a2 385 false), /* pcrel_offset */
7f266840
DJ
386
387 HOWTO (R_ARM_GLOB_DAT, /* type */
07d6d2b8 388 0, /* rightshift */
c94cb026 389 4, /* size */
07d6d2b8 390 32, /* bitsize */
0a1b45a2 391 false, /* pc_relative */
07d6d2b8 392 0, /* bitpos */
99059e56
RM
393 complain_overflow_bitfield,/* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
0a1b45a2 396 true, /* partial_inplace */
99059e56
RM
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
0a1b45a2 399 false), /* pcrel_offset */
7f266840
DJ
400
401 HOWTO (R_ARM_JUMP_SLOT, /* type */
07d6d2b8 402 0, /* rightshift */
c94cb026 403 4, /* size */
07d6d2b8 404 32, /* bitsize */
0a1b45a2 405 false, /* pc_relative */
07d6d2b8 406 0, /* bitpos */
99059e56
RM
407 complain_overflow_bitfield,/* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
0a1b45a2 410 true, /* partial_inplace */
99059e56
RM
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
0a1b45a2 413 false), /* pcrel_offset */
7f266840
DJ
414
415 HOWTO (R_ARM_RELATIVE, /* type */
07d6d2b8 416 0, /* rightshift */
c94cb026 417 4, /* size */
07d6d2b8 418 32, /* bitsize */
0a1b45a2 419 false, /* pc_relative */
07d6d2b8 420 0, /* bitpos */
99059e56
RM
421 complain_overflow_bitfield,/* complain_on_overflow */
422 bfd_elf_generic_reloc, /* special_function */
423 "R_ARM_RELATIVE", /* name */
0a1b45a2 424 true, /* partial_inplace */
99059e56
RM
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
0a1b45a2 427 false), /* pcrel_offset */
7f266840 428
c19d1205 429 HOWTO (R_ARM_GOTOFF32, /* type */
07d6d2b8 430 0, /* rightshift */
c94cb026 431 4, /* size */
07d6d2b8 432 32, /* bitsize */
0a1b45a2 433 false, /* pc_relative */
07d6d2b8 434 0, /* bitpos */
99059e56
RM
435 complain_overflow_bitfield,/* complain_on_overflow */
436 bfd_elf_generic_reloc, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
0a1b45a2 438 true, /* partial_inplace */
99059e56
RM
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
0a1b45a2 441 false), /* pcrel_offset */
7f266840
DJ
442
443 HOWTO (R_ARM_GOTPC, /* type */
07d6d2b8 444 0, /* rightshift */
c94cb026 445 4, /* size */
07d6d2b8 446 32, /* bitsize */
0a1b45a2 447 true, /* pc_relative */
07d6d2b8 448 0, /* bitpos */
99059e56
RM
449 complain_overflow_bitfield,/* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_ARM_GOTPC", /* name */
0a1b45a2 452 true, /* partial_inplace */
99059e56
RM
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
0a1b45a2 455 true), /* pcrel_offset */
7f266840
DJ
456
457 HOWTO (R_ARM_GOT32, /* type */
07d6d2b8 458 0, /* rightshift */
c94cb026 459 4, /* size */
07d6d2b8 460 32, /* bitsize */
0a1b45a2 461 false, /* pc_relative */
07d6d2b8 462 0, /* bitpos */
99059e56
RM
463 complain_overflow_bitfield,/* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 "R_ARM_GOT32", /* name */
0a1b45a2 466 true, /* partial_inplace */
99059e56
RM
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
0a1b45a2 469 false), /* pcrel_offset */
7f266840
DJ
470
471 HOWTO (R_ARM_PLT32, /* type */
07d6d2b8 472 2, /* rightshift */
c94cb026 473 4, /* size */
07d6d2b8 474 24, /* bitsize */
0a1b45a2 475 true, /* pc_relative */
07d6d2b8 476 0, /* bitpos */
99059e56
RM
477 complain_overflow_bitfield,/* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 "R_ARM_PLT32", /* name */
0a1b45a2 480 false, /* partial_inplace */
99059e56
RM
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
0a1b45a2 483 true), /* pcrel_offset */
7f266840
DJ
484
485 HOWTO (R_ARM_CALL, /* type */
486 2, /* rightshift */
c94cb026 487 4, /* size */
7f266840 488 24, /* bitsize */
0a1b45a2 489 true, /* pc_relative */
7f266840
DJ
490 0, /* bitpos */
491 complain_overflow_signed,/* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 "R_ARM_CALL", /* name */
0a1b45a2 494 false, /* partial_inplace */
7f266840
DJ
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
0a1b45a2 497 true), /* pcrel_offset */
7f266840
DJ
498
499 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* rightshift */
c94cb026 501 4, /* size */
7f266840 502 24, /* bitsize */
0a1b45a2 503 true, /* pc_relative */
7f266840
DJ
504 0, /* bitpos */
505 complain_overflow_signed,/* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 "R_ARM_JUMP24", /* name */
0a1b45a2 508 false, /* partial_inplace */
7f266840
DJ
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
0a1b45a2 511 true), /* pcrel_offset */
7f266840 512
c19d1205
ZW
513 HOWTO (R_ARM_THM_JUMP24, /* type */
514 1, /* rightshift */
c94cb026 515 4, /* size */
c19d1205 516 24, /* bitsize */
0a1b45a2 517 true, /* pc_relative */
7f266840 518 0, /* bitpos */
c19d1205 519 complain_overflow_signed,/* complain_on_overflow */
7f266840 520 bfd_elf_generic_reloc, /* special_function */
c19d1205 521 "R_ARM_THM_JUMP24", /* name */
0a1b45a2 522 false, /* partial_inplace */
c19d1205
ZW
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
0a1b45a2 525 true), /* pcrel_offset */
7f266840 526
c19d1205 527 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 528 0, /* rightshift */
c94cb026 529 4, /* size */
c19d1205 530 32, /* bitsize */
0a1b45a2 531 false, /* pc_relative */
7f266840
DJ
532 0, /* bitpos */
533 complain_overflow_dont,/* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
c19d1205 535 "R_ARM_BASE_ABS", /* name */
0a1b45a2 536 false, /* partial_inplace */
c19d1205
ZW
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
0a1b45a2 539 false), /* pcrel_offset */
7f266840
DJ
540
541 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 0, /* rightshift */
c94cb026 543 4, /* size */
7f266840 544 12, /* bitsize */
0a1b45a2 545 true, /* pc_relative */
7f266840
DJ
546 0, /* bitpos */
547 complain_overflow_dont,/* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
0a1b45a2 550 false, /* partial_inplace */
7f266840
DJ
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
0a1b45a2 553 true), /* pcrel_offset */
7f266840
DJ
554
555 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 0, /* rightshift */
c94cb026 557 4, /* size */
7f266840 558 12, /* bitsize */
0a1b45a2 559 true, /* pc_relative */
7f266840
DJ
560 8, /* bitpos */
561 complain_overflow_dont,/* complain_on_overflow */
562 bfd_elf_generic_reloc, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
0a1b45a2 564 false, /* partial_inplace */
7f266840
DJ
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
0a1b45a2 567 true), /* pcrel_offset */
7f266840
DJ
568
569 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 0, /* rightshift */
c94cb026 571 4, /* size */
7f266840 572 12, /* bitsize */
0a1b45a2 573 true, /* pc_relative */
7f266840
DJ
574 16, /* bitpos */
575 complain_overflow_dont,/* complain_on_overflow */
576 bfd_elf_generic_reloc, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
0a1b45a2 578 false, /* partial_inplace */
7f266840
DJ
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
0a1b45a2 581 true), /* pcrel_offset */
7f266840
DJ
582
583 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 0, /* rightshift */
c94cb026 585 4, /* size */
7f266840 586 12, /* bitsize */
0a1b45a2 587 false, /* pc_relative */
7f266840
DJ
588 0, /* bitpos */
589 complain_overflow_dont,/* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
0a1b45a2 592 false, /* partial_inplace */
7f266840
DJ
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
0a1b45a2 595 false), /* pcrel_offset */
7f266840
DJ
596
597 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 0, /* rightshift */
c94cb026 599 4, /* size */
7f266840 600 8, /* bitsize */
0a1b45a2 601 false, /* pc_relative */
7f266840
DJ
602 12, /* bitpos */
603 complain_overflow_dont,/* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
0a1b45a2 606 false, /* partial_inplace */
7f266840
DJ
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
0a1b45a2 609 false), /* pcrel_offset */
7f266840
DJ
610
611 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 0, /* rightshift */
c94cb026 613 4, /* size */
7f266840 614 8, /* bitsize */
0a1b45a2 615 false, /* pc_relative */
7f266840
DJ
616 20, /* bitpos */
617 complain_overflow_dont,/* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
0a1b45a2 620 false, /* partial_inplace */
7f266840
DJ
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
0a1b45a2 623 false), /* pcrel_offset */
7f266840
DJ
624
625 HOWTO (R_ARM_TARGET1, /* type */
626 0, /* rightshift */
c94cb026 627 4, /* size */
7f266840 628 32, /* bitsize */
0a1b45a2 629 false, /* pc_relative */
7f266840
DJ
630 0, /* bitpos */
631 complain_overflow_dont,/* complain_on_overflow */
632 bfd_elf_generic_reloc, /* special_function */
633 "R_ARM_TARGET1", /* name */
0a1b45a2 634 false, /* partial_inplace */
7f266840
DJ
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
0a1b45a2 637 false), /* pcrel_offset */
7f266840
DJ
638
639 HOWTO (R_ARM_ROSEGREL32, /* type */
640 0, /* rightshift */
c94cb026 641 4, /* size */
7f266840 642 32, /* bitsize */
0a1b45a2 643 false, /* pc_relative */
7f266840
DJ
644 0, /* bitpos */
645 complain_overflow_dont,/* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
0a1b45a2 648 false, /* partial_inplace */
7f266840
DJ
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
0a1b45a2 651 false), /* pcrel_offset */
7f266840
DJ
652
653 HOWTO (R_ARM_V4BX, /* type */
654 0, /* rightshift */
c94cb026 655 4, /* size */
7f266840 656 32, /* bitsize */
0a1b45a2 657 false, /* pc_relative */
7f266840
DJ
658 0, /* bitpos */
659 complain_overflow_dont,/* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 "R_ARM_V4BX", /* name */
0a1b45a2 662 false, /* partial_inplace */
7f266840
DJ
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
0a1b45a2 665 false), /* pcrel_offset */
7f266840
DJ
666
667 HOWTO (R_ARM_TARGET2, /* type */
668 0, /* rightshift */
c94cb026 669 4, /* size */
7f266840 670 32, /* bitsize */
0a1b45a2 671 false, /* pc_relative */
7f266840
DJ
672 0, /* bitpos */
673 complain_overflow_signed,/* complain_on_overflow */
674 bfd_elf_generic_reloc, /* special_function */
675 "R_ARM_TARGET2", /* name */
0a1b45a2 676 false, /* partial_inplace */
7f266840
DJ
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
0a1b45a2 679 true), /* pcrel_offset */
7f266840
DJ
680
681 HOWTO (R_ARM_PREL31, /* type */
682 0, /* rightshift */
c94cb026 683 4, /* size */
7f266840 684 31, /* bitsize */
0a1b45a2 685 true, /* pc_relative */
7f266840
DJ
686 0, /* bitpos */
687 complain_overflow_signed,/* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 "R_ARM_PREL31", /* name */
0a1b45a2 690 false, /* partial_inplace */
7f266840
DJ
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
0a1b45a2 693 true), /* pcrel_offset */
c19d1205
ZW
694
695 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 0, /* rightshift */
c94cb026 697 4, /* size */
c19d1205 698 16, /* bitsize */
0a1b45a2 699 false, /* pc_relative */
c19d1205
ZW
700 0, /* bitpos */
701 complain_overflow_dont,/* complain_on_overflow */
702 bfd_elf_generic_reloc, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
0a1b45a2 704 false, /* partial_inplace */
39623e12
PB
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
0a1b45a2 707 false), /* pcrel_offset */
c19d1205
ZW
708
709 HOWTO (R_ARM_MOVT_ABS, /* type */
710 0, /* rightshift */
c94cb026 711 4, /* size */
c19d1205 712 16, /* bitsize */
0a1b45a2 713 false, /* pc_relative */
c19d1205
ZW
714 0, /* bitpos */
715 complain_overflow_bitfield,/* complain_on_overflow */
716 bfd_elf_generic_reloc, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
0a1b45a2 718 false, /* partial_inplace */
39623e12
PB
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
0a1b45a2 721 false), /* pcrel_offset */
c19d1205
ZW
722
723 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 0, /* rightshift */
c94cb026 725 4, /* size */
c19d1205 726 16, /* bitsize */
0a1b45a2 727 true, /* pc_relative */
c19d1205
ZW
728 0, /* bitpos */
729 complain_overflow_dont,/* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
0a1b45a2 732 false, /* partial_inplace */
39623e12
PB
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
0a1b45a2 735 true), /* pcrel_offset */
c19d1205
ZW
736
737 HOWTO (R_ARM_MOVT_PREL, /* type */
738 0, /* rightshift */
c94cb026 739 4, /* size */
c19d1205 740 16, /* bitsize */
0a1b45a2 741 true, /* pc_relative */
c19d1205
ZW
742 0, /* bitpos */
743 complain_overflow_bitfield,/* complain_on_overflow */
744 bfd_elf_generic_reloc, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
0a1b45a2 746 false, /* partial_inplace */
39623e12
PB
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
0a1b45a2 749 true), /* pcrel_offset */
c19d1205
ZW
750
751 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 0, /* rightshift */
c94cb026 753 4, /* size */
c19d1205 754 16, /* bitsize */
0a1b45a2 755 false, /* pc_relative */
c19d1205
ZW
756 0, /* bitpos */
757 complain_overflow_dont,/* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
0a1b45a2 760 false, /* partial_inplace */
c19d1205
ZW
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
0a1b45a2 763 false), /* pcrel_offset */
c19d1205
ZW
764
765 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 0, /* rightshift */
c94cb026 767 4, /* size */
c19d1205 768 16, /* bitsize */
0a1b45a2 769 false, /* pc_relative */
c19d1205
ZW
770 0, /* bitpos */
771 complain_overflow_bitfield,/* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
0a1b45a2 774 false, /* partial_inplace */
c19d1205
ZW
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
0a1b45a2 777 false), /* pcrel_offset */
c19d1205
ZW
778
779 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 0, /* rightshift */
c94cb026 781 4, /* size */
c19d1205 782 16, /* bitsize */
0a1b45a2 783 true, /* pc_relative */
c19d1205
ZW
784 0, /* bitpos */
785 complain_overflow_dont,/* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
0a1b45a2 788 false, /* partial_inplace */
c19d1205
ZW
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
0a1b45a2 791 true), /* pcrel_offset */
c19d1205
ZW
792
793 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 0, /* rightshift */
c94cb026 795 4, /* size */
c19d1205 796 16, /* bitsize */
0a1b45a2 797 true, /* pc_relative */
c19d1205
ZW
798 0, /* bitpos */
799 complain_overflow_bitfield,/* complain_on_overflow */
800 bfd_elf_generic_reloc, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
0a1b45a2 802 false, /* partial_inplace */
c19d1205
ZW
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
0a1b45a2 805 true), /* pcrel_offset */
c19d1205
ZW
806
807 HOWTO (R_ARM_THM_JUMP19, /* type */
808 1, /* rightshift */
c94cb026 809 4, /* size */
c19d1205 810 19, /* bitsize */
0a1b45a2 811 true, /* pc_relative */
c19d1205
ZW
812 0, /* bitpos */
813 complain_overflow_signed,/* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
0a1b45a2 816 false, /* partial_inplace */
c19d1205
ZW
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
0a1b45a2 819 true), /* pcrel_offset */
c19d1205
ZW
820
821 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* rightshift */
c94cb026 823 2, /* size */
c19d1205 824 6, /* bitsize */
0a1b45a2 825 true, /* pc_relative */
c19d1205
ZW
826 0, /* bitpos */
827 complain_overflow_unsigned,/* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
0a1b45a2 830 false, /* partial_inplace */
c19d1205
ZW
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
0a1b45a2 833 true), /* pcrel_offset */
c19d1205
ZW
834
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 versa. */
838 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 0, /* rightshift */
c94cb026 840 4, /* size */
c19d1205 841 13, /* bitsize */
0a1b45a2 842 true, /* pc_relative */
c19d1205 843 0, /* bitpos */
2cab6cc3 844 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
845 bfd_elf_generic_reloc, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
0a1b45a2 847 false, /* partial_inplace */
2cab6cc3
MS
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
0a1b45a2 850 true), /* pcrel_offset */
c19d1205
ZW
851
852 HOWTO (R_ARM_THM_PC12, /* type */
853 0, /* rightshift */
c94cb026 854 4, /* size */
c19d1205 855 13, /* bitsize */
0a1b45a2 856 true, /* pc_relative */
c19d1205 857 0, /* bitpos */
2cab6cc3 858 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
859 bfd_elf_generic_reloc, /* special_function */
860 "R_ARM_THM_PC12", /* name */
0a1b45a2 861 false, /* partial_inplace */
2cab6cc3
MS
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
0a1b45a2 864 true), /* pcrel_offset */
c19d1205
ZW
865
866 HOWTO (R_ARM_ABS32_NOI, /* type */
867 0, /* rightshift */
c94cb026 868 4, /* size */
c19d1205 869 32, /* bitsize */
0a1b45a2 870 false, /* pc_relative */
c19d1205
ZW
871 0, /* bitpos */
872 complain_overflow_dont,/* complain_on_overflow */
873 bfd_elf_generic_reloc, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
0a1b45a2 875 false, /* partial_inplace */
c19d1205
ZW
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
0a1b45a2 878 false), /* pcrel_offset */
c19d1205
ZW
879
880 HOWTO (R_ARM_REL32_NOI, /* type */
881 0, /* rightshift */
c94cb026 882 4, /* size */
c19d1205 883 32, /* bitsize */
0a1b45a2 884 true, /* pc_relative */
c19d1205
ZW
885 0, /* bitpos */
886 complain_overflow_dont,/* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
0a1b45a2 889 false, /* partial_inplace */
c19d1205
ZW
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
0a1b45a2 892 false), /* pcrel_offset */
7f266840 893
4962c51a
MS
894 /* Group relocations. */
895
896 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 0, /* rightshift */
c94cb026 898 4, /* size */
4962c51a 899 32, /* bitsize */
0a1b45a2 900 true, /* pc_relative */
4962c51a
MS
901 0, /* bitpos */
902 complain_overflow_dont,/* complain_on_overflow */
903 bfd_elf_generic_reloc, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
0a1b45a2 905 false, /* partial_inplace */
4962c51a
MS
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
0a1b45a2 908 true), /* pcrel_offset */
4962c51a 909
07d6d2b8 910 HOWTO (R_ARM_ALU_PC_G0, /* type */
4962c51a 911 0, /* rightshift */
c94cb026 912 4, /* size */
4962c51a 913 32, /* bitsize */
0a1b45a2 914 true, /* pc_relative */
4962c51a
MS
915 0, /* bitpos */
916 complain_overflow_dont,/* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 918 "R_ARM_ALU_PC_G0", /* name */
0a1b45a2 919 false, /* partial_inplace */
4962c51a
MS
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
0a1b45a2 922 true), /* pcrel_offset */
4962c51a
MS
923
924 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 0, /* rightshift */
c94cb026 926 4, /* size */
4962c51a 927 32, /* bitsize */
0a1b45a2 928 true, /* pc_relative */
4962c51a
MS
929 0, /* bitpos */
930 complain_overflow_dont,/* complain_on_overflow */
931 bfd_elf_generic_reloc, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
0a1b45a2 933 false, /* partial_inplace */
4962c51a
MS
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
0a1b45a2 936 true), /* pcrel_offset */
4962c51a 937
07d6d2b8 938 HOWTO (R_ARM_ALU_PC_G1, /* type */
4962c51a 939 0, /* rightshift */
c94cb026 940 4, /* size */
4962c51a 941 32, /* bitsize */
0a1b45a2 942 true, /* pc_relative */
4962c51a
MS
943 0, /* bitpos */
944 complain_overflow_dont,/* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 946 "R_ARM_ALU_PC_G1", /* name */
0a1b45a2 947 false, /* partial_inplace */
4962c51a
MS
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
0a1b45a2 950 true), /* pcrel_offset */
4962c51a 951
07d6d2b8 952 HOWTO (R_ARM_ALU_PC_G2, /* type */
4962c51a 953 0, /* rightshift */
c94cb026 954 4, /* size */
4962c51a 955 32, /* bitsize */
0a1b45a2 956 true, /* pc_relative */
4962c51a
MS
957 0, /* bitpos */
958 complain_overflow_dont,/* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 960 "R_ARM_ALU_PC_G2", /* name */
0a1b45a2 961 false, /* partial_inplace */
4962c51a
MS
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
0a1b45a2 964 true), /* pcrel_offset */
4962c51a 965
07d6d2b8 966 HOWTO (R_ARM_LDR_PC_G1, /* type */
4962c51a 967 0, /* rightshift */
c94cb026 968 4, /* size */
4962c51a 969 32, /* bitsize */
0a1b45a2 970 true, /* pc_relative */
4962c51a
MS
971 0, /* bitpos */
972 complain_overflow_dont,/* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 974 "R_ARM_LDR_PC_G1", /* name */
0a1b45a2 975 false, /* partial_inplace */
4962c51a
MS
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
0a1b45a2 978 true), /* pcrel_offset */
4962c51a 979
07d6d2b8 980 HOWTO (R_ARM_LDR_PC_G2, /* type */
4962c51a 981 0, /* rightshift */
c94cb026 982 4, /* size */
4962c51a 983 32, /* bitsize */
0a1b45a2 984 true, /* pc_relative */
4962c51a
MS
985 0, /* bitpos */
986 complain_overflow_dont,/* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 988 "R_ARM_LDR_PC_G2", /* name */
0a1b45a2 989 false, /* partial_inplace */
4962c51a
MS
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
0a1b45a2 992 true), /* pcrel_offset */
4962c51a 993
07d6d2b8 994 HOWTO (R_ARM_LDRS_PC_G0, /* type */
4962c51a 995 0, /* rightshift */
c94cb026 996 4, /* size */
4962c51a 997 32, /* bitsize */
0a1b45a2 998 true, /* pc_relative */
4962c51a
MS
999 0, /* bitpos */
1000 complain_overflow_dont,/* complain_on_overflow */
1001 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1002 "R_ARM_LDRS_PC_G0", /* name */
0a1b45a2 1003 false, /* partial_inplace */
4962c51a
MS
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
0a1b45a2 1006 true), /* pcrel_offset */
4962c51a 1007
07d6d2b8 1008 HOWTO (R_ARM_LDRS_PC_G1, /* type */
4962c51a 1009 0, /* rightshift */
c94cb026 1010 4, /* size */
4962c51a 1011 32, /* bitsize */
0a1b45a2 1012 true, /* pc_relative */
4962c51a
MS
1013 0, /* bitpos */
1014 complain_overflow_dont,/* complain_on_overflow */
1015 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1016 "R_ARM_LDRS_PC_G1", /* name */
0a1b45a2 1017 false, /* partial_inplace */
4962c51a
MS
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
0a1b45a2 1020 true), /* pcrel_offset */
4962c51a 1021
07d6d2b8 1022 HOWTO (R_ARM_LDRS_PC_G2, /* type */
4962c51a 1023 0, /* rightshift */
c94cb026 1024 4, /* size */
4962c51a 1025 32, /* bitsize */
0a1b45a2 1026 true, /* pc_relative */
4962c51a
MS
1027 0, /* bitpos */
1028 complain_overflow_dont,/* complain_on_overflow */
1029 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1030 "R_ARM_LDRS_PC_G2", /* name */
0a1b45a2 1031 false, /* partial_inplace */
4962c51a
MS
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
0a1b45a2 1034 true), /* pcrel_offset */
4962c51a 1035
07d6d2b8 1036 HOWTO (R_ARM_LDC_PC_G0, /* type */
4962c51a 1037 0, /* rightshift */
c94cb026 1038 4, /* size */
4962c51a 1039 32, /* bitsize */
0a1b45a2 1040 true, /* pc_relative */
4962c51a
MS
1041 0, /* bitpos */
1042 complain_overflow_dont,/* complain_on_overflow */
1043 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1044 "R_ARM_LDC_PC_G0", /* name */
0a1b45a2 1045 false, /* partial_inplace */
4962c51a
MS
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
0a1b45a2 1048 true), /* pcrel_offset */
4962c51a 1049
07d6d2b8 1050 HOWTO (R_ARM_LDC_PC_G1, /* type */
4962c51a 1051 0, /* rightshift */
c94cb026 1052 4, /* size */
4962c51a 1053 32, /* bitsize */
0a1b45a2 1054 true, /* pc_relative */
4962c51a
MS
1055 0, /* bitpos */
1056 complain_overflow_dont,/* complain_on_overflow */
1057 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1058 "R_ARM_LDC_PC_G1", /* name */
0a1b45a2 1059 false, /* partial_inplace */
4962c51a
MS
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
0a1b45a2 1062 true), /* pcrel_offset */
4962c51a 1063
07d6d2b8 1064 HOWTO (R_ARM_LDC_PC_G2, /* type */
4962c51a 1065 0, /* rightshift */
c94cb026 1066 4, /* size */
4962c51a 1067 32, /* bitsize */
0a1b45a2 1068 true, /* pc_relative */
4962c51a
MS
1069 0, /* bitpos */
1070 complain_overflow_dont,/* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1072 "R_ARM_LDC_PC_G2", /* name */
0a1b45a2 1073 false, /* partial_inplace */
4962c51a
MS
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
0a1b45a2 1076 true), /* pcrel_offset */
4962c51a 1077
07d6d2b8 1078 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
4962c51a 1079 0, /* rightshift */
c94cb026 1080 4, /* size */
4962c51a 1081 32, /* bitsize */
0a1b45a2 1082 true, /* pc_relative */
4962c51a
MS
1083 0, /* bitpos */
1084 complain_overflow_dont,/* complain_on_overflow */
1085 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1086 "R_ARM_ALU_SB_G0_NC", /* name */
0a1b45a2 1087 false, /* partial_inplace */
4962c51a
MS
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
0a1b45a2 1090 true), /* pcrel_offset */
4962c51a 1091
07d6d2b8 1092 HOWTO (R_ARM_ALU_SB_G0, /* type */
4962c51a 1093 0, /* rightshift */
c94cb026 1094 4, /* size */
4962c51a 1095 32, /* bitsize */
0a1b45a2 1096 true, /* pc_relative */
4962c51a
MS
1097 0, /* bitpos */
1098 complain_overflow_dont,/* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1100 "R_ARM_ALU_SB_G0", /* name */
0a1b45a2 1101 false, /* partial_inplace */
4962c51a
MS
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
0a1b45a2 1104 true), /* pcrel_offset */
4962c51a 1105
07d6d2b8 1106 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
4962c51a 1107 0, /* rightshift */
c94cb026 1108 4, /* size */
4962c51a 1109 32, /* bitsize */
0a1b45a2 1110 true, /* pc_relative */
4962c51a
MS
1111 0, /* bitpos */
1112 complain_overflow_dont,/* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1114 "R_ARM_ALU_SB_G1_NC", /* name */
0a1b45a2 1115 false, /* partial_inplace */
4962c51a
MS
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
0a1b45a2 1118 true), /* pcrel_offset */
4962c51a 1119
07d6d2b8 1120 HOWTO (R_ARM_ALU_SB_G1, /* type */
4962c51a 1121 0, /* rightshift */
c94cb026 1122 4, /* size */
4962c51a 1123 32, /* bitsize */
0a1b45a2 1124 true, /* pc_relative */
4962c51a
MS
1125 0, /* bitpos */
1126 complain_overflow_dont,/* complain_on_overflow */
1127 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1128 "R_ARM_ALU_SB_G1", /* name */
0a1b45a2 1129 false, /* partial_inplace */
4962c51a
MS
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
0a1b45a2 1132 true), /* pcrel_offset */
4962c51a 1133
07d6d2b8 1134 HOWTO (R_ARM_ALU_SB_G2, /* type */
4962c51a 1135 0, /* rightshift */
c94cb026 1136 4, /* size */
4962c51a 1137 32, /* bitsize */
0a1b45a2 1138 true, /* pc_relative */
4962c51a
MS
1139 0, /* bitpos */
1140 complain_overflow_dont,/* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1142 "R_ARM_ALU_SB_G2", /* name */
0a1b45a2 1143 false, /* partial_inplace */
4962c51a
MS
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
0a1b45a2 1146 true), /* pcrel_offset */
4962c51a 1147
07d6d2b8 1148 HOWTO (R_ARM_LDR_SB_G0, /* type */
4962c51a 1149 0, /* rightshift */
c94cb026 1150 4, /* size */
4962c51a 1151 32, /* bitsize */
0a1b45a2 1152 true, /* pc_relative */
4962c51a
MS
1153 0, /* bitpos */
1154 complain_overflow_dont,/* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1156 "R_ARM_LDR_SB_G0", /* name */
0a1b45a2 1157 false, /* partial_inplace */
4962c51a
MS
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
0a1b45a2 1160 true), /* pcrel_offset */
4962c51a 1161
07d6d2b8 1162 HOWTO (R_ARM_LDR_SB_G1, /* type */
4962c51a 1163 0, /* rightshift */
c94cb026 1164 4, /* size */
4962c51a 1165 32, /* bitsize */
0a1b45a2 1166 true, /* pc_relative */
4962c51a
MS
1167 0, /* bitpos */
1168 complain_overflow_dont,/* complain_on_overflow */
1169 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1170 "R_ARM_LDR_SB_G1", /* name */
0a1b45a2 1171 false, /* partial_inplace */
4962c51a
MS
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
0a1b45a2 1174 true), /* pcrel_offset */
4962c51a 1175
07d6d2b8 1176 HOWTO (R_ARM_LDR_SB_G2, /* type */
4962c51a 1177 0, /* rightshift */
c94cb026 1178 4, /* size */
4962c51a 1179 32, /* bitsize */
0a1b45a2 1180 true, /* pc_relative */
4962c51a
MS
1181 0, /* bitpos */
1182 complain_overflow_dont,/* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1184 "R_ARM_LDR_SB_G2", /* name */
0a1b45a2 1185 false, /* partial_inplace */
4962c51a
MS
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
0a1b45a2 1188 true), /* pcrel_offset */
4962c51a 1189
07d6d2b8 1190 HOWTO (R_ARM_LDRS_SB_G0, /* type */
4962c51a 1191 0, /* rightshift */
c94cb026 1192 4, /* size */
4962c51a 1193 32, /* bitsize */
0a1b45a2 1194 true, /* pc_relative */
4962c51a
MS
1195 0, /* bitpos */
1196 complain_overflow_dont,/* complain_on_overflow */
1197 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1198 "R_ARM_LDRS_SB_G0", /* name */
0a1b45a2 1199 false, /* partial_inplace */
4962c51a
MS
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
0a1b45a2 1202 true), /* pcrel_offset */
4962c51a 1203
07d6d2b8 1204 HOWTO (R_ARM_LDRS_SB_G1, /* type */
4962c51a 1205 0, /* rightshift */
c94cb026 1206 4, /* size */
4962c51a 1207 32, /* bitsize */
0a1b45a2 1208 true, /* pc_relative */
4962c51a
MS
1209 0, /* bitpos */
1210 complain_overflow_dont,/* complain_on_overflow */
1211 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1212 "R_ARM_LDRS_SB_G1", /* name */
0a1b45a2 1213 false, /* partial_inplace */
4962c51a
MS
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
0a1b45a2 1216 true), /* pcrel_offset */
4962c51a 1217
07d6d2b8 1218 HOWTO (R_ARM_LDRS_SB_G2, /* type */
4962c51a 1219 0, /* rightshift */
c94cb026 1220 4, /* size */
4962c51a 1221 32, /* bitsize */
0a1b45a2 1222 true, /* pc_relative */
4962c51a
MS
1223 0, /* bitpos */
1224 complain_overflow_dont,/* complain_on_overflow */
1225 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1226 "R_ARM_LDRS_SB_G2", /* name */
0a1b45a2 1227 false, /* partial_inplace */
4962c51a
MS
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
0a1b45a2 1230 true), /* pcrel_offset */
4962c51a 1231
07d6d2b8 1232 HOWTO (R_ARM_LDC_SB_G0, /* type */
4962c51a 1233 0, /* rightshift */
c94cb026 1234 4, /* size */
4962c51a 1235 32, /* bitsize */
0a1b45a2 1236 true, /* pc_relative */
4962c51a
MS
1237 0, /* bitpos */
1238 complain_overflow_dont,/* complain_on_overflow */
1239 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1240 "R_ARM_LDC_SB_G0", /* name */
0a1b45a2 1241 false, /* partial_inplace */
4962c51a
MS
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
0a1b45a2 1244 true), /* pcrel_offset */
4962c51a 1245
07d6d2b8 1246 HOWTO (R_ARM_LDC_SB_G1, /* type */
4962c51a 1247 0, /* rightshift */
c94cb026 1248 4, /* size */
4962c51a 1249 32, /* bitsize */
0a1b45a2 1250 true, /* pc_relative */
4962c51a
MS
1251 0, /* bitpos */
1252 complain_overflow_dont,/* complain_on_overflow */
1253 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1254 "R_ARM_LDC_SB_G1", /* name */
0a1b45a2 1255 false, /* partial_inplace */
4962c51a
MS
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
0a1b45a2 1258 true), /* pcrel_offset */
4962c51a 1259
07d6d2b8 1260 HOWTO (R_ARM_LDC_SB_G2, /* type */
4962c51a 1261 0, /* rightshift */
c94cb026 1262 4, /* size */
4962c51a 1263 32, /* bitsize */
0a1b45a2 1264 true, /* pc_relative */
4962c51a
MS
1265 0, /* bitpos */
1266 complain_overflow_dont,/* complain_on_overflow */
1267 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1268 "R_ARM_LDC_SB_G2", /* name */
0a1b45a2 1269 false, /* partial_inplace */
4962c51a
MS
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
0a1b45a2 1272 true), /* pcrel_offset */
4962c51a
MS
1273
1274 /* End of group relocations. */
c19d1205 1275
c19d1205
ZW
1276 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 0, /* rightshift */
c94cb026 1278 4, /* size */
c19d1205 1279 16, /* bitsize */
0a1b45a2 1280 false, /* pc_relative */
c19d1205
ZW
1281 0, /* bitpos */
1282 complain_overflow_dont,/* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
0a1b45a2 1285 false, /* partial_inplace */
c19d1205
ZW
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
0a1b45a2 1288 false), /* pcrel_offset */
c19d1205
ZW
1289
1290 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 0, /* rightshift */
c94cb026 1292 4, /* size */
c19d1205 1293 16, /* bitsize */
0a1b45a2 1294 false, /* pc_relative */
c19d1205
ZW
1295 0, /* bitpos */
1296 complain_overflow_bitfield,/* complain_on_overflow */
1297 bfd_elf_generic_reloc, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
0a1b45a2 1299 false, /* partial_inplace */
c19d1205
ZW
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
0a1b45a2 1302 false), /* pcrel_offset */
c19d1205
ZW
1303
1304 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 0, /* rightshift */
c94cb026 1306 4, /* size */
c19d1205 1307 16, /* bitsize */
0a1b45a2 1308 false, /* pc_relative */
c19d1205
ZW
1309 0, /* bitpos */
1310 complain_overflow_dont,/* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
0a1b45a2 1313 false, /* partial_inplace */
c19d1205
ZW
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
0a1b45a2 1316 false), /* pcrel_offset */
c19d1205
ZW
1317
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 0, /* rightshift */
c94cb026 1320 4, /* size */
c19d1205 1321 16, /* bitsize */
0a1b45a2 1322 false, /* pc_relative */
c19d1205
ZW
1323 0, /* bitpos */
1324 complain_overflow_dont,/* complain_on_overflow */
1325 bfd_elf_generic_reloc, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
0a1b45a2 1327 false, /* partial_inplace */
c19d1205
ZW
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
0a1b45a2 1330 false), /* pcrel_offset */
c19d1205
ZW
1331
1332 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 0, /* rightshift */
c94cb026 1334 4, /* size */
c19d1205 1335 16, /* bitsize */
0a1b45a2 1336 false, /* pc_relative */
c19d1205
ZW
1337 0, /* bitpos */
1338 complain_overflow_bitfield,/* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
0a1b45a2 1341 false, /* partial_inplace */
c19d1205
ZW
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
0a1b45a2 1344 false), /* pcrel_offset */
c19d1205
ZW
1345
1346 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 0, /* rightshift */
c94cb026 1348 4, /* size */
c19d1205 1349 16, /* bitsize */
0a1b45a2 1350 false, /* pc_relative */
c19d1205
ZW
1351 0, /* bitpos */
1352 complain_overflow_dont,/* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
0a1b45a2 1355 false, /* partial_inplace */
c19d1205
ZW
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
0a1b45a2 1358 false), /* pcrel_offset */
c19d1205 1359
0855e32b
NS
1360 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 0, /* rightshift */
c94cb026 1362 4, /* size */
0855e32b 1363 32, /* bitsize */
0a1b45a2 1364 false, /* pc_relative */
0855e32b
NS
1365 0, /* bitpos */
1366 complain_overflow_bitfield,/* complain_on_overflow */
1367 NULL, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
0a1b45a2 1369 true, /* partial_inplace */
0855e32b
NS
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
0a1b45a2 1372 false), /* pcrel_offset */
0855e32b
NS
1373
1374 HOWTO (R_ARM_TLS_CALL, /* type */
1375 0, /* rightshift */
c94cb026 1376 4, /* size */
0855e32b 1377 24, /* bitsize */
0a1b45a2 1378 false, /* pc_relative */
0855e32b
NS
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
0a1b45a2 1383 false, /* partial_inplace */
0855e32b
NS
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
0a1b45a2 1386 false), /* pcrel_offset */
0855e32b
NS
1387
1388 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 0, /* rightshift */
c94cb026 1390 4, /* size */
0855e32b 1391 0, /* bitsize */
0a1b45a2 1392 false, /* pc_relative */
0855e32b 1393 0, /* bitpos */
821e059c 1394 complain_overflow_dont,/* complain_on_overflow */
0855e32b
NS
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
0a1b45a2 1397 false, /* partial_inplace */
0855e32b
NS
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
0a1b45a2 1400 false), /* pcrel_offset */
0855e32b
NS
1401
1402 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 0, /* rightshift */
c94cb026 1404 4, /* size */
0855e32b 1405 24, /* bitsize */
0a1b45a2 1406 false, /* pc_relative */
0855e32b
NS
1407 0, /* bitpos */
1408 complain_overflow_dont,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
0a1b45a2 1411 false, /* partial_inplace */
0855e32b
NS
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
0a1b45a2 1414 false), /* pcrel_offset */
c19d1205
ZW
1415
1416 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 0, /* rightshift */
c94cb026 1418 4, /* size */
c19d1205 1419 32, /* bitsize */
0a1b45a2 1420 false, /* pc_relative */
c19d1205
ZW
1421 0, /* bitpos */
1422 complain_overflow_dont,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
0a1b45a2 1425 false, /* partial_inplace */
c19d1205
ZW
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
0a1b45a2 1428 false), /* pcrel_offset */
c19d1205
ZW
1429
1430 HOWTO (R_ARM_GOT_ABS, /* type */
1431 0, /* rightshift */
c94cb026 1432 4, /* size */
c19d1205 1433 32, /* bitsize */
0a1b45a2 1434 false, /* pc_relative */
c19d1205
ZW
1435 0, /* bitpos */
1436 complain_overflow_dont,/* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
0a1b45a2 1439 false, /* partial_inplace */
c19d1205
ZW
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
0a1b45a2 1442 false), /* pcrel_offset */
c19d1205
ZW
1443
1444 HOWTO (R_ARM_GOT_PREL, /* type */
1445 0, /* rightshift */
c94cb026 1446 4, /* size */
c19d1205 1447 32, /* bitsize */
0a1b45a2 1448 true, /* pc_relative */
c19d1205
ZW
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
0a1b45a2 1453 false, /* partial_inplace */
c19d1205
ZW
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
0a1b45a2 1456 true), /* pcrel_offset */
c19d1205
ZW
1457
1458 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 0, /* rightshift */
c94cb026 1460 4, /* size */
c19d1205 1461 12, /* bitsize */
0a1b45a2 1462 false, /* pc_relative */
c19d1205
ZW
1463 0, /* bitpos */
1464 complain_overflow_bitfield,/* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
0a1b45a2 1467 false, /* partial_inplace */
c19d1205
ZW
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
0a1b45a2 1470 false), /* pcrel_offset */
c19d1205
ZW
1471
1472 HOWTO (R_ARM_GOTOFF12, /* type */
1473 0, /* rightshift */
c94cb026 1474 4, /* size */
c19d1205 1475 12, /* bitsize */
0a1b45a2 1476 false, /* pc_relative */
c19d1205
ZW
1477 0, /* bitpos */
1478 complain_overflow_bitfield,/* complain_on_overflow */
1479 bfd_elf_generic_reloc, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
0a1b45a2 1481 false, /* partial_inplace */
c19d1205
ZW
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
0a1b45a2 1484 false), /* pcrel_offset */
c19d1205 1485
07d6d2b8 1486 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
c19d1205
ZW
1487
1488 /* GNU extension to record C++ vtable member usage */
07d6d2b8
AM
1489 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 0, /* rightshift */
c94cb026 1491 4, /* size */
07d6d2b8 1492 0, /* bitsize */
0a1b45a2 1493 false, /* pc_relative */
07d6d2b8 1494 0, /* bitpos */
99059e56 1495 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8
AM
1496 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
0a1b45a2 1498 false, /* partial_inplace */
07d6d2b8
AM
1499 0, /* src_mask */
1500 0, /* dst_mask */
0a1b45a2 1501 false), /* pcrel_offset */
c19d1205
ZW
1502
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
07d6d2b8 1505 0, /* rightshift */
c94cb026 1506 4, /* size */
07d6d2b8 1507 0, /* bitsize */
0a1b45a2 1508 false, /* pc_relative */
07d6d2b8 1509 0, /* bitpos */
99059e56 1510 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8 1511 NULL, /* special_function */
99059e56 1512 "R_ARM_GNU_VTINHERIT", /* name */
0a1b45a2 1513 false, /* partial_inplace */
07d6d2b8
AM
1514 0, /* src_mask */
1515 0, /* dst_mask */
0a1b45a2 1516 false), /* pcrel_offset */
c19d1205
ZW
1517
1518 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* rightshift */
c94cb026 1520 2, /* size */
c19d1205 1521 11, /* bitsize */
0a1b45a2 1522 true, /* pc_relative */
c19d1205
ZW
1523 0, /* bitpos */
1524 complain_overflow_signed, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
0a1b45a2 1527 false, /* partial_inplace */
c19d1205
ZW
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
0a1b45a2 1530 true), /* pcrel_offset */
c19d1205
ZW
1531
1532 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* rightshift */
c94cb026 1534 2, /* size */
c19d1205 1535 8, /* bitsize */
0a1b45a2 1536 true, /* pc_relative */
c19d1205
ZW
1537 0, /* bitpos */
1538 complain_overflow_signed, /* complain_on_overflow */
1539 bfd_elf_generic_reloc, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
0a1b45a2 1541 false, /* partial_inplace */
c19d1205
ZW
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
0a1b45a2 1544 true), /* pcrel_offset */
ba93b8ac 1545
c19d1205
ZW
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32, /* type */
07d6d2b8 1548 0, /* rightshift */
c94cb026 1549 4, /* size */
07d6d2b8 1550 32, /* bitsize */
0a1b45a2 1551 false, /* pc_relative */
07d6d2b8 1552 0, /* bitpos */
99059e56
RM
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 NULL, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
0a1b45a2 1556 true, /* partial_inplace */
99059e56
RM
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
0a1b45a2 1559 false), /* pcrel_offset */
ba93b8ac 1560
ba93b8ac 1561 HOWTO (R_ARM_TLS_LDM32, /* type */
07d6d2b8 1562 0, /* rightshift */
c94cb026 1563 4, /* size */
07d6d2b8 1564 32, /* bitsize */
0a1b45a2 1565 false, /* pc_relative */
07d6d2b8 1566 0, /* bitpos */
99059e56
RM
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
0a1b45a2 1570 true, /* partial_inplace */
99059e56
RM
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
0a1b45a2 1573 false), /* pcrel_offset */
ba93b8ac 1574
c19d1205 1575 HOWTO (R_ARM_TLS_LDO32, /* type */
07d6d2b8 1576 0, /* rightshift */
c94cb026 1577 4, /* size */
07d6d2b8 1578 32, /* bitsize */
0a1b45a2 1579 false, /* pc_relative */
07d6d2b8 1580 0, /* bitpos */
99059e56
RM
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
0a1b45a2 1584 true, /* partial_inplace */
99059e56
RM
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
0a1b45a2 1587 false), /* pcrel_offset */
ba93b8ac 1588
ba93b8ac 1589 HOWTO (R_ARM_TLS_IE32, /* type */
07d6d2b8 1590 0, /* rightshift */
c94cb026 1591 4, /* size */
07d6d2b8 1592 32, /* bitsize */
0a1b45a2 1593 false, /* pc_relative */
07d6d2b8 1594 0, /* bitpos */
99059e56
RM
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 NULL, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
0a1b45a2 1598 true, /* partial_inplace */
99059e56
RM
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
0a1b45a2 1601 false), /* pcrel_offset */
7f266840 1602
c19d1205 1603 HOWTO (R_ARM_TLS_LE32, /* type */
07d6d2b8 1604 0, /* rightshift */
c94cb026 1605 4, /* size */
07d6d2b8 1606 32, /* bitsize */
0a1b45a2 1607 false, /* pc_relative */
07d6d2b8 1608 0, /* bitpos */
99059e56 1609 complain_overflow_bitfield,/* complain_on_overflow */
07d6d2b8 1610 NULL, /* special_function */
99059e56 1611 "R_ARM_TLS_LE32", /* name */
0a1b45a2 1612 true, /* partial_inplace */
99059e56
RM
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
0a1b45a2 1615 false), /* pcrel_offset */
7f266840 1616
c19d1205
ZW
1617 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 0, /* rightshift */
c94cb026 1619 4, /* size */
c19d1205 1620 12, /* bitsize */
0a1b45a2 1621 false, /* pc_relative */
7f266840 1622 0, /* bitpos */
c19d1205 1623 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1624 bfd_elf_generic_reloc, /* special_function */
c19d1205 1625 "R_ARM_TLS_LDO12", /* name */
0a1b45a2 1626 false, /* partial_inplace */
c19d1205
ZW
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
0a1b45a2 1629 false), /* pcrel_offset */
7f266840 1630
c19d1205
ZW
1631 HOWTO (R_ARM_TLS_LE12, /* type */
1632 0, /* rightshift */
c94cb026 1633 4, /* size */
c19d1205 1634 12, /* bitsize */
0a1b45a2 1635 false, /* pc_relative */
7f266840 1636 0, /* bitpos */
c19d1205 1637 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1638 bfd_elf_generic_reloc, /* special_function */
c19d1205 1639 "R_ARM_TLS_LE12", /* name */
0a1b45a2 1640 false, /* partial_inplace */
c19d1205
ZW
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
0a1b45a2 1643 false), /* pcrel_offset */
7f266840 1644
c19d1205 1645 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840 1646 0, /* rightshift */
c94cb026 1647 4, /* size */
c19d1205 1648 12, /* bitsize */
0a1b45a2 1649 false, /* pc_relative */
7f266840 1650 0, /* bitpos */
c19d1205 1651 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1652 bfd_elf_generic_reloc, /* special_function */
c19d1205 1653 "R_ARM_TLS_IE12GP", /* name */
0a1b45a2 1654 false, /* partial_inplace */
c19d1205
ZW
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
0a1b45a2 1657 false), /* pcrel_offset */
0855e32b 1658
34e77a92 1659 /* 112-127 private relocations. */
0855e32b
NS
1660 EMPTY_HOWTO (112),
1661 EMPTY_HOWTO (113),
1662 EMPTY_HOWTO (114),
1663 EMPTY_HOWTO (115),
1664 EMPTY_HOWTO (116),
1665 EMPTY_HOWTO (117),
1666 EMPTY_HOWTO (118),
1667 EMPTY_HOWTO (119),
1668 EMPTY_HOWTO (120),
1669 EMPTY_HOWTO (121),
1670 EMPTY_HOWTO (122),
1671 EMPTY_HOWTO (123),
1672 EMPTY_HOWTO (124),
1673 EMPTY_HOWTO (125),
1674 EMPTY_HOWTO (126),
1675 EMPTY_HOWTO (127),
34e77a92
RS
1676
1677 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1678 EMPTY_HOWTO (128),
1679
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 0, /* rightshift */
c94cb026 1682 2, /* size */
0855e32b 1683 0, /* bitsize */
0a1b45a2 1684 false, /* pc_relative */
0855e32b 1685 0, /* bitpos */
821e059c 1686 complain_overflow_dont,/* complain_on_overflow */
0855e32b
NS
1687 bfd_elf_generic_reloc, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
0a1b45a2 1689 false, /* partial_inplace */
0855e32b
NS
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
0a1b45a2 1692 false), /* pcrel_offset */
72d98d16
MG
1693 EMPTY_HOWTO (130),
1694 EMPTY_HOWTO (131),
1695 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1696 0, /* rightshift. */
c94cb026 1697 2, /* size. */
72d98d16 1698 16, /* bitsize. */
0a1b45a2 1699 false, /* pc_relative. */
72d98d16
MG
1700 0, /* bitpos. */
1701 complain_overflow_bitfield,/* complain_on_overflow. */
1702 bfd_elf_generic_reloc, /* special_function. */
1703 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
0a1b45a2 1704 false, /* partial_inplace. */
72d98d16
MG
1705 0x00000000, /* src_mask. */
1706 0x00000000, /* dst_mask. */
0a1b45a2 1707 false), /* pcrel_offset. */
72d98d16
MG
1708 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1709 0, /* rightshift. */
c94cb026 1710 2, /* size. */
72d98d16 1711 16, /* bitsize. */
0a1b45a2 1712 false, /* pc_relative. */
72d98d16
MG
1713 0, /* bitpos. */
1714 complain_overflow_bitfield,/* complain_on_overflow. */
1715 bfd_elf_generic_reloc, /* special_function. */
1716 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
0a1b45a2 1717 false, /* partial_inplace. */
72d98d16
MG
1718 0x00000000, /* src_mask. */
1719 0x00000000, /* dst_mask. */
0a1b45a2 1720 false), /* pcrel_offset. */
72d98d16
MG
1721 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1722 0, /* rightshift. */
c94cb026 1723 2, /* size. */
72d98d16 1724 16, /* bitsize. */
0a1b45a2 1725 false, /* pc_relative. */
72d98d16
MG
1726 0, /* bitpos. */
1727 complain_overflow_bitfield,/* complain_on_overflow. */
1728 bfd_elf_generic_reloc, /* special_function. */
1729 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
0a1b45a2 1730 false, /* partial_inplace. */
72d98d16
MG
1731 0x00000000, /* src_mask. */
1732 0x00000000, /* dst_mask. */
0a1b45a2 1733 false), /* pcrel_offset. */
72d98d16
MG
1734 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1735 0, /* rightshift. */
c94cb026 1736 2, /* size. */
72d98d16 1737 16, /* bitsize. */
0a1b45a2 1738 false, /* pc_relative. */
72d98d16
MG
1739 0, /* bitpos. */
1740 complain_overflow_bitfield,/* complain_on_overflow. */
1741 bfd_elf_generic_reloc, /* special_function. */
1742 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
0a1b45a2 1743 false, /* partial_inplace. */
72d98d16
MG
1744 0x00000000, /* src_mask. */
1745 0x00000000, /* dst_mask. */
0a1b45a2 1746 false), /* pcrel_offset. */
e5d6e09e
AV
1747 /* Relocations for Armv8.1-M Mainline. */
1748 HOWTO (R_ARM_THM_BF16, /* type. */
1749 0, /* rightshift. */
c94cb026 1750 2, /* size. */
e5d6e09e 1751 16, /* bitsize. */
0a1b45a2 1752 true, /* pc_relative. */
e5d6e09e
AV
1753 0, /* bitpos. */
1754 complain_overflow_dont,/* do not complain_on_overflow. */
1755 bfd_elf_generic_reloc, /* special_function. */
1756 "R_ARM_THM_BF16", /* name. */
0a1b45a2 1757 false, /* partial_inplace. */
e5d6e09e
AV
1758 0x001f0ffe, /* src_mask. */
1759 0x001f0ffe, /* dst_mask. */
0a1b45a2 1760 true), /* pcrel_offset. */
1889da70
AV
1761 HOWTO (R_ARM_THM_BF12, /* type. */
1762 0, /* rightshift. */
c94cb026 1763 2, /* size. */
1889da70 1764 12, /* bitsize. */
0a1b45a2 1765 true, /* pc_relative. */
1889da70
AV
1766 0, /* bitpos. */
1767 complain_overflow_dont,/* do not complain_on_overflow. */
1768 bfd_elf_generic_reloc, /* special_function. */
1769 "R_ARM_THM_BF12", /* name. */
0a1b45a2 1770 false, /* partial_inplace. */
1889da70
AV
1771 0x00010ffe, /* src_mask. */
1772 0x00010ffe, /* dst_mask. */
0a1b45a2 1773 true), /* pcrel_offset. */
1caf72a5
AV
1774 HOWTO (R_ARM_THM_BF18, /* type. */
1775 0, /* rightshift. */
c94cb026 1776 2, /* size. */
1caf72a5 1777 18, /* bitsize. */
0a1b45a2 1778 true, /* pc_relative. */
1caf72a5
AV
1779 0, /* bitpos. */
1780 complain_overflow_dont,/* do not complain_on_overflow. */
1781 bfd_elf_generic_reloc, /* special_function. */
1782 "R_ARM_THM_BF18", /* name. */
0a1b45a2 1783 false, /* partial_inplace. */
1caf72a5
AV
1784 0x007f0ffe, /* src_mask. */
1785 0x007f0ffe, /* dst_mask. */
0a1b45a2 1786 true), /* pcrel_offset. */
c19d1205
ZW
1787};
1788
34e77a92 1789/* 160 onwards: */
5c5a4843 1790static reloc_howto_type elf32_arm_howto_table_2[8] =
34e77a92
RS
1791{
1792 HOWTO (R_ARM_IRELATIVE, /* type */
07d6d2b8 1793 0, /* rightshift */
c94cb026 1794 4, /* size */
07d6d2b8 1795 32, /* bitsize */
0a1b45a2 1796 false, /* pc_relative */
07d6d2b8 1797 0, /* bitpos */
99059e56
RM
1798 complain_overflow_bitfield,/* complain_on_overflow */
1799 bfd_elf_generic_reloc, /* special_function */
1800 "R_ARM_IRELATIVE", /* name */
0a1b45a2 1801 true, /* partial_inplace */
99059e56
RM
1802 0xffffffff, /* src_mask */
1803 0xffffffff, /* dst_mask */
0a1b45a2 1804 false), /* pcrel_offset */
188fd7ae
CL
1805 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1806 0, /* rightshift */
c94cb026 1807 4, /* size */
188fd7ae 1808 32, /* bitsize */
0a1b45a2 1809 false, /* pc_relative */
188fd7ae
CL
1810 0, /* bitpos */
1811 complain_overflow_bitfield,/* complain_on_overflow */
1812 bfd_elf_generic_reloc, /* special_function */
1813 "R_ARM_GOTFUNCDESC", /* name */
0a1b45a2 1814 false, /* partial_inplace */
188fd7ae
CL
1815 0, /* src_mask */
1816 0xffffffff, /* dst_mask */
0a1b45a2 1817 false), /* pcrel_offset */
188fd7ae
CL
1818 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1819 0, /* rightshift */
c94cb026 1820 4, /* size */
188fd7ae 1821 32, /* bitsize */
0a1b45a2 1822 false, /* pc_relative */
188fd7ae
CL
1823 0, /* bitpos */
1824 complain_overflow_bitfield,/* complain_on_overflow */
1825 bfd_elf_generic_reloc, /* special_function */
1826 "R_ARM_GOTOFFFUNCDESC",/* name */
0a1b45a2 1827 false, /* partial_inplace */
188fd7ae
CL
1828 0, /* src_mask */
1829 0xffffffff, /* dst_mask */
0a1b45a2 1830 false), /* pcrel_offset */
188fd7ae
CL
1831 HOWTO (R_ARM_FUNCDESC, /* type */
1832 0, /* rightshift */
c94cb026 1833 4, /* size */
188fd7ae 1834 32, /* bitsize */
0a1b45a2 1835 false, /* pc_relative */
188fd7ae
CL
1836 0, /* bitpos */
1837 complain_overflow_bitfield,/* complain_on_overflow */
1838 bfd_elf_generic_reloc, /* special_function */
1839 "R_ARM_FUNCDESC", /* name */
0a1b45a2 1840 false, /* partial_inplace */
188fd7ae
CL
1841 0, /* src_mask */
1842 0xffffffff, /* dst_mask */
0a1b45a2 1843 false), /* pcrel_offset */
188fd7ae
CL
1844 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1845 0, /* rightshift */
c94cb026 1846 4, /* size */
188fd7ae 1847 64, /* bitsize */
0a1b45a2 1848 false, /* pc_relative */
188fd7ae
CL
1849 0, /* bitpos */
1850 complain_overflow_bitfield,/* complain_on_overflow */
1851 bfd_elf_generic_reloc, /* special_function */
1852 "R_ARM_FUNCDESC_VALUE",/* name */
0a1b45a2 1853 false, /* partial_inplace */
188fd7ae
CL
1854 0, /* src_mask */
1855 0xffffffff, /* dst_mask */
0a1b45a2 1856 false), /* pcrel_offset */
5c5a4843
CL
1857 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1858 0, /* rightshift */
c94cb026 1859 4, /* size */
5c5a4843 1860 32, /* bitsize */
0a1b45a2 1861 false, /* pc_relative */
5c5a4843
CL
1862 0, /* bitpos */
1863 complain_overflow_bitfield,/* complain_on_overflow */
1864 bfd_elf_generic_reloc, /* special_function */
1865 "R_ARM_TLS_GD32_FDPIC",/* name */
0a1b45a2 1866 false, /* partial_inplace */
5c5a4843
CL
1867 0, /* src_mask */
1868 0xffffffff, /* dst_mask */
0a1b45a2 1869 false), /* pcrel_offset */
5c5a4843
CL
1870 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1871 0, /* rightshift */
c94cb026 1872 4, /* size */
5c5a4843 1873 32, /* bitsize */
0a1b45a2 1874 false, /* pc_relative */
5c5a4843
CL
1875 0, /* bitpos */
1876 complain_overflow_bitfield,/* complain_on_overflow */
1877 bfd_elf_generic_reloc, /* special_function */
1878 "R_ARM_TLS_LDM32_FDPIC",/* name */
0a1b45a2 1879 false, /* partial_inplace */
5c5a4843
CL
1880 0, /* src_mask */
1881 0xffffffff, /* dst_mask */
0a1b45a2 1882 false), /* pcrel_offset */
5c5a4843
CL
1883 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1884 0, /* rightshift */
c94cb026 1885 4, /* size */
5c5a4843 1886 32, /* bitsize */
0a1b45a2 1887 false, /* pc_relative */
5c5a4843
CL
1888 0, /* bitpos */
1889 complain_overflow_bitfield,/* complain_on_overflow */
1890 bfd_elf_generic_reloc, /* special_function */
1891 "R_ARM_TLS_IE32_FDPIC",/* name */
0a1b45a2 1892 false, /* partial_inplace */
5c5a4843
CL
1893 0, /* src_mask */
1894 0xffffffff, /* dst_mask */
0a1b45a2 1895 false), /* pcrel_offset */
34e77a92 1896};
c19d1205 1897
34e77a92
RS
1898/* 249-255 extended, currently unused, relocations: */
1899static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1900{
1901 HOWTO (R_ARM_RREL32, /* type */
1902 0, /* rightshift */
5d0feb98 1903 0, /* size */
7f266840 1904 0, /* bitsize */
0a1b45a2 1905 false, /* pc_relative */
7f266840
DJ
1906 0, /* bitpos */
1907 complain_overflow_dont,/* complain_on_overflow */
1908 bfd_elf_generic_reloc, /* special_function */
1909 "R_ARM_RREL32", /* name */
0a1b45a2 1910 false, /* partial_inplace */
7f266840
DJ
1911 0, /* src_mask */
1912 0, /* dst_mask */
0a1b45a2 1913 false), /* pcrel_offset */
7f266840
DJ
1914
1915 HOWTO (R_ARM_RABS32, /* type */
1916 0, /* rightshift */
5d0feb98 1917 0, /* size */
7f266840 1918 0, /* bitsize */
0a1b45a2 1919 false, /* pc_relative */
7f266840
DJ
1920 0, /* bitpos */
1921 complain_overflow_dont,/* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 "R_ARM_RABS32", /* name */
0a1b45a2 1924 false, /* partial_inplace */
7f266840
DJ
1925 0, /* src_mask */
1926 0, /* dst_mask */
0a1b45a2 1927 false), /* pcrel_offset */
7f266840
DJ
1928
1929 HOWTO (R_ARM_RPC24, /* type */
1930 0, /* rightshift */
5d0feb98 1931 0, /* size */
7f266840 1932 0, /* bitsize */
0a1b45a2 1933 false, /* pc_relative */
7f266840
DJ
1934 0, /* bitpos */
1935 complain_overflow_dont,/* complain_on_overflow */
1936 bfd_elf_generic_reloc, /* special_function */
1937 "R_ARM_RPC24", /* name */
0a1b45a2 1938 false, /* partial_inplace */
7f266840
DJ
1939 0, /* src_mask */
1940 0, /* dst_mask */
0a1b45a2 1941 false), /* pcrel_offset */
7f266840
DJ
1942
1943 HOWTO (R_ARM_RBASE, /* type */
1944 0, /* rightshift */
5d0feb98 1945 0, /* size */
7f266840 1946 0, /* bitsize */
0a1b45a2 1947 false, /* pc_relative */
7f266840
DJ
1948 0, /* bitpos */
1949 complain_overflow_dont,/* complain_on_overflow */
1950 bfd_elf_generic_reloc, /* special_function */
1951 "R_ARM_RBASE", /* name */
0a1b45a2 1952 false, /* partial_inplace */
7f266840
DJ
1953 0, /* src_mask */
1954 0, /* dst_mask */
0a1b45a2 1955 false) /* pcrel_offset */
7f266840
DJ
1956};
1957
1958static reloc_howto_type *
1959elf32_arm_howto_from_type (unsigned int r_type)
1960{
906e58ca 1961 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1962 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1963
188fd7ae
CL
1964 if (r_type >= R_ARM_IRELATIVE
1965 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
34e77a92
RS
1966 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1967
c19d1205 1968 if (r_type >= R_ARM_RREL32
34e77a92
RS
1969 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1970 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1971
c19d1205 1972 return NULL;
7f266840
DJ
1973}
1974
0a1b45a2 1975static bool
f3185997 1976elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
7f266840
DJ
1977 Elf_Internal_Rela * elf_reloc)
1978{
1979 unsigned int r_type;
1980
1981 r_type = ELF32_R_TYPE (elf_reloc->r_info);
f3185997
NC
1982 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1983 {
1984 /* xgettext:c-format */
1985 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1986 abfd, r_type);
1987 bfd_set_error (bfd_error_bad_value);
0a1b45a2 1988 return false;
f3185997 1989 }
0a1b45a2 1990 return true;
7f266840
DJ
1991}
1992
1993struct elf32_arm_reloc_map
1994 {
1995 bfd_reloc_code_real_type bfd_reloc_val;
07d6d2b8 1996 unsigned char elf_reloc_val;
7f266840
DJ
1997 };
1998
1999/* All entries in this list must also be present in elf32_arm_howto_table. */
2000static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
2001 {
07d6d2b8 2002 {BFD_RELOC_NONE, R_ARM_NONE},
7f266840 2003 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
2004 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2005 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
07d6d2b8
AM
2006 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2007 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2008 {BFD_RELOC_32, R_ARM_ABS32},
2009 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2010 {BFD_RELOC_8, R_ARM_ABS8},
2011 {BFD_RELOC_16, R_ARM_ABS16},
2012 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
7f266840 2013 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
2014 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2018 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2019 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
07d6d2b8
AM
2020 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2021 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2022 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2023 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2024 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2025 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2026 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2027 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
7f266840
DJ
2028 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2029 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2030 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2031 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac 2032 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
07d6d2b8
AM
2033 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2034 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2035 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
0855e32b 2036 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
07d6d2b8 2037 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
0855e32b 2038 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
07d6d2b8 2039 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
2040 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2041 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2042 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2043 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2044 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
07d6d2b8
AM
2045 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2046 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2047 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2048 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
188fd7ae
CL
2049 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2050 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2051 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2052 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
5c5a4843
CL
2053 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2054 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2055 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
c19d1205
ZW
2056 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2057 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
2058 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2059 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2060 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2061 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2062 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2064 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2065 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
2066 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2068 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2069 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2070 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2071 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2072 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2073 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2074 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2075 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2076 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2077 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2078 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2079 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2080 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2082 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2083 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2084 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2085 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2086 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2087 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2088 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2089 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2090 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2091 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2092 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6 2093 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
72d98d16
MG
2094 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2097 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
e5d6e09e 2098 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
1caf72a5 2099 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
1889da70 2100 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
1caf72a5 2101 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
7f266840
DJ
2102 };
2103
2104static reloc_howto_type *
f1c71a59
ZW
2105elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2106 bfd_reloc_code_real_type code)
7f266840
DJ
2107{
2108 unsigned int i;
8029a119 2109
906e58ca 2110 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
2111 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2112 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 2113
c19d1205 2114 return NULL;
7f266840
DJ
2115}
2116
157090f7
AM
2117static reloc_howto_type *
2118elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2119 const char *r_name)
2120{
2121 unsigned int i;
2122
906e58ca 2123 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
2124 if (elf32_arm_howto_table_1[i].name != NULL
2125 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2126 return &elf32_arm_howto_table_1[i];
2127
906e58ca 2128 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
2129 if (elf32_arm_howto_table_2[i].name != NULL
2130 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2131 return &elf32_arm_howto_table_2[i];
2132
34e77a92
RS
2133 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2134 if (elf32_arm_howto_table_3[i].name != NULL
2135 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2136 return &elf32_arm_howto_table_3[i];
2137
157090f7
AM
2138 return NULL;
2139}
2140
906e58ca
NC
2141/* Support for core dump NOTE sections. */
2142
0a1b45a2 2143static bool
f1c71a59 2144elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2145{
2146 int offset;
2147 size_t size;
2148
2149 switch (note->descsz)
2150 {
2151 default:
0a1b45a2 2152 return false;
7f266840 2153
8029a119 2154 case 148: /* Linux/ARM 32-bit. */
7f266840 2155 /* pr_cursig */
228e534f 2156 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
7f266840
DJ
2157
2158 /* pr_pid */
228e534f 2159 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
2160
2161 /* pr_reg */
2162 offset = 72;
2163 size = 72;
2164
2165 break;
2166 }
2167
2168 /* Make a ".reg/999" section. */
2169 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2170 size, note->descpos + offset);
2171}
2172
0a1b45a2 2173static bool
f1c71a59 2174elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2175{
2176 switch (note->descsz)
2177 {
2178 default:
0a1b45a2 2179 return false;
7f266840 2180
8029a119 2181 case 124: /* Linux/ARM elf_prpsinfo. */
228e534f 2182 elf_tdata (abfd)->core->pid
4395ee08 2183 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 2184 elf_tdata (abfd)->core->program
7f266840 2185 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 2186 elf_tdata (abfd)->core->command
7f266840
DJ
2187 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2188 }
2189
2190 /* Note that for some reason, a spurious space is tacked
2191 onto the end of the args in some (at least one anyway)
2192 implementations, so strip it off if it exists. */
7f266840 2193 {
228e534f 2194 char *command = elf_tdata (abfd)->core->command;
7f266840
DJ
2195 int n = strlen (command);
2196
2197 if (0 < n && command[n - 1] == ' ')
2198 command[n - 1] = '\0';
2199 }
2200
0a1b45a2 2201 return true;
7f266840
DJ
2202}
2203
1f20dca5
UW
2204static char *
2205elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2206 int note_type, ...)
2207{
2208 switch (note_type)
2209 {
2210 default:
2211 return NULL;
2212
2213 case NT_PRPSINFO:
2214 {
602f1657 2215 char data[124] ATTRIBUTE_NONSTRING;
1f20dca5
UW
2216 va_list ap;
2217
2218 va_start (ap, note_type);
2219 memset (data, 0, sizeof (data));
2220 strncpy (data + 28, va_arg (ap, const char *), 16);
be3e27bb 2221#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2222 DIAGNOSTIC_PUSH;
be3e27bb 2223 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
95da9854
L
2224 -Wstringop-truncation:
2225 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2226 */
95da9854
L
2227 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2228#endif
1f20dca5 2229 strncpy (data + 44, va_arg (ap, const char *), 80);
be3e27bb 2230#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2231 DIAGNOSTIC_POP;
fe75810f 2232#endif
1f20dca5
UW
2233 va_end (ap);
2234
2235 return elfcore_write_note (abfd, buf, bufsiz,
2236 "CORE", note_type, data, sizeof (data));
2237 }
2238
2239 case NT_PRSTATUS:
2240 {
2241 char data[148];
2242 va_list ap;
2243 long pid;
2244 int cursig;
2245 const void *greg;
2246
2247 va_start (ap, note_type);
2248 memset (data, 0, sizeof (data));
2249 pid = va_arg (ap, long);
2250 bfd_put_32 (abfd, pid, data + 24);
2251 cursig = va_arg (ap, int);
2252 bfd_put_16 (abfd, cursig, data + 12);
2253 greg = va_arg (ap, const void *);
2254 memcpy (data + 72, greg, 72);
2255 va_end (ap);
2256
2257 return elfcore_write_note (abfd, buf, bufsiz,
2258 "CORE", note_type, data, sizeof (data));
2259 }
2260 }
2261}
2262
07d6d2b8
AM
2263#define TARGET_LITTLE_SYM arm_elf32_le_vec
2264#define TARGET_LITTLE_NAME "elf32-littlearm"
2265#define TARGET_BIG_SYM arm_elf32_be_vec
2266#define TARGET_BIG_NAME "elf32-bigarm"
7f266840
DJ
2267
2268#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2269#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2270#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2271
252b5132
RH
2272typedef unsigned long int insn32;
2273typedef unsigned short int insn16;
2274
3a4a14e9
PB
2275/* In lieu of proper flags, assume all EABIv4 or later objects are
2276 interworkable. */
57e8b36a 2277#define INTERWORK_FLAG(abfd) \
3a4a14e9 2278 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2279 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2280 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2281
252b5132
RH
2282/* The linker script knows the section names for placement.
2283 The entry_names are used to do simple name mangling on the stubs.
2284 Given a function name, and its type, the stub can be found. The
9b485d32 2285 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2286#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2287#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2288
2289#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2290#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2291
c7b8f16e
JB
2292#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2293#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2294
a504d23a
LA
2295#define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2296#define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2297
845b51d6
PB
2298#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2299#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2300
7413f23f
DJ
2301#define STUB_ENTRY_NAME "__%s_veneer"
2302
4ba2ef8f
TP
2303#define CMSE_PREFIX "__acle_se_"
2304
4d83e8d9
CL
2305#define CMSE_STUB_NAME ".gnu.sgstubs"
2306
252b5132
RH
2307/* The name of the dynamic interpreter. This is put in the .interp
2308 section. */
2309#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2310
cb10292c
CL
2311/* FDPIC default stack size. */
2312#define DEFAULT_STACK_SIZE 0x8000
2313
0855e32b 2314static const unsigned long tls_trampoline [] =
b38cadfb
NC
2315{
2316 0xe08e0000, /* add r0, lr, r0 */
2317 0xe5901004, /* ldr r1, [r0,#4] */
2318 0xe12fff11, /* bx r1 */
2319};
0855e32b
NS
2320
2321static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2322{
2323 0xe52d2004, /* push {r2} */
2324 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2325 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2326 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2327 0xe081100f, /* 2: add r1, pc */
2328 0xe12fff12, /* bx r2 */
2329 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
99059e56 2330 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2331 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2332};
0855e32b 2333
b4e87f2c
TC
2334/* NOTE: [Thumb nop sequence]
2335 When adding code that transitions from Thumb to Arm the instruction that
2336 should be used for the alignment padding should be 0xe7fd (b .-2) instead of
2337 a nop for performance reasons. */
2338
7801f98f
CL
2339/* ARM FDPIC PLT entry. */
2340/* The last 5 words contain PLT lazy fragment code and data. */
2341static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2342 {
2343 0xe59fc008, /* ldr r12, .L1 */
2344 0xe08cc009, /* add r12, r12, r9 */
2345 0xe59c9004, /* ldr r9, [r12, #4] */
2346 0xe59cf000, /* ldr pc, [r12] */
2347 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2348 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2349 0xe51fc00c, /* ldr r12, [pc, #-12] */
2350 0xe92d1000, /* push {r12} */
2351 0xe599c004, /* ldr r12, [r9, #4] */
2352 0xe599f000, /* ldr pc, [r9] */
2353 };
2354
59029f57
CL
2355/* Thumb FDPIC PLT entry. */
2356/* The last 5 words contain PLT lazy fragment code and data. */
2357static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2358 {
2359 0xc00cf8df, /* ldr.w r12, .L1 */
2360 0x0c09eb0c, /* add.w r12, r12, r9 */
2361 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2362 0xf000f8dc, /* ldr.w pc, [r12] */
2363 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2364 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2365 0xc008f85f, /* ldr.w r12, .L2 */
2366 0xcd04f84d, /* push {r12} */
2367 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2368 0xf000f8d9, /* ldr.w pc, [r9] */
2369 };
2370
5e681ec4
PB
2371#ifdef FOUR_WORD_PLT
2372
252b5132
RH
2373/* The first entry in a procedure linkage table looks like
2374 this. It is set up so that any shared library function that is
59f2c4e7 2375 called before the relocation has been set up calls the dynamic
9b485d32 2376 linker first. */
e5a52504 2377static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2378{
2379 0xe52de004, /* str lr, [sp, #-4]! */
2380 0xe59fe010, /* ldr lr, [pc, #16] */
2381 0xe08fe00e, /* add lr, pc, lr */
2382 0xe5bef008, /* ldr pc, [lr, #8]! */
2383};
5e681ec4
PB
2384
2385/* Subsequent entries in a procedure linkage table look like
2386 this. */
e5a52504 2387static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2388{
2389 0xe28fc600, /* add ip, pc, #NN */
2390 0xe28cca00, /* add ip, ip, #NN */
2391 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2392 0x00000000, /* unused */
2393};
5e681ec4 2394
eed94f8f 2395#else /* not FOUR_WORD_PLT */
5e681ec4 2396
5e681ec4
PB
2397/* The first entry in a procedure linkage table looks like
2398 this. It is set up so that any shared library function that is
2399 called before the relocation has been set up calls the dynamic
2400 linker first. */
e5a52504 2401static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb 2402{
07d6d2b8
AM
2403 0xe52de004, /* str lr, [sp, #-4]! */
2404 0xe59fe004, /* ldr lr, [pc, #4] */
2405 0xe08fe00e, /* add lr, pc, lr */
2406 0xe5bef008, /* ldr pc, [lr, #8]! */
2407 0x00000000, /* &GOT[0] - . */
b38cadfb 2408};
252b5132 2409
1db37fe6
YG
2410/* By default subsequent entries in a procedure linkage table look like
2411 this. Offsets that don't fit into 28 bits will cause link error. */
2412static const bfd_vma elf32_arm_plt_entry_short [] =
b38cadfb
NC
2413{
2414 0xe28fc600, /* add ip, pc, #0xNN00000 */
2415 0xe28cca00, /* add ip, ip, #0xNN000 */
2416 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2417};
5e681ec4 2418
1db37fe6
YG
2419/* When explicitly asked, we'll use this "long" entry format
2420 which can cope with arbitrary displacements. */
2421static const bfd_vma elf32_arm_plt_entry_long [] =
2422{
07d6d2b8
AM
2423 0xe28fc200, /* add ip, pc, #0xN0000000 */
2424 0xe28cc600, /* add ip, ip, #0xNN00000 */
1db37fe6
YG
2425 0xe28cca00, /* add ip, ip, #0xNN000 */
2426 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2427};
2428
0a1b45a2 2429static bool elf32_arm_use_long_plt_entry = false;
1db37fe6 2430
eed94f8f
NC
2431#endif /* not FOUR_WORD_PLT */
2432
2433/* The first entry in a procedure linkage table looks like this.
2434 It is set up so that any shared library function that is called before the
2435 relocation has been set up calls the dynamic linker first. */
2436static const bfd_vma elf32_thumb2_plt0_entry [] =
2437{
2438 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2439 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2440 0xf8dfb500, /* push {lr} */
2441 0x44fee008, /* ldr.w lr, [pc, #8] */
2442 /* add lr, pc */
eed94f8f 2443 0xff08f85e, /* ldr.w pc, [lr, #8]! */
07d6d2b8 2444 0x00000000, /* &GOT[0] - . */
eed94f8f
NC
2445};
2446
2447/* Subsequent entries in a procedure linkage table for thumb only target
2448 look like this. */
2449static const bfd_vma elf32_thumb2_plt_entry [] =
2450{
2451 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2452 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2453 0x0c00f240, /* movw ip, #0xNNNN */
2454 0x0c00f2c0, /* movt ip, #0xNNNN */
2455 0xf8dc44fc, /* add ip, pc */
15ccbdd7
TC
2456 0xe7fcf000 /* ldr.w pc, [ip] */
2457 /* b .-4 */
eed94f8f 2458};
252b5132 2459
00a97672
RS
2460/* The format of the first entry in the procedure linkage table
2461 for a VxWorks executable. */
2462static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb 2463{
07d6d2b8
AM
2464 0xe52dc008, /* str ip,[sp,#-8]! */
2465 0xe59fc000, /* ldr ip,[pc] */
2466 0xe59cf008, /* ldr pc,[ip,#8] */
2467 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
b38cadfb 2468};
00a97672
RS
2469
2470/* The format of subsequent entries in a VxWorks executable. */
2471static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb 2472{
07d6d2b8
AM
2473 0xe59fc000, /* ldr ip,[pc] */
2474 0xe59cf000, /* ldr pc,[ip] */
2475 0x00000000, /* .long @got */
2476 0xe59fc000, /* ldr ip,[pc] */
2477 0xea000000, /* b _PLT */
2478 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2479};
00a97672
RS
2480
2481/* The format of entries in a VxWorks shared library. */
2482static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb 2483{
07d6d2b8
AM
2484 0xe59fc000, /* ldr ip,[pc] */
2485 0xe79cf009, /* ldr pc,[ip,r9] */
2486 0x00000000, /* .long @got */
2487 0xe59fc000, /* ldr ip,[pc] */
2488 0xe599f008, /* ldr pc,[r9,#8] */
2489 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2490};
00a97672 2491
b7693d02
DJ
2492/* An initial stub used if the PLT entry is referenced from Thumb code. */
2493#define PLT_THUMB_STUB_SIZE 4
2494static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2495{
2496 0x4778, /* bx pc */
b4e87f2c 2497 0xe7fd /* b .-2 */
b38cadfb 2498};
b7693d02 2499
b38cadfb
NC
2500/* The first entry in a procedure linkage table looks like
2501 this. It is set up so that any shared library function that is
2502 called before the relocation has been set up calls the dynamic
2503 linker first. */
2504static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2505{
2506 /* First bundle: */
2507 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2508 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2509 0xe08cc00f, /* add ip, ip, pc */
2510 0xe52dc008, /* str ip, [sp, #-8]! */
2511 /* Second bundle: */
edccdf7c
RM
2512 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2513 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2514 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2515 0xe12fff1c, /* bx ip */
b38cadfb 2516 /* Third bundle: */
edccdf7c
RM
2517 0xe320f000, /* nop */
2518 0xe320f000, /* nop */
2519 0xe320f000, /* nop */
b38cadfb
NC
2520 /* .Lplt_tail: */
2521 0xe50dc004, /* str ip, [sp, #-4] */
2522 /* Fourth bundle: */
edccdf7c
RM
2523 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2524 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2525 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2526 0xe12fff1c, /* bx ip */
b38cadfb
NC
2527};
2528#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2529
2530/* Subsequent entries in a procedure linkage table look like this. */
2531static const bfd_vma elf32_arm_nacl_plt_entry [] =
2532{
2533 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2534 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2535 0xe08cc00f, /* add ip, ip, pc */
2536 0xea000000, /* b .Lplt_tail */
2537};
e5a52504 2538
a747a286
VP
2539/* PR 28924:
2540 There was a bug due to too high values of THM_MAX_FWD_BRANCH_OFFSET and
2541 THM2_MAX_FWD_BRANCH_OFFSET. The first macro concerns the case when Thumb-2
2542 is not available, and second macro when Thumb-2 is available. Among other
2543 things, they affect the range of branches represented as BLX instructions
2544 in Encoding T2 defined in Section A8.8.25 of the ARM Architecture
2545 Reference Manual ARMv7-A and ARMv7-R edition issue C.d. Such branches are
2546 specified there to have a maximum forward offset that is a multiple of 4.
2547 Previously, the respective values defined here were multiples of 2 but not
2548 4 and they are included in comments for reference. */
906e58ca 2549#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
a747a286
VP
2550#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2551#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) - 4 + 4)
2552/* #def THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) - 2 + 4) */
906e58ca 2553#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
a747a286
VP
2554#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 4) + 4)
2555/* #def THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4) */
906e58ca 2556#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
c5423981
TG
2557#define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2558#define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
906e58ca 2559
461a49ca 2560enum stub_insn_type
b38cadfb
NC
2561{
2562 THUMB16_TYPE = 1,
2563 THUMB32_TYPE,
2564 ARM_TYPE,
2565 DATA_TYPE
2566};
461a49ca 2567
48229727
JB
2568#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2569/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2570 is inserted in arm_build_one_stub(). */
2571#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2572#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
d5a67c02
AV
2573#define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2574#define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
48229727
JB
2575#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2576#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2577#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2578#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2579
2580typedef struct
2581{
07d6d2b8 2582 bfd_vma data;
b38cadfb 2583 enum stub_insn_type type;
07d6d2b8
AM
2584 unsigned int r_type;
2585 int reloc_addend;
461a49ca
DJ
2586} insn_sequence;
2587
b4e87f2c
TC
2588/* See note [Thumb nop sequence] when adding a veneer. */
2589
fea2b4d6
CL
2590/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2591 to reach the stub if necessary. */
461a49ca 2592static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb 2593{
07d6d2b8 2594 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2595 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2596};
906e58ca 2597
fea2b4d6
CL
2598/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2599 available. */
461a49ca 2600static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb 2601{
07d6d2b8
AM
2602 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2603 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2604 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2605};
906e58ca 2606
d3626fb0 2607/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2608static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb 2609{
07d6d2b8
AM
2610 THUMB16_INSN (0xb401), /* push {r0} */
2611 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2612 THUMB16_INSN (0x4684), /* mov ip, r0 */
2613 THUMB16_INSN (0xbc01), /* pop {r0} */
2614 THUMB16_INSN (0x4760), /* bx ip */
2615 THUMB16_INSN (0xbf00), /* nop */
b38cadfb
NC
2616 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2617};
906e58ca 2618
80c135e5
TP
2619/* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2620static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2621{
07d6d2b8 2622 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
80c135e5
TP
2623 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2624};
2625
d5a67c02
AV
2626/* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2627 M-profile architectures. */
2628static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2629{
2630 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2631 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
07d6d2b8 2632 THUMB16_INSN (0x4760), /* bx ip */
d5a67c02
AV
2633};
2634
d3626fb0
CL
2635/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2636 allowed. */
2637static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb 2638{
07d6d2b8 2639 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2640 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2641 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2642 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2643 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2644};
d3626fb0 2645
fea2b4d6
CL
2646/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2647 available. */
461a49ca 2648static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb 2649{
07d6d2b8 2650 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2651 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8 2652 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2653 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2654};
906e58ca 2655
fea2b4d6
CL
2656/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2657 one, when the destination is close enough. */
461a49ca 2658static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb 2659{
07d6d2b8 2660 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2661 THUMB16_INSN (0xe7fd), /* b .-2 */
b38cadfb
NC
2662 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2663};
c820be07 2664
cf3eccff 2665/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2666 blx to reach the stub if necessary. */
cf3eccff 2667static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb 2668{
07d6d2b8
AM
2669 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2670 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
b38cadfb
NC
2671 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2672};
906e58ca 2673
cf3eccff
DJ
2674/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2675 blx to reach the stub if necessary. We can not add into pc;
2676 it is not guaranteed to mode switch (different in ARMv6 and
2677 ARMv7). */
2678static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb 2679{
07d6d2b8
AM
2680 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2681 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2682 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2683 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2684};
cf3eccff 2685
ebe24dd4
CL
2686/* V4T ARM -> ARM long branch stub, PIC. */
2687static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb 2688{
07d6d2b8
AM
2689 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2690 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2691 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2692 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2693};
ebe24dd4
CL
2694
2695/* V4T Thumb -> ARM long branch stub, PIC. */
2696static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb 2697{
07d6d2b8 2698 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2699 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2700 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2701 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
b38cadfb
NC
2702 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2703};
ebe24dd4 2704
d3626fb0
CL
2705/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2706 architectures. */
ebe24dd4 2707static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb 2708{
07d6d2b8
AM
2709 THUMB16_INSN (0xb401), /* push {r0} */
2710 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2711 THUMB16_INSN (0x46fc), /* mov ip, pc */
2712 THUMB16_INSN (0x4484), /* add ip, r0 */
2713 THUMB16_INSN (0xbc01), /* pop {r0} */
2714 THUMB16_INSN (0x4760), /* bx ip */
b38cadfb
NC
2715 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2716};
ebe24dd4 2717
d3626fb0
CL
2718/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2719 allowed. */
2720static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb 2721{
07d6d2b8 2722 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2723 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2724 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2725 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2726 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2727 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2728};
d3626fb0 2729
0855e32b
NS
2730/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2731 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2732static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2733{
07d6d2b8
AM
2734 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2735 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
b38cadfb 2736 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2737};
2738
2739/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2740 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2741static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2742{
07d6d2b8 2743 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2744 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2745 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2746 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
b38cadfb 2747 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2748};
2749
7a89b94e
NC
2750/* NaCl ARM -> ARM long branch stub. */
2751static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2752{
2753 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2754 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2755 ARM_INSN (0xe12fff1c), /* bx ip */
2756 ARM_INSN (0xe320f000), /* nop */
2757 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2758 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2759 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2760 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2761};
2762
2763/* NaCl ARM -> ARM long branch stub, PIC. */
2764static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2765{
2766 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
07d6d2b8 2767 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
7a89b94e 2768 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2769 ARM_INSN (0xe12fff1c), /* bx ip */
2770 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2771 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2772 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2773 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2774};
2775
4ba2ef8f
TP
2776/* Stub used for transition to secure state (aka SG veneer). */
2777static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2778{
2779 THUMB32_INSN (0xe97fe97f), /* sg. */
2780 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2781};
2782
7a89b94e 2783
48229727
JB
2784/* Cortex-A8 erratum-workaround stubs. */
2785
2786/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2787 can't use a conditional branch to reach this stub). */
2788
2789static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb 2790{
07d6d2b8 2791 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
b38cadfb
NC
2792 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2793 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2794};
48229727
JB
2795
2796/* Stub used for b.w and bl.w instructions. */
2797
2798static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2799{
2800 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2801};
48229727
JB
2802
2803static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2804{
2805 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2806};
48229727
JB
2807
2808/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2809 instruction (which switches to ARM mode) to point to this stub. Jump to the
2810 real destination using an ARM-mode branch. */
2811
2812static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2813{
2814 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2815};
48229727 2816
9553db3c
NC
2817/* For each section group there can be a specially created linker section
2818 to hold the stubs for that group. The name of the stub section is based
2819 upon the name of another section within that group with the suffix below
2820 applied.
2821
2822 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2823 create what appeared to be a linker stub section when it actually
2824 contained user code/data. For example, consider this fragment:
b38cadfb 2825
9553db3c
NC
2826 const char * stubborn_problems[] = { "np" };
2827
2828 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2829 section called:
2830
2831 .data.rel.local.stubborn_problems
2832
2833 This then causes problems in arm32_arm_build_stubs() as it triggers:
2834
2835 // Ignore non-stub sections.
2836 if (!strstr (stub_sec->name, STUB_SUFFIX))
2837 continue;
2838
2839 And so the section would be ignored instead of being processed. Hence
2840 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2841 C identifier. */
2842#define STUB_SUFFIX ".__stub"
906e58ca 2843
738a79f6
CL
2844/* One entry per long/short branch stub defined above. */
2845#define DEF_STUBS \
cc850f74
NC
2846 DEF_STUB (long_branch_any_any) \
2847 DEF_STUB (long_branch_v4t_arm_thumb) \
2848 DEF_STUB (long_branch_thumb_only) \
2849 DEF_STUB (long_branch_v4t_thumb_thumb) \
2850 DEF_STUB (long_branch_v4t_thumb_arm) \
2851 DEF_STUB (short_branch_v4t_thumb_arm) \
2852 DEF_STUB (long_branch_any_arm_pic) \
2853 DEF_STUB (long_branch_any_thumb_pic) \
2854 DEF_STUB (long_branch_v4t_thumb_thumb_pic) \
2855 DEF_STUB (long_branch_v4t_arm_thumb_pic) \
2856 DEF_STUB (long_branch_v4t_thumb_arm_pic) \
2857 DEF_STUB (long_branch_thumb_only_pic) \
2858 DEF_STUB (long_branch_any_tls_pic) \
2859 DEF_STUB (long_branch_v4t_thumb_tls_pic) \
2860 DEF_STUB (long_branch_arm_nacl) \
2861 DEF_STUB (long_branch_arm_nacl_pic) \
2862 DEF_STUB (cmse_branch_thumb_only) \
2863 DEF_STUB (a8_veneer_b_cond) \
2864 DEF_STUB (a8_veneer_b) \
2865 DEF_STUB (a8_veneer_bl) \
2866 DEF_STUB (a8_veneer_blx) \
2867 DEF_STUB (long_branch_thumb2_only) \
2868 DEF_STUB (long_branch_thumb2_only_pure)
738a79f6
CL
2869
2870#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2871enum elf32_arm_stub_type
2872{
906e58ca 2873 arm_stub_none,
738a79f6 2874 DEF_STUBS
4f4faa4d 2875 max_stub_type
738a79f6
CL
2876};
2877#undef DEF_STUB
2878
8d9d9490
TP
2879/* Note the first a8_veneer type. */
2880const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2881
738a79f6
CL
2882typedef struct
2883{
d3ce72d0 2884 const insn_sequence* template_sequence;
738a79f6
CL
2885 int template_size;
2886} stub_def;
2887
2888#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2889static const stub_def stub_definitions[] =
2890{
738a79f6
CL
2891 {NULL, 0},
2892 DEF_STUBS
906e58ca
NC
2893};
2894
2895struct elf32_arm_stub_hash_entry
2896{
2897 /* Base hash table entry structure. */
2898 struct bfd_hash_entry root;
2899
2900 /* The stub section. */
2901 asection *stub_sec;
2902
2903 /* Offset within stub_sec of the beginning of this stub. */
2904 bfd_vma stub_offset;
2905
2906 /* Given the symbol's value and its section we can determine its final
2907 value when building the stubs (so the stub knows where to jump). */
2908 bfd_vma target_value;
2909 asection *target_section;
2910
8d9d9490
TP
2911 /* Same as above but for the source of the branch to the stub. Used for
2912 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2913 such, source section does not need to be recorded since Cortex-A8 erratum
2914 workaround stubs are only generated when both source and target are in the
2915 same section. */
2916 bfd_vma source_value;
48229727
JB
2917
2918 /* The instruction which caused this stub to be generated (only valid for
2919 Cortex-A8 erratum workaround stubs at present). */
2920 unsigned long orig_insn;
2921
461a49ca 2922 /* The stub type. */
906e58ca 2923 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2924 /* Its encoding size in bytes. */
2925 int stub_size;
2926 /* Its template. */
2927 const insn_sequence *stub_template;
2928 /* The size of the template (number of entries). */
2929 int stub_template_size;
906e58ca
NC
2930
2931 /* The symbol table entry, if any, that this was derived from. */
2932 struct elf32_arm_link_hash_entry *h;
2933
35fc36a8
RS
2934 /* Type of branch. */
2935 enum arm_st_branch_type branch_type;
906e58ca
NC
2936
2937 /* Where this stub is being called from, or, in the case of combined
2938 stub sections, the first input section in the group. */
2939 asection *id_sec;
7413f23f
DJ
2940
2941 /* The name for the local symbol at the start of this stub. The
2942 stub name in the hash table has to be unique; this does not, so
2943 it can be friendlier. */
2944 char *output_name;
906e58ca
NC
2945};
2946
e489d0ae
PB
2947/* Used to build a map of a section. This is required for mixed-endian
2948 code/data. */
2949
2950typedef struct elf32_elf_section_map
2951{
2952 bfd_vma vma;
2953 char type;
2954}
2955elf32_arm_section_map;
2956
c7b8f16e
JB
2957/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2958
2959typedef enum
2960{
2961 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2962 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2963 VFP11_ERRATUM_ARM_VENEER,
2964 VFP11_ERRATUM_THUMB_VENEER
2965}
2966elf32_vfp11_erratum_type;
2967
2968typedef struct elf32_vfp11_erratum_list
2969{
2970 struct elf32_vfp11_erratum_list *next;
2971 bfd_vma vma;
2972 union
2973 {
2974 struct
2975 {
2976 struct elf32_vfp11_erratum_list *veneer;
2977 unsigned int vfp_insn;
2978 } b;
2979 struct
2980 {
2981 struct elf32_vfp11_erratum_list *branch;
2982 unsigned int id;
2983 } v;
2984 } u;
2985 elf32_vfp11_erratum_type type;
2986}
2987elf32_vfp11_erratum_list;
2988
a504d23a
LA
2989/* Information about a STM32L4XX erratum veneer, or a branch to such a
2990 veneer. */
2991typedef enum
2992{
2993 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2994 STM32L4XX_ERRATUM_VENEER
2995}
2996elf32_stm32l4xx_erratum_type;
2997
2998typedef struct elf32_stm32l4xx_erratum_list
2999{
3000 struct elf32_stm32l4xx_erratum_list *next;
3001 bfd_vma vma;
3002 union
3003 {
3004 struct
3005 {
3006 struct elf32_stm32l4xx_erratum_list *veneer;
3007 unsigned int insn;
3008 } b;
3009 struct
3010 {
3011 struct elf32_stm32l4xx_erratum_list *branch;
3012 unsigned int id;
3013 } v;
3014 } u;
3015 elf32_stm32l4xx_erratum_type type;
3016}
3017elf32_stm32l4xx_erratum_list;
3018
2468f9c9
PB
3019typedef enum
3020{
3021 DELETE_EXIDX_ENTRY,
3022 INSERT_EXIDX_CANTUNWIND_AT_END
3023}
3024arm_unwind_edit_type;
3025
3026/* A (sorted) list of edits to apply to an unwind table. */
3027typedef struct arm_unwind_table_edit
3028{
3029 arm_unwind_edit_type type;
3030 /* Note: we sometimes want to insert an unwind entry corresponding to a
3031 section different from the one we're currently writing out, so record the
3032 (text) section this edit relates to here. */
3033 asection *linked_section;
3034 unsigned int index;
3035 struct arm_unwind_table_edit *next;
3036}
3037arm_unwind_table_edit;
3038
8e3de13a 3039typedef struct _arm_elf_section_data
e489d0ae 3040{
2468f9c9 3041 /* Information about mapping symbols. */
e489d0ae 3042 struct bfd_elf_section_data elf;
8e3de13a 3043 unsigned int mapcount;
c7b8f16e 3044 unsigned int mapsize;
e489d0ae 3045 elf32_arm_section_map *map;
2468f9c9 3046 /* Information about CPU errata. */
c7b8f16e
JB
3047 unsigned int erratumcount;
3048 elf32_vfp11_erratum_list *erratumlist;
a504d23a
LA
3049 unsigned int stm32l4xx_erratumcount;
3050 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
491d01d3 3051 unsigned int additional_reloc_count;
2468f9c9
PB
3052 /* Information about unwind tables. */
3053 union
3054 {
3055 /* Unwind info attached to a text section. */
3056 struct
3057 {
3058 asection *arm_exidx_sec;
3059 } text;
3060
3061 /* Unwind info attached to an .ARM.exidx section. */
3062 struct
3063 {
3064 arm_unwind_table_edit *unwind_edit_list;
3065 arm_unwind_table_edit *unwind_edit_tail;
3066 } exidx;
3067 } u;
8e3de13a
NC
3068}
3069_arm_elf_section_data;
e489d0ae
PB
3070
3071#define elf32_arm_section_data(sec) \
8e3de13a 3072 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 3073
48229727
JB
3074/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3075 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3076 so may be created multiple times: we use an array of these entries whilst
3077 relaxing which we can refresh easily, then create stubs for each potentially
3078 erratum-triggering instruction once we've settled on a solution. */
3079
b38cadfb
NC
3080struct a8_erratum_fix
3081{
48229727
JB
3082 bfd *input_bfd;
3083 asection *section;
3084 bfd_vma offset;
8d9d9490 3085 bfd_vma target_offset;
48229727
JB
3086 unsigned long orig_insn;
3087 char *stub_name;
3088 enum elf32_arm_stub_type stub_type;
35fc36a8 3089 enum arm_st_branch_type branch_type;
48229727
JB
3090};
3091
3092/* A table of relocs applied to branches which might trigger Cortex-A8
3093 erratum. */
3094
b38cadfb
NC
3095struct a8_erratum_reloc
3096{
48229727
JB
3097 bfd_vma from;
3098 bfd_vma destination;
92750f34
DJ
3099 struct elf32_arm_link_hash_entry *hash;
3100 const char *sym_name;
48229727 3101 unsigned int r_type;
35fc36a8 3102 enum arm_st_branch_type branch_type;
0a1b45a2 3103 bool non_a8_stub;
48229727
JB
3104};
3105
ba93b8ac
DJ
3106/* The size of the thread control block. */
3107#define TCB_SIZE 8
3108
34e77a92
RS
3109/* ARM-specific information about a PLT entry, over and above the usual
3110 gotplt_union. */
b38cadfb
NC
3111struct arm_plt_info
3112{
34e77a92
RS
3113 /* We reference count Thumb references to a PLT entry separately,
3114 so that we can emit the Thumb trampoline only if needed. */
3115 bfd_signed_vma thumb_refcount;
3116
3117 /* Some references from Thumb code may be eliminated by BL->BLX
3118 conversion, so record them separately. */
3119 bfd_signed_vma maybe_thumb_refcount;
3120
3121 /* How many of the recorded PLT accesses were from non-call relocations.
3122 This information is useful when deciding whether anything takes the
3123 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3124 non-call references to the function should resolve directly to the
3125 real runtime target. */
3126 unsigned int noncall_refcount;
3127
3128 /* Since PLT entries have variable size if the Thumb prologue is
3129 used, we need to record the index into .got.plt instead of
3130 recomputing it from the PLT offset. */
3131 bfd_signed_vma got_offset;
3132};
3133
3134/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
3135struct arm_local_iplt_info
3136{
34e77a92
RS
3137 /* The information that is usually found in the generic ELF part of
3138 the hash table entry. */
3139 union gotplt_union root;
3140
3141 /* The information that is usually found in the ARM-specific part of
3142 the hash table entry. */
3143 struct arm_plt_info arm;
3144
3145 /* A list of all potential dynamic relocations against this symbol. */
3146 struct elf_dyn_relocs *dyn_relocs;
3147};
3148
e8b09b87 3149/* Structure to handle FDPIC support for local functions. */
cc850f74
NC
3150struct fdpic_local
3151{
e8b09b87
CL
3152 unsigned int funcdesc_cnt;
3153 unsigned int gotofffuncdesc_cnt;
3154 int funcdesc_offset;
3155};
3156
0ffa91dd 3157struct elf_arm_obj_tdata
ba93b8ac
DJ
3158{
3159 struct elf_obj_tdata root;
3160
cc850f74
NC
3161 /* Zero to warn when linking objects with incompatible enum sizes. */
3162 int no_enum_size_warning;
3163
3164 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3165 int no_wchar_size_warning;
3166
74fd118f
NC
3167 /* The number of entries in each of the arrays in this strcuture.
3168 Used to avoid buffer overruns. */
3169 bfd_size_type num_entries;
3170
ba93b8ac
DJ
3171 /* tls_type for each local got entry. */
3172 char *local_got_tls_type;
ee065d83 3173
0855e32b
NS
3174 /* GOTPLT entries for TLS descriptors. */
3175 bfd_vma *local_tlsdesc_gotent;
3176
34e77a92
RS
3177 /* Information for local symbols that need entries in .iplt. */
3178 struct arm_local_iplt_info **local_iplt;
3179
e8b09b87
CL
3180 /* Maintains FDPIC counters and funcdesc info. */
3181 struct fdpic_local *local_fdpic_cnts;
ba93b8ac
DJ
3182};
3183
0ffa91dd
NC
3184#define elf_arm_tdata(bfd) \
3185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 3186
74fd118f
NC
3187#define elf32_arm_num_entries(bfd) \
3188 (elf_arm_tdata (bfd)->num_entries)
3189
0ffa91dd
NC
3190#define elf32_arm_local_got_tls_type(bfd) \
3191 (elf_arm_tdata (bfd)->local_got_tls_type)
3192
0855e32b
NS
3193#define elf32_arm_local_tlsdesc_gotent(bfd) \
3194 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3195
34e77a92
RS
3196#define elf32_arm_local_iplt(bfd) \
3197 (elf_arm_tdata (bfd)->local_iplt)
3198
e8b09b87
CL
3199#define elf32_arm_local_fdpic_cnts(bfd) \
3200 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3201
0ffa91dd
NC
3202#define is_arm_elf(bfd) \
3203 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3204 && elf_tdata (bfd) != NULL \
4dfe6ac6 3205 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac 3206
0a1b45a2 3207static bool
ba93b8ac
DJ
3208elf32_arm_mkobject (bfd *abfd)
3209{
0ffa91dd 3210 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 3211 ARM_ELF_DATA);
ba93b8ac
DJ
3212}
3213
ba93b8ac
DJ
3214#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3215
e8b09b87
CL
3216/* Structure to handle FDPIC support for extern functions. */
3217struct fdpic_global {
3218 unsigned int gotofffuncdesc_cnt;
3219 unsigned int gotfuncdesc_cnt;
3220 unsigned int funcdesc_cnt;
3221 int funcdesc_offset;
3222 int gotfuncdesc_offset;
3223};
3224
ba96a88f 3225/* Arm ELF linker hash entry. */
252b5132 3226struct elf32_arm_link_hash_entry
b38cadfb
NC
3227{
3228 struct elf_link_hash_entry root;
252b5132 3229
b38cadfb
NC
3230 /* ARM-specific PLT information. */
3231 struct arm_plt_info plt;
ba93b8ac
DJ
3232
3233#define GOT_UNKNOWN 0
3234#define GOT_NORMAL 1
3235#define GOT_TLS_GD 2
3236#define GOT_TLS_IE 4
0855e32b
NS
3237#define GOT_TLS_GDESC 8
3238#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 3239 unsigned int tls_type : 8;
34e77a92 3240
b38cadfb
NC
3241 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3242 unsigned int is_iplt : 1;
34e77a92 3243
b38cadfb 3244 unsigned int unused : 23;
a4fd1a8e 3245
b38cadfb
NC
3246 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3247 starting at the end of the jump table. */
3248 bfd_vma tlsdesc_got;
0855e32b 3249
b38cadfb
NC
3250 /* The symbol marking the real symbol location for exported thumb
3251 symbols with Arm stubs. */
3252 struct elf_link_hash_entry *export_glue;
906e58ca 3253
b38cadfb 3254 /* A pointer to the most recently used stub hash entry against this
8029a119 3255 symbol. */
b38cadfb 3256 struct elf32_arm_stub_hash_entry *stub_cache;
e8b09b87
CL
3257
3258 /* Counter for FDPIC relocations against this symbol. */
3259 struct fdpic_global fdpic_cnts;
b38cadfb 3260};
252b5132 3261
252b5132 3262/* Traverse an arm ELF linker hash table. */
252b5132
RH
3263#define elf32_arm_link_hash_traverse(table, func, info) \
3264 (elf_link_hash_traverse \
3265 (&(table)->root, \
0a1b45a2 3266 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
3267 (info)))
3268
3269/* Get the ARM elf linker hash table from a link_info structure. */
0f55320b
AM
3270#define elf32_arm_hash_table(p) \
3271 ((is_elf_hash_table ((p)->hash) \
3272 && elf_hash_table_id (elf_hash_table (p)) == ARM_ELF_DATA) \
3273 ? (struct elf32_arm_link_hash_table *) (p)->hash : NULL)
252b5132 3274
906e58ca
NC
3275#define arm_stub_hash_lookup(table, string, create, copy) \
3276 ((struct elf32_arm_stub_hash_entry *) \
3277 bfd_hash_lookup ((table), (string), (create), (copy)))
3278
21d799b5
NC
3279/* Array to keep track of which stub sections have been created, and
3280 information on stub grouping. */
3281struct map_stub
3282{
3283 /* This is the section to which stubs in the group will be
3284 attached. */
3285 asection *link_sec;
3286 /* The stub section. */
3287 asection *stub_sec;
3288};
3289
0855e32b
NS
3290#define elf32_arm_compute_jump_table_size(htab) \
3291 ((htab)->next_tls_desc_index * 4)
3292
9b485d32 3293/* ARM ELF linker hash table. */
252b5132 3294struct elf32_arm_link_hash_table
906e58ca
NC
3295{
3296 /* The main hash table. */
3297 struct elf_link_hash_table root;
252b5132 3298
906e58ca
NC
3299 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3300 bfd_size_type thumb_glue_size;
252b5132 3301
906e58ca
NC
3302 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3303 bfd_size_type arm_glue_size;
252b5132 3304
906e58ca
NC
3305 /* The size in bytes of section containing the ARMv4 BX veneers. */
3306 bfd_size_type bx_glue_size;
845b51d6 3307
906e58ca
NC
3308 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3309 veneer has been populated. */
3310 bfd_vma bx_glue_offset[15];
845b51d6 3311
906e58ca
NC
3312 /* The size in bytes of the section containing glue for VFP11 erratum
3313 veneers. */
3314 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 3315
a504d23a
LA
3316 /* The size in bytes of the section containing glue for STM32L4XX erratum
3317 veneers. */
3318 bfd_size_type stm32l4xx_erratum_glue_size;
3319
48229727
JB
3320 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3321 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3322 elf32_arm_write_section(). */
3323 struct a8_erratum_fix *a8_erratum_fixes;
3324 unsigned int num_a8_erratum_fixes;
3325
906e58ca
NC
3326 /* An arbitrary input BFD chosen to hold the glue sections. */
3327 bfd * bfd_of_glue_owner;
ba96a88f 3328
906e58ca
NC
3329 /* Nonzero to output a BE8 image. */
3330 int byteswap_code;
e489d0ae 3331
906e58ca
NC
3332 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3333 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3334 int target1_is_rel;
9c504268 3335
906e58ca
NC
3336 /* The relocation to use for R_ARM_TARGET2 relocations. */
3337 int target2_reloc;
eb043451 3338
906e58ca
NC
3339 /* 0 = Ignore R_ARM_V4BX.
3340 1 = Convert BX to MOV PC.
3341 2 = Generate v4 interworing stubs. */
3342 int fix_v4bx;
319850b4 3343
48229727
JB
3344 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3345 int fix_cortex_a8;
3346
2de70689
MGD
3347 /* Whether we should fix the ARM1176 BLX immediate issue. */
3348 int fix_arm1176;
3349
906e58ca
NC
3350 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3351 int use_blx;
33bfe774 3352
906e58ca
NC
3353 /* What sort of code sequences we should look for which may trigger the
3354 VFP11 denorm erratum. */
3355 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 3356
906e58ca
NC
3357 /* Global counter for the number of fixes we have emitted. */
3358 int num_vfp11_fixes;
c7b8f16e 3359
a504d23a
LA
3360 /* What sort of code sequences we should look for which may trigger the
3361 STM32L4XX erratum. */
3362 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3363
3364 /* Global counter for the number of fixes we have emitted. */
3365 int num_stm32l4xx_fixes;
3366
906e58ca
NC
3367 /* Nonzero to force PIC branch veneers. */
3368 int pic_veneer;
27e55c4d 3369
906e58ca
NC
3370 /* The number of bytes in the initial entry in the PLT. */
3371 bfd_size_type plt_header_size;
e5a52504 3372
906e58ca
NC
3373 /* The number of bytes in the subsequent PLT etries. */
3374 bfd_size_type plt_entry_size;
e5a52504 3375
906e58ca 3376 /* True if the target uses REL relocations. */
0a1b45a2 3377 bool use_rel;
4e7fd91e 3378
54ddd295
TP
3379 /* Nonzero if import library must be a secure gateway import library
3380 as per ARMv8-M Security Extensions. */
3381 int cmse_implib;
3382
0955507f
TP
3383 /* The import library whose symbols' address must remain stable in
3384 the import library generated. */
3385 bfd *in_implib_bfd;
3386
0855e32b
NS
3387 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3388 bfd_vma next_tls_desc_index;
3389
3390 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3391 bfd_vma num_tls_desc;
3392
906e58ca
NC
3393 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3394 asection *srelplt2;
00a97672 3395
0855e32b
NS
3396 /* Offset in .plt section of tls_arm_trampoline. */
3397 bfd_vma tls_trampoline;
3398
5c5a4843 3399 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
906e58ca
NC
3400 union
3401 {
3402 bfd_signed_vma refcount;
3403 bfd_vma offset;
3404 } tls_ldm_got;
b7693d02 3405
906e58ca
NC
3406 /* For convenience in allocate_dynrelocs. */
3407 bfd * obfd;
3408
0855e32b
NS
3409 /* The amount of space used by the reserved portion of the sgotplt
3410 section, plus whatever space is used by the jump slots. */
3411 bfd_vma sgotplt_jump_table_size;
3412
906e58ca
NC
3413 /* The stub hash table. */
3414 struct bfd_hash_table stub_hash_table;
3415
3416 /* Linker stub bfd. */
3417 bfd *stub_bfd;
3418
3419 /* Linker call-backs. */
6bde4c52
TP
3420 asection * (*add_stub_section) (const char *, asection *, asection *,
3421 unsigned int);
906e58ca
NC
3422 void (*layout_sections_again) (void);
3423
3424 /* Array to keep track of which stub sections have been created, and
3425 information on stub grouping. */
21d799b5 3426 struct map_stub *stub_group;
906e58ca 3427
4ba2ef8f
TP
3428 /* Input stub section holding secure gateway veneers. */
3429 asection *cmse_stub_sec;
3430
0955507f
TP
3431 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3432 start to be allocated. */
3433 bfd_vma new_cmse_stub_offset;
3434
fe33d2fa 3435 /* Number of elements in stub_group. */
7292b3ac 3436 unsigned int top_id;
fe33d2fa 3437
906e58ca
NC
3438 /* Assorted information used by elf32_arm_size_stubs. */
3439 unsigned int bfd_count;
7292b3ac 3440 unsigned int top_index;
906e58ca 3441 asection **input_list;
617a5ada
CL
3442
3443 /* True if the target system uses FDPIC. */
3444 int fdpic_p;
e8b09b87
CL
3445
3446 /* Fixup section. Used for FDPIC. */
3447 asection *srofixup;
906e58ca 3448};
252b5132 3449
e8b09b87
CL
3450/* Add an FDPIC read-only fixup. */
3451static void
3452arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3453{
3454 bfd_vma fixup_offset;
3455
3456 fixup_offset = srofixup->reloc_count++ * 4;
3457 BFD_ASSERT (fixup_offset < srofixup->size);
3458 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3459}
3460
a504d23a
LA
3461static inline int
3462ctz (unsigned int mask)
3463{
3464#if GCC_VERSION >= 3004
3465 return __builtin_ctz (mask);
3466#else
3467 unsigned int i;
3468
3469 for (i = 0; i < 8 * sizeof (mask); i++)
3470 {
3471 if (mask & 0x1)
3472 break;
3473 mask = (mask >> 1);
3474 }
3475 return i;
3476#endif
3477}
3478
3479static inline int
b25e998d 3480elf32_arm_popcount (unsigned int mask)
a504d23a
LA
3481{
3482#if GCC_VERSION >= 3004
3483 return __builtin_popcount (mask);
3484#else
b25e998d
CG
3485 unsigned int i;
3486 int sum = 0;
a504d23a
LA
3487
3488 for (i = 0; i < 8 * sizeof (mask); i++)
3489 {
3490 if (mask & 0x1)
3491 sum++;
3492 mask = (mask >> 1);
3493 }
3494 return sum;
3495#endif
3496}
3497
e8b09b87
CL
3498static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3499 asection *sreloc, Elf_Internal_Rela *rel);
3500
3501static void
cc850f74
NC
3502arm_elf_fill_funcdesc (bfd *output_bfd,
3503 struct bfd_link_info *info,
3504 int *funcdesc_offset,
3505 int dynindx,
3506 int offset,
3507 bfd_vma addr,
3508 bfd_vma dynreloc_value,
3509 bfd_vma seg)
e8b09b87
CL
3510{
3511 if ((*funcdesc_offset & 1) == 0)
3512 {
3513 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3514 asection *sgot = globals->root.sgot;
3515
cc850f74 3516 if (bfd_link_pic (info))
e8b09b87
CL
3517 {
3518 asection *srelgot = globals->root.srelgot;
3519 Elf_Internal_Rela outrel;
3520
3521 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3522 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3523 outrel.r_addend = 0;
3524
3525 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3526 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3527 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3528 }
3529 else
3530 {
3531 struct elf_link_hash_entry *hgot = globals->root.hgot;
3532 bfd_vma got_value = hgot->root.u.def.value
3533 + hgot->root.u.def.section->output_section->vma
3534 + hgot->root.u.def.section->output_offset;
3535
cc850f74
NC
3536 arm_elf_add_rofixup (output_bfd, globals->srofixup,
3537 sgot->output_section->vma + sgot->output_offset
3538 + offset);
3539 arm_elf_add_rofixup (output_bfd, globals->srofixup,
3540 sgot->output_section->vma + sgot->output_offset
3541 + offset + 4);
e8b09b87
CL
3542 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3543 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3544 }
3545 *funcdesc_offset |= 1;
3546 }
3547}
3548
780a67af
NC
3549/* Create an entry in an ARM ELF linker hash table. */
3550
3551static struct bfd_hash_entry *
57e8b36a 3552elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
99059e56
RM
3553 struct bfd_hash_table * table,
3554 const char * string)
780a67af
NC
3555{
3556 struct elf32_arm_link_hash_entry * ret =
3557 (struct elf32_arm_link_hash_entry *) entry;
3558
3559 /* Allocate the structure if it has not already been allocated by a
3560 subclass. */
906e58ca 3561 if (ret == NULL)
21d799b5 3562 ret = (struct elf32_arm_link_hash_entry *)
99059e56 3563 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3564 if (ret == NULL)
780a67af
NC
3565 return (struct bfd_hash_entry *) ret;
3566
3567 /* Call the allocation method of the superclass. */
3568 ret = ((struct elf32_arm_link_hash_entry *)
3569 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3570 table, string));
57e8b36a 3571 if (ret != NULL)
b7693d02 3572 {
ba93b8ac 3573 ret->tls_type = GOT_UNKNOWN;
0855e32b 3574 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3575 ret->plt.thumb_refcount = 0;
3576 ret->plt.maybe_thumb_refcount = 0;
3577 ret->plt.noncall_refcount = 0;
3578 ret->plt.got_offset = -1;
0a1b45a2 3579 ret->is_iplt = false;
a4fd1a8e 3580 ret->export_glue = NULL;
906e58ca
NC
3581
3582 ret->stub_cache = NULL;
e8b09b87
CL
3583
3584 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3585 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3586 ret->fdpic_cnts.funcdesc_cnt = 0;
3587 ret->fdpic_cnts.funcdesc_offset = -1;
3588 ret->fdpic_cnts.gotfuncdesc_offset = -1;
b7693d02 3589 }
780a67af
NC
3590
3591 return (struct bfd_hash_entry *) ret;
3592}
3593
34e77a92
RS
3594/* Ensure that we have allocated bookkeeping structures for ABFD's local
3595 symbols. */
3596
0a1b45a2 3597static bool
34e77a92
RS
3598elf32_arm_allocate_local_sym_info (bfd *abfd)
3599{
3600 if (elf_local_got_refcounts (abfd) == NULL)
3601 {
3602 bfd_size_type num_syms;
74fd118f
NC
3603
3604 elf32_arm_num_entries (abfd) = 0;
3605
3606 /* Whilst it might be tempting to allocate a single block of memory and
3607 then divide it up amoungst the arrays in the elf_arm_obj_tdata
3608 structure, this interferes with the work of memory checkers looking
3609 for buffer overruns. So allocate each array individually. */
34e77a92
RS
3610
3611 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
74fd118f
NC
3612
3613 elf_local_got_refcounts (abfd) = bfd_zalloc
3614 (abfd, num_syms * sizeof (* elf_local_got_refcounts (abfd)));
3615
3616 if (elf_local_got_refcounts (abfd) == NULL)
0a1b45a2 3617 return false;
34e77a92 3618
74fd118f
NC
3619 elf32_arm_local_tlsdesc_gotent (abfd) = bfd_zalloc
3620 (abfd, num_syms * sizeof (* elf32_arm_local_tlsdesc_gotent (abfd)));
34e77a92 3621
74fd118f
NC
3622 if (elf32_arm_local_tlsdesc_gotent (abfd) == NULL)
3623 return false;
f911bb22 3624
74fd118f
NC
3625 elf32_arm_local_iplt (abfd) = bfd_zalloc
3626 (abfd, num_syms * sizeof (* elf32_arm_local_iplt (abfd)));
34e77a92 3627
74fd118f
NC
3628 if (elf32_arm_local_iplt (abfd) == NULL)
3629 return false;
3630
3631 elf32_arm_local_fdpic_cnts (abfd) = bfd_zalloc
3632 (abfd, num_syms * sizeof (* elf32_arm_local_fdpic_cnts (abfd)));
3633
3634 if (elf32_arm_local_fdpic_cnts (abfd) == NULL)
3635 return false;
3636
3637 elf32_arm_local_got_tls_type (abfd) = bfd_zalloc
3638 (abfd, num_syms * sizeof (* elf32_arm_local_got_tls_type (abfd)));
3639
3640 if (elf32_arm_local_got_tls_type (abfd) == NULL)
3641 return false;
3642
3643 elf32_arm_num_entries (abfd) = num_syms;
34e77a92 3644
f911bb22
AM
3645#if GCC_VERSION >= 3000
3646 BFD_ASSERT (__alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd))
3647 <= __alignof__ (*elf_local_got_refcounts (abfd)));
3648 BFD_ASSERT (__alignof__ (*elf32_arm_local_iplt (abfd))
3649 <= __alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd)));
3650 BFD_ASSERT (__alignof__ (*elf32_arm_local_fdpic_cnts (abfd))
3651 <= __alignof__ (*elf32_arm_local_iplt (abfd)));
3652 BFD_ASSERT (__alignof__ (*elf32_arm_local_got_tls_type (abfd))
3653 <= __alignof__ (*elf32_arm_local_fdpic_cnts (abfd)));
3654#endif
34e77a92 3655 }
0a1b45a2 3656 return true;
34e77a92
RS
3657}
3658
3659/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3660 to input bfd ABFD. Create the information if it doesn't already exist.
3661 Return null if an allocation fails. */
3662
3663static struct arm_local_iplt_info *
3664elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3665{
3666 struct arm_local_iplt_info **ptr;
3667
3668 if (!elf32_arm_allocate_local_sym_info (abfd))
3669 return NULL;
3670
3671 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
74fd118f 3672 BFD_ASSERT (r_symndx < elf32_arm_num_entries (abfd));
34e77a92
RS
3673 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3674 if (*ptr == NULL)
3675 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3676 return *ptr;
3677}
3678
3679/* Try to obtain PLT information for the symbol with index R_SYMNDX
3680 in ABFD's symbol table. If the symbol is global, H points to its
3681 hash table entry, otherwise H is null.
3682
3683 Return true if the symbol does have PLT information. When returning
3684 true, point *ROOT_PLT at the target-independent reference count/offset
3685 union and *ARM_PLT at the ARM-specific information. */
3686
0a1b45a2 3687static bool
4ba2ef8f
TP
3688elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3689 struct elf32_arm_link_hash_entry *h,
34e77a92
RS
3690 unsigned long r_symndx, union gotplt_union **root_plt,
3691 struct arm_plt_info **arm_plt)
3692{
3693 struct arm_local_iplt_info *local_iplt;
3694
4ba2ef8f 3695 if (globals->root.splt == NULL && globals->root.iplt == NULL)
0a1b45a2 3696 return false;
4ba2ef8f 3697
34e77a92
RS
3698 if (h != NULL)
3699 {
3700 *root_plt = &h->root.plt;
3701 *arm_plt = &h->plt;
0a1b45a2 3702 return true;
34e77a92
RS
3703 }
3704
3705 if (elf32_arm_local_iplt (abfd) == NULL)
0a1b45a2 3706 return false;
34e77a92 3707
74fd118f
NC
3708 if (r_symndx >= elf32_arm_num_entries (abfd))
3709 return false;
3710
34e77a92
RS
3711 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3712 if (local_iplt == NULL)
0a1b45a2 3713 return false;
34e77a92
RS
3714
3715 *root_plt = &local_iplt->root;
3716 *arm_plt = &local_iplt->arm;
0a1b45a2 3717 return true;
34e77a92
RS
3718}
3719
0a1b45a2 3720static bool using_thumb_only (struct elf32_arm_link_hash_table *globals);
59029f57 3721
34e77a92
RS
3722/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3723 before it. */
3724
0a1b45a2 3725static bool
34e77a92
RS
3726elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3727 struct arm_plt_info *arm_plt)
3728{
3729 struct elf32_arm_link_hash_table *htab;
3730
3731 htab = elf32_arm_hash_table (info);
59029f57 3732
cc850f74 3733 return (!using_thumb_only (htab) && (arm_plt->thumb_refcount != 0
59029f57 3734 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
34e77a92
RS
3735}
3736
3737/* Return a pointer to the head of the dynamic reloc list that should
3738 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3739 ABFD's symbol table. Return null if an error occurs. */
3740
3741static struct elf_dyn_relocs **
3742elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3743 Elf_Internal_Sym *isym)
3744{
3745 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3746 {
3747 struct arm_local_iplt_info *local_iplt;
3748
3749 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3750 if (local_iplt == NULL)
3751 return NULL;
3752 return &local_iplt->dyn_relocs;
3753 }
3754 else
3755 {
3756 /* Track dynamic relocs needed for local syms too.
3757 We really need local syms available to do this
3758 easily. Oh well. */
3759 asection *s;
3760 void *vpp;
3761
3762 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3763 if (s == NULL)
cc850f74 3764 return NULL;
34e77a92
RS
3765
3766 vpp = &elf_section_data (s)->local_dynrel;
3767 return (struct elf_dyn_relocs **) vpp;
3768 }
3769}
3770
906e58ca
NC
3771/* Initialize an entry in the stub hash table. */
3772
3773static struct bfd_hash_entry *
3774stub_hash_newfunc (struct bfd_hash_entry *entry,
3775 struct bfd_hash_table *table,
3776 const char *string)
3777{
3778 /* Allocate the structure if it has not already been allocated by a
3779 subclass. */
3780 if (entry == NULL)
3781 {
21d799b5 3782 entry = (struct bfd_hash_entry *)
99059e56 3783 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3784 if (entry == NULL)
3785 return entry;
3786 }
3787
3788 /* Call the allocation method of the superclass. */
3789 entry = bfd_hash_newfunc (entry, table, string);
3790 if (entry != NULL)
3791 {
3792 struct elf32_arm_stub_hash_entry *eh;
3793
3794 /* Initialize the local fields. */
3795 eh = (struct elf32_arm_stub_hash_entry *) entry;
3796 eh->stub_sec = NULL;
0955507f 3797 eh->stub_offset = (bfd_vma) -1;
8d9d9490 3798 eh->source_value = 0;
906e58ca
NC
3799 eh->target_value = 0;
3800 eh->target_section = NULL;
cedfb179 3801 eh->orig_insn = 0;
906e58ca 3802 eh->stub_type = arm_stub_none;
461a49ca
DJ
3803 eh->stub_size = 0;
3804 eh->stub_template = NULL;
0955507f 3805 eh->stub_template_size = -1;
906e58ca
NC
3806 eh->h = NULL;
3807 eh->id_sec = NULL;
d8d2f433 3808 eh->output_name = NULL;
906e58ca
NC
3809 }
3810
3811 return entry;
3812}
3813
00a97672 3814/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3815 shortcuts to them in our hash table. */
3816
0a1b45a2 3817static bool
57e8b36a 3818create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3819{
3820 struct elf32_arm_link_hash_table *htab;
3821
e5a52504 3822 htab = elf32_arm_hash_table (info);
4dfe6ac6 3823 if (htab == NULL)
0a1b45a2 3824 return false;
4dfe6ac6 3825
5e681ec4 3826 if (! _bfd_elf_create_got_section (dynobj, info))
0a1b45a2 3827 return false;
5e681ec4 3828
e8b09b87
CL
3829 /* Also create .rofixup. */
3830 if (htab->fdpic_p)
3831 {
3832 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3833 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3834 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
fd361982
AM
3835 if (htab->srofixup == NULL
3836 || !bfd_set_section_alignment (htab->srofixup, 2))
0a1b45a2 3837 return false;
e8b09b87
CL
3838 }
3839
0a1b45a2 3840 return true;
5e681ec4
PB
3841}
3842
34e77a92
RS
3843/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3844
0a1b45a2 3845static bool
34e77a92
RS
3846create_ifunc_sections (struct bfd_link_info *info)
3847{
3848 struct elf32_arm_link_hash_table *htab;
3849 const struct elf_backend_data *bed;
3850 bfd *dynobj;
3851 asection *s;
3852 flagword flags;
b38cadfb 3853
34e77a92
RS
3854 htab = elf32_arm_hash_table (info);
3855 dynobj = htab->root.dynobj;
3856 bed = get_elf_backend_data (dynobj);
3857 flags = bed->dynamic_sec_flags;
3858
3859 if (htab->root.iplt == NULL)
3860 {
3d4d4302
AM
3861 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3862 flags | SEC_READONLY | SEC_CODE);
34e77a92 3863 if (s == NULL
fd361982 3864 || !bfd_set_section_alignment (s, bed->plt_alignment))
0a1b45a2 3865 return false;
34e77a92
RS
3866 htab->root.iplt = s;
3867 }
3868
3869 if (htab->root.irelplt == NULL)
3870 {
3d4d4302
AM
3871 s = bfd_make_section_anyway_with_flags (dynobj,
3872 RELOC_SECTION (htab, ".iplt"),
3873 flags | SEC_READONLY);
34e77a92 3874 if (s == NULL
fd361982 3875 || !bfd_set_section_alignment (s, bed->s->log_file_align))
0a1b45a2 3876 return false;
34e77a92
RS
3877 htab->root.irelplt = s;
3878 }
3879
3880 if (htab->root.igotplt == NULL)
3881 {
3d4d4302 3882 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92 3883 if (s == NULL
fd361982 3884 || !bfd_set_section_alignment (s, bed->s->log_file_align))
0a1b45a2 3885 return false;
34e77a92
RS
3886 htab->root.igotplt = s;
3887 }
0a1b45a2 3888 return true;
34e77a92
RS
3889}
3890
eed94f8f
NC
3891/* Determine if we're dealing with a Thumb only architecture. */
3892
0a1b45a2 3893static bool
eed94f8f
NC
3894using_thumb_only (struct elf32_arm_link_hash_table *globals)
3895{
2fd158eb
TP
3896 int arch;
3897 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3898 Tag_CPU_arch_profile);
eed94f8f 3899
2fd158eb
TP
3900 if (profile)
3901 return profile == 'M';
eed94f8f 3902
2fd158eb 3903 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
eed94f8f 3904
60a019a0 3905 /* Force return logic to be reviewed for each new architecture. */
031254f2 3906 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0 3907
2fd158eb
TP
3908 if (arch == TAG_CPU_ARCH_V6_M
3909 || arch == TAG_CPU_ARCH_V6S_M
3910 || arch == TAG_CPU_ARCH_V7E_M
3911 || arch == TAG_CPU_ARCH_V8M_BASE
031254f2
AV
3912 || arch == TAG_CPU_ARCH_V8M_MAIN
3913 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
0a1b45a2 3914 return true;
eed94f8f 3915
0a1b45a2 3916 return false;
eed94f8f
NC
3917}
3918
3919/* Determine if we're dealing with a Thumb-2 object. */
3920
0a1b45a2 3921static bool
eed94f8f
NC
3922using_thumb2 (struct elf32_arm_link_hash_table *globals)
3923{
60a019a0
TP
3924 int arch;
3925 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3926 Tag_THUMB_ISA_use);
3927
d8147d70
RE
3928 /* No use of thumb permitted, or a legacy thumb-1/2 definition. */
3929 if (thumb_isa < 3)
60a019a0
TP
3930 return thumb_isa == 2;
3931
d8147d70 3932 /* Variant of thumb is described by the architecture tag. */
60a019a0
TP
3933 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3934
3935 /* Force return logic to be reviewed for each new architecture. */
031254f2 3936 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0
TP
3937
3938 return (arch == TAG_CPU_ARCH_V6T2
3939 || arch == TAG_CPU_ARCH_V7
3940 || arch == TAG_CPU_ARCH_V7E_M
3941 || arch == TAG_CPU_ARCH_V8
bff0500d 3942 || arch == TAG_CPU_ARCH_V8R
031254f2
AV
3943 || arch == TAG_CPU_ARCH_V8M_MAIN
3944 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
eed94f8f
NC
3945}
3946
5e866f5a
TP
3947/* Determine whether Thumb-2 BL instruction is available. */
3948
0a1b45a2 3949static bool
5e866f5a
TP
3950using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3951{
3952 int arch =
3953 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3954
3955 /* Force return logic to be reviewed for each new architecture. */
3197e593 3956 BFD_ASSERT (arch <= TAG_CPU_ARCH_V9);
5e866f5a
TP
3957
3958 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3959 return (arch == TAG_CPU_ARCH_V6T2
3960 || arch >= TAG_CPU_ARCH_V7);
3961}
3962
00a97672
RS
3963/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3964 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3965 hash table. */
3966
0a1b45a2 3967static bool
57e8b36a 3968elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3969{
3970 struct elf32_arm_link_hash_table *htab;
3971
3972 htab = elf32_arm_hash_table (info);
4dfe6ac6 3973 if (htab == NULL)
0a1b45a2 3974 return false;
4dfe6ac6 3975
362d30a1 3976 if (!htab->root.sgot && !create_got_section (dynobj, info))
0a1b45a2 3977 return false;
5e681ec4
PB
3978
3979 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
0a1b45a2 3980 return false;
5e681ec4 3981
90c14f0c 3982 if (htab->root.target_os == is_vxworks)
00a97672
RS
3983 {
3984 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
0a1b45a2 3985 return false;
00a97672 3986
0e1862bb 3987 if (bfd_link_pic (info))
00a97672
RS
3988 {
3989 htab->plt_header_size = 0;
3990 htab->plt_entry_size
3991 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3992 }
3993 else
3994 {
3995 htab->plt_header_size
3996 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3997 htab->plt_entry_size
3998 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3999 }
aebf9be7
NC
4000
4001 if (elf_elfheader (dynobj))
4002 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
00a97672 4003 }
eed94f8f
NC
4004 else
4005 {
4006 /* PR ld/16017
4007 Test for thumb only architectures. Note - we cannot just call
4008 using_thumb_only() as the attributes in the output bfd have not been
4009 initialised at this point, so instead we use the input bfd. */
4010 bfd * saved_obfd = htab->obfd;
4011
4012 htab->obfd = dynobj;
4013 if (using_thumb_only (htab))
4014 {
4015 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
4016 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
4017 }
4018 htab->obfd = saved_obfd;
4019 }
5e681ec4 4020
7801f98f
CL
4021 if (htab->fdpic_p) {
4022 htab->plt_header_size = 0;
4023 if (info->flags & DF_BIND_NOW)
cc850f74 4024 htab->plt_entry_size = 4 * (ARRAY_SIZE (elf32_arm_fdpic_plt_entry) - 5);
7801f98f 4025 else
cc850f74 4026 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_fdpic_plt_entry);
7801f98f
CL
4027 }
4028
362d30a1
RS
4029 if (!htab->root.splt
4030 || !htab->root.srelplt
9d19e4fd
AM
4031 || !htab->root.sdynbss
4032 || (!bfd_link_pic (info) && !htab->root.srelbss))
5e681ec4
PB
4033 abort ();
4034
0a1b45a2 4035 return true;
5e681ec4
PB
4036}
4037
906e58ca
NC
4038/* Copy the extra info we tack onto an elf_link_hash_entry. */
4039
4040static void
4041elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4042 struct elf_link_hash_entry *dir,
4043 struct elf_link_hash_entry *ind)
4044{
4045 struct elf32_arm_link_hash_entry *edir, *eind;
4046
4047 edir = (struct elf32_arm_link_hash_entry *) dir;
4048 eind = (struct elf32_arm_link_hash_entry *) ind;
4049
906e58ca
NC
4050 if (ind->root.type == bfd_link_hash_indirect)
4051 {
4052 /* Copy over PLT info. */
34e77a92
RS
4053 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4054 eind->plt.thumb_refcount = 0;
4055 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4056 eind->plt.maybe_thumb_refcount = 0;
4057 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4058 eind->plt.noncall_refcount = 0;
4059
e8b09b87
CL
4060 /* Copy FDPIC counters. */
4061 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4062 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4063 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4064
34e77a92
RS
4065 /* We should only allocate a function to .iplt once the final
4066 symbol information is known. */
4067 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
4068
4069 if (dir->got.refcount <= 0)
4070 {
4071 edir->tls_type = eind->tls_type;
4072 eind->tls_type = GOT_UNKNOWN;
4073 }
4074 }
4075
4076 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4077}
4078
68faa637
AM
4079/* Destroy an ARM elf linker hash table. */
4080
4081static void
d495ab0d 4082elf32_arm_link_hash_table_free (bfd *obfd)
68faa637
AM
4083{
4084 struct elf32_arm_link_hash_table *ret
d495ab0d 4085 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
68faa637
AM
4086
4087 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 4088 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
4089}
4090
906e58ca
NC
4091/* Create an ARM elf linker hash table. */
4092
4093static struct bfd_link_hash_table *
4094elf32_arm_link_hash_table_create (bfd *abfd)
4095{
4096 struct elf32_arm_link_hash_table *ret;
986f0783 4097 size_t amt = sizeof (struct elf32_arm_link_hash_table);
906e58ca 4098
7bf52ea2 4099 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
906e58ca
NC
4100 if (ret == NULL)
4101 return NULL;
4102
4103 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4104 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
4105 sizeof (struct elf32_arm_link_hash_entry),
4106 ARM_ELF_DATA))
906e58ca
NC
4107 {
4108 free (ret);
4109 return NULL;
4110 }
4111
906e58ca 4112 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
a504d23a 4113 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
906e58ca
NC
4114#ifdef FOUR_WORD_PLT
4115 ret->plt_header_size = 16;
4116 ret->plt_entry_size = 16;
4117#else
4118 ret->plt_header_size = 20;
1db37fe6 4119 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
906e58ca 4120#endif
0a1b45a2 4121 ret->use_rel = true;
906e58ca 4122 ret->obfd = abfd;
617a5ada 4123 ret->fdpic_p = 0;
906e58ca
NC
4124
4125 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4126 sizeof (struct elf32_arm_stub_hash_entry)))
4127 {
d495ab0d 4128 _bfd_elf_link_hash_table_free (abfd);
906e58ca
NC
4129 return NULL;
4130 }
d495ab0d 4131 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
906e58ca
NC
4132
4133 return &ret->root.root;
4134}
4135
cd1dac3d
DG
4136/* Determine what kind of NOPs are available. */
4137
0a1b45a2 4138static bool
cd1dac3d
DG
4139arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4140{
4141 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4142 Tag_CPU_arch);
cd1dac3d 4143
60a019a0 4144 /* Force return logic to be reviewed for each new architecture. */
3197e593 4145 BFD_ASSERT (arch <= TAG_CPU_ARCH_V9);
60a019a0
TP
4146
4147 return (arch == TAG_CPU_ARCH_V6T2
4148 || arch == TAG_CPU_ARCH_V6K
4149 || arch == TAG_CPU_ARCH_V7
bff0500d 4150 || arch == TAG_CPU_ARCH_V8
3197e593
PW
4151 || arch == TAG_CPU_ARCH_V8R
4152 || arch == TAG_CPU_ARCH_V9);
cd1dac3d
DG
4153}
4154
0a1b45a2 4155static bool
f4ac8484
DJ
4156arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4157{
4158 switch (stub_type)
4159 {
fea2b4d6 4160 case arm_stub_long_branch_thumb_only:
80c135e5 4161 case arm_stub_long_branch_thumb2_only:
d5a67c02 4162 case arm_stub_long_branch_thumb2_only_pure:
fea2b4d6
CL
4163 case arm_stub_long_branch_v4t_thumb_arm:
4164 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 4165 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 4166 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 4167 case arm_stub_long_branch_thumb_only_pic:
4ba2ef8f 4168 case arm_stub_cmse_branch_thumb_only:
0a1b45a2 4169 return true;
f4ac8484
DJ
4170 case arm_stub_none:
4171 BFD_FAIL ();
0a1b45a2 4172 return false;
f4ac8484
DJ
4173 break;
4174 default:
0a1b45a2 4175 return false;
f4ac8484
DJ
4176 }
4177}
4178
906e58ca
NC
4179/* Determine the type of stub needed, if any, for a call. */
4180
4181static enum elf32_arm_stub_type
4182arm_type_of_stub (struct bfd_link_info *info,
4183 asection *input_sec,
4184 const Elf_Internal_Rela *rel,
34e77a92 4185 unsigned char st_type,
35fc36a8 4186 enum arm_st_branch_type *actual_branch_type,
906e58ca 4187 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
4188 bfd_vma destination,
4189 asection *sym_sec,
4190 bfd *input_bfd,
4191 const char *name)
906e58ca
NC
4192{
4193 bfd_vma location;
4194 bfd_signed_vma branch_offset;
4195 unsigned int r_type;
4196 struct elf32_arm_link_hash_table * globals;
0a1b45a2 4197 bool thumb2, thumb2_bl, thumb_only;
906e58ca 4198 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 4199 int use_plt = 0;
35fc36a8 4200 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
4201 union gotplt_union *root_plt;
4202 struct arm_plt_info *arm_plt;
d5a67c02
AV
4203 int arch;
4204 int thumb2_movw;
906e58ca 4205
35fc36a8 4206 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
4207 return stub_type;
4208
906e58ca 4209 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4210 if (globals == NULL)
4211 return stub_type;
906e58ca
NC
4212
4213 thumb_only = using_thumb_only (globals);
906e58ca 4214 thumb2 = using_thumb2 (globals);
5e866f5a 4215 thumb2_bl = using_thumb2_bl (globals);
906e58ca 4216
d5a67c02
AV
4217 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4218
4219 /* True for architectures that implement the thumb2 movw instruction. */
4220 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4221
906e58ca
NC
4222 /* Determine where the call point is. */
4223 location = (input_sec->output_offset
4224 + input_sec->output_section->vma
4225 + rel->r_offset);
4226
906e58ca
NC
4227 r_type = ELF32_R_TYPE (rel->r_info);
4228
39f21624
NC
4229 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4230 are considering a function call relocation. */
c5423981 4231 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
07d6d2b8 4232 || r_type == R_ARM_THM_JUMP19)
39f21624
NC
4233 && branch_type == ST_BRANCH_TO_ARM)
4234 branch_type = ST_BRANCH_TO_THUMB;
4235
34e77a92
RS
4236 /* For TLS call relocs, it is the caller's responsibility to provide
4237 the address of the appropriate trampoline. */
4238 if (r_type != R_ARM_TLS_CALL
4239 && r_type != R_ARM_THM_TLS_CALL
4ba2ef8f
TP
4240 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4241 ELF32_R_SYM (rel->r_info), &root_plt,
4242 &arm_plt)
34e77a92 4243 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 4244 {
34e77a92 4245 asection *splt;
fe33d2fa 4246
34e77a92
RS
4247 if (hash == NULL || hash->is_iplt)
4248 splt = globals->root.iplt;
4249 else
4250 splt = globals->root.splt;
4251 if (splt != NULL)
b38cadfb 4252 {
34e77a92
RS
4253 use_plt = 1;
4254
4255 /* Note when dealing with PLT entries: the main PLT stub is in
4256 ARM mode, so if the branch is in Thumb mode, another
4257 Thumb->ARM stub will be inserted later just before the ARM
2df2751d
CL
4258 PLT stub. If a long branch stub is needed, we'll add a
4259 Thumb->Arm one and branch directly to the ARM PLT entry.
4260 Here, we have to check if a pre-PLT Thumb->ARM stub
4261 is needed and if it will be close enough. */
34e77a92
RS
4262
4263 destination = (splt->output_section->vma
4264 + splt->output_offset
4265 + root_plt->offset);
4266 st_type = STT_FUNC;
2df2751d
CL
4267
4268 /* Thumb branch/call to PLT: it can become a branch to ARM
4269 or to Thumb. We must perform the same checks and
4270 corrections as in elf32_arm_final_link_relocate. */
4271 if ((r_type == R_ARM_THM_CALL)
4272 || (r_type == R_ARM_THM_JUMP24))
4273 {
4274 if (globals->use_blx
4275 && r_type == R_ARM_THM_CALL
4276 && !thumb_only)
4277 {
4278 /* If the Thumb BLX instruction is available, convert
4279 the BL to a BLX instruction to call the ARM-mode
4280 PLT entry. */
4281 branch_type = ST_BRANCH_TO_ARM;
4282 }
4283 else
4284 {
4285 if (!thumb_only)
4286 /* Target the Thumb stub before the ARM PLT entry. */
4287 destination -= PLT_THUMB_STUB_SIZE;
4288 branch_type = ST_BRANCH_TO_THUMB;
4289 }
4290 }
4291 else
4292 {
4293 branch_type = ST_BRANCH_TO_ARM;
4294 }
34e77a92 4295 }
5fa9e92f 4296 }
34e77a92
RS
4297 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4298 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 4299
fe33d2fa
CL
4300 branch_offset = (bfd_signed_vma)(destination - location);
4301
0855e32b 4302 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
c5423981 4303 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
906e58ca 4304 {
5fa9e92f
CL
4305 /* Handle cases where:
4306 - this call goes too far (different Thumb/Thumb2 max
99059e56 4307 distance)
155d87d7 4308 - it's a Thumb->Arm call and blx is not available, or it's a
99059e56
RM
4309 Thumb->Arm branch (not bl). A stub is needed in this case,
4310 but only if this call is not through a PLT entry. Indeed,
695344c0 4311 PLT stubs handle mode switching already. */
5e866f5a 4312 if ((!thumb2_bl
906e58ca
NC
4313 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4314 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
5e866f5a 4315 || (thumb2_bl
906e58ca
NC
4316 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4317 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
c5423981
TG
4318 || (thumb2
4319 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4320 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4321 && (r_type == R_ARM_THM_JUMP19))
35fc36a8 4322 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
4323 && (((r_type == R_ARM_THM_CALL
4324 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
c5423981 4325 || (r_type == R_ARM_THM_JUMP24)
07d6d2b8 4326 || (r_type == R_ARM_THM_JUMP19))
5fa9e92f 4327 && !use_plt))
906e58ca 4328 {
2df2751d
CL
4329 /* If we need to insert a Thumb-Thumb long branch stub to a
4330 PLT, use one that branches directly to the ARM PLT
4331 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4332 stub, undo this now. */
695344c0
NC
4333 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4334 {
4335 branch_type = ST_BRANCH_TO_ARM;
4336 branch_offset += PLT_THUMB_STUB_SIZE;
4337 }
2df2751d 4338
35fc36a8 4339 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4340 {
4341 /* Thumb to thumb. */
4342 if (!thumb_only)
4343 {
d5a67c02 4344 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4345 _bfd_error_handler
871b3ab2 4346 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4347 " section with SHF_ARM_PURECODE section"
4348 " attribute is only supported for M-profile"
90b6238f 4349 " targets that implement the movw instruction"),
10463f39 4350 input_bfd, input_sec);
d5a67c02 4351
0e1862bb 4352 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4353 /* PIC stubs. */
155d87d7 4354 ? ((globals->use_blx
9553db3c 4355 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
4356 /* V5T and above. Stub starts with ARM code, so
4357 we must be able to switch mode before
4358 reaching it, which is only possible for 'bl'
4359 (ie R_ARM_THM_CALL relocation). */
cf3eccff 4360 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 4361 /* On V4T, use Thumb code only. */
d3626fb0 4362 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
4363
4364 /* non-PIC stubs. */
155d87d7 4365 : ((globals->use_blx
9553db3c 4366 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
4367 /* V5T and above. */
4368 ? arm_stub_long_branch_any_any
4369 /* V4T. */
d3626fb0 4370 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
4371 }
4372 else
4373 {
d5a67c02
AV
4374 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4375 stub_type = arm_stub_long_branch_thumb2_only_pure;
4376 else
4377 {
4378 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4379 _bfd_error_handler
871b3ab2 4380 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4381 " section with SHF_ARM_PURECODE section"
4382 " attribute is only supported for M-profile"
90b6238f 4383 " targets that implement the movw instruction"),
10463f39 4384 input_bfd, input_sec);
d5a67c02
AV
4385
4386 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4387 /* PIC stub. */
4388 ? arm_stub_long_branch_thumb_only_pic
4389 /* non-PIC stub. */
4390 : (thumb2 ? arm_stub_long_branch_thumb2_only
4391 : arm_stub_long_branch_thumb_only);
4392 }
906e58ca
NC
4393 }
4394 }
4395 else
4396 {
d5a67c02 4397 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4398 _bfd_error_handler
871b3ab2 4399 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4400 " section with SHF_ARM_PURECODE section"
4401 " attribute is only supported" " for M-profile"
90b6238f 4402 " targets that implement the movw instruction"),
10463f39 4403 input_bfd, input_sec);
d5a67c02 4404
906e58ca 4405 /* Thumb to arm. */
c820be07
NC
4406 if (sym_sec != NULL
4407 && sym_sec->owner != NULL
4408 && !INTERWORK_FLAG (sym_sec->owner))
4409 {
4eca0228 4410 _bfd_error_handler
90b6238f
AM
4411 (_("%pB(%s): warning: interworking not enabled;"
4412 " first occurrence: %pB: %s call to %s"),
4413 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
c820be07
NC
4414 }
4415
0855e32b 4416 stub_type =
0e1862bb 4417 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4418 /* PIC stubs. */
0855e32b 4419 ? (r_type == R_ARM_THM_TLS_CALL
6a631e86 4420 /* TLS PIC stubs. */
0855e32b
NS
4421 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4422 : arm_stub_long_branch_v4t_thumb_tls_pic)
4423 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4424 /* V5T PIC and above. */
4425 ? arm_stub_long_branch_any_arm_pic
4426 /* V4T PIC stub. */
4427 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
4428
4429 /* non-PIC stubs. */
0855e32b 4430 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
4431 /* V5T and above. */
4432 ? arm_stub_long_branch_any_any
4433 /* V4T. */
4434 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
4435
4436 /* Handle v4t short branches. */
fea2b4d6 4437 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
4438 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4439 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 4440 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
4441 }
4442 }
4443 }
fe33d2fa
CL
4444 else if (r_type == R_ARM_CALL
4445 || r_type == R_ARM_JUMP24
0855e32b
NS
4446 || r_type == R_ARM_PLT32
4447 || r_type == R_ARM_TLS_CALL)
906e58ca 4448 {
d5a67c02 4449 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4450 _bfd_error_handler
871b3ab2 4451 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4452 " section with SHF_ARM_PURECODE section"
4453 " attribute is only supported for M-profile"
90b6238f 4454 " targets that implement the movw instruction"),
10463f39 4455 input_bfd, input_sec);
35fc36a8 4456 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4457 {
4458 /* Arm to thumb. */
c820be07
NC
4459
4460 if (sym_sec != NULL
4461 && sym_sec->owner != NULL
4462 && !INTERWORK_FLAG (sym_sec->owner))
4463 {
4eca0228 4464 _bfd_error_handler
90b6238f
AM
4465 (_("%pB(%s): warning: interworking not enabled;"
4466 " first occurrence: %pB: %s call to %s"),
4467 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
c820be07
NC
4468 }
4469
4470 /* We have an extra 2-bytes reach because of
4471 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
4472 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4473 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 4474 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
4475 || (r_type == R_ARM_JUMP24)
4476 || (r_type == R_ARM_PLT32))
906e58ca 4477 {
0e1862bb 4478 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4479 /* PIC stubs. */
ebe24dd4
CL
4480 ? ((globals->use_blx)
4481 /* V5T and above. */
4482 ? arm_stub_long_branch_any_thumb_pic
4483 /* V4T stub. */
4484 : arm_stub_long_branch_v4t_arm_thumb_pic)
4485
c2b4a39d
CL
4486 /* non-PIC stubs. */
4487 : ((globals->use_blx)
4488 /* V5T and above. */
4489 ? arm_stub_long_branch_any_any
4490 /* V4T. */
4491 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
4492 }
4493 }
4494 else
4495 {
4496 /* Arm to arm. */
4497 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4498 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4499 {
0855e32b 4500 stub_type =
0e1862bb 4501 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4502 /* PIC stubs. */
0855e32b 4503 ? (r_type == R_ARM_TLS_CALL
6a631e86 4504 /* TLS PIC Stub. */
0855e32b 4505 ? arm_stub_long_branch_any_tls_pic
90c14f0c 4506 : (globals->root.target_os == is_nacl
7a89b94e
NC
4507 ? arm_stub_long_branch_arm_nacl_pic
4508 : arm_stub_long_branch_any_arm_pic))
c2b4a39d 4509 /* non-PIC stubs. */
90c14f0c 4510 : (globals->root.target_os == is_nacl
7a89b94e
NC
4511 ? arm_stub_long_branch_arm_nacl
4512 : arm_stub_long_branch_any_any);
906e58ca
NC
4513 }
4514 }
4515 }
4516
fe33d2fa
CL
4517 /* If a stub is needed, record the actual destination type. */
4518 if (stub_type != arm_stub_none)
35fc36a8 4519 *actual_branch_type = branch_type;
fe33d2fa 4520
906e58ca
NC
4521 return stub_type;
4522}
4523
4524/* Build a name for an entry in the stub hash table. */
4525
4526static char *
4527elf32_arm_stub_name (const asection *input_section,
4528 const asection *sym_sec,
4529 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
4530 const Elf_Internal_Rela *rel,
4531 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4532{
4533 char *stub_name;
4534 bfd_size_type len;
4535
4536 if (hash)
4537 {
fe33d2fa 4538 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 4539 stub_name = (char *) bfd_malloc (len);
906e58ca 4540 if (stub_name != NULL)
fe33d2fa 4541 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
4542 input_section->id & 0xffffffff,
4543 hash->root.root.root.string,
fe33d2fa
CL
4544 (int) rel->r_addend & 0xffffffff,
4545 (int) stub_type);
906e58ca
NC
4546 }
4547 else
4548 {
fe33d2fa 4549 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 4550 stub_name = (char *) bfd_malloc (len);
906e58ca 4551 if (stub_name != NULL)
fe33d2fa 4552 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
4553 input_section->id & 0xffffffff,
4554 sym_sec->id & 0xffffffff,
0855e32b
NS
4555 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4556 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4557 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
4558 (int) rel->r_addend & 0xffffffff,
4559 (int) stub_type);
906e58ca
NC
4560 }
4561
4562 return stub_name;
4563}
4564
4565/* Look up an entry in the stub hash. Stub entries are cached because
4566 creating the stub name takes a bit of time. */
4567
4568static struct elf32_arm_stub_hash_entry *
4569elf32_arm_get_stub_entry (const asection *input_section,
4570 const asection *sym_sec,
4571 struct elf_link_hash_entry *hash,
4572 const Elf_Internal_Rela *rel,
fe33d2fa
CL
4573 struct elf32_arm_link_hash_table *htab,
4574 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4575{
4576 struct elf32_arm_stub_hash_entry *stub_entry;
4577 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4578 const asection *id_sec;
4579
4580 if ((input_section->flags & SEC_CODE) == 0)
4581 return NULL;
4582
4d83e8d9
CL
4583 /* If the input section is the CMSE stubs one and it needs a long
4584 branch stub to reach it's final destination, give up with an
4585 error message: this is not supported. See PR ld/24709. */
cc850f74 4586 if (!strncmp (input_section->name, CMSE_STUB_NAME, strlen (CMSE_STUB_NAME)))
4d83e8d9
CL
4587 {
4588 bfd *output_bfd = htab->obfd;
4589 asection *out_sec = bfd_get_section_by_name (output_bfd, CMSE_STUB_NAME);
4590
4591 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4592 "(%#" PRIx64 ") from destination (%#" PRIx64 ")"),
4593 CMSE_STUB_NAME,
4594 (uint64_t)out_sec->output_section->vma
4595 + out_sec->output_offset,
4596 (uint64_t)sym_sec->output_section->vma
4597 + sym_sec->output_offset
4598 + h->root.root.u.def.value);
4599 /* Exit, rather than leave incompletely processed
4600 relocations. */
cc850f74 4601 xexit (1);
4d83e8d9
CL
4602 }
4603
906e58ca
NC
4604 /* If this input section is part of a group of sections sharing one
4605 stub section, then use the id of the first section in the group.
4606 Stub names need to include a section id, as there may well be
4607 more than one stub used to reach say, printf, and we need to
4608 distinguish between them. */
c2abbbeb 4609 BFD_ASSERT (input_section->id <= htab->top_id);
906e58ca
NC
4610 id_sec = htab->stub_group[input_section->id].link_sec;
4611
4612 if (h != NULL && h->stub_cache != NULL
4613 && h->stub_cache->h == h
fe33d2fa
CL
4614 && h->stub_cache->id_sec == id_sec
4615 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
4616 {
4617 stub_entry = h->stub_cache;
4618 }
4619 else
4620 {
4621 char *stub_name;
4622
fe33d2fa 4623 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
4624 if (stub_name == NULL)
4625 return NULL;
4626
4627 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
0a1b45a2 4628 stub_name, false, false);
906e58ca
NC
4629 if (h != NULL)
4630 h->stub_cache = stub_entry;
4631
4632 free (stub_name);
4633 }
4634
4635 return stub_entry;
4636}
4637
daa4adae
TP
4638/* Whether veneers of type STUB_TYPE require to be in a dedicated output
4639 section. */
4640
0a1b45a2 4641static bool
daa4adae
TP
4642arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4643{
4644 if (stub_type >= max_stub_type)
4645 abort (); /* Should be unreachable. */
4646
4ba2ef8f
TP
4647 switch (stub_type)
4648 {
4649 case arm_stub_cmse_branch_thumb_only:
0a1b45a2 4650 return true;
4ba2ef8f
TP
4651
4652 default:
0a1b45a2 4653 return false;
4ba2ef8f
TP
4654 }
4655
4656 abort (); /* Should be unreachable. */
daa4adae
TP
4657}
4658
4659/* Required alignment (as a power of 2) for the dedicated section holding
4660 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4661 with input sections. */
4662
4663static int
4664arm_dedicated_stub_output_section_required_alignment
4665 (enum elf32_arm_stub_type stub_type)
4666{
4667 if (stub_type >= max_stub_type)
4668 abort (); /* Should be unreachable. */
4669
4ba2ef8f
TP
4670 switch (stub_type)
4671 {
4672 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4673 boundary. */
4674 case arm_stub_cmse_branch_thumb_only:
4675 return 5;
4676
4677 default:
4678 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4679 return 0;
4680 }
4681
4682 abort (); /* Should be unreachable. */
daa4adae
TP
4683}
4684
4685/* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4686 NULL if veneers of this type are interspersed with input sections. */
4687
4688static const char *
4689arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4690{
4691 if (stub_type >= max_stub_type)
4692 abort (); /* Should be unreachable. */
4693
4ba2ef8f
TP
4694 switch (stub_type)
4695 {
4696 case arm_stub_cmse_branch_thumb_only:
4d83e8d9 4697 return CMSE_STUB_NAME;
4ba2ef8f
TP
4698
4699 default:
4700 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4701 return NULL;
4702 }
4703
4704 abort (); /* Should be unreachable. */
daa4adae
TP
4705}
4706
4707/* If veneers of type STUB_TYPE should go in a dedicated output section,
4708 returns the address of the hash table field in HTAB holding a pointer to the
4709 corresponding input section. Otherwise, returns NULL. */
4710
4711static asection **
4ba2ef8f
TP
4712arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4713 enum elf32_arm_stub_type stub_type)
daa4adae
TP
4714{
4715 if (stub_type >= max_stub_type)
4716 abort (); /* Should be unreachable. */
4717
4ba2ef8f
TP
4718 switch (stub_type)
4719 {
4720 case arm_stub_cmse_branch_thumb_only:
4721 return &htab->cmse_stub_sec;
4722
4723 default:
4724 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4725 return NULL;
4726 }
4727
4728 abort (); /* Should be unreachable. */
daa4adae
TP
4729}
4730
4731/* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4732 is the section that branch into veneer and can be NULL if stub should go in
4733 a dedicated output section. Returns a pointer to the stub section, and the
4734 section to which the stub section will be attached (in *LINK_SEC_P).
48229727 4735 LINK_SEC_P may be NULL. */
906e58ca 4736
48229727
JB
4737static asection *
4738elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
daa4adae
TP
4739 struct elf32_arm_link_hash_table *htab,
4740 enum elf32_arm_stub_type stub_type)
906e58ca 4741{
daa4adae
TP
4742 asection *link_sec, *out_sec, **stub_sec_p;
4743 const char *stub_sec_prefix;
0a1b45a2 4744 bool dedicated_output_section =
daa4adae
TP
4745 arm_dedicated_stub_output_section_required (stub_type);
4746 int align;
906e58ca 4747
daa4adae 4748 if (dedicated_output_section)
906e58ca 4749 {
daa4adae
TP
4750 bfd *output_bfd = htab->obfd;
4751 const char *out_sec_name =
4752 arm_dedicated_stub_output_section_name (stub_type);
4753 link_sec = NULL;
4754 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4755 stub_sec_prefix = out_sec_name;
4756 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4757 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4758 if (out_sec == NULL)
906e58ca 4759 {
90b6238f 4760 _bfd_error_handler (_("no address assigned to the veneers output "
4eca0228 4761 "section %s"), out_sec_name);
daa4adae 4762 return NULL;
906e58ca 4763 }
daa4adae
TP
4764 }
4765 else
4766 {
c2abbbeb 4767 BFD_ASSERT (section->id <= htab->top_id);
daa4adae
TP
4768 link_sec = htab->stub_group[section->id].link_sec;
4769 BFD_ASSERT (link_sec != NULL);
4770 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4771 if (*stub_sec_p == NULL)
4772 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4773 stub_sec_prefix = link_sec->name;
4774 out_sec = link_sec->output_section;
90c14f0c 4775 align = htab->root.target_os == is_nacl ? 4 : 3;
906e58ca 4776 }
b38cadfb 4777
daa4adae
TP
4778 if (*stub_sec_p == NULL)
4779 {
4780 size_t namelen;
4781 bfd_size_type len;
4782 char *s_name;
4783
4784 namelen = strlen (stub_sec_prefix);
4785 len = namelen + sizeof (STUB_SUFFIX);
4786 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4787 if (s_name == NULL)
4788 return NULL;
4789
4790 memcpy (s_name, stub_sec_prefix, namelen);
4791 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4792 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4793 align);
4794 if (*stub_sec_p == NULL)
4795 return NULL;
4796
4797 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4798 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4799 | SEC_KEEP;
4800 }
4801
4802 if (!dedicated_output_section)
4803 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4804
48229727
JB
4805 if (link_sec_p)
4806 *link_sec_p = link_sec;
b38cadfb 4807
daa4adae 4808 return *stub_sec_p;
48229727
JB
4809}
4810
4811/* Add a new stub entry to the stub hash. Not all fields of the new
4812 stub entry are initialised. */
4813
4814static struct elf32_arm_stub_hash_entry *
daa4adae
TP
4815elf32_arm_add_stub (const char *stub_name, asection *section,
4816 struct elf32_arm_link_hash_table *htab,
4817 enum elf32_arm_stub_type stub_type)
48229727
JB
4818{
4819 asection *link_sec;
4820 asection *stub_sec;
4821 struct elf32_arm_stub_hash_entry *stub_entry;
4822
daa4adae
TP
4823 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4824 stub_type);
48229727
JB
4825 if (stub_sec == NULL)
4826 return NULL;
906e58ca
NC
4827
4828 /* Enter this entry into the linker stub hash table. */
4829 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
0a1b45a2 4830 true, false);
906e58ca
NC
4831 if (stub_entry == NULL)
4832 {
6bde4c52
TP
4833 if (section == NULL)
4834 section = stub_sec;
871b3ab2 4835 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 4836 section->owner, stub_name);
906e58ca
NC
4837 return NULL;
4838 }
4839
4840 stub_entry->stub_sec = stub_sec;
0955507f 4841 stub_entry->stub_offset = (bfd_vma) -1;
906e58ca
NC
4842 stub_entry->id_sec = link_sec;
4843
906e58ca
NC
4844 return stub_entry;
4845}
4846
4847/* Store an Arm insn into an output section not processed by
4848 elf32_arm_write_section. */
4849
4850static void
8029a119
NC
4851put_arm_insn (struct elf32_arm_link_hash_table * htab,
4852 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4853{
4854 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4855 bfd_putl32 (val, ptr);
4856 else
4857 bfd_putb32 (val, ptr);
4858}
4859
4860/* Store a 16-bit Thumb insn into an output section not processed by
4861 elf32_arm_write_section. */
4862
4863static void
8029a119
NC
4864put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4865 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4866{
4867 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4868 bfd_putl16 (val, ptr);
4869 else
4870 bfd_putb16 (val, ptr);
4871}
4872
a504d23a
LA
4873/* Store a Thumb2 insn into an output section not processed by
4874 elf32_arm_write_section. */
4875
4876static void
4877put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
b98e6871 4878 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
a504d23a
LA
4879{
4880 /* T2 instructions are 16-bit streamed. */
4881 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4882 {
4883 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4884 bfd_putl16 ((val & 0xffff), ptr + 2);
4885 }
4886 else
4887 {
4888 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4889 bfd_putb16 ((val & 0xffff), ptr + 2);
4890 }
4891}
4892
0855e32b
NS
4893/* If it's possible to change R_TYPE to a more efficient access
4894 model, return the new reloc type. */
4895
4896static unsigned
b38cadfb 4897elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4898 struct elf_link_hash_entry *h)
4899{
4900 int is_local = (h == NULL);
4901
9cb09e33 4902 if (bfd_link_dll (info)
0e1862bb 4903 || (h && h->root.type == bfd_link_hash_undefweak))
0855e32b
NS
4904 return r_type;
4905
b38cadfb 4906 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4907 switch (r_type)
4908 {
4909 case R_ARM_TLS_GOTDESC:
4910 case R_ARM_TLS_CALL:
4911 case R_ARM_THM_TLS_CALL:
4912 case R_ARM_TLS_DESCSEQ:
4913 case R_ARM_THM_TLS_DESCSEQ:
4914 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4915 }
4916
4917 return r_type;
4918}
4919
48229727
JB
4920static bfd_reloc_status_type elf32_arm_final_link_relocate
4921 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4922 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92 4923 const char *, unsigned char, enum arm_st_branch_type,
0a1b45a2 4924 struct elf_link_hash_entry *, bool *, char **);
48229727 4925
4563a860
JB
4926static unsigned int
4927arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4928{
4929 switch (stub_type)
4930 {
4931 case arm_stub_a8_veneer_b_cond:
4932 case arm_stub_a8_veneer_b:
4933 case arm_stub_a8_veneer_bl:
4934 return 2;
4935
4936 case arm_stub_long_branch_any_any:
4937 case arm_stub_long_branch_v4t_arm_thumb:
4938 case arm_stub_long_branch_thumb_only:
80c135e5 4939 case arm_stub_long_branch_thumb2_only:
d5a67c02 4940 case arm_stub_long_branch_thumb2_only_pure:
4563a860
JB
4941 case arm_stub_long_branch_v4t_thumb_thumb:
4942 case arm_stub_long_branch_v4t_thumb_arm:
4943 case arm_stub_short_branch_v4t_thumb_arm:
4944 case arm_stub_long_branch_any_arm_pic:
4945 case arm_stub_long_branch_any_thumb_pic:
4946 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4947 case arm_stub_long_branch_v4t_arm_thumb_pic:
4948 case arm_stub_long_branch_v4t_thumb_arm_pic:
4949 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4950 case arm_stub_long_branch_any_tls_pic:
4951 case arm_stub_long_branch_v4t_thumb_tls_pic:
4ba2ef8f 4952 case arm_stub_cmse_branch_thumb_only:
4563a860
JB
4953 case arm_stub_a8_veneer_blx:
4954 return 4;
b38cadfb 4955
7a89b94e
NC
4956 case arm_stub_long_branch_arm_nacl:
4957 case arm_stub_long_branch_arm_nacl_pic:
4958 return 16;
4959
4563a860
JB
4960 default:
4961 abort (); /* Should be unreachable. */
4962 }
4963}
4964
4f4faa4d
TP
4965/* Returns whether stubs of type STUB_TYPE take over the symbol they are
4966 veneering (TRUE) or have their own symbol (FALSE). */
4967
0a1b45a2 4968static bool
4f4faa4d
TP
4969arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4970{
4971 if (stub_type >= max_stub_type)
4972 abort (); /* Should be unreachable. */
4973
4ba2ef8f
TP
4974 switch (stub_type)
4975 {
4976 case arm_stub_cmse_branch_thumb_only:
0a1b45a2 4977 return true;
4ba2ef8f
TP
4978
4979 default:
0a1b45a2 4980 return false;
4ba2ef8f
TP
4981 }
4982
4983 abort (); /* Should be unreachable. */
4f4faa4d
TP
4984}
4985
d7c5bd02
TP
4986/* Returns the padding needed for the dedicated section used stubs of type
4987 STUB_TYPE. */
4988
4989static int
4990arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4991{
4992 if (stub_type >= max_stub_type)
4993 abort (); /* Should be unreachable. */
4994
4ba2ef8f
TP
4995 switch (stub_type)
4996 {
4997 case arm_stub_cmse_branch_thumb_only:
4998 return 32;
4999
5000 default:
5001 return 0;
5002 }
5003
5004 abort (); /* Should be unreachable. */
d7c5bd02
TP
5005}
5006
0955507f
TP
5007/* If veneers of type STUB_TYPE should go in a dedicated output section,
5008 returns the address of the hash table field in HTAB holding the offset at
5009 which new veneers should be layed out in the stub section. */
5010
5011static bfd_vma*
5012arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
5013 enum elf32_arm_stub_type stub_type)
5014{
5015 switch (stub_type)
5016 {
5017 case arm_stub_cmse_branch_thumb_only:
5018 return &htab->new_cmse_stub_offset;
5019
5020 default:
5021 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
5022 return NULL;
5023 }
5024}
5025
0a1b45a2 5026static bool
906e58ca
NC
5027arm_build_one_stub (struct bfd_hash_entry *gen_entry,
5028 void * in_arg)
5029{
7a89b94e 5030#define MAXRELOCS 3
0a1b45a2 5031 bool removed_sg_veneer;
906e58ca 5032 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 5033 struct elf32_arm_link_hash_table *globals;
906e58ca 5034 struct bfd_link_info *info;
906e58ca
NC
5035 asection *stub_sec;
5036 bfd *stub_bfd;
906e58ca
NC
5037 bfd_byte *loc;
5038 bfd_vma sym_value;
5039 int template_size;
5040 int size;
d3ce72d0 5041 const insn_sequence *template_sequence;
906e58ca 5042 int i;
48229727
JB
5043 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5044 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5045 int nrelocs = 0;
0955507f 5046 int just_allocated = 0;
906e58ca
NC
5047
5048 /* Massage our args to the form they really have. */
5049 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5050 info = (struct bfd_link_info *) in_arg;
5051
abf874aa
CL
5052 /* Fail if the target section could not be assigned to an output
5053 section. The user should fix his linker script. */
5054 if (stub_entry->target_section->output_section == NULL
5055 && info->non_contiguous_regions)
c63d4862 5056 info->callbacks->einfo (_("%F%P: Could not assign `%pA' to an output section. "
53215f21
CL
5057 "Retry without --enable-non-contiguous-regions.\n"),
5058 stub_entry->target_section);
abf874aa 5059
906e58ca 5060 globals = elf32_arm_hash_table (info);
4dfe6ac6 5061 if (globals == NULL)
0a1b45a2 5062 return false;
906e58ca 5063
906e58ca
NC
5064 stub_sec = stub_entry->stub_sec;
5065
4dfe6ac6 5066 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
5067 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5068 /* We have to do less-strictly-aligned fixes last. */
0a1b45a2 5069 return true;
fe33d2fa 5070
0955507f
TP
5071 /* Assign a slot at the end of section if none assigned yet. */
5072 if (stub_entry->stub_offset == (bfd_vma) -1)
5073 {
5074 stub_entry->stub_offset = stub_sec->size;
5075 just_allocated = 1;
5076 }
906e58ca
NC
5077 loc = stub_sec->contents + stub_entry->stub_offset;
5078
5079 stub_bfd = stub_sec->owner;
5080
906e58ca
NC
5081 /* This is the address of the stub destination. */
5082 sym_value = (stub_entry->target_value
5083 + stub_entry->target_section->output_offset
5084 + stub_entry->target_section->output_section->vma);
5085
d3ce72d0 5086 template_sequence = stub_entry->stub_template;
461a49ca 5087 template_size = stub_entry->stub_template_size;
906e58ca
NC
5088
5089 size = 0;
461a49ca 5090 for (i = 0; i < template_size; i++)
906e58ca 5091 {
d3ce72d0 5092 switch (template_sequence[i].type)
461a49ca
DJ
5093 {
5094 case THUMB16_TYPE:
48229727 5095 {
d3ce72d0
NC
5096 bfd_vma data = (bfd_vma) template_sequence[i].data;
5097 if (template_sequence[i].reloc_addend != 0)
48229727 5098 {
99059e56
RM
5099 /* We've borrowed the reloc_addend field to mean we should
5100 insert a condition code into this (Thumb-1 branch)
5101 instruction. See THUMB16_BCOND_INSN. */
5102 BFD_ASSERT ((data & 0xff00) == 0xd000);
5103 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
48229727 5104 }
fe33d2fa 5105 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
5106 size += 2;
5107 }
461a49ca 5108 break;
906e58ca 5109
48229727 5110 case THUMB32_TYPE:
fe33d2fa
CL
5111 bfd_put_16 (stub_bfd,
5112 (template_sequence[i].data >> 16) & 0xffff,
5113 loc + size);
5114 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5115 loc + size + 2);
99059e56
RM
5116 if (template_sequence[i].r_type != R_ARM_NONE)
5117 {
5118 stub_reloc_idx[nrelocs] = i;
5119 stub_reloc_offset[nrelocs++] = size;
5120 }
5121 size += 4;
5122 break;
48229727 5123
461a49ca 5124 case ARM_TYPE:
fe33d2fa
CL
5125 bfd_put_32 (stub_bfd, template_sequence[i].data,
5126 loc + size);
461a49ca
DJ
5127 /* Handle cases where the target is encoded within the
5128 instruction. */
d3ce72d0 5129 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 5130 {
48229727
JB
5131 stub_reloc_idx[nrelocs] = i;
5132 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5133 }
5134 size += 4;
5135 break;
5136
5137 case DATA_TYPE:
d3ce72d0 5138 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
5139 stub_reloc_idx[nrelocs] = i;
5140 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5141 size += 4;
5142 break;
5143
5144 default:
5145 BFD_FAIL ();
0a1b45a2 5146 return false;
461a49ca 5147 }
906e58ca 5148 }
461a49ca 5149
0955507f
TP
5150 if (just_allocated)
5151 stub_sec->size += size;
906e58ca 5152
461a49ca
DJ
5153 /* Stub size has already been computed in arm_size_one_stub. Check
5154 consistency. */
5155 BFD_ASSERT (size == stub_entry->stub_size);
5156
906e58ca 5157 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 5158 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
5159 sym_value |= 1;
5160
0955507f
TP
5161 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5162 to relocate in each stub. */
5163 removed_sg_veneer =
5164 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5165 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
c820be07 5166
48229727 5167 for (i = 0; i < nrelocs; i++)
8d9d9490
TP
5168 {
5169 Elf_Internal_Rela rel;
0a1b45a2 5170 bool unresolved_reloc;
8d9d9490
TP
5171 char *error_message;
5172 bfd_vma points_to =
5173 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5174
5175 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5176 rel.r_info = ELF32_R_INFO (0,
5177 template_sequence[stub_reloc_idx[i]].r_type);
5178 rel.r_addend = 0;
5179
5180 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5181 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5182 template should refer back to the instruction after the original
5183 branch. We use target_section as Cortex-A8 erratum workaround stubs
5184 are only generated when both source and target are in the same
5185 section. */
5186 points_to = stub_entry->target_section->output_section->vma
5187 + stub_entry->target_section->output_offset
5188 + stub_entry->source_value;
5189
5190 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5191 (template_sequence[stub_reloc_idx[i]].r_type),
5192 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5193 points_to, info, stub_entry->target_section, "", STT_FUNC,
5194 stub_entry->branch_type,
5195 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5196 &error_message);
5197 }
906e58ca 5198
0a1b45a2 5199 return true;
48229727 5200#undef MAXRELOCS
906e58ca
NC
5201}
5202
48229727
JB
5203/* Calculate the template, template size and instruction size for a stub.
5204 Return value is the instruction size. */
906e58ca 5205
48229727
JB
5206static unsigned int
5207find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5208 const insn_sequence **stub_template,
5209 int *stub_template_size)
906e58ca 5210{
d3ce72d0 5211 const insn_sequence *template_sequence = NULL;
48229727
JB
5212 int template_size = 0, i;
5213 unsigned int size;
906e58ca 5214
d3ce72d0 5215 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
5216 if (stub_template)
5217 *stub_template = template_sequence;
5218
48229727 5219 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
5220 if (stub_template_size)
5221 *stub_template_size = template_size;
906e58ca
NC
5222
5223 size = 0;
461a49ca
DJ
5224 for (i = 0; i < template_size; i++)
5225 {
d3ce72d0 5226 switch (template_sequence[i].type)
461a49ca
DJ
5227 {
5228 case THUMB16_TYPE:
5229 size += 2;
5230 break;
5231
5232 case ARM_TYPE:
48229727 5233 case THUMB32_TYPE:
461a49ca
DJ
5234 case DATA_TYPE:
5235 size += 4;
5236 break;
5237
5238 default:
5239 BFD_FAIL ();
2a229407 5240 return 0;
461a49ca
DJ
5241 }
5242 }
5243
48229727
JB
5244 return size;
5245}
5246
5247/* As above, but don't actually build the stub. Just bump offset so
5248 we know stub section sizes. */
5249
0a1b45a2 5250static bool
48229727 5251arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 5252 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
5253{
5254 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 5255 const insn_sequence *template_sequence;
48229727
JB
5256 int template_size, size;
5257
5258 /* Massage our args to the form they really have. */
5259 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727 5260
cc850f74
NC
5261 BFD_ASSERT ((stub_entry->stub_type > arm_stub_none)
5262 && stub_entry->stub_type < ARRAY_SIZE (stub_definitions));
48229727 5263
d3ce72d0 5264 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
5265 &template_size);
5266
0955507f
TP
5267 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5268 if (stub_entry->stub_template_size)
5269 {
5270 stub_entry->stub_size = size;
5271 stub_entry->stub_template = template_sequence;
5272 stub_entry->stub_template_size = template_size;
5273 }
5274
5275 /* Already accounted for. */
5276 if (stub_entry->stub_offset != (bfd_vma) -1)
0a1b45a2 5277 return true;
461a49ca 5278
906e58ca
NC
5279 size = (size + 7) & ~7;
5280 stub_entry->stub_sec->size += size;
461a49ca 5281
0a1b45a2 5282 return true;
906e58ca
NC
5283}
5284
5285/* External entry points for sizing and building linker stubs. */
5286
5287/* Set up various things so that we can make a list of input sections
5288 for each output section included in the link. Returns -1 on error,
5289 0 when no stubs will be needed, and 1 on success. */
5290
5291int
5292elf32_arm_setup_section_lists (bfd *output_bfd,
5293 struct bfd_link_info *info)
5294{
5295 bfd *input_bfd;
5296 unsigned int bfd_count;
7292b3ac 5297 unsigned int top_id, top_index;
906e58ca
NC
5298 asection *section;
5299 asection **input_list, **list;
986f0783 5300 size_t amt;
906e58ca
NC
5301 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5302
4dfe6ac6
NC
5303 if (htab == NULL)
5304 return 0;
906e58ca
NC
5305
5306 /* Count the number of input BFDs and find the top input section id. */
5307 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5308 input_bfd != NULL;
c72f2fb2 5309 input_bfd = input_bfd->link.next)
906e58ca
NC
5310 {
5311 bfd_count += 1;
5312 for (section = input_bfd->sections;
5313 section != NULL;
5314 section = section->next)
5315 {
5316 if (top_id < section->id)
5317 top_id = section->id;
5318 }
5319 }
5320 htab->bfd_count = bfd_count;
5321
5322 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 5323 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
5324 if (htab->stub_group == NULL)
5325 return -1;
fe33d2fa 5326 htab->top_id = top_id;
906e58ca
NC
5327
5328 /* We can't use output_bfd->section_count here to find the top output
5329 section index as some sections may have been removed, and
5330 _bfd_strip_section_from_output doesn't renumber the indices. */
5331 for (section = output_bfd->sections, top_index = 0;
5332 section != NULL;
5333 section = section->next)
5334 {
5335 if (top_index < section->index)
5336 top_index = section->index;
5337 }
5338
5339 htab->top_index = top_index;
5340 amt = sizeof (asection *) * (top_index + 1);
21d799b5 5341 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
5342 htab->input_list = input_list;
5343 if (input_list == NULL)
5344 return -1;
5345
5346 /* For sections we aren't interested in, mark their entries with a
5347 value we can check later. */
5348 list = input_list + top_index;
5349 do
5350 *list = bfd_abs_section_ptr;
5351 while (list-- != input_list);
5352
5353 for (section = output_bfd->sections;
5354 section != NULL;
5355 section = section->next)
5356 {
5357 if ((section->flags & SEC_CODE) != 0)
5358 input_list[section->index] = NULL;
5359 }
5360
5361 return 1;
5362}
5363
5364/* The linker repeatedly calls this function for each input section,
5365 in the order that input sections are linked into output sections.
5366 Build lists of input sections to determine groupings between which
5367 we may insert linker stubs. */
5368
5369void
5370elf32_arm_next_input_section (struct bfd_link_info *info,
5371 asection *isec)
5372{
5373 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5374
4dfe6ac6
NC
5375 if (htab == NULL)
5376 return;
5377
906e58ca
NC
5378 if (isec->output_section->index <= htab->top_index)
5379 {
5380 asection **list = htab->input_list + isec->output_section->index;
5381
a7470592 5382 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
5383 {
5384 /* Steal the link_sec pointer for our list. */
5385#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5386 /* This happens to make the list in reverse order,
07d72278 5387 which we reverse later. */
906e58ca
NC
5388 PREV_SEC (isec) = *list;
5389 *list = isec;
5390 }
5391 }
5392}
5393
5394/* See whether we can group stub sections together. Grouping stub
5395 sections may result in fewer stubs. More importantly, we need to
07d72278 5396 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
5397 .fini output sections respectively, because glibc splits the
5398 _init and _fini functions into multiple parts. Putting a stub in
5399 the middle of a function is not a good idea. */
5400
5401static void
5402group_sections (struct elf32_arm_link_hash_table *htab,
5403 bfd_size_type stub_group_size,
0a1b45a2 5404 bool stubs_always_after_branch)
906e58ca 5405{
07d72278 5406 asection **list = htab->input_list;
906e58ca
NC
5407
5408 do
5409 {
5410 asection *tail = *list;
07d72278 5411 asection *head;
906e58ca
NC
5412
5413 if (tail == bfd_abs_section_ptr)
5414 continue;
5415
07d72278
DJ
5416 /* Reverse the list: we must avoid placing stubs at the
5417 beginning of the section because the beginning of the text
5418 section may be required for an interrupt vector in bare metal
5419 code. */
5420#define NEXT_SEC PREV_SEC
e780aef2
CL
5421 head = NULL;
5422 while (tail != NULL)
99059e56
RM
5423 {
5424 /* Pop from tail. */
5425 asection *item = tail;
5426 tail = PREV_SEC (item);
e780aef2 5427
99059e56
RM
5428 /* Push on head. */
5429 NEXT_SEC (item) = head;
5430 head = item;
5431 }
07d72278
DJ
5432
5433 while (head != NULL)
906e58ca
NC
5434 {
5435 asection *curr;
07d72278 5436 asection *next;
e780aef2
CL
5437 bfd_vma stub_group_start = head->output_offset;
5438 bfd_vma end_of_next;
906e58ca 5439
07d72278 5440 curr = head;
e780aef2 5441 while (NEXT_SEC (curr) != NULL)
8cd931b7 5442 {
e780aef2
CL
5443 next = NEXT_SEC (curr);
5444 end_of_next = next->output_offset + next->size;
5445 if (end_of_next - stub_group_start >= stub_group_size)
5446 /* End of NEXT is too far from start, so stop. */
8cd931b7 5447 break;
e780aef2
CL
5448 /* Add NEXT to the group. */
5449 curr = next;
8cd931b7 5450 }
906e58ca 5451
07d72278 5452 /* OK, the size from the start to the start of CURR is less
906e58ca 5453 than stub_group_size and thus can be handled by one stub
07d72278 5454 section. (Or the head section is itself larger than
906e58ca
NC
5455 stub_group_size, in which case we may be toast.)
5456 We should really be keeping track of the total size of
5457 stubs added here, as stubs contribute to the final output
7fb9f789 5458 section size. */
906e58ca
NC
5459 do
5460 {
07d72278 5461 next = NEXT_SEC (head);
906e58ca 5462 /* Set up this stub group. */
07d72278 5463 htab->stub_group[head->id].link_sec = curr;
906e58ca 5464 }
07d72278 5465 while (head != curr && (head = next) != NULL);
906e58ca
NC
5466
5467 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
5468 bytes after the stub section can be handled by it too. */
5469 if (!stubs_always_after_branch)
906e58ca 5470 {
e780aef2
CL
5471 stub_group_start = curr->output_offset + curr->size;
5472
8cd931b7 5473 while (next != NULL)
906e58ca 5474 {
e780aef2
CL
5475 end_of_next = next->output_offset + next->size;
5476 if (end_of_next - stub_group_start >= stub_group_size)
5477 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 5478 break;
e780aef2 5479 /* Add NEXT to the stub group. */
07d72278
DJ
5480 head = next;
5481 next = NEXT_SEC (head);
5482 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
5483 }
5484 }
07d72278 5485 head = next;
906e58ca
NC
5486 }
5487 }
07d72278 5488 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
5489
5490 free (htab->input_list);
5491#undef PREV_SEC
07d72278 5492#undef NEXT_SEC
906e58ca
NC
5493}
5494
48229727
JB
5495/* Comparison function for sorting/searching relocations relating to Cortex-A8
5496 erratum fix. */
5497
5498static int
5499a8_reloc_compare (const void *a, const void *b)
5500{
21d799b5
NC
5501 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5502 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
5503
5504 if (ra->from < rb->from)
5505 return -1;
5506 else if (ra->from > rb->from)
5507 return 1;
5508 else
5509 return 0;
5510}
5511
5512static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5513 const char *, char **);
5514
5515/* Helper function to scan code for sequences which might trigger the Cortex-A8
5516 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 5517 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
5518 otherwise. */
5519
0a1b45a2 5520static bool
81694485
NC
5521cortex_a8_erratum_scan (bfd *input_bfd,
5522 struct bfd_link_info *info,
48229727
JB
5523 struct a8_erratum_fix **a8_fixes_p,
5524 unsigned int *num_a8_fixes_p,
5525 unsigned int *a8_fix_table_size_p,
5526 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
5527 unsigned int num_a8_relocs,
5528 unsigned prev_num_a8_fixes,
0a1b45a2 5529 bool *stub_changed_p)
48229727
JB
5530{
5531 asection *section;
5532 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5533 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5534 unsigned int num_a8_fixes = *num_a8_fixes_p;
5535 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5536
4dfe6ac6 5537 if (htab == NULL)
0a1b45a2 5538 return false;
4dfe6ac6 5539
48229727
JB
5540 for (section = input_bfd->sections;
5541 section != NULL;
5542 section = section->next)
5543 {
5544 bfd_byte *contents = NULL;
5545 struct _arm_elf_section_data *sec_data;
5546 unsigned int span;
5547 bfd_vma base_vma;
5548
5549 if (elf_section_type (section) != SHT_PROGBITS
99059e56
RM
5550 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5551 || (section->flags & SEC_EXCLUDE) != 0
5552 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5553 || (section->output_section == bfd_abs_section_ptr))
5554 continue;
48229727
JB
5555
5556 base_vma = section->output_section->vma + section->output_offset;
5557
5558 if (elf_section_data (section)->this_hdr.contents != NULL)
99059e56 5559 contents = elf_section_data (section)->this_hdr.contents;
48229727 5560 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
0a1b45a2 5561 return true;
48229727
JB
5562
5563 sec_data = elf32_arm_section_data (section);
5564
5565 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
5566 {
5567 unsigned int span_start = sec_data->map[span].vma;
5568 unsigned int span_end = (span == sec_data->mapcount - 1)
5569 ? section->size : sec_data->map[span + 1].vma;
5570 unsigned int i;
5571 char span_type = sec_data->map[span].type;
0a1b45a2 5572 bool last_was_32bit = false, last_was_branch = false;
99059e56
RM
5573
5574 if (span_type != 't')
5575 continue;
5576
5577 /* Span is entirely within a single 4KB region: skip scanning. */
5578 if (((base_vma + span_start) & ~0xfff)
48229727 5579 == ((base_vma + span_end) & ~0xfff))
99059e56
RM
5580 continue;
5581
5582 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5583
5584 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5585 * The branch target is in the same 4KB region as the
5586 first half of the branch.
5587 * The instruction before the branch is a 32-bit
5588 length non-branch instruction. */
5589 for (i = span_start; i < span_end;)
5590 {
5591 unsigned int insn = bfd_getl16 (&contents[i]);
0a1b45a2
AM
5592 bool insn_32bit = false, is_blx = false, is_b = false;
5593 bool is_bl = false, is_bcc = false, is_32bit_branch;
48229727 5594
99059e56 5595 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
0a1b45a2 5596 insn_32bit = true;
48229727
JB
5597
5598 if (insn_32bit)
99059e56
RM
5599 {
5600 /* Load the rest of the insn (in manual-friendly order). */
5601 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5602
5603 /* Encoding T4: B<c>.W. */
5604 is_b = (insn & 0xf800d000) == 0xf0009000;
5605 /* Encoding T1: BL<c>.W. */
5606 is_bl = (insn & 0xf800d000) == 0xf000d000;
5607 /* Encoding T2: BLX<c>.W. */
5608 is_blx = (insn & 0xf800d000) == 0xf000c000;
48229727
JB
5609 /* Encoding T3: B<c>.W (not permitted in IT block). */
5610 is_bcc = (insn & 0xf800d000) == 0xf0008000
5611 && (insn & 0x07f00000) != 0x03800000;
5612 }
5613
5614 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 5615
99059e56 5616 if (((base_vma + i) & 0xfff) == 0xffe
81694485
NC
5617 && insn_32bit
5618 && is_32bit_branch
5619 && last_was_32bit
5620 && ! last_was_branch)
99059e56
RM
5621 {
5622 bfd_signed_vma offset = 0;
0a1b45a2
AM
5623 bool force_target_arm = false;
5624 bool force_target_thumb = false;
99059e56
RM
5625 bfd_vma target;
5626 enum elf32_arm_stub_type stub_type = arm_stub_none;
5627 struct a8_erratum_reloc key, *found;
0a1b45a2 5628 bool use_plt = false;
48229727 5629
99059e56
RM
5630 key.from = base_vma + i;
5631 found = (struct a8_erratum_reloc *)
5632 bsearch (&key, a8_relocs, num_a8_relocs,
5633 sizeof (struct a8_erratum_reloc),
5634 &a8_reloc_compare);
48229727
JB
5635
5636 if (found)
5637 {
5638 char *error_message = NULL;
5639 struct elf_link_hash_entry *entry;
5640
5641 /* We don't care about the error returned from this
99059e56 5642 function, only if there is glue or not. */
48229727
JB
5643 entry = find_thumb_glue (info, found->sym_name,
5644 &error_message);
5645
5646 if (entry)
0a1b45a2 5647 found->non_a8_stub = true;
48229727 5648
92750f34 5649 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 5650 if (htab->root.splt != NULL && found->hash != NULL
92750f34 5651 && found->hash->root.plt.offset != (bfd_vma) -1)
0a1b45a2 5652 use_plt = true;
92750f34
DJ
5653
5654 if (found->r_type == R_ARM_THM_CALL)
5655 {
35fc36a8
RS
5656 if (found->branch_type == ST_BRANCH_TO_ARM
5657 || use_plt)
0a1b45a2 5658 force_target_arm = true;
92750f34 5659 else
0a1b45a2 5660 force_target_thumb = true;
92750f34 5661 }
48229727
JB
5662 }
5663
99059e56 5664 /* Check if we have an offending branch instruction. */
48229727
JB
5665
5666 if (found && found->non_a8_stub)
5667 /* We've already made a stub for this instruction, e.g.
5668 it's a long branch or a Thumb->ARM stub. Assume that
5669 stub will suffice to work around the A8 erratum (see
5670 setting of always_after_branch above). */
5671 ;
99059e56
RM
5672 else if (is_bcc)
5673 {
5674 offset = (insn & 0x7ff) << 1;
5675 offset |= (insn & 0x3f0000) >> 4;
5676 offset |= (insn & 0x2000) ? 0x40000 : 0;
5677 offset |= (insn & 0x800) ? 0x80000 : 0;
5678 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5679 if (offset & 0x100000)
5680 offset |= ~ ((bfd_signed_vma) 0xfffff);
5681 stub_type = arm_stub_a8_veneer_b_cond;
5682 }
5683 else if (is_b || is_bl || is_blx)
5684 {
5685 int s = (insn & 0x4000000) != 0;
5686 int j1 = (insn & 0x2000) != 0;
5687 int j2 = (insn & 0x800) != 0;
5688 int i1 = !(j1 ^ s);
5689 int i2 = !(j2 ^ s);
5690
5691 offset = (insn & 0x7ff) << 1;
5692 offset |= (insn & 0x3ff0000) >> 4;
5693 offset |= i2 << 22;
5694 offset |= i1 << 23;
5695 offset |= s << 24;
5696 if (offset & 0x1000000)
5697 offset |= ~ ((bfd_signed_vma) 0xffffff);
5698
5699 if (is_blx)
5700 offset &= ~ ((bfd_signed_vma) 3);
5701
5702 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5703 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5704 }
5705
5706 if (stub_type != arm_stub_none)
5707 {
5708 bfd_vma pc_for_insn = base_vma + i + 4;
48229727
JB
5709
5710 /* The original instruction is a BL, but the target is
99059e56 5711 an ARM instruction. If we were not making a stub,
48229727
JB
5712 the BL would have been converted to a BLX. Use the
5713 BLX stub instead in that case. */
5714 if (htab->use_blx && force_target_arm
5715 && stub_type == arm_stub_a8_veneer_bl)
5716 {
5717 stub_type = arm_stub_a8_veneer_blx;
0a1b45a2
AM
5718 is_blx = true;
5719 is_bl = false;
48229727
JB
5720 }
5721 /* Conversely, if the original instruction was
5722 BLX but the target is Thumb mode, use the BL
5723 stub. */
5724 else if (force_target_thumb
5725 && stub_type == arm_stub_a8_veneer_blx)
5726 {
5727 stub_type = arm_stub_a8_veneer_bl;
0a1b45a2
AM
5728 is_blx = false;
5729 is_bl = true;
48229727
JB
5730 }
5731
99059e56
RM
5732 if (is_blx)
5733 pc_for_insn &= ~ ((bfd_vma) 3);
48229727 5734
99059e56
RM
5735 /* If we found a relocation, use the proper destination,
5736 not the offset in the (unrelocated) instruction.
48229727
JB
5737 Note this is always done if we switched the stub type
5738 above. */
99059e56
RM
5739 if (found)
5740 offset =
81694485 5741 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 5742
99059e56
RM
5743 /* If the stub will use a Thumb-mode branch to a
5744 PLT target, redirect it to the preceding Thumb
5745 entry point. */
5746 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5747 offset -= PLT_THUMB_STUB_SIZE;
7d24e6a6 5748
99059e56 5749 target = pc_for_insn + offset;
48229727 5750
99059e56
RM
5751 /* The BLX stub is ARM-mode code. Adjust the offset to
5752 take the different PC value (+8 instead of +4) into
48229727 5753 account. */
99059e56
RM
5754 if (stub_type == arm_stub_a8_veneer_blx)
5755 offset += 4;
5756
5757 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5758 {
5759 char *stub_name = NULL;
5760
5761 if (num_a8_fixes == a8_fix_table_size)
5762 {
5763 a8_fix_table_size *= 2;
5764 a8_fixes = (struct a8_erratum_fix *)
5765 bfd_realloc (a8_fixes,
5766 sizeof (struct a8_erratum_fix)
5767 * a8_fix_table_size);
5768 }
48229727 5769
eb7c4339
NS
5770 if (num_a8_fixes < prev_num_a8_fixes)
5771 {
5772 /* If we're doing a subsequent scan,
5773 check if we've found the same fix as
5774 before, and try and reuse the stub
5775 name. */
5776 stub_name = a8_fixes[num_a8_fixes].stub_name;
5777 if ((a8_fixes[num_a8_fixes].section != section)
5778 || (a8_fixes[num_a8_fixes].offset != i))
5779 {
5780 free (stub_name);
5781 stub_name = NULL;
0a1b45a2 5782 *stub_changed_p = true;
eb7c4339
NS
5783 }
5784 }
5785
5786 if (!stub_name)
5787 {
21d799b5 5788 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
5789 if (stub_name != NULL)
5790 sprintf (stub_name, "%x:%x", section->id, i);
5791 }
48229727 5792
99059e56
RM
5793 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5794 a8_fixes[num_a8_fixes].section = section;
5795 a8_fixes[num_a8_fixes].offset = i;
8d9d9490
TP
5796 a8_fixes[num_a8_fixes].target_offset =
5797 target - base_vma;
99059e56
RM
5798 a8_fixes[num_a8_fixes].orig_insn = insn;
5799 a8_fixes[num_a8_fixes].stub_name = stub_name;
5800 a8_fixes[num_a8_fixes].stub_type = stub_type;
5801 a8_fixes[num_a8_fixes].branch_type =
35fc36a8 5802 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727 5803
99059e56
RM
5804 num_a8_fixes++;
5805 }
5806 }
5807 }
48229727 5808
99059e56
RM
5809 i += insn_32bit ? 4 : 2;
5810 last_was_32bit = insn_32bit;
48229727 5811 last_was_branch = is_32bit_branch;
99059e56
RM
5812 }
5813 }
48229727
JB
5814
5815 if (elf_section_data (section)->this_hdr.contents == NULL)
99059e56 5816 free (contents);
48229727 5817 }
fe33d2fa 5818
48229727
JB
5819 *a8_fixes_p = a8_fixes;
5820 *num_a8_fixes_p = num_a8_fixes;
5821 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 5822
0a1b45a2 5823 return false;
48229727
JB
5824}
5825
b715f643
TP
5826/* Create or update a stub entry depending on whether the stub can already be
5827 found in HTAB. The stub is identified by:
5828 - its type STUB_TYPE
5829 - its source branch (note that several can share the same stub) whose
5830 section and relocation (if any) are given by SECTION and IRELA
5831 respectively
5832 - its target symbol whose input section, hash, name, value and branch type
5833 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5834 respectively
5835
5836 If found, the value of the stub's target symbol is updated from SYM_VALUE
5837 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5838 TRUE and the stub entry is initialized.
5839
0955507f
TP
5840 Returns the stub that was created or updated, or NULL if an error
5841 occurred. */
b715f643 5842
0955507f 5843static struct elf32_arm_stub_hash_entry *
b715f643
TP
5844elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5845 enum elf32_arm_stub_type stub_type, asection *section,
5846 Elf_Internal_Rela *irela, asection *sym_sec,
5847 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5848 bfd_vma sym_value, enum arm_st_branch_type branch_type,
0a1b45a2 5849 bool *new_stub)
b715f643
TP
5850{
5851 const asection *id_sec;
5852 char *stub_name;
5853 struct elf32_arm_stub_hash_entry *stub_entry;
5854 unsigned int r_type;
0a1b45a2 5855 bool sym_claimed = arm_stub_sym_claimed (stub_type);
b715f643
TP
5856
5857 BFD_ASSERT (stub_type != arm_stub_none);
0a1b45a2 5858 *new_stub = false;
b715f643 5859
4f4faa4d
TP
5860 if (sym_claimed)
5861 stub_name = sym_name;
5862 else
5863 {
5864 BFD_ASSERT (irela);
5865 BFD_ASSERT (section);
c2abbbeb 5866 BFD_ASSERT (section->id <= htab->top_id);
b715f643 5867
4f4faa4d
TP
5868 /* Support for grouping stub sections. */
5869 id_sec = htab->stub_group[section->id].link_sec;
b715f643 5870
4f4faa4d
TP
5871 /* Get the name of this stub. */
5872 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5873 stub_type);
5874 if (!stub_name)
0955507f 5875 return NULL;
4f4faa4d 5876 }
b715f643 5877
0a1b45a2
AM
5878 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, false,
5879 false);
b715f643
TP
5880 /* The proper stub has already been created, just update its value. */
5881 if (stub_entry != NULL)
5882 {
4f4faa4d
TP
5883 if (!sym_claimed)
5884 free (stub_name);
b715f643 5885 stub_entry->target_value = sym_value;
0955507f 5886 return stub_entry;
b715f643
TP
5887 }
5888
daa4adae 5889 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
b715f643
TP
5890 if (stub_entry == NULL)
5891 {
4f4faa4d
TP
5892 if (!sym_claimed)
5893 free (stub_name);
0955507f 5894 return NULL;
b715f643
TP
5895 }
5896
5897 stub_entry->target_value = sym_value;
5898 stub_entry->target_section = sym_sec;
5899 stub_entry->stub_type = stub_type;
5900 stub_entry->h = hash;
5901 stub_entry->branch_type = branch_type;
5902
4f4faa4d
TP
5903 if (sym_claimed)
5904 stub_entry->output_name = sym_name;
5905 else
b715f643 5906 {
4f4faa4d
TP
5907 if (sym_name == NULL)
5908 sym_name = "unnamed";
5909 stub_entry->output_name = (char *)
5910 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5911 + strlen (sym_name));
5912 if (stub_entry->output_name == NULL)
5913 {
5914 free (stub_name);
0955507f 5915 return NULL;
4f4faa4d 5916 }
b715f643 5917
4f4faa4d
TP
5918 /* For historical reasons, use the existing names for ARM-to-Thumb and
5919 Thumb-to-ARM stubs. */
5920 r_type = ELF32_R_TYPE (irela->r_info);
5921 if ((r_type == (unsigned int) R_ARM_THM_CALL
5922 || r_type == (unsigned int) R_ARM_THM_JUMP24
5923 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5924 && branch_type == ST_BRANCH_TO_ARM)
5925 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5926 else if ((r_type == (unsigned int) R_ARM_CALL
5927 || r_type == (unsigned int) R_ARM_JUMP24)
5928 && branch_type == ST_BRANCH_TO_THUMB)
5929 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5930 else
5931 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5932 }
b715f643 5933
0a1b45a2 5934 *new_stub = true;
0955507f 5935 return stub_entry;
b715f643
TP
5936}
5937
4ba2ef8f
TP
5938/* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5939 gateway veneer to transition from non secure to secure state and create them
5940 accordingly.
5941
5942 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5943 defines the conditions that govern Secure Gateway veneer creation for a
5944 given symbol <SYM> as follows:
5945 - it has function type
5946 - it has non local binding
5947 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5948 same type, binding and value as <SYM> (called normal symbol).
5949 An entry function can handle secure state transition itself in which case
5950 its special symbol would have a different value from the normal symbol.
5951
5952 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5953 entry mapping while HTAB gives the name to hash entry mapping.
0955507f
TP
5954 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5955 created.
4ba2ef8f 5956
0955507f 5957 The return value gives whether a stub failed to be allocated. */
4ba2ef8f 5958
0a1b45a2 5959static bool
4ba2ef8f
TP
5960cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5961 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
0955507f 5962 int *cmse_stub_created)
4ba2ef8f
TP
5963{
5964 const struct elf_backend_data *bed;
5965 Elf_Internal_Shdr *symtab_hdr;
5966 unsigned i, j, sym_count, ext_start;
5967 Elf_Internal_Sym *cmse_sym, *local_syms;
5968 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5969 enum arm_st_branch_type branch_type;
5970 char *sym_name, *lsym_name;
5971 bfd_vma sym_value;
5972 asection *section;
0955507f 5973 struct elf32_arm_stub_hash_entry *stub_entry;
0a1b45a2 5974 bool is_v8m, new_stub, cmse_invalid, ret = true;
4ba2ef8f
TP
5975
5976 bed = get_elf_backend_data (input_bfd);
5977 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5978 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5979 ext_start = symtab_hdr->sh_info;
5980 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5981 && out_attr[Tag_CPU_arch_profile].i == 'M');
5982
5983 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5984 if (local_syms == NULL)
5985 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5986 symtab_hdr->sh_info, 0, NULL, NULL,
5987 NULL);
5988 if (symtab_hdr->sh_info && local_syms == NULL)
0a1b45a2 5989 return false;
4ba2ef8f
TP
5990
5991 /* Scan symbols. */
5992 for (i = 0; i < sym_count; i++)
5993 {
0a1b45a2 5994 cmse_invalid = false;
4ba2ef8f
TP
5995
5996 if (i < ext_start)
5997 {
5998 cmse_sym = &local_syms[i];
4ba2ef8f
TP
5999 sym_name = bfd_elf_string_from_elf_section (input_bfd,
6000 symtab_hdr->sh_link,
6001 cmse_sym->st_name);
08dedd66 6002 if (!sym_name || !startswith (sym_name, CMSE_PREFIX))
baf46cd7
AM
6003 continue;
6004
4ba2ef8f 6005 /* Special symbol with local binding. */
0a1b45a2 6006 cmse_invalid = true;
4ba2ef8f
TP
6007 }
6008 else
6009 {
6010 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
83f18e5e
NC
6011 if (cmse_hash == NULL)
6012 continue;
6013
4ba2ef8f 6014 sym_name = (char *) cmse_hash->root.root.root.string;
08dedd66 6015 if (!startswith (sym_name, CMSE_PREFIX))
4ba2ef8f
TP
6016 continue;
6017
6018 /* Special symbol has incorrect binding or type. */
6019 if ((cmse_hash->root.root.type != bfd_link_hash_defined
6020 && cmse_hash->root.root.type != bfd_link_hash_defweak)
6021 || cmse_hash->root.type != STT_FUNC)
0a1b45a2 6022 cmse_invalid = true;
4ba2ef8f
TP
6023 }
6024
6025 if (!is_v8m)
6026 {
90b6238f
AM
6027 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6028 "ARMv8-M architecture or later"),
4eca0228 6029 input_bfd, sym_name);
0a1b45a2
AM
6030 is_v8m = true; /* Avoid multiple warning. */
6031 ret = false;
4ba2ef8f
TP
6032 }
6033
6034 if (cmse_invalid)
6035 {
90b6238f
AM
6036 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6037 " a global or weak function symbol"),
4eca0228 6038 input_bfd, sym_name);
0a1b45a2 6039 ret = false;
4ba2ef8f
TP
6040 if (i < ext_start)
6041 continue;
6042 }
6043
6044 sym_name += strlen (CMSE_PREFIX);
6045 hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 6046 elf_link_hash_lookup (&(htab)->root, sym_name, false, false, true);
4ba2ef8f
TP
6047
6048 /* No associated normal symbol or it is neither global nor weak. */
6049 if (!hash
6050 || (hash->root.root.type != bfd_link_hash_defined
6051 && hash->root.root.type != bfd_link_hash_defweak)
6052 || hash->root.type != STT_FUNC)
6053 {
6054 /* Initialize here to avoid warning about use of possibly
6055 uninitialized variable. */
6056 j = 0;
6057
6058 if (!hash)
6059 {
6060 /* Searching for a normal symbol with local binding. */
6061 for (; j < ext_start; j++)
6062 {
6063 lsym_name =
6064 bfd_elf_string_from_elf_section (input_bfd,
6065 symtab_hdr->sh_link,
6066 local_syms[j].st_name);
6067 if (!strcmp (sym_name, lsym_name))
6068 break;
6069 }
6070 }
6071
6072 if (hash || j < ext_start)
6073 {
4eca0228 6074 _bfd_error_handler
90b6238f
AM
6075 (_("%pB: invalid standard symbol `%s'; it must be "
6076 "a global or weak function symbol"),
6077 input_bfd, sym_name);
4ba2ef8f
TP
6078 }
6079 else
4eca0228 6080 _bfd_error_handler
90b6238f 6081 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
0a1b45a2 6082 ret = false;
4ba2ef8f
TP
6083 if (!hash)
6084 continue;
6085 }
6086
6087 sym_value = hash->root.root.u.def.value;
6088 section = hash->root.root.u.def.section;
6089
6090 if (cmse_hash->root.root.u.def.section != section)
6091 {
4eca0228 6092 _bfd_error_handler
90b6238f 6093 (_("%pB: `%s' and its special symbol are in different sections"),
4ba2ef8f 6094 input_bfd, sym_name);
0a1b45a2 6095 ret = false;
4ba2ef8f
TP
6096 }
6097 if (cmse_hash->root.root.u.def.value != sym_value)
6098 continue; /* Ignore: could be an entry function starting with SG. */
6099
6100 /* If this section is a link-once section that will be discarded, then
6101 don't create any stubs. */
6102 if (section->output_section == NULL)
6103 {
4eca0228 6104 _bfd_error_handler
90b6238f 6105 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
4ba2ef8f
TP
6106 continue;
6107 }
6108
6109 if (hash->root.size == 0)
6110 {
4eca0228 6111 _bfd_error_handler
90b6238f 6112 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
0a1b45a2 6113 ret = false;
4ba2ef8f
TP
6114 }
6115
6116 if (!ret)
6117 continue;
6118 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
0955507f 6119 stub_entry
4ba2ef8f
TP
6120 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6121 NULL, NULL, section, hash, sym_name,
6122 sym_value, branch_type, &new_stub);
6123
0955507f 6124 if (stub_entry == NULL)
0a1b45a2 6125 ret = false;
4ba2ef8f
TP
6126 else
6127 {
6128 BFD_ASSERT (new_stub);
0955507f 6129 (*cmse_stub_created)++;
4ba2ef8f
TP
6130 }
6131 }
6132
6133 if (!symtab_hdr->contents)
6134 free (local_syms);
6135 return ret;
6136}
6137
0955507f
TP
6138/* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6139 code entry function, ie can be called from non secure code without using a
6140 veneer. */
6141
0a1b45a2 6142static bool
0955507f
TP
6143cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6144{
42484486 6145 bfd_byte contents[4];
0955507f
TP
6146 uint32_t first_insn;
6147 asection *section;
6148 file_ptr offset;
6149 bfd *abfd;
6150
6151 /* Defined symbol of function type. */
6152 if (hash->root.root.type != bfd_link_hash_defined
6153 && hash->root.root.type != bfd_link_hash_defweak)
0a1b45a2 6154 return false;
0955507f 6155 if (hash->root.type != STT_FUNC)
0a1b45a2 6156 return false;
0955507f
TP
6157
6158 /* Read first instruction. */
6159 section = hash->root.root.u.def.section;
6160 abfd = section->owner;
6161 offset = hash->root.root.u.def.value - section->vma;
42484486
TP
6162 if (!bfd_get_section_contents (abfd, section, contents, offset,
6163 sizeof (contents)))
0a1b45a2 6164 return false;
0955507f 6165
42484486
TP
6166 first_insn = bfd_get_32 (abfd, contents);
6167
6168 /* Starts by SG instruction. */
0955507f
TP
6169 return first_insn == 0xe97fe97f;
6170}
6171
6172/* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6173 secure gateway veneers (ie. the veneers was not in the input import library)
6174 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6175
0a1b45a2 6176static bool
0955507f
TP
6177arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6178{
6179 struct elf32_arm_stub_hash_entry *stub_entry;
6180 struct bfd_link_info *info;
6181
6182 /* Massage our args to the form they really have. */
6183 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6184 info = (struct bfd_link_info *) gen_info;
6185
6186 if (info->out_implib_bfd)
0a1b45a2 6187 return true;
0955507f
TP
6188
6189 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
0a1b45a2 6190 return true;
0955507f
TP
6191
6192 if (stub_entry->stub_offset == (bfd_vma) -1)
4eca0228 6193 _bfd_error_handler (" %s", stub_entry->output_name);
0955507f 6194
0a1b45a2 6195 return true;
0955507f
TP
6196}
6197
6198/* Set offset of each secure gateway veneers so that its address remain
6199 identical to the one in the input import library referred by
6200 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6201 (present in input import library but absent from the executable being
6202 linked) or if new veneers appeared and there is no output import library
6203 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6204 number of secure gateway veneers found in the input import library.
6205
6206 The function returns whether an error occurred. If no error occurred,
6207 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6208 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6209 veneer observed set for new veneers to be layed out after. */
6210
0a1b45a2 6211static bool
0955507f
TP
6212set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6213 struct elf32_arm_link_hash_table *htab,
6214 int *cmse_stub_created)
6215{
6216 long symsize;
6217 char *sym_name;
6218 flagword flags;
6219 long i, symcount;
6220 bfd *in_implib_bfd;
6221 asection *stub_out_sec;
0a1b45a2 6222 bool ret = true;
0955507f
TP
6223 Elf_Internal_Sym *intsym;
6224 const char *out_sec_name;
6225 bfd_size_type cmse_stub_size;
6226 asymbol **sympp = NULL, *sym;
6227 struct elf32_arm_link_hash_entry *hash;
6228 const insn_sequence *cmse_stub_template;
6229 struct elf32_arm_stub_hash_entry *stub_entry;
6230 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6231 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6232 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6233
6234 /* No input secure gateway import library. */
6235 if (!htab->in_implib_bfd)
0a1b45a2 6236 return true;
0955507f
TP
6237
6238 in_implib_bfd = htab->in_implib_bfd;
6239 if (!htab->cmse_implib)
6240 {
871b3ab2 6241 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
90b6238f 6242 "Gateway import libraries"), in_implib_bfd);
0a1b45a2 6243 return false;
0955507f
TP
6244 }
6245
6246 /* Get symbol table size. */
6247 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6248 if (symsize < 0)
0a1b45a2 6249 return false;
0955507f
TP
6250
6251 /* Read in the input secure gateway import library's symbol table. */
9a733151
AM
6252 sympp = (asymbol **) bfd_malloc (symsize);
6253 if (sympp == NULL)
0a1b45a2 6254 return false;
9a733151 6255
0955507f
TP
6256 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6257 if (symcount < 0)
6258 {
0a1b45a2 6259 ret = false;
0955507f
TP
6260 goto free_sym_buf;
6261 }
6262
6263 htab->new_cmse_stub_offset = 0;
6264 cmse_stub_size =
6265 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6266 &cmse_stub_template,
6267 &cmse_stub_template_size);
6268 out_sec_name =
6269 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6270 stub_out_sec =
6271 bfd_get_section_by_name (htab->obfd, out_sec_name);
6272 if (stub_out_sec != NULL)
6273 cmse_stub_sec_vma = stub_out_sec->vma;
6274
6275 /* Set addresses of veneers mentionned in input secure gateway import
6276 library's symbol table. */
6277 for (i = 0; i < symcount; i++)
6278 {
6279 sym = sympp[i];
6280 flags = sym->flags;
6281 sym_name = (char *) bfd_asymbol_name (sym);
6282 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6283
6284 if (sym->section != bfd_abs_section_ptr
6285 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6286 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6287 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6288 != ST_BRANCH_TO_THUMB))
6289 {
90b6238f
AM
6290 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6291 "symbol should be absolute, global and "
6292 "refer to Thumb functions"),
4eca0228 6293 in_implib_bfd, sym_name);
0a1b45a2 6294 ret = false;
0955507f
TP
6295 continue;
6296 }
6297
6298 veneer_value = bfd_asymbol_value (sym);
6299 stub_offset = veneer_value - cmse_stub_sec_vma;
6300 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
0a1b45a2 6301 false, false);
0955507f 6302 hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 6303 elf_link_hash_lookup (&(htab)->root, sym_name, false, false, true);
0955507f
TP
6304
6305 /* Stub entry should have been created by cmse_scan or the symbol be of
6306 a secure function callable from non secure code. */
6307 if (!stub_entry && !hash)
6308 {
0a1b45a2 6309 bool new_stub;
0955507f 6310
4eca0228 6311 _bfd_error_handler
90b6238f 6312 (_("entry function `%s' disappeared from secure code"), sym_name);
0955507f 6313 hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 6314 elf_link_hash_lookup (&(htab)->root, sym_name, true, true, true);
0955507f
TP
6315 stub_entry
6316 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6317 NULL, NULL, bfd_abs_section_ptr, hash,
6318 sym_name, veneer_value,
6319 ST_BRANCH_TO_THUMB, &new_stub);
6320 if (stub_entry == NULL)
0a1b45a2 6321 ret = false;
0955507f
TP
6322 else
6323 {
6324 BFD_ASSERT (new_stub);
6325 new_cmse_stubs_created++;
6326 (*cmse_stub_created)++;
6327 }
6328 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6329 stub_entry->stub_offset = stub_offset;
6330 }
6331 /* Symbol found is not callable from non secure code. */
6332 else if (!stub_entry)
6333 {
6334 if (!cmse_entry_fct_p (hash))
6335 {
90b6238f 6336 _bfd_error_handler (_("`%s' refers to a non entry function"),
4eca0228 6337 sym_name);
0a1b45a2 6338 ret = false;
0955507f
TP
6339 }
6340 continue;
6341 }
6342 else
6343 {
6344 /* Only stubs for SG veneers should have been created. */
6345 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6346
6347 /* Check visibility hasn't changed. */
6348 if (!!(flags & BSF_GLOBAL)
6349 != (hash->root.root.type == bfd_link_hash_defined))
4eca0228 6350 _bfd_error_handler
90b6238f 6351 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
0955507f
TP
6352 sym_name);
6353
6354 stub_entry->stub_offset = stub_offset;
6355 }
6356
6357 /* Size should match that of a SG veneer. */
6358 if (intsym->st_size != cmse_stub_size)
6359 {
90b6238f 6360 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
4eca0228 6361 in_implib_bfd, sym_name);
0a1b45a2 6362 ret = false;
0955507f
TP
6363 }
6364
6365 /* Previous veneer address is before current SG veneer section. */
6366 if (veneer_value < cmse_stub_sec_vma)
6367 {
6368 /* Avoid offset underflow. */
6369 if (stub_entry)
6370 stub_entry->stub_offset = 0;
6371 stub_offset = 0;
0a1b45a2 6372 ret = false;
0955507f
TP
6373 }
6374
6375 /* Complain if stub offset not a multiple of stub size. */
6376 if (stub_offset % cmse_stub_size)
6377 {
4eca0228 6378 _bfd_error_handler
90b6238f
AM
6379 (_("offset of veneer for entry function `%s' not a multiple of "
6380 "its size"), sym_name);
0a1b45a2 6381 ret = false;
0955507f
TP
6382 }
6383
6384 if (!ret)
6385 continue;
6386
6387 new_cmse_stubs_created--;
6388 if (veneer_value < cmse_stub_array_start)
6389 cmse_stub_array_start = veneer_value;
6390 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6391 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6392 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6393 }
6394
6395 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6396 {
6397 BFD_ASSERT (new_cmse_stubs_created > 0);
4eca0228 6398 _bfd_error_handler
0955507f
TP
6399 (_("new entry function(s) introduced but no output import library "
6400 "specified:"));
6401 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6402 }
6403
6404 if (cmse_stub_array_start != cmse_stub_sec_vma)
6405 {
4eca0228 6406 _bfd_error_handler
90b6238f 6407 (_("start address of `%s' is different from previous link"),
0955507f 6408 out_sec_name);
0a1b45a2 6409 ret = false;
0955507f
TP
6410 }
6411
dc1e8a47 6412 free_sym_buf:
0955507f
TP
6413 free (sympp);
6414 return ret;
6415}
6416
906e58ca
NC
6417/* Determine and set the size of the stub section for a final link.
6418
6419 The basic idea here is to examine all the relocations looking for
6420 PC-relative calls to a target that is unreachable with a "bl"
6421 instruction. */
6422
0a1b45a2 6423bool
906e58ca
NC
6424elf32_arm_size_stubs (bfd *output_bfd,
6425 bfd *stub_bfd,
6426 struct bfd_link_info *info,
6427 bfd_signed_vma group_size,
7a89b94e 6428 asection * (*add_stub_section) (const char *, asection *,
6bde4c52 6429 asection *,
7a89b94e 6430 unsigned int),
906e58ca
NC
6431 void (*layout_sections_again) (void))
6432{
0a1b45a2 6433 bool ret = true;
4ba2ef8f 6434 obj_attribute *out_attr;
0955507f 6435 int cmse_stub_created = 0;
906e58ca 6436 bfd_size_type stub_group_size;
0a1b45a2 6437 bool m_profile, stubs_always_after_branch, first_veneer_scan = true;
906e58ca 6438 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 6439 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 6440 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
6441 struct a8_erratum_reloc *a8_relocs = NULL;
6442 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6443
4dfe6ac6 6444 if (htab == NULL)
0a1b45a2 6445 return false;
4dfe6ac6 6446
48229727
JB
6447 if (htab->fix_cortex_a8)
6448 {
21d799b5 6449 a8_fixes = (struct a8_erratum_fix *)
99059e56 6450 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
21d799b5 6451 a8_relocs = (struct a8_erratum_reloc *)
99059e56 6452 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 6453 }
906e58ca
NC
6454
6455 /* Propagate mach to stub bfd, because it may not have been
6456 finalized when we created stub_bfd. */
6457 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6458 bfd_get_mach (output_bfd));
6459
6460 /* Stash our params away. */
6461 htab->stub_bfd = stub_bfd;
6462 htab->add_stub_section = add_stub_section;
6463 htab->layout_sections_again = layout_sections_again;
07d72278 6464 stubs_always_after_branch = group_size < 0;
48229727 6465
4ba2ef8f
TP
6466 out_attr = elf_known_obj_attributes_proc (output_bfd);
6467 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
0955507f 6468
48229727
JB
6469 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6470 as the first half of a 32-bit branch straddling two 4K pages. This is a
6471 crude way of enforcing that. */
6472 if (htab->fix_cortex_a8)
6473 stubs_always_after_branch = 1;
6474
906e58ca
NC
6475 if (group_size < 0)
6476 stub_group_size = -group_size;
6477 else
6478 stub_group_size = group_size;
6479
6480 if (stub_group_size == 1)
6481 {
6482 /* Default values. */
6483 /* Thumb branch range is +-4MB has to be used as the default
6484 maximum size (a given section can contain both ARM and Thumb
6485 code, so the worst case has to be taken into account).
6486
6487 This value is 24K less than that, which allows for 2025
6488 12-byte stubs. If we exceed that, then we will fail to link.
6489 The user will have to relink with an explicit group size
6490 option. */
6491 stub_group_size = 4170000;
6492 }
6493
07d72278 6494 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 6495
3ae046cc
NS
6496 /* If we're applying the cortex A8 fix, we need to determine the
6497 program header size now, because we cannot change it later --
6498 that could alter section placements. Notice the A8 erratum fix
6499 ends up requiring the section addresses to remain unchanged
6500 modulo the page size. That's something we cannot represent
6501 inside BFD, and we don't want to force the section alignment to
6502 be the page size. */
6503 if (htab->fix_cortex_a8)
6504 (*htab->layout_sections_again) ();
6505
906e58ca
NC
6506 while (1)
6507 {
6508 bfd *input_bfd;
6509 unsigned int bfd_indx;
6510 asection *stub_sec;
d7c5bd02 6511 enum elf32_arm_stub_type stub_type;
0a1b45a2 6512 bool stub_changed = false;
eb7c4339 6513 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 6514
48229727 6515 num_a8_fixes = 0;
906e58ca
NC
6516 for (input_bfd = info->input_bfds, bfd_indx = 0;
6517 input_bfd != NULL;
c72f2fb2 6518 input_bfd = input_bfd->link.next, bfd_indx++)
906e58ca
NC
6519 {
6520 Elf_Internal_Shdr *symtab_hdr;
6521 asection *section;
6522 Elf_Internal_Sym *local_syms = NULL;
6523
73d5efd7
AM
6524 if (!is_arm_elf (input_bfd))
6525 continue;
6526 if ((input_bfd->flags & DYNAMIC) != 0
6527 && (elf_sym_hashes (input_bfd) == NULL
6528 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0))
99059e56 6529 continue;
adbcc655 6530
48229727
JB
6531 num_a8_relocs = 0;
6532
906e58ca
NC
6533 /* We'll need the symbol table in a second. */
6534 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6535 if (symtab_hdr->sh_info == 0)
6536 continue;
6537
4ba2ef8f
TP
6538 /* Limit scan of symbols to object file whose profile is
6539 Microcontroller to not hinder performance in the general case. */
6540 if (m_profile && first_veneer_scan)
6541 {
6542 struct elf_link_hash_entry **sym_hashes;
6543
6544 sym_hashes = elf_sym_hashes (input_bfd);
6545 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
0955507f 6546 &cmse_stub_created))
4ba2ef8f 6547 goto error_ret_free_local;
0955507f
TP
6548
6549 if (cmse_stub_created != 0)
0a1b45a2 6550 stub_changed = true;
4ba2ef8f
TP
6551 }
6552
906e58ca
NC
6553 /* Walk over each section attached to the input bfd. */
6554 for (section = input_bfd->sections;
6555 section != NULL;
6556 section = section->next)
6557 {
6558 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6559
6560 /* If there aren't any relocs, then there's nothing more
6561 to do. */
6562 if ((section->flags & SEC_RELOC) == 0
6563 || section->reloc_count == 0
6564 || (section->flags & SEC_CODE) == 0)
6565 continue;
6566
6567 /* If this section is a link-once section that will be
6568 discarded, then don't create any stubs. */
6569 if (section->output_section == NULL
6570 || section->output_section->owner != output_bfd)
6571 continue;
6572
6573 /* Get the relocs. */
6574 internal_relocs
6575 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6576 NULL, info->keep_memory);
6577 if (internal_relocs == NULL)
6578 goto error_ret_free_local;
6579
6580 /* Now examine each relocation. */
6581 irela = internal_relocs;
6582 irelaend = irela + section->reloc_count;
6583 for (; irela < irelaend; irela++)
6584 {
6585 unsigned int r_type, r_indx;
906e58ca
NC
6586 asection *sym_sec;
6587 bfd_vma sym_value;
6588 bfd_vma destination;
6589 struct elf32_arm_link_hash_entry *hash;
7413f23f 6590 const char *sym_name;
34e77a92 6591 unsigned char st_type;
35fc36a8 6592 enum arm_st_branch_type branch_type;
0a1b45a2 6593 bool created_stub = false;
906e58ca
NC
6594
6595 r_type = ELF32_R_TYPE (irela->r_info);
6596 r_indx = ELF32_R_SYM (irela->r_info);
6597
6598 if (r_type >= (unsigned int) R_ARM_max)
6599 {
6600 bfd_set_error (bfd_error_bad_value);
6601 error_ret_free_internal:
6602 if (elf_section_data (section)->relocs == NULL)
6603 free (internal_relocs);
15dd01b1
TP
6604 /* Fall through. */
6605 error_ret_free_local:
c9594989 6606 if (symtab_hdr->contents != (unsigned char *) local_syms)
15dd01b1 6607 free (local_syms);
0a1b45a2 6608 return false;
906e58ca 6609 }
b38cadfb 6610
0855e32b
NS
6611 hash = NULL;
6612 if (r_indx >= symtab_hdr->sh_info)
6613 hash = elf32_arm_hash_entry
6614 (elf_sym_hashes (input_bfd)
6615 [r_indx - symtab_hdr->sh_info]);
b38cadfb 6616
0855e32b
NS
6617 /* Only look for stubs on branch instructions, or
6618 non-relaxed TLSCALL */
906e58ca 6619 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
6620 && (r_type != (unsigned int) R_ARM_THM_CALL)
6621 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
6622 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6623 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 6624 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
6625 && (r_type != (unsigned int) R_ARM_PLT32)
6626 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6627 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
c9f9a78d
AM
6628 && r_type == (elf32_arm_tls_transition
6629 (info, r_type,
6630 (struct elf_link_hash_entry *) hash))
0855e32b
NS
6631 && ((hash ? hash->tls_type
6632 : (elf32_arm_local_got_tls_type
6633 (input_bfd)[r_indx]))
6634 & GOT_TLS_GDESC) != 0))
906e58ca
NC
6635 continue;
6636
6637 /* Now determine the call target, its name, value,
6638 section. */
6639 sym_sec = NULL;
6640 sym_value = 0;
6641 destination = 0;
7413f23f 6642 sym_name = NULL;
b38cadfb 6643
0855e32b
NS
6644 if (r_type == (unsigned int) R_ARM_TLS_CALL
6645 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6646 {
6647 /* A non-relaxed TLS call. The target is the
6648 plt-resident trampoline and nothing to do
6649 with the symbol. */
6650 BFD_ASSERT (htab->tls_trampoline > 0);
6651 sym_sec = htab->root.splt;
6652 sym_value = htab->tls_trampoline;
6653 hash = 0;
34e77a92 6654 st_type = STT_FUNC;
35fc36a8 6655 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
6656 }
6657 else if (!hash)
906e58ca
NC
6658 {
6659 /* It's a local symbol. */
6660 Elf_Internal_Sym *sym;
906e58ca
NC
6661
6662 if (local_syms == NULL)
6663 {
6664 local_syms
6665 = (Elf_Internal_Sym *) symtab_hdr->contents;
6666 if (local_syms == NULL)
6667 local_syms
6668 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6669 symtab_hdr->sh_info, 0,
6670 NULL, NULL, NULL);
6671 if (local_syms == NULL)
6672 goto error_ret_free_internal;
6673 }
6674
6675 sym = local_syms + r_indx;
f6d250ce
TS
6676 if (sym->st_shndx == SHN_UNDEF)
6677 sym_sec = bfd_und_section_ptr;
6678 else if (sym->st_shndx == SHN_ABS)
6679 sym_sec = bfd_abs_section_ptr;
6680 else if (sym->st_shndx == SHN_COMMON)
6681 sym_sec = bfd_com_section_ptr;
6682 else
6683 sym_sec =
6684 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6685
ffcb4889
NS
6686 if (!sym_sec)
6687 /* This is an undefined symbol. It can never
6a631e86 6688 be resolved. */
ffcb4889 6689 continue;
fe33d2fa 6690
906e58ca
NC
6691 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6692 sym_value = sym->st_value;
6693 destination = (sym_value + irela->r_addend
6694 + sym_sec->output_offset
6695 + sym_sec->output_section->vma);
34e77a92 6696 st_type = ELF_ST_TYPE (sym->st_info);
39d911fc
TP
6697 branch_type =
6698 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
7413f23f
DJ
6699 sym_name
6700 = bfd_elf_string_from_elf_section (input_bfd,
6701 symtab_hdr->sh_link,
6702 sym->st_name);
906e58ca
NC
6703 }
6704 else
6705 {
6706 /* It's an external symbol. */
906e58ca
NC
6707 while (hash->root.root.type == bfd_link_hash_indirect
6708 || hash->root.root.type == bfd_link_hash_warning)
6709 hash = ((struct elf32_arm_link_hash_entry *)
6710 hash->root.root.u.i.link);
6711
6712 if (hash->root.root.type == bfd_link_hash_defined
6713 || hash->root.root.type == bfd_link_hash_defweak)
6714 {
6715 sym_sec = hash->root.root.u.def.section;
6716 sym_value = hash->root.root.u.def.value;
022f8312
CL
6717
6718 struct elf32_arm_link_hash_table *globals =
6719 elf32_arm_hash_table (info);
6720
6721 /* For a destination in a shared library,
6722 use the PLT stub as target address to
6723 decide whether a branch stub is
6724 needed. */
4dfe6ac6 6725 if (globals != NULL
362d30a1 6726 && globals->root.splt != NULL
4dfe6ac6 6727 && hash != NULL
022f8312
CL
6728 && hash->root.plt.offset != (bfd_vma) -1)
6729 {
362d30a1 6730 sym_sec = globals->root.splt;
022f8312
CL
6731 sym_value = hash->root.plt.offset;
6732 if (sym_sec->output_section != NULL)
6733 destination = (sym_value
6734 + sym_sec->output_offset
6735 + sym_sec->output_section->vma);
6736 }
6737 else if (sym_sec->output_section != NULL)
906e58ca
NC
6738 destination = (sym_value + irela->r_addend
6739 + sym_sec->output_offset
6740 + sym_sec->output_section->vma);
6741 }
69c5861e
CL
6742 else if ((hash->root.root.type == bfd_link_hash_undefined)
6743 || (hash->root.root.type == bfd_link_hash_undefweak))
6744 {
6745 /* For a shared library, use the PLT stub as
6746 target address to decide whether a long
6747 branch stub is needed.
6748 For absolute code, they cannot be handled. */
6749 struct elf32_arm_link_hash_table *globals =
6750 elf32_arm_hash_table (info);
6751
4dfe6ac6 6752 if (globals != NULL
362d30a1 6753 && globals->root.splt != NULL
4dfe6ac6 6754 && hash != NULL
69c5861e
CL
6755 && hash->root.plt.offset != (bfd_vma) -1)
6756 {
362d30a1 6757 sym_sec = globals->root.splt;
69c5861e
CL
6758 sym_value = hash->root.plt.offset;
6759 if (sym_sec->output_section != NULL)
6760 destination = (sym_value
6761 + sym_sec->output_offset
6762 + sym_sec->output_section->vma);
6763 }
6764 else
6765 continue;
6766 }
906e58ca
NC
6767 else
6768 {
6769 bfd_set_error (bfd_error_bad_value);
6770 goto error_ret_free_internal;
6771 }
34e77a92 6772 st_type = hash->root.type;
39d911fc
TP
6773 branch_type =
6774 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
7413f23f 6775 sym_name = hash->root.root.root.string;
906e58ca
NC
6776 }
6777
48229727 6778 do
7413f23f 6779 {
0a1b45a2 6780 bool new_stub;
0955507f 6781 struct elf32_arm_stub_hash_entry *stub_entry;
b715f643 6782
48229727
JB
6783 /* Determine what (if any) linker stub is needed. */
6784 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
6785 st_type, &branch_type,
6786 hash, destination, sym_sec,
48229727
JB
6787 input_bfd, sym_name);
6788 if (stub_type == arm_stub_none)
6789 break;
6790
48229727
JB
6791 /* We've either created a stub for this reloc already,
6792 or we are about to. */
0955507f 6793 stub_entry =
b715f643
TP
6794 elf32_arm_create_stub (htab, stub_type, section, irela,
6795 sym_sec, hash,
6796 (char *) sym_name, sym_value,
6797 branch_type, &new_stub);
7413f23f 6798
0955507f 6799 created_stub = stub_entry != NULL;
b715f643
TP
6800 if (!created_stub)
6801 goto error_ret_free_internal;
6802 else if (!new_stub)
6803 break;
99059e56 6804 else
0a1b45a2 6805 stub_changed = true;
99059e56
RM
6806 }
6807 while (0);
6808
6809 /* Look for relocations which might trigger Cortex-A8
6810 erratum. */
6811 if (htab->fix_cortex_a8
6812 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6813 || r_type == (unsigned int) R_ARM_THM_JUMP19
6814 || r_type == (unsigned int) R_ARM_THM_CALL
6815 || r_type == (unsigned int) R_ARM_THM_XPC22))
6816 {
6817 bfd_vma from = section->output_section->vma
6818 + section->output_offset
6819 + irela->r_offset;
6820
6821 if ((from & 0xfff) == 0xffe)
6822 {
6823 /* Found a candidate. Note we haven't checked the
6824 destination is within 4K here: if we do so (and
6825 don't create an entry in a8_relocs) we can't tell
6826 that a branch should have been relocated when
6827 scanning later. */
6828 if (num_a8_relocs == a8_reloc_table_size)
6829 {
6830 a8_reloc_table_size *= 2;
6831 a8_relocs = (struct a8_erratum_reloc *)
6832 bfd_realloc (a8_relocs,
6833 sizeof (struct a8_erratum_reloc)
6834 * a8_reloc_table_size);
6835 }
6836
6837 a8_relocs[num_a8_relocs].from = from;
6838 a8_relocs[num_a8_relocs].destination = destination;
6839 a8_relocs[num_a8_relocs].r_type = r_type;
6840 a8_relocs[num_a8_relocs].branch_type = branch_type;
6841 a8_relocs[num_a8_relocs].sym_name = sym_name;
6842 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6843 a8_relocs[num_a8_relocs].hash = hash;
6844
6845 num_a8_relocs++;
6846 }
6847 }
906e58ca
NC
6848 }
6849
99059e56
RM
6850 /* We're done with the internal relocs, free them. */
6851 if (elf_section_data (section)->relocs == NULL)
6852 free (internal_relocs);
6853 }
48229727 6854
99059e56 6855 if (htab->fix_cortex_a8)
48229727 6856 {
99059e56
RM
6857 /* Sort relocs which might apply to Cortex-A8 erratum. */
6858 qsort (a8_relocs, num_a8_relocs,
eb7c4339 6859 sizeof (struct a8_erratum_reloc),
99059e56 6860 &a8_reloc_compare);
48229727 6861
99059e56
RM
6862 /* Scan for branches which might trigger Cortex-A8 erratum. */
6863 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
48229727 6864 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
6865 a8_relocs, num_a8_relocs,
6866 prev_num_a8_fixes, &stub_changed)
6867 != 0)
48229727 6868 goto error_ret_free_local;
5e681ec4 6869 }
7f991970
AM
6870
6871 if (local_syms != NULL
6872 && symtab_hdr->contents != (unsigned char *) local_syms)
6873 {
6874 if (!info->keep_memory)
6875 free (local_syms);
6876 else
6877 symtab_hdr->contents = (unsigned char *) local_syms;
6878 }
5e681ec4
PB
6879 }
6880
0955507f
TP
6881 if (first_veneer_scan
6882 && !set_cmse_veneer_addr_from_implib (info, htab,
6883 &cmse_stub_created))
0a1b45a2 6884 ret = false;
0955507f 6885
eb7c4339 6886 if (prev_num_a8_fixes != num_a8_fixes)
0a1b45a2 6887 stub_changed = true;
48229727 6888
906e58ca
NC
6889 if (!stub_changed)
6890 break;
5e681ec4 6891
906e58ca
NC
6892 /* OK, we've added some stubs. Find out the new size of the
6893 stub sections. */
6894 for (stub_sec = htab->stub_bfd->sections;
6895 stub_sec != NULL;
6896 stub_sec = stub_sec->next)
3e6b1042
DJ
6897 {
6898 /* Ignore non-stub sections. */
6899 if (!strstr (stub_sec->name, STUB_SUFFIX))
6900 continue;
6901
6902 stub_sec->size = 0;
6903 }
b34b2d70 6904
0955507f
TP
6905 /* Add new SG veneers after those already in the input import
6906 library. */
6907 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6908 stub_type++)
6909 {
6910 bfd_vma *start_offset_p;
6911 asection **stub_sec_p;
6912
6913 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6914 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6915 if (start_offset_p == NULL)
6916 continue;
6917
6918 BFD_ASSERT (stub_sec_p != NULL);
6919 if (*stub_sec_p != NULL)
6920 (*stub_sec_p)->size = *start_offset_p;
6921 }
6922
d7c5bd02 6923 /* Compute stub section size, considering padding. */
906e58ca 6924 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
d7c5bd02
TP
6925 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6926 stub_type++)
6927 {
6928 int size, padding;
6929 asection **stub_sec_p;
6930
6931 padding = arm_dedicated_stub_section_padding (stub_type);
6932 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6933 /* Skip if no stub input section or no stub section padding
6934 required. */
6935 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6936 continue;
6937 /* Stub section padding required but no dedicated section. */
6938 BFD_ASSERT (stub_sec_p);
6939
6940 size = (*stub_sec_p)->size;
6941 size = (size + padding - 1) & ~(padding - 1);
6942 (*stub_sec_p)->size = size;
6943 }
906e58ca 6944
48229727
JB
6945 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6946 if (htab->fix_cortex_a8)
99059e56
RM
6947 for (i = 0; i < num_a8_fixes; i++)
6948 {
48229727 6949 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
daa4adae 6950 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
48229727
JB
6951
6952 if (stub_sec == NULL)
0a1b45a2 6953 return false;
48229727 6954
99059e56
RM
6955 stub_sec->size
6956 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6957 NULL);
6958 }
48229727
JB
6959
6960
906e58ca
NC
6961 /* Ask the linker to do its stuff. */
6962 (*htab->layout_sections_again) ();
0a1b45a2 6963 first_veneer_scan = false;
ba93b8ac
DJ
6964 }
6965
48229727
JB
6966 /* Add stubs for Cortex-A8 erratum fixes now. */
6967 if (htab->fix_cortex_a8)
6968 {
6969 for (i = 0; i < num_a8_fixes; i++)
99059e56
RM
6970 {
6971 struct elf32_arm_stub_hash_entry *stub_entry;
6972 char *stub_name = a8_fixes[i].stub_name;
6973 asection *section = a8_fixes[i].section;
6974 unsigned int section_id = a8_fixes[i].section->id;
6975 asection *link_sec = htab->stub_group[section_id].link_sec;
6976 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6977 const insn_sequence *template_sequence;
6978 int template_size, size = 0;
6979
6980 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
0a1b45a2 6981 true, false);
99059e56
RM
6982 if (stub_entry == NULL)
6983 {
871b3ab2 6984 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 6985 section->owner, stub_name);
0a1b45a2 6986 return false;
99059e56
RM
6987 }
6988
6989 stub_entry->stub_sec = stub_sec;
0955507f 6990 stub_entry->stub_offset = (bfd_vma) -1;
99059e56
RM
6991 stub_entry->id_sec = link_sec;
6992 stub_entry->stub_type = a8_fixes[i].stub_type;
8d9d9490 6993 stub_entry->source_value = a8_fixes[i].offset;
99059e56 6994 stub_entry->target_section = a8_fixes[i].section;
8d9d9490 6995 stub_entry->target_value = a8_fixes[i].target_offset;
99059e56 6996 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 6997 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 6998
99059e56
RM
6999 size = find_stub_size_and_template (a8_fixes[i].stub_type,
7000 &template_sequence,
7001 &template_size);
48229727 7002
99059e56
RM
7003 stub_entry->stub_size = size;
7004 stub_entry->stub_template = template_sequence;
7005 stub_entry->stub_template_size = template_size;
7006 }
48229727
JB
7007
7008 /* Stash the Cortex-A8 erratum fix array for use later in
99059e56 7009 elf32_arm_write_section(). */
48229727
JB
7010 htab->a8_erratum_fixes = a8_fixes;
7011 htab->num_a8_erratum_fixes = num_a8_fixes;
7012 }
7013 else
7014 {
7015 htab->a8_erratum_fixes = NULL;
7016 htab->num_a8_erratum_fixes = 0;
7017 }
0955507f 7018 return ret;
5e681ec4
PB
7019}
7020
906e58ca
NC
7021/* Build all the stubs associated with the current output file. The
7022 stubs are kept in a hash table attached to the main linker hash
7023 table. We also set up the .plt entries for statically linked PIC
7024 functions here. This function is called via arm_elf_finish in the
7025 linker. */
252b5132 7026
0a1b45a2 7027bool
906e58ca 7028elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 7029{
906e58ca
NC
7030 asection *stub_sec;
7031 struct bfd_hash_table *table;
0955507f 7032 enum elf32_arm_stub_type stub_type;
906e58ca 7033 struct elf32_arm_link_hash_table *htab;
252b5132 7034
906e58ca 7035 htab = elf32_arm_hash_table (info);
4dfe6ac6 7036 if (htab == NULL)
0a1b45a2 7037 return false;
252b5132 7038
906e58ca
NC
7039 for (stub_sec = htab->stub_bfd->sections;
7040 stub_sec != NULL;
7041 stub_sec = stub_sec->next)
252b5132 7042 {
906e58ca
NC
7043 bfd_size_type size;
7044
8029a119 7045 /* Ignore non-stub sections. */
906e58ca
NC
7046 if (!strstr (stub_sec->name, STUB_SUFFIX))
7047 continue;
7048
d7c5bd02 7049 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
0955507f
TP
7050 must at least be done for stub section requiring padding and for SG
7051 veneers to ensure that a non secure code branching to a removed SG
7052 veneer causes an error. */
906e58ca 7053 size = stub_sec->size;
21d799b5 7054 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca 7055 if (stub_sec->contents == NULL && size != 0)
0a1b45a2 7056 return false;
0955507f 7057
906e58ca 7058 stub_sec->size = 0;
252b5132
RH
7059 }
7060
0955507f
TP
7061 /* Add new SG veneers after those already in the input import library. */
7062 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7063 {
7064 bfd_vma *start_offset_p;
7065 asection **stub_sec_p;
7066
7067 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7068 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7069 if (start_offset_p == NULL)
7070 continue;
7071
7072 BFD_ASSERT (stub_sec_p != NULL);
7073 if (*stub_sec_p != NULL)
7074 (*stub_sec_p)->size = *start_offset_p;
7075 }
7076
906e58ca
NC
7077 /* Build the stubs as directed by the stub hash table. */
7078 table = &htab->stub_hash_table;
7079 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
7080 if (htab->fix_cortex_a8)
7081 {
7082 /* Place the cortex a8 stubs last. */
7083 htab->fix_cortex_a8 = -1;
7084 bfd_hash_traverse (table, arm_build_one_stub, info);
7085 }
252b5132 7086
0a1b45a2 7087 return true;
252b5132
RH
7088}
7089
9b485d32
NC
7090/* Locate the Thumb encoded calling stub for NAME. */
7091
252b5132 7092static struct elf_link_hash_entry *
57e8b36a
NC
7093find_thumb_glue (struct bfd_link_info *link_info,
7094 const char *name,
f2a9dd69 7095 char **error_message)
252b5132
RH
7096{
7097 char *tmp_name;
7098 struct elf_link_hash_entry *hash;
7099 struct elf32_arm_link_hash_table *hash_table;
7100
7101 /* We need a pointer to the armelf specific hash table. */
7102 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7103 if (hash_table == NULL)
7104 return NULL;
252b5132 7105
21d799b5 7106 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7107 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7108
7109 BFD_ASSERT (tmp_name);
7110
7111 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7112
7113 hash = elf_link_hash_lookup
0a1b45a2 7114 (&(hash_table)->root, tmp_name, false, false, true);
252b5132 7115
6f860418
AM
7116 if (hash == NULL)
7117 {
7118 *error_message = bfd_asprintf (_("unable to find %s glue '%s' for '%s'"),
7119 "Thumb", tmp_name, name);
7120 if (*error_message == NULL)
7121 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7122 }
252b5132
RH
7123
7124 free (tmp_name);
7125
7126 return hash;
7127}
7128
9b485d32
NC
7129/* Locate the ARM encoded calling stub for NAME. */
7130
252b5132 7131static struct elf_link_hash_entry *
57e8b36a
NC
7132find_arm_glue (struct bfd_link_info *link_info,
7133 const char *name,
f2a9dd69 7134 char **error_message)
252b5132
RH
7135{
7136 char *tmp_name;
7137 struct elf_link_hash_entry *myh;
7138 struct elf32_arm_link_hash_table *hash_table;
7139
7140 /* We need a pointer to the elfarm specific hash table. */
7141 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7142 if (hash_table == NULL)
7143 return NULL;
252b5132 7144
21d799b5 7145 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7146 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7147 BFD_ASSERT (tmp_name);
7148
7149 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7150
7151 myh = elf_link_hash_lookup
0a1b45a2 7152 (&(hash_table)->root, tmp_name, false, false, true);
252b5132 7153
6f860418
AM
7154 if (myh == NULL)
7155 {
7156 *error_message = bfd_asprintf (_("unable to find %s glue '%s' for '%s'"),
7157 "ARM", tmp_name, name);
7158 if (*error_message == NULL)
7159 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7160 }
252b5132
RH
7161 free (tmp_name);
7162
7163 return myh;
7164}
7165
8f6277f5 7166/* ARM->Thumb glue (static images):
252b5132
RH
7167
7168 .arm
7169 __func_from_arm:
7170 ldr r12, __func_addr
7171 bx r12
7172 __func_addr:
906e58ca 7173 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 7174
26079076
PB
7175 (v5t static images)
7176 .arm
7177 __func_from_arm:
7178 ldr pc, __func_addr
7179 __func_addr:
906e58ca 7180 .word func @ behave as if you saw a ARM_32 reloc.
26079076 7181
8f6277f5
PB
7182 (relocatable images)
7183 .arm
7184 __func_from_arm:
7185 ldr r12, __func_offset
7186 add r12, r12, pc
7187 bx r12
7188 __func_offset:
8029a119 7189 .word func - . */
8f6277f5
PB
7190
7191#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
7192static const insn32 a2t1_ldr_insn = 0xe59fc000;
7193static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7194static const insn32 a2t3_func_addr_insn = 0x00000001;
7195
26079076
PB
7196#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7197static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7198static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7199
8f6277f5
PB
7200#define ARM2THUMB_PIC_GLUE_SIZE 16
7201static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7202static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7203static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7204
07d6d2b8 7205/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 7206
07d6d2b8
AM
7207 .thumb .thumb
7208 .align 2 .align 2
7209 __func_from_thumb: __func_from_thumb:
7210 bx pc push {r6, lr}
7211 nop ldr r6, __func_addr
7212 .arm mov lr, pc
7213 b func bx r6
99059e56
RM
7214 .arm
7215 ;; back_to_thumb
7216 ldmia r13! {r6, lr}
7217 bx lr
7218 __func_addr:
07d6d2b8 7219 .word func */
252b5132
RH
7220
7221#define THUMB2ARM_GLUE_SIZE 8
7222static const insn16 t2a1_bx_pc_insn = 0x4778;
7223static const insn16 t2a2_noop_insn = 0x46c0;
7224static const insn32 t2a3_b_insn = 0xea000000;
7225
c7b8f16e 7226#define VFP11_ERRATUM_VENEER_SIZE 8
a504d23a
LA
7227#define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7228#define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
c7b8f16e 7229
845b51d6
PB
7230#define ARM_BX_VENEER_SIZE 12
7231static const insn32 armbx1_tst_insn = 0xe3100001;
7232static const insn32 armbx2_moveq_insn = 0x01a0f000;
7233static const insn32 armbx3_bx_insn = 0xe12fff10;
7234
7e392df6 7235#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
7236static void
7237arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
7238{
7239 asection * s;
8029a119 7240 bfd_byte * contents;
252b5132 7241
8029a119 7242 if (size == 0)
3e6b1042
DJ
7243 {
7244 /* Do not include empty glue sections in the output. */
7245 if (abfd != NULL)
7246 {
3d4d4302 7247 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
7248 if (s != NULL)
7249 s->flags |= SEC_EXCLUDE;
7250 }
7251 return;
7252 }
252b5132 7253
8029a119 7254 BFD_ASSERT (abfd != NULL);
252b5132 7255
3d4d4302 7256 s = bfd_get_linker_section (abfd, name);
8029a119 7257 BFD_ASSERT (s != NULL);
252b5132 7258
b0f4fbf8 7259 contents = (bfd_byte *) bfd_zalloc (abfd, size);
252b5132 7260
8029a119
NC
7261 BFD_ASSERT (s->size == size);
7262 s->contents = contents;
7263}
906e58ca 7264
0a1b45a2 7265bool
8029a119
NC
7266bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7267{
7268 struct elf32_arm_link_hash_table * globals;
906e58ca 7269
8029a119
NC
7270 globals = elf32_arm_hash_table (info);
7271 BFD_ASSERT (globals != NULL);
906e58ca 7272
8029a119
NC
7273 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7274 globals->arm_glue_size,
7275 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 7276
8029a119
NC
7277 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7278 globals->thumb_glue_size,
7279 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 7280
8029a119
NC
7281 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7282 globals->vfp11_erratum_glue_size,
7283 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 7284
a504d23a
LA
7285 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7286 globals->stm32l4xx_erratum_glue_size,
7287 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7288
8029a119
NC
7289 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7290 globals->bx_glue_size,
845b51d6
PB
7291 ARM_BX_GLUE_SECTION_NAME);
7292
0a1b45a2 7293 return true;
252b5132
RH
7294}
7295
a4fd1a8e 7296/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
7297 returns the symbol identifying the stub. */
7298
a4fd1a8e 7299static struct elf_link_hash_entry *
57e8b36a
NC
7300record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7301 struct elf_link_hash_entry * h)
252b5132
RH
7302{
7303 const char * name = h->root.root.string;
63b0f745 7304 asection * s;
252b5132
RH
7305 char * tmp_name;
7306 struct elf_link_hash_entry * myh;
14a793b2 7307 struct bfd_link_hash_entry * bh;
252b5132 7308 struct elf32_arm_link_hash_table * globals;
dc810e39 7309 bfd_vma val;
2f475487 7310 bfd_size_type size;
252b5132
RH
7311
7312 globals = elf32_arm_hash_table (link_info);
252b5132
RH
7313 BFD_ASSERT (globals != NULL);
7314 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7315
3d4d4302 7316 s = bfd_get_linker_section
252b5132
RH
7317 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7318
252b5132
RH
7319 BFD_ASSERT (s != NULL);
7320
21d799b5 7321 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7322 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7323 BFD_ASSERT (tmp_name);
7324
7325 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7326
7327 myh = elf_link_hash_lookup
0a1b45a2 7328 (&(globals)->root, tmp_name, false, false, true);
252b5132
RH
7329
7330 if (myh != NULL)
7331 {
9b485d32 7332 /* We've already seen this guy. */
252b5132 7333 free (tmp_name);
a4fd1a8e 7334 return myh;
252b5132
RH
7335 }
7336
57e8b36a
NC
7337 /* The only trick here is using hash_table->arm_glue_size as the value.
7338 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
7339 putting it. The +1 on the value marks that the stub has not been
7340 output yet - not that it is a Thumb function. */
14a793b2 7341 bh = NULL;
dc810e39
AM
7342 val = globals->arm_glue_size + 1;
7343 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7344 tmp_name, BSF_GLOBAL, s, val,
0a1b45a2 7345 NULL, true, false, &bh);
252b5132 7346
b7693d02
DJ
7347 myh = (struct elf_link_hash_entry *) bh;
7348 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7349 myh->forced_local = 1;
7350
252b5132
RH
7351 free (tmp_name);
7352
0e1862bb
L
7353 if (bfd_link_pic (link_info)
7354 || globals->root.is_relocatable_executable
27e55c4d 7355 || globals->pic_veneer)
2f475487 7356 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
7357 else if (globals->use_blx)
7358 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 7359 else
2f475487
AM
7360 size = ARM2THUMB_STATIC_GLUE_SIZE;
7361
7362 s->size += size;
7363 globals->arm_glue_size += size;
252b5132 7364
a4fd1a8e 7365 return myh;
252b5132
RH
7366}
7367
845b51d6
PB
7368/* Allocate space for ARMv4 BX veneers. */
7369
7370static void
7371record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7372{
7373 asection * s;
7374 struct elf32_arm_link_hash_table *globals;
7375 char *tmp_name;
7376 struct elf_link_hash_entry *myh;
7377 struct bfd_link_hash_entry *bh;
7378 bfd_vma val;
7379
7380 /* BX PC does not need a veneer. */
7381 if (reg == 15)
7382 return;
7383
7384 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
7385 BFD_ASSERT (globals != NULL);
7386 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7387
7388 /* Check if this veneer has already been allocated. */
7389 if (globals->bx_glue_offset[reg])
7390 return;
7391
3d4d4302 7392 s = bfd_get_linker_section
845b51d6
PB
7393 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7394
7395 BFD_ASSERT (s != NULL);
7396
7397 /* Add symbol for veneer. */
21d799b5
NC
7398 tmp_name = (char *)
7399 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
845b51d6 7400 BFD_ASSERT (tmp_name);
906e58ca 7401
845b51d6 7402 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 7403
845b51d6 7404 myh = elf_link_hash_lookup
0a1b45a2 7405 (&(globals)->root, tmp_name, false, false, false);
906e58ca 7406
845b51d6 7407 BFD_ASSERT (myh == NULL);
906e58ca 7408
845b51d6
PB
7409 bh = NULL;
7410 val = globals->bx_glue_size;
7411 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
99059e56 7412 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
0a1b45a2 7413 NULL, true, false, &bh);
845b51d6
PB
7414
7415 myh = (struct elf_link_hash_entry *) bh;
7416 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7417 myh->forced_local = 1;
7418
7419 s->size += ARM_BX_VENEER_SIZE;
7420 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7421 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7422}
7423
7424
c7b8f16e
JB
7425/* Add an entry to the code/data map for section SEC. */
7426
7427static void
7428elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7429{
7430 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7431 unsigned int newidx;
906e58ca 7432
c7b8f16e
JB
7433 if (sec_data->map == NULL)
7434 {
21d799b5 7435 sec_data->map = (elf32_arm_section_map *)
99059e56 7436 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
7437 sec_data->mapcount = 0;
7438 sec_data->mapsize = 1;
7439 }
906e58ca 7440
c7b8f16e 7441 newidx = sec_data->mapcount++;
906e58ca 7442
c7b8f16e
JB
7443 if (sec_data->mapcount > sec_data->mapsize)
7444 {
7445 sec_data->mapsize *= 2;
21d799b5 7446 sec_data->map = (elf32_arm_section_map *)
99059e56
RM
7447 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7448 * sizeof (elf32_arm_section_map));
515ef31d
NC
7449 }
7450
7451 if (sec_data->map)
7452 {
7453 sec_data->map[newidx].vma = vma;
7454 sec_data->map[newidx].type = type;
c7b8f16e 7455 }
c7b8f16e
JB
7456}
7457
7458
7459/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7460 veneers are handled for now. */
7461
7462static bfd_vma
7463record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
99059e56
RM
7464 elf32_vfp11_erratum_list *branch,
7465 bfd *branch_bfd,
7466 asection *branch_sec,
7467 unsigned int offset)
c7b8f16e
JB
7468{
7469 asection *s;
7470 struct elf32_arm_link_hash_table *hash_table;
7471 char *tmp_name;
7472 struct elf_link_hash_entry *myh;
7473 struct bfd_link_hash_entry *bh;
7474 bfd_vma val;
7475 struct _arm_elf_section_data *sec_data;
c7b8f16e 7476 elf32_vfp11_erratum_list *newerr;
906e58ca 7477
c7b8f16e 7478 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
7479 BFD_ASSERT (hash_table != NULL);
7480 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 7481
3d4d4302 7482 s = bfd_get_linker_section
c7b8f16e 7483 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 7484
c7b8f16e 7485 sec_data = elf32_arm_section_data (s);
906e58ca 7486
c7b8f16e 7487 BFD_ASSERT (s != NULL);
906e58ca 7488
21d799b5 7489 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 7490 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e 7491 BFD_ASSERT (tmp_name);
906e58ca 7492
c7b8f16e
JB
7493 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7494 hash_table->num_vfp11_fixes);
906e58ca 7495
c7b8f16e 7496 myh = elf_link_hash_lookup
0a1b45a2 7497 (&(hash_table)->root, tmp_name, false, false, false);
906e58ca 7498
c7b8f16e 7499 BFD_ASSERT (myh == NULL);
906e58ca 7500
c7b8f16e
JB
7501 bh = NULL;
7502 val = hash_table->vfp11_erratum_glue_size;
7503 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
99059e56 7504 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
0a1b45a2 7505 NULL, true, false, &bh);
c7b8f16e
JB
7506
7507 myh = (struct elf_link_hash_entry *) bh;
7508 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7509 myh->forced_local = 1;
7510
7511 /* Link veneer back to calling location. */
c7e2358a 7512 sec_data->erratumcount += 1;
21d799b5
NC
7513 newerr = (elf32_vfp11_erratum_list *)
7514 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 7515
c7b8f16e
JB
7516 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7517 newerr->vma = -1;
7518 newerr->u.v.branch = branch;
7519 newerr->u.v.id = hash_table->num_vfp11_fixes;
7520 branch->u.b.veneer = newerr;
7521
7522 newerr->next = sec_data->erratumlist;
7523 sec_data->erratumlist = newerr;
7524
7525 /* A symbol for the return from the veneer. */
7526 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7527 hash_table->num_vfp11_fixes);
7528
7529 myh = elf_link_hash_lookup
0a1b45a2 7530 (&(hash_table)->root, tmp_name, false, false, false);
906e58ca 7531
c7b8f16e
JB
7532 if (myh != NULL)
7533 abort ();
7534
7535 bh = NULL;
7536 val = offset + 4;
7537 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
0a1b45a2 7538 branch_sec, val, NULL, true, false, &bh);
906e58ca 7539
c7b8f16e
JB
7540 myh = (struct elf_link_hash_entry *) bh;
7541 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7542 myh->forced_local = 1;
7543
7544 free (tmp_name);
906e58ca 7545
c7b8f16e
JB
7546 /* Generate a mapping symbol for the veneer section, and explicitly add an
7547 entry for that symbol to the code/data map for the section. */
7548 if (hash_table->vfp11_erratum_glue_size == 0)
7549 {
7550 bh = NULL;
7551 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
99059e56 7552 ever requires this erratum fix. */
c7b8f16e
JB
7553 _bfd_generic_link_add_one_symbol (link_info,
7554 hash_table->bfd_of_glue_owner, "$a",
7555 BSF_LOCAL, s, 0, NULL,
0a1b45a2 7556 true, false, &bh);
c7b8f16e
JB
7557
7558 myh = (struct elf_link_hash_entry *) bh;
7559 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7560 myh->forced_local = 1;
906e58ca 7561
c7b8f16e 7562 /* The elf32_arm_init_maps function only cares about symbols from input
99059e56
RM
7563 BFDs. We must make a note of this generated mapping symbol
7564 ourselves so that code byteswapping works properly in
7565 elf32_arm_write_section. */
c7b8f16e
JB
7566 elf32_arm_section_map_add (s, 'a', 0);
7567 }
906e58ca 7568
c7b8f16e
JB
7569 s->size += VFP11_ERRATUM_VENEER_SIZE;
7570 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7571 hash_table->num_vfp11_fixes++;
906e58ca 7572
c7b8f16e
JB
7573 /* The offset of the veneer. */
7574 return val;
7575}
7576
a504d23a
LA
7577/* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7578 veneers need to be handled because used only in Cortex-M. */
7579
7580static bfd_vma
7581record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7582 elf32_stm32l4xx_erratum_list *branch,
7583 bfd *branch_bfd,
7584 asection *branch_sec,
7585 unsigned int offset,
7586 bfd_size_type veneer_size)
7587{
7588 asection *s;
7589 struct elf32_arm_link_hash_table *hash_table;
7590 char *tmp_name;
7591 struct elf_link_hash_entry *myh;
7592 struct bfd_link_hash_entry *bh;
7593 bfd_vma val;
7594 struct _arm_elf_section_data *sec_data;
7595 elf32_stm32l4xx_erratum_list *newerr;
7596
7597 hash_table = elf32_arm_hash_table (link_info);
7598 BFD_ASSERT (hash_table != NULL);
7599 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7600
7601 s = bfd_get_linker_section
7602 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7603
7604 BFD_ASSERT (s != NULL);
7605
7606 sec_data = elf32_arm_section_data (s);
7607
7608 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7609 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
a504d23a
LA
7610 BFD_ASSERT (tmp_name);
7611
7612 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7613 hash_table->num_stm32l4xx_fixes);
7614
7615 myh = elf_link_hash_lookup
0a1b45a2 7616 (&(hash_table)->root, tmp_name, false, false, false);
a504d23a
LA
7617
7618 BFD_ASSERT (myh == NULL);
7619
7620 bh = NULL;
7621 val = hash_table->stm32l4xx_erratum_glue_size;
7622 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7623 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
0a1b45a2 7624 NULL, true, false, &bh);
a504d23a
LA
7625
7626 myh = (struct elf_link_hash_entry *) bh;
7627 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7628 myh->forced_local = 1;
7629
7630 /* Link veneer back to calling location. */
7631 sec_data->stm32l4xx_erratumcount += 1;
7632 newerr = (elf32_stm32l4xx_erratum_list *)
7633 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7634
7635 newerr->type = STM32L4XX_ERRATUM_VENEER;
7636 newerr->vma = -1;
7637 newerr->u.v.branch = branch;
7638 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7639 branch->u.b.veneer = newerr;
7640
7641 newerr->next = sec_data->stm32l4xx_erratumlist;
7642 sec_data->stm32l4xx_erratumlist = newerr;
7643
7644 /* A symbol for the return from the veneer. */
7645 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7646 hash_table->num_stm32l4xx_fixes);
7647
7648 myh = elf_link_hash_lookup
0a1b45a2 7649 (&(hash_table)->root, tmp_name, false, false, false);
a504d23a
LA
7650
7651 if (myh != NULL)
7652 abort ();
7653
7654 bh = NULL;
7655 val = offset + 4;
7656 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
0a1b45a2 7657 branch_sec, val, NULL, true, false, &bh);
a504d23a
LA
7658
7659 myh = (struct elf_link_hash_entry *) bh;
7660 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7661 myh->forced_local = 1;
7662
7663 free (tmp_name);
7664
7665 /* Generate a mapping symbol for the veneer section, and explicitly add an
7666 entry for that symbol to the code/data map for the section. */
7667 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7668 {
7669 bh = NULL;
7670 /* Creates a THUMB symbol since there is no other choice. */
7671 _bfd_generic_link_add_one_symbol (link_info,
7672 hash_table->bfd_of_glue_owner, "$t",
7673 BSF_LOCAL, s, 0, NULL,
0a1b45a2 7674 true, false, &bh);
a504d23a
LA
7675
7676 myh = (struct elf_link_hash_entry *) bh;
7677 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7678 myh->forced_local = 1;
7679
7680 /* The elf32_arm_init_maps function only cares about symbols from input
7681 BFDs. We must make a note of this generated mapping symbol
7682 ourselves so that code byteswapping works properly in
7683 elf32_arm_write_section. */
7684 elf32_arm_section_map_add (s, 't', 0);
7685 }
7686
7687 s->size += veneer_size;
7688 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7689 hash_table->num_stm32l4xx_fixes++;
7690
7691 /* The offset of the veneer. */
7692 return val;
7693}
7694
8029a119 7695#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
7696 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7697 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
7698
7699/* Create a fake section for use by the ARM backend of the linker. */
7700
0a1b45a2 7701static bool
8029a119
NC
7702arm_make_glue_section (bfd * abfd, const char * name)
7703{
7704 asection * sec;
7705
3d4d4302 7706 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
7707 if (sec != NULL)
7708 /* Already made. */
0a1b45a2 7709 return true;
8029a119 7710
3d4d4302 7711 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
7712
7713 if (sec == NULL
fd361982 7714 || !bfd_set_section_alignment (sec, 2))
0a1b45a2 7715 return false;
8029a119
NC
7716
7717 /* Set the gc mark to prevent the section from being removed by garbage
7718 collection, despite the fact that no relocs refer to this section. */
7719 sec->gc_mark = 1;
7720
0a1b45a2 7721 return true;
8029a119
NC
7722}
7723
1db37fe6
YG
7724/* Set size of .plt entries. This function is called from the
7725 linker scripts in ld/emultempl/{armelf}.em. */
7726
7727void
7728bfd_elf32_arm_use_long_plt (void)
7729{
0a1b45a2 7730 elf32_arm_use_long_plt_entry = true;
1db37fe6
YG
7731}
7732
8afb0e02
NC
7733/* Add the glue sections to ABFD. This function is called from the
7734 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 7735
0a1b45a2 7736bool
57e8b36a
NC
7737bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7738 struct bfd_link_info *info)
252b5132 7739{
a504d23a 7740 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
0a1b45a2 7741 bool dostm32l4xx = globals
a504d23a 7742 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
0a1b45a2 7743 bool addglue;
a504d23a 7744
8afb0e02
NC
7745 /* If we are only performing a partial
7746 link do not bother adding the glue. */
0e1862bb 7747 if (bfd_link_relocatable (info))
0a1b45a2 7748 return true;
252b5132 7749
a504d23a 7750 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
8029a119
NC
7751 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7752 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7753 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
a504d23a
LA
7754
7755 if (!dostm32l4xx)
7756 return addglue;
7757
7758 return addglue
7759 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
8afb0e02
NC
7760}
7761
daa4adae
TP
7762/* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7763 ensures they are not marked for deletion by
7764 strip_excluded_output_sections () when veneers are going to be created
7765 later. Not doing so would trigger assert on empty section size in
7766 lang_size_sections_1 (). */
7767
7768void
7769bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7770{
7771 enum elf32_arm_stub_type stub_type;
7772
7773 /* If we are only performing a partial
7774 link do not bother adding the glue. */
7775 if (bfd_link_relocatable (info))
7776 return;
7777
7778 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7779 {
7780 asection *out_sec;
7781 const char *out_sec_name;
7782
7783 if (!arm_dedicated_stub_output_section_required (stub_type))
7784 continue;
7785
7786 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7787 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7788 if (out_sec != NULL)
7789 out_sec->flags |= SEC_KEEP;
7790 }
7791}
7792
8afb0e02
NC
7793/* Select a BFD to be used to hold the sections used by the glue code.
7794 This function is called from the linker scripts in ld/emultempl/
8029a119 7795 {armelf/pe}.em. */
8afb0e02 7796
0a1b45a2 7797bool
57e8b36a 7798bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
7799{
7800 struct elf32_arm_link_hash_table *globals;
7801
7802 /* If we are only performing a partial link
7803 do not bother getting a bfd to hold the glue. */
0e1862bb 7804 if (bfd_link_relocatable (info))
0a1b45a2 7805 return true;
8afb0e02 7806
b7693d02
DJ
7807 /* Make sure we don't attach the glue sections to a dynamic object. */
7808 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7809
8afb0e02 7810 globals = elf32_arm_hash_table (info);
8afb0e02
NC
7811 BFD_ASSERT (globals != NULL);
7812
7813 if (globals->bfd_of_glue_owner != NULL)
0a1b45a2 7814 return true;
8afb0e02 7815
252b5132
RH
7816 /* Save the bfd for later use. */
7817 globals->bfd_of_glue_owner = abfd;
cedb70c5 7818
0a1b45a2 7819 return true;
252b5132
RH
7820}
7821
906e58ca
NC
7822static void
7823check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 7824{
2de70689
MGD
7825 int cpu_arch;
7826
b38cadfb 7827 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
7828 Tag_CPU_arch);
7829
7830 if (globals->fix_arm1176)
7831 {
7832 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7833 globals->use_blx = 1;
7834 }
7835 else
7836 {
7837 if (cpu_arch > TAG_CPU_ARCH_V4T)
7838 globals->use_blx = 1;
7839 }
39b41c9c
PB
7840}
7841
0a1b45a2 7842bool
57e8b36a 7843bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 7844 struct bfd_link_info *link_info)
252b5132
RH
7845{
7846 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 7847 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
7848 Elf_Internal_Rela *irel, *irelend;
7849 bfd_byte *contents = NULL;
252b5132
RH
7850
7851 asection *sec;
7852 struct elf32_arm_link_hash_table *globals;
7853
7854 /* If we are only performing a partial link do not bother
7855 to construct any glue. */
0e1862bb 7856 if (bfd_link_relocatable (link_info))
0a1b45a2 7857 return true;
252b5132 7858
39ce1a6a
NC
7859 /* Here we have a bfd that is to be included on the link. We have a
7860 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 7861 globals = elf32_arm_hash_table (link_info);
252b5132 7862 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
7863
7864 check_use_blx (globals);
252b5132 7865
d504ffc8 7866 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 7867 {
90b6238f 7868 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
d003868e 7869 abfd);
0a1b45a2 7870 return false;
e489d0ae 7871 }
f21f3fe0 7872
39ce1a6a
NC
7873 /* PR 5398: If we have not decided to include any loadable sections in
7874 the output then we will not have a glue owner bfd. This is OK, it
7875 just means that there is nothing else for us to do here. */
7876 if (globals->bfd_of_glue_owner == NULL)
0a1b45a2 7877 return true;
39ce1a6a 7878
252b5132
RH
7879 /* Rummage around all the relocs and map the glue vectors. */
7880 sec = abfd->sections;
7881
7882 if (sec == NULL)
0a1b45a2 7883 return true;
252b5132
RH
7884
7885 for (; sec != NULL; sec = sec->next)
7886 {
7887 if (sec->reloc_count == 0)
7888 continue;
7889
81ff113f
AM
7890 if ((sec->flags & SEC_EXCLUDE) != 0
7891 || (sec->flags & SEC_HAS_CONTENTS) == 0)
2f475487
AM
7892 continue;
7893
0ffa91dd 7894 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 7895
9b485d32 7896 /* Load the relocs. */
6cdc0ccc 7897 internal_relocs
0a1b45a2 7898 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, false);
252b5132 7899
6cdc0ccc
AM
7900 if (internal_relocs == NULL)
7901 goto error_return;
252b5132 7902
6cdc0ccc
AM
7903 irelend = internal_relocs + sec->reloc_count;
7904 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
7905 {
7906 long r_type;
7907 unsigned long r_index;
252b5132
RH
7908
7909 struct elf_link_hash_entry *h;
7910
7911 r_type = ELF32_R_TYPE (irel->r_info);
7912 r_index = ELF32_R_SYM (irel->r_info);
7913
9b485d32 7914 /* These are the only relocation types we care about. */
ba96a88f 7915 if ( r_type != R_ARM_PC24
845b51d6 7916 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
7917 continue;
7918
7919 /* Get the section contents if we haven't done so already. */
7920 if (contents == NULL)
7921 {
7922 /* Get cached copy if it exists. */
7923 if (elf_section_data (sec)->this_hdr.contents != NULL)
7924 contents = elf_section_data (sec)->this_hdr.contents;
7925 else
7926 {
7927 /* Go get them off disk. */
57e8b36a 7928 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
7929 goto error_return;
7930 }
7931 }
7932
845b51d6
PB
7933 if (r_type == R_ARM_V4BX)
7934 {
7935 int reg;
7936
7937 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7938 record_arm_bx_glue (link_info, reg);
7939 continue;
7940 }
7941
a7c10850 7942 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
7943 h = NULL;
7944
9b485d32 7945 /* We don't care about local symbols. */
252b5132
RH
7946 if (r_index < symtab_hdr->sh_info)
7947 continue;
7948
9b485d32 7949 /* This is an external symbol. */
252b5132
RH
7950 r_index -= symtab_hdr->sh_info;
7951 h = (struct elf_link_hash_entry *)
7952 elf_sym_hashes (abfd)[r_index];
7953
7954 /* If the relocation is against a static symbol it must be within
7955 the current section and so cannot be a cross ARM/Thumb relocation. */
7956 if (h == NULL)
7957 continue;
7958
d504ffc8
DJ
7959 /* If the call will go through a PLT entry then we do not need
7960 glue. */
362d30a1 7961 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
7962 continue;
7963
252b5132
RH
7964 switch (r_type)
7965 {
7966 case R_ARM_PC24:
7967 /* This one is a call from arm code. We need to look up
99059e56
RM
7968 the target of the call. If it is a thumb target, we
7969 insert glue. */
39d911fc
TP
7970 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7971 == ST_BRANCH_TO_THUMB)
252b5132
RH
7972 record_arm_to_thumb_glue (link_info, h);
7973 break;
7974
252b5132 7975 default:
c6596c5e 7976 abort ();
252b5132
RH
7977 }
7978 }
6cdc0ccc 7979
c9594989 7980 if (elf_section_data (sec)->this_hdr.contents != contents)
6cdc0ccc
AM
7981 free (contents);
7982 contents = NULL;
7983
c9594989 7984 if (elf_section_data (sec)->relocs != internal_relocs)
6cdc0ccc
AM
7985 free (internal_relocs);
7986 internal_relocs = NULL;
252b5132
RH
7987 }
7988
0a1b45a2 7989 return true;
9a5aca8c 7990
dc1e8a47 7991 error_return:
c9594989 7992 if (elf_section_data (sec)->this_hdr.contents != contents)
6cdc0ccc 7993 free (contents);
c9594989 7994 if (elf_section_data (sec)->relocs != internal_relocs)
6cdc0ccc 7995 free (internal_relocs);
9a5aca8c 7996
0a1b45a2 7997 return false;
252b5132 7998}
7e392df6 7999#endif
252b5132 8000
eb043451 8001
c7b8f16e
JB
8002/* Initialise maps of ARM/Thumb/data for input BFDs. */
8003
8004void
8005bfd_elf32_arm_init_maps (bfd *abfd)
8006{
8007 Elf_Internal_Sym *isymbuf;
8008 Elf_Internal_Shdr *hdr;
8009 unsigned int i, localsyms;
8010
af1f4419
NC
8011 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
8012 if (! is_arm_elf (abfd))
8013 return;
8014
c7b8f16e
JB
8015 if ((abfd->flags & DYNAMIC) != 0)
8016 return;
8017
0ffa91dd 8018 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
8019 localsyms = hdr->sh_info;
8020
8021 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
8022 should contain the number of local symbols, which should come before any
8023 global symbols. Mapping symbols are always local. */
8024 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
8025 NULL);
8026
8027 /* No internal symbols read? Skip this BFD. */
8028 if (isymbuf == NULL)
8029 return;
8030
8031 for (i = 0; i < localsyms; i++)
8032 {
8033 Elf_Internal_Sym *isym = &isymbuf[i];
8034 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
8035 const char *name;
906e58ca 8036
c7b8f16e 8037 if (sec != NULL
99059e56
RM
8038 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8039 {
8040 name = bfd_elf_string_from_elf_section (abfd,
8041 hdr->sh_link, isym->st_name);
906e58ca 8042
99059e56 8043 if (bfd_is_arm_special_symbol_name (name,
c7b8f16e 8044 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
99059e56
RM
8045 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8046 }
c7b8f16e
JB
8047 }
8048}
8049
8050
48229727
JB
8051/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8052 say what they wanted. */
8053
8054void
8055bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8056{
8057 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8058 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8059
4dfe6ac6
NC
8060 if (globals == NULL)
8061 return;
8062
48229727
JB
8063 if (globals->fix_cortex_a8 == -1)
8064 {
8065 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8066 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8067 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8068 || out_attr[Tag_CPU_arch_profile].i == 0))
8069 globals->fix_cortex_a8 = 1;
8070 else
8071 globals->fix_cortex_a8 = 0;
8072 }
8073}
8074
8075
c7b8f16e
JB
8076void
8077bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8078{
8079 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 8080 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 8081
4dfe6ac6
NC
8082 if (globals == NULL)
8083 return;
c7b8f16e
JB
8084 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8085 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8086 {
8087 switch (globals->vfp11_fix)
99059e56
RM
8088 {
8089 case BFD_ARM_VFP11_FIX_DEFAULT:
8090 case BFD_ARM_VFP11_FIX_NONE:
8091 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8092 break;
8093
8094 default:
8095 /* Give a warning, but do as the user requests anyway. */
871b3ab2 8096 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
99059e56
RM
8097 "workaround is not necessary for target architecture"), obfd);
8098 }
c7b8f16e
JB
8099 }
8100 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8101 /* For earlier architectures, we might need the workaround, but do not
8102 enable it by default. If users is running with broken hardware, they
8103 must enable the erratum fix explicitly. */
8104 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8105}
8106
a504d23a
LA
8107void
8108bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8109{
8110 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8111 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8112
8113 if (globals == NULL)
8114 return;
8115
8116 /* We assume only Cortex-M4 may require the fix. */
8117 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8118 || out_attr[Tag_CPU_arch_profile].i != 'M')
8119 {
8120 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8121 /* Give a warning, but do as the user requests anyway. */
4eca0228 8122 _bfd_error_handler
871b3ab2 8123 (_("%pB: warning: selected STM32L4XX erratum "
a504d23a
LA
8124 "workaround is not necessary for target architecture"), obfd);
8125 }
8126}
c7b8f16e 8127
906e58ca
NC
8128enum bfd_arm_vfp11_pipe
8129{
c7b8f16e
JB
8130 VFP11_FMAC,
8131 VFP11_LS,
8132 VFP11_DS,
8133 VFP11_BAD
8134};
8135
8136/* Return a VFP register number. This is encoded as RX:X for single-precision
8137 registers, or X:RX for double-precision registers, where RX is the group of
8138 four bits in the instruction encoding and X is the single extension bit.
8139 RX and X fields are specified using their lowest (starting) bit. The return
8140 value is:
8141
8142 0...31: single-precision registers s0...s31
8143 32...63: double-precision registers d0...d31.
906e58ca 8144
c7b8f16e
JB
8145 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8146 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 8147
c7b8f16e 8148static unsigned int
0a1b45a2 8149bfd_arm_vfp11_regno (unsigned int insn, bool is_double, unsigned int rx,
99059e56 8150 unsigned int x)
c7b8f16e
JB
8151{
8152 if (is_double)
8153 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8154 else
8155 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8156}
8157
8158/* Set bits in *WMASK according to a register number REG as encoded by
8159 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8160
8161static void
8162bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8163{
8164 if (reg < 32)
8165 *wmask |= 1 << reg;
8166 else if (reg < 48)
8167 *wmask |= 3 << ((reg - 32) * 2);
8168}
8169
8170/* Return TRUE if WMASK overwrites anything in REGS. */
8171
0a1b45a2 8172static bool
c7b8f16e
JB
8173bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8174{
8175 int i;
906e58ca 8176
c7b8f16e
JB
8177 for (i = 0; i < numregs; i++)
8178 {
8179 unsigned int reg = regs[i];
8180
8181 if (reg < 32 && (wmask & (1 << reg)) != 0)
0a1b45a2 8182 return true;
906e58ca 8183
c7b8f16e
JB
8184 reg -= 32;
8185
8186 if (reg >= 16)
99059e56 8187 continue;
906e58ca 8188
c7b8f16e 8189 if ((wmask & (3 << (reg * 2))) != 0)
0a1b45a2 8190 return true;
c7b8f16e 8191 }
906e58ca 8192
0a1b45a2 8193 return false;
c7b8f16e
JB
8194}
8195
8196/* In this function, we're interested in two things: finding input registers
8197 for VFP data-processing instructions, and finding the set of registers which
8198 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8199 hold the written set, so FLDM etc. are easy to deal with (we're only
8200 interested in 32 SP registers or 16 dp registers, due to the VFP version
8201 implemented by the chip in question). DP registers are marked by setting
8202 both SP registers in the write mask). */
8203
8204static enum bfd_arm_vfp11_pipe
8205bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
99059e56 8206 int *numregs)
c7b8f16e 8207{
91d6fa6a 8208 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
0a1b45a2 8209 bool is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
c7b8f16e
JB
8210
8211 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8212 {
8213 unsigned int pqrs;
8214 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8215 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8216
8217 pqrs = ((insn & 0x00800000) >> 20)
99059e56
RM
8218 | ((insn & 0x00300000) >> 19)
8219 | ((insn & 0x00000040) >> 6);
c7b8f16e
JB
8220
8221 switch (pqrs)
99059e56
RM
8222 {
8223 case 0: /* fmac[sd]. */
8224 case 1: /* fnmac[sd]. */
8225 case 2: /* fmsc[sd]. */
8226 case 3: /* fnmsc[sd]. */
8227 vpipe = VFP11_FMAC;
8228 bfd_arm_vfp11_write_mask (destmask, fd);
8229 regs[0] = fd;
8230 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8231 regs[2] = fm;
8232 *numregs = 3;
8233 break;
8234
8235 case 4: /* fmul[sd]. */
8236 case 5: /* fnmul[sd]. */
8237 case 6: /* fadd[sd]. */
8238 case 7: /* fsub[sd]. */
8239 vpipe = VFP11_FMAC;
8240 goto vfp_binop;
8241
8242 case 8: /* fdiv[sd]. */
8243 vpipe = VFP11_DS;
8244 vfp_binop:
8245 bfd_arm_vfp11_write_mask (destmask, fd);
8246 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8247 regs[1] = fm;
8248 *numregs = 2;
8249 break;
8250
8251 case 15: /* extended opcode. */
8252 {
8253 unsigned int extn = ((insn >> 15) & 0x1e)
8254 | ((insn >> 7) & 1);
8255
8256 switch (extn)
8257 {
8258 case 0: /* fcpy[sd]. */
8259 case 1: /* fabs[sd]. */
8260 case 2: /* fneg[sd]. */
8261 case 8: /* fcmp[sd]. */
8262 case 9: /* fcmpe[sd]. */
8263 case 10: /* fcmpz[sd]. */
8264 case 11: /* fcmpez[sd]. */
8265 case 16: /* fuito[sd]. */
8266 case 17: /* fsito[sd]. */
8267 case 24: /* ftoui[sd]. */
8268 case 25: /* ftouiz[sd]. */
8269 case 26: /* ftosi[sd]. */
8270 case 27: /* ftosiz[sd]. */
8271 /* These instructions will not bounce due to underflow. */
8272 *numregs = 0;
8273 vpipe = VFP11_FMAC;
8274 break;
8275
8276 case 3: /* fsqrt[sd]. */
8277 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8278 registers to cause the erratum in previous instructions. */
8279 bfd_arm_vfp11_write_mask (destmask, fd);
8280 vpipe = VFP11_DS;
8281 break;
8282
8283 case 15: /* fcvt{ds,sd}. */
8284 {
8285 int rnum = 0;
8286
8287 bfd_arm_vfp11_write_mask (destmask, fd);
c7b8f16e
JB
8288
8289 /* Only FCVTSD can underflow. */
99059e56
RM
8290 if ((insn & 0x100) != 0)
8291 regs[rnum++] = fm;
c7b8f16e 8292
99059e56 8293 *numregs = rnum;
c7b8f16e 8294
99059e56
RM
8295 vpipe = VFP11_FMAC;
8296 }
8297 break;
c7b8f16e 8298
99059e56
RM
8299 default:
8300 return VFP11_BAD;
8301 }
8302 }
8303 break;
c7b8f16e 8304
99059e56
RM
8305 default:
8306 return VFP11_BAD;
8307 }
c7b8f16e
JB
8308 }
8309 /* Two-register transfer. */
8310 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8311 {
8312 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 8313
c7b8f16e
JB
8314 if ((insn & 0x100000) == 0)
8315 {
99059e56
RM
8316 if (is_double)
8317 bfd_arm_vfp11_write_mask (destmask, fm);
8318 else
8319 {
8320 bfd_arm_vfp11_write_mask (destmask, fm);
8321 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8322 }
c7b8f16e
JB
8323 }
8324
91d6fa6a 8325 vpipe = VFP11_LS;
c7b8f16e
JB
8326 }
8327 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8328 {
8329 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8330 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 8331
c7b8f16e 8332 switch (puw)
99059e56
RM
8333 {
8334 case 0: /* Two-reg transfer. We should catch these above. */
8335 abort ();
906e58ca 8336
99059e56
RM
8337 case 2: /* fldm[sdx]. */
8338 case 3:
8339 case 5:
8340 {
8341 unsigned int i, offset = insn & 0xff;
c7b8f16e 8342
99059e56
RM
8343 if (is_double)
8344 offset >>= 1;
c7b8f16e 8345
99059e56
RM
8346 for (i = fd; i < fd + offset; i++)
8347 bfd_arm_vfp11_write_mask (destmask, i);
8348 }
8349 break;
906e58ca 8350
99059e56
RM
8351 case 4: /* fld[sd]. */
8352 case 6:
8353 bfd_arm_vfp11_write_mask (destmask, fd);
8354 break;
906e58ca 8355
99059e56
RM
8356 default:
8357 return VFP11_BAD;
8358 }
c7b8f16e 8359
91d6fa6a 8360 vpipe = VFP11_LS;
c7b8f16e
JB
8361 }
8362 /* Single-register transfer. Note L==0. */
8363 else if ((insn & 0x0f100e10) == 0x0e000a10)
8364 {
8365 unsigned int opcode = (insn >> 21) & 7;
8366 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8367
8368 switch (opcode)
99059e56
RM
8369 {
8370 case 0: /* fmsr/fmdlr. */
8371 case 1: /* fmdhr. */
8372 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8373 destination register. I don't know if this is exactly right,
8374 but it is the conservative choice. */
8375 bfd_arm_vfp11_write_mask (destmask, fn);
8376 break;
8377
8378 case 7: /* fmxr. */
8379 break;
8380 }
c7b8f16e 8381
91d6fa6a 8382 vpipe = VFP11_LS;
c7b8f16e
JB
8383 }
8384
91d6fa6a 8385 return vpipe;
c7b8f16e
JB
8386}
8387
8388
8389static int elf32_arm_compare_mapping (const void * a, const void * b);
8390
8391
8392/* Look for potentially-troublesome code sequences which might trigger the
8393 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8394 (available from ARM) for details of the erratum. A short version is
8395 described in ld.texinfo. */
8396
0a1b45a2 8397bool
c7b8f16e
JB
8398bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8399{
8400 asection *sec;
8401 bfd_byte *contents = NULL;
8402 int state = 0;
8403 int regs[3], numregs = 0;
8404 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8405 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 8406
4dfe6ac6 8407 if (globals == NULL)
0a1b45a2 8408 return false;
4dfe6ac6 8409
c7b8f16e
JB
8410 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8411 The states transition as follows:
906e58ca 8412
c7b8f16e 8413 0 -> 1 (vector) or 0 -> 2 (scalar)
99059e56
RM
8414 A VFP FMAC-pipeline instruction has been seen. Fill
8415 regs[0]..regs[numregs-1] with its input operands. Remember this
8416 instruction in 'first_fmac'.
c7b8f16e
JB
8417
8418 1 -> 2
99059e56
RM
8419 Any instruction, except for a VFP instruction which overwrites
8420 regs[*].
906e58ca 8421
c7b8f16e
JB
8422 1 -> 3 [ -> 0 ] or
8423 2 -> 3 [ -> 0 ]
99059e56
RM
8424 A VFP instruction has been seen which overwrites any of regs[*].
8425 We must make a veneer! Reset state to 0 before examining next
8426 instruction.
906e58ca 8427
c7b8f16e 8428 2 -> 0
99059e56
RM
8429 If we fail to match anything in state 2, reset to state 0 and reset
8430 the instruction pointer to the instruction after 'first_fmac'.
c7b8f16e
JB
8431
8432 If the VFP11 vector mode is in use, there must be at least two unrelated
8433 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 8434 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
8435
8436 /* If we are only performing a partial link do not bother
8437 to construct any glue. */
0e1862bb 8438 if (bfd_link_relocatable (link_info))
0a1b45a2 8439 return true;
c7b8f16e 8440
0ffa91dd
NC
8441 /* Skip if this bfd does not correspond to an ELF image. */
8442 if (! is_arm_elf (abfd))
0a1b45a2 8443 return true;
906e58ca 8444
c7b8f16e
JB
8445 /* We should have chosen a fix type by the time we get here. */
8446 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8447
8448 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
0a1b45a2 8449 return true;
2e6030b9 8450
33a7ffc2
JM
8451 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8452 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
0a1b45a2 8453 return true;
33a7ffc2 8454
c7b8f16e
JB
8455 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8456 {
8457 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8458 struct _arm_elf_section_data *sec_data;
8459
8460 /* If we don't have executable progbits, we're not interested in this
99059e56 8461 section. Also skip if section is to be excluded. */
c7b8f16e 8462 if (elf_section_type (sec) != SHT_PROGBITS
99059e56
RM
8463 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8464 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 8465 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 8466 || sec->output_section == bfd_abs_section_ptr
99059e56
RM
8467 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8468 continue;
c7b8f16e
JB
8469
8470 sec_data = elf32_arm_section_data (sec);
906e58ca 8471
c7b8f16e 8472 if (sec_data->mapcount == 0)
99059e56 8473 continue;
906e58ca 8474
c7b8f16e
JB
8475 if (elf_section_data (sec)->this_hdr.contents != NULL)
8476 contents = elf_section_data (sec)->this_hdr.contents;
8477 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8478 goto error_return;
8479
8480 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8481 elf32_arm_compare_mapping);
8482
8483 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
8484 {
8485 unsigned int span_start = sec_data->map[span].vma;
8486 unsigned int span_end = (span == sec_data->mapcount - 1)
c7b8f16e 8487 ? sec->size : sec_data->map[span + 1].vma;
99059e56
RM
8488 char span_type = sec_data->map[span].type;
8489
8490 /* FIXME: Only ARM mode is supported at present. We may need to
8491 support Thumb-2 mode also at some point. */
8492 if (span_type != 'a')
8493 continue;
8494
8495 for (i = span_start; i < span_end;)
8496 {
8497 unsigned int next_i = i + 4;
8498 unsigned int insn = bfd_big_endian (abfd)
13c9c485
AM
8499 ? (((unsigned) contents[i] << 24)
8500 | (contents[i + 1] << 16)
8501 | (contents[i + 2] << 8)
8502 | contents[i + 3])
8503 : (((unsigned) contents[i + 3] << 24)
8504 | (contents[i + 2] << 16)
8505 | (contents[i + 1] << 8)
8506 | contents[i]);
99059e56
RM
8507 unsigned int writemask = 0;
8508 enum bfd_arm_vfp11_pipe vpipe;
8509
8510 switch (state)
8511 {
8512 case 0:
8513 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8514 &numregs);
8515 /* I'm assuming the VFP11 erratum can trigger with denorm
8516 operands on either the FMAC or the DS pipeline. This might
8517 lead to slightly overenthusiastic veneer insertion. */
8518 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8519 {
8520 state = use_vector ? 1 : 2;
8521 first_fmac = i;
8522 veneer_of_insn = insn;
8523 }
8524 break;
8525
8526 case 1:
8527 {
8528 int other_regs[3], other_numregs;
8529 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8530 other_regs,
99059e56
RM
8531 &other_numregs);
8532 if (vpipe != VFP11_BAD
8533 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8534 numregs))
99059e56
RM
8535 state = 3;
8536 else
8537 state = 2;
8538 }
8539 break;
8540
8541 case 2:
8542 {
8543 int other_regs[3], other_numregs;
8544 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8545 other_regs,
99059e56
RM
8546 &other_numregs);
8547 if (vpipe != VFP11_BAD
8548 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8549 numregs))
99059e56
RM
8550 state = 3;
8551 else
8552 {
8553 state = 0;
8554 next_i = first_fmac + 4;
8555 }
8556 }
8557 break;
8558
8559 case 3:
8560 abort (); /* Should be unreachable. */
8561 }
8562
8563 if (state == 3)
8564 {
8565 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8566 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8567
8568 elf32_arm_section_data (sec)->erratumcount += 1;
8569
8570 newerr->u.b.vfp_insn = veneer_of_insn;
8571
8572 switch (span_type)
8573 {
8574 case 'a':
8575 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8576 break;
8577
8578 default:
8579 abort ();
8580 }
8581
8582 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
c7b8f16e
JB
8583 first_fmac);
8584
99059e56 8585 newerr->vma = -1;
c7b8f16e 8586
99059e56
RM
8587 newerr->next = sec_data->erratumlist;
8588 sec_data->erratumlist = newerr;
c7b8f16e 8589
99059e56
RM
8590 state = 0;
8591 }
c7b8f16e 8592
99059e56
RM
8593 i = next_i;
8594 }
8595 }
906e58ca 8596
c9594989 8597 if (elf_section_data (sec)->this_hdr.contents != contents)
99059e56 8598 free (contents);
c7b8f16e
JB
8599 contents = NULL;
8600 }
8601
0a1b45a2 8602 return true;
c7b8f16e 8603
dc1e8a47 8604 error_return:
c9594989 8605 if (elf_section_data (sec)->this_hdr.contents != contents)
c7b8f16e 8606 free (contents);
906e58ca 8607
0a1b45a2 8608 return false;
c7b8f16e
JB
8609}
8610
8611/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8612 after sections have been laid out, using specially-named symbols. */
8613
8614void
8615bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8616 struct bfd_link_info *link_info)
8617{
8618 asection *sec;
8619 struct elf32_arm_link_hash_table *globals;
8620 char *tmp_name;
906e58ca 8621
0e1862bb 8622 if (bfd_link_relocatable (link_info))
c7b8f16e 8623 return;
2e6030b9
MS
8624
8625 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 8626 if (! is_arm_elf (abfd))
2e6030b9
MS
8627 return;
8628
c7b8f16e 8629 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
8630 if (globals == NULL)
8631 return;
906e58ca 8632
21d799b5 8633 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 8634 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7a0fb7be 8635 BFD_ASSERT (tmp_name);
c7b8f16e
JB
8636
8637 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8638 {
8639 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8640 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 8641
c7b8f16e 8642 for (; errnode != NULL; errnode = errnode->next)
99059e56
RM
8643 {
8644 struct elf_link_hash_entry *myh;
8645 bfd_vma vma;
8646
8647 switch (errnode->type)
8648 {
8649 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8650 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8651 /* Find veneer symbol. */
8652 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
c7b8f16e
JB
8653 errnode->u.b.veneer->u.v.id);
8654
99059e56 8655 myh = elf_link_hash_lookup
0a1b45a2 8656 (&(globals)->root, tmp_name, false, false, true);
c7b8f16e 8657
a504d23a 8658 if (myh == NULL)
90b6238f
AM
8659 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8660 abfd, "VFP11", tmp_name);
a504d23a
LA
8661
8662 vma = myh->root.u.def.section->output_section->vma
8663 + myh->root.u.def.section->output_offset
8664 + myh->root.u.def.value;
8665
8666 errnode->u.b.veneer->vma = vma;
8667 break;
8668
8669 case VFP11_ERRATUM_ARM_VENEER:
8670 case VFP11_ERRATUM_THUMB_VENEER:
8671 /* Find return location. */
8672 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8673 errnode->u.v.id);
8674
8675 myh = elf_link_hash_lookup
0a1b45a2 8676 (&(globals)->root, tmp_name, false, false, true);
a504d23a
LA
8677
8678 if (myh == NULL)
90b6238f
AM
8679 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8680 abfd, "VFP11", tmp_name);
a504d23a
LA
8681
8682 vma = myh->root.u.def.section->output_section->vma
8683 + myh->root.u.def.section->output_offset
8684 + myh->root.u.def.value;
8685
8686 errnode->u.v.branch->vma = vma;
8687 break;
8688
8689 default:
8690 abort ();
8691 }
8692 }
8693 }
8694
8695 free (tmp_name);
8696}
8697
8698/* Find virtual-memory addresses for STM32L4XX erratum veneers and
8699 return locations after sections have been laid out, using
8700 specially-named symbols. */
8701
8702void
8703bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8704 struct bfd_link_info *link_info)
8705{
8706 asection *sec;
8707 struct elf32_arm_link_hash_table *globals;
8708 char *tmp_name;
8709
8710 if (bfd_link_relocatable (link_info))
8711 return;
8712
8713 /* Skip if this bfd does not correspond to an ELF image. */
8714 if (! is_arm_elf (abfd))
8715 return;
8716
8717 globals = elf32_arm_hash_table (link_info);
8718 if (globals == NULL)
8719 return;
8720
8721 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8722 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7a0fb7be 8723 BFD_ASSERT (tmp_name);
a504d23a
LA
8724
8725 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8726 {
8727 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8728 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8729
8730 for (; errnode != NULL; errnode = errnode->next)
8731 {
8732 struct elf_link_hash_entry *myh;
8733 bfd_vma vma;
8734
8735 switch (errnode->type)
8736 {
8737 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8738 /* Find veneer symbol. */
8739 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8740 errnode->u.b.veneer->u.v.id);
8741
8742 myh = elf_link_hash_lookup
0a1b45a2 8743 (&(globals)->root, tmp_name, false, false, true);
a504d23a
LA
8744
8745 if (myh == NULL)
90b6238f
AM
8746 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8747 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8748
8749 vma = myh->root.u.def.section->output_section->vma
8750 + myh->root.u.def.section->output_offset
8751 + myh->root.u.def.value;
8752
8753 errnode->u.b.veneer->vma = vma;
8754 break;
8755
8756 case STM32L4XX_ERRATUM_VENEER:
8757 /* Find return location. */
8758 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8759 errnode->u.v.id);
8760
8761 myh = elf_link_hash_lookup
0a1b45a2 8762 (&(globals)->root, tmp_name, false, false, true);
a504d23a
LA
8763
8764 if (myh == NULL)
90b6238f
AM
8765 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8766 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8767
8768 vma = myh->root.u.def.section->output_section->vma
8769 + myh->root.u.def.section->output_offset
8770 + myh->root.u.def.value;
8771
8772 errnode->u.v.branch->vma = vma;
8773 break;
8774
8775 default:
8776 abort ();
8777 }
8778 }
8779 }
8780
8781 free (tmp_name);
8782}
8783
0a1b45a2 8784static inline bool
a504d23a
LA
8785is_thumb2_ldmia (const insn32 insn)
8786{
8787 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8788 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8789 return (insn & 0xffd02000) == 0xe8900000;
8790}
8791
0a1b45a2 8792static inline bool
a504d23a
LA
8793is_thumb2_ldmdb (const insn32 insn)
8794{
8795 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8796 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8797 return (insn & 0xffd02000) == 0xe9100000;
8798}
8799
0a1b45a2 8800static inline bool
a504d23a
LA
8801is_thumb2_vldm (const insn32 insn)
8802{
8803 /* A6.5 Extension register load or store instruction
8804 A7.7.229
9239bbd3
CM
8805 We look for SP 32-bit and DP 64-bit registers.
8806 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8807 <list> is consecutive 64-bit registers
8808 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
a504d23a
LA
8809 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8810 <list> is consecutive 32-bit registers
8811 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8812 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8813 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8814 return
9239bbd3
CM
8815 (((insn & 0xfe100f00) == 0xec100b00) ||
8816 ((insn & 0xfe100f00) == 0xec100a00))
a504d23a
LA
8817 && /* (IA without !). */
8818 (((((insn << 7) >> 28) & 0xd) == 0x4)
9239bbd3 8819 /* (IA with !), includes VPOP (when reg number is SP). */
a504d23a
LA
8820 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8821 /* (DB with !). */
8822 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8823}
8824
8825/* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8826 VLDM opcode and:
8827 - computes the number and the mode of memory accesses
8828 - decides if the replacement should be done:
8829 . replaces only if > 8-word accesses
8830 . or (testing purposes only) replaces all accesses. */
8831
0a1b45a2 8832static bool
a504d23a
LA
8833stm32l4xx_need_create_replacing_stub (const insn32 insn,
8834 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8835{
9239bbd3 8836 int nb_words = 0;
a504d23a
LA
8837
8838 /* The field encoding the register list is the same for both LDMIA
8839 and LDMDB encodings. */
8840 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
b25e998d 8841 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
a504d23a 8842 else if (is_thumb2_vldm (insn))
9239bbd3 8843 nb_words = (insn & 0xff);
a504d23a
LA
8844
8845 /* DEFAULT mode accounts for the real bug condition situation,
8846 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
63b4cc53
AM
8847 return (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT
8848 ? nb_words > 8
8849 : stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL);
a504d23a
LA
8850}
8851
8852/* Look for potentially-troublesome code sequences which might trigger
8853 the STM STM32L4XX erratum. */
8854
0a1b45a2 8855bool
a504d23a
LA
8856bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8857 struct bfd_link_info *link_info)
8858{
8859 asection *sec;
8860 bfd_byte *contents = NULL;
8861 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8862
8863 if (globals == NULL)
0a1b45a2 8864 return false;
a504d23a
LA
8865
8866 /* If we are only performing a partial link do not bother
8867 to construct any glue. */
8868 if (bfd_link_relocatable (link_info))
0a1b45a2 8869 return true;
a504d23a
LA
8870
8871 /* Skip if this bfd does not correspond to an ELF image. */
8872 if (! is_arm_elf (abfd))
0a1b45a2 8873 return true;
a504d23a
LA
8874
8875 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
0a1b45a2 8876 return true;
a504d23a
LA
8877
8878 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8879 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
0a1b45a2 8880 return true;
a504d23a
LA
8881
8882 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8883 {
8884 unsigned int i, span;
8885 struct _arm_elf_section_data *sec_data;
8886
8887 /* If we don't have executable progbits, we're not interested in this
8888 section. Also skip if section is to be excluded. */
8889 if (elf_section_type (sec) != SHT_PROGBITS
8890 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8891 || (sec->flags & SEC_EXCLUDE) != 0
8892 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8893 || sec->output_section == bfd_abs_section_ptr
8894 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8895 continue;
8896
8897 sec_data = elf32_arm_section_data (sec);
c7b8f16e 8898
a504d23a
LA
8899 if (sec_data->mapcount == 0)
8900 continue;
c7b8f16e 8901
a504d23a
LA
8902 if (elf_section_data (sec)->this_hdr.contents != NULL)
8903 contents = elf_section_data (sec)->this_hdr.contents;
8904 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8905 goto error_return;
c7b8f16e 8906
a504d23a
LA
8907 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8908 elf32_arm_compare_mapping);
c7b8f16e 8909
a504d23a
LA
8910 for (span = 0; span < sec_data->mapcount; span++)
8911 {
8912 unsigned int span_start = sec_data->map[span].vma;
8913 unsigned int span_end = (span == sec_data->mapcount - 1)
8914 ? sec->size : sec_data->map[span + 1].vma;
8915 char span_type = sec_data->map[span].type;
8916 int itblock_current_pos = 0;
c7b8f16e 8917
a504d23a
LA
8918 /* Only Thumb2 mode need be supported with this CM4 specific
8919 code, we should not encounter any arm mode eg span_type
8920 != 'a'. */
8921 if (span_type != 't')
8922 continue;
c7b8f16e 8923
a504d23a
LA
8924 for (i = span_start; i < span_end;)
8925 {
8926 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
0a1b45a2
AM
8927 bool insn_32bit = false;
8928 bool is_ldm = false;
8929 bool is_vldm = false;
8930 bool is_not_last_in_it_block = false;
a504d23a
LA
8931
8932 /* The first 16-bits of all 32-bit thumb2 instructions start
8933 with opcode[15..13]=0b111 and the encoded op1 can be anything
8934 except opcode[12..11]!=0b00.
8935 See 32-bit Thumb instruction encoding. */
8936 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
0a1b45a2 8937 insn_32bit = true;
c7b8f16e 8938
a504d23a
LA
8939 /* Compute the predicate that tells if the instruction
8940 is concerned by the IT block
8941 - Creates an error if there is a ldm that is not
8942 last in the IT block thus cannot be replaced
8943 - Otherwise we can create a branch at the end of the
8944 IT block, it will be controlled naturally by IT
8945 with the proper pseudo-predicate
8946 - So the only interesting predicate is the one that
8947 tells that we are not on the last item of an IT
8948 block. */
8949 if (itblock_current_pos != 0)
8950 is_not_last_in_it_block = !!--itblock_current_pos;
906e58ca 8951
a504d23a
LA
8952 if (insn_32bit)
8953 {
8954 /* Load the rest of the insn (in manual-friendly order). */
8955 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8956 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8957 is_vldm = is_thumb2_vldm (insn);
8958
8959 /* Veneers are created for (v)ldm depending on
8960 option flags and memory accesses conditions; but
8961 if the instruction is not the last instruction of
8962 an IT block, we cannot create a jump there, so we
8963 bail out. */
5025eb7c
AO
8964 if ((is_ldm || is_vldm)
8965 && stm32l4xx_need_create_replacing_stub
a504d23a
LA
8966 (insn, globals->stm32l4xx_fix))
8967 {
8968 if (is_not_last_in_it_block)
8969 {
4eca0228 8970 _bfd_error_handler
695344c0 8971 /* xgettext:c-format */
871b3ab2 8972 (_("%pB(%pA+%#x): error: multiple load detected"
90b6238f
AM
8973 " in non-last IT block instruction:"
8974 " STM32L4XX veneer cannot be generated; "
8975 "use gcc option -mrestrict-it to generate"
8976 " only one instruction per IT block"),
d42c267e 8977 abfd, sec, i);
a504d23a
LA
8978 }
8979 else
8980 {
8981 elf32_stm32l4xx_erratum_list *newerr =
8982 (elf32_stm32l4xx_erratum_list *)
8983 bfd_zmalloc
8984 (sizeof (elf32_stm32l4xx_erratum_list));
8985
8986 elf32_arm_section_data (sec)
8987 ->stm32l4xx_erratumcount += 1;
8988 newerr->u.b.insn = insn;
8989 /* We create only thumb branches. */
8990 newerr->type =
8991 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8992 record_stm32l4xx_erratum_veneer
8993 (link_info, newerr, abfd, sec,
8994 i,
8995 is_ldm ?
8996 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8997 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8998 newerr->vma = -1;
8999 newerr->next = sec_data->stm32l4xx_erratumlist;
9000 sec_data->stm32l4xx_erratumlist = newerr;
9001 }
9002 }
9003 }
9004 else
9005 {
9006 /* A7.7.37 IT p208
9007 IT blocks are only encoded in T1
9008 Encoding T1: IT{x{y{z}}} <firstcond>
9009 1 0 1 1 - 1 1 1 1 - firstcond - mask
9010 if mask = '0000' then see 'related encodings'
9011 We don't deal with UNPREDICTABLE, just ignore these.
9012 There can be no nested IT blocks so an IT block
9013 is naturally a new one for which it is worth
9014 computing its size. */
0a1b45a2 9015 bool is_newitblock = ((insn & 0xff00) == 0xbf00)
5025eb7c 9016 && ((insn & 0x000f) != 0x0000);
a504d23a
LA
9017 /* If we have a new IT block we compute its size. */
9018 if (is_newitblock)
9019 {
9020 /* Compute the number of instructions controlled
9021 by the IT block, it will be used to decide
9022 whether we are inside an IT block or not. */
9023 unsigned int mask = insn & 0x000f;
9024 itblock_current_pos = 4 - ctz (mask);
9025 }
9026 }
9027
9028 i += insn_32bit ? 4 : 2;
99059e56
RM
9029 }
9030 }
a504d23a 9031
c9594989 9032 if (elf_section_data (sec)->this_hdr.contents != contents)
a504d23a
LA
9033 free (contents);
9034 contents = NULL;
c7b8f16e 9035 }
906e58ca 9036
0a1b45a2 9037 return true;
a504d23a 9038
dc1e8a47 9039 error_return:
c9594989 9040 if (elf_section_data (sec)->this_hdr.contents != contents)
a504d23a 9041 free (contents);
c7b8f16e 9042
0a1b45a2 9043 return false;
a504d23a 9044}
c7b8f16e 9045
eb043451
PB
9046/* Set target relocation values needed during linking. */
9047
9048void
68c39892 9049bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
bf21ed78 9050 struct bfd_link_info *link_info,
68c39892 9051 struct elf32_arm_params *params)
eb043451
PB
9052{
9053 struct elf32_arm_link_hash_table *globals;
9054
9055 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9056 if (globals == NULL)
9057 return;
eb043451 9058
68c39892 9059 globals->target1_is_rel = params->target1_is_rel;
29e9b073
CL
9060 if (globals->fdpic_p)
9061 globals->target2_reloc = R_ARM_GOT32;
9062 else if (strcmp (params->target2_type, "rel") == 0)
eb043451 9063 globals->target2_reloc = R_ARM_REL32;
68c39892 9064 else if (strcmp (params->target2_type, "abs") == 0)
eeac373a 9065 globals->target2_reloc = R_ARM_ABS32;
68c39892 9066 else if (strcmp (params->target2_type, "got-rel") == 0)
eb043451
PB
9067 globals->target2_reloc = R_ARM_GOT_PREL;
9068 else
9069 {
90b6238f 9070 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
68c39892 9071 params->target2_type);
eb043451 9072 }
68c39892
TP
9073 globals->fix_v4bx = params->fix_v4bx;
9074 globals->use_blx |= params->use_blx;
9075 globals->vfp11_fix = params->vfp11_denorm_fix;
9076 globals->stm32l4xx_fix = params->stm32l4xx_fix;
e8b09b87
CL
9077 if (globals->fdpic_p)
9078 globals->pic_veneer = 1;
9079 else
9080 globals->pic_veneer = params->pic_veneer;
68c39892
TP
9081 globals->fix_cortex_a8 = params->fix_cortex_a8;
9082 globals->fix_arm1176 = params->fix_arm1176;
9083 globals->cmse_implib = params->cmse_implib;
9084 globals->in_implib_bfd = params->in_implib_bfd;
bf21ed78 9085
0ffa91dd 9086 BFD_ASSERT (is_arm_elf (output_bfd));
68c39892
TP
9087 elf_arm_tdata (output_bfd)->no_enum_size_warning
9088 = params->no_enum_size_warning;
9089 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9090 = params->no_wchar_size_warning;
eb043451 9091}
eb043451 9092
12a0a0fd 9093/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 9094
12a0a0fd
PB
9095static void
9096insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9097{
9098 bfd_vma upper;
9099 bfd_vma lower;
9100 int reloc_sign;
9101
9102 BFD_ASSERT ((offset & 1) == 0);
9103
9104 upper = bfd_get_16 (abfd, insn);
9105 lower = bfd_get_16 (abfd, insn + 2);
9106 reloc_sign = (offset < 0) ? 1 : 0;
9107 upper = (upper & ~(bfd_vma) 0x7ff)
9108 | ((offset >> 12) & 0x3ff)
9109 | (reloc_sign << 10);
906e58ca 9110 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
9111 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9112 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9113 | ((offset >> 1) & 0x7ff);
9114 bfd_put_16 (abfd, upper, insn);
9115 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
9116}
9117
9b485d32
NC
9118/* Thumb code calling an ARM function. */
9119
252b5132 9120static int
57e8b36a 9121elf32_thumb_to_arm_stub (struct bfd_link_info * info,
07d6d2b8
AM
9122 const char * name,
9123 bfd * input_bfd,
9124 bfd * output_bfd,
9125 asection * input_section,
9126 bfd_byte * hit_data,
9127 asection * sym_sec,
9128 bfd_vma offset,
9129 bfd_signed_vma addend,
9130 bfd_vma val,
f2a9dd69 9131 char **error_message)
252b5132 9132{
bcbdc74c 9133 asection * s = 0;
dc810e39 9134 bfd_vma my_offset;
252b5132 9135 long int ret_offset;
bcbdc74c
NC
9136 struct elf_link_hash_entry * myh;
9137 struct elf32_arm_link_hash_table * globals;
252b5132 9138
f2a9dd69 9139 myh = find_thumb_glue (info, name, error_message);
252b5132 9140 if (myh == NULL)
0a1b45a2 9141 return false;
252b5132
RH
9142
9143 globals = elf32_arm_hash_table (info);
252b5132
RH
9144 BFD_ASSERT (globals != NULL);
9145 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9146
9147 my_offset = myh->root.u.def.value;
9148
3d4d4302
AM
9149 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9150 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
9151
9152 BFD_ASSERT (s != NULL);
9153 BFD_ASSERT (s->contents != NULL);
9154 BFD_ASSERT (s->output_section != NULL);
9155
9156 if ((my_offset & 0x01) == 0x01)
9157 {
9158 if (sym_sec != NULL
9159 && sym_sec->owner != NULL
9160 && !INTERWORK_FLAG (sym_sec->owner))
9161 {
4eca0228 9162 _bfd_error_handler
90b6238f
AM
9163 (_("%pB(%s): warning: interworking not enabled;"
9164 " first occurrence: %pB: %s call to %s"),
9165 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
252b5132 9166
0a1b45a2 9167 return false;
252b5132
RH
9168 }
9169
9170 --my_offset;
9171 myh->root.u.def.value = my_offset;
9172
52ab56c2
PB
9173 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9174 s->contents + my_offset);
252b5132 9175
52ab56c2
PB
9176 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9177 s->contents + my_offset + 2);
252b5132
RH
9178
9179 ret_offset =
9b485d32
NC
9180 /* Address of destination of the stub. */
9181 ((bfd_signed_vma) val)
252b5132 9182 - ((bfd_signed_vma)
57e8b36a
NC
9183 /* Offset from the start of the current section
9184 to the start of the stubs. */
9b485d32
NC
9185 (s->output_offset
9186 /* Offset of the start of this stub from the start of the stubs. */
9187 + my_offset
9188 /* Address of the start of the current section. */
9189 + s->output_section->vma)
9190 /* The branch instruction is 4 bytes into the stub. */
9191 + 4
9192 /* ARM branches work from the pc of the instruction + 8. */
9193 + 8);
252b5132 9194
52ab56c2
PB
9195 put_arm_insn (globals, output_bfd,
9196 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9197 s->contents + my_offset + 4);
252b5132
RH
9198 }
9199
9200 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9201
427bfd90
NC
9202 /* Now go back and fix up the original BL insn to point to here. */
9203 ret_offset =
9204 /* Address of where the stub is located. */
9205 (s->output_section->vma + s->output_offset + my_offset)
9206 /* Address of where the BL is located. */
57e8b36a
NC
9207 - (input_section->output_section->vma + input_section->output_offset
9208 + offset)
427bfd90
NC
9209 /* Addend in the relocation. */
9210 - addend
9211 /* Biassing for PC-relative addressing. */
9212 - 8;
252b5132 9213
12a0a0fd 9214 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 9215
0a1b45a2 9216 return true;
252b5132
RH
9217}
9218
a4fd1a8e 9219/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 9220
a4fd1a8e
PB
9221static struct elf_link_hash_entry *
9222elf32_arm_create_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9223 const char * name,
9224 bfd * input_bfd,
9225 bfd * output_bfd,
9226 asection * sym_sec,
9227 bfd_vma val,
9228 asection * s,
9229 char ** error_message)
252b5132 9230{
dc810e39 9231 bfd_vma my_offset;
252b5132 9232 long int ret_offset;
bcbdc74c
NC
9233 struct elf_link_hash_entry * myh;
9234 struct elf32_arm_link_hash_table * globals;
252b5132 9235
f2a9dd69 9236 myh = find_arm_glue (info, name, error_message);
252b5132 9237 if (myh == NULL)
a4fd1a8e 9238 return NULL;
252b5132
RH
9239
9240 globals = elf32_arm_hash_table (info);
252b5132
RH
9241 BFD_ASSERT (globals != NULL);
9242 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9243
9244 my_offset = myh->root.u.def.value;
252b5132
RH
9245
9246 if ((my_offset & 0x01) == 0x01)
9247 {
9248 if (sym_sec != NULL
9249 && sym_sec->owner != NULL
9250 && !INTERWORK_FLAG (sym_sec->owner))
9251 {
4eca0228 9252 _bfd_error_handler
90b6238f
AM
9253 (_("%pB(%s): warning: interworking not enabled;"
9254 " first occurrence: %pB: %s call to %s"),
9255 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
252b5132 9256 }
9b485d32 9257
252b5132
RH
9258 --my_offset;
9259 myh->root.u.def.value = my_offset;
9260
0e1862bb
L
9261 if (bfd_link_pic (info)
9262 || globals->root.is_relocatable_executable
27e55c4d 9263 || globals->pic_veneer)
8f6277f5
PB
9264 {
9265 /* For relocatable objects we can't use absolute addresses,
9266 so construct the address from a relative offset. */
9267 /* TODO: If the offset is small it's probably worth
9268 constructing the address with adds. */
52ab56c2
PB
9269 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9270 s->contents + my_offset);
9271 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9272 s->contents + my_offset + 4);
9273 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9274 s->contents + my_offset + 8);
8f6277f5
PB
9275 /* Adjust the offset by 4 for the position of the add,
9276 and 8 for the pipeline offset. */
9277 ret_offset = (val - (s->output_offset
9278 + s->output_section->vma
9279 + my_offset + 12))
9280 | 1;
9281 bfd_put_32 (output_bfd, ret_offset,
9282 s->contents + my_offset + 12);
9283 }
26079076
PB
9284 else if (globals->use_blx)
9285 {
9286 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9287 s->contents + my_offset);
9288
9289 /* It's a thumb address. Add the low order bit. */
9290 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9291 s->contents + my_offset + 4);
9292 }
8f6277f5
PB
9293 else
9294 {
52ab56c2
PB
9295 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9296 s->contents + my_offset);
252b5132 9297
52ab56c2
PB
9298 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9299 s->contents + my_offset + 4);
252b5132 9300
8f6277f5
PB
9301 /* It's a thumb address. Add the low order bit. */
9302 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9303 s->contents + my_offset + 8);
8029a119
NC
9304
9305 my_offset += 12;
8f6277f5 9306 }
252b5132
RH
9307 }
9308
9309 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9310
a4fd1a8e
PB
9311 return myh;
9312}
9313
9314/* Arm code calling a Thumb function. */
9315
9316static int
9317elf32_arm_to_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9318 const char * name,
9319 bfd * input_bfd,
9320 bfd * output_bfd,
9321 asection * input_section,
9322 bfd_byte * hit_data,
9323 asection * sym_sec,
9324 bfd_vma offset,
9325 bfd_signed_vma addend,
9326 bfd_vma val,
f2a9dd69 9327 char **error_message)
a4fd1a8e
PB
9328{
9329 unsigned long int tmp;
9330 bfd_vma my_offset;
9331 asection * s;
9332 long int ret_offset;
9333 struct elf_link_hash_entry * myh;
9334 struct elf32_arm_link_hash_table * globals;
9335
9336 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9337 BFD_ASSERT (globals != NULL);
9338 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9339
3d4d4302
AM
9340 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9341 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9342 BFD_ASSERT (s != NULL);
9343 BFD_ASSERT (s->contents != NULL);
9344 BFD_ASSERT (s->output_section != NULL);
9345
9346 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 9347 sym_sec, val, s, error_message);
a4fd1a8e 9348 if (!myh)
0a1b45a2 9349 return false;
a4fd1a8e
PB
9350
9351 my_offset = myh->root.u.def.value;
252b5132
RH
9352 tmp = bfd_get_32 (input_bfd, hit_data);
9353 tmp = tmp & 0xFF000000;
9354
9b485d32 9355 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
9356 ret_offset = (s->output_offset
9357 + my_offset
9358 + s->output_section->vma
9359 - (input_section->output_offset
9360 + input_section->output_section->vma
9361 + offset + addend)
9362 - 8);
9a5aca8c 9363
252b5132
RH
9364 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9365
dc810e39 9366 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 9367
0a1b45a2 9368 return true;
252b5132
RH
9369}
9370
a4fd1a8e
PB
9371/* Populate Arm stub for an exported Thumb function. */
9372
0a1b45a2 9373static bool
a4fd1a8e
PB
9374elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9375{
9376 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9377 asection * s;
9378 struct elf_link_hash_entry * myh;
9379 struct elf32_arm_link_hash_entry *eh;
9380 struct elf32_arm_link_hash_table * globals;
9381 asection *sec;
9382 bfd_vma val;
f2a9dd69 9383 char *error_message;
a4fd1a8e 9384
906e58ca 9385 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
9386 /* Allocate stubs for exported Thumb functions on v4t. */
9387 if (eh->export_glue == NULL)
0a1b45a2 9388 return true;
a4fd1a8e
PB
9389
9390 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9391 BFD_ASSERT (globals != NULL);
9392 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9393
3d4d4302
AM
9394 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9395 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9396 BFD_ASSERT (s != NULL);
9397 BFD_ASSERT (s->contents != NULL);
9398 BFD_ASSERT (s->output_section != NULL);
9399
9400 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
9401
9402 BFD_ASSERT (sec->output_section != NULL);
9403
a4fd1a8e
PB
9404 val = eh->export_glue->root.u.def.value + sec->output_offset
9405 + sec->output_section->vma;
8029a119 9406
a4fd1a8e
PB
9407 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9408 h->root.u.def.section->owner,
f2a9dd69
DJ
9409 globals->obfd, sec, val, s,
9410 &error_message);
a4fd1a8e 9411 BFD_ASSERT (myh);
0a1b45a2 9412 return true;
a4fd1a8e
PB
9413}
9414
845b51d6
PB
9415/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9416
9417static bfd_vma
9418elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9419{
9420 bfd_byte *p;
9421 bfd_vma glue_addr;
9422 asection *s;
9423 struct elf32_arm_link_hash_table *globals;
9424
9425 globals = elf32_arm_hash_table (info);
845b51d6
PB
9426 BFD_ASSERT (globals != NULL);
9427 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9428
3d4d4302
AM
9429 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9430 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
9431 BFD_ASSERT (s != NULL);
9432 BFD_ASSERT (s->contents != NULL);
9433 BFD_ASSERT (s->output_section != NULL);
9434
9435 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9436
9437 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9438
9439 if ((globals->bx_glue_offset[reg] & 1) == 0)
9440 {
9441 p = s->contents + glue_addr;
9442 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9443 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9444 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9445 globals->bx_glue_offset[reg] |= 1;
9446 }
9447
9448 return glue_addr + s->output_section->vma + s->output_offset;
9449}
9450
a4fd1a8e
PB
9451/* Generate Arm stubs for exported Thumb symbols. */
9452static void
906e58ca 9453elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
9454 struct bfd_link_info *link_info)
9455{
9456 struct elf32_arm_link_hash_table * globals;
9457
8029a119
NC
9458 if (link_info == NULL)
9459 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
9460 return;
9461
9462 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9463 if (globals == NULL)
9464 return;
9465
84c08195
PB
9466 /* If blx is available then exported Thumb symbols are OK and there is
9467 nothing to do. */
a4fd1a8e
PB
9468 if (globals->use_blx)
9469 return;
9470
9471 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9472 link_info);
9473}
9474
47beaa6a
RS
9475/* Reserve space for COUNT dynamic relocations in relocation selection
9476 SRELOC. */
9477
9478static void
9479elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9480 bfd_size_type count)
9481{
9482 struct elf32_arm_link_hash_table *htab;
9483
9484 htab = elf32_arm_hash_table (info);
9485 BFD_ASSERT (htab->root.dynamic_sections_created);
9486 if (sreloc == NULL)
9487 abort ();
9488 sreloc->size += RELOC_SIZE (htab) * count;
9489}
9490
34e77a92
RS
9491/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9492 dynamic, the relocations should go in SRELOC, otherwise they should
9493 go in the special .rel.iplt section. */
9494
9495static void
9496elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9497 bfd_size_type count)
9498{
9499 struct elf32_arm_link_hash_table *htab;
9500
9501 htab = elf32_arm_hash_table (info);
9502 if (!htab->root.dynamic_sections_created)
9503 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9504 else
9505 {
9506 BFD_ASSERT (sreloc != NULL);
9507 sreloc->size += RELOC_SIZE (htab) * count;
9508 }
9509}
9510
47beaa6a
RS
9511/* Add relocation REL to the end of relocation section SRELOC. */
9512
9513static void
9514elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9515 asection *sreloc, Elf_Internal_Rela *rel)
9516{
9517 bfd_byte *loc;
9518 struct elf32_arm_link_hash_table *htab;
9519
9520 htab = elf32_arm_hash_table (info);
34e77a92
RS
9521 if (!htab->root.dynamic_sections_created
9522 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9523 sreloc = htab->root.irelplt;
47beaa6a
RS
9524 if (sreloc == NULL)
9525 abort ();
9526 loc = sreloc->contents;
9527 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9528 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9529 abort ();
9530 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9531}
9532
34e77a92
RS
9533/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9534 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9535 to .plt. */
9536
9537static void
9538elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
0a1b45a2 9539 bool is_iplt_entry,
34e77a92
RS
9540 union gotplt_union *root_plt,
9541 struct arm_plt_info *arm_plt)
9542{
9543 struct elf32_arm_link_hash_table *htab;
9544 asection *splt;
9545 asection *sgotplt;
9546
9547 htab = elf32_arm_hash_table (info);
9548
9549 if (is_iplt_entry)
9550 {
9551 splt = htab->root.iplt;
9552 sgotplt = htab->root.igotplt;
9553
99059e56 9554 /* NaCl uses a special first entry in .iplt too. */
90c14f0c 9555 if (htab->root.target_os == is_nacl && splt->size == 0)
99059e56
RM
9556 splt->size += htab->plt_header_size;
9557
34e77a92
RS
9558 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9559 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9560 }
9561 else
9562 {
9563 splt = htab->root.splt;
9564 sgotplt = htab->root.sgotplt;
9565
7801f98f
CL
9566 if (htab->fdpic_p)
9567 {
9568 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9569 /* For lazy binding, relocations will be put into .rel.plt, in
9570 .rel.got otherwise. */
9571 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9572 if (info->flags & DF_BIND_NOW)
9573 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9574 else
9575 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9576 }
9577 else
9578 {
9579 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9580 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9581 }
34e77a92
RS
9582
9583 /* If this is the first .plt entry, make room for the special
9584 first entry. */
9585 if (splt->size == 0)
9586 splt->size += htab->plt_header_size;
9f19ab6d
WN
9587
9588 htab->next_tls_desc_index++;
34e77a92
RS
9589 }
9590
9591 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9592 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9593 splt->size += PLT_THUMB_STUB_SIZE;
9594 root_plt->offset = splt->size;
9595 splt->size += htab->plt_entry_size;
9596
a57d1773
AM
9597 /* We also need to make an entry in the .got.plt section, which
9598 will be placed in the .got section by the linker script. */
9599 if (is_iplt_entry)
9600 arm_plt->got_offset = sgotplt->size;
9601 else
9602 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9603 if (htab->fdpic_p)
9604 /* Function descriptor takes 64 bits in GOT. */
9605 sgotplt->size += 8;
9606 else
9607 sgotplt->size += 4;
34e77a92
RS
9608}
9609
b38cadfb
NC
9610static bfd_vma
9611arm_movw_immediate (bfd_vma value)
9612{
9613 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9614}
9615
9616static bfd_vma
9617arm_movt_immediate (bfd_vma value)
9618{
9619 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9620}
9621
34e77a92
RS
9622/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9623 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9624 Otherwise, DYNINDX is the index of the symbol in the dynamic
9625 symbol table and SYM_VALUE is undefined.
9626
9627 ROOT_PLT points to the offset of the PLT entry from the start of its
9628 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
57460bcf 9629 bookkeeping information.
34e77a92 9630
57460bcf
NC
9631 Returns FALSE if there was a problem. */
9632
0a1b45a2 9633static bool
34e77a92
RS
9634elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9635 union gotplt_union *root_plt,
9636 struct arm_plt_info *arm_plt,
9637 int dynindx, bfd_vma sym_value)
9638{
9639 struct elf32_arm_link_hash_table *htab;
9640 asection *sgot;
9641 asection *splt;
9642 asection *srel;
9643 bfd_byte *loc;
9644 bfd_vma plt_index;
9645 Elf_Internal_Rela rel;
34e77a92
RS
9646 bfd_vma got_header_size;
9647
9648 htab = elf32_arm_hash_table (info);
9649
9650 /* Pick the appropriate sections and sizes. */
9651 if (dynindx == -1)
9652 {
9653 splt = htab->root.iplt;
9654 sgot = htab->root.igotplt;
9655 srel = htab->root.irelplt;
9656
9657 /* There are no reserved entries in .igot.plt, and no special
9658 first entry in .iplt. */
9659 got_header_size = 0;
34e77a92
RS
9660 }
9661 else
9662 {
9663 splt = htab->root.splt;
9664 sgot = htab->root.sgotplt;
9665 srel = htab->root.srelplt;
9666
9667 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
34e77a92
RS
9668 }
9669 BFD_ASSERT (splt != NULL && srel != NULL);
9670
a57d1773
AM
9671 bfd_vma got_offset, got_address, plt_address;
9672 bfd_vma got_displacement, initial_got_entry;
9673 bfd_byte * ptr;
9674
9675 BFD_ASSERT (sgot != NULL);
9676
9677 /* Get the offset into the .(i)got.plt table of the entry that
9678 corresponds to this function. */
9679 got_offset = (arm_plt->got_offset & -2);
9680
9681 /* Get the index in the procedure linkage table which
9682 corresponds to this symbol. This is the index of this symbol
9683 in all the symbols for which we are making plt entries.
9684 After the reserved .got.plt entries, all symbols appear in
9685 the same order as in .plt. */
9686 if (htab->fdpic_p)
9687 /* Function descriptor takes 8 bytes. */
9688 plt_index = (got_offset - got_header_size) / 8;
9689 else
9690 plt_index = (got_offset - got_header_size) / 4;
9691
9692 /* Calculate the address of the GOT entry. */
9693 got_address = (sgot->output_section->vma
9694 + sgot->output_offset
9695 + got_offset);
9696
9697 /* ...and the address of the PLT entry. */
9698 plt_address = (splt->output_section->vma
9699 + splt->output_offset
9700 + root_plt->offset);
9701
9702 ptr = splt->contents + root_plt->offset;
9703 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
34e77a92 9704 {
a57d1773
AM
9705 unsigned int i;
9706 bfd_vma val;
9707
9708 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9709 {
9710 val = elf32_arm_vxworks_shared_plt_entry[i];
9711 if (i == 2)
9712 val |= got_address - sgot->output_section->vma;
9713 if (i == 5)
9714 val |= plt_index * RELOC_SIZE (htab);
9715 if (i == 2 || i == 5)
9716 bfd_put_32 (output_bfd, val, ptr);
9717 else
9718 put_arm_insn (htab, output_bfd, val, ptr);
9719 }
34e77a92 9720 }
a57d1773 9721 else if (htab->root.target_os == is_vxworks)
34e77a92 9722 {
a57d1773
AM
9723 unsigned int i;
9724 bfd_vma val;
34e77a92 9725
a57d1773
AM
9726 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9727 {
9728 val = elf32_arm_vxworks_exec_plt_entry[i];
9729 if (i == 2)
9730 val |= got_address;
9731 if (i == 4)
9732 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9733 if (i == 5)
9734 val |= plt_index * RELOC_SIZE (htab);
9735 if (i == 2 || i == 5)
9736 bfd_put_32 (output_bfd, val, ptr);
9737 else
9738 put_arm_insn (htab, output_bfd, val, ptr);
9739 }
34e77a92 9740
a57d1773
AM
9741 loc = (htab->srelplt2->contents
9742 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
34e77a92 9743
a57d1773
AM
9744 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9745 referencing the GOT for this PLT entry. */
9746 rel.r_offset = plt_address + 8;
9747 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9748 rel.r_addend = got_offset;
9749 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9750 loc += RELOC_SIZE (htab);
34e77a92 9751
a57d1773
AM
9752 /* Create the R_ARM_ABS32 relocation referencing the
9753 beginning of the PLT for this GOT entry. */
9754 rel.r_offset = got_address;
9755 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9756 rel.r_addend = 0;
9757 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9758 }
9759 else if (htab->root.target_os == is_nacl)
9760 {
9761 /* Calculate the displacement between the PLT slot and the
9762 common tail that's part of the special initial PLT slot. */
9763 int32_t tail_displacement
9764 = ((splt->output_section->vma + splt->output_offset
9765 + ARM_NACL_PLT_TAIL_OFFSET)
9766 - (plt_address + htab->plt_entry_size + 4));
9767 BFD_ASSERT ((tail_displacement & 3) == 0);
9768 tail_displacement >>= 2;
34e77a92 9769
a57d1773
AM
9770 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9771 || (-tail_displacement & 0xff000000) == 0);
34e77a92 9772
a57d1773
AM
9773 /* Calculate the displacement between the PLT slot and the entry
9774 in the GOT. The offset accounts for the value produced by
9775 adding to pc in the penultimate instruction of the PLT stub. */
9776 got_displacement = (got_address
9777 - (plt_address + htab->plt_entry_size));
34e77a92 9778
a57d1773
AM
9779 /* NaCl does not support interworking at all. */
9780 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9781
9782 put_arm_insn (htab, output_bfd,
9783 elf32_arm_nacl_plt_entry[0]
9784 | arm_movw_immediate (got_displacement),
9785 ptr + 0);
9786 put_arm_insn (htab, output_bfd,
9787 elf32_arm_nacl_plt_entry[1]
9788 | arm_movt_immediate (got_displacement),
9789 ptr + 4);
9790 put_arm_insn (htab, output_bfd,
9791 elf32_arm_nacl_plt_entry[2],
9792 ptr + 8);
9793 put_arm_insn (htab, output_bfd,
9794 elf32_arm_nacl_plt_entry[3]
9795 | (tail_displacement & 0x00ffffff),
9796 ptr + 12);
9797 }
9798 else if (htab->fdpic_p)
9799 {
cc850f74 9800 const bfd_vma *plt_entry = using_thumb_only (htab)
a57d1773
AM
9801 ? elf32_arm_fdpic_thumb_plt_entry
9802 : elf32_arm_fdpic_plt_entry;
9803
9804 /* Fill-up Thumb stub if needed. */
9805 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9806 {
9807 put_thumb_insn (htab, output_bfd,
9808 elf32_arm_plt_thumb_stub[0], ptr - 4);
9809 put_thumb_insn (htab, output_bfd,
9810 elf32_arm_plt_thumb_stub[1], ptr - 2);
34e77a92 9811 }
a57d1773
AM
9812 /* As we are using 32 bit instructions even for the Thumb
9813 version, we have to use 'put_arm_insn' instead of
9814 'put_thumb_insn'. */
cc850f74
NC
9815 put_arm_insn (htab, output_bfd, plt_entry[0], ptr + 0);
9816 put_arm_insn (htab, output_bfd, plt_entry[1], ptr + 4);
9817 put_arm_insn (htab, output_bfd, plt_entry[2], ptr + 8);
9818 put_arm_insn (htab, output_bfd, plt_entry[3], ptr + 12);
a57d1773
AM
9819 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9820
9821 if (!(info->flags & DF_BIND_NOW))
34e77a92 9822 {
a57d1773
AM
9823 /* funcdesc_value_reloc_offset. */
9824 bfd_put_32 (output_bfd,
9825 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9826 ptr + 20);
cc850f74
NC
9827 put_arm_insn (htab, output_bfd, plt_entry[6], ptr + 24);
9828 put_arm_insn (htab, output_bfd, plt_entry[7], ptr + 28);
9829 put_arm_insn (htab, output_bfd, plt_entry[8], ptr + 32);
9830 put_arm_insn (htab, output_bfd, plt_entry[9], ptr + 36);
a57d1773
AM
9831 }
9832 }
9833 else if (using_thumb_only (htab))
9834 {
9835 /* PR ld/16017: Generate thumb only PLT entries. */
9836 if (!using_thumb2 (htab))
9837 {
9838 /* FIXME: We ought to be able to generate thumb-1 PLT
9839 instructions... */
9840 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9841 output_bfd);
0a1b45a2 9842 return false;
a57d1773 9843 }
34e77a92 9844
a57d1773
AM
9845 /* Calculate the displacement between the PLT slot and the entry in
9846 the GOT. The 12-byte offset accounts for the value produced by
9847 adding to pc in the 3rd instruction of the PLT stub. */
9848 got_displacement = got_address - (plt_address + 12);
34e77a92 9849
a57d1773
AM
9850 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9851 instead of 'put_thumb_insn'. */
9852 put_arm_insn (htab, output_bfd,
9853 elf32_thumb2_plt_entry[0]
9854 | ((got_displacement & 0x000000ff) << 16)
9855 | ((got_displacement & 0x00000700) << 20)
9856 | ((got_displacement & 0x00000800) >> 1)
9857 | ((got_displacement & 0x0000f000) >> 12),
9858 ptr + 0);
9859 put_arm_insn (htab, output_bfd,
9860 elf32_thumb2_plt_entry[1]
9861 | ((got_displacement & 0x00ff0000) )
9862 | ((got_displacement & 0x07000000) << 4)
9863 | ((got_displacement & 0x08000000) >> 17)
9864 | ((got_displacement & 0xf0000000) >> 28),
9865 ptr + 4);
9866 put_arm_insn (htab, output_bfd,
9867 elf32_thumb2_plt_entry[2],
9868 ptr + 8);
9869 put_arm_insn (htab, output_bfd,
9870 elf32_thumb2_plt_entry[3],
9871 ptr + 12);
9872 }
9873 else
9874 {
9875 /* Calculate the displacement between the PLT slot and the
9876 entry in the GOT. The eight-byte offset accounts for the
9877 value produced by adding to pc in the first instruction
9878 of the PLT stub. */
9879 got_displacement = got_address - (plt_address + 8);
34e77a92 9880
a57d1773
AM
9881 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9882 {
9883 put_thumb_insn (htab, output_bfd,
9884 elf32_arm_plt_thumb_stub[0], ptr - 4);
9885 put_thumb_insn (htab, output_bfd,
9886 elf32_arm_plt_thumb_stub[1], ptr - 2);
34e77a92 9887 }
a57d1773
AM
9888
9889 if (!elf32_arm_use_long_plt_entry)
b38cadfb 9890 {
a57d1773 9891 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
b38cadfb
NC
9892
9893 put_arm_insn (htab, output_bfd,
a57d1773
AM
9894 elf32_arm_plt_entry_short[0]
9895 | ((got_displacement & 0x0ff00000) >> 20),
b38cadfb
NC
9896 ptr + 0);
9897 put_arm_insn (htab, output_bfd,
a57d1773
AM
9898 elf32_arm_plt_entry_short[1]
9899 | ((got_displacement & 0x000ff000) >> 12),
9900 ptr+ 4);
b38cadfb 9901 put_arm_insn (htab, output_bfd,
a57d1773
AM
9902 elf32_arm_plt_entry_short[2]
9903 | (got_displacement & 0x00000fff),
b38cadfb 9904 ptr + 8);
a57d1773
AM
9905#ifdef FOUR_WORD_PLT
9906 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9907#endif
7801f98f 9908 }
a57d1773 9909 else
57460bcf 9910 {
eed94f8f 9911 put_arm_insn (htab, output_bfd,
a57d1773
AM
9912 elf32_arm_plt_entry_long[0]
9913 | ((got_displacement & 0xf0000000) >> 28),
eed94f8f
NC
9914 ptr + 0);
9915 put_arm_insn (htab, output_bfd,
a57d1773
AM
9916 elf32_arm_plt_entry_long[1]
9917 | ((got_displacement & 0x0ff00000) >> 20),
eed94f8f
NC
9918 ptr + 4);
9919 put_arm_insn (htab, output_bfd,
a57d1773
AM
9920 elf32_arm_plt_entry_long[2]
9921 | ((got_displacement & 0x000ff000) >> 12),
9922 ptr+ 8);
eed94f8f 9923 put_arm_insn (htab, output_bfd,
a57d1773
AM
9924 elf32_arm_plt_entry_long[3]
9925 | (got_displacement & 0x00000fff),
eed94f8f 9926 ptr + 12);
57460bcf 9927 }
a57d1773 9928 }
34e77a92 9929
a57d1773
AM
9930 /* Fill in the entry in the .rel(a).(i)plt section. */
9931 rel.r_offset = got_address;
9932 rel.r_addend = 0;
9933 if (dynindx == -1)
9934 {
9935 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9936 The dynamic linker or static executable then calls SYM_VALUE
9937 to determine the correct run-time value of the .igot.plt entry. */
9938 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9939 initial_got_entry = sym_value;
9940 }
9941 else
9942 {
9943 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9944 used by PLT entry. */
9945 if (htab->fdpic_p)
34e77a92 9946 {
a57d1773
AM
9947 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9948 initial_got_entry = 0;
34e77a92
RS
9949 }
9950 else
9951 {
a57d1773
AM
9952 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9953 initial_got_entry = (splt->output_section->vma
9954 + splt->output_offset);
9955
9956 /* PR ld/16017
9957 When thumb only we need to set the LSB for any address that
9958 will be used with an interworking branch instruction. */
9959 if (using_thumb_only (htab))
9960 initial_got_entry |= 1;
34e77a92 9961 }
a57d1773 9962 }
34e77a92 9963
a57d1773
AM
9964 /* Fill in the entry in the global offset table. */
9965 bfd_put_32 (output_bfd, initial_got_entry,
9966 sgot->contents + got_offset);
9967
9968 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9969 {
9970 /* Setup initial funcdesc value. */
9971 /* FIXME: we don't support lazy binding because there is a
9972 race condition between both words getting written and
9973 some other thread attempting to read them. The ARM
9974 architecture does not have an atomic 64 bit load/store
9975 instruction that could be used to prevent it; it is
9976 recommended that threaded FDPIC applications run with the
9977 LD_BIND_NOW environment variable set. */
cc850f74
NC
9978 bfd_put_32 (output_bfd, plt_address + 0x18,
9979 sgot->contents + got_offset);
9980 bfd_put_32 (output_bfd, -1 /*TODO*/,
9981 sgot->contents + got_offset + 4);
34e77a92
RS
9982 }
9983
aba8c3de
WN
9984 if (dynindx == -1)
9985 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9986 else
9987 {
7801f98f
CL
9988 if (htab->fdpic_p)
9989 {
9990 /* For FDPIC we put PLT relocationss into .rel.got when not
9991 lazy binding otherwise we put them in .rel.plt. For now,
9992 we don't support lazy binding so put it in .rel.got. */
9993 if (info->flags & DF_BIND_NOW)
cc850f74 9994 elf32_arm_add_dynreloc (output_bfd, info, htab->root.srelgot, &rel);
7801f98f 9995 else
cc850f74 9996 elf32_arm_add_dynreloc (output_bfd, info, htab->root.srelplt, &rel);
7801f98f
CL
9997 }
9998 else
9999 {
10000 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10001 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10002 }
aba8c3de 10003 }
57460bcf 10004
0a1b45a2 10005 return true;
34e77a92
RS
10006}
10007
eb043451
PB
10008/* Some relocations map to different relocations depending on the
10009 target. Return the real relocation. */
8029a119 10010
eb043451
PB
10011static int
10012arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10013 int r_type)
10014{
10015 switch (r_type)
10016 {
10017 case R_ARM_TARGET1:
10018 if (globals->target1_is_rel)
10019 return R_ARM_REL32;
10020 else
10021 return R_ARM_ABS32;
10022
10023 case R_ARM_TARGET2:
10024 return globals->target2_reloc;
10025
10026 default:
10027 return r_type;
10028 }
10029}
eb043451 10030
ba93b8ac
DJ
10031/* Return the base VMA address which should be subtracted from real addresses
10032 when resolving @dtpoff relocation.
10033 This is PT_TLS segment p_vaddr. */
10034
10035static bfd_vma
10036dtpoff_base (struct bfd_link_info *info)
10037{
10038 /* If tls_sec is NULL, we should have signalled an error already. */
10039 if (elf_hash_table (info)->tls_sec == NULL)
10040 return 0;
10041 return elf_hash_table (info)->tls_sec->vma;
10042}
10043
10044/* Return the relocation value for @tpoff relocation
10045 if STT_TLS virtual address is ADDRESS. */
10046
10047static bfd_vma
10048tpoff (struct bfd_link_info *info, bfd_vma address)
10049{
10050 struct elf_link_hash_table *htab = elf_hash_table (info);
10051 bfd_vma base;
10052
10053 /* If tls_sec is NULL, we should have signalled an error already. */
10054 if (htab->tls_sec == NULL)
10055 return 0;
10056 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10057 return address - htab->tls_sec->vma + base;
10058}
10059
00a97672
RS
10060/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10061 VALUE is the relocation value. */
10062
10063static bfd_reloc_status_type
10064elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10065{
10066 if (value > 0xfff)
10067 return bfd_reloc_overflow;
10068
10069 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10070 bfd_put_32 (abfd, value, data);
10071 return bfd_reloc_ok;
10072}
10073
0855e32b
NS
10074/* Handle TLS relaxations. Relaxing is possible for symbols that use
10075 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10076 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10077
10078 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10079 is to then call final_link_relocate. Return other values in the
62672b10
NS
10080 case of error.
10081
10082 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10083 the pre-relaxed code. It would be nice if the relocs were updated
10084 to match the optimization. */
0855e32b 10085
b38cadfb 10086static bfd_reloc_status_type
0855e32b 10087elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 10088 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
10089 Elf_Internal_Rela *rel, unsigned long is_local)
10090{
10091 unsigned long insn;
b38cadfb 10092
0855e32b
NS
10093 switch (ELF32_R_TYPE (rel->r_info))
10094 {
10095 default:
10096 return bfd_reloc_notsupported;
b38cadfb 10097
0855e32b
NS
10098 case R_ARM_TLS_GOTDESC:
10099 if (is_local)
10100 insn = 0;
10101 else
10102 {
10103 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10104 if (insn & 1)
10105 insn -= 5; /* THUMB */
10106 else
10107 insn -= 8; /* ARM */
10108 }
10109 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10110 return bfd_reloc_continue;
10111
10112 case R_ARM_THM_TLS_DESCSEQ:
10113 /* Thumb insn. */
10114 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10115 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10116 {
10117 if (is_local)
10118 /* nop */
10119 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10120 }
10121 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10122 {
10123 if (is_local)
10124 /* nop */
10125 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10126 else
10127 /* ldr rx,[ry] */
10128 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10129 }
10130 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10131 {
10132 if (is_local)
10133 /* nop */
10134 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10135 else
10136 /* mov r0, rx */
10137 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10138 contents + rel->r_offset);
10139 }
10140 else
10141 {
10142 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10143 /* It's a 32 bit instruction, fetch the rest of it for
10144 error generation. */
10145 insn = (insn << 16)
10146 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
4eca0228 10147 _bfd_error_handler
695344c0 10148 /* xgettext:c-format */
2dcf00ce 10149 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10150 "unexpected %s instruction '%#lx' in TLS trampoline"),
10151 input_bfd, input_sec, (uint64_t) rel->r_offset,
10152 "Thumb", insn);
0855e32b
NS
10153 return bfd_reloc_notsupported;
10154 }
10155 break;
b38cadfb 10156
0855e32b
NS
10157 case R_ARM_TLS_DESCSEQ:
10158 /* arm insn. */
10159 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10160 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10161 {
10162 if (is_local)
10163 /* mov rx, ry */
10164 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10165 contents + rel->r_offset);
10166 }
10167 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10168 {
10169 if (is_local)
10170 /* nop */
10171 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10172 else
10173 /* ldr rx,[ry] */
10174 bfd_put_32 (input_bfd, insn & 0xfffff000,
10175 contents + rel->r_offset);
10176 }
10177 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10178 {
10179 if (is_local)
10180 /* nop */
10181 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10182 else
10183 /* mov r0, rx */
10184 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10185 contents + rel->r_offset);
10186 }
10187 else
10188 {
4eca0228 10189 _bfd_error_handler
695344c0 10190 /* xgettext:c-format */
2dcf00ce 10191 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10192 "unexpected %s instruction '%#lx' in TLS trampoline"),
10193 input_bfd, input_sec, (uint64_t) rel->r_offset,
10194 "ARM", insn);
0855e32b
NS
10195 return bfd_reloc_notsupported;
10196 }
10197 break;
10198
10199 case R_ARM_TLS_CALL:
10200 /* GD->IE relaxation, turn the instruction into 'nop' or
10201 'ldr r0, [pc,r0]' */
10202 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10203 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10204 break;
b38cadfb 10205
0855e32b 10206 case R_ARM_THM_TLS_CALL:
6a631e86 10207 /* GD->IE relaxation. */
0855e32b
NS
10208 if (!is_local)
10209 /* add r0,pc; ldr r0, [r0] */
10210 insn = 0x44786800;
60a019a0 10211 else if (using_thumb2 (globals))
0855e32b
NS
10212 /* nop.w */
10213 insn = 0xf3af8000;
10214 else
10215 /* nop; nop */
10216 insn = 0xbf00bf00;
b38cadfb 10217
0855e32b
NS
10218 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10219 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10220 break;
10221 }
10222 return bfd_reloc_ok;
10223}
10224
4962c51a
MS
10225/* For a given value of n, calculate the value of G_n as required to
10226 deal with group relocations. We return it in the form of an
10227 encoded constant-and-rotation, together with the final residual. If n is
10228 specified as less than zero, then final_residual is filled with the
10229 input value and no further action is performed. */
10230
10231static bfd_vma
10232calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10233{
10234 int current_n;
10235 bfd_vma g_n;
10236 bfd_vma encoded_g_n = 0;
10237 bfd_vma residual = value; /* Also known as Y_n. */
10238
10239 for (current_n = 0; current_n <= n; current_n++)
10240 {
10241 int shift;
10242
10243 /* Calculate which part of the value to mask. */
10244 if (residual == 0)
99059e56 10245 shift = 0;
4962c51a 10246 else
99059e56
RM
10247 {
10248 int msb;
10249
10250 /* Determine the most significant bit in the residual and
10251 align the resulting value to a 2-bit boundary. */
10252 for (msb = 30; msb >= 0; msb -= 2)
00c91124 10253 if (residual & (3u << msb))
99059e56
RM
10254 break;
10255
10256 /* The desired shift is now (msb - 6), or zero, whichever
10257 is the greater. */
10258 shift = msb - 6;
10259 if (shift < 0)
10260 shift = 0;
10261 }
4962c51a
MS
10262
10263 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10264 g_n = residual & (0xff << shift);
10265 encoded_g_n = (g_n >> shift)
99059e56 10266 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4962c51a
MS
10267
10268 /* Calculate the residual for the next time around. */
10269 residual &= ~g_n;
10270 }
10271
10272 *final_residual = residual;
10273
10274 return encoded_g_n;
10275}
10276
10277/* Given an ARM instruction, determine whether it is an ADD or a SUB.
10278 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 10279
4962c51a 10280static int
906e58ca 10281identify_add_or_sub (bfd_vma insn)
4962c51a
MS
10282{
10283 int opcode = insn & 0x1e00000;
10284
10285 if (opcode == 1 << 23) /* ADD */
10286 return 1;
10287
10288 if (opcode == 1 << 22) /* SUB */
10289 return -1;
10290
10291 return 0;
10292}
10293
252b5132 10294/* Perform a relocation as part of a final link. */
9b485d32 10295
252b5132 10296static bfd_reloc_status_type
07d6d2b8
AM
10297elf32_arm_final_link_relocate (reloc_howto_type * howto,
10298 bfd * input_bfd,
10299 bfd * output_bfd,
10300 asection * input_section,
10301 bfd_byte * contents,
10302 Elf_Internal_Rela * rel,
10303 bfd_vma value,
10304 struct bfd_link_info * info,
10305 asection * sym_sec,
10306 const char * sym_name,
10307 unsigned char st_type,
10308 enum arm_st_branch_type branch_type,
0945cdfd 10309 struct elf_link_hash_entry * h,
0a1b45a2 10310 bool * unresolved_reloc_p,
07d6d2b8
AM
10311 char ** error_message)
10312{
10313 unsigned long r_type = howto->type;
10314 unsigned long r_symndx;
10315 bfd_byte * hit_data = contents + rel->r_offset;
10316 bfd_vma * local_got_offsets;
10317 bfd_vma * local_tlsdesc_gotents;
10318 asection * sgot;
10319 asection * splt;
10320 asection * sreloc = NULL;
10321 asection * srelgot;
10322 bfd_vma addend;
10323 bfd_signed_vma signed_addend;
10324 unsigned char dynreloc_st_type;
10325 bfd_vma dynreloc_value;
ba96a88f 10326 struct elf32_arm_link_hash_table * globals;
34e77a92 10327 struct elf32_arm_link_hash_entry *eh;
07d6d2b8
AM
10328 union gotplt_union *root_plt;
10329 struct arm_plt_info *arm_plt;
10330 bfd_vma plt_offset;
10331 bfd_vma gotplt_offset;
0a1b45a2
AM
10332 bool has_iplt_entry;
10333 bool resolved_to_zero;
f21f3fe0 10334
9c504268 10335 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
10336 if (globals == NULL)
10337 return bfd_reloc_notsupported;
9c504268 10338
0ffa91dd 10339 BFD_ASSERT (is_arm_elf (input_bfd));
47aeb64c 10340 BFD_ASSERT (howto != NULL);
0ffa91dd
NC
10341
10342 /* Some relocation types map to different relocations depending on the
9c504268 10343 target. We pick the right one here. */
eb043451 10344 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
10345
10346 /* It is possible to have linker relaxations on some TLS access
10347 models. Update our information here. */
10348 r_type = elf32_arm_tls_transition (info, r_type, h);
10349
eb043451
PB
10350 if (r_type != howto->type)
10351 howto = elf32_arm_howto_from_type (r_type);
9c504268 10352
34e77a92 10353 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 10354 sgot = globals->root.sgot;
252b5132 10355 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
10356 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10357
34e77a92
RS
10358 if (globals->root.dynamic_sections_created)
10359 srelgot = globals->root.srelgot;
10360 else
10361 srelgot = NULL;
10362
252b5132
RH
10363 r_symndx = ELF32_R_SYM (rel->r_info);
10364
4e7fd91e 10365 if (globals->use_rel)
ba96a88f 10366 {
d2327e47 10367 bfd_vma sign;
4e7fd91e 10368
57698478 10369 switch (bfd_get_reloc_size (howto))
4e7fd91e 10370 {
57698478
AM
10371 case 1: addend = bfd_get_8 (input_bfd, hit_data); break;
10372 case 2: addend = bfd_get_16 (input_bfd, hit_data); break;
10373 case 4: addend = bfd_get_32 (input_bfd, hit_data); break;
d2327e47 10374 default: addend = 0; break;
4e7fd91e 10375 }
d2327e47
AM
10376 /* Note: the addend and signed_addend calculated here are
10377 incorrect for any split field. */
10378 addend &= howto->src_mask;
10379 sign = howto->src_mask & ~(howto->src_mask >> 1);
10380 signed_addend = (addend ^ sign) - sign;
10381 signed_addend = (bfd_vma) signed_addend << howto->rightshift;
10382 addend <<= howto->rightshift;
ba96a88f
NC
10383 }
10384 else
4e7fd91e 10385 addend = signed_addend = rel->r_addend;
f21f3fe0 10386
39f21624
NC
10387 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10388 are resolving a function call relocation. */
10389 if (using_thumb_only (globals)
10390 && (r_type == R_ARM_THM_CALL
10391 || r_type == R_ARM_THM_JUMP24)
10392 && branch_type == ST_BRANCH_TO_ARM)
10393 branch_type = ST_BRANCH_TO_THUMB;
10394
34e77a92
RS
10395 /* Record the symbol information that should be used in dynamic
10396 relocations. */
10397 dynreloc_st_type = st_type;
10398 dynreloc_value = value;
10399 if (branch_type == ST_BRANCH_TO_THUMB)
10400 dynreloc_value |= 1;
10401
10402 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10403 VALUE appropriately for relocations that we resolve at link time. */
0a1b45a2 10404 has_iplt_entry = false;
4ba2ef8f
TP
10405 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10406 &arm_plt)
34e77a92
RS
10407 && root_plt->offset != (bfd_vma) -1)
10408 {
10409 plt_offset = root_plt->offset;
10410 gotplt_offset = arm_plt->got_offset;
10411
10412 if (h == NULL || eh->is_iplt)
10413 {
0a1b45a2 10414 has_iplt_entry = true;
34e77a92
RS
10415 splt = globals->root.iplt;
10416
10417 /* Populate .iplt entries here, because not all of them will
10418 be seen by finish_dynamic_symbol. The lower bit is set if
10419 we have already populated the entry. */
10420 if (plt_offset & 1)
10421 plt_offset--;
10422 else
10423 {
57460bcf
NC
10424 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10425 -1, dynreloc_value))
10426 root_plt->offset |= 1;
10427 else
10428 return bfd_reloc_notsupported;
34e77a92
RS
10429 }
10430
10431 /* Static relocations always resolve to the .iplt entry. */
10432 st_type = STT_FUNC;
10433 value = (splt->output_section->vma
10434 + splt->output_offset
10435 + plt_offset);
10436 branch_type = ST_BRANCH_TO_ARM;
10437
10438 /* If there are non-call relocations that resolve to the .iplt
10439 entry, then all dynamic ones must too. */
10440 if (arm_plt->noncall_refcount != 0)
10441 {
10442 dynreloc_st_type = st_type;
10443 dynreloc_value = value;
10444 }
10445 }
10446 else
10447 /* We populate the .plt entry in finish_dynamic_symbol. */
10448 splt = globals->root.splt;
10449 }
10450 else
10451 {
10452 splt = NULL;
10453 plt_offset = (bfd_vma) -1;
10454 gotplt_offset = (bfd_vma) -1;
10455 }
10456
95b03e4a
L
10457 resolved_to_zero = (h != NULL
10458 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10459
252b5132
RH
10460 switch (r_type)
10461 {
10462 case R_ARM_NONE:
28a094c2
DJ
10463 /* We don't need to find a value for this symbol. It's just a
10464 marker. */
0a1b45a2 10465 *unresolved_reloc_p = false;
252b5132
RH
10466 return bfd_reloc_ok;
10467
00a97672 10468 case R_ARM_ABS12:
90c14f0c 10469 if (globals->root.target_os != is_vxworks)
00a97672 10470 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
1a0670f3 10471 /* Fall through. */
00a97672 10472
252b5132
RH
10473 case R_ARM_PC24:
10474 case R_ARM_ABS32:
bb224fc3 10475 case R_ARM_ABS32_NOI:
252b5132 10476 case R_ARM_REL32:
bb224fc3 10477 case R_ARM_REL32_NOI:
5b5bb741
PB
10478 case R_ARM_CALL:
10479 case R_ARM_JUMP24:
dfc5f959 10480 case R_ARM_XPC25:
eb043451 10481 case R_ARM_PREL31:
7359ea65 10482 case R_ARM_PLT32:
7359ea65
DJ
10483 /* Handle relocations which should use the PLT entry. ABS32/REL32
10484 will use the symbol's value, which may point to a PLT entry, but we
10485 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
10486 branches in this object should go to it, except if the PLT is too
10487 far away, in which case a long branch stub should be inserted. */
bb224fc3 10488 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
99059e56 10489 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
10490 && r_type != R_ARM_CALL
10491 && r_type != R_ARM_JUMP24
10492 && r_type != R_ARM_PLT32)
34e77a92 10493 && plt_offset != (bfd_vma) -1)
7359ea65 10494 {
34e77a92
RS
10495 /* If we've created a .plt section, and assigned a PLT entry
10496 to this function, it must either be a STT_GNU_IFUNC reference
10497 or not be known to bind locally. In other cases, we should
10498 have cleared the PLT entry by now. */
10499 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
10500
10501 value = (splt->output_section->vma
10502 + splt->output_offset
34e77a92 10503 + plt_offset);
0a1b45a2 10504 *unresolved_reloc_p = false;
7359ea65
DJ
10505 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10506 contents, rel->r_offset, value,
00a97672 10507 rel->r_addend);
7359ea65
DJ
10508 }
10509
67687978
PB
10510 /* When generating a shared object or relocatable executable, these
10511 relocations are copied into the output file to be resolved at
10512 run time. */
0e1862bb 10513 if ((bfd_link_pic (info)
e8b09b87
CL
10514 || globals->root.is_relocatable_executable
10515 || globals->fdpic_p)
7359ea65 10516 && (input_section->flags & SEC_ALLOC)
90c14f0c 10517 && !(globals->root.target_os == is_vxworks
3348747a
NS
10518 && strcmp (input_section->output_section->name,
10519 ".tls_vars") == 0)
bb224fc3 10520 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 10521 || !SYMBOL_CALLS_LOCAL (info, h))
ca6b5f82
AM
10522 && !(input_bfd == globals->stub_bfd
10523 && strstr (input_section->name, STUB_SUFFIX))
7359ea65 10524 && (h == NULL
95b03e4a
L
10525 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10526 && !resolved_to_zero)
7359ea65
DJ
10527 || h->root.type != bfd_link_hash_undefweak)
10528 && r_type != R_ARM_PC24
5b5bb741
PB
10529 && r_type != R_ARM_CALL
10530 && r_type != R_ARM_JUMP24
ee06dc07 10531 && r_type != R_ARM_PREL31
7359ea65 10532 && r_type != R_ARM_PLT32)
252b5132 10533 {
947216bf 10534 Elf_Internal_Rela outrel;
0a1b45a2 10535 bool skip, relocate;
e8b09b87 10536 int isrofixup = 0;
f21f3fe0 10537
52db4ec2
JW
10538 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10539 && !h->def_regular)
10540 {
10541 char *v = _("shared object");
10542
0e1862bb 10543 if (bfd_link_executable (info))
52db4ec2
JW
10544 v = _("PIE executable");
10545
4eca0228 10546 _bfd_error_handler
871b3ab2 10547 (_("%pB: relocation %s against external or undefined symbol `%s'"
52db4ec2
JW
10548 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10549 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10550 return bfd_reloc_notsupported;
10551 }
10552
0a1b45a2 10553 *unresolved_reloc_p = false;
0945cdfd 10554
34e77a92 10555 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 10556 {
83bac4b0
NC
10557 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10558 ! globals->use_rel);
f21f3fe0 10559
83bac4b0 10560 if (sreloc == NULL)
252b5132 10561 return bfd_reloc_notsupported;
252b5132 10562 }
f21f3fe0 10563
0a1b45a2
AM
10564 skip = false;
10565 relocate = false;
f21f3fe0 10566
00a97672 10567 outrel.r_addend = addend;
c629eae0
JJ
10568 outrel.r_offset =
10569 _bfd_elf_section_offset (output_bfd, info, input_section,
10570 rel->r_offset);
10571 if (outrel.r_offset == (bfd_vma) -1)
0a1b45a2 10572 skip = true;
0bb2d96a 10573 else if (outrel.r_offset == (bfd_vma) -2)
0a1b45a2 10574 skip = true, relocate = true;
252b5132
RH
10575 outrel.r_offset += (input_section->output_section->vma
10576 + input_section->output_offset);
f21f3fe0 10577
252b5132 10578 if (skip)
0bb2d96a 10579 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
10580 else if (h != NULL
10581 && h->dynindx != -1
0e1862bb 10582 && (!bfd_link_pic (info)
1dcb9720
JW
10583 || !(bfd_link_pie (info)
10584 || SYMBOLIC_BIND (info, h))
f5385ebf 10585 || !h->def_regular))
5e681ec4 10586 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
10587 else
10588 {
a16385dc
MM
10589 int symbol;
10590
5e681ec4 10591 /* This symbol is local, or marked to become local. */
e8b09b87 10592 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
cc850f74 10593 || (globals->fdpic_p && !bfd_link_pic (info)));
a57d1773
AM
10594 /* On SVR4-ish systems, the dynamic loader cannot
10595 relocate the text and data segments independently,
10596 so the symbol does not matter. */
10597 symbol = 0;
34e77a92
RS
10598 if (dynreloc_st_type == STT_GNU_IFUNC)
10599 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10600 to the .iplt entry. Instead, every non-call reference
10601 must use an R_ARM_IRELATIVE relocation to obtain the
10602 correct run-time address. */
10603 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
cc850f74 10604 else if (globals->fdpic_p && !bfd_link_pic (info))
e8b09b87 10605 isrofixup = 1;
34e77a92
RS
10606 else
10607 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672 10608 if (globals->use_rel)
0a1b45a2 10609 relocate = true;
00a97672 10610 else
34e77a92 10611 outrel.r_addend += dynreloc_value;
252b5132 10612 }
f21f3fe0 10613
e8b09b87 10614 if (isrofixup)
cc850f74 10615 arm_elf_add_rofixup (output_bfd, globals->srofixup, outrel.r_offset);
e8b09b87
CL
10616 else
10617 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 10618
f21f3fe0 10619 /* If this reloc is against an external symbol, we do not want to
252b5132 10620 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 10621 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
10622 if (! relocate)
10623 return bfd_reloc_ok;
9a5aca8c 10624
f21f3fe0 10625 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
10626 contents, rel->r_offset,
10627 dynreloc_value, (bfd_vma) 0);
252b5132
RH
10628 }
10629 else switch (r_type)
10630 {
00a97672
RS
10631 case R_ARM_ABS12:
10632 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10633
dfc5f959 10634 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
10635 case R_ARM_CALL:
10636 case R_ARM_JUMP24:
8029a119 10637 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 10638 case R_ARM_PLT32:
906e58ca 10639 {
906e58ca
NC
10640 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10641
dfc5f959 10642 if (r_type == R_ARM_XPC25)
252b5132 10643 {
dfc5f959
NC
10644 /* Check for Arm calling Arm function. */
10645 /* FIXME: Should we translate the instruction into a BL
10646 instruction instead ? */
35fc36a8 10647 if (branch_type != ST_BRANCH_TO_THUMB)
4eca0228 10648 _bfd_error_handler
90b6238f
AM
10649 (_("\%pB: warning: %s BLX instruction targets"
10650 " %s function '%s'"),
10651 input_bfd, "ARM",
10652 "ARM", h ? h->root.root.string : "(local)");
dfc5f959 10653 }
155d87d7 10654 else if (r_type == R_ARM_PC24)
dfc5f959
NC
10655 {
10656 /* Check for Arm calling Thumb function. */
35fc36a8 10657 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 10658 {
f2a9dd69
DJ
10659 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10660 output_bfd, input_section,
10661 hit_data, sym_sec, rel->r_offset,
10662 signed_addend, value,
10663 error_message))
10664 return bfd_reloc_ok;
10665 else
10666 return bfd_reloc_dangerous;
dfc5f959 10667 }
252b5132 10668 }
ba96a88f 10669
906e58ca 10670 /* Check if a stub has to be inserted because the
8029a119 10671 destination is too far or we are changing mode. */
155d87d7
CL
10672 if ( r_type == R_ARM_CALL
10673 || r_type == R_ARM_JUMP24
10674 || r_type == R_ARM_PLT32)
906e58ca 10675 {
fe33d2fa
CL
10676 enum elf32_arm_stub_type stub_type = arm_stub_none;
10677 struct elf32_arm_link_hash_entry *hash;
10678
10679 hash = (struct elf32_arm_link_hash_entry *) h;
10680 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
10681 st_type, &branch_type,
10682 hash, value, sym_sec,
fe33d2fa 10683 input_bfd, sym_name);
5fa9e92f 10684
fe33d2fa 10685 if (stub_type != arm_stub_none)
906e58ca
NC
10686 {
10687 /* The target is out of reach, so redirect the
10688 branch to the local stub for this function. */
906e58ca
NC
10689 stub_entry = elf32_arm_get_stub_entry (input_section,
10690 sym_sec, h,
fe33d2fa
CL
10691 rel, globals,
10692 stub_type);
9cd3e4e5
NC
10693 {
10694 if (stub_entry != NULL)
10695 value = (stub_entry->stub_offset
10696 + stub_entry->stub_sec->output_offset
10697 + stub_entry->stub_sec->output_section->vma);
10698
10699 if (plt_offset != (bfd_vma) -1)
0a1b45a2 10700 *unresolved_reloc_p = false;
9cd3e4e5 10701 }
906e58ca 10702 }
fe33d2fa
CL
10703 else
10704 {
10705 /* If the call goes through a PLT entry, make sure to
10706 check distance to the right destination address. */
34e77a92 10707 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
10708 {
10709 value = (splt->output_section->vma
10710 + splt->output_offset
34e77a92 10711 + plt_offset);
0a1b45a2 10712 *unresolved_reloc_p = false;
fe33d2fa
CL
10713 /* The PLT entry is in ARM mode, regardless of the
10714 target function. */
35fc36a8 10715 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
10716 }
10717 }
906e58ca
NC
10718 }
10719
dea514f5
PB
10720 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10721 where:
10722 S is the address of the symbol in the relocation.
10723 P is address of the instruction being relocated.
10724 A is the addend (extracted from the instruction) in bytes.
10725
10726 S is held in 'value'.
10727 P is the base address of the section containing the
10728 instruction plus the offset of the reloc into that
10729 section, ie:
10730 (input_section->output_section->vma +
10731 input_section->output_offset +
10732 rel->r_offset).
10733 A is the addend, converted into bytes, ie:
10734 (signed_addend * 4)
10735
10736 Note: None of these operations have knowledge of the pipeline
10737 size of the processor, thus it is up to the assembler to
10738 encode this information into the addend. */
10739 value -= (input_section->output_section->vma
10740 + input_section->output_offset);
10741 value -= rel->r_offset;
d2327e47 10742 value += signed_addend;
23080146 10743
dcb5e6e6
NC
10744 signed_addend = value;
10745 signed_addend >>= howto->rightshift;
9a5aca8c 10746
5ab79981 10747 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 10748 the next instruction unless a PLT entry will be created.
77b4f08f 10749 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
10750 The jump to the next instruction is optimized as a NOP depending
10751 on the architecture. */
ffcb4889 10752 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 10753 && plt_offset == (bfd_vma) -1)
77b4f08f 10754 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 10755 {
cd1dac3d
DG
10756 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10757
10758 if (arch_has_arm_nop (globals))
10759 value |= 0x0320f000;
10760 else
10761 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
10762 }
10763 else
59f2c4e7 10764 {
9b485d32 10765 /* Perform a signed range check. */
dcb5e6e6 10766 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
10767 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10768 return bfd_reloc_overflow;
9a5aca8c 10769
5ab79981 10770 addend = (value & 2);
39b41c9c 10771
5ab79981
PB
10772 value = (signed_addend & howto->dst_mask)
10773 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 10774
5ab79981
PB
10775 if (r_type == R_ARM_CALL)
10776 {
155d87d7 10777 /* Set the H bit in the BLX instruction. */
35fc36a8 10778 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
10779 {
10780 if (addend)
10781 value |= (1 << 24);
10782 else
10783 value &= ~(bfd_vma)(1 << 24);
10784 }
10785
5ab79981 10786 /* Select the correct instruction (BL or BLX). */
906e58ca 10787 /* Only if we are not handling a BL to a stub. In this
8029a119 10788 case, mode switching is performed by the stub. */
35fc36a8 10789 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 10790 value |= (1 << 28);
63e1a0fc 10791 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
10792 {
10793 value &= ~(bfd_vma)(1 << 28);
10794 value |= (1 << 24);
10795 }
39b41c9c
PB
10796 }
10797 }
906e58ca 10798 }
252b5132 10799 break;
f21f3fe0 10800
252b5132
RH
10801 case R_ARM_ABS32:
10802 value += addend;
35fc36a8 10803 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
10804 value |= 1;
10805 break;
f21f3fe0 10806
bb224fc3
MS
10807 case R_ARM_ABS32_NOI:
10808 value += addend;
10809 break;
10810
252b5132 10811 case R_ARM_REL32:
a8bc6c78 10812 value += addend;
35fc36a8 10813 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 10814 value |= 1;
252b5132 10815 value -= (input_section->output_section->vma
62efb346 10816 + input_section->output_offset + rel->r_offset);
252b5132 10817 break;
eb043451 10818
bb224fc3
MS
10819 case R_ARM_REL32_NOI:
10820 value += addend;
10821 value -= (input_section->output_section->vma
10822 + input_section->output_offset + rel->r_offset);
10823 break;
10824
eb043451
PB
10825 case R_ARM_PREL31:
10826 value -= (input_section->output_section->vma
10827 + input_section->output_offset + rel->r_offset);
10828 value += signed_addend;
10829 if (! h || h->root.type != bfd_link_hash_undefweak)
10830 {
8029a119 10831 /* Check for overflow. */
eb043451
PB
10832 if ((value ^ (value >> 1)) & (1 << 30))
10833 return bfd_reloc_overflow;
10834 }
10835 value &= 0x7fffffff;
10836 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 10837 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
10838 value |= 1;
10839 break;
252b5132 10840 }
f21f3fe0 10841
252b5132
RH
10842 bfd_put_32 (input_bfd, value, hit_data);
10843 return bfd_reloc_ok;
10844
10845 case R_ARM_ABS8:
10846 value += addend;
4e67d4ca
DG
10847
10848 /* There is no way to tell whether the user intended to use a signed or
10849 unsigned addend. When checking for overflow we accept either,
10850 as specified by the AAELF. */
10851 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
10852 return bfd_reloc_overflow;
10853
10854 bfd_put_8 (input_bfd, value, hit_data);
10855 return bfd_reloc_ok;
10856
10857 case R_ARM_ABS16:
10858 value += addend;
10859
4e67d4ca
DG
10860 /* See comment for R_ARM_ABS8. */
10861 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
10862 return bfd_reloc_overflow;
10863
10864 bfd_put_16 (input_bfd, value, hit_data);
10865 return bfd_reloc_ok;
10866
252b5132 10867 case R_ARM_THM_ABS5:
9b485d32 10868 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
10869 if (globals->use_rel)
10870 {
10871 /* Need to refetch addend. */
10872 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10873 /* ??? Need to determine shift amount from operand size. */
10874 addend >>= howto->rightshift;
10875 }
252b5132
RH
10876 value += addend;
10877
10878 /* ??? Isn't value unsigned? */
10879 if ((long) value > 0x1f || (long) value < -0x10)
10880 return bfd_reloc_overflow;
10881
10882 /* ??? Value needs to be properly shifted into place first. */
10883 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10884 bfd_put_16 (input_bfd, value, hit_data);
10885 return bfd_reloc_ok;
10886
2cab6cc3
MS
10887 case R_ARM_THM_ALU_PREL_11_0:
10888 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10889 {
10890 bfd_vma insn;
10891 bfd_signed_vma relocation;
10892
10893 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10894 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10895
99059e56
RM
10896 if (globals->use_rel)
10897 {
10898 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10899 | ((insn & (1 << 26)) >> 15);
10900 if (insn & 0xf00000)
10901 signed_addend = -signed_addend;
10902 }
2cab6cc3
MS
10903
10904 relocation = value + signed_addend;
79f08007 10905 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10906 + input_section->output_offset
10907 + rel->r_offset);
2cab6cc3 10908
8c65b54f
CS
10909 /* PR 21523: Use an absolute value. The user of this reloc will
10910 have already selected an ADD or SUB insn appropriately. */
453f8e1e 10911 value = llabs (relocation);
2cab6cc3 10912
99059e56
RM
10913 if (value >= 0x1000)
10914 return bfd_reloc_overflow;
2cab6cc3 10915
e645cf40
AG
10916 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10917 if (branch_type == ST_BRANCH_TO_THUMB)
10918 value |= 1;
10919
2cab6cc3 10920 insn = (insn & 0xfb0f8f00) | (value & 0xff)
99059e56
RM
10921 | ((value & 0x700) << 4)
10922 | ((value & 0x800) << 15);
10923 if (relocation < 0)
10924 insn |= 0xa00000;
2cab6cc3
MS
10925
10926 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10927 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10928
99059e56 10929 return bfd_reloc_ok;
2cab6cc3
MS
10930 }
10931
e1ec24c6
NC
10932 case R_ARM_THM_PC8:
10933 /* PR 10073: This reloc is not generated by the GNU toolchain,
10934 but it is supported for compatibility with third party libraries
10935 generated by other compilers, specifically the ARM/IAR. */
10936 {
10937 bfd_vma insn;
10938 bfd_signed_vma relocation;
10939
10940 insn = bfd_get_16 (input_bfd, hit_data);
10941
99059e56 10942 if (globals->use_rel)
79f08007 10943 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
10944
10945 relocation = value + addend;
79f08007 10946 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10947 + input_section->output_offset
10948 + rel->r_offset);
e1ec24c6 10949
b6518b38 10950 value = relocation;
e1ec24c6
NC
10951
10952 /* We do not check for overflow of this reloc. Although strictly
10953 speaking this is incorrect, it appears to be necessary in order
10954 to work with IAR generated relocs. Since GCC and GAS do not
10955 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10956 a problem for them. */
10957 value &= 0x3fc;
10958
10959 insn = (insn & 0xff00) | (value >> 2);
10960
10961 bfd_put_16 (input_bfd, insn, hit_data);
10962
99059e56 10963 return bfd_reloc_ok;
e1ec24c6
NC
10964 }
10965
2cab6cc3
MS
10966 case R_ARM_THM_PC12:
10967 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10968 {
10969 bfd_vma insn;
10970 bfd_signed_vma relocation;
10971
10972 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10973 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10974
99059e56
RM
10975 if (globals->use_rel)
10976 {
10977 signed_addend = insn & 0xfff;
10978 if (!(insn & (1 << 23)))
10979 signed_addend = -signed_addend;
10980 }
2cab6cc3
MS
10981
10982 relocation = value + signed_addend;
79f08007 10983 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10984 + input_section->output_offset
10985 + rel->r_offset);
2cab6cc3 10986
b6518b38 10987 value = relocation;
2cab6cc3 10988
99059e56
RM
10989 if (value >= 0x1000)
10990 return bfd_reloc_overflow;
2cab6cc3
MS
10991
10992 insn = (insn & 0xff7ff000) | value;
99059e56
RM
10993 if (relocation >= 0)
10994 insn |= (1 << 23);
2cab6cc3
MS
10995
10996 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10997 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10998
99059e56 10999 return bfd_reloc_ok;
2cab6cc3
MS
11000 }
11001
dfc5f959 11002 case R_ARM_THM_XPC22:
c19d1205 11003 case R_ARM_THM_CALL:
bd97cb95 11004 case R_ARM_THM_JUMP24:
dfc5f959 11005 /* Thumb BL (branch long instruction). */
252b5132 11006 {
b34976b6 11007 bfd_vma relocation;
99059e56 11008 bfd_vma reloc_sign;
0a1b45a2 11009 bool overflow = false;
b34976b6
AM
11010 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11011 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
11012 bfd_signed_vma reloc_signed_max;
11013 bfd_signed_vma reloc_signed_min;
b34976b6 11014 bfd_vma check;
252b5132 11015 bfd_signed_vma signed_check;
e95de063 11016 int bitsize;
cd1dac3d 11017 const int thumb2 = using_thumb2 (globals);
5e866f5a 11018 const int thumb2_bl = using_thumb2_bl (globals);
252b5132 11019
5ab79981 11020 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
11021 the next instruction unless a PLT entry will be created.
11022 The jump to the next instruction is optimized as a NOP.W for
11023 Thumb-2 enabled architectures. */
19540007 11024 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 11025 && plt_offset == (bfd_vma) -1)
5ab79981 11026 {
60a019a0 11027 if (thumb2)
cd1dac3d
DG
11028 {
11029 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11030 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11031 }
11032 else
11033 {
11034 bfd_put_16 (input_bfd, 0xe000, hit_data);
11035 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11036 }
5ab79981
PB
11037 return bfd_reloc_ok;
11038 }
11039
e95de063 11040 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
99059e56 11041 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
11042 if (globals->use_rel)
11043 {
99059e56
RM
11044 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11045 bfd_vma upper = upper_insn & 0x3ff;
11046 bfd_vma lower = lower_insn & 0x7ff;
e95de063
MS
11047 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11048 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
99059e56
RM
11049 bfd_vma i1 = j1 ^ s ? 0 : 1;
11050 bfd_vma i2 = j2 ^ s ? 0 : 1;
e95de063 11051
99059e56
RM
11052 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11053 /* Sign extend. */
11054 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
e95de063 11055
4e7fd91e
PB
11056 signed_addend = addend;
11057 }
cb1afa5c 11058
dfc5f959
NC
11059 if (r_type == R_ARM_THM_XPC22)
11060 {
11061 /* Check for Thumb to Thumb call. */
11062 /* FIXME: Should we translate the instruction into a BL
11063 instruction instead ? */
35fc36a8 11064 if (branch_type == ST_BRANCH_TO_THUMB)
4eca0228 11065 _bfd_error_handler
90b6238f
AM
11066 (_("%pB: warning: %s BLX instruction targets"
11067 " %s function '%s'"),
11068 input_bfd, "Thumb",
11069 "Thumb", h ? h->root.root.string : "(local)");
dfc5f959
NC
11070 }
11071 else
252b5132 11072 {
dfc5f959
NC
11073 /* If it is not a call to Thumb, assume call to Arm.
11074 If it is a call relative to a section name, then it is not a
b7693d02
DJ
11075 function call at all, but rather a long jump. Calls through
11076 the PLT do not require stubs. */
34e77a92 11077 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 11078 {
bd97cb95 11079 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11080 {
11081 /* Convert BL to BLX. */
11082 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11083 }
155d87d7
CL
11084 else if (( r_type != R_ARM_THM_CALL)
11085 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
11086 {
11087 if (elf32_thumb_to_arm_stub
11088 (info, sym_name, input_bfd, output_bfd, input_section,
11089 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11090 error_message))
11091 return bfd_reloc_ok;
11092 else
11093 return bfd_reloc_dangerous;
11094 }
da5938a2 11095 }
35fc36a8
RS
11096 else if (branch_type == ST_BRANCH_TO_THUMB
11097 && globals->use_blx
bd97cb95 11098 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11099 {
11100 /* Make sure this is a BL. */
11101 lower_insn |= 0x1800;
11102 }
252b5132 11103 }
f21f3fe0 11104
fe33d2fa 11105 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 11106 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
11107 {
11108 /* Check if a stub has to be inserted because the destination
8029a119 11109 is too far. */
fe33d2fa
CL
11110 struct elf32_arm_stub_hash_entry *stub_entry;
11111 struct elf32_arm_link_hash_entry *hash;
11112
11113 hash = (struct elf32_arm_link_hash_entry *) h;
11114
11115 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
11116 st_type, &branch_type,
11117 hash, value, sym_sec,
fe33d2fa
CL
11118 input_bfd, sym_name);
11119
11120 if (stub_type != arm_stub_none)
906e58ca
NC
11121 {
11122 /* The target is out of reach or we are changing modes, so
11123 redirect the branch to the local stub for this
11124 function. */
11125 stub_entry = elf32_arm_get_stub_entry (input_section,
11126 sym_sec, h,
fe33d2fa
CL
11127 rel, globals,
11128 stub_type);
906e58ca 11129 if (stub_entry != NULL)
9cd3e4e5
NC
11130 {
11131 value = (stub_entry->stub_offset
11132 + stub_entry->stub_sec->output_offset
11133 + stub_entry->stub_sec->output_section->vma);
11134
11135 if (plt_offset != (bfd_vma) -1)
0a1b45a2 11136 *unresolved_reloc_p = false;
9cd3e4e5 11137 }
906e58ca 11138
f4ac8484 11139 /* If this call becomes a call to Arm, force BLX. */
155d87d7 11140 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
11141 {
11142 if ((stub_entry
11143 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 11144 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
11145 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11146 }
906e58ca
NC
11147 }
11148 }
11149
fe33d2fa 11150 /* Handle calls via the PLT. */
34e77a92 11151 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
11152 {
11153 value = (splt->output_section->vma
11154 + splt->output_offset
34e77a92 11155 + plt_offset);
fe33d2fa 11156
eed94f8f
NC
11157 if (globals->use_blx
11158 && r_type == R_ARM_THM_CALL
11159 && ! using_thumb_only (globals))
fe33d2fa
CL
11160 {
11161 /* If the Thumb BLX instruction is available, convert
11162 the BL to a BLX instruction to call the ARM-mode
11163 PLT entry. */
11164 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 11165 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
11166 }
11167 else
11168 {
eed94f8f
NC
11169 if (! using_thumb_only (globals))
11170 /* Target the Thumb stub before the ARM PLT entry. */
11171 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 11172 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa 11173 }
0a1b45a2 11174 *unresolved_reloc_p = false;
fe33d2fa
CL
11175 }
11176
ba96a88f 11177 relocation = value + signed_addend;
f21f3fe0 11178
252b5132 11179 relocation -= (input_section->output_section->vma
ba96a88f
NC
11180 + input_section->output_offset
11181 + rel->r_offset);
9a5aca8c 11182
252b5132
RH
11183 check = relocation >> howto->rightshift;
11184
11185 /* If this is a signed value, the rightshift just dropped
11186 leading 1 bits (assuming twos complement). */
11187 if ((bfd_signed_vma) relocation >= 0)
11188 signed_check = check;
11189 else
11190 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11191
e95de063
MS
11192 /* Calculate the permissable maximum and minimum values for
11193 this relocation according to whether we're relocating for
11194 Thumb-2 or not. */
11195 bitsize = howto->bitsize;
5e866f5a 11196 if (!thumb2_bl)
e95de063 11197 bitsize -= 2;
f6ebfac0 11198 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
11199 reloc_signed_min = ~reloc_signed_max;
11200
252b5132 11201 /* Assumes two's complement. */
ba96a88f 11202 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
0a1b45a2 11203 overflow = true;
252b5132 11204
bd97cb95 11205 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
11206 /* For a BLX instruction, make sure that the relocation is rounded up
11207 to a word boundary. This follows the semantics of the instruction
11208 which specifies that bit 1 of the target address will come from bit
11209 1 of the base address. */
11210 relocation = (relocation + 2) & ~ 3;
cb1afa5c 11211
e95de063
MS
11212 /* Put RELOCATION back into the insn. Assumes two's complement.
11213 We use the Thumb-2 encoding, which is safe even if dealing with
11214 a Thumb-1 instruction by virtue of our overflow check above. */
99059e56 11215 reloc_sign = (signed_check < 0) ? 1 : 0;
e95de063 11216 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
99059e56
RM
11217 | ((relocation >> 12) & 0x3ff)
11218 | (reloc_sign << 10);
906e58ca 11219 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
99059e56
RM
11220 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11221 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11222 | ((relocation >> 1) & 0x7ff);
c62e1cc3 11223
252b5132
RH
11224 /* Put the relocated value back in the object file: */
11225 bfd_put_16 (input_bfd, upper_insn, hit_data);
11226 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11227
11228 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11229 }
11230 break;
11231
c19d1205
ZW
11232 case R_ARM_THM_JUMP19:
11233 /* Thumb32 conditional branch instruction. */
11234 {
11235 bfd_vma relocation;
0a1b45a2 11236 bool overflow = false;
c19d1205
ZW
11237 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11238 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
11239 bfd_signed_vma reloc_signed_max = 0xffffe;
11240 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205 11241 bfd_signed_vma signed_check;
07d6d2b8 11242 enum elf32_arm_stub_type stub_type = arm_stub_none;
c5423981
TG
11243 struct elf32_arm_stub_hash_entry *stub_entry;
11244 struct elf32_arm_link_hash_entry *hash;
c19d1205
ZW
11245
11246 /* Need to refetch the addend, reconstruct the top three bits,
11247 and squish the two 11 bit pieces together. */
11248 if (globals->use_rel)
11249 {
11250 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 11251 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
11252 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11253 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11254 bfd_vma lower = (lower_insn & 0x07ff);
11255
a00a1f35
MS
11256 upper |= J1 << 6;
11257 upper |= J2 << 7;
11258 upper |= (!S) << 8;
c19d1205
ZW
11259 upper -= 0x0100; /* Sign extend. */
11260
11261 addend = (upper << 12) | (lower << 1);
11262 signed_addend = addend;
11263 }
11264
bd97cb95 11265 /* Handle calls via the PLT. */
34e77a92 11266 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
11267 {
11268 value = (splt->output_section->vma
11269 + splt->output_offset
34e77a92 11270 + plt_offset);
bd97cb95
DJ
11271 /* Target the Thumb stub before the ARM PLT entry. */
11272 value -= PLT_THUMB_STUB_SIZE;
0a1b45a2 11273 *unresolved_reloc_p = false;
bd97cb95
DJ
11274 }
11275
c5423981
TG
11276 hash = (struct elf32_arm_link_hash_entry *)h;
11277
11278 stub_type = arm_type_of_stub (info, input_section, rel,
07d6d2b8
AM
11279 st_type, &branch_type,
11280 hash, value, sym_sec,
11281 input_bfd, sym_name);
c5423981
TG
11282 if (stub_type != arm_stub_none)
11283 {
11284 stub_entry = elf32_arm_get_stub_entry (input_section,
07d6d2b8
AM
11285 sym_sec, h,
11286 rel, globals,
11287 stub_type);
c5423981
TG
11288 if (stub_entry != NULL)
11289 {
07d6d2b8
AM
11290 value = (stub_entry->stub_offset
11291 + stub_entry->stub_sec->output_offset
11292 + stub_entry->stub_sec->output_section->vma);
c5423981
TG
11293 }
11294 }
c19d1205 11295
99059e56 11296 relocation = value + signed_addend;
c19d1205
ZW
11297 relocation -= (input_section->output_section->vma
11298 + input_section->output_offset
11299 + rel->r_offset);
a00a1f35 11300 signed_check = (bfd_signed_vma) relocation;
c19d1205 11301
c19d1205 11302 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
0a1b45a2 11303 overflow = true;
c19d1205
ZW
11304
11305 /* Put RELOCATION back into the insn. */
11306 {
11307 bfd_vma S = (relocation & 0x00100000) >> 20;
11308 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11309 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11310 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11311 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11312
a00a1f35 11313 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
11314 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11315 }
11316
11317 /* Put the relocated value back in the object file: */
11318 bfd_put_16 (input_bfd, upper_insn, hit_data);
11319 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11320
11321 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11322 }
11323
11324 case R_ARM_THM_JUMP11:
11325 case R_ARM_THM_JUMP8:
11326 case R_ARM_THM_JUMP6:
51c5503b
NC
11327 /* Thumb B (branch) instruction). */
11328 {
6cf9e9fe 11329 bfd_signed_vma relocation;
51c5503b
NC
11330 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11331 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
11332 bfd_signed_vma signed_check;
11333
c19d1205
ZW
11334 /* CZB cannot jump backward. */
11335 if (r_type == R_ARM_THM_JUMP6)
6cf9e9fe 11336 {
d2327e47
AM
11337 reloc_signed_min = 0;
11338 if (globals->use_rel)
11339 signed_addend = ((addend & 0x200) >> 3) | ((addend & 0xf8) >> 2);
6cf9e9fe 11340 }
d2327e47 11341
6cf9e9fe 11342 relocation = value + signed_addend;
51c5503b
NC
11343
11344 relocation -= (input_section->output_section->vma
11345 + input_section->output_offset
11346 + rel->r_offset);
11347
6cf9e9fe
NC
11348 relocation >>= howto->rightshift;
11349 signed_check = relocation;
c19d1205
ZW
11350
11351 if (r_type == R_ARM_THM_JUMP6)
11352 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11353 else
11354 relocation &= howto->dst_mask;
51c5503b 11355 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 11356
51c5503b
NC
11357 bfd_put_16 (input_bfd, relocation, hit_data);
11358
11359 /* Assumes two's complement. */
11360 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11361 return bfd_reloc_overflow;
11362
11363 return bfd_reloc_ok;
11364 }
cedb70c5 11365
8375c36b
PB
11366 case R_ARM_ALU_PCREL7_0:
11367 case R_ARM_ALU_PCREL15_8:
11368 case R_ARM_ALU_PCREL23_15:
11369 {
11370 bfd_vma insn;
11371 bfd_vma relocation;
11372
11373 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
11374 if (globals->use_rel)
11375 {
11376 /* Extract the addend. */
11377 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11378 signed_addend = addend;
11379 }
8375c36b
PB
11380 relocation = value + signed_addend;
11381
11382 relocation -= (input_section->output_section->vma
11383 + input_section->output_offset
11384 + rel->r_offset);
11385 insn = (insn & ~0xfff)
11386 | ((howto->bitpos << 7) & 0xf00)
11387 | ((relocation >> howto->bitpos) & 0xff);
11388 bfd_put_32 (input_bfd, value, hit_data);
11389 }
11390 return bfd_reloc_ok;
11391
252b5132
RH
11392 case R_ARM_GNU_VTINHERIT:
11393 case R_ARM_GNU_VTENTRY:
11394 return bfd_reloc_ok;
11395
c19d1205 11396 case R_ARM_GOTOFF32:
252b5132 11397 /* Relocation is relative to the start of the
99059e56 11398 global offset table. */
252b5132
RH
11399
11400 BFD_ASSERT (sgot != NULL);
11401 if (sgot == NULL)
99059e56 11402 return bfd_reloc_notsupported;
9a5aca8c 11403
cedb70c5 11404 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
11405 address by one, so that attempts to call the function pointer will
11406 correctly interpret it as Thumb code. */
35fc36a8 11407 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
11408 value += 1;
11409
252b5132 11410 /* Note that sgot->output_offset is not involved in this
99059e56
RM
11411 calculation. We always want the start of .got. If we
11412 define _GLOBAL_OFFSET_TABLE in a different way, as is
11413 permitted by the ABI, we might have to change this
11414 calculation. */
252b5132 11415 value -= sgot->output_section->vma;
f21f3fe0 11416 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11417 contents, rel->r_offset, value,
00a97672 11418 rel->r_addend);
252b5132
RH
11419
11420 case R_ARM_GOTPC:
a7c10850 11421 /* Use global offset table as symbol value. */
252b5132 11422 BFD_ASSERT (sgot != NULL);
f21f3fe0 11423
252b5132 11424 if (sgot == NULL)
99059e56 11425 return bfd_reloc_notsupported;
252b5132 11426
0a1b45a2 11427 *unresolved_reloc_p = false;
252b5132 11428 value = sgot->output_section->vma;
f21f3fe0 11429 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11430 contents, rel->r_offset, value,
00a97672 11431 rel->r_addend);
f21f3fe0 11432
252b5132 11433 case R_ARM_GOT32:
eb043451 11434 case R_ARM_GOT_PREL:
252b5132 11435 /* Relocation is to the entry for this symbol in the
99059e56 11436 global offset table. */
252b5132
RH
11437 if (sgot == NULL)
11438 return bfd_reloc_notsupported;
f21f3fe0 11439
34e77a92
RS
11440 if (dynreloc_st_type == STT_GNU_IFUNC
11441 && plt_offset != (bfd_vma) -1
11442 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11443 {
11444 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11445 symbol, and the relocation resolves directly to the runtime
11446 target rather than to the .iplt entry. This means that any
11447 .got entry would be the same value as the .igot.plt entry,
11448 so there's no point creating both. */
11449 sgot = globals->root.igotplt;
11450 value = sgot->output_offset + gotplt_offset;
11451 }
11452 else if (h != NULL)
252b5132
RH
11453 {
11454 bfd_vma off;
f21f3fe0 11455
252b5132
RH
11456 off = h->got.offset;
11457 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 11458 if ((off & 1) != 0)
252b5132 11459 {
b436d854
RS
11460 /* We have already processsed one GOT relocation against
11461 this symbol. */
11462 off &= ~1;
11463 if (globals->root.dynamic_sections_created
11464 && !SYMBOL_REFERENCES_LOCAL (info, h))
0a1b45a2 11465 *unresolved_reloc_p = false;
b436d854
RS
11466 }
11467 else
11468 {
11469 Elf_Internal_Rela outrel;
e8b09b87 11470 int isrofixup = 0;
b436d854 11471
e8b09b87
CL
11472 if (((h->dynindx != -1) || globals->fdpic_p)
11473 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
11474 {
11475 /* If the symbol doesn't resolve locally in a static
11476 object, we have an undefined reference. If the
11477 symbol doesn't resolve locally in a dynamic object,
11478 it should be resolved by the dynamic linker. */
11479 if (globals->root.dynamic_sections_created)
11480 {
11481 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
0a1b45a2 11482 *unresolved_reloc_p = false;
b436d854
RS
11483 }
11484 else
11485 outrel.r_info = 0;
11486 outrel.r_addend = 0;
11487 }
252b5132
RH
11488 else
11489 {
34e77a92 11490 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 11491 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
5025eb7c 11492 else if (bfd_link_pic (info)
7f026732 11493 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
99059e56
RM
11494 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11495 else
2376f038
EB
11496 {
11497 outrel.r_info = 0;
11498 if (globals->fdpic_p)
11499 isrofixup = 1;
11500 }
34e77a92 11501 outrel.r_addend = dynreloc_value;
b436d854 11502 }
ee29b9fb 11503
b436d854
RS
11504 /* The GOT entry is initialized to zero by default.
11505 See if we should install a different value. */
11506 if (outrel.r_addend != 0
2376f038 11507 && (globals->use_rel || outrel.r_info == 0))
b436d854
RS
11508 {
11509 bfd_put_32 (output_bfd, outrel.r_addend,
11510 sgot->contents + off);
11511 outrel.r_addend = 0;
252b5132 11512 }
f21f3fe0 11513
2376f038
EB
11514 if (isrofixup)
11515 arm_elf_add_rofixup (output_bfd,
cc850f74 11516 elf32_arm_hash_table (info)->srofixup,
2376f038
EB
11517 sgot->output_section->vma
11518 + sgot->output_offset + off);
11519
11520 else if (outrel.r_info != 0)
b436d854
RS
11521 {
11522 outrel.r_offset = (sgot->output_section->vma
11523 + sgot->output_offset
11524 + off);
11525 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11526 }
2376f038 11527
b436d854
RS
11528 h->got.offset |= 1;
11529 }
252b5132
RH
11530 value = sgot->output_offset + off;
11531 }
11532 else
11533 {
11534 bfd_vma off;
f21f3fe0 11535
5025eb7c
AO
11536 BFD_ASSERT (local_got_offsets != NULL
11537 && local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 11538
252b5132 11539 off = local_got_offsets[r_symndx];
f21f3fe0 11540
252b5132
RH
11541 /* The offset must always be a multiple of 4. We use the
11542 least significant bit to record whether we have already
9b485d32 11543 generated the necessary reloc. */
252b5132
RH
11544 if ((off & 1) != 0)
11545 off &= ~1;
11546 else
11547 {
2376f038
EB
11548 Elf_Internal_Rela outrel;
11549 int isrofixup = 0;
f21f3fe0 11550
2376f038
EB
11551 if (dynreloc_st_type == STT_GNU_IFUNC)
11552 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11553 else if (bfd_link_pic (info))
11554 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11555 else
252b5132 11556 {
2376f038
EB
11557 outrel.r_info = 0;
11558 if (globals->fdpic_p)
11559 isrofixup = 1;
11560 }
11561
11562 /* The GOT entry is initialized to zero by default.
11563 See if we should install a different value. */
11564 if (globals->use_rel || outrel.r_info == 0)
11565 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11566
11567 if (isrofixup)
11568 arm_elf_add_rofixup (output_bfd,
11569 globals->srofixup,
11570 sgot->output_section->vma
11571 + sgot->output_offset + off);
f21f3fe0 11572
2376f038
EB
11573 else if (outrel.r_info != 0)
11574 {
34e77a92 11575 outrel.r_addend = addend + dynreloc_value;
252b5132 11576 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 11577 + sgot->output_offset
252b5132 11578 + off);
47beaa6a 11579 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 11580 }
f21f3fe0 11581
252b5132
RH
11582 local_got_offsets[r_symndx] |= 1;
11583 }
f21f3fe0 11584
252b5132
RH
11585 value = sgot->output_offset + off;
11586 }
eb043451
PB
11587 if (r_type != R_ARM_GOT32)
11588 value += sgot->output_section->vma;
9a5aca8c 11589
f21f3fe0 11590 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11591 contents, rel->r_offset, value,
00a97672 11592 rel->r_addend);
f21f3fe0 11593
ba93b8ac
DJ
11594 case R_ARM_TLS_LDO32:
11595 value = value - dtpoff_base (info);
11596
11597 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
11598 contents, rel->r_offset, value,
11599 rel->r_addend);
ba93b8ac
DJ
11600
11601 case R_ARM_TLS_LDM32:
5c5a4843 11602 case R_ARM_TLS_LDM32_FDPIC:
ba93b8ac
DJ
11603 {
11604 bfd_vma off;
11605
362d30a1 11606 if (sgot == NULL)
ba93b8ac
DJ
11607 abort ();
11608
11609 off = globals->tls_ldm_got.offset;
11610
11611 if ((off & 1) != 0)
11612 off &= ~1;
11613 else
11614 {
11615 /* If we don't know the module number, create a relocation
11616 for it. */
9cb09e33 11617 if (bfd_link_dll (info))
ba93b8ac
DJ
11618 {
11619 Elf_Internal_Rela outrel;
ba93b8ac 11620
362d30a1 11621 if (srelgot == NULL)
ba93b8ac
DJ
11622 abort ();
11623
00a97672 11624 outrel.r_addend = 0;
362d30a1
RS
11625 outrel.r_offset = (sgot->output_section->vma
11626 + sgot->output_offset + off);
ba93b8ac
DJ
11627 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11628
00a97672
RS
11629 if (globals->use_rel)
11630 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11631 sgot->contents + off);
ba93b8ac 11632
47beaa6a 11633 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11634 }
11635 else
362d30a1 11636 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
11637
11638 globals->tls_ldm_got.offset |= 1;
11639 }
11640
5c5a4843 11641 if (r_type == R_ARM_TLS_LDM32_FDPIC)
e8b09b87 11642 {
cc850f74
NC
11643 bfd_put_32 (output_bfd,
11644 globals->root.sgot->output_offset + off,
11645 contents + rel->r_offset);
e8b09b87
CL
11646
11647 return bfd_reloc_ok;
11648 }
11649 else
11650 {
11651 value = sgot->output_section->vma + sgot->output_offset + off
11652 - (input_section->output_section->vma
11653 + input_section->output_offset + rel->r_offset);
ba93b8ac 11654
e8b09b87
CL
11655 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11656 contents, rel->r_offset, value,
11657 rel->r_addend);
11658 }
ba93b8ac
DJ
11659 }
11660
0855e32b
NS
11661 case R_ARM_TLS_CALL:
11662 case R_ARM_THM_TLS_CALL:
ba93b8ac 11663 case R_ARM_TLS_GD32:
5c5a4843 11664 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 11665 case R_ARM_TLS_IE32:
5c5a4843 11666 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
11667 case R_ARM_TLS_GOTDESC:
11668 case R_ARM_TLS_DESCSEQ:
11669 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 11670 {
0855e32b
NS
11671 bfd_vma off, offplt;
11672 int indx = 0;
ba93b8ac
DJ
11673 char tls_type;
11674
0855e32b 11675 BFD_ASSERT (sgot != NULL);
ba93b8ac 11676
ba93b8ac
DJ
11677 if (h != NULL)
11678 {
0a1b45a2 11679 bool dyn;
ba93b8ac 11680 dyn = globals->root.dynamic_sections_created;
0e1862bb
L
11681 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11682 bfd_link_pic (info),
11683 h)
11684 && (!bfd_link_pic (info)
ba93b8ac
DJ
11685 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11686 {
0a1b45a2 11687 *unresolved_reloc_p = false;
ba93b8ac
DJ
11688 indx = h->dynindx;
11689 }
11690 off = h->got.offset;
0855e32b 11691 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
11692 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11693 }
11694 else
11695 {
0855e32b 11696 BFD_ASSERT (local_got_offsets != NULL);
cc850f74 11697
74fd118f
NC
11698 if (r_symndx >= elf32_arm_num_entries (input_bfd))
11699 {
11700 _bfd_error_handler (_("\
11701%pB: expected symbol index in range 0..%lu but found local symbol with index %lu"),
11702 input_bfd,
11703 (unsigned long) elf32_arm_num_entries (input_bfd),
11704 r_symndx);
11705 return false;
11706 }
ba93b8ac 11707 off = local_got_offsets[r_symndx];
0855e32b 11708 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
11709 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11710 }
11711
0855e32b 11712 /* Linker relaxations happens from one of the
b38cadfb 11713 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
cc850f74 11714 if (ELF32_R_TYPE (rel->r_info) != r_type)
b38cadfb 11715 tls_type = GOT_TLS_IE;
0855e32b
NS
11716
11717 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
11718
11719 if ((off & 1) != 0)
11720 off &= ~1;
11721 else
11722 {
0a1b45a2 11723 bool need_relocs = false;
ba93b8ac 11724 Elf_Internal_Rela outrel;
ba93b8ac
DJ
11725 int cur_off = off;
11726
11727 /* The GOT entries have not been initialized yet. Do it
11728 now, and emit any relocations. If both an IE GOT and a
11729 GD GOT are necessary, we emit the GD first. */
11730
9cb09e33 11731 if ((bfd_link_dll (info) || indx != 0)
ba93b8ac 11732 && (h == NULL
95b03e4a
L
11733 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11734 && !resolved_to_zero)
ba93b8ac
DJ
11735 || h->root.type != bfd_link_hash_undefweak))
11736 {
0a1b45a2 11737 need_relocs = true;
0855e32b 11738 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
11739 }
11740
0855e32b
NS
11741 if (tls_type & GOT_TLS_GDESC)
11742 {
47beaa6a
RS
11743 bfd_byte *loc;
11744
0855e32b
NS
11745 /* We should have relaxed, unless this is an undefined
11746 weak symbol. */
11747 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9cb09e33 11748 || bfd_link_dll (info));
0855e32b 11749 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
99059e56 11750 <= globals->root.sgotplt->size);
0855e32b
NS
11751
11752 outrel.r_addend = 0;
11753 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11754 + globals->root.sgotplt->output_offset
11755 + offplt
11756 + globals->sgotplt_jump_table_size);
b38cadfb 11757
0855e32b
NS
11758 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11759 sreloc = globals->root.srelplt;
11760 loc = sreloc->contents;
11761 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11762 BFD_ASSERT (loc + RELOC_SIZE (globals)
99059e56 11763 <= sreloc->contents + sreloc->size);
0855e32b
NS
11764
11765 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11766
11767 /* For globals, the first word in the relocation gets
11768 the relocation index and the top bit set, or zero,
11769 if we're binding now. For locals, it gets the
11770 symbol's offset in the tls section. */
99059e56 11771 bfd_put_32 (output_bfd,
0855e32b
NS
11772 !h ? value - elf_hash_table (info)->tls_sec->vma
11773 : info->flags & DF_BIND_NOW ? 0
11774 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
11775 globals->root.sgotplt->contents + offplt
11776 + globals->sgotplt_jump_table_size);
11777
0855e32b 11778 /* Second word in the relocation is always zero. */
99059e56 11779 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
11780 globals->root.sgotplt->contents + offplt
11781 + globals->sgotplt_jump_table_size + 4);
0855e32b 11782 }
ba93b8ac
DJ
11783 if (tls_type & GOT_TLS_GD)
11784 {
11785 if (need_relocs)
11786 {
00a97672 11787 outrel.r_addend = 0;
362d30a1
RS
11788 outrel.r_offset = (sgot->output_section->vma
11789 + sgot->output_offset
00a97672 11790 + cur_off);
ba93b8ac 11791 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 11792
00a97672
RS
11793 if (globals->use_rel)
11794 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11795 sgot->contents + cur_off);
00a97672 11796
47beaa6a 11797 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11798
11799 if (indx == 0)
11800 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11801 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11802 else
11803 {
00a97672 11804 outrel.r_addend = 0;
ba93b8ac
DJ
11805 outrel.r_info = ELF32_R_INFO (indx,
11806 R_ARM_TLS_DTPOFF32);
11807 outrel.r_offset += 4;
00a97672
RS
11808
11809 if (globals->use_rel)
11810 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11811 sgot->contents + cur_off + 4);
00a97672 11812
47beaa6a
RS
11813 elf32_arm_add_dynreloc (output_bfd, info,
11814 srelgot, &outrel);
ba93b8ac
DJ
11815 }
11816 }
11817 else
11818 {
11819 /* If we are not emitting relocations for a
11820 general dynamic reference, then we must be in a
11821 static link or an executable link with the
11822 symbol binding locally. Mark it as belonging
11823 to module 1, the executable. */
11824 bfd_put_32 (output_bfd, 1,
362d30a1 11825 sgot->contents + cur_off);
ba93b8ac 11826 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11827 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11828 }
11829
11830 cur_off += 8;
11831 }
11832
11833 if (tls_type & GOT_TLS_IE)
11834 {
11835 if (need_relocs)
11836 {
00a97672
RS
11837 if (indx == 0)
11838 outrel.r_addend = value - dtpoff_base (info);
11839 else
11840 outrel.r_addend = 0;
362d30a1
RS
11841 outrel.r_offset = (sgot->output_section->vma
11842 + sgot->output_offset
ba93b8ac
DJ
11843 + cur_off);
11844 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11845
00a97672
RS
11846 if (globals->use_rel)
11847 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11848 sgot->contents + cur_off);
ba93b8ac 11849
47beaa6a 11850 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11851 }
11852 else
11853 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 11854 sgot->contents + cur_off);
ba93b8ac
DJ
11855 cur_off += 4;
11856 }
11857
11858 if (h != NULL)
11859 h->got.offset |= 1;
11860 else
11861 local_got_offsets[r_symndx] |= 1;
11862 }
11863
5c5a4843 11864 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
ba93b8ac 11865 off += 8;
0855e32b
NS
11866 else if (tls_type & GOT_TLS_GDESC)
11867 off = offplt;
11868
cc850f74
NC
11869 if (ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
11870 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL)
0855e32b
NS
11871 {
11872 bfd_signed_vma offset;
12352d3f
PB
11873 /* TLS stubs are arm mode. The original symbol is a
11874 data object, so branch_type is bogus. */
11875 branch_type = ST_BRANCH_TO_ARM;
0855e32b 11876 enum elf32_arm_stub_type stub_type
34e77a92
RS
11877 = arm_type_of_stub (info, input_section, rel,
11878 st_type, &branch_type,
0855e32b
NS
11879 (struct elf32_arm_link_hash_entry *)h,
11880 globals->tls_trampoline, globals->root.splt,
11881 input_bfd, sym_name);
11882
11883 if (stub_type != arm_stub_none)
11884 {
11885 struct elf32_arm_stub_hash_entry *stub_entry
11886 = elf32_arm_get_stub_entry
11887 (input_section, globals->root.splt, 0, rel,
11888 globals, stub_type);
11889 offset = (stub_entry->stub_offset
11890 + stub_entry->stub_sec->output_offset
11891 + stub_entry->stub_sec->output_section->vma);
11892 }
11893 else
11894 offset = (globals->root.splt->output_section->vma
11895 + globals->root.splt->output_offset
11896 + globals->tls_trampoline);
11897
cc850f74 11898 if (ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL)
0855e32b
NS
11899 {
11900 unsigned long inst;
b38cadfb
NC
11901
11902 offset -= (input_section->output_section->vma
11903 + input_section->output_offset
11904 + rel->r_offset + 8);
0855e32b
NS
11905
11906 inst = offset >> 2;
11907 inst &= 0x00ffffff;
11908 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11909 }
11910 else
11911 {
11912 /* Thumb blx encodes the offset in a complicated
11913 fashion. */
11914 unsigned upper_insn, lower_insn;
11915 unsigned neg;
11916
b38cadfb
NC
11917 offset -= (input_section->output_section->vma
11918 + input_section->output_offset
0855e32b 11919 + rel->r_offset + 4);
b38cadfb 11920
12352d3f
PB
11921 if (stub_type != arm_stub_none
11922 && arm_stub_is_thumb (stub_type))
11923 {
11924 lower_insn = 0xd000;
11925 }
11926 else
11927 {
11928 lower_insn = 0xc000;
6a631e86 11929 /* Round up the offset to a word boundary. */
12352d3f
PB
11930 offset = (offset + 2) & ~2;
11931 }
11932
0855e32b
NS
11933 neg = offset < 0;
11934 upper_insn = (0xf000
11935 | ((offset >> 12) & 0x3ff)
11936 | (neg << 10));
12352d3f 11937 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 11938 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 11939 | ((offset >> 1) & 0x7ff);
0855e32b
NS
11940 bfd_put_16 (input_bfd, upper_insn, hit_data);
11941 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11942 return bfd_reloc_ok;
11943 }
11944 }
11945 /* These relocations needs special care, as besides the fact
11946 they point somewhere in .gotplt, the addend must be
11947 adjusted accordingly depending on the type of instruction
6a631e86 11948 we refer to. */
0855e32b
NS
11949 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11950 {
11951 unsigned long data, insn;
11952 unsigned thumb;
b38cadfb 11953
b627f562 11954 data = bfd_get_signed_32 (input_bfd, hit_data);
0855e32b 11955 thumb = data & 1;
b627f562 11956 data &= ~1ul;
b38cadfb 11957
0855e32b
NS
11958 if (thumb)
11959 {
11960 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11961 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11962 insn = (insn << 16)
11963 | bfd_get_16 (input_bfd,
11964 contents + rel->r_offset - data + 2);
11965 if ((insn & 0xf800c000) == 0xf000c000)
11966 /* bl/blx */
11967 value = -6;
11968 else if ((insn & 0xffffff00) == 0x4400)
11969 /* add */
11970 value = -5;
11971 else
11972 {
4eca0228 11973 _bfd_error_handler
695344c0 11974 /* xgettext:c-format */
2dcf00ce 11975 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 11976 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
11977 "referenced by TLS_GOTDESC"),
11978 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 11979 "Thumb", insn);
0855e32b
NS
11980 return bfd_reloc_notsupported;
11981 }
11982 }
11983 else
11984 {
11985 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11986
11987 switch (insn >> 24)
11988 {
11989 case 0xeb: /* bl */
11990 case 0xfa: /* blx */
11991 value = -4;
11992 break;
11993
11994 case 0xe0: /* add */
11995 value = -8;
11996 break;
b38cadfb 11997
0855e32b 11998 default:
4eca0228 11999 _bfd_error_handler
695344c0 12000 /* xgettext:c-format */
2dcf00ce 12001 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 12002 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
12003 "referenced by TLS_GOTDESC"),
12004 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 12005 "ARM", insn);
0855e32b
NS
12006 return bfd_reloc_notsupported;
12007 }
12008 }
b38cadfb 12009
0855e32b
NS
12010 value += ((globals->root.sgotplt->output_section->vma
12011 + globals->root.sgotplt->output_offset + off)
12012 - (input_section->output_section->vma
12013 + input_section->output_offset
12014 + rel->r_offset)
12015 + globals->sgotplt_jump_table_size);
12016 }
12017 else
12018 value = ((globals->root.sgot->output_section->vma
12019 + globals->root.sgot->output_offset + off)
12020 - (input_section->output_section->vma
12021 + input_section->output_offset + rel->r_offset));
ba93b8ac 12022
5c5a4843
CL
12023 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12024 r_type == R_ARM_TLS_IE32_FDPIC))
e8b09b87
CL
12025 {
12026 /* For FDPIC relocations, resolve to the offset of the GOT
12027 entry from the start of GOT. */
cc850f74
NC
12028 bfd_put_32 (output_bfd,
12029 globals->root.sgot->output_offset + off,
12030 contents + rel->r_offset);
e8b09b87
CL
12031
12032 return bfd_reloc_ok;
12033 }
12034 else
12035 {
12036 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12037 contents, rel->r_offset, value,
12038 rel->r_addend);
12039 }
ba93b8ac
DJ
12040 }
12041
12042 case R_ARM_TLS_LE32:
3cbc1e5e 12043 if (bfd_link_dll (info))
ba93b8ac 12044 {
4eca0228 12045 _bfd_error_handler
695344c0 12046 /* xgettext:c-format */
2dcf00ce
AM
12047 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12048 "in shared object"),
12049 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
46691134 12050 return bfd_reloc_notsupported;
ba93b8ac
DJ
12051 }
12052 else
12053 value = tpoff (info, value);
906e58ca 12054
ba93b8ac 12055 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
12056 contents, rel->r_offset, value,
12057 rel->r_addend);
ba93b8ac 12058
319850b4
JB
12059 case R_ARM_V4BX:
12060 if (globals->fix_v4bx)
845b51d6
PB
12061 {
12062 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 12063
845b51d6
PB
12064 /* Ensure that we have a BX instruction. */
12065 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 12066
845b51d6
PB
12067 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12068 {
12069 /* Branch to veneer. */
12070 bfd_vma glue_addr;
12071 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12072 glue_addr -= input_section->output_section->vma
12073 + input_section->output_offset
12074 + rel->r_offset + 8;
12075 insn = (insn & 0xf0000000) | 0x0a000000
12076 | ((glue_addr >> 2) & 0x00ffffff);
12077 }
12078 else
12079 {
12080 /* Preserve Rm (lowest four bits) and the condition code
12081 (highest four bits). Other bits encode MOV PC,Rm. */
12082 insn = (insn & 0xf000000f) | 0x01a0f000;
12083 }
319850b4 12084
845b51d6
PB
12085 bfd_put_32 (input_bfd, insn, hit_data);
12086 }
319850b4
JB
12087 return bfd_reloc_ok;
12088
b6895b4f
PB
12089 case R_ARM_MOVW_ABS_NC:
12090 case R_ARM_MOVT_ABS:
12091 case R_ARM_MOVW_PREL_NC:
12092 case R_ARM_MOVT_PREL:
92f5d02b
MS
12093 /* Until we properly support segment-base-relative addressing then
12094 we assume the segment base to be zero, as for the group relocations.
12095 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12096 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12097 case R_ARM_MOVW_BREL_NC:
12098 case R_ARM_MOVW_BREL:
12099 case R_ARM_MOVT_BREL:
b6895b4f
PB
12100 {
12101 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12102
12103 if (globals->use_rel)
12104 {
12105 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 12106 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12107 }
92f5d02b 12108
b6895b4f 12109 value += signed_addend;
b6895b4f
PB
12110
12111 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12112 value -= (input_section->output_section->vma
12113 + input_section->output_offset + rel->r_offset);
12114
92f5d02b 12115 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
99059e56 12116 return bfd_reloc_overflow;
92f5d02b 12117
35fc36a8 12118 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12119 value |= 1;
12120
12121 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
99059e56 12122 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
12123 value >>= 16;
12124
12125 insn &= 0xfff0f000;
12126 insn |= value & 0xfff;
12127 insn |= (value & 0xf000) << 4;
12128 bfd_put_32 (input_bfd, insn, hit_data);
12129 }
12130 return bfd_reloc_ok;
12131
12132 case R_ARM_THM_MOVW_ABS_NC:
12133 case R_ARM_THM_MOVT_ABS:
12134 case R_ARM_THM_MOVW_PREL_NC:
12135 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
12136 /* Until we properly support segment-base-relative addressing then
12137 we assume the segment base to be zero, as for the above relocations.
12138 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12139 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12140 as R_ARM_THM_MOVT_ABS. */
12141 case R_ARM_THM_MOVW_BREL_NC:
12142 case R_ARM_THM_MOVW_BREL:
12143 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
12144 {
12145 bfd_vma insn;
906e58ca 12146
b6895b4f
PB
12147 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12148 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12149
12150 if (globals->use_rel)
12151 {
12152 addend = ((insn >> 4) & 0xf000)
12153 | ((insn >> 15) & 0x0800)
12154 | ((insn >> 4) & 0x0700)
07d6d2b8 12155 | (insn & 0x00ff);
39623e12 12156 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12157 }
92f5d02b 12158
b6895b4f 12159 value += signed_addend;
b6895b4f
PB
12160
12161 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12162 value -= (input_section->output_section->vma
12163 + input_section->output_offset + rel->r_offset);
12164
92f5d02b 12165 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
99059e56 12166 return bfd_reloc_overflow;
92f5d02b 12167
35fc36a8 12168 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12169 value |= 1;
12170
12171 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
99059e56 12172 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
12173 value >>= 16;
12174
12175 insn &= 0xfbf08f00;
12176 insn |= (value & 0xf000) << 4;
12177 insn |= (value & 0x0800) << 15;
12178 insn |= (value & 0x0700) << 4;
12179 insn |= (value & 0x00ff);
12180
12181 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12182 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12183 }
12184 return bfd_reloc_ok;
12185
4962c51a
MS
12186 case R_ARM_ALU_PC_G0_NC:
12187 case R_ARM_ALU_PC_G1_NC:
12188 case R_ARM_ALU_PC_G0:
12189 case R_ARM_ALU_PC_G1:
12190 case R_ARM_ALU_PC_G2:
12191 case R_ARM_ALU_SB_G0_NC:
12192 case R_ARM_ALU_SB_G1_NC:
12193 case R_ARM_ALU_SB_G0:
12194 case R_ARM_ALU_SB_G1:
12195 case R_ARM_ALU_SB_G2:
12196 {
12197 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12198 bfd_vma pc = input_section->output_section->vma
4962c51a 12199 + input_section->output_offset + rel->r_offset;
31a91d61 12200 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12201 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56
RM
12202 bfd_vma residual;
12203 bfd_vma g_n;
4962c51a 12204 bfd_signed_vma signed_value;
99059e56
RM
12205 int group = 0;
12206
12207 /* Determine which group of bits to select. */
12208 switch (r_type)
12209 {
12210 case R_ARM_ALU_PC_G0_NC:
12211 case R_ARM_ALU_PC_G0:
12212 case R_ARM_ALU_SB_G0_NC:
12213 case R_ARM_ALU_SB_G0:
12214 group = 0;
12215 break;
12216
12217 case R_ARM_ALU_PC_G1_NC:
12218 case R_ARM_ALU_PC_G1:
12219 case R_ARM_ALU_SB_G1_NC:
12220 case R_ARM_ALU_SB_G1:
12221 group = 1;
12222 break;
12223
12224 case R_ARM_ALU_PC_G2:
12225 case R_ARM_ALU_SB_G2:
12226 group = 2;
12227 break;
12228
12229 default:
12230 abort ();
12231 }
12232
12233 /* If REL, extract the addend from the insn. If RELA, it will
12234 have already been fetched for us. */
4962c51a 12235 if (globals->use_rel)
99059e56
RM
12236 {
12237 int negative;
12238 bfd_vma constant = insn & 0xff;
12239 bfd_vma rotation = (insn & 0xf00) >> 8;
12240
12241 if (rotation == 0)
12242 signed_addend = constant;
12243 else
12244 {
12245 /* Compensate for the fact that in the instruction, the
12246 rotation is stored in multiples of 2 bits. */
12247 rotation *= 2;
12248
12249 /* Rotate "constant" right by "rotation" bits. */
12250 signed_addend = (constant >> rotation) |
12251 (constant << (8 * sizeof (bfd_vma) - rotation));
12252 }
12253
12254 /* Determine if the instruction is an ADD or a SUB.
12255 (For REL, this determines the sign of the addend.) */
12256 negative = identify_add_or_sub (insn);
12257 if (negative == 0)
12258 {
4eca0228 12259 _bfd_error_handler
695344c0 12260 /* xgettext:c-format */
90b6238f 12261 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
2dcf00ce
AM
12262 "are allowed for ALU group relocations"),
12263 input_bfd, input_section, (uint64_t) rel->r_offset);
99059e56
RM
12264 return bfd_reloc_overflow;
12265 }
12266
12267 signed_addend *= negative;
12268 }
4962c51a
MS
12269
12270 /* Compute the value (X) to go in the place. */
99059e56
RM
12271 if (r_type == R_ARM_ALU_PC_G0_NC
12272 || r_type == R_ARM_ALU_PC_G1_NC
12273 || r_type == R_ARM_ALU_PC_G0
12274 || r_type == R_ARM_ALU_PC_G1
12275 || r_type == R_ARM_ALU_PC_G2)
12276 /* PC relative. */
12277 signed_value = value - pc + signed_addend;
12278 else
12279 /* Section base relative. */
12280 signed_value = value - sb + signed_addend;
12281
12282 /* If the target symbol is a Thumb function, then set the
12283 Thumb bit in the address. */
35fc36a8 12284 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
12285 signed_value |= 1;
12286
99059e56
RM
12287 /* Calculate the value of the relevant G_n, in encoded
12288 constant-with-rotation format. */
b6518b38
NC
12289 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12290 group, &residual);
99059e56
RM
12291
12292 /* Check for overflow if required. */
12293 if ((r_type == R_ARM_ALU_PC_G0
12294 || r_type == R_ARM_ALU_PC_G1
12295 || r_type == R_ARM_ALU_PC_G2
12296 || r_type == R_ARM_ALU_SB_G0
12297 || r_type == R_ARM_ALU_SB_G1
12298 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12299 {
4eca0228 12300 _bfd_error_handler
695344c0 12301 /* xgettext:c-format */
90b6238f 12302 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12303 "splitting %#" PRIx64 " for group relocation %s"),
12304 input_bfd, input_section, (uint64_t) rel->r_offset,
12305 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12306 howto->name);
99059e56
RM
12307 return bfd_reloc_overflow;
12308 }
12309
12310 /* Mask out the value and the ADD/SUB part of the opcode; take care
12311 not to destroy the S bit. */
12312 insn &= 0xff1ff000;
12313
12314 /* Set the opcode according to whether the value to go in the
12315 place is negative. */
12316 if (signed_value < 0)
12317 insn |= 1 << 22;
12318 else
12319 insn |= 1 << 23;
12320
12321 /* Encode the offset. */
12322 insn |= g_n;
4962c51a
MS
12323
12324 bfd_put_32 (input_bfd, insn, hit_data);
12325 }
12326 return bfd_reloc_ok;
12327
12328 case R_ARM_LDR_PC_G0:
12329 case R_ARM_LDR_PC_G1:
12330 case R_ARM_LDR_PC_G2:
12331 case R_ARM_LDR_SB_G0:
12332 case R_ARM_LDR_SB_G1:
12333 case R_ARM_LDR_SB_G2:
12334 {
12335 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12336 bfd_vma pc = input_section->output_section->vma
4962c51a 12337 + input_section->output_offset + rel->r_offset;
31a91d61 12338 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12339 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12340 bfd_vma residual;
4962c51a 12341 bfd_signed_vma signed_value;
99059e56
RM
12342 int group = 0;
12343
12344 /* Determine which groups of bits to calculate. */
12345 switch (r_type)
12346 {
12347 case R_ARM_LDR_PC_G0:
12348 case R_ARM_LDR_SB_G0:
12349 group = 0;
12350 break;
12351
12352 case R_ARM_LDR_PC_G1:
12353 case R_ARM_LDR_SB_G1:
12354 group = 1;
12355 break;
12356
12357 case R_ARM_LDR_PC_G2:
12358 case R_ARM_LDR_SB_G2:
12359 group = 2;
12360 break;
12361
12362 default:
12363 abort ();
12364 }
12365
12366 /* If REL, extract the addend from the insn. If RELA, it will
12367 have already been fetched for us. */
4962c51a 12368 if (globals->use_rel)
99059e56
RM
12369 {
12370 int negative = (insn & (1 << 23)) ? 1 : -1;
12371 signed_addend = negative * (insn & 0xfff);
12372 }
4962c51a
MS
12373
12374 /* Compute the value (X) to go in the place. */
99059e56
RM
12375 if (r_type == R_ARM_LDR_PC_G0
12376 || r_type == R_ARM_LDR_PC_G1
12377 || r_type == R_ARM_LDR_PC_G2)
12378 /* PC relative. */
12379 signed_value = value - pc + signed_addend;
12380 else
12381 /* Section base relative. */
12382 signed_value = value - sb + signed_addend;
12383
12384 /* Calculate the value of the relevant G_{n-1} to obtain
12385 the residual at that stage. */
b6518b38
NC
12386 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12387 group - 1, &residual);
99059e56
RM
12388
12389 /* Check for overflow. */
12390 if (residual >= 0x1000)
12391 {
4eca0228 12392 _bfd_error_handler
695344c0 12393 /* xgettext:c-format */
90b6238f 12394 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12395 "splitting %#" PRIx64 " for group relocation %s"),
12396 input_bfd, input_section, (uint64_t) rel->r_offset,
12397 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12398 howto->name);
99059e56
RM
12399 return bfd_reloc_overflow;
12400 }
12401
12402 /* Mask out the value and U bit. */
12403 insn &= 0xff7ff000;
12404
12405 /* Set the U bit if the value to go in the place is non-negative. */
12406 if (signed_value >= 0)
12407 insn |= 1 << 23;
12408
12409 /* Encode the offset. */
12410 insn |= residual;
4962c51a
MS
12411
12412 bfd_put_32 (input_bfd, insn, hit_data);
12413 }
12414 return bfd_reloc_ok;
12415
12416 case R_ARM_LDRS_PC_G0:
12417 case R_ARM_LDRS_PC_G1:
12418 case R_ARM_LDRS_PC_G2:
12419 case R_ARM_LDRS_SB_G0:
12420 case R_ARM_LDRS_SB_G1:
12421 case R_ARM_LDRS_SB_G2:
12422 {
12423 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12424 bfd_vma pc = input_section->output_section->vma
4962c51a 12425 + input_section->output_offset + rel->r_offset;
31a91d61 12426 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12427 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12428 bfd_vma residual;
4962c51a 12429 bfd_signed_vma signed_value;
99059e56
RM
12430 int group = 0;
12431
12432 /* Determine which groups of bits to calculate. */
12433 switch (r_type)
12434 {
12435 case R_ARM_LDRS_PC_G0:
12436 case R_ARM_LDRS_SB_G0:
12437 group = 0;
12438 break;
12439
12440 case R_ARM_LDRS_PC_G1:
12441 case R_ARM_LDRS_SB_G1:
12442 group = 1;
12443 break;
12444
12445 case R_ARM_LDRS_PC_G2:
12446 case R_ARM_LDRS_SB_G2:
12447 group = 2;
12448 break;
12449
12450 default:
12451 abort ();
12452 }
12453
12454 /* If REL, extract the addend from the insn. If RELA, it will
12455 have already been fetched for us. */
4962c51a 12456 if (globals->use_rel)
99059e56
RM
12457 {
12458 int negative = (insn & (1 << 23)) ? 1 : -1;
12459 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12460 }
4962c51a
MS
12461
12462 /* Compute the value (X) to go in the place. */
99059e56
RM
12463 if (r_type == R_ARM_LDRS_PC_G0
12464 || r_type == R_ARM_LDRS_PC_G1
12465 || r_type == R_ARM_LDRS_PC_G2)
12466 /* PC relative. */
12467 signed_value = value - pc + signed_addend;
12468 else
12469 /* Section base relative. */
12470 signed_value = value - sb + signed_addend;
12471
12472 /* Calculate the value of the relevant G_{n-1} to obtain
12473 the residual at that stage. */
b6518b38
NC
12474 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12475 group - 1, &residual);
99059e56
RM
12476
12477 /* Check for overflow. */
12478 if (residual >= 0x100)
12479 {
4eca0228 12480 _bfd_error_handler
695344c0 12481 /* xgettext:c-format */
90b6238f 12482 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12483 "splitting %#" PRIx64 " for group relocation %s"),
12484 input_bfd, input_section, (uint64_t) rel->r_offset,
12485 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12486 howto->name);
99059e56
RM
12487 return bfd_reloc_overflow;
12488 }
12489
12490 /* Mask out the value and U bit. */
12491 insn &= 0xff7ff0f0;
12492
12493 /* Set the U bit if the value to go in the place is non-negative. */
12494 if (signed_value >= 0)
12495 insn |= 1 << 23;
12496
12497 /* Encode the offset. */
12498 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
4962c51a
MS
12499
12500 bfd_put_32 (input_bfd, insn, hit_data);
12501 }
12502 return bfd_reloc_ok;
12503
12504 case R_ARM_LDC_PC_G0:
12505 case R_ARM_LDC_PC_G1:
12506 case R_ARM_LDC_PC_G2:
12507 case R_ARM_LDC_SB_G0:
12508 case R_ARM_LDC_SB_G1:
12509 case R_ARM_LDC_SB_G2:
12510 {
12511 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12512 bfd_vma pc = input_section->output_section->vma
4962c51a 12513 + input_section->output_offset + rel->r_offset;
31a91d61 12514 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12515 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12516 bfd_vma residual;
4962c51a 12517 bfd_signed_vma signed_value;
99059e56
RM
12518 int group = 0;
12519
12520 /* Determine which groups of bits to calculate. */
12521 switch (r_type)
12522 {
12523 case R_ARM_LDC_PC_G0:
12524 case R_ARM_LDC_SB_G0:
12525 group = 0;
12526 break;
12527
12528 case R_ARM_LDC_PC_G1:
12529 case R_ARM_LDC_SB_G1:
12530 group = 1;
12531 break;
12532
12533 case R_ARM_LDC_PC_G2:
12534 case R_ARM_LDC_SB_G2:
12535 group = 2;
12536 break;
12537
12538 default:
12539 abort ();
12540 }
12541
12542 /* If REL, extract the addend from the insn. If RELA, it will
12543 have already been fetched for us. */
4962c51a 12544 if (globals->use_rel)
99059e56
RM
12545 {
12546 int negative = (insn & (1 << 23)) ? 1 : -1;
12547 signed_addend = negative * ((insn & 0xff) << 2);
12548 }
4962c51a
MS
12549
12550 /* Compute the value (X) to go in the place. */
99059e56
RM
12551 if (r_type == R_ARM_LDC_PC_G0
12552 || r_type == R_ARM_LDC_PC_G1
12553 || r_type == R_ARM_LDC_PC_G2)
12554 /* PC relative. */
12555 signed_value = value - pc + signed_addend;
12556 else
12557 /* Section base relative. */
12558 signed_value = value - sb + signed_addend;
12559
12560 /* Calculate the value of the relevant G_{n-1} to obtain
12561 the residual at that stage. */
b6518b38
NC
12562 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12563 group - 1, &residual);
99059e56
RM
12564
12565 /* Check for overflow. (The absolute value to go in the place must be
12566 divisible by four and, after having been divided by four, must
12567 fit in eight bits.) */
12568 if ((residual & 0x3) != 0 || residual >= 0x400)
12569 {
4eca0228 12570 _bfd_error_handler
695344c0 12571 /* xgettext:c-format */
90b6238f 12572 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12573 "splitting %#" PRIx64 " for group relocation %s"),
12574 input_bfd, input_section, (uint64_t) rel->r_offset,
12575 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12576 howto->name);
99059e56
RM
12577 return bfd_reloc_overflow;
12578 }
12579
12580 /* Mask out the value and U bit. */
12581 insn &= 0xff7fff00;
12582
12583 /* Set the U bit if the value to go in the place is non-negative. */
12584 if (signed_value >= 0)
12585 insn |= 1 << 23;
12586
12587 /* Encode the offset. */
12588 insn |= residual >> 2;
4962c51a
MS
12589
12590 bfd_put_32 (input_bfd, insn, hit_data);
12591 }
12592 return bfd_reloc_ok;
12593
72d98d16
MG
12594 case R_ARM_THM_ALU_ABS_G0_NC:
12595 case R_ARM_THM_ALU_ABS_G1_NC:
12596 case R_ARM_THM_ALU_ABS_G2_NC:
12597 case R_ARM_THM_ALU_ABS_G3_NC:
12598 {
12599 const int shift_array[4] = {0, 8, 16, 24};
12600 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12601 bfd_vma addr = value;
12602 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12603
12604 /* Compute address. */
12605 if (globals->use_rel)
12606 signed_addend = insn & 0xff;
12607 addr += signed_addend;
12608 if (branch_type == ST_BRANCH_TO_THUMB)
12609 addr |= 1;
12610 /* Clean imm8 insn. */
12611 insn &= 0xff00;
12612 /* And update with correct part of address. */
12613 insn |= (addr >> shift) & 0xff;
12614 /* Update insn. */
12615 bfd_put_16 (input_bfd, insn, hit_data);
12616 }
12617
0a1b45a2 12618 *unresolved_reloc_p = false;
72d98d16
MG
12619 return bfd_reloc_ok;
12620
e8b09b87
CL
12621 case R_ARM_GOTOFFFUNCDESC:
12622 {
4b24dd1a 12623 if (h == NULL)
e8b09b87 12624 {
cc850f74 12625 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts (input_bfd);
e8b09b87 12626 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
74fd118f
NC
12627
12628 if (r_symndx >= elf32_arm_num_entries (input_bfd))
12629 {
12630 * error_message = _("local symbol index too big");
12631 return bfd_reloc_dangerous;
12632 }
12633
e8b09b87
CL
12634 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12635 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12636 bfd_vma seg = -1;
12637
cc850f74
NC
12638 if (bfd_link_pic (info) && dynindx == 0)
12639 {
12640 * error_message = _("no dynamic index information available");
12641 return bfd_reloc_dangerous;
12642 }
e8b09b87
CL
12643
12644 /* Resolve relocation. */
cc850f74 12645 bfd_put_32 (output_bfd, (offset + sgot->output_offset)
e8b09b87
CL
12646 , contents + rel->r_offset);
12647 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12648 not done yet. */
cc850f74
NC
12649 arm_elf_fill_funcdesc (output_bfd, info,
12650 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12651 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12652 }
12653 else
12654 {
12655 int dynindx;
12656 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12657 bfd_vma addr;
12658 bfd_vma seg = -1;
12659
12660 /* For static binaries, sym_sec can be null. */
12661 if (sym_sec)
12662 {
12663 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12664 addr = dynreloc_value - sym_sec->output_section->vma;
12665 }
12666 else
12667 {
12668 dynindx = 0;
12669 addr = 0;
12670 }
12671
cc850f74
NC
12672 if (bfd_link_pic (info) && dynindx == 0)
12673 {
12674 * error_message = _("no dynamic index information available");
12675 return bfd_reloc_dangerous;
12676 }
e8b09b87
CL
12677
12678 /* This case cannot occur since funcdesc is allocated by
12679 the dynamic loader so we cannot resolve the relocation. */
12680 if (h->dynindx != -1)
cc850f74
NC
12681 {
12682 * error_message = _("invalid dynamic index");
12683 return bfd_reloc_dangerous;
12684 }
e8b09b87
CL
12685
12686 /* Resolve relocation. */
cc850f74
NC
12687 bfd_put_32 (output_bfd, (offset + sgot->output_offset),
12688 contents + rel->r_offset);
e8b09b87 12689 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12690 arm_elf_fill_funcdesc (output_bfd, info,
12691 &eh->fdpic_cnts.funcdesc_offset,
12692 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12693 }
12694 }
0a1b45a2 12695 *unresolved_reloc_p = false;
e8b09b87
CL
12696 return bfd_reloc_ok;
12697
12698 case R_ARM_GOTFUNCDESC:
12699 {
4b24dd1a 12700 if (h != NULL)
e8b09b87
CL
12701 {
12702 Elf_Internal_Rela outrel;
12703
12704 /* Resolve relocation. */
cc850f74
NC
12705 bfd_put_32 (output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12706 + sgot->output_offset),
12707 contents + rel->r_offset);
e8b09b87 12708 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
cc850f74 12709 if (h->dynindx == -1)
e8b09b87
CL
12710 {
12711 int dynindx;
12712 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12713 bfd_vma addr;
12714 bfd_vma seg = -1;
12715
12716 /* For static binaries sym_sec can be null. */
12717 if (sym_sec)
12718 {
12719 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12720 addr = dynreloc_value - sym_sec->output_section->vma;
12721 }
12722 else
12723 {
12724 dynindx = 0;
12725 addr = 0;
12726 }
12727
12728 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12729 arm_elf_fill_funcdesc (output_bfd, info,
12730 &eh->fdpic_cnts.funcdesc_offset,
12731 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12732 }
12733
12734 /* Add a dynamic relocation on GOT entry if not already done. */
12735 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12736 {
12737 if (h->dynindx == -1)
12738 {
12739 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12740 if (h->root.type == bfd_link_hash_undefweak)
cc850f74
NC
12741 bfd_put_32 (output_bfd, 0, sgot->contents
12742 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
e8b09b87 12743 else
cc850f74
NC
12744 bfd_put_32 (output_bfd, sgot->output_section->vma
12745 + sgot->output_offset
12746 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12747 sgot->contents
12748 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
e8b09b87
CL
12749 }
12750 else
12751 {
12752 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12753 }
12754 outrel.r_offset = sgot->output_section->vma
12755 + sgot->output_offset
12756 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12757 outrel.r_addend = 0;
cc850f74 12758 if (h->dynindx == -1 && !bfd_link_pic (info))
e8b09b87 12759 if (h->root.type == bfd_link_hash_undefweak)
cc850f74 12760 arm_elf_add_rofixup (output_bfd, globals->srofixup, -1);
e8b09b87 12761 else
cc850f74
NC
12762 arm_elf_add_rofixup (output_bfd, globals->srofixup,
12763 outrel.r_offset);
e8b09b87
CL
12764 else
12765 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12766 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12767 }
12768 }
12769 else
12770 {
12771 /* Such relocation on static function should not have been
12772 emitted by the compiler. */
cc850f74 12773 return bfd_reloc_notsupported;
e8b09b87
CL
12774 }
12775 }
0a1b45a2 12776 *unresolved_reloc_p = false;
e8b09b87
CL
12777 return bfd_reloc_ok;
12778
12779 case R_ARM_FUNCDESC:
12780 {
4b24dd1a 12781 if (h == NULL)
e8b09b87 12782 {
cc850f74 12783 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts (input_bfd);
e8b09b87
CL
12784 Elf_Internal_Rela outrel;
12785 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
74fd118f
NC
12786
12787 if (r_symndx >= elf32_arm_num_entries (input_bfd))
12788 {
12789 * error_message = _("local symbol index too big");
12790 return bfd_reloc_dangerous;
12791 }
12792
e8b09b87
CL
12793 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12794 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12795 bfd_vma seg = -1;
12796
cc850f74
NC
12797 if (bfd_link_pic (info) && dynindx == 0)
12798 {
12799 * error_message = _("dynamic index information not available");
12800 return bfd_reloc_dangerous;
12801 }
e8b09b87
CL
12802
12803 /* Replace static FUNCDESC relocation with a
12804 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12805 executable. */
12806 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12807 outrel.r_offset = input_section->output_section->vma
12808 + input_section->output_offset + rel->r_offset;
12809 outrel.r_addend = 0;
cc850f74 12810 if (bfd_link_pic (info))
e8b09b87
CL
12811 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12812 else
cc850f74 12813 arm_elf_add_rofixup (output_bfd, globals->srofixup, outrel.r_offset);
e8b09b87
CL
12814
12815 bfd_put_32 (input_bfd, sgot->output_section->vma
12816 + sgot->output_offset + offset, hit_data);
12817
12818 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12819 arm_elf_fill_funcdesc (output_bfd, info,
12820 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12821 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12822 }
12823 else
12824 {
12825 if (h->dynindx == -1)
12826 {
12827 int dynindx;
12828 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12829 bfd_vma addr;
12830 bfd_vma seg = -1;
12831 Elf_Internal_Rela outrel;
12832
12833 /* For static binaries sym_sec can be null. */
12834 if (sym_sec)
12835 {
12836 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12837 addr = dynreloc_value - sym_sec->output_section->vma;
12838 }
12839 else
12840 {
12841 dynindx = 0;
12842 addr = 0;
12843 }
12844
cc850f74
NC
12845 if (bfd_link_pic (info) && dynindx == 0)
12846 abort ();
e8b09b87
CL
12847
12848 /* Replace static FUNCDESC relocation with a
12849 R_ARM_RELATIVE dynamic relocation. */
12850 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12851 outrel.r_offset = input_section->output_section->vma
12852 + input_section->output_offset + rel->r_offset;
12853 outrel.r_addend = 0;
cc850f74 12854 if (bfd_link_pic (info))
e8b09b87
CL
12855 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12856 else
cc850f74 12857 arm_elf_add_rofixup (output_bfd, globals->srofixup, outrel.r_offset);
e8b09b87
CL
12858
12859 bfd_put_32 (input_bfd, sgot->output_section->vma
12860 + sgot->output_offset + offset, hit_data);
12861
12862 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12863 arm_elf_fill_funcdesc (output_bfd, info,
12864 &eh->fdpic_cnts.funcdesc_offset,
12865 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12866 }
12867 else
12868 {
12869 Elf_Internal_Rela outrel;
12870
12871 /* Add a dynamic relocation. */
12872 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12873 outrel.r_offset = input_section->output_section->vma
12874 + input_section->output_offset + rel->r_offset;
12875 outrel.r_addend = 0;
12876 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12877 }
12878 }
12879 }
0a1b45a2 12880 *unresolved_reloc_p = false;
e8b09b87
CL
12881 return bfd_reloc_ok;
12882
e5d6e09e
AV
12883 case R_ARM_THM_BF16:
12884 {
12885 bfd_vma relocation;
12886 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12887 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12888
12889 if (globals->use_rel)
12890 {
12891 bfd_vma immA = (upper_insn & 0x001f);
12892 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12893 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12894 addend = (immA << 12);
12895 addend |= (immB << 2);
12896 addend |= (immC << 1);
12897 addend |= 1;
12898 /* Sign extend. */
e6f65e75 12899 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
e5d6e09e
AV
12900 }
12901
e6f65e75 12902 relocation = value + signed_addend;
e5d6e09e
AV
12903 relocation -= (input_section->output_section->vma
12904 + input_section->output_offset
12905 + rel->r_offset);
12906
12907 /* Put RELOCATION back into the insn. */
12908 {
12909 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12910 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12911 bfd_vma immC = (relocation & 0x00000002) >> 1;
12912
12913 upper_insn = (upper_insn & 0xffe0) | immA;
12914 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12915 }
12916
12917 /* Put the relocated value back in the object file: */
12918 bfd_put_16 (input_bfd, upper_insn, hit_data);
12919 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12920
12921 return bfd_reloc_ok;
12922 }
12923
1889da70
AV
12924 case R_ARM_THM_BF12:
12925 {
12926 bfd_vma relocation;
12927 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12928 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12929
12930 if (globals->use_rel)
12931 {
12932 bfd_vma immA = (upper_insn & 0x0001);
12933 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12934 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12935 addend = (immA << 12);
12936 addend |= (immB << 2);
12937 addend |= (immC << 1);
12938 addend |= 1;
12939 /* Sign extend. */
12940 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
e6f65e75 12941 signed_addend = addend;
1889da70
AV
12942 }
12943
e6f65e75 12944 relocation = value + signed_addend;
1889da70
AV
12945 relocation -= (input_section->output_section->vma
12946 + input_section->output_offset
12947 + rel->r_offset);
12948
12949 /* Put RELOCATION back into the insn. */
12950 {
12951 bfd_vma immA = (relocation & 0x00001000) >> 12;
12952 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12953 bfd_vma immC = (relocation & 0x00000002) >> 1;
12954
12955 upper_insn = (upper_insn & 0xfffe) | immA;
12956 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12957 }
12958
12959 /* Put the relocated value back in the object file: */
12960 bfd_put_16 (input_bfd, upper_insn, hit_data);
12961 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12962
12963 return bfd_reloc_ok;
12964 }
12965
1caf72a5
AV
12966 case R_ARM_THM_BF18:
12967 {
12968 bfd_vma relocation;
12969 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12970 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12971
12972 if (globals->use_rel)
12973 {
12974 bfd_vma immA = (upper_insn & 0x007f);
12975 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12976 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12977 addend = (immA << 12);
12978 addend |= (immB << 2);
12979 addend |= (immC << 1);
12980 addend |= 1;
12981 /* Sign extend. */
12982 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
e6f65e75 12983 signed_addend = addend;
1caf72a5
AV
12984 }
12985
e6f65e75 12986 relocation = value + signed_addend;
1caf72a5
AV
12987 relocation -= (input_section->output_section->vma
12988 + input_section->output_offset
12989 + rel->r_offset);
12990
12991 /* Put RELOCATION back into the insn. */
12992 {
12993 bfd_vma immA = (relocation & 0x0007f000) >> 12;
12994 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12995 bfd_vma immC = (relocation & 0x00000002) >> 1;
12996
12997 upper_insn = (upper_insn & 0xff80) | immA;
12998 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12999 }
13000
13001 /* Put the relocated value back in the object file: */
13002 bfd_put_16 (input_bfd, upper_insn, hit_data);
13003 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13004
13005 return bfd_reloc_ok;
13006 }
13007
252b5132
RH
13008 default:
13009 return bfd_reloc_notsupported;
13010 }
13011}
13012
98c1d4aa
NC
13013/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13014static void
07d6d2b8
AM
13015arm_add_to_rel (bfd * abfd,
13016 bfd_byte * address,
57e8b36a 13017 reloc_howto_type * howto,
07d6d2b8 13018 bfd_signed_vma increment)
98c1d4aa 13019{
98c1d4aa
NC
13020 bfd_signed_vma addend;
13021
bd97cb95
DJ
13022 if (howto->type == R_ARM_THM_CALL
13023 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 13024 {
9a5aca8c
AM
13025 int upper_insn, lower_insn;
13026 int upper, lower;
98c1d4aa 13027
9a5aca8c
AM
13028 upper_insn = bfd_get_16 (abfd, address);
13029 lower_insn = bfd_get_16 (abfd, address + 2);
13030 upper = upper_insn & 0x7ff;
13031 lower = lower_insn & 0x7ff;
13032
13033 addend = (upper << 12) | (lower << 1);
ddda4409 13034 addend += increment;
9a5aca8c 13035 addend >>= 1;
98c1d4aa 13036
9a5aca8c
AM
13037 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13038 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13039
dc810e39
AM
13040 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13041 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
13042 }
13043 else
13044 {
07d6d2b8 13045 bfd_vma contents;
9a5aca8c
AM
13046
13047 contents = bfd_get_32 (abfd, address);
13048
13049 /* Get the (signed) value from the instruction. */
13050 addend = contents & howto->src_mask;
13051 if (addend & ((howto->src_mask + 1) >> 1))
13052 {
13053 bfd_signed_vma mask;
13054
13055 mask = -1;
13056 mask &= ~ howto->src_mask;
13057 addend |= mask;
13058 }
13059
13060 /* Add in the increment, (which is a byte value). */
13061 switch (howto->type)
13062 {
13063 default:
13064 addend += increment;
13065 break;
13066
13067 case R_ARM_PC24:
c6596c5e 13068 case R_ARM_PLT32:
5b5bb741
PB
13069 case R_ARM_CALL:
13070 case R_ARM_JUMP24:
57698478 13071 addend *= bfd_get_reloc_size (howto);
dc810e39 13072 addend += increment;
9a5aca8c
AM
13073
13074 /* Should we check for overflow here ? */
13075
13076 /* Drop any undesired bits. */
13077 addend >>= howto->rightshift;
13078 break;
13079 }
13080
13081 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13082
13083 bfd_put_32 (abfd, contents, address);
ddda4409 13084 }
98c1d4aa 13085}
252b5132 13086
ba93b8ac
DJ
13087#define IS_ARM_TLS_RELOC(R_TYPE) \
13088 ((R_TYPE) == R_ARM_TLS_GD32 \
5c5a4843 13089 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
ba93b8ac
DJ
13090 || (R_TYPE) == R_ARM_TLS_LDO32 \
13091 || (R_TYPE) == R_ARM_TLS_LDM32 \
5c5a4843 13092 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
ba93b8ac
DJ
13093 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13094 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13095 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13096 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b 13097 || (R_TYPE) == R_ARM_TLS_IE32 \
5c5a4843 13098 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
0855e32b
NS
13099 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13100
13101/* Specific set of relocations for the gnu tls dialect. */
13102#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13103 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13104 || (R_TYPE) == R_ARM_TLS_CALL \
13105 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13106 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13107 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 13108
252b5132 13109/* Relocate an ARM ELF section. */
906e58ca 13110
0f684201 13111static int
07d6d2b8 13112elf32_arm_relocate_section (bfd * output_bfd,
57e8b36a 13113 struct bfd_link_info * info,
07d6d2b8
AM
13114 bfd * input_bfd,
13115 asection * input_section,
13116 bfd_byte * contents,
13117 Elf_Internal_Rela * relocs,
13118 Elf_Internal_Sym * local_syms,
13119 asection ** local_sections)
252b5132 13120{
b34976b6
AM
13121 Elf_Internal_Shdr *symtab_hdr;
13122 struct elf_link_hash_entry **sym_hashes;
13123 Elf_Internal_Rela *rel;
13124 Elf_Internal_Rela *relend;
13125 const char *name;
b32d3aa2 13126 struct elf32_arm_link_hash_table * globals;
252b5132 13127
4e7fd91e 13128 globals = elf32_arm_hash_table (info);
4dfe6ac6 13129 if (globals == NULL)
0a1b45a2 13130 return false;
b491616a 13131
0ffa91dd 13132 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
13133 sym_hashes = elf_sym_hashes (input_bfd);
13134
13135 rel = relocs;
13136 relend = relocs + input_section->reloc_count;
13137 for (; rel < relend; rel++)
13138 {
07d6d2b8
AM
13139 int r_type;
13140 reloc_howto_type * howto;
13141 unsigned long r_symndx;
13142 Elf_Internal_Sym * sym;
13143 asection * sec;
252b5132 13144 struct elf_link_hash_entry * h;
07d6d2b8
AM
13145 bfd_vma relocation;
13146 bfd_reloc_status_type r;
13147 arelent bfd_reloc;
13148 char sym_type;
0a1b45a2 13149 bool unresolved_reloc = false;
f2a9dd69 13150 char *error_message = NULL;
f21f3fe0 13151
252b5132 13152 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 13153 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 13154 r_type = arm_real_reloc_type (globals, r_type);
252b5132 13155
ba96a88f 13156 if ( r_type == R_ARM_GNU_VTENTRY
99059e56
RM
13157 || r_type == R_ARM_GNU_VTINHERIT)
13158 continue;
252b5132 13159
47aeb64c
NC
13160 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13161
13162 if (howto == NULL)
13163 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
252b5132 13164
252b5132
RH
13165 h = NULL;
13166 sym = NULL;
13167 sec = NULL;
9b485d32 13168
252b5132
RH
13169 if (r_symndx < symtab_hdr->sh_info)
13170 {
13171 sym = local_syms + r_symndx;
ba93b8ac 13172 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 13173 sec = local_sections[r_symndx];
ffcb4889
NS
13174
13175 /* An object file might have a reference to a local
13176 undefined symbol. This is a daft object file, but we
13177 should at least do something about it. V4BX & NONE
13178 relocations do not use the symbol and are explicitly
77b4f08f
TS
13179 allowed to use the undefined symbol, so allow those.
13180 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
13181 if (r_type != R_ARM_V4BX
13182 && r_type != R_ARM_NONE
77b4f08f 13183 && r_symndx != STN_UNDEF
ffcb4889
NS
13184 && bfd_is_und_section (sec)
13185 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
1a72702b
AM
13186 (*info->callbacks->undefined_symbol)
13187 (info, bfd_elf_string_from_elf_section
13188 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13189 input_bfd, input_section,
0a1b45a2 13190 rel->r_offset, true);
b38cadfb 13191
4e7fd91e 13192 if (globals->use_rel)
f8df10f4 13193 {
4e7fd91e
PB
13194 relocation = (sec->output_section->vma
13195 + sec->output_offset
13196 + sym->st_value);
0e1862bb 13197 if (!bfd_link_relocatable (info)
ab96bf03
AM
13198 && (sec->flags & SEC_MERGE)
13199 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 13200 {
4e7fd91e
PB
13201 asection *msec;
13202 bfd_vma addend, value;
13203
39623e12 13204 switch (r_type)
4e7fd91e 13205 {
39623e12
PB
13206 case R_ARM_MOVW_ABS_NC:
13207 case R_ARM_MOVT_ABS:
13208 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13209 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13210 addend = (addend ^ 0x8000) - 0x8000;
13211 break;
f8df10f4 13212
39623e12
PB
13213 case R_ARM_THM_MOVW_ABS_NC:
13214 case R_ARM_THM_MOVT_ABS:
13215 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13216 << 16;
13217 value |= bfd_get_16 (input_bfd,
13218 contents + rel->r_offset + 2);
13219 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13220 | ((value & 0x04000000) >> 15);
13221 addend = (addend ^ 0x8000) - 0x8000;
13222 break;
f8df10f4 13223
39623e12
PB
13224 default:
13225 if (howto->rightshift
13226 || (howto->src_mask & (howto->src_mask + 1)))
13227 {
4eca0228 13228 _bfd_error_handler
695344c0 13229 /* xgettext:c-format */
2dcf00ce
AM
13230 (_("%pB(%pA+%#" PRIx64 "): "
13231 "%s relocation against SEC_MERGE section"),
39623e12 13232 input_bfd, input_section,
2dcf00ce 13233 (uint64_t) rel->r_offset, howto->name);
0a1b45a2 13234 return false;
39623e12
PB
13235 }
13236
13237 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13238
13239 /* Get the (signed) value from the instruction. */
13240 addend = value & howto->src_mask;
13241 if (addend & ((howto->src_mask + 1) >> 1))
13242 {
13243 bfd_signed_vma mask;
13244
13245 mask = -1;
13246 mask &= ~ howto->src_mask;
13247 addend |= mask;
13248 }
13249 break;
4e7fd91e 13250 }
39623e12 13251
4e7fd91e
PB
13252 msec = sec;
13253 addend =
13254 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13255 - relocation;
13256 addend += msec->output_section->vma + msec->output_offset;
39623e12 13257
cc643b88 13258 /* Cases here must match those in the preceding
39623e12
PB
13259 switch statement. */
13260 switch (r_type)
13261 {
13262 case R_ARM_MOVW_ABS_NC:
13263 case R_ARM_MOVT_ABS:
13264 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13265 | (addend & 0xfff);
13266 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13267 break;
13268
13269 case R_ARM_THM_MOVW_ABS_NC:
13270 case R_ARM_THM_MOVT_ABS:
13271 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13272 | (addend & 0xff) | ((addend & 0x0800) << 15);
13273 bfd_put_16 (input_bfd, value >> 16,
13274 contents + rel->r_offset);
13275 bfd_put_16 (input_bfd, value,
13276 contents + rel->r_offset + 2);
13277 break;
13278
13279 default:
13280 value = (value & ~ howto->dst_mask)
13281 | (addend & howto->dst_mask);
13282 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13283 break;
13284 }
f8df10f4 13285 }
f8df10f4 13286 }
4e7fd91e
PB
13287 else
13288 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
13289 }
13290 else
13291 {
0a1b45a2 13292 bool warned, ignored;
560e09e9 13293
b2a8e766
AM
13294 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13295 r_symndx, symtab_hdr, sym_hashes,
13296 h, sec, relocation,
62d887d4 13297 unresolved_reloc, warned, ignored);
ba93b8ac
DJ
13298
13299 sym_type = h->type;
252b5132
RH
13300 }
13301
dbaa2011 13302 if (sec != NULL && discarded_section (sec))
e4067dbb 13303 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 13304 rel, 1, relend, howto, 0, contents);
ab96bf03 13305
0e1862bb 13306 if (bfd_link_relocatable (info))
ab96bf03
AM
13307 {
13308 /* This is a relocatable link. We don't have to change
13309 anything, unless the reloc is against a section symbol,
13310 in which case we have to adjust according to where the
13311 section symbol winds up in the output section. */
13312 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13313 {
13314 if (globals->use_rel)
13315 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13316 howto, (bfd_signed_vma) sec->output_offset);
13317 else
13318 rel->r_addend += sec->output_offset;
13319 }
13320 continue;
13321 }
13322
252b5132
RH
13323 if (h != NULL)
13324 name = h->root.root.string;
13325 else
13326 {
13327 name = (bfd_elf_string_from_elf_section
13328 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13329 if (name == NULL || *name == '\0')
fd361982 13330 name = bfd_section_name (sec);
252b5132 13331 }
f21f3fe0 13332
cf35638d 13333 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
13334 && r_type != R_ARM_NONE
13335 && (h == NULL
13336 || h->root.type == bfd_link_hash_defined
13337 || h->root.type == bfd_link_hash_defweak)
13338 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13339 {
4eca0228 13340 _bfd_error_handler
ba93b8ac 13341 ((sym_type == STT_TLS
695344c0 13342 /* xgettext:c-format */
2dcf00ce 13343 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
695344c0 13344 /* xgettext:c-format */
2dcf00ce 13345 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
ba93b8ac
DJ
13346 input_bfd,
13347 input_section,
2dcf00ce 13348 (uint64_t) rel->r_offset,
ba93b8ac
DJ
13349 howto->name,
13350 name);
13351 }
13352
0855e32b 13353 /* We call elf32_arm_final_link_relocate unless we're completely
99059e56
RM
13354 done, i.e., the relaxation produced the final output we want,
13355 and we won't let anybody mess with it. Also, we have to do
13356 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
6a631e86 13357 both in relaxed and non-relaxed cases. */
39d911fc
TP
13358 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13359 || (IS_ARM_TLS_GNU_RELOC (r_type)
13360 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13361 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13362 & GOT_TLS_GDESC)))
13363 {
13364 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13365 contents, rel, h == NULL);
13366 /* This may have been marked unresolved because it came from
13367 a shared library. But we've just dealt with that. */
13368 unresolved_reloc = 0;
13369 }
13370 else
13371 r = bfd_reloc_continue;
b38cadfb 13372
39d911fc
TP
13373 if (r == bfd_reloc_continue)
13374 {
13375 unsigned char branch_type =
13376 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13377 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13378
13379 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13380 input_section, contents, rel,
13381 relocation, info, sec, name,
13382 sym_type, branch_type, h,
13383 &unresolved_reloc,
13384 &error_message);
13385 }
0945cdfd
DJ
13386
13387 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13388 because such sections are not SEC_ALLOC and thus ld.so will
13389 not process them. */
13390 if (unresolved_reloc
99059e56
RM
13391 && !((input_section->flags & SEC_DEBUGGING) != 0
13392 && h->def_dynamic)
1d5316ab
AM
13393 && _bfd_elf_section_offset (output_bfd, info, input_section,
13394 rel->r_offset) != (bfd_vma) -1)
0945cdfd 13395 {
4eca0228 13396 _bfd_error_handler
695344c0 13397 /* xgettext:c-format */
2dcf00ce
AM
13398 (_("%pB(%pA+%#" PRIx64 "): "
13399 "unresolvable %s relocation against symbol `%s'"),
843fe662
L
13400 input_bfd,
13401 input_section,
2dcf00ce 13402 (uint64_t) rel->r_offset,
843fe662
L
13403 howto->name,
13404 h->root.root.string);
0a1b45a2 13405 return false;
0945cdfd 13406 }
252b5132
RH
13407
13408 if (r != bfd_reloc_ok)
13409 {
252b5132
RH
13410 switch (r)
13411 {
13412 case bfd_reloc_overflow:
cf919dfd
PB
13413 /* If the overflowing reloc was to an undefined symbol,
13414 we have already printed one error message and there
13415 is no point complaining again. */
1a72702b
AM
13416 if (!h || h->root.type != bfd_link_hash_undefined)
13417 (*info->callbacks->reloc_overflow)
13418 (info, (h ? &h->root : NULL), name, howto->name,
13419 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
252b5132
RH
13420 break;
13421
13422 case bfd_reloc_undefined:
1a72702b 13423 (*info->callbacks->undefined_symbol)
0a1b45a2 13424 (info, name, input_bfd, input_section, rel->r_offset, true);
252b5132
RH
13425 break;
13426
13427 case bfd_reloc_outofrange:
f2a9dd69 13428 error_message = _("out of range");
252b5132
RH
13429 goto common_error;
13430
13431 case bfd_reloc_notsupported:
f2a9dd69 13432 error_message = _("unsupported relocation");
252b5132
RH
13433 goto common_error;
13434
13435 case bfd_reloc_dangerous:
f2a9dd69 13436 /* error_message should already be set. */
252b5132
RH
13437 goto common_error;
13438
13439 default:
f2a9dd69 13440 error_message = _("unknown error");
8029a119 13441 /* Fall through. */
252b5132
RH
13442
13443 common_error:
f2a9dd69 13444 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13445 (*info->callbacks->reloc_dangerous)
13446 (info, error_message, input_bfd, input_section, rel->r_offset);
252b5132
RH
13447 break;
13448 }
13449 }
13450 }
13451
0a1b45a2 13452 return true;
252b5132
RH
13453}
13454
91d6fa6a 13455/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 13456 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 13457 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
13458 maintaining that condition). */
13459
13460static void
13461add_unwind_table_edit (arm_unwind_table_edit **head,
13462 arm_unwind_table_edit **tail,
13463 arm_unwind_edit_type type,
13464 asection *linked_section,
91d6fa6a 13465 unsigned int tindex)
2468f9c9 13466{
21d799b5
NC
13467 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13468 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 13469
2468f9c9
PB
13470 new_edit->type = type;
13471 new_edit->linked_section = linked_section;
91d6fa6a 13472 new_edit->index = tindex;
b38cadfb 13473
91d6fa6a 13474 if (tindex > 0)
2468f9c9
PB
13475 {
13476 new_edit->next = NULL;
13477
13478 if (*tail)
13479 (*tail)->next = new_edit;
13480
13481 (*tail) = new_edit;
13482
13483 if (!*head)
13484 (*head) = new_edit;
13485 }
13486 else
13487 {
13488 new_edit->next = *head;
13489
13490 if (!*tail)
13491 *tail = new_edit;
13492
13493 *head = new_edit;
13494 }
13495}
13496
13497static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13498
13499/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
cc850f74 13500
2468f9c9 13501static void
cc850f74 13502adjust_exidx_size (asection *exidx_sec, int adjust)
2468f9c9
PB
13503{
13504 asection *out_sec;
13505
13506 if (!exidx_sec->rawsize)
13507 exidx_sec->rawsize = exidx_sec->size;
13508
fd361982 13509 bfd_set_section_size (exidx_sec, exidx_sec->size + adjust);
2468f9c9
PB
13510 out_sec = exidx_sec->output_section;
13511 /* Adjust size of output section. */
cc850f74 13512 bfd_set_section_size (out_sec, out_sec->size + adjust);
2468f9c9
PB
13513}
13514
13515/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
cc850f74 13516
2468f9c9 13517static void
cc850f74 13518insert_cantunwind_after (asection *text_sec, asection *exidx_sec)
2468f9c9
PB
13519{
13520 struct _arm_elf_section_data *exidx_arm_data;
13521
13522 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
cc850f74
NC
13523 add_unwind_table_edit
13524 (&exidx_arm_data->u.exidx.unwind_edit_list,
13525 &exidx_arm_data->u.exidx.unwind_edit_tail,
13526 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
2468f9c9 13527
491d01d3
YU
13528 exidx_arm_data->additional_reloc_count++;
13529
cc850f74 13530 adjust_exidx_size (exidx_sec, 8);
2468f9c9
PB
13531}
13532
13533/* Scan .ARM.exidx tables, and create a list describing edits which should be
13534 made to those tables, such that:
b38cadfb 13535
2468f9c9
PB
13536 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13537 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
99059e56 13538 codes which have been inlined into the index).
2468f9c9 13539
85fdf906
AH
13540 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13541
2468f9c9 13542 The edits are applied when the tables are written
b38cadfb 13543 (in elf32_arm_write_section). */
2468f9c9 13544
0a1b45a2 13545bool
2468f9c9
PB
13546elf32_arm_fix_exidx_coverage (asection **text_section_order,
13547 unsigned int num_text_sections,
85fdf906 13548 struct bfd_link_info *info,
0a1b45a2 13549 bool merge_exidx_entries)
2468f9c9
PB
13550{
13551 bfd *inp;
13552 unsigned int last_second_word = 0, i;
13553 asection *last_exidx_sec = NULL;
13554 asection *last_text_sec = NULL;
13555 int last_unwind_type = -1;
13556
13557 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13558 text sections. */
c72f2fb2 13559 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
2468f9c9
PB
13560 {
13561 asection *sec;
b38cadfb 13562
2468f9c9 13563 for (sec = inp->sections; sec != NULL; sec = sec->next)
99059e56 13564 {
2468f9c9
PB
13565 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13566 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 13567
dec9d5df 13568 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 13569 continue;
b38cadfb 13570
2468f9c9
PB
13571 if (elf_sec->linked_to)
13572 {
13573 Elf_Internal_Shdr *linked_hdr
99059e56 13574 = &elf_section_data (elf_sec->linked_to)->this_hdr;
2468f9c9 13575 struct _arm_elf_section_data *linked_sec_arm_data
99059e56 13576 = get_arm_elf_section_data (linked_hdr->bfd_section);
2468f9c9
PB
13577
13578 if (linked_sec_arm_data == NULL)
99059e56 13579 continue;
2468f9c9
PB
13580
13581 /* Link this .ARM.exidx section back from the text section it
99059e56 13582 describes. */
2468f9c9
PB
13583 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13584 }
13585 }
13586 }
13587
13588 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13589 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 13590 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
13591
13592 for (i = 0; i < num_text_sections; i++)
13593 {
13594 asection *sec = text_section_order[i];
13595 asection *exidx_sec;
13596 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13597 struct _arm_elf_section_data *exidx_arm_data;
13598 bfd_byte *contents = NULL;
13599 int deleted_exidx_bytes = 0;
13600 bfd_vma j;
13601 arm_unwind_table_edit *unwind_edit_head = NULL;
13602 arm_unwind_table_edit *unwind_edit_tail = NULL;
13603 Elf_Internal_Shdr *hdr;
13604 bfd *ibfd;
13605
13606 if (arm_data == NULL)
99059e56 13607 continue;
2468f9c9
PB
13608
13609 exidx_sec = arm_data->u.text.arm_exidx_sec;
13610 if (exidx_sec == NULL)
13611 {
13612 /* Section has no unwind data. */
13613 if (last_unwind_type == 0 || !last_exidx_sec)
13614 continue;
13615
13616 /* Ignore zero sized sections. */
13617 if (sec->size == 0)
13618 continue;
13619
cc850f74 13620 insert_cantunwind_after (last_text_sec, last_exidx_sec);
2468f9c9
PB
13621 last_unwind_type = 0;
13622 continue;
13623 }
13624
22a8f80e
PB
13625 /* Skip /DISCARD/ sections. */
13626 if (bfd_is_abs_section (exidx_sec->output_section))
13627 continue;
13628
2468f9c9
PB
13629 hdr = &elf_section_data (exidx_sec)->this_hdr;
13630 if (hdr->sh_type != SHT_ARM_EXIDX)
99059e56 13631 continue;
b38cadfb 13632
2468f9c9
PB
13633 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13634 if (exidx_arm_data == NULL)
99059e56 13635 continue;
b38cadfb 13636
2468f9c9 13637 ibfd = exidx_sec->owner;
b38cadfb 13638
2468f9c9
PB
13639 if (hdr->contents != NULL)
13640 contents = hdr->contents;
13641 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13642 /* An error? */
13643 continue;
13644
ac06903d
YU
13645 if (last_unwind_type > 0)
13646 {
13647 unsigned int first_word = bfd_get_32 (ibfd, contents);
13648 /* Add cantunwind if first unwind item does not match section
13649 start. */
13650 if (first_word != sec->vma)
13651 {
13652 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13653 last_unwind_type = 0;
13654 }
13655 }
13656
2468f9c9
PB
13657 for (j = 0; j < hdr->sh_size; j += 8)
13658 {
13659 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13660 int unwind_type;
13661 int elide = 0;
13662
13663 /* An EXIDX_CANTUNWIND entry. */
13664 if (second_word == 1)
13665 {
13666 if (last_unwind_type == 0)
13667 elide = 1;
13668 unwind_type = 0;
13669 }
13670 /* Inlined unwinding data. Merge if equal to previous. */
13671 else if ((second_word & 0x80000000) != 0)
13672 {
85fdf906
AH
13673 if (merge_exidx_entries
13674 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
13675 elide = 1;
13676 unwind_type = 1;
13677 last_second_word = second_word;
13678 }
13679 /* Normal table entry. In theory we could merge these too,
13680 but duplicate entries are likely to be much less common. */
13681 else
13682 unwind_type = 2;
13683
491d01d3 13684 if (elide && !bfd_link_relocatable (info))
2468f9c9
PB
13685 {
13686 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13687 DELETE_EXIDX_ENTRY, NULL, j / 8);
13688
13689 deleted_exidx_bytes += 8;
13690 }
13691
13692 last_unwind_type = unwind_type;
13693 }
13694
13695 /* Free contents if we allocated it ourselves. */
13696 if (contents != hdr->contents)
99059e56 13697 free (contents);
2468f9c9
PB
13698
13699 /* Record edits to be applied later (in elf32_arm_write_section). */
13700 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13701 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 13702
2468f9c9 13703 if (deleted_exidx_bytes > 0)
cc850f74 13704 adjust_exidx_size (exidx_sec, - deleted_exidx_bytes);
2468f9c9
PB
13705
13706 last_exidx_sec = exidx_sec;
13707 last_text_sec = sec;
13708 }
13709
13710 /* Add terminating CANTUNWIND entry. */
491d01d3
YU
13711 if (!bfd_link_relocatable (info) && last_exidx_sec
13712 && last_unwind_type != 0)
cc850f74 13713 insert_cantunwind_after (last_text_sec, last_exidx_sec);
2468f9c9 13714
0a1b45a2 13715 return true;
2468f9c9
PB
13716}
13717
0a1b45a2 13718static bool
3e6b1042
DJ
13719elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13720 bfd *ibfd, const char *name)
13721{
13722 asection *sec, *osec;
13723
3d4d4302 13724 sec = bfd_get_linker_section (ibfd, name);
3e6b1042 13725 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
0a1b45a2 13726 return true;
3e6b1042
DJ
13727
13728 osec = sec->output_section;
13729 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
0a1b45a2 13730 return true;
3e6b1042
DJ
13731
13732 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13733 sec->output_offset, sec->size))
0a1b45a2 13734 return false;
3e6b1042 13735
0a1b45a2 13736 return true;
3e6b1042
DJ
13737}
13738
0a1b45a2 13739static bool
3e6b1042
DJ
13740elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13741{
13742 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 13743 asection *sec, *osec;
3e6b1042 13744
4dfe6ac6 13745 if (globals == NULL)
0a1b45a2 13746 return false;
4dfe6ac6 13747
3e6b1042
DJ
13748 /* Invoke the regular ELF backend linker to do all the work. */
13749 if (!bfd_elf_final_link (abfd, info))
0a1b45a2 13750 return false;
3e6b1042 13751
fe33d2fa
CL
13752 /* Process stub sections (eg BE8 encoding, ...). */
13753 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
7292b3ac 13754 unsigned int i;
cdb21a0a
NS
13755 for (i=0; i<htab->top_id; i++)
13756 {
13757 sec = htab->stub_group[i].stub_sec;
13758 /* Only process it once, in its link_sec slot. */
13759 if (sec && i == htab->stub_group[i].link_sec->id)
13760 {
13761 osec = sec->output_section;
13762 elf32_arm_write_section (abfd, info, sec, sec->contents);
13763 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13764 sec->output_offset, sec->size))
0a1b45a2 13765 return false;
cdb21a0a 13766 }
fe33d2fa 13767 }
fe33d2fa 13768
3e6b1042
DJ
13769 /* Write out any glue sections now that we have created all the
13770 stubs. */
13771 if (globals->bfd_of_glue_owner != NULL)
13772 {
13773 if (! elf32_arm_output_glue_section (info, abfd,
13774 globals->bfd_of_glue_owner,
13775 ARM2THUMB_GLUE_SECTION_NAME))
0a1b45a2 13776 return false;
3e6b1042
DJ
13777
13778 if (! elf32_arm_output_glue_section (info, abfd,
13779 globals->bfd_of_glue_owner,
13780 THUMB2ARM_GLUE_SECTION_NAME))
0a1b45a2 13781 return false;
3e6b1042
DJ
13782
13783 if (! elf32_arm_output_glue_section (info, abfd,
13784 globals->bfd_of_glue_owner,
13785 VFP11_ERRATUM_VENEER_SECTION_NAME))
0a1b45a2 13786 return false;
3e6b1042 13787
a504d23a
LA
13788 if (! elf32_arm_output_glue_section (info, abfd,
13789 globals->bfd_of_glue_owner,
13790 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
0a1b45a2 13791 return false;
a504d23a 13792
3e6b1042
DJ
13793 if (! elf32_arm_output_glue_section (info, abfd,
13794 globals->bfd_of_glue_owner,
13795 ARM_BX_GLUE_SECTION_NAME))
0a1b45a2 13796 return false;
3e6b1042
DJ
13797 }
13798
0a1b45a2 13799 return true;
3e6b1042
DJ
13800}
13801
5968a7b8
NC
13802/* Return a best guess for the machine number based on the attributes. */
13803
13804static unsigned int
13805bfd_arm_get_mach_from_attributes (bfd * abfd)
13806{
13807 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13808
13809 switch (arch)
13810 {
c0c468d5 13811 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
5968a7b8
NC
13812 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13813 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13814 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13815
13816 case TAG_CPU_ARCH_V5TE:
13817 {
13818 char * name;
13819
13820 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13821 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13822
13823 if (name)
13824 {
13825 if (strcmp (name, "IWMMXT2") == 0)
13826 return bfd_mach_arm_iWMMXt2;
13827
13828 if (strcmp (name, "IWMMXT") == 0)
6034aab8 13829 return bfd_mach_arm_iWMMXt;
088ca6c1
NC
13830
13831 if (strcmp (name, "XSCALE") == 0)
13832 {
13833 int wmmx;
13834
13835 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13836 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13837 switch (wmmx)
13838 {
13839 case 1: return bfd_mach_arm_iWMMXt;
13840 case 2: return bfd_mach_arm_iWMMXt2;
13841 default: return bfd_mach_arm_XScale;
13842 }
13843 }
5968a7b8
NC
13844 }
13845
13846 return bfd_mach_arm_5TE;
13847 }
13848
c0c468d5
TP
13849 case TAG_CPU_ARCH_V5TEJ:
13850 return bfd_mach_arm_5TEJ;
13851 case TAG_CPU_ARCH_V6:
13852 return bfd_mach_arm_6;
13853 case TAG_CPU_ARCH_V6KZ:
13854 return bfd_mach_arm_6KZ;
13855 case TAG_CPU_ARCH_V6T2:
13856 return bfd_mach_arm_6T2;
13857 case TAG_CPU_ARCH_V6K:
13858 return bfd_mach_arm_6K;
13859 case TAG_CPU_ARCH_V7:
13860 return bfd_mach_arm_7;
13861 case TAG_CPU_ARCH_V6_M:
13862 return bfd_mach_arm_6M;
13863 case TAG_CPU_ARCH_V6S_M:
13864 return bfd_mach_arm_6SM;
13865 case TAG_CPU_ARCH_V7E_M:
13866 return bfd_mach_arm_7EM;
13867 case TAG_CPU_ARCH_V8:
13868 return bfd_mach_arm_8;
13869 case TAG_CPU_ARCH_V8R:
13870 return bfd_mach_arm_8R;
13871 case TAG_CPU_ARCH_V8M_BASE:
13872 return bfd_mach_arm_8M_BASE;
13873 case TAG_CPU_ARCH_V8M_MAIN:
13874 return bfd_mach_arm_8M_MAIN;
031254f2
AV
13875 case TAG_CPU_ARCH_V8_1M_MAIN:
13876 return bfd_mach_arm_8_1M_MAIN;
3197e593
PW
13877 case TAG_CPU_ARCH_V9:
13878 return bfd_mach_arm_9;
c0c468d5 13879
5968a7b8 13880 default:
c0c468d5
TP
13881 /* Force entry to be added for any new known Tag_CPU_arch value. */
13882 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13883
13884 /* Unknown Tag_CPU_arch value. */
5968a7b8
NC
13885 return bfd_mach_arm_unknown;
13886 }
13887}
13888
c178919b
NC
13889/* Set the right machine number. */
13890
0a1b45a2 13891static bool
57e8b36a 13892elf32_arm_object_p (bfd *abfd)
c178919b 13893{
5a6c6817 13894 unsigned int mach;
57e8b36a 13895
5a6c6817 13896 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 13897
5968a7b8
NC
13898 if (mach == bfd_mach_arm_unknown)
13899 {
13900 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13901 mach = bfd_mach_arm_ep9312;
13902 else
13903 mach = bfd_arm_get_mach_from_attributes (abfd);
13904 }
c178919b 13905
5968a7b8 13906 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
0a1b45a2 13907 return true;
c178919b
NC
13908}
13909
fc830a83 13910/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 13911
0a1b45a2 13912static bool
57e8b36a 13913elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
13914{
13915 if (elf_flags_init (abfd)
13916 && elf_elfheader (abfd)->e_flags != flags)
13917 {
fc830a83
NC
13918 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13919 {
fd2ec330 13920 if (flags & EF_ARM_INTERWORK)
4eca0228 13921 _bfd_error_handler
90b6238f 13922 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
d003868e 13923 abfd);
fc830a83 13924 else
d003868e 13925 _bfd_error_handler
90b6238f 13926 (_("warning: clearing the interworking flag of %pB due to outside request"),
d003868e 13927 abfd);
fc830a83 13928 }
252b5132
RH
13929 }
13930 else
13931 {
13932 elf_elfheader (abfd)->e_flags = flags;
0a1b45a2 13933 elf_flags_init (abfd) = true;
252b5132
RH
13934 }
13935
0a1b45a2 13936 return true;
252b5132
RH
13937}
13938
fc830a83 13939/* Copy backend specific data from one object module to another. */
9b485d32 13940
0a1b45a2 13941static bool
57e8b36a 13942elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
13943{
13944 flagword in_flags;
13945 flagword out_flags;
13946
0ffa91dd 13947 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
0a1b45a2 13948 return true;
252b5132 13949
fc830a83 13950 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
13951 out_flags = elf_elfheader (obfd)->e_flags;
13952
fc830a83
NC
13953 if (elf_flags_init (obfd)
13954 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13955 && in_flags != out_flags)
252b5132 13956 {
252b5132 13957 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 13958 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
0a1b45a2 13959 return false;
252b5132
RH
13960
13961 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 13962 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
0a1b45a2 13963 return false;
252b5132
RH
13964
13965 /* If the src and dest have different interworking flags
99059e56 13966 then turn off the interworking bit. */
fd2ec330 13967 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 13968 {
fd2ec330 13969 if (out_flags & EF_ARM_INTERWORK)
d003868e 13970 _bfd_error_handler
90b6238f 13971 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
d003868e 13972 obfd, ibfd);
252b5132 13973
fd2ec330 13974 in_flags &= ~EF_ARM_INTERWORK;
252b5132 13975 }
1006ba19
PB
13976
13977 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
13978 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13979 in_flags &= ~EF_ARM_PIC;
252b5132
RH
13980 }
13981
13982 elf_elfheader (obfd)->e_flags = in_flags;
0a1b45a2 13983 elf_flags_init (obfd) = true;
252b5132 13984
e2349352 13985 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
ee065d83
PB
13986}
13987
13988/* Values for Tag_ABI_PCS_R9_use. */
13989enum
13990{
13991 AEABI_R9_V6,
13992 AEABI_R9_SB,
13993 AEABI_R9_TLS,
13994 AEABI_R9_unused
13995};
13996
13997/* Values for Tag_ABI_PCS_RW_data. */
13998enum
13999{
14000 AEABI_PCS_RW_data_absolute,
14001 AEABI_PCS_RW_data_PCrel,
14002 AEABI_PCS_RW_data_SBrel,
14003 AEABI_PCS_RW_data_unused
14004};
14005
14006/* Values for Tag_ABI_enum_size. */
14007enum
14008{
14009 AEABI_enum_unused,
14010 AEABI_enum_short,
14011 AEABI_enum_wide,
14012 AEABI_enum_forced_wide
14013};
14014
104d59d1
JM
14015/* Determine whether an object attribute tag takes an integer, a
14016 string or both. */
906e58ca 14017
104d59d1
JM
14018static int
14019elf32_arm_obj_attrs_arg_type (int tag)
14020{
14021 if (tag == Tag_compatibility)
3483fe2e 14022 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 14023 else if (tag == Tag_nodefaults)
3483fe2e
AS
14024 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14025 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14026 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 14027 else if (tag < 32)
3483fe2e 14028 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 14029 else
3483fe2e 14030 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
14031}
14032
5aa6ff7c
AS
14033/* The ABI defines that Tag_conformance should be emitted first, and that
14034 Tag_nodefaults should be second (if either is defined). This sets those
14035 two positions, and bumps up the position of all the remaining tags to
14036 compensate. */
14037static int
14038elf32_arm_obj_attrs_order (int num)
14039{
3de4a297 14040 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 14041 return Tag_conformance;
3de4a297 14042 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
14043 return Tag_nodefaults;
14044 if ((num - 2) < Tag_nodefaults)
14045 return num - 2;
14046 if ((num - 1) < Tag_conformance)
14047 return num - 1;
14048 return num;
14049}
14050
e8b36cd1 14051/* Attribute numbers >=64 (mod 128) can be safely ignored. */
0a1b45a2 14052static bool
e8b36cd1
JM
14053elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14054{
14055 if ((tag & 127) < 64)
14056 {
14057 _bfd_error_handler
90b6238f 14058 (_("%pB: unknown mandatory EABI object attribute %d"),
e8b36cd1
JM
14059 abfd, tag);
14060 bfd_set_error (bfd_error_bad_value);
0a1b45a2 14061 return false;
e8b36cd1
JM
14062 }
14063 else
14064 {
14065 _bfd_error_handler
90b6238f 14066 (_("warning: %pB: unknown EABI object attribute %d"),
e8b36cd1 14067 abfd, tag);
0a1b45a2 14068 return true;
e8b36cd1
JM
14069 }
14070}
14071
91e22acd
AS
14072/* Read the architecture from the Tag_also_compatible_with attribute, if any.
14073 Returns -1 if no architecture could be read. */
14074
14075static int
14076get_secondary_compatible_arch (bfd *abfd)
14077{
14078 obj_attribute *attr =
14079 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14080
14081 /* Note: the tag and its argument below are uleb128 values, though
14082 currently-defined values fit in one byte for each. */
14083 if (attr->s
14084 && attr->s[0] == Tag_CPU_arch
14085 && (attr->s[1] & 128) != 128
14086 && attr->s[2] == 0)
14087 return attr->s[1];
14088
14089 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14090 return -1;
14091}
14092
14093/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14094 The tag is removed if ARCH is -1. */
14095
8e79c3df 14096static void
91e22acd 14097set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 14098{
91e22acd
AS
14099 obj_attribute *attr =
14100 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 14101
91e22acd
AS
14102 if (arch == -1)
14103 {
14104 attr->s = NULL;
14105 return;
8e79c3df 14106 }
91e22acd
AS
14107
14108 /* Note: the tag and its argument below are uleb128 values, though
14109 currently-defined values fit in one byte for each. */
14110 if (!attr->s)
21d799b5 14111 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
14112 attr->s[0] = Tag_CPU_arch;
14113 attr->s[1] = arch;
14114 attr->s[2] = '\0';
8e79c3df
CM
14115}
14116
91e22acd
AS
14117/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14118 into account. */
14119
14120static int
14121tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
b3a1e486 14122 int newtag, int secondary_compat, const char* name_table[])
8e79c3df 14123{
91e22acd
AS
14124#define T(X) TAG_CPU_ARCH_##X
14125 int tagl, tagh, result;
14126 const int v6t2[] =
14127 {
14128 T(V6T2), /* PRE_V4. */
14129 T(V6T2), /* V4. */
14130 T(V6T2), /* V4T. */
14131 T(V6T2), /* V5T. */
14132 T(V6T2), /* V5TE. */
14133 T(V6T2), /* V5TEJ. */
14134 T(V6T2), /* V6. */
14135 T(V7), /* V6KZ. */
14136 T(V6T2) /* V6T2. */
14137 };
14138 const int v6k[] =
14139 {
14140 T(V6K), /* PRE_V4. */
14141 T(V6K), /* V4. */
14142 T(V6K), /* V4T. */
14143 T(V6K), /* V5T. */
14144 T(V6K), /* V5TE. */
14145 T(V6K), /* V5TEJ. */
14146 T(V6K), /* V6. */
14147 T(V6KZ), /* V6KZ. */
14148 T(V7), /* V6T2. */
14149 T(V6K) /* V6K. */
14150 };
14151 const int v7[] =
14152 {
14153 T(V7), /* PRE_V4. */
14154 T(V7), /* V4. */
14155 T(V7), /* V4T. */
14156 T(V7), /* V5T. */
14157 T(V7), /* V5TE. */
14158 T(V7), /* V5TEJ. */
14159 T(V7), /* V6. */
14160 T(V7), /* V6KZ. */
14161 T(V7), /* V6T2. */
14162 T(V7), /* V6K. */
14163 T(V7) /* V7. */
14164 };
14165 const int v6_m[] =
14166 {
07d6d2b8
AM
14167 -1, /* PRE_V4. */
14168 -1, /* V4. */
91e22acd
AS
14169 T(V6K), /* V4T. */
14170 T(V6K), /* V5T. */
14171 T(V6K), /* V5TE. */
14172 T(V6K), /* V5TEJ. */
14173 T(V6K), /* V6. */
14174 T(V6KZ), /* V6KZ. */
14175 T(V7), /* V6T2. */
14176 T(V6K), /* V6K. */
14177 T(V7), /* V7. */
14178 T(V6_M) /* V6_M. */
14179 };
14180 const int v6s_m[] =
14181 {
07d6d2b8
AM
14182 -1, /* PRE_V4. */
14183 -1, /* V4. */
91e22acd
AS
14184 T(V6K), /* V4T. */
14185 T(V6K), /* V5T. */
14186 T(V6K), /* V5TE. */
14187 T(V6K), /* V5TEJ. */
14188 T(V6K), /* V6. */
14189 T(V6KZ), /* V6KZ. */
14190 T(V7), /* V6T2. */
14191 T(V6K), /* V6K. */
14192 T(V7), /* V7. */
14193 T(V6S_M), /* V6_M. */
14194 T(V6S_M) /* V6S_M. */
14195 };
9e3c6df6
PB
14196 const int v7e_m[] =
14197 {
07d6d2b8
AM
14198 -1, /* PRE_V4. */
14199 -1, /* V4. */
9e3c6df6
PB
14200 T(V7E_M), /* V4T. */
14201 T(V7E_M), /* V5T. */
14202 T(V7E_M), /* V5TE. */
14203 T(V7E_M), /* V5TEJ. */
14204 T(V7E_M), /* V6. */
14205 T(V7E_M), /* V6KZ. */
14206 T(V7E_M), /* V6T2. */
14207 T(V7E_M), /* V6K. */
14208 T(V7E_M), /* V7. */
14209 T(V7E_M), /* V6_M. */
14210 T(V7E_M), /* V6S_M. */
14211 T(V7E_M) /* V7E_M. */
14212 };
bca38921
MGD
14213 const int v8[] =
14214 {
14215 T(V8), /* PRE_V4. */
14216 T(V8), /* V4. */
14217 T(V8), /* V4T. */
14218 T(V8), /* V5T. */
14219 T(V8), /* V5TE. */
14220 T(V8), /* V5TEJ. */
14221 T(V8), /* V6. */
14222 T(V8), /* V6KZ. */
14223 T(V8), /* V6T2. */
14224 T(V8), /* V6K. */
14225 T(V8), /* V7. */
14226 T(V8), /* V6_M. */
14227 T(V8), /* V6S_M. */
14228 T(V8), /* V7E_M. */
3197e593
PW
14229 T(V8), /* V8. */
14230 T(V8), /* V8-R. */
14231 T(V8), /* V8-M.BASE. */
14232 T(V8), /* V8-M.MAIN. */
14233 T(V8), /* V8.1. */
14234 T(V8), /* V8.2. */
14235 T(V8), /* V8.3. */
14236 T(V8), /* V8.1-M.MAIN. */
bca38921 14237 };
bff0500d
TP
14238 const int v8r[] =
14239 {
14240 T(V8R), /* PRE_V4. */
14241 T(V8R), /* V4. */
14242 T(V8R), /* V4T. */
14243 T(V8R), /* V5T. */
14244 T(V8R), /* V5TE. */
14245 T(V8R), /* V5TEJ. */
14246 T(V8R), /* V6. */
14247 T(V8R), /* V6KZ. */
14248 T(V8R), /* V6T2. */
14249 T(V8R), /* V6K. */
14250 T(V8R), /* V7. */
14251 T(V8R), /* V6_M. */
14252 T(V8R), /* V6S_M. */
14253 T(V8R), /* V7E_M. */
14254 T(V8), /* V8. */
14255 T(V8R), /* V8R. */
14256 };
2fd158eb
TP
14257 const int v8m_baseline[] =
14258 {
14259 -1, /* PRE_V4. */
14260 -1, /* V4. */
14261 -1, /* V4T. */
14262 -1, /* V5T. */
14263 -1, /* V5TE. */
14264 -1, /* V5TEJ. */
14265 -1, /* V6. */
14266 -1, /* V6KZ. */
14267 -1, /* V6T2. */
14268 -1, /* V6K. */
14269 -1, /* V7. */
14270 T(V8M_BASE), /* V6_M. */
14271 T(V8M_BASE), /* V6S_M. */
14272 -1, /* V7E_M. */
14273 -1, /* V8. */
bff0500d 14274 -1, /* V8R. */
2fd158eb
TP
14275 T(V8M_BASE) /* V8-M BASELINE. */
14276 };
14277 const int v8m_mainline[] =
14278 {
14279 -1, /* PRE_V4. */
14280 -1, /* V4. */
14281 -1, /* V4T. */
14282 -1, /* V5T. */
14283 -1, /* V5TE. */
14284 -1, /* V5TEJ. */
14285 -1, /* V6. */
14286 -1, /* V6KZ. */
14287 -1, /* V6T2. */
14288 -1, /* V6K. */
14289 T(V8M_MAIN), /* V7. */
14290 T(V8M_MAIN), /* V6_M. */
14291 T(V8M_MAIN), /* V6S_M. */
14292 T(V8M_MAIN), /* V7E_M. */
14293 -1, /* V8. */
bff0500d 14294 -1, /* V8R. */
2fd158eb
TP
14295 T(V8M_MAIN), /* V8-M BASELINE. */
14296 T(V8M_MAIN) /* V8-M MAINLINE. */
14297 };
031254f2
AV
14298 const int v8_1m_mainline[] =
14299 {
14300 -1, /* PRE_V4. */
14301 -1, /* V4. */
14302 -1, /* V4T. */
14303 -1, /* V5T. */
14304 -1, /* V5TE. */
14305 -1, /* V5TEJ. */
14306 -1, /* V6. */
14307 -1, /* V6KZ. */
14308 -1, /* V6T2. */
14309 -1, /* V6K. */
14310 T(V8_1M_MAIN), /* V7. */
14311 T(V8_1M_MAIN), /* V6_M. */
14312 T(V8_1M_MAIN), /* V6S_M. */
14313 T(V8_1M_MAIN), /* V7E_M. */
14314 -1, /* V8. */
14315 -1, /* V8R. */
14316 T(V8_1M_MAIN), /* V8-M BASELINE. */
14317 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14318 -1, /* Unused (18). */
14319 -1, /* Unused (19). */
14320 -1, /* Unused (20). */
14321 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14322 };
3197e593
PW
14323 const int v9[] =
14324 {
14325 T(V9), /* PRE_V4. */
14326 T(V9), /* V4. */
14327 T(V9), /* V4T. */
14328 T(V9), /* V5T. */
14329 T(V9), /* V5TE. */
14330 T(V9), /* V5TEJ. */
14331 T(V9), /* V6. */
14332 T(V9), /* V6KZ. */
14333 T(V9), /* V6T2. */
14334 T(V9), /* V6K. */
14335 T(V9), /* V7. */
14336 T(V9), /* V6_M. */
14337 T(V9), /* V6S_M. */
14338 T(V9), /* V7E_M. */
14339 T(V9), /* V8. */
14340 T(V9), /* V8-R. */
14341 T(V9), /* V8-M.BASE. */
14342 T(V9), /* V8-M.MAIN. */
14343 T(V9), /* V8.1. */
14344 T(V9), /* V8.2. */
14345 T(V9), /* V8.3. */
14346 T(V9), /* V8.1-M.MAIN. */
14347 T(V9), /* V9. */
14348 };
91e22acd
AS
14349 const int v4t_plus_v6_m[] =
14350 {
14351 -1, /* PRE_V4. */
14352 -1, /* V4. */
14353 T(V4T), /* V4T. */
14354 T(V5T), /* V5T. */
14355 T(V5TE), /* V5TE. */
14356 T(V5TEJ), /* V5TEJ. */
14357 T(V6), /* V6. */
14358 T(V6KZ), /* V6KZ. */
14359 T(V6T2), /* V6T2. */
14360 T(V6K), /* V6K. */
14361 T(V7), /* V7. */
14362 T(V6_M), /* V6_M. */
14363 T(V6S_M), /* V6S_M. */
9e3c6df6 14364 T(V7E_M), /* V7E_M. */
bca38921 14365 T(V8), /* V8. */
bff0500d 14366 -1, /* V8R. */
2fd158eb
TP
14367 T(V8M_BASE), /* V8-M BASELINE. */
14368 T(V8M_MAIN), /* V8-M MAINLINE. */
031254f2
AV
14369 -1, /* Unused (18). */
14370 -1, /* Unused (19). */
14371 -1, /* Unused (20). */
14372 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
3197e593 14373 T(V9), /* V9. */
91e22acd
AS
14374 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14375 };
14376 const int *comb[] =
14377 {
14378 v6t2,
14379 v6k,
14380 v7,
14381 v6_m,
14382 v6s_m,
9e3c6df6 14383 v7e_m,
bca38921 14384 v8,
bff0500d 14385 v8r,
2fd158eb
TP
14386 v8m_baseline,
14387 v8m_mainline,
031254f2
AV
14388 NULL,
14389 NULL,
14390 NULL,
14391 v8_1m_mainline,
3197e593 14392 v9,
91e22acd
AS
14393 /* Pseudo-architecture. */
14394 v4t_plus_v6_m
14395 };
14396
14397 /* Check we've not got a higher architecture than we know about. */
14398
9e3c6df6 14399 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 14400 {
90b6238f 14401 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
91e22acd
AS
14402 return -1;
14403 }
14404
14405 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14406
14407 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14408 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14409 oldtag = T(V4T_PLUS_V6_M);
14410
14411 /* And override the new tag if we have a Tag_also_compatible_with on the
14412 input. */
14413
14414 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14415 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14416 newtag = T(V4T_PLUS_V6_M);
14417
14418 tagl = (oldtag < newtag) ? oldtag : newtag;
14419 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14420
14421 /* Architectures before V6KZ add features monotonically. */
14422 if (tagh <= TAG_CPU_ARCH_V6KZ)
14423 return result;
14424
4ed7ed8d 14425 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
91e22acd
AS
14426
14427 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14428 as the canonical version. */
14429 if (result == T(V4T_PLUS_V6_M))
14430 {
14431 result = T(V4T);
14432 *secondary_compat_out = T(V6_M);
14433 }
14434 else
14435 *secondary_compat_out = -1;
14436
14437 if (result == -1)
14438 {
b3a1e486
CL
14439 _bfd_error_handler (_("error: conflicting CPU architectures %s vs %s in %pB"),
14440 name_table[oldtag], name_table[newtag], ibfd);
91e22acd
AS
14441 return -1;
14442 }
14443
14444 return result;
14445#undef T
8e79c3df
CM
14446}
14447
ac56ee8f
MGD
14448/* Query attributes object to see if integer divide instructions may be
14449 present in an object. */
0a1b45a2 14450static bool
ac56ee8f
MGD
14451elf32_arm_attributes_accept_div (const obj_attribute *attr)
14452{
14453 int arch = attr[Tag_CPU_arch].i;
14454 int profile = attr[Tag_CPU_arch_profile].i;
14455
14456 switch (attr[Tag_DIV_use].i)
14457 {
14458 case 0:
14459 /* Integer divide allowed if instruction contained in archetecture. */
14460 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
0a1b45a2 14461 return true;
ac56ee8f 14462 else if (arch >= TAG_CPU_ARCH_V7E_M)
0a1b45a2 14463 return true;
ac56ee8f 14464 else
0a1b45a2 14465 return false;
ac56ee8f
MGD
14466
14467 case 1:
14468 /* Integer divide explicitly prohibited. */
0a1b45a2 14469 return false;
ac56ee8f
MGD
14470
14471 default:
14472 /* Unrecognised case - treat as allowing divide everywhere. */
14473 case 2:
14474 /* Integer divide allowed in ARM state. */
0a1b45a2 14475 return true;
ac56ee8f
MGD
14476 }
14477}
14478
14479/* Query attributes object to see if integer divide instructions are
14480 forbidden to be in the object. This is not the inverse of
14481 elf32_arm_attributes_accept_div. */
0a1b45a2 14482static bool
ac56ee8f
MGD
14483elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14484{
14485 return attr[Tag_DIV_use].i == 1;
14486}
14487
ee065d83
PB
14488/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14489 are conflicting attributes. */
906e58ca 14490
0a1b45a2 14491static bool
50e03d47 14492elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
ee065d83 14493{
50e03d47 14494 bfd *obfd = info->output_bfd;
104d59d1
JM
14495 obj_attribute *in_attr;
14496 obj_attribute *out_attr;
ee065d83
PB
14497 /* Some tags have 0 = don't care, 1 = strong requirement,
14498 2 = weak requirement. */
91e22acd 14499 static const int order_021[3] = {0, 2, 1};
ee065d83 14500 int i;
0a1b45a2 14501 bool result = true;
9274e9de 14502 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
ee065d83 14503
3e6b1042
DJ
14504 /* Skip the linker stubs file. This preserves previous behavior
14505 of accepting unknown attributes in the first input file - but
14506 is that a bug? */
14507 if (ibfd->flags & BFD_LINKER_CREATED)
0a1b45a2 14508 return true;
3e6b1042 14509
9274e9de
TG
14510 /* Skip any input that hasn't attribute section.
14511 This enables to link object files without attribute section with
14512 any others. */
14513 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
0a1b45a2 14514 return true;
9274e9de 14515
104d59d1 14516 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
14517 {
14518 /* This is the first object. Copy the attributes. */
104d59d1 14519 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 14520
cd21e546
MGD
14521 out_attr = elf_known_obj_attributes_proc (obfd);
14522
004ae526
PB
14523 /* Use the Tag_null value to indicate the attributes have been
14524 initialized. */
cd21e546 14525 out_attr[0].i = 1;
004ae526 14526
cd21e546
MGD
14527 /* We do not output objects with Tag_MPextension_use_legacy - we move
14528 the attribute's value to Tag_MPextension_use. */
14529 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14530 {
14531 if (out_attr[Tag_MPextension_use].i != 0
14532 && out_attr[Tag_MPextension_use_legacy].i
99059e56 14533 != out_attr[Tag_MPextension_use].i)
cd21e546
MGD
14534 {
14535 _bfd_error_handler
871b3ab2 14536 (_("Error: %pB has both the current and legacy "
cd21e546 14537 "Tag_MPextension_use attributes"), ibfd);
0a1b45a2 14538 result = false;
cd21e546
MGD
14539 }
14540
14541 out_attr[Tag_MPextension_use] =
14542 out_attr[Tag_MPextension_use_legacy];
14543 out_attr[Tag_MPextension_use_legacy].type = 0;
14544 out_attr[Tag_MPextension_use_legacy].i = 0;
14545 }
14546
81c9e0f6
NC
14547 /* PR 28859 and 28848: Handle the case where the first input file,
14548 eg crti.o, has a Tag_ABI_HardFP_use of 3 but no Tag_FP_arch set.
14549 Using Tag_ABI_HardFP_use in this way is deprecated, so reset the
14550 attribute to zero.
14551 FIXME: Should we handle other non-zero values of Tag_ABI_HardFO_use ? */
14552 if (out_attr[Tag_ABI_HardFP_use].i == 3 && out_attr[Tag_FP_arch].i == 0)
14553 out_attr[Tag_ABI_HardFP_use].i = 0;
14554
cd21e546 14555 return result;
ee065d83
PB
14556 }
14557
104d59d1
JM
14558 in_attr = elf_known_obj_attributes_proc (ibfd);
14559 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
14560 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14561 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14562 {
5c294fee
TG
14563 /* Ignore mismatches if the object doesn't use floating point or is
14564 floating point ABI independent. */
14565 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14566 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14567 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
ee065d83 14568 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
5c294fee
TG
14569 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14570 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
ee065d83
PB
14571 {
14572 _bfd_error_handler
871b3ab2 14573 (_("error: %pB uses VFP register arguments, %pB does not"),
deddc40b
NS
14574 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14575 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
0a1b45a2 14576 result = false;
ee065d83
PB
14577 }
14578 }
14579
3de4a297 14580 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
14581 {
14582 /* Merge this attribute with existing attributes. */
14583 switch (i)
14584 {
14585 case Tag_CPU_raw_name:
14586 case Tag_CPU_name:
6a631e86 14587 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
14588 break;
14589
14590 case Tag_ABI_optimization_goals:
14591 case Tag_ABI_FP_optimization_goals:
14592 /* Use the first value seen. */
14593 break;
14594
14595 case Tag_CPU_arch:
91e22acd
AS
14596 {
14597 int secondary_compat = -1, secondary_compat_out = -1;
14598 unsigned int saved_out_attr = out_attr[i].i;
70e99720
TG
14599 int arch_attr;
14600 static const char *name_table[] =
14601 {
91e22acd
AS
14602 /* These aren't real CPU names, but we can't guess
14603 that from the architecture version alone. */
14604 "Pre v4",
14605 "ARM v4",
14606 "ARM v4T",
14607 "ARM v5T",
14608 "ARM v5TE",
14609 "ARM v5TEJ",
14610 "ARM v6",
14611 "ARM v6KZ",
14612 "ARM v6T2",
14613 "ARM v6K",
14614 "ARM v7",
14615 "ARM v6-M",
bca38921 14616 "ARM v6S-M",
3197e593 14617 "ARM v7E-M",
2fd158eb 14618 "ARM v8",
3197e593 14619 "ARM v8-R",
2fd158eb
TP
14620 "ARM v8-M.baseline",
14621 "ARM v8-M.mainline",
3197e593
PW
14622 "ARM v8.1-A",
14623 "ARM v8.2-A",
14624 "ARM v8.3-A",
14625 "ARM v8.1-M.mainline",
14626 "ARM v9",
91e22acd
AS
14627 };
14628
14629 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14630 secondary_compat = get_secondary_compatible_arch (ibfd);
14631 secondary_compat_out = get_secondary_compatible_arch (obfd);
70e99720
TG
14632 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14633 &secondary_compat_out,
14634 in_attr[i].i,
b3a1e486
CL
14635 secondary_compat,
14636 name_table);
70e99720
TG
14637
14638 /* Return with error if failed to merge. */
14639 if (arch_attr == -1)
0a1b45a2 14640 return false;
70e99720
TG
14641
14642 out_attr[i].i = arch_attr;
14643
91e22acd
AS
14644 set_secondary_compatible_arch (obfd, secondary_compat_out);
14645
14646 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14647 if (out_attr[i].i == saved_out_attr)
14648 ; /* Leave the names alone. */
14649 else if (out_attr[i].i == in_attr[i].i)
14650 {
14651 /* The output architecture has been changed to match the
14652 input architecture. Use the input names. */
14653 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14654 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14655 : NULL;
14656 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14657 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14658 : NULL;
14659 }
14660 else
14661 {
14662 out_attr[Tag_CPU_name].s = NULL;
14663 out_attr[Tag_CPU_raw_name].s = NULL;
14664 }
14665
14666 /* If we still don't have a value for Tag_CPU_name,
14667 make one up now. Tag_CPU_raw_name remains blank. */
14668 if (out_attr[Tag_CPU_name].s == NULL
14669 && out_attr[i].i < ARRAY_SIZE (name_table))
14670 out_attr[Tag_CPU_name].s =
14671 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14672 }
14673 break;
14674
ee065d83
PB
14675 case Tag_ARM_ISA_use:
14676 case Tag_THUMB_ISA_use:
ee065d83 14677 case Tag_WMMX_arch:
91e22acd
AS
14678 case Tag_Advanced_SIMD_arch:
14679 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 14680 case Tag_ABI_FP_rounding:
ee065d83
PB
14681 case Tag_ABI_FP_exceptions:
14682 case Tag_ABI_FP_user_exceptions:
14683 case Tag_ABI_FP_number_model:
75375b3e 14684 case Tag_FP_HP_extension:
91e22acd
AS
14685 case Tag_CPU_unaligned_access:
14686 case Tag_T2EE_use:
91e22acd 14687 case Tag_MPextension_use:
a7ad558c 14688 case Tag_MVE_arch:
99db83d0 14689 case Tag_PAC_extension:
4b535030 14690 case Tag_BTI_extension:
b81ee92f 14691 case Tag_BTI_use:
c9fed665 14692 case Tag_PACRET_use:
ee065d83
PB
14693 /* Use the largest value specified. */
14694 if (in_attr[i].i > out_attr[i].i)
14695 out_attr[i].i = in_attr[i].i;
14696 break;
14697
75375b3e 14698 case Tag_ABI_align_preserved:
91e22acd
AS
14699 case Tag_ABI_PCS_RO_data:
14700 /* Use the smallest value specified. */
14701 if (in_attr[i].i < out_attr[i].i)
14702 out_attr[i].i = in_attr[i].i;
14703 break;
14704
75375b3e 14705 case Tag_ABI_align_needed:
91e22acd 14706 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
14707 && (in_attr[Tag_ABI_align_preserved].i == 0
14708 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 14709 {
91e22acd
AS
14710 /* This error message should be enabled once all non-conformant
14711 binaries in the toolchain have had the attributes set
14712 properly.
ee065d83 14713 _bfd_error_handler
871b3ab2 14714 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
91e22acd 14715 obfd, ibfd);
0a1b45a2 14716 result = false; */
ee065d83 14717 }
91e22acd
AS
14718 /* Fall through. */
14719 case Tag_ABI_FP_denormal:
14720 case Tag_ABI_PCS_GOT_use:
14721 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14722 value if greater than 2 (for future-proofing). */
14723 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14724 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14725 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
14726 out_attr[i].i = in_attr[i].i;
14727 break;
91e22acd 14728
75375b3e
MGD
14729 case Tag_Virtualization_use:
14730 /* The virtualization tag effectively stores two bits of
14731 information: the intended use of TrustZone (in bit 0), and the
14732 intended use of Virtualization (in bit 1). */
14733 if (out_attr[i].i == 0)
14734 out_attr[i].i = in_attr[i].i;
14735 else if (in_attr[i].i != 0
14736 && in_attr[i].i != out_attr[i].i)
14737 {
14738 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14739 out_attr[i].i = 3;
14740 else
14741 {
14742 _bfd_error_handler
871b3ab2
AM
14743 (_("error: %pB: unable to merge virtualization attributes "
14744 "with %pB"),
75375b3e 14745 obfd, ibfd);
0a1b45a2 14746 result = false;
75375b3e
MGD
14747 }
14748 }
14749 break;
91e22acd
AS
14750
14751 case Tag_CPU_arch_profile:
14752 if (out_attr[i].i != in_attr[i].i)
14753 {
14754 /* 0 will merge with anything.
14755 'A' and 'S' merge to 'A'.
14756 'R' and 'S' merge to 'R'.
99059e56 14757 'M' and 'A|R|S' is an error. */
91e22acd
AS
14758 if (out_attr[i].i == 0
14759 || (out_attr[i].i == 'S'
14760 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14761 out_attr[i].i = in_attr[i].i;
14762 else if (in_attr[i].i == 0
14763 || (in_attr[i].i == 'S'
14764 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
6a631e86 14765 ; /* Do nothing. */
91e22acd
AS
14766 else
14767 {
14768 _bfd_error_handler
90b6238f 14769 (_("error: %pB: conflicting architecture profiles %c/%c"),
91e22acd
AS
14770 ibfd,
14771 in_attr[i].i ? in_attr[i].i : '0',
14772 out_attr[i].i ? out_attr[i].i : '0');
0a1b45a2 14773 result = false;
91e22acd
AS
14774 }
14775 }
14776 break;
15afaa63
TP
14777
14778 case Tag_DSP_extension:
14779 /* No need to change output value if any of:
14780 - pre (<=) ARMv5T input architecture (do not have DSP)
14781 - M input profile not ARMv7E-M and do not have DSP. */
14782 if (in_attr[Tag_CPU_arch].i <= 3
14783 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14784 && in_attr[Tag_CPU_arch].i != 13
14785 && in_attr[i].i == 0))
14786 ; /* Do nothing. */
14787 /* Output value should be 0 if DSP part of architecture, ie.
14788 - post (>=) ARMv5te architecture output
14789 - A, R or S profile output or ARMv7E-M output architecture. */
14790 else if (out_attr[Tag_CPU_arch].i >= 4
14791 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14792 || out_attr[Tag_CPU_arch_profile].i == 'R'
14793 || out_attr[Tag_CPU_arch_profile].i == 'S'
14794 || out_attr[Tag_CPU_arch].i == 13))
14795 out_attr[i].i = 0;
14796 /* Otherwise, DSP instructions are added and not part of output
14797 architecture. */
14798 else
14799 out_attr[i].i = 1;
14800 break;
14801
75375b3e 14802 case Tag_FP_arch:
62f3b8c8 14803 {
4547cb56
NC
14804 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14805 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14806 when it's 0. It might mean absence of FP hardware if
99654aaf 14807 Tag_FP_arch is zero. */
4547cb56 14808
a715796b 14809#define VFP_VERSION_COUNT 9
62f3b8c8
PB
14810 static const struct
14811 {
14812 int ver;
14813 int regs;
bca38921 14814 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
14815 {
14816 {0, 0},
14817 {1, 16},
14818 {2, 16},
14819 {3, 32},
14820 {3, 16},
14821 {4, 32},
bca38921 14822 {4, 16},
a715796b
TG
14823 {8, 32},
14824 {8, 16}
62f3b8c8
PB
14825 };
14826 int ver;
14827 int regs;
14828 int newval;
14829
4547cb56
NC
14830 /* If the output has no requirement about FP hardware,
14831 follow the requirement of the input. */
14832 if (out_attr[i].i == 0)
14833 {
4ec192e6
RE
14834 /* This assert is still reasonable, we shouldn't
14835 produce the suspicious build attribute
14836 combination (See below for in_attr). */
4547cb56
NC
14837 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14838 out_attr[i].i = in_attr[i].i;
14839 out_attr[Tag_ABI_HardFP_use].i
14840 = in_attr[Tag_ABI_HardFP_use].i;
14841 break;
14842 }
14843 /* If the input has no requirement about FP hardware, do
14844 nothing. */
14845 else if (in_attr[i].i == 0)
14846 {
4ec192e6
RE
14847 /* We used to assert that Tag_ABI_HardFP_use was
14848 zero here, but we should never assert when
14849 consuming an object file that has suspicious
14850 build attributes. The single precision variant
14851 of 'no FP architecture' is still 'no FP
14852 architecture', so we just ignore the tag in this
14853 case. */
4547cb56
NC
14854 break;
14855 }
14856
14857 /* Both the input and the output have nonzero Tag_FP_arch.
99654aaf 14858 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
4547cb56
NC
14859
14860 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14861 do nothing. */
14862 if (in_attr[Tag_ABI_HardFP_use].i == 0
14863 && out_attr[Tag_ABI_HardFP_use].i == 0)
14864 ;
14865 /* If the input and the output have different Tag_ABI_HardFP_use,
99654aaf 14866 the combination of them is 0 (implied by Tag_FP_arch). */
4547cb56
NC
14867 else if (in_attr[Tag_ABI_HardFP_use].i
14868 != out_attr[Tag_ABI_HardFP_use].i)
99654aaf 14869 out_attr[Tag_ABI_HardFP_use].i = 0;
4547cb56
NC
14870
14871 /* Now we can handle Tag_FP_arch. */
14872
bca38921
MGD
14873 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14874 pick the biggest. */
14875 if (in_attr[i].i >= VFP_VERSION_COUNT
14876 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
14877 {
14878 out_attr[i] = in_attr[i];
14879 break;
14880 }
14881 /* The output uses the superset of input features
14882 (ISA version) and registers. */
14883 ver = vfp_versions[in_attr[i].i].ver;
14884 if (ver < vfp_versions[out_attr[i].i].ver)
14885 ver = vfp_versions[out_attr[i].i].ver;
14886 regs = vfp_versions[in_attr[i].i].regs;
14887 if (regs < vfp_versions[out_attr[i].i].regs)
14888 regs = vfp_versions[out_attr[i].i].regs;
14889 /* This assumes all possible supersets are also a valid
99059e56 14890 options. */
bca38921 14891 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
14892 {
14893 if (regs == vfp_versions[newval].regs
14894 && ver == vfp_versions[newval].ver)
14895 break;
14896 }
14897 out_attr[i].i = newval;
14898 }
b1cc4aeb 14899 break;
ee065d83
PB
14900 case Tag_PCS_config:
14901 if (out_attr[i].i == 0)
14902 out_attr[i].i = in_attr[i].i;
b6009aca 14903 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
14904 {
14905 /* It's sometimes ok to mix different configs, so this is only
99059e56 14906 a warning. */
ee065d83 14907 _bfd_error_handler
90b6238f 14908 (_("warning: %pB: conflicting platform configuration"), ibfd);
ee065d83
PB
14909 }
14910 break;
14911 case Tag_ABI_PCS_R9_use:
004ae526
PB
14912 if (in_attr[i].i != out_attr[i].i
14913 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
14914 && in_attr[i].i != AEABI_R9_unused)
14915 {
14916 _bfd_error_handler
90b6238f 14917 (_("error: %pB: conflicting use of R9"), ibfd);
0a1b45a2 14918 result = false;
ee065d83
PB
14919 }
14920 if (out_attr[i].i == AEABI_R9_unused)
14921 out_attr[i].i = in_attr[i].i;
14922 break;
14923 case Tag_ABI_PCS_RW_data:
14924 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14925 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14926 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14927 {
14928 _bfd_error_handler
871b3ab2 14929 (_("error: %pB: SB relative addressing conflicts with use of R9"),
ee065d83 14930 ibfd);
0a1b45a2 14931 result = false;
ee065d83
PB
14932 }
14933 /* Use the smallest value specified. */
14934 if (in_attr[i].i < out_attr[i].i)
14935 out_attr[i].i = in_attr[i].i;
14936 break;
ee065d83 14937 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
14938 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14939 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
14940 {
14941 _bfd_error_handler
871b3ab2 14942 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
a9dc9481 14943 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 14944 }
a9dc9481 14945 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
14946 out_attr[i].i = in_attr[i].i;
14947 break;
ee065d83
PB
14948 case Tag_ABI_enum_size:
14949 if (in_attr[i].i != AEABI_enum_unused)
14950 {
14951 if (out_attr[i].i == AEABI_enum_unused
14952 || out_attr[i].i == AEABI_enum_forced_wide)
14953 {
14954 /* The existing object is compatible with anything.
14955 Use whatever requirements the new object has. */
14956 out_attr[i].i = in_attr[i].i;
14957 }
14958 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 14959 && out_attr[i].i != in_attr[i].i
0ffa91dd 14960 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 14961 {
91e22acd 14962 static const char *aeabi_enum_names[] =
bf21ed78 14963 { "", "variable-size", "32-bit", "" };
91e22acd 14964 const char *in_name =
cc850f74 14965 in_attr[i].i < ARRAY_SIZE (aeabi_enum_names)
91e22acd
AS
14966 ? aeabi_enum_names[in_attr[i].i]
14967 : "<unknown>";
14968 const char *out_name =
cc850f74 14969 out_attr[i].i < ARRAY_SIZE (aeabi_enum_names)
91e22acd
AS
14970 ? aeabi_enum_names[out_attr[i].i]
14971 : "<unknown>";
ee065d83 14972 _bfd_error_handler
871b3ab2 14973 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 14974 ibfd, in_name, out_name);
ee065d83
PB
14975 }
14976 }
14977 break;
14978 case Tag_ABI_VFP_args:
14979 /* Aready done. */
14980 break;
14981 case Tag_ABI_WMMX_args:
14982 if (in_attr[i].i != out_attr[i].i)
14983 {
14984 _bfd_error_handler
871b3ab2 14985 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
ee065d83 14986 ibfd, obfd);
0a1b45a2 14987 result = false;
ee065d83
PB
14988 }
14989 break;
7b86a9fa
AS
14990 case Tag_compatibility:
14991 /* Merged in target-independent code. */
14992 break;
91e22acd 14993 case Tag_ABI_HardFP_use:
4547cb56 14994 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
14995 break;
14996 case Tag_ABI_FP_16bit_format:
14997 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14998 {
14999 if (in_attr[i].i != out_attr[i].i)
15000 {
15001 _bfd_error_handler
871b3ab2 15002 (_("error: fp16 format mismatch between %pB and %pB"),
91e22acd 15003 ibfd, obfd);
0a1b45a2 15004 result = false;
91e22acd
AS
15005 }
15006 }
15007 if (in_attr[i].i != 0)
15008 out_attr[i].i = in_attr[i].i;
15009 break;
7b86a9fa 15010
cd21e546 15011 case Tag_DIV_use:
ac56ee8f
MGD
15012 /* A value of zero on input means that the divide instruction may
15013 be used if available in the base architecture as specified via
15014 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
15015 the user did not want divide instructions. A value of 2
15016 explicitly means that divide instructions were allowed in ARM
15017 and Thumb state. */
15018 if (in_attr[i].i == out_attr[i].i)
15019 /* Do nothing. */ ;
15020 else if (elf32_arm_attributes_forbid_div (in_attr)
15021 && !elf32_arm_attributes_accept_div (out_attr))
15022 out_attr[i].i = 1;
15023 else if (elf32_arm_attributes_forbid_div (out_attr)
15024 && elf32_arm_attributes_accept_div (in_attr))
15025 out_attr[i].i = in_attr[i].i;
15026 else if (in_attr[i].i == 2)
15027 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
15028 break;
15029
15030 case Tag_MPextension_use_legacy:
15031 /* We don't output objects with Tag_MPextension_use_legacy - we
15032 move the value to Tag_MPextension_use. */
15033 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
15034 {
15035 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
15036 {
15037 _bfd_error_handler
871b3ab2 15038 (_("%pB has both the current and legacy "
b38cadfb 15039 "Tag_MPextension_use attributes"),
cd21e546 15040 ibfd);
0a1b45a2 15041 result = false;
cd21e546
MGD
15042 }
15043 }
15044
15045 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15046 out_attr[Tag_MPextension_use] = in_attr[i];
15047
15048 break;
15049
91e22acd 15050 case Tag_nodefaults:
2d0bb761
AS
15051 /* This tag is set if it exists, but the value is unused (and is
15052 typically zero). We don't actually need to do anything here -
15053 the merge happens automatically when the type flags are merged
15054 below. */
91e22acd
AS
15055 break;
15056 case Tag_also_compatible_with:
15057 /* Already done in Tag_CPU_arch. */
15058 break;
15059 case Tag_conformance:
15060 /* Keep the attribute if it matches. Throw it away otherwise.
15061 No attribute means no claim to conform. */
15062 if (!in_attr[i].s || !out_attr[i].s
15063 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15064 out_attr[i].s = NULL;
15065 break;
3cfad14c 15066
91e22acd 15067 default:
e8b36cd1
JM
15068 result
15069 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
15070 }
15071
15072 /* If out_attr was copied from in_attr then it won't have a type yet. */
15073 if (in_attr[i].type && !out_attr[i].type)
15074 out_attr[i].type = in_attr[i].type;
ee065d83
PB
15075 }
15076
104d59d1 15077 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15078 if (!_bfd_elf_merge_object_attributes (ibfd, info))
0a1b45a2 15079 return false;
ee065d83 15080
104d59d1 15081 /* Check for any attributes not known on ARM. */
e8b36cd1 15082 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 15083
91e22acd 15084 return result;
252b5132
RH
15085}
15086
3a4a14e9
PB
15087
15088/* Return TRUE if the two EABI versions are incompatible. */
15089
0a1b45a2 15090static bool
3a4a14e9
PB
15091elf32_arm_versions_compatible (unsigned iver, unsigned over)
15092{
15093 /* v4 and v5 are the same spec before and after it was released,
15094 so allow mixing them. */
15095 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15096 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
0a1b45a2 15097 return true;
3a4a14e9
PB
15098
15099 return (iver == over);
15100}
15101
252b5132
RH
15102/* Merge backend specific data from an object file to the output
15103 object file when linking. */
9b485d32 15104
0a1b45a2 15105static bool
50e03d47 15106elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
252b5132 15107
9b485d32
NC
15108/* Display the flags field. */
15109
0a1b45a2 15110static bool
57e8b36a 15111elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 15112{
fc830a83
NC
15113 FILE * file = (FILE *) ptr;
15114 unsigned long flags;
252b5132
RH
15115
15116 BFD_ASSERT (abfd != NULL && ptr != NULL);
15117
15118 /* Print normal ELF private data. */
15119 _bfd_elf_print_private_bfd_data (abfd, ptr);
15120
fc830a83 15121 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
15122 /* Ignore init flag - it may not be set, despite the flags field
15123 containing valid data. */
252b5132 15124
dbb078f6 15125 fprintf (file, _("private flags = 0x%lx:"), elf_elfheader (abfd)->e_flags);
252b5132 15126
fc830a83
NC
15127 switch (EF_ARM_EABI_VERSION (flags))
15128 {
15129 case EF_ARM_EABI_UNKNOWN:
4cc11e76 15130 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
15131 official ARM ELF extended ABI. Hence they are only decoded if
15132 the EABI version is not set. */
fd2ec330 15133 if (flags & EF_ARM_INTERWORK)
9b485d32 15134 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 15135
fd2ec330 15136 if (flags & EF_ARM_APCS_26)
6c571f00 15137 fprintf (file, " [APCS-26]");
fc830a83 15138 else
6c571f00 15139 fprintf (file, " [APCS-32]");
9a5aca8c 15140
96a846ea
RE
15141 if (flags & EF_ARM_VFP_FLOAT)
15142 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
15143 else if (flags & EF_ARM_MAVERICK_FLOAT)
15144 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
15145 else
15146 fprintf (file, _(" [FPA float format]"));
15147
fd2ec330 15148 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 15149 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 15150
fd2ec330 15151 if (flags & EF_ARM_PIC)
9b485d32 15152 fprintf (file, _(" [position independent]"));
fc830a83 15153
fd2ec330 15154 if (flags & EF_ARM_NEW_ABI)
9b485d32 15155 fprintf (file, _(" [new ABI]"));
9a5aca8c 15156
fd2ec330 15157 if (flags & EF_ARM_OLD_ABI)
9b485d32 15158 fprintf (file, _(" [old ABI]"));
9a5aca8c 15159
fd2ec330 15160 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 15161 fprintf (file, _(" [software FP]"));
9a5aca8c 15162
96a846ea
RE
15163 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15164 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
15165 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15166 | EF_ARM_MAVERICK_FLOAT);
fc830a83 15167 break;
9a5aca8c 15168
fc830a83 15169 case EF_ARM_EABI_VER1:
9b485d32 15170 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 15171
fc830a83 15172 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 15173 fprintf (file, _(" [sorted symbol table]"));
fc830a83 15174 else
9b485d32 15175 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 15176
fc830a83
NC
15177 flags &= ~ EF_ARM_SYMSARESORTED;
15178 break;
9a5aca8c 15179
fd2ec330
PB
15180 case EF_ARM_EABI_VER2:
15181 fprintf (file, _(" [Version2 EABI]"));
15182
15183 if (flags & EF_ARM_SYMSARESORTED)
15184 fprintf (file, _(" [sorted symbol table]"));
15185 else
15186 fprintf (file, _(" [unsorted symbol table]"));
15187
15188 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15189 fprintf (file, _(" [dynamic symbols use segment index]"));
15190
15191 if (flags & EF_ARM_MAPSYMSFIRST)
15192 fprintf (file, _(" [mapping symbols precede others]"));
15193
99e4ae17 15194 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
15195 | EF_ARM_MAPSYMSFIRST);
15196 break;
15197
d507cf36
PB
15198 case EF_ARM_EABI_VER3:
15199 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
15200 break;
15201
15202 case EF_ARM_EABI_VER4:
15203 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 15204 goto eabi;
d507cf36 15205
3a4a14e9
PB
15206 case EF_ARM_EABI_VER5:
15207 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
15208
15209 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15210 fprintf (file, _(" [soft-float ABI]"));
15211
15212 if (flags & EF_ARM_ABI_FLOAT_HARD)
15213 fprintf (file, _(" [hard-float ABI]"));
15214
15215 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15216
3a4a14e9 15217 eabi:
d507cf36
PB
15218 if (flags & EF_ARM_BE8)
15219 fprintf (file, _(" [BE8]"));
15220
15221 if (flags & EF_ARM_LE8)
15222 fprintf (file, _(" [LE8]"));
15223
15224 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15225 break;
15226
fc830a83 15227 default:
9b485d32 15228 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
15229 break;
15230 }
252b5132 15231
fc830a83 15232 flags &= ~ EF_ARM_EABIMASK;
252b5132 15233
fc830a83 15234 if (flags & EF_ARM_RELEXEC)
9b485d32 15235 fprintf (file, _(" [relocatable executable]"));
252b5132 15236
18a20338
CL
15237 if (flags & EF_ARM_PIC)
15238 fprintf (file, _(" [position independent]"));
15239
15240 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15241 fprintf (file, _(" [FDPIC ABI supplement]"));
15242
15243 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
fc830a83
NC
15244
15245 if (flags)
dbb078f6 15246 fprintf (file, _(" <Unrecognised flag bits set>"));
9a5aca8c 15247
252b5132
RH
15248 fputc ('\n', file);
15249
0a1b45a2 15250 return true;
252b5132
RH
15251}
15252
15253static int
57e8b36a 15254elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 15255{
2f0ca46a
NC
15256 switch (ELF_ST_TYPE (elf_sym->st_info))
15257 {
15258 case STT_ARM_TFUNC:
15259 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 15260
2f0ca46a
NC
15261 case STT_ARM_16BIT:
15262 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15263 This allows us to distinguish between data used by Thumb instructions
15264 and non-data (which is probably code) inside Thumb regions of an
15265 executable. */
1a0eb693 15266 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
15267 return ELF_ST_TYPE (elf_sym->st_info);
15268 break;
9a5aca8c 15269
ce855c42
NC
15270 default:
15271 break;
2f0ca46a
NC
15272 }
15273
15274 return type;
252b5132 15275}
f21f3fe0 15276
252b5132 15277static asection *
07adf181
AM
15278elf32_arm_gc_mark_hook (asection *sec,
15279 struct bfd_link_info *info,
15280 Elf_Internal_Rela *rel,
15281 struct elf_link_hash_entry *h,
15282 Elf_Internal_Sym *sym)
252b5132
RH
15283{
15284 if (h != NULL)
07adf181 15285 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
15286 {
15287 case R_ARM_GNU_VTINHERIT:
15288 case R_ARM_GNU_VTENTRY:
07adf181
AM
15289 return NULL;
15290 }
9ad5cbcf 15291
07adf181 15292 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
15293}
15294
780a67af
NC
15295/* Look through the relocs for a section during the first phase. */
15296
0a1b45a2 15297static bool
57e8b36a
NC
15298elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15299 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 15300{
b34976b6
AM
15301 Elf_Internal_Shdr *symtab_hdr;
15302 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
15303 const Elf_Internal_Rela *rel;
15304 const Elf_Internal_Rela *rel_end;
15305 bfd *dynobj;
5e681ec4 15306 asection *sreloc;
5e681ec4 15307 struct elf32_arm_link_hash_table *htab;
0a1b45a2
AM
15308 bool call_reloc_p;
15309 bool may_become_dynamic_p;
15310 bool may_need_local_target_p;
ce98a316 15311 unsigned long nsyms;
9a5aca8c 15312
0e1862bb 15313 if (bfd_link_relocatable (info))
0a1b45a2 15314 return true;
9a5aca8c 15315
0ffa91dd
NC
15316 BFD_ASSERT (is_arm_elf (abfd));
15317
5e681ec4 15318 htab = elf32_arm_hash_table (info);
4dfe6ac6 15319 if (htab == NULL)
0a1b45a2 15320 return false;
4dfe6ac6 15321
5e681ec4 15322 sreloc = NULL;
9a5aca8c 15323
67687978
PB
15324 /* Create dynamic sections for relocatable executables so that we can
15325 copy relocations. */
15326 if (htab->root.is_relocatable_executable
15327 && ! htab->root.dynamic_sections_created)
15328 {
15329 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
0a1b45a2 15330 return false;
67687978
PB
15331 }
15332
cbc704f3
RS
15333 if (htab->root.dynobj == NULL)
15334 htab->root.dynobj = abfd;
34e77a92 15335 if (!create_ifunc_sections (info))
0a1b45a2 15336 return false;
cbc704f3
RS
15337
15338 dynobj = htab->root.dynobj;
15339
0ffa91dd 15340 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 15341 sym_hashes = elf_sym_hashes (abfd);
ce98a316 15342 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 15343
252b5132
RH
15344 rel_end = relocs + sec->reloc_count;
15345 for (rel = relocs; rel < rel_end; rel++)
15346 {
34e77a92 15347 Elf_Internal_Sym *isym;
252b5132 15348 struct elf_link_hash_entry *h;
b7693d02 15349 struct elf32_arm_link_hash_entry *eh;
d42c267e 15350 unsigned int r_symndx;
eb043451 15351 int r_type;
9a5aca8c 15352
252b5132 15353 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 15354 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 15355 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 15356
ce98a316
NC
15357 if (r_symndx >= nsyms
15358 /* PR 9934: It is possible to have relocations that do not
15359 refer to symbols, thus it is also possible to have an
15360 object file containing relocations but no symbol table. */
cf35638d 15361 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac 15362 {
871b3ab2 15363 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
4eca0228 15364 r_symndx);
0a1b45a2 15365 return false;
ba93b8ac
DJ
15366 }
15367
34e77a92
RS
15368 h = NULL;
15369 isym = NULL;
15370 if (nsyms > 0)
973a3492 15371 {
34e77a92
RS
15372 if (r_symndx < symtab_hdr->sh_info)
15373 {
15374 /* A local symbol. */
f1dfbfdb 15375 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache,
34e77a92
RS
15376 abfd, r_symndx);
15377 if (isym == NULL)
0a1b45a2 15378 return false;
34e77a92
RS
15379 }
15380 else
15381 {
15382 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15383 while (h->root.type == bfd_link_hash_indirect
15384 || h->root.type == bfd_link_hash_warning)
15385 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15386 }
973a3492 15387 }
9a5aca8c 15388
b7693d02
DJ
15389 eh = (struct elf32_arm_link_hash_entry *) h;
15390
0a1b45a2
AM
15391 call_reloc_p = false;
15392 may_become_dynamic_p = false;
15393 may_need_local_target_p = false;
f6e32f6d 15394
0855e32b
NS
15395 /* Could be done earlier, if h were already available. */
15396 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 15397 switch (r_type)
99059e56 15398 {
e8b09b87
CL
15399 case R_ARM_GOTOFFFUNCDESC:
15400 {
15401 if (h == NULL)
15402 {
15403 if (!elf32_arm_allocate_local_sym_info (abfd))
0a1b45a2 15404 return false;
74fd118f
NC
15405 if (r_symndx >= elf32_arm_num_entries (abfd))
15406 return false;
cc850f74
NC
15407 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].gotofffuncdesc_cnt += 1;
15408 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].funcdesc_offset = -1;
e8b09b87
CL
15409 }
15410 else
15411 {
15412 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15413 }
15414 }
15415 break;
15416
15417 case R_ARM_GOTFUNCDESC:
15418 {
15419 if (h == NULL)
15420 {
15421 /* Such a relocation is not supposed to be generated
cc850f74 15422 by gcc on a static function. */
e8b09b87 15423 /* Anyway if needed it could be handled. */
cc850f74 15424 return false;
e8b09b87
CL
15425 }
15426 else
15427 {
15428 eh->fdpic_cnts.gotfuncdesc_cnt++;
15429 }
15430 }
15431 break;
15432
15433 case R_ARM_FUNCDESC:
15434 {
15435 if (h == NULL)
15436 {
15437 if (!elf32_arm_allocate_local_sym_info (abfd))
0a1b45a2 15438 return false;
74fd118f
NC
15439 if (r_symndx >= elf32_arm_num_entries (abfd))
15440 return false;
cc850f74
NC
15441 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].funcdesc_cnt += 1;
15442 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].funcdesc_offset = -1;
e8b09b87
CL
15443 }
15444 else
15445 {
15446 eh->fdpic_cnts.funcdesc_cnt++;
15447 }
15448 }
15449 break;
15450
5e681ec4 15451 case R_ARM_GOT32:
eb043451 15452 case R_ARM_GOT_PREL:
ba93b8ac 15453 case R_ARM_TLS_GD32:
5c5a4843 15454 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 15455 case R_ARM_TLS_IE32:
5c5a4843 15456 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
15457 case R_ARM_TLS_GOTDESC:
15458 case R_ARM_TLS_DESCSEQ:
15459 case R_ARM_THM_TLS_DESCSEQ:
15460 case R_ARM_TLS_CALL:
15461 case R_ARM_THM_TLS_CALL:
5e681ec4 15462 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
15463 {
15464 int tls_type, old_tls_type;
5e681ec4 15465
ba93b8ac
DJ
15466 switch (r_type)
15467 {
15468 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
5c5a4843 15469 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
b38cadfb 15470
ba93b8ac 15471 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
5c5a4843 15472 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
b38cadfb 15473
0855e32b
NS
15474 case R_ARM_TLS_GOTDESC:
15475 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15476 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15477 tls_type = GOT_TLS_GDESC; break;
b38cadfb 15478
ba93b8ac
DJ
15479 default: tls_type = GOT_NORMAL; break;
15480 }
252b5132 15481
0e1862bb 15482 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
eea6dad2
KM
15483 info->flags |= DF_STATIC_TLS;
15484
ba93b8ac
DJ
15485 if (h != NULL)
15486 {
15487 h->got.refcount++;
15488 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15489 }
15490 else
15491 {
ba93b8ac 15492 /* This is a global offset table entry for a local symbol. */
34e77a92 15493 if (!elf32_arm_allocate_local_sym_info (abfd))
0a1b45a2 15494 return false;
74fd118f
NC
15495 if (r_symndx >= elf32_arm_num_entries (abfd))
15496 {
15497 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15498 r_symndx);
15499 return false;
15500 }
15501
34e77a92 15502 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
15503 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15504 }
15505
0855e32b 15506 /* If a variable is accessed with both tls methods, two
99059e56 15507 slots may be created. */
0855e32b
NS
15508 if (GOT_TLS_GD_ANY_P (old_tls_type)
15509 && GOT_TLS_GD_ANY_P (tls_type))
15510 tls_type |= old_tls_type;
15511
15512 /* We will already have issued an error message if there
15513 is a TLS/non-TLS mismatch, based on the symbol
15514 type. So just combine any TLS types needed. */
ba93b8ac
DJ
15515 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15516 && tls_type != GOT_NORMAL)
15517 tls_type |= old_tls_type;
15518
0855e32b 15519 /* If the symbol is accessed in both IE and GDESC
99059e56
RM
15520 method, we're able to relax. Turn off the GDESC flag,
15521 without messing up with any other kind of tls types
6a631e86 15522 that may be involved. */
0855e32b
NS
15523 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15524 tls_type &= ~GOT_TLS_GDESC;
15525
ba93b8ac
DJ
15526 if (old_tls_type != tls_type)
15527 {
15528 if (h != NULL)
15529 elf32_arm_hash_entry (h)->tls_type = tls_type;
15530 else
15531 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15532 }
15533 }
8029a119 15534 /* Fall through. */
ba93b8ac
DJ
15535
15536 case R_ARM_TLS_LDM32:
5c5a4843
CL
15537 case R_ARM_TLS_LDM32_FDPIC:
15538 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
ba93b8ac 15539 htab->tls_ldm_got.refcount++;
8029a119 15540 /* Fall through. */
252b5132 15541
c19d1205 15542 case R_ARM_GOTOFF32:
5e681ec4 15543 case R_ARM_GOTPC:
cbc704f3
RS
15544 if (htab->root.sgot == NULL
15545 && !create_got_section (htab->root.dynobj, info))
0a1b45a2 15546 return false;
252b5132
RH
15547 break;
15548
252b5132 15549 case R_ARM_PC24:
7359ea65 15550 case R_ARM_PLT32:
5b5bb741
PB
15551 case R_ARM_CALL:
15552 case R_ARM_JUMP24:
eb043451 15553 case R_ARM_PREL31:
c19d1205 15554 case R_ARM_THM_CALL:
bd97cb95
DJ
15555 case R_ARM_THM_JUMP24:
15556 case R_ARM_THM_JUMP19:
0a1b45a2
AM
15557 call_reloc_p = true;
15558 may_need_local_target_p = true;
f6e32f6d
RS
15559 break;
15560
15561 case R_ARM_ABS12:
15562 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15563 ldr __GOTT_INDEX__ offsets. */
90c14f0c 15564 if (htab->root.target_os != is_vxworks)
f6e32f6d 15565 {
0a1b45a2 15566 may_need_local_target_p = true;
f6e32f6d
RS
15567 break;
15568 }
aebf9be7 15569 else goto jump_over;
9eaff861 15570
f6e32f6d 15571 /* Fall through. */
39623e12 15572
96c23d59
JM
15573 case R_ARM_MOVW_ABS_NC:
15574 case R_ARM_MOVT_ABS:
15575 case R_ARM_THM_MOVW_ABS_NC:
15576 case R_ARM_THM_MOVT_ABS:
0e1862bb 15577 if (bfd_link_pic (info))
96c23d59 15578 {
4eca0228 15579 _bfd_error_handler
871b3ab2 15580 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
96c23d59
JM
15581 abfd, elf32_arm_howto_table_1[r_type].name,
15582 (h) ? h->root.root.string : "a local symbol");
15583 bfd_set_error (bfd_error_bad_value);
0a1b45a2 15584 return false;
96c23d59
JM
15585 }
15586
15587 /* Fall through. */
39623e12
PB
15588 case R_ARM_ABS32:
15589 case R_ARM_ABS32_NOI:
aebf9be7 15590 jump_over:
0e1862bb 15591 if (h != NULL && bfd_link_executable (info))
97323ad1
WN
15592 {
15593 h->pointer_equality_needed = 1;
15594 }
15595 /* Fall through. */
39623e12
PB
15596 case R_ARM_REL32:
15597 case R_ARM_REL32_NOI:
b6895b4f
PB
15598 case R_ARM_MOVW_PREL_NC:
15599 case R_ARM_MOVT_PREL:
b6895b4f
PB
15600 case R_ARM_THM_MOVW_PREL_NC:
15601 case R_ARM_THM_MOVT_PREL:
39623e12 15602
b7693d02 15603 /* Should the interworking branches be listed here? */
e8b09b87
CL
15604 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15605 || htab->fdpic_p)
34e77a92
RS
15606 && (sec->flags & SEC_ALLOC) != 0)
15607 {
15608 if (h == NULL
469a3493 15609 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
15610 {
15611 /* In shared libraries and relocatable executables,
15612 we treat local relative references as calls;
15613 see the related SYMBOL_CALLS_LOCAL code in
15614 allocate_dynrelocs. */
0a1b45a2
AM
15615 call_reloc_p = true;
15616 may_need_local_target_p = true;
34e77a92
RS
15617 }
15618 else
15619 /* We are creating a shared library or relocatable
15620 executable, and this is a reloc against a global symbol,
15621 or a non-PC-relative reloc against a local symbol.
15622 We may need to copy the reloc into the output. */
0a1b45a2 15623 may_become_dynamic_p = true;
34e77a92 15624 }
f6e32f6d 15625 else
0a1b45a2 15626 may_need_local_target_p = true;
252b5132
RH
15627 break;
15628
99059e56
RM
15629 /* This relocation describes the C++ object vtable hierarchy.
15630 Reconstruct it for later use during GC. */
15631 case R_ARM_GNU_VTINHERIT:
15632 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
0a1b45a2 15633 return false;
99059e56
RM
15634 break;
15635
15636 /* This relocation describes which C++ vtable entries are actually
15637 used. Record for later use during GC. */
15638 case R_ARM_GNU_VTENTRY:
a0ea3a14 15639 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
0a1b45a2 15640 return false;
99059e56
RM
15641 break;
15642 }
f6e32f6d
RS
15643
15644 if (h != NULL)
15645 {
15646 if (call_reloc_p)
15647 /* We may need a .plt entry if the function this reloc
15648 refers to is in a different object, regardless of the
15649 symbol's type. We can't tell for sure yet, because
15650 something later might force the symbol local. */
15651 h->needs_plt = 1;
15652 else if (may_need_local_target_p)
15653 /* If this reloc is in a read-only section, we might
15654 need a copy reloc. We can't check reliably at this
15655 stage whether the section is read-only, as input
15656 sections have not yet been mapped to output sections.
15657 Tentatively set the flag for now, and correct in
15658 adjust_dynamic_symbol. */
15659 h->non_got_ref = 1;
15660 }
15661
34e77a92
RS
15662 if (may_need_local_target_p
15663 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 15664 {
34e77a92
RS
15665 union gotplt_union *root_plt;
15666 struct arm_plt_info *arm_plt;
15667 struct arm_local_iplt_info *local_iplt;
15668
15669 if (h != NULL)
15670 {
15671 root_plt = &h->plt;
15672 arm_plt = &eh->plt;
15673 }
15674 else
15675 {
15676 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15677 if (local_iplt == NULL)
0a1b45a2 15678 return false;
34e77a92
RS
15679 root_plt = &local_iplt->root;
15680 arm_plt = &local_iplt->arm;
15681 }
15682
f6e32f6d
RS
15683 /* If the symbol is a function that doesn't bind locally,
15684 this relocation will need a PLT entry. */
a8c887dd
NC
15685 if (root_plt->refcount != -1)
15686 root_plt->refcount += 1;
34e77a92
RS
15687
15688 if (!call_reloc_p)
15689 arm_plt->noncall_refcount++;
f6e32f6d
RS
15690
15691 /* It's too early to use htab->use_blx here, so we have to
15692 record possible blx references separately from
15693 relocs that definitely need a thumb stub. */
15694
15695 if (r_type == R_ARM_THM_CALL)
34e77a92 15696 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
15697
15698 if (r_type == R_ARM_THM_JUMP24
15699 || r_type == R_ARM_THM_JUMP19)
34e77a92 15700 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
15701 }
15702
15703 if (may_become_dynamic_p)
15704 {
15705 struct elf_dyn_relocs *p, **head;
15706
15707 /* Create a reloc section in dynobj. */
15708 if (sreloc == NULL)
15709 {
15710 sreloc = _bfd_elf_make_dynamic_reloc_section
15711 (sec, dynobj, 2, abfd, ! htab->use_rel);
15712
15713 if (sreloc == NULL)
0a1b45a2 15714 return false;
f6e32f6d
RS
15715 }
15716
15717 /* If this is a global symbol, count the number of
15718 relocations we need for this symbol. */
15719 if (h != NULL)
190eb1dd 15720 head = &h->dyn_relocs;
f6e32f6d
RS
15721 else
15722 {
34e77a92
RS
15723 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15724 if (head == NULL)
0a1b45a2 15725 return false;
f6e32f6d
RS
15726 }
15727
15728 p = *head;
15729 if (p == NULL || p->sec != sec)
15730 {
986f0783 15731 size_t amt = sizeof *p;
f6e32f6d
RS
15732
15733 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15734 if (p == NULL)
0a1b45a2 15735 return false;
f6e32f6d
RS
15736 p->next = *head;
15737 *head = p;
15738 p->sec = sec;
15739 p->count = 0;
15740 p->pc_count = 0;
15741 }
15742
469a3493 15743 if (elf32_arm_howto_from_type (r_type)->pc_relative)
f6e32f6d
RS
15744 p->pc_count += 1;
15745 p->count += 1;
cc850f74
NC
15746 if (h == NULL && htab->fdpic_p && !bfd_link_pic (info)
15747 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI)
15748 {
15749 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15750 that will become rofixup. */
15751 /* This is due to the fact that we suppose all will become rofixup. */
15752 _bfd_error_handler
15753 (_("FDPIC does not yet support %s relocation"
15754 " to become dynamic for executable"),
15755 elf32_arm_howto_table_1[r_type].name);
15756 abort ();
15757 }
f6e32f6d 15758 }
252b5132 15759 }
f21f3fe0 15760
0a1b45a2 15761 return true;
252b5132
RH
15762}
15763
9eaff861
AO
15764static void
15765elf32_arm_update_relocs (asection *o,
15766 struct bfd_elf_section_reloc_data *reldata)
15767{
15768 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15769 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15770 const struct elf_backend_data *bed;
15771 _arm_elf_section_data *eado;
15772 struct bfd_link_order *p;
15773 bfd_byte *erela_head, *erela;
15774 Elf_Internal_Rela *irela_head, *irela;
15775 Elf_Internal_Shdr *rel_hdr;
15776 bfd *abfd;
15777 unsigned int count;
15778
15779 eado = get_arm_elf_section_data (o);
15780
15781 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15782 return;
15783
15784 abfd = o->owner;
15785 bed = get_elf_backend_data (abfd);
15786 rel_hdr = reldata->hdr;
15787
15788 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15789 {
15790 swap_in = bed->s->swap_reloc_in;
15791 swap_out = bed->s->swap_reloc_out;
15792 }
15793 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15794 {
15795 swap_in = bed->s->swap_reloca_in;
15796 swap_out = bed->s->swap_reloca_out;
15797 }
15798 else
15799 abort ();
15800
15801 erela_head = rel_hdr->contents;
15802 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15803 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15804
15805 erela = erela_head;
15806 irela = irela_head;
15807 count = 0;
15808
15809 for (p = o->map_head.link_order; p; p = p->next)
15810 {
15811 if (p->type == bfd_section_reloc_link_order
15812 || p->type == bfd_symbol_reloc_link_order)
15813 {
15814 (*swap_in) (abfd, erela, irela);
15815 erela += rel_hdr->sh_entsize;
15816 irela++;
15817 count++;
15818 }
15819 else if (p->type == bfd_indirect_link_order)
15820 {
15821 struct bfd_elf_section_reloc_data *input_reldata;
15822 arm_unwind_table_edit *edit_list, *edit_tail;
15823 _arm_elf_section_data *eadi;
15824 bfd_size_type j;
15825 bfd_vma offset;
15826 asection *i;
15827
15828 i = p->u.indirect.section;
15829
15830 eadi = get_arm_elf_section_data (i);
15831 edit_list = eadi->u.exidx.unwind_edit_list;
15832 edit_tail = eadi->u.exidx.unwind_edit_tail;
539300fb 15833 offset = i->output_offset;
9eaff861
AO
15834
15835 if (eadi->elf.rel.hdr &&
15836 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15837 input_reldata = &eadi->elf.rel;
15838 else if (eadi->elf.rela.hdr &&
15839 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15840 input_reldata = &eadi->elf.rela;
15841 else
15842 abort ();
15843
15844 if (edit_list)
15845 {
15846 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15847 {
15848 arm_unwind_table_edit *edit_node, *edit_next;
15849 bfd_vma bias;
c48182bf 15850 bfd_vma reloc_index;
9eaff861
AO
15851
15852 (*swap_in) (abfd, erela, irela);
c48182bf 15853 reloc_index = (irela->r_offset - offset) / 8;
9eaff861
AO
15854
15855 bias = 0;
15856 edit_node = edit_list;
15857 for (edit_next = edit_list;
c48182bf 15858 edit_next && edit_next->index <= reloc_index;
9eaff861
AO
15859 edit_next = edit_node->next)
15860 {
15861 bias++;
15862 edit_node = edit_next;
15863 }
15864
15865 if (edit_node->type != DELETE_EXIDX_ENTRY
c48182bf 15866 || edit_node->index != reloc_index)
9eaff861
AO
15867 {
15868 irela->r_offset -= bias * 8;
15869 irela++;
15870 count++;
15871 }
15872
15873 erela += rel_hdr->sh_entsize;
15874 }
15875
15876 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15877 {
15878 /* New relocation entity. */
15879 asection *text_sec = edit_tail->linked_section;
15880 asection *text_out = text_sec->output_section;
15881 bfd_vma exidx_offset = offset + i->size - 8;
15882
15883 irela->r_addend = 0;
15884 irela->r_offset = exidx_offset;
15885 irela->r_info = ELF32_R_INFO
15886 (text_out->target_index, R_ARM_PREL31);
15887 irela++;
15888 count++;
15889 }
15890 }
15891 else
15892 {
15893 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15894 {
15895 (*swap_in) (abfd, erela, irela);
15896 erela += rel_hdr->sh_entsize;
15897 irela++;
15898 }
15899
15900 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15901 }
15902 }
15903 }
15904
15905 reldata->count = count;
15906 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15907
15908 erela = erela_head;
15909 irela = irela_head;
15910 while (count > 0)
15911 {
15912 (*swap_out) (abfd, irela, erela);
15913 erela += rel_hdr->sh_entsize;
15914 irela++;
15915 count--;
15916 }
15917
15918 free (irela_head);
15919
15920 /* Hashes are no longer valid. */
15921 free (reldata->hashes);
15922 reldata->hashes = NULL;
15923}
15924
6a5bb875 15925/* Unwinding tables are not referenced directly. This pass marks them as
4ba2ef8f
TP
15926 required if the corresponding code section is marked. Similarly, ARMv8-M
15927 secure entry functions can only be referenced by SG veneers which are
15928 created after the GC process. They need to be marked in case they reside in
15929 their own section (as would be the case if code was compiled with
15930 -ffunction-sections). */
6a5bb875 15931
0a1b45a2 15932static bool
906e58ca
NC
15933elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15934 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
15935{
15936 bfd *sub;
15937 Elf_Internal_Shdr **elf_shdrp;
4ba2ef8f
TP
15938 asection *cmse_sec;
15939 obj_attribute *out_attr;
15940 Elf_Internal_Shdr *symtab_hdr;
15941 unsigned i, sym_count, ext_start;
15942 const struct elf_backend_data *bed;
15943 struct elf_link_hash_entry **sym_hashes;
15944 struct elf32_arm_link_hash_entry *cmse_hash;
0a1b45a2 15945 bool again, is_v8m, first_bfd_browse = true;
e4fbcd83 15946 bool extra_marks_added = false;
bb32413f 15947 asection *isec;
6a5bb875 15948
7f6ab9f8
AM
15949 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15950
4ba2ef8f
TP
15951 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15952 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15953 && out_attr[Tag_CPU_arch_profile].i == 'M';
15954
6a5bb875
PB
15955 /* Marking EH data may cause additional code sections to be marked,
15956 requiring multiple passes. */
0a1b45a2 15957 again = true;
6a5bb875
PB
15958 while (again)
15959 {
0a1b45a2 15960 again = false;
c72f2fb2 15961 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6a5bb875
PB
15962 {
15963 asection *o;
15964
0ffa91dd 15965 if (! is_arm_elf (sub))
6a5bb875
PB
15966 continue;
15967
15968 elf_shdrp = elf_elfsections (sub);
15969 for (o = sub->sections; o != NULL; o = o->next)
15970 {
15971 Elf_Internal_Shdr *hdr;
0ffa91dd 15972
6a5bb875 15973 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
15974 if (hdr->sh_type == SHT_ARM_EXIDX
15975 && hdr->sh_link
15976 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
15977 && !o->gc_mark
15978 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15979 {
0a1b45a2 15980 again = true;
6a5bb875 15981 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
0a1b45a2 15982 return false;
6a5bb875
PB
15983 }
15984 }
4ba2ef8f
TP
15985
15986 /* Mark section holding ARMv8-M secure entry functions. We mark all
15987 of them so no need for a second browsing. */
15988 if (is_v8m && first_bfd_browse)
15989 {
e4fbcd83
NC
15990 bool debug_sec_need_to_be_marked = false;
15991
4ba2ef8f
TP
15992 sym_hashes = elf_sym_hashes (sub);
15993 bed = get_elf_backend_data (sub);
15994 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15995 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15996 ext_start = symtab_hdr->sh_info;
15997
15998 /* Scan symbols. */
15999 for (i = ext_start; i < sym_count; i++)
16000 {
16001 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
83f18e5e
NC
16002 if (cmse_hash == NULL)
16003 continue;
4ba2ef8f
TP
16004
16005 /* Assume it is a special symbol. If not, cmse_scan will
16006 warn about it and user can do something about it. */
08dedd66 16007 if (startswith (cmse_hash->root.root.root.string,
e4fbcd83 16008 CMSE_PREFIX))
4ba2ef8f
TP
16009 {
16010 cmse_sec = cmse_hash->root.root.u.def.section;
5025eb7c
AO
16011 if (!cmse_sec->gc_mark
16012 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
0a1b45a2 16013 return false;
bb32413f
SP
16014 /* The debug sections related to these secure entry
16015 functions are marked on enabling below flag. */
0a1b45a2 16016 debug_sec_need_to_be_marked = true;
4ba2ef8f
TP
16017 }
16018 }
bb32413f
SP
16019
16020 if (debug_sec_need_to_be_marked)
16021 {
16022 /* Looping over all the sections of the object file containing
16023 Armv8-M secure entry functions and marking all the debug
16024 sections. */
16025 for (isec = sub->sections; isec != NULL; isec = isec->next)
16026 {
16027 /* If not a debug sections, skip it. */
16028 if (!isec->gc_mark && (isec->flags & SEC_DEBUGGING))
e4fbcd83
NC
16029 {
16030 isec->gc_mark = 1;
16031 extra_marks_added = true;
16032 }
bb32413f 16033 }
0a1b45a2 16034 debug_sec_need_to_be_marked = false;
bb32413f 16035 }
4ba2ef8f 16036 }
6a5bb875 16037 }
e4fbcd83 16038
0a1b45a2 16039 first_bfd_browse = false;
6a5bb875
PB
16040 }
16041
e4fbcd83
NC
16042 /* PR 30354: If we have added extra marks then make sure that any
16043 dependencies of the newly marked sections are also marked. */
16044 if (extra_marks_added)
16045 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
16046
0a1b45a2 16047 return true;
6a5bb875
PB
16048}
16049
3c9458e9
NC
16050/* Treat mapping symbols as special target symbols. */
16051
0a1b45a2 16052static bool
3c9458e9
NC
16053elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
16054{
b0796911
PB
16055 return bfd_is_arm_special_symbol_name (sym->name,
16056 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
16057}
16058
e7679060
AM
16059/* If the ELF symbol SYM might be a function in SEC, return the
16060 function size and set *CODE_OFF to the function's entry point,
16061 otherwise return zero. */
252b5132 16062
e7679060
AM
16063static bfd_size_type
16064elf32_arm_maybe_function_sym (const asymbol *sym, asection *sec,
16065 bfd_vma *code_off)
16066{
16067 bfd_size_type size;
24aebc79 16068 elf_symbol_type * elf_sym = (elf_symbol_type *) sym;
252b5132 16069
e7679060
AM
16070 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
16071 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
16072 || sym->section != sec)
16073 return 0;
252b5132 16074
24aebc79
NC
16075 size = (sym->flags & BSF_SYNTHETIC) ? 0 : elf_sym->internal_elf_sym.st_size;
16076
e7679060 16077 if (!(sym->flags & BSF_SYNTHETIC))
24aebc79 16078 switch (ELF_ST_TYPE (elf_sym->internal_elf_sym.st_info))
e7679060 16079 {
24aebc79
NC
16080 case STT_NOTYPE:
16081 /* Ignore symbols created by the annobin plugin for gcc and clang.
16082 These symbols are hidden, local, notype and have a size of 0. */
16083 if (size == 0
16084 && sym->flags & BSF_LOCAL
16085 && ELF_ST_VISIBILITY (elf_sym->internal_elf_sym.st_other) == STV_HIDDEN)
16086 return 0;
16087 /* Fall through. */
252b5132
RH
16088 case STT_FUNC:
16089 case STT_ARM_TFUNC:
24aebc79 16090 /* FIXME: Allow STT_GNU_IFUNC as well ? */
252b5132 16091 break;
e7679060
AM
16092 default:
16093 return 0;
16094 }
cc850f74 16095
e7679060
AM
16096 if ((sym->flags & BSF_LOCAL)
16097 && bfd_is_arm_special_symbol_name (sym->name,
16098 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16099 return 0;
0367ecfb 16100
e7679060 16101 *code_off = sym->value;
24aebc79
NC
16102
16103 /* Do not return 0 for the function's size. */
16104 return size ? size : 1;
16105
252b5132
RH
16106}
16107
0a1b45a2 16108static bool
07d6d2b8 16109elf32_arm_find_inliner_info (bfd * abfd,
4ab527b0
FF
16110 const char ** filename_ptr,
16111 const char ** functionname_ptr,
16112 unsigned int * line_ptr)
16113{
0a1b45a2 16114 bool found;
4ab527b0
FF
16115 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16116 functionname_ptr, line_ptr,
16117 & elf_tdata (abfd)->dwarf2_find_line_info);
16118 return found;
16119}
16120
252b5132
RH
16121/* Adjust a symbol defined by a dynamic object and referenced by a
16122 regular object. The current definition is in some section of the
16123 dynamic object, but we're not including those sections. We have to
16124 change the definition to something the rest of the link can
16125 understand. */
16126
0a1b45a2 16127static bool
57e8b36a
NC
16128elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16129 struct elf_link_hash_entry * h)
252b5132
RH
16130{
16131 bfd * dynobj;
5474d94f 16132 asection *s, *srel;
b7693d02 16133 struct elf32_arm_link_hash_entry * eh;
67687978 16134 struct elf32_arm_link_hash_table *globals;
252b5132 16135
67687978 16136 globals = elf32_arm_hash_table (info);
4dfe6ac6 16137 if (globals == NULL)
0a1b45a2 16138 return false;
4dfe6ac6 16139
252b5132
RH
16140 dynobj = elf_hash_table (info)->dynobj;
16141
16142 /* Make sure we know what is going on here. */
16143 BFD_ASSERT (dynobj != NULL
f5385ebf 16144 && (h->needs_plt
34e77a92 16145 || h->type == STT_GNU_IFUNC
60d67dc8 16146 || h->is_weakalias
f5385ebf
AM
16147 || (h->def_dynamic
16148 && h->ref_regular
16149 && !h->def_regular)));
252b5132 16150
b7693d02
DJ
16151 eh = (struct elf32_arm_link_hash_entry *) h;
16152
252b5132
RH
16153 /* If this is a function, put it in the procedure linkage table. We
16154 will fill in the contents of the procedure linkage table later,
16155 when we know the address of the .got section. */
34e77a92 16156 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 16157 {
34e77a92
RS
16158 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16159 symbol binds locally. */
5e681ec4 16160 if (h->plt.refcount <= 0
34e77a92
RS
16161 || (h->type != STT_GNU_IFUNC
16162 && (SYMBOL_CALLS_LOCAL (info, h)
16163 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16164 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
16165 {
16166 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
16167 file, but the symbol was never referred to by a dynamic
16168 object, or if all references were garbage collected. In
16169 such a case, we don't actually need to build a procedure
16170 linkage table, and we can just do a PC24 reloc instead. */
16171 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
16172 eh->plt.thumb_refcount = 0;
16173 eh->plt.maybe_thumb_refcount = 0;
16174 eh->plt.noncall_refcount = 0;
f5385ebf 16175 h->needs_plt = 0;
252b5132
RH
16176 }
16177
0a1b45a2 16178 return true;
252b5132 16179 }
5e681ec4 16180 else
b7693d02
DJ
16181 {
16182 /* It's possible that we incorrectly decided a .plt reloc was
16183 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16184 in check_relocs. We can't decide accurately between function
16185 and non-function syms in check-relocs; Objects loaded later in
16186 the link may change h->type. So fix it now. */
16187 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
16188 eh->plt.thumb_refcount = 0;
16189 eh->plt.maybe_thumb_refcount = 0;
16190 eh->plt.noncall_refcount = 0;
b7693d02 16191 }
252b5132
RH
16192
16193 /* If this is a weak symbol, and there is a real definition, the
16194 processor independent code will have arranged for us to see the
16195 real definition first, and we can just use the same value. */
60d67dc8 16196 if (h->is_weakalias)
252b5132 16197 {
60d67dc8
AM
16198 struct elf_link_hash_entry *def = weakdef (h);
16199 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16200 h->root.u.def.section = def->root.u.def.section;
16201 h->root.u.def.value = def->root.u.def.value;
0a1b45a2 16202 return true;
252b5132
RH
16203 }
16204
ba93b8ac
DJ
16205 /* If there are no non-GOT references, we do not need a copy
16206 relocation. */
16207 if (!h->non_got_ref)
0a1b45a2 16208 return true;
ba93b8ac 16209
252b5132
RH
16210 /* This is a reference to a symbol defined by a dynamic object which
16211 is not a function. */
16212
16213 /* If we are creating a shared library, we must presume that the
16214 only references to the symbol are via the global offset table.
16215 For such cases we need not do anything here; the relocations will
67687978
PB
16216 be handled correctly by relocate_section. Relocatable executables
16217 can reference data in shared objects directly, so we don't need to
16218 do anything here. */
0e1862bb 16219 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
0a1b45a2 16220 return true;
252b5132
RH
16221
16222 /* We must allocate the symbol in our .dynbss section, which will
16223 become part of the .bss section of the executable. There will be
16224 an entry for this symbol in the .dynsym section. The dynamic
16225 object will contain position independent code, so all references
16226 from the dynamic object to this symbol will go through the global
16227 offset table. The dynamic linker will use the .dynsym entry to
16228 determine the address it must put in the global offset table, so
16229 both the dynamic object and the regular object will refer to the
16230 same memory location for the variable. */
5522f910
NC
16231 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16232 linker to copy the initial value out of the dynamic object and into
16233 the runtime process image. We need to remember the offset into the
00a97672 16234 .rel(a).bss section we are going to use. */
5474d94f
AM
16235 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16236 {
16237 s = globals->root.sdynrelro;
16238 srel = globals->root.sreldynrelro;
16239 }
16240 else
16241 {
16242 s = globals->root.sdynbss;
16243 srel = globals->root.srelbss;
16244 }
5522f910
NC
16245 if (info->nocopyreloc == 0
16246 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
5522f910 16247 && h->size != 0)
252b5132 16248 {
47beaa6a 16249 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 16250 h->needs_copy = 1;
252b5132
RH
16251 }
16252
6cabe1ea 16253 return _bfd_elf_adjust_dynamic_copy (info, h, s);
252b5132
RH
16254}
16255
5e681ec4
PB
16256/* Allocate space in .plt, .got and associated reloc sections for
16257 dynamic relocs. */
16258
0a1b45a2 16259static bool
47beaa6a 16260allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
16261{
16262 struct bfd_link_info *info;
16263 struct elf32_arm_link_hash_table *htab;
16264 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 16265 struct elf_dyn_relocs *p;
5e681ec4
PB
16266
16267 if (h->root.type == bfd_link_hash_indirect)
0a1b45a2 16268 return true;
5e681ec4 16269
e6a6bb22
AM
16270 eh = (struct elf32_arm_link_hash_entry *) h;
16271
5e681ec4
PB
16272 info = (struct bfd_link_info *) inf;
16273 htab = elf32_arm_hash_table (info);
4dfe6ac6 16274 if (htab == NULL)
0a1b45a2 16275 return false;
5e681ec4 16276
34e77a92 16277 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
16278 && h->plt.refcount > 0)
16279 {
16280 /* Make sure this symbol is output as a dynamic symbol.
16281 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16282 if (h->dynindx == -1 && !h->forced_local
16283 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16284 {
c152c796 16285 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16286 return false;
5e681ec4
PB
16287 }
16288
34e77a92
RS
16289 /* If the call in the PLT entry binds locally, the associated
16290 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16291 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16292 than the .plt section. */
16293 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16294 {
16295 eh->is_iplt = 1;
16296 if (eh->plt.noncall_refcount == 0
16297 && SYMBOL_REFERENCES_LOCAL (info, h))
16298 /* All non-call references can be resolved directly.
16299 This means that they can (and in some cases, must)
16300 resolve directly to the run-time target, rather than
16301 to the PLT. That in turns means that any .got entry
16302 would be equal to the .igot.plt entry, so there's
16303 no point having both. */
16304 h->got.refcount = 0;
16305 }
16306
0e1862bb 16307 if (bfd_link_pic (info)
34e77a92 16308 || eh->is_iplt
7359ea65 16309 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 16310 {
34e77a92 16311 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 16312
5e681ec4
PB
16313 /* If this symbol is not defined in a regular file, and we are
16314 not generating a shared library, then set the symbol to this
16315 location in the .plt. This is required to make function
16316 pointers compare as equal between the normal executable and
16317 the shared library. */
0e1862bb 16318 if (! bfd_link_pic (info)
f5385ebf 16319 && !h->def_regular)
5e681ec4 16320 {
34e77a92 16321 h->root.u.def.section = htab->root.splt;
5e681ec4 16322 h->root.u.def.value = h->plt.offset;
5e681ec4 16323
67d74e43
DJ
16324 /* Make sure the function is not marked as Thumb, in case
16325 it is the target of an ABS32 relocation, which will
16326 point to the PLT entry. */
39d911fc 16327 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
67d74e43 16328 }
022f8312 16329
00a97672
RS
16330 /* VxWorks executables have a second set of relocations for
16331 each PLT entry. They go in a separate relocation section,
16332 which is processed by the kernel loader. */
90c14f0c 16333 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
00a97672
RS
16334 {
16335 /* There is a relocation for the initial PLT entry:
16336 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16337 if (h->plt.offset == htab->plt_header_size)
47beaa6a 16338 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
16339
16340 /* There are two extra relocations for each subsequent
16341 PLT entry: an R_ARM_32 relocation for the GOT entry,
16342 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 16343 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 16344 }
5e681ec4
PB
16345 }
16346 else
16347 {
16348 h->plt.offset = (bfd_vma) -1;
f5385ebf 16349 h->needs_plt = 0;
5e681ec4
PB
16350 }
16351 }
16352 else
16353 {
16354 h->plt.offset = (bfd_vma) -1;
f5385ebf 16355 h->needs_plt = 0;
5e681ec4
PB
16356 }
16357
0855e32b
NS
16358 eh = (struct elf32_arm_link_hash_entry *) h;
16359 eh->tlsdesc_got = (bfd_vma) -1;
16360
5e681ec4
PB
16361 if (h->got.refcount > 0)
16362 {
16363 asection *s;
0a1b45a2 16364 bool dyn;
ba93b8ac
DJ
16365 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16366 int indx;
5e681ec4
PB
16367
16368 /* Make sure this symbol is output as a dynamic symbol.
16369 Undefined weak syms won't yet be marked as dynamic. */
a57d1773
AM
16370 if (htab->root.dynamic_sections_created
16371 && h->dynindx == -1
16372 && !h->forced_local
6c699715 16373 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16374 {
c152c796 16375 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16376 return false;
5e681ec4
PB
16377 }
16378
a57d1773
AM
16379 s = htab->root.sgot;
16380 h->got.offset = s->size;
ba93b8ac 16381
a57d1773
AM
16382 if (tls_type == GOT_UNKNOWN)
16383 abort ();
ba93b8ac 16384
a57d1773
AM
16385 if (tls_type == GOT_NORMAL)
16386 /* Non-TLS symbols need one GOT slot. */
16387 s->size += 4;
16388 else
16389 {
16390 if (tls_type & GOT_TLS_GDESC)
ba93b8ac 16391 {
a57d1773
AM
16392 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16393 eh->tlsdesc_got
16394 = (htab->root.sgotplt->size
16395 - elf32_arm_compute_jump_table_size (htab));
16396 htab->root.sgotplt->size += 8;
16397 h->got.offset = (bfd_vma) -2;
16398 /* plt.got_offset needs to know there's a TLS_DESC
16399 reloc in the middle of .got.plt. */
16400 htab->num_tls_desc++;
16401 }
0855e32b 16402
a57d1773
AM
16403 if (tls_type & GOT_TLS_GD)
16404 {
16405 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16406 consecutive GOT slots. If the symbol is both GD
16407 and GDESC, got.offset may have been
16408 overwritten. */
16409 h->got.offset = s->size;
16410 s->size += 8;
ba93b8ac
DJ
16411 }
16412
a57d1773
AM
16413 if (tls_type & GOT_TLS_IE)
16414 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16415 slot. */
16416 s->size += 4;
16417 }
ba93b8ac 16418
a57d1773 16419 dyn = htab->root.dynamic_sections_created;
ba93b8ac 16420
a57d1773
AM
16421 indx = 0;
16422 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
16423 && (!bfd_link_pic (info)
16424 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16425 indx = h->dynindx;
ba93b8ac 16426
a57d1773
AM
16427 if (tls_type != GOT_NORMAL
16428 && (bfd_link_dll (info) || indx != 0)
16429 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16430 || h->root.type != bfd_link_hash_undefweak))
16431 {
16432 if (tls_type & GOT_TLS_IE)
16433 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 16434
a57d1773
AM
16435 if (tls_type & GOT_TLS_GD)
16436 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
0855e32b 16437
a57d1773 16438 if (tls_type & GOT_TLS_GDESC)
b436d854 16439 {
a57d1773
AM
16440 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16441 /* GDESC needs a trampoline to jump to. */
16442 htab->tls_trampoline = -1;
b436d854 16443 }
a57d1773
AM
16444
16445 /* Only GD needs it. GDESC just emits one relocation per
16446 2 entries. */
16447 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 16448 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e5a52504 16449 }
a57d1773
AM
16450 else if (((indx != -1) || htab->fdpic_p)
16451 && !SYMBOL_REFERENCES_LOCAL (info, h))
16452 {
16453 if (htab->root.dynamic_sections_created)
16454 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16455 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16456 }
16457 else if (h->type == STT_GNU_IFUNC
16458 && eh->plt.noncall_refcount == 0)
16459 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16460 they all resolve dynamically instead. Reserve room for the
16461 GOT entry's R_ARM_IRELATIVE relocation. */
16462 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16463 else if (bfd_link_pic (info)
16464 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16465 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16466 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16467 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16468 /* Reserve room for rofixup for FDPIC executable. */
16469 /* TLS relocs do not need space since they are completely
16470 resolved. */
16471 htab->srofixup->size += 4;
5e681ec4
PB
16472 }
16473 else
16474 h->got.offset = (bfd_vma) -1;
16475
e8b09b87
CL
16476 /* FDPIC support. */
16477 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16478 {
16479 /* Symbol musn't be exported. */
16480 if (h->dynindx != -1)
cc850f74 16481 abort ();
e8b09b87 16482
a57d1773
AM
16483 /* We only allocate one function descriptor with its associated
16484 relocation. */
e8b09b87
CL
16485 if (eh->fdpic_cnts.funcdesc_offset == -1)
16486 {
16487 asection *s = htab->root.sgot;
16488
16489 eh->fdpic_cnts.funcdesc_offset = s->size;
16490 s->size += 8;
16491 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
cc850f74 16492 if (bfd_link_pic (info))
e8b09b87
CL
16493 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16494 else
16495 htab->srofixup->size += 8;
16496 }
16497 }
16498
16499 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16500 {
16501 asection *s = htab->root.sgot;
16502
16503 if (htab->root.dynamic_sections_created && h->dynindx == -1
16504 && !h->forced_local)
16505 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16506 return false;
e8b09b87
CL
16507
16508 if (h->dynindx == -1)
16509 {
a57d1773
AM
16510 /* We only allocate one function descriptor with its
16511 associated relocation. */
e8b09b87
CL
16512 if (eh->fdpic_cnts.funcdesc_offset == -1)
16513 {
16514
16515 eh->fdpic_cnts.funcdesc_offset = s->size;
16516 s->size += 8;
a57d1773
AM
16517 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two
16518 rofixups. */
cc850f74 16519 if (bfd_link_pic (info))
e8b09b87
CL
16520 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16521 else
16522 htab->srofixup->size += 8;
16523 }
16524 }
16525
16526 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16527 R_ARM_RELATIVE/rofixup relocation on it. */
16528 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16529 s->size += 4;
cc850f74 16530 if (h->dynindx == -1 && !bfd_link_pic (info))
4b24dd1a 16531 htab->srofixup->size += 4;
e8b09b87 16532 else
4b24dd1a 16533 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e8b09b87
CL
16534 }
16535
16536 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16537 {
16538 if (htab->root.dynamic_sections_created && h->dynindx == -1
16539 && !h->forced_local)
16540 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16541 return false;
e8b09b87
CL
16542
16543 if (h->dynindx == -1)
16544 {
a57d1773
AM
16545 /* We only allocate one function descriptor with its
16546 associated relocation. */
e8b09b87
CL
16547 if (eh->fdpic_cnts.funcdesc_offset == -1)
16548 {
16549 asection *s = htab->root.sgot;
16550
16551 eh->fdpic_cnts.funcdesc_offset = s->size;
16552 s->size += 8;
a57d1773
AM
16553 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two
16554 rofixups. */
cc850f74 16555 if (bfd_link_pic (info))
e8b09b87
CL
16556 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16557 else
16558 htab->srofixup->size += 8;
16559 }
16560 }
cc850f74 16561 if (h->dynindx == -1 && !bfd_link_pic (info))
e8b09b87
CL
16562 {
16563 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16564 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16565 }
16566 else
16567 {
16568 /* Will need one dynamic reloc per reference. will be either
16569 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16570 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16571 eh->fdpic_cnts.funcdesc_cnt);
16572 }
16573 }
16574
a4fd1a8e
PB
16575 /* Allocate stubs for exported Thumb functions on v4t. */
16576 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 16577 && h->def_regular
39d911fc 16578 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
16579 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16580 {
16581 struct elf_link_hash_entry * th;
16582 struct bfd_link_hash_entry * bh;
16583 struct elf_link_hash_entry * myh;
16584 char name[1024];
16585 asection *s;
16586 bh = NULL;
16587 /* Create a new symbol to regist the real location of the function. */
16588 s = h->root.u.def.section;
906e58ca 16589 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
16590 _bfd_generic_link_add_one_symbol (info, s->owner,
16591 name, BSF_GLOBAL, s,
16592 h->root.u.def.value,
0a1b45a2 16593 NULL, true, false, &bh);
a4fd1a8e
PB
16594
16595 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 16596 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 16597 myh->forced_local = 1;
39d911fc 16598 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
a4fd1a8e
PB
16599 eh->export_glue = myh;
16600 th = record_arm_to_thumb_glue (info, h);
16601 /* Point the symbol at the stub. */
16602 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
39d911fc 16603 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
a4fd1a8e
PB
16604 h->root.u.def.section = th->root.u.def.section;
16605 h->root.u.def.value = th->root.u.def.value & ~1;
16606 }
16607
190eb1dd 16608 if (h->dyn_relocs == NULL)
0a1b45a2 16609 return true;
5e681ec4
PB
16610
16611 /* In the shared -Bsymbolic case, discard space allocated for
16612 dynamic pc-relative relocs against symbols which turn out to be
16613 defined in regular objects. For the normal shared case, discard
16614 space for pc-relative relocs that have become local due to symbol
16615 visibility changes. */
16616
a57d1773
AM
16617 if (bfd_link_pic (info)
16618 || htab->root.is_relocatable_executable
16619 || htab->fdpic_p)
5e681ec4 16620 {
469a3493
RM
16621 /* Relocs that use pc_count are PC-relative forms, which will appear
16622 on something like ".long foo - ." or "movw REG, foo - .". We want
16623 calls to protected symbols to resolve directly to the function
16624 rather than going via the plt. If people want function pointer
16625 comparisons to work as expected then they should avoid writing
16626 assembly like ".long foo - .". */
ba93b8ac
DJ
16627 if (SYMBOL_CALLS_LOCAL (info, h))
16628 {
0bdcacaf 16629 struct elf_dyn_relocs **pp;
ba93b8ac 16630
190eb1dd 16631 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
16632 {
16633 p->count -= p->pc_count;
16634 p->pc_count = 0;
16635 if (p->count == 0)
16636 *pp = p->next;
16637 else
16638 pp = &p->next;
16639 }
16640 }
16641
90c14f0c 16642 if (htab->root.target_os == is_vxworks)
3348747a 16643 {
0bdcacaf 16644 struct elf_dyn_relocs **pp;
3348747a 16645
190eb1dd 16646 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
3348747a 16647 {
0bdcacaf 16648 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
16649 *pp = p->next;
16650 else
16651 pp = &p->next;
16652 }
16653 }
16654
ba93b8ac 16655 /* Also discard relocs on undefined weak syms with non-default
99059e56 16656 visibility. */
190eb1dd 16657 if (h->dyn_relocs != NULL
5e681ec4 16658 && h->root.type == bfd_link_hash_undefweak)
22d606e9 16659 {
95b03e4a
L
16660 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16661 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
190eb1dd 16662 h->dyn_relocs = NULL;
22d606e9
AM
16663
16664 /* Make sure undefined weak symbols are output as a dynamic
16665 symbol in PIEs. */
e8b09b87 16666 else if (htab->root.dynamic_sections_created && h->dynindx == -1
22d606e9
AM
16667 && !h->forced_local)
16668 {
16669 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16670 return false;
22d606e9
AM
16671 }
16672 }
16673
67687978
PB
16674 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16675 && h->root.type == bfd_link_hash_new)
16676 {
16677 /* Output absolute symbols so that we can create relocations
16678 against them. For normal symbols we output a relocation
16679 against the section that contains them. */
16680 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16681 return false;
67687978
PB
16682 }
16683
5e681ec4
PB
16684 }
16685 else
16686 {
16687 /* For the non-shared case, discard space for relocs against
16688 symbols which turn out to need copy relocs or are not
16689 dynamic. */
16690
f5385ebf
AM
16691 if (!h->non_got_ref
16692 && ((h->def_dynamic
16693 && !h->def_regular)
5e681ec4
PB
16694 || (htab->root.dynamic_sections_created
16695 && (h->root.type == bfd_link_hash_undefweak
16696 || h->root.type == bfd_link_hash_undefined))))
16697 {
16698 /* Make sure this symbol is output as a dynamic symbol.
16699 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16700 if (h->dynindx == -1 && !h->forced_local
16701 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16702 {
c152c796 16703 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16704 return false;
5e681ec4
PB
16705 }
16706
16707 /* If that succeeded, we know we'll be keeping all the
16708 relocs. */
16709 if (h->dynindx != -1)
16710 goto keep;
16711 }
16712
190eb1dd 16713 h->dyn_relocs = NULL;
5e681ec4
PB
16714
16715 keep: ;
16716 }
16717
16718 /* Finally, allocate space. */
190eb1dd 16719 for (p = h->dyn_relocs; p != NULL; p = p->next)
5e681ec4 16720 {
0bdcacaf 16721 asection *sreloc = elf_section_data (p->sec)->sreloc;
e8b09b87 16722
34e77a92
RS
16723 if (h->type == STT_GNU_IFUNC
16724 && eh->plt.noncall_refcount == 0
16725 && SYMBOL_REFERENCES_LOCAL (info, h))
16726 elf32_arm_allocate_irelocs (info, sreloc, p->count);
a57d1773 16727 else if (h->dynindx != -1
cc850f74 16728 && (!bfd_link_pic (info) || !info->symbolic || !h->def_regular))
e8b09b87 16729 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
cc850f74 16730 else if (htab->fdpic_p && !bfd_link_pic (info))
e8b09b87 16731 htab->srofixup->size += 4 * p->count;
34e77a92
RS
16732 else
16733 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
16734 }
16735
0a1b45a2 16736 return true;
5e681ec4
PB
16737}
16738
d504ffc8
DJ
16739void
16740bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16741 int byteswap_code)
16742{
16743 struct elf32_arm_link_hash_table *globals;
16744
16745 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
16746 if (globals == NULL)
16747 return;
16748
d504ffc8
DJ
16749 globals->byteswap_code = byteswap_code;
16750}
16751
252b5132
RH
16752/* Set the sizes of the dynamic sections. */
16753
0a1b45a2 16754static bool
57e8b36a
NC
16755elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16756 struct bfd_link_info * info)
252b5132
RH
16757{
16758 bfd * dynobj;
16759 asection * s;
0a1b45a2 16760 bool relocs;
5e681ec4
PB
16761 bfd *ibfd;
16762 struct elf32_arm_link_hash_table *htab;
252b5132 16763
5e681ec4 16764 htab = elf32_arm_hash_table (info);
4dfe6ac6 16765 if (htab == NULL)
0a1b45a2 16766 return false;
4dfe6ac6 16767
252b5132
RH
16768 dynobj = elf_hash_table (info)->dynobj;
16769 BFD_ASSERT (dynobj != NULL);
39b41c9c 16770 check_use_blx (htab);
252b5132
RH
16771
16772 if (elf_hash_table (info)->dynamic_sections_created)
16773 {
16774 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 16775 if (bfd_link_executable (info) && !info->nointerp)
252b5132 16776 {
3d4d4302 16777 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 16778 BFD_ASSERT (s != NULL);
eea6121a 16779 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
16780 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16781 }
16782 }
5e681ec4
PB
16783
16784 /* Set up .got offsets for local syms, and space for local dynamic
16785 relocs. */
c72f2fb2 16786 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
252b5132 16787 {
5e681ec4
PB
16788 bfd_signed_vma *local_got;
16789 bfd_signed_vma *end_local_got;
34e77a92 16790 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 16791 char *local_tls_type;
0855e32b 16792 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
16793 bfd_size_type locsymcount;
16794 Elf_Internal_Shdr *symtab_hdr;
16795 asection *srel;
34e77a92 16796 unsigned int symndx;
e8b09b87 16797 struct fdpic_local *local_fdpic_cnts;
5e681ec4 16798
0ffa91dd 16799 if (! is_arm_elf (ibfd))
5e681ec4
PB
16800 continue;
16801
16802 for (s = ibfd->sections; s != NULL; s = s->next)
16803 {
0bdcacaf 16804 struct elf_dyn_relocs *p;
5e681ec4 16805
0bdcacaf 16806 for (p = (struct elf_dyn_relocs *)
99059e56 16807 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 16808 {
0bdcacaf
RS
16809 if (!bfd_is_abs_section (p->sec)
16810 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
16811 {
16812 /* Input section has been discarded, either because
16813 it is a copy of a linkonce section or due to
16814 linker script /DISCARD/, so we'll be discarding
16815 the relocs too. */
16816 }
90c14f0c 16817 else if (htab->root.target_os == is_vxworks
0bdcacaf 16818 && strcmp (p->sec->output_section->name,
3348747a
NS
16819 ".tls_vars") == 0)
16820 {
16821 /* Relocations in vxworks .tls_vars sections are
16822 handled specially by the loader. */
16823 }
5e681ec4
PB
16824 else if (p->count != 0)
16825 {
0bdcacaf 16826 srel = elf_section_data (p->sec)->sreloc;
cc850f74 16827 if (htab->fdpic_p && !bfd_link_pic (info))
e8b09b87
CL
16828 htab->srofixup->size += 4 * p->count;
16829 else
16830 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 16831 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
16832 info->flags |= DF_TEXTREL;
16833 }
16834 }
16835 }
16836
16837 local_got = elf_local_got_refcounts (ibfd);
cc850f74 16838 if (local_got == NULL)
5e681ec4
PB
16839 continue;
16840
0ffa91dd 16841 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
16842 locsymcount = symtab_hdr->sh_info;
16843 end_local_got = local_got + locsymcount;
34e77a92 16844 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 16845 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 16846 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
e8b09b87 16847 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
34e77a92 16848 symndx = 0;
362d30a1
RS
16849 s = htab->root.sgot;
16850 srel = htab->root.srelgot;
0855e32b 16851 for (; local_got < end_local_got;
34e77a92 16852 ++local_got, ++local_iplt_ptr, ++local_tls_type,
e8b09b87 16853 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
5e681ec4 16854 {
74fd118f
NC
16855 if (symndx >= elf32_arm_num_entries (ibfd))
16856 return false;
16857
0855e32b 16858 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92 16859 local_iplt = *local_iplt_ptr;
e8b09b87
CL
16860
16861 /* FDPIC support. */
16862 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16863 {
16864 if (local_fdpic_cnts->funcdesc_offset == -1)
16865 {
16866 local_fdpic_cnts->funcdesc_offset = s->size;
16867 s->size += 8;
16868
16869 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
cc850f74 16870 if (bfd_link_pic (info))
e8b09b87
CL
16871 elf32_arm_allocate_dynrelocs (info, srel, 1);
16872 else
16873 htab->srofixup->size += 8;
16874 }
16875 }
16876
16877 if (local_fdpic_cnts->funcdesc_cnt > 0)
16878 {
16879 if (local_fdpic_cnts->funcdesc_offset == -1)
16880 {
16881 local_fdpic_cnts->funcdesc_offset = s->size;
16882 s->size += 8;
16883
16884 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
cc850f74 16885 if (bfd_link_pic (info))
e8b09b87
CL
16886 elf32_arm_allocate_dynrelocs (info, srel, 1);
16887 else
16888 htab->srofixup->size += 8;
16889 }
16890
16891 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
cc850f74 16892 if (bfd_link_pic (info))
e8b09b87
CL
16893 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16894 else
16895 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16896 }
16897
34e77a92
RS
16898 if (local_iplt != NULL)
16899 {
16900 struct elf_dyn_relocs *p;
16901
16902 if (local_iplt->root.refcount > 0)
16903 {
0a1b45a2 16904 elf32_arm_allocate_plt_entry (info, true,
34e77a92
RS
16905 &local_iplt->root,
16906 &local_iplt->arm);
16907 if (local_iplt->arm.noncall_refcount == 0)
16908 /* All references to the PLT are calls, so all
16909 non-call references can resolve directly to the
16910 run-time target. This means that the .got entry
16911 would be the same as the .igot.plt entry, so there's
16912 no point creating both. */
16913 *local_got = 0;
16914 }
16915 else
16916 {
16917 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16918 local_iplt->root.offset = (bfd_vma) -1;
16919 }
16920
16921 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
16922 {
16923 asection *psrel;
16924
16925 psrel = elf_section_data (p->sec)->sreloc;
16926 if (local_iplt->arm.noncall_refcount == 0)
16927 elf32_arm_allocate_irelocs (info, psrel, p->count);
16928 else
16929 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
16930 }
16931 }
5e681ec4
PB
16932 if (*local_got > 0)
16933 {
34e77a92
RS
16934 Elf_Internal_Sym *isym;
16935
eea6121a 16936 *local_got = s->size;
ba93b8ac
DJ
16937 if (*local_tls_type & GOT_TLS_GD)
16938 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16939 s->size += 8;
0855e32b
NS
16940 if (*local_tls_type & GOT_TLS_GDESC)
16941 {
16942 *local_tlsdesc_gotent = htab->root.sgotplt->size
16943 - elf32_arm_compute_jump_table_size (htab);
16944 htab->root.sgotplt->size += 8;
16945 *local_got = (bfd_vma) -2;
34e77a92 16946 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 16947 reloc in the middle of .got.plt. */
99059e56 16948 htab->num_tls_desc++;
0855e32b 16949 }
ba93b8ac
DJ
16950 if (*local_tls_type & GOT_TLS_IE)
16951 s->size += 4;
ba93b8ac 16952
0855e32b
NS
16953 if (*local_tls_type & GOT_NORMAL)
16954 {
16955 /* If the symbol is both GD and GDESC, *local_got
16956 may have been overwritten. */
16957 *local_got = s->size;
16958 s->size += 4;
16959 }
16960
f1dfbfdb
L
16961 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ibfd,
16962 symndx);
34e77a92 16963 if (isym == NULL)
0a1b45a2 16964 return false;
34e77a92
RS
16965
16966 /* If all references to an STT_GNU_IFUNC PLT are calls,
16967 then all non-call references, including this GOT entry,
16968 resolve directly to the run-time target. */
16969 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
16970 && (local_iplt == NULL
16971 || local_iplt->arm.noncall_refcount == 0))
16972 elf32_arm_allocate_irelocs (info, srel, 1);
e8b09b87 16973 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
0855e32b 16974 {
e8b09b87 16975 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
3064e1ff 16976 elf32_arm_allocate_dynrelocs (info, srel, 1);
e8b09b87
CL
16977 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
16978 htab->srofixup->size += 4;
99059e56 16979
e8b09b87
CL
16980 if ((bfd_link_pic (info) || htab->fdpic_p)
16981 && *local_tls_type & GOT_TLS_GDESC)
3064e1ff
JB
16982 {
16983 elf32_arm_allocate_dynrelocs (info,
16984 htab->root.srelplt, 1);
16985 htab->tls_trampoline = -1;
16986 }
0855e32b 16987 }
5e681ec4
PB
16988 }
16989 else
16990 *local_got = (bfd_vma) -1;
16991 }
252b5132
RH
16992 }
16993
ba93b8ac
DJ
16994 if (htab->tls_ldm_got.refcount > 0)
16995 {
16996 /* Allocate two GOT entries and one dynamic relocation (if necessary)
5c5a4843 16997 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
362d30a1
RS
16998 htab->tls_ldm_got.offset = htab->root.sgot->size;
16999 htab->root.sgot->size += 8;
0e1862bb 17000 if (bfd_link_pic (info))
47beaa6a 17001 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
17002 }
17003 else
17004 htab->tls_ldm_got.offset = -1;
17005
e8b09b87
CL
17006 /* At the very end of the .rofixup section is a pointer to the GOT,
17007 reserve space for it. */
17008 if (htab->fdpic_p && htab->srofixup != NULL)
17009 htab->srofixup->size += 4;
17010
5e681ec4
PB
17011 /* Allocate global sym .plt and .got entries, and space for global
17012 sym dynamic relocs. */
47beaa6a 17013 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 17014
d504ffc8 17015 /* Here we rummage through the found bfds to collect glue information. */
c72f2fb2 17016 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
c7b8f16e 17017 {
0ffa91dd 17018 if (! is_arm_elf (ibfd))
e44a2c9c
AM
17019 continue;
17020
c7b8f16e
JB
17021 /* Initialise mapping tables for code/data. */
17022 bfd_elf32_arm_init_maps (ibfd);
906e58ca 17023
c7b8f16e 17024 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
a504d23a
LA
17025 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
17026 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
90b6238f 17027 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
c7b8f16e 17028 }
d504ffc8 17029
3e6b1042
DJ
17030 /* Allocate space for the glue sections now that we've sized them. */
17031 bfd_elf32_arm_allocate_interworking_sections (info);
17032
0855e32b
NS
17033 /* For every jump slot reserved in the sgotplt, reloc_count is
17034 incremented. However, when we reserve space for TLS descriptors,
17035 it's not incremented, so in order to compute the space reserved
17036 for them, it suffices to multiply the reloc count by the jump
17037 slot size. */
17038 if (htab->root.srelplt)
cc850f74 17039 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size (htab);
0855e32b
NS
17040
17041 if (htab->tls_trampoline)
17042 {
17043 if (htab->root.splt->size == 0)
17044 htab->root.splt->size += htab->plt_header_size;
b38cadfb 17045
0855e32b
NS
17046 htab->tls_trampoline = htab->root.splt->size;
17047 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 17048
0855e32b 17049 /* If we're not using lazy TLS relocations, don't generate the
99059e56 17050 PLT and GOT entries they require. */
9bcc30e4
L
17051 if ((info->flags & DF_BIND_NOW))
17052 htab->root.tlsdesc_plt = 0;
17053 else
0855e32b 17054 {
9bcc30e4 17055 htab->root.tlsdesc_got = htab->root.sgot->size;
0855e32b
NS
17056 htab->root.sgot->size += 4;
17057
9bcc30e4 17058 htab->root.tlsdesc_plt = htab->root.splt->size;
0855e32b
NS
17059 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
17060 }
17061 }
17062
252b5132
RH
17063 /* The check_relocs and adjust_dynamic_symbol entry points have
17064 determined the sizes of the various dynamic sections. Allocate
17065 memory for them. */
0a1b45a2 17066 relocs = false;
252b5132
RH
17067 for (s = dynobj->sections; s != NULL; s = s->next)
17068 {
17069 const char * name;
252b5132
RH
17070
17071 if ((s->flags & SEC_LINKER_CREATED) == 0)
17072 continue;
17073
17074 /* It's OK to base decisions on the section name, because none
17075 of the dynobj section names depend upon the input files. */
fd361982 17076 name = bfd_section_name (s);
252b5132 17077
34e77a92 17078 if (s == htab->root.splt)
252b5132 17079 {
c456f082 17080 /* Remember whether there is a PLT. */
3084d7a2 17081 ;
252b5132 17082 }
08dedd66 17083 else if (startswith (name, ".rel"))
252b5132 17084 {
c456f082 17085 if (s->size != 0)
252b5132 17086 {
252b5132 17087 /* Remember whether there are any reloc sections other
00a97672 17088 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 17089 if (s != htab->root.srelplt && s != htab->srelplt2)
0a1b45a2 17090 relocs = true;
252b5132
RH
17091
17092 /* We use the reloc_count field as a counter if we need
17093 to copy relocs into the output file. */
17094 s->reloc_count = 0;
17095 }
17096 }
34e77a92
RS
17097 else if (s != htab->root.sgot
17098 && s != htab->root.sgotplt
17099 && s != htab->root.iplt
17100 && s != htab->root.igotplt
5474d94f 17101 && s != htab->root.sdynbss
e8b09b87
CL
17102 && s != htab->root.sdynrelro
17103 && s != htab->srofixup)
252b5132
RH
17104 {
17105 /* It's not one of our sections, so don't allocate space. */
17106 continue;
17107 }
17108
c456f082 17109 if (s->size == 0)
252b5132 17110 {
c456f082 17111 /* If we don't need this section, strip it from the
00a97672
RS
17112 output file. This is mostly to handle .rel(a).bss and
17113 .rel(a).plt. We must create both sections in
c456f082
AM
17114 create_dynamic_sections, because they must be created
17115 before the linker maps input sections to output
17116 sections. The linker does that before
17117 adjust_dynamic_symbol is called, and it is that
17118 function which decides whether anything needs to go
17119 into these sections. */
8423293d 17120 s->flags |= SEC_EXCLUDE;
252b5132
RH
17121 continue;
17122 }
17123
c456f082
AM
17124 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17125 continue;
17126
252b5132 17127 /* Allocate memory for the section contents. */
21d799b5 17128 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 17129 if (s->contents == NULL)
0a1b45a2 17130 return false;
252b5132
RH
17131 }
17132
3084d7a2
L
17133 return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd, info,
17134 relocs);
252b5132
RH
17135}
17136
0855e32b
NS
17137/* Size sections even though they're not dynamic. We use it to setup
17138 _TLS_MODULE_BASE_, if needed. */
17139
0a1b45a2 17140static bool
0855e32b 17141elf32_arm_always_size_sections (bfd *output_bfd,
99059e56 17142 struct bfd_link_info *info)
0855e32b
NS
17143{
17144 asection *tls_sec;
cb10292c
CL
17145 struct elf32_arm_link_hash_table *htab;
17146
17147 htab = elf32_arm_hash_table (info);
0855e32b 17148
0e1862bb 17149 if (bfd_link_relocatable (info))
0a1b45a2 17150 return true;
0855e32b
NS
17151
17152 tls_sec = elf_hash_table (info)->tls_sec;
17153
17154 if (tls_sec)
17155 {
17156 struct elf_link_hash_entry *tlsbase;
17157
17158 tlsbase = elf_link_hash_lookup
0a1b45a2 17159 (elf_hash_table (info), "_TLS_MODULE_BASE_", true, true, false);
0855e32b
NS
17160
17161 if (tlsbase)
99059e56
RM
17162 {
17163 struct bfd_link_hash_entry *bh = NULL;
0855e32b 17164 const struct elf_backend_data *bed
99059e56 17165 = get_elf_backend_data (output_bfd);
0855e32b 17166
99059e56 17167 if (!(_bfd_generic_link_add_one_symbol
0855e32b 17168 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
0a1b45a2 17169 tls_sec, 0, NULL, false,
0855e32b 17170 bed->collect, &bh)))
0a1b45a2 17171 return false;
b38cadfb 17172
99059e56
RM
17173 tlsbase->type = STT_TLS;
17174 tlsbase = (struct elf_link_hash_entry *)bh;
17175 tlsbase->def_regular = 1;
17176 tlsbase->other = STV_HIDDEN;
0a1b45a2 17177 (*bed->elf_backend_hide_symbol) (info, tlsbase, true);
0855e32b
NS
17178 }
17179 }
cb10292c
CL
17180
17181 if (htab->fdpic_p && !bfd_link_relocatable (info)
17182 && !bfd_elf_stack_segment_size (output_bfd, info,
17183 "__stacksize", DEFAULT_STACK_SIZE))
0a1b45a2 17184 return false;
cb10292c 17185
0a1b45a2 17186 return true;
0855e32b
NS
17187}
17188
252b5132
RH
17189/* Finish up dynamic symbol handling. We set the contents of various
17190 dynamic sections here. */
17191
0a1b45a2 17192static bool
906e58ca
NC
17193elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17194 struct bfd_link_info * info,
17195 struct elf_link_hash_entry * h,
17196 Elf_Internal_Sym * sym)
252b5132 17197{
e5a52504 17198 struct elf32_arm_link_hash_table *htab;
b7693d02 17199 struct elf32_arm_link_hash_entry *eh;
252b5132 17200
e5a52504 17201 htab = elf32_arm_hash_table (info);
4dfe6ac6 17202 if (htab == NULL)
0a1b45a2 17203 return false;
4dfe6ac6 17204
b7693d02 17205 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
17206
17207 if (h->plt.offset != (bfd_vma) -1)
17208 {
34e77a92 17209 if (!eh->is_iplt)
e5a52504 17210 {
34e77a92 17211 BFD_ASSERT (h->dynindx != -1);
57460bcf
NC
17212 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17213 h->dynindx, 0))
0a1b45a2 17214 return false;
e5a52504 17215 }
57e8b36a 17216
f5385ebf 17217 if (!h->def_regular)
252b5132
RH
17218 {
17219 /* Mark the symbol as undefined, rather than as defined in
3a635617 17220 the .plt section. */
252b5132 17221 sym->st_shndx = SHN_UNDEF;
3a635617 17222 /* If the symbol is weak we need to clear the value.
d982ba73
PB
17223 Otherwise, the PLT entry would provide a definition for
17224 the symbol even if the symbol wasn't defined anywhere,
3a635617
WN
17225 and so the symbol would never be NULL. Leave the value if
17226 there were any relocations where pointer equality matters
17227 (this is a clue for the dynamic linker, to make function
17228 pointer comparisons work between an application and shared
17229 library). */
97323ad1 17230 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
d982ba73 17231 sym->st_value = 0;
252b5132 17232 }
34e77a92
RS
17233 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17234 {
17235 /* At least one non-call relocation references this .iplt entry,
17236 so the .iplt entry is the function's canonical address. */
17237 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
39d911fc 17238 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
34e77a92
RS
17239 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17240 (output_bfd, htab->root.iplt->output_section));
17241 sym->st_value = (h->plt.offset
17242 + htab->root.iplt->output_section->vma
17243 + htab->root.iplt->output_offset);
17244 }
252b5132
RH
17245 }
17246
f5385ebf 17247 if (h->needs_copy)
252b5132
RH
17248 {
17249 asection * s;
947216bf 17250 Elf_Internal_Rela rel;
252b5132
RH
17251
17252 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
17253 BFD_ASSERT (h->dynindx != -1
17254 && (h->root.type == bfd_link_hash_defined
17255 || h->root.type == bfd_link_hash_defweak));
17256
00a97672 17257 rel.r_addend = 0;
252b5132
RH
17258 rel.r_offset = (h->root.u.def.value
17259 + h->root.u.def.section->output_section->vma
17260 + h->root.u.def.section->output_offset);
17261 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
afbf7e8e 17262 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
17263 s = htab->root.sreldynrelro;
17264 else
17265 s = htab->root.srelbss;
47beaa6a 17266 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
17267 }
17268
00a97672 17269 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
fac7bd64
CL
17270 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17271 it is relative to the ".got" section. */
9637f6ef 17272 if (h == htab->root.hdynamic
90c14f0c
L
17273 || (!htab->fdpic_p
17274 && htab->root.target_os != is_vxworks
17275 && h == htab->root.hgot))
252b5132
RH
17276 sym->st_shndx = SHN_ABS;
17277
0a1b45a2 17278 return true;
252b5132
RH
17279}
17280
0855e32b
NS
17281static void
17282arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17283 void *contents,
17284 const unsigned long *template, unsigned count)
17285{
17286 unsigned ix;
b38cadfb 17287
0855e32b
NS
17288 for (ix = 0; ix != count; ix++)
17289 {
17290 unsigned long insn = template[ix];
17291
17292 /* Emit mov pc,rx if bx is not permitted. */
17293 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17294 insn = (insn & 0xf000000f) | 0x01a0f000;
17295 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17296 }
17297}
17298
99059e56
RM
17299/* Install the special first PLT entry for elf32-arm-nacl. Unlike
17300 other variants, NaCl needs this entry in a static executable's
17301 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17302 zero. For .iplt really only the last bundle is useful, and .iplt
17303 could have a shorter first entry, with each individual PLT entry's
17304 relative branch calculated differently so it targets the last
17305 bundle instead of the instruction before it (labelled .Lplt_tail
17306 above). But it's simpler to keep the size and layout of PLT0
17307 consistent with the dynamic case, at the cost of some dead code at
17308 the start of .iplt and the one dead store to the stack at the start
17309 of .Lplt_tail. */
17310static void
17311arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17312 asection *plt, bfd_vma got_displacement)
17313{
17314 unsigned int i;
17315
17316 put_arm_insn (htab, output_bfd,
17317 elf32_arm_nacl_plt0_entry[0]
17318 | arm_movw_immediate (got_displacement),
17319 plt->contents + 0);
17320 put_arm_insn (htab, output_bfd,
17321 elf32_arm_nacl_plt0_entry[1]
17322 | arm_movt_immediate (got_displacement),
17323 plt->contents + 4);
17324
17325 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17326 put_arm_insn (htab, output_bfd,
17327 elf32_arm_nacl_plt0_entry[i],
17328 plt->contents + (i * 4));
17329}
17330
252b5132
RH
17331/* Finish up the dynamic sections. */
17332
0a1b45a2 17333static bool
57e8b36a 17334elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
17335{
17336 bfd * dynobj;
17337 asection * sgot;
17338 asection * sdyn;
4dfe6ac6
NC
17339 struct elf32_arm_link_hash_table *htab;
17340
17341 htab = elf32_arm_hash_table (info);
17342 if (htab == NULL)
0a1b45a2 17343 return false;
252b5132
RH
17344
17345 dynobj = elf_hash_table (info)->dynobj;
17346
362d30a1 17347 sgot = htab->root.sgotplt;
894891db
NC
17348 /* A broken linker script might have discarded the dynamic sections.
17349 Catch this here so that we do not seg-fault later on. */
17350 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
0a1b45a2 17351 return false;
3d4d4302 17352 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
17353
17354 if (elf_hash_table (info)->dynamic_sections_created)
17355 {
17356 asection *splt;
17357 Elf32_External_Dyn *dyncon, *dynconend;
17358
362d30a1 17359 splt = htab->root.splt;
24a1ba0f 17360 BFD_ASSERT (splt != NULL && sdyn != NULL);
a57d1773 17361 BFD_ASSERT (sgot != NULL);
252b5132
RH
17362
17363 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 17364 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 17365
252b5132
RH
17366 for (; dyncon < dynconend; dyncon++)
17367 {
17368 Elf_Internal_Dyn dyn;
17369 const char * name;
17370 asection * s;
17371
17372 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17373
17374 switch (dyn.d_tag)
17375 {
17376 default:
90c14f0c 17377 if (htab->root.target_os == is_vxworks
7a2b07ff
NS
17378 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17379 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
17380 break;
17381
229fcec5 17382 case DT_HASH:
229fcec5 17383 case DT_STRTAB:
229fcec5 17384 case DT_SYMTAB:
c0042f5d 17385 case DT_VERSYM:
c0042f5d 17386 case DT_VERDEF:
c0042f5d 17387 case DT_VERNEED:
a57d1773 17388 break;
c0042f5d 17389
252b5132 17390 case DT_PLTGOT:
a57d1773 17391 name = ".got.plt";
252b5132
RH
17392 goto get_vma;
17393 case DT_JMPREL:
00a97672 17394 name = RELOC_SECTION (htab, ".plt");
252b5132 17395 get_vma:
4ade44b7 17396 s = bfd_get_linker_section (dynobj, name);
05456594
NC
17397 if (s == NULL)
17398 {
4eca0228 17399 _bfd_error_handler
4ade44b7 17400 (_("could not find section %s"), name);
05456594 17401 bfd_set_error (bfd_error_invalid_operation);
0a1b45a2 17402 return false;
05456594 17403 }
a57d1773 17404 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
252b5132
RH
17405 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17406 break;
17407
17408 case DT_PLTRELSZ:
362d30a1 17409 s = htab->root.srelplt;
252b5132 17410 BFD_ASSERT (s != NULL);
eea6121a 17411 dyn.d_un.d_val = s->size;
252b5132
RH
17412 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17413 break;
906e58ca 17414
252b5132 17415 case DT_RELSZ:
00a97672 17416 case DT_RELASZ:
229fcec5
MM
17417 case DT_REL:
17418 case DT_RELA:
252b5132 17419 break;
88f7bcd5 17420
0855e32b 17421 case DT_TLSDESC_PLT:
99059e56 17422 s = htab->root.splt;
0855e32b 17423 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
9bcc30e4 17424 + htab->root.tlsdesc_plt);
0855e32b
NS
17425 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17426 break;
17427
17428 case DT_TLSDESC_GOT:
99059e56 17429 s = htab->root.sgot;
0855e32b 17430 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
9bcc30e4 17431 + htab->root.tlsdesc_got);
0855e32b
NS
17432 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17433 break;
17434
88f7bcd5
NC
17435 /* Set the bottom bit of DT_INIT/FINI if the
17436 corresponding function is Thumb. */
17437 case DT_INIT:
17438 name = info->init_function;
17439 goto get_sym;
17440 case DT_FINI:
17441 name = info->fini_function;
17442 get_sym:
17443 /* If it wasn't set by elf_bfd_final_link
4cc11e76 17444 then there is nothing to adjust. */
88f7bcd5
NC
17445 if (dyn.d_un.d_val != 0)
17446 {
17447 struct elf_link_hash_entry * eh;
17448
17449 eh = elf_link_hash_lookup (elf_hash_table (info), name,
0a1b45a2 17450 false, false, true);
39d911fc
TP
17451 if (eh != NULL
17452 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17453 == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
17454 {
17455 dyn.d_un.d_val |= 1;
b34976b6 17456 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
17457 }
17458 }
17459 break;
252b5132
RH
17460 }
17461 }
17462
24a1ba0f 17463 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 17464 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 17465 {
00a97672
RS
17466 const bfd_vma *plt0_entry;
17467 bfd_vma got_address, plt_address, got_displacement;
17468
17469 /* Calculate the addresses of the GOT and PLT. */
17470 got_address = sgot->output_section->vma + sgot->output_offset;
17471 plt_address = splt->output_section->vma + splt->output_offset;
17472
90c14f0c 17473 if (htab->root.target_os == is_vxworks)
00a97672
RS
17474 {
17475 /* The VxWorks GOT is relocated by the dynamic linker.
17476 Therefore, we must emit relocations rather than simply
17477 computing the values now. */
17478 Elf_Internal_Rela rel;
17479
17480 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
17481 put_arm_insn (htab, output_bfd, plt0_entry[0],
17482 splt->contents + 0);
17483 put_arm_insn (htab, output_bfd, plt0_entry[1],
17484 splt->contents + 4);
17485 put_arm_insn (htab, output_bfd, plt0_entry[2],
17486 splt->contents + 8);
00a97672
RS
17487 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17488
8029a119 17489 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
17490 rel.r_offset = plt_address + 12;
17491 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17492 rel.r_addend = 0;
17493 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17494 htab->srelplt2->contents);
17495 }
90c14f0c 17496 else if (htab->root.target_os == is_nacl)
99059e56
RM
17497 arm_nacl_put_plt0 (htab, output_bfd, splt,
17498 got_address + 8 - (plt_address + 16));
eed94f8f
NC
17499 else if (using_thumb_only (htab))
17500 {
17501 got_displacement = got_address - (plt_address + 12);
17502
17503 plt0_entry = elf32_thumb2_plt0_entry;
17504 put_arm_insn (htab, output_bfd, plt0_entry[0],
17505 splt->contents + 0);
17506 put_arm_insn (htab, output_bfd, plt0_entry[1],
17507 splt->contents + 4);
17508 put_arm_insn (htab, output_bfd, plt0_entry[2],
17509 splt->contents + 8);
17510
17511 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17512 }
00a97672
RS
17513 else
17514 {
17515 got_displacement = got_address - (plt_address + 16);
17516
17517 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
17518 put_arm_insn (htab, output_bfd, plt0_entry[0],
17519 splt->contents + 0);
17520 put_arm_insn (htab, output_bfd, plt0_entry[1],
17521 splt->contents + 4);
17522 put_arm_insn (htab, output_bfd, plt0_entry[2],
17523 splt->contents + 8);
17524 put_arm_insn (htab, output_bfd, plt0_entry[3],
17525 splt->contents + 12);
5e681ec4 17526
5e681ec4 17527#ifdef FOUR_WORD_PLT
00a97672
RS
17528 /* The displacement value goes in the otherwise-unused
17529 last word of the second entry. */
17530 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 17531#else
00a97672 17532 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 17533#endif
00a97672 17534 }
f7a74f8c 17535 }
252b5132
RH
17536
17537 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17538 really seem like the right value. */
74541ad4
AM
17539 if (splt->output_section->owner == output_bfd)
17540 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 17541
9bcc30e4 17542 if (htab->root.tlsdesc_plt)
0855e32b
NS
17543 {
17544 bfd_vma got_address
17545 = sgot->output_section->vma + sgot->output_offset;
17546 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17547 + htab->root.sgot->output_offset);
17548 bfd_vma plt_address
17549 = splt->output_section->vma + splt->output_offset;
17550
b38cadfb 17551 arm_put_trampoline (htab, output_bfd,
9bcc30e4 17552 splt->contents + htab->root.tlsdesc_plt,
0855e32b
NS
17553 dl_tlsdesc_lazy_trampoline, 6);
17554
17555 bfd_put_32 (output_bfd,
9bcc30e4
L
17556 gotplt_address + htab->root.tlsdesc_got
17557 - (plt_address + htab->root.tlsdesc_plt)
0855e32b 17558 - dl_tlsdesc_lazy_trampoline[6],
9bcc30e4 17559 splt->contents + htab->root.tlsdesc_plt + 24);
0855e32b 17560 bfd_put_32 (output_bfd,
9bcc30e4 17561 got_address - (plt_address + htab->root.tlsdesc_plt)
0855e32b 17562 - dl_tlsdesc_lazy_trampoline[7],
9bcc30e4 17563 splt->contents + htab->root.tlsdesc_plt + 24 + 4);
0855e32b
NS
17564 }
17565
17566 if (htab->tls_trampoline)
17567 {
b38cadfb 17568 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
17569 splt->contents + htab->tls_trampoline,
17570 tls_trampoline, 3);
17571#ifdef FOUR_WORD_PLT
17572 bfd_put_32 (output_bfd, 0x00000000,
17573 splt->contents + htab->tls_trampoline + 12);
b38cadfb 17574#endif
0855e32b
NS
17575 }
17576
90c14f0c 17577 if (htab->root.target_os == is_vxworks
0e1862bb
L
17578 && !bfd_link_pic (info)
17579 && htab->root.splt->size > 0)
00a97672
RS
17580 {
17581 /* Correct the .rel(a).plt.unloaded relocations. They will have
17582 incorrect symbol indexes. */
17583 int num_plts;
eed62c48 17584 unsigned char *p;
00a97672 17585
362d30a1 17586 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
17587 / htab->plt_entry_size);
17588 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17589
17590 for (; num_plts; num_plts--)
17591 {
17592 Elf_Internal_Rela rel;
17593
17594 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17595 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17596 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17597 p += RELOC_SIZE (htab);
17598
17599 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17600 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17601 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17602 p += RELOC_SIZE (htab);
17603 }
17604 }
252b5132
RH
17605 }
17606
90c14f0c
L
17607 if (htab->root.target_os == is_nacl
17608 && htab->root.iplt != NULL
17609 && htab->root.iplt->size > 0)
99059e56
RM
17610 /* NaCl uses a special first entry in .iplt too. */
17611 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17612
252b5132 17613 /* Fill in the first three entries in the global offset table. */
229fcec5 17614 if (sgot)
252b5132 17615 {
229fcec5
MM
17616 if (sgot->size > 0)
17617 {
17618 if (sdyn == NULL)
17619 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17620 else
17621 bfd_put_32 (output_bfd,
17622 sdyn->output_section->vma + sdyn->output_offset,
17623 sgot->contents);
17624 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17625 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17626 }
252b5132 17627
229fcec5
MM
17628 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17629 }
252b5132 17630
e8b09b87
CL
17631 /* At the very end of the .rofixup section is a pointer to the GOT. */
17632 if (htab->fdpic_p && htab->srofixup != NULL)
17633 {
17634 struct elf_link_hash_entry *hgot = htab->root.hgot;
17635
17636 bfd_vma got_value = hgot->root.u.def.value
17637 + hgot->root.u.def.section->output_section->vma
17638 + hgot->root.u.def.section->output_offset;
17639
cc850f74 17640 arm_elf_add_rofixup (output_bfd, htab->srofixup, got_value);
e8b09b87
CL
17641
17642 /* Make sure we allocated and generated the same number of fixups. */
17643 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17644 }
17645
0a1b45a2 17646 return true;
252b5132
RH
17647}
17648
0a1b45a2 17649static bool
ed7e9d0b 17650elf32_arm_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
ba96a88f 17651{
9b485d32 17652 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 17653 struct elf32_arm_link_hash_table *globals;
ac4c9b04 17654 struct elf_segment_map *m;
ba96a88f 17655
ed7e9d0b 17656 if (!_bfd_elf_init_file_header (abfd, link_info))
0a1b45a2 17657 return false;
ed7e9d0b 17658
ba96a88f
NC
17659 i_ehdrp = elf_elfheader (abfd);
17660
94a3258f
PB
17661 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17662 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
ba96a88f 17663 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 17664
93204d3a
PB
17665 if (link_info)
17666 {
17667 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 17668 if (globals != NULL && globals->byteswap_code)
93204d3a 17669 i_ehdrp->e_flags |= EF_ARM_BE8;
18a20338
CL
17670
17671 if (globals->fdpic_p)
17672 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
93204d3a 17673 }
3bfcb652
NC
17674
17675 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17676 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17677 {
17678 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
5c294fee 17679 if (abi == AEABI_VFP_args_vfp)
3bfcb652
NC
17680 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17681 else
17682 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17683 }
ac4c9b04
MG
17684
17685 /* Scan segment to set p_flags attribute if it contains only sections with
f0728ee3 17686 SHF_ARM_PURECODE flag. */
ac4c9b04
MG
17687 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17688 {
17689 unsigned int j;
17690
17691 if (m->count == 0)
17692 continue;
17693 for (j = 0; j < m->count; j++)
17694 {
f0728ee3 17695 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
ac4c9b04
MG
17696 break;
17697 }
17698 if (j == m->count)
17699 {
17700 m->p_flags = PF_X;
17701 m->p_flags_valid = 1;
17702 }
17703 }
0a1b45a2 17704 return true;
ba96a88f
NC
17705}
17706
99e4ae17 17707static enum elf_reloc_type_class
7e612e98
AM
17708elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17709 const asection *rel_sec ATTRIBUTE_UNUSED,
17710 const Elf_Internal_Rela *rela)
99e4ae17 17711{
2b70b1b8
CL
17712 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
17713
17714 if (htab->root.dynsym != NULL
17715 && htab->root.dynsym->contents != NULL)
17716 {
17717 /* Check relocation against STT_GNU_IFUNC symbol if there are
17718 dynamic symbols. */
17719 bfd *abfd = info->output_bfd;
17720 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
17721 unsigned long r_symndx = ELF32_R_SYM (rela->r_info);
17722 if (r_symndx != STN_UNDEF)
17723 {
17724 Elf_Internal_Sym sym;
17725 if (!bed->s->swap_symbol_in (abfd,
17726 (htab->root.dynsym->contents
17727 + r_symndx * bed->s->sizeof_sym),
17728 0, &sym))
17729 {
17730 /* xgettext:c-format */
17731 _bfd_error_handler (_("%pB symbol number %lu references"
17732 " nonexistent SHT_SYMTAB_SHNDX section"),
17733 abfd, r_symndx);
17734 /* Ideally an error class should be returned here. */
17735 }
17736 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
17737 return reloc_class_ifunc;
17738 }
17739 }
17740
f51e552e 17741 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
17742 {
17743 case R_ARM_RELATIVE:
17744 return reloc_class_relative;
17745 case R_ARM_JUMP_SLOT:
17746 return reloc_class_plt;
17747 case R_ARM_COPY:
17748 return reloc_class_copy;
109575d7
JW
17749 case R_ARM_IRELATIVE:
17750 return reloc_class_ifunc;
99e4ae17
AJ
17751 default:
17752 return reloc_class_normal;
17753 }
17754}
17755
e489d0ae 17756static void
cc364be6 17757arm_final_write_processing (bfd *abfd)
e16bb312 17758{
5a6c6817 17759 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
17760}
17761
0a1b45a2 17762static bool
cc364be6 17763elf32_arm_final_write_processing (bfd *abfd)
06f44071 17764{
cc364be6
AM
17765 arm_final_write_processing (abfd);
17766 return _bfd_elf_final_write_processing (abfd);
06f44071
AM
17767}
17768
40a18ebd
NC
17769/* Return TRUE if this is an unwinding table entry. */
17770
0a1b45a2 17771static bool
40a18ebd
NC
17772is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17773{
08dedd66
ML
17774 return (startswith (name, ELF_STRING_ARM_unwind)
17775 || startswith (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
17776}
17777
17778
17779/* Set the type and flags for an ARM section. We do this by
17780 the section name, which is a hack, but ought to work. */
17781
0a1b45a2 17782static bool
40a18ebd
NC
17783elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17784{
17785 const char * name;
17786
fd361982 17787 name = bfd_section_name (sec);
40a18ebd
NC
17788
17789 if (is_arm_elf_unwind_section_name (abfd, name))
17790 {
17791 hdr->sh_type = SHT_ARM_EXIDX;
17792 hdr->sh_flags |= SHF_LINK_ORDER;
17793 }
ac4c9b04 17794
f0728ee3
AV
17795 if (sec->flags & SEC_ELF_PURECODE)
17796 hdr->sh_flags |= SHF_ARM_PURECODE;
ac4c9b04 17797
0a1b45a2 17798 return true;
40a18ebd
NC
17799}
17800
6dc132d9
L
17801/* Handle an ARM specific section when reading an object file. This is
17802 called when bfd_section_from_shdr finds a section with an unknown
17803 type. */
40a18ebd 17804
0a1b45a2 17805static bool
40a18ebd
NC
17806elf32_arm_section_from_shdr (bfd *abfd,
17807 Elf_Internal_Shdr * hdr,
6dc132d9
L
17808 const char *name,
17809 int shindex)
40a18ebd
NC
17810{
17811 /* There ought to be a place to keep ELF backend specific flags, but
17812 at the moment there isn't one. We just keep track of the
17813 sections by their name, instead. Fortunately, the ABI gives
17814 names for all the ARM specific sections, so we will probably get
17815 away with this. */
17816 switch (hdr->sh_type)
17817 {
17818 case SHT_ARM_EXIDX:
0951f019
RE
17819 case SHT_ARM_PREEMPTMAP:
17820 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
17821 break;
17822
17823 default:
0a1b45a2 17824 return false;
40a18ebd
NC
17825 }
17826
6dc132d9 17827 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
0a1b45a2 17828 return false;
40a18ebd 17829
0a1b45a2 17830 return true;
40a18ebd 17831}
e489d0ae 17832
44444f50
NC
17833static _arm_elf_section_data *
17834get_arm_elf_section_data (asection * sec)
17835{
47b2e99c
JZ
17836 if (sec && sec->owner && is_arm_elf (sec->owner))
17837 return elf32_arm_section_data (sec);
44444f50
NC
17838 else
17839 return NULL;
8e3de13a
NC
17840}
17841
4e617b1e
PB
17842typedef struct
17843{
57402f1e 17844 void *flaginfo;
4e617b1e 17845 struct bfd_link_info *info;
91a5743d
PB
17846 asection *sec;
17847 int sec_shndx;
6e0b88f1
AM
17848 int (*func) (void *, const char *, Elf_Internal_Sym *,
17849 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
17850} output_arch_syminfo;
17851
17852enum map_symbol_type
17853{
17854 ARM_MAP_ARM,
17855 ARM_MAP_THUMB,
17856 ARM_MAP_DATA
17857};
17858
17859
7413f23f 17860/* Output a single mapping symbol. */
4e617b1e 17861
0a1b45a2 17862static bool
7413f23f
DJ
17863elf32_arm_output_map_sym (output_arch_syminfo *osi,
17864 enum map_symbol_type type,
17865 bfd_vma offset)
4e617b1e
PB
17866{
17867 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
17868 Elf_Internal_Sym sym;
17869
91a5743d
PB
17870 sym.st_value = osi->sec->output_section->vma
17871 + osi->sec->output_offset
17872 + offset;
4e617b1e
PB
17873 sym.st_size = 0;
17874 sym.st_other = 0;
17875 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 17876 sym.st_shndx = osi->sec_shndx;
35fc36a8 17877 sym.st_target_internal = 0;
fe33d2fa 17878 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 17879 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
17880}
17881
34e77a92
RS
17882/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17883 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e 17884
0a1b45a2 17885static bool
34e77a92 17886elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
0a1b45a2 17887 bool is_iplt_entry_p,
34e77a92
RS
17888 union gotplt_union *root_plt,
17889 struct arm_plt_info *arm_plt)
4e617b1e 17890{
4e617b1e 17891 struct elf32_arm_link_hash_table *htab;
34e77a92 17892 bfd_vma addr, plt_header_size;
4e617b1e 17893
34e77a92 17894 if (root_plt->offset == (bfd_vma) -1)
0a1b45a2 17895 return true;
4e617b1e 17896
4dfe6ac6
NC
17897 htab = elf32_arm_hash_table (osi->info);
17898 if (htab == NULL)
0a1b45a2 17899 return false;
4dfe6ac6 17900
34e77a92
RS
17901 if (is_iplt_entry_p)
17902 {
17903 osi->sec = htab->root.iplt;
17904 plt_header_size = 0;
17905 }
17906 else
17907 {
17908 osi->sec = htab->root.splt;
17909 plt_header_size = htab->plt_header_size;
17910 }
17911 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
17912 (osi->info->output_bfd, osi->sec->output_section));
17913
17914 addr = root_plt->offset & -2;
a57d1773 17915 if (htab->root.target_os == is_vxworks)
4e617b1e 17916 {
7413f23f 17917 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17918 return false;
7413f23f 17919 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
0a1b45a2 17920 return false;
7413f23f 17921 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
0a1b45a2 17922 return false;
7413f23f 17923 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
0a1b45a2 17924 return false;
4e617b1e 17925 }
90c14f0c 17926 else if (htab->root.target_os == is_nacl)
b38cadfb
NC
17927 {
17928 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17929 return false;
b38cadfb 17930 }
7801f98f
CL
17931 else if (htab->fdpic_p)
17932 {
cc850f74 17933 enum map_symbol_type type = using_thumb_only (htab)
59029f57
CL
17934 ? ARM_MAP_THUMB
17935 : ARM_MAP_ARM;
17936
7801f98f 17937 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
4b24dd1a 17938 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
0a1b45a2 17939 return false;
59029f57 17940 if (!elf32_arm_output_map_sym (osi, type, addr))
0a1b45a2 17941 return false;
7801f98f 17942 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
0a1b45a2 17943 return false;
cc850f74 17944 if (htab->plt_entry_size == 4 * ARRAY_SIZE (elf32_arm_fdpic_plt_entry))
4b24dd1a 17945 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
0a1b45a2 17946 return false;
7801f98f 17947 }
eed94f8f
NC
17948 else if (using_thumb_only (htab))
17949 {
17950 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
0a1b45a2 17951 return false;
6a631e86 17952 }
4e617b1e
PB
17953 else
17954 {
0a1b45a2 17955 bool thumb_stub_p;
bd97cb95 17956
34e77a92
RS
17957 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17958 if (thumb_stub_p)
4e617b1e 17959 {
7413f23f 17960 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
0a1b45a2 17961 return false;
4e617b1e
PB
17962 }
17963#ifdef FOUR_WORD_PLT
7413f23f 17964 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17965 return false;
7413f23f 17966 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
0a1b45a2 17967 return false;
4e617b1e 17968#else
906e58ca 17969 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
17970 so only need to output a mapping symbol for the first PLT entry and
17971 entries with thumb thunks. */
34e77a92 17972 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 17973 {
7413f23f 17974 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17975 return false;
4e617b1e
PB
17976 }
17977#endif
17978 }
17979
0a1b45a2 17980 return true;
4e617b1e
PB
17981}
17982
34e77a92
RS
17983/* Output mapping symbols for PLT entries associated with H. */
17984
0a1b45a2 17985static bool
34e77a92
RS
17986elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17987{
17988 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17989 struct elf32_arm_link_hash_entry *eh;
17990
17991 if (h->root.type == bfd_link_hash_indirect)
0a1b45a2 17992 return true;
34e77a92
RS
17993
17994 if (h->root.type == bfd_link_hash_warning)
17995 /* When warning symbols are created, they **replace** the "real"
17996 entry in the hash table, thus we never get to see the real
17997 symbol in a hash traversal. So look at it now. */
17998 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17999
18000 eh = (struct elf32_arm_link_hash_entry *) h;
18001 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
18002 &h->plt, &eh->plt);
18003}
18004
4f4faa4d
TP
18005/* Bind a veneered symbol to its veneer identified by its hash entry
18006 STUB_ENTRY. The veneered location thus loose its symbol. */
18007
18008static void
18009arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
18010{
18011 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
18012
18013 BFD_ASSERT (hash);
18014 hash->root.root.u.def.section = stub_entry->stub_sec;
18015 hash->root.root.u.def.value = stub_entry->stub_offset;
18016 hash->root.size = stub_entry->stub_size;
18017}
18018
7413f23f
DJ
18019/* Output a single local symbol for a generated stub. */
18020
0a1b45a2 18021static bool
7413f23f
DJ
18022elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
18023 bfd_vma offset, bfd_vma size)
18024{
7413f23f
DJ
18025 Elf_Internal_Sym sym;
18026
7413f23f
DJ
18027 sym.st_value = osi->sec->output_section->vma
18028 + osi->sec->output_offset
18029 + offset;
18030 sym.st_size = size;
18031 sym.st_other = 0;
18032 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
18033 sym.st_shndx = osi->sec_shndx;
35fc36a8 18034 sym.st_target_internal = 0;
57402f1e 18035 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 18036}
4e617b1e 18037
0a1b45a2 18038static bool
8029a119
NC
18039arm_map_one_stub (struct bfd_hash_entry * gen_entry,
18040 void * in_arg)
da5938a2
NC
18041{
18042 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
18043 asection *stub_sec;
18044 bfd_vma addr;
7413f23f 18045 char *stub_name;
9a008db3 18046 output_arch_syminfo *osi;
d3ce72d0 18047 const insn_sequence *template_sequence;
461a49ca
DJ
18048 enum stub_insn_type prev_type;
18049 int size;
18050 int i;
18051 enum map_symbol_type sym_type;
da5938a2
NC
18052
18053 /* Massage our args to the form they really have. */
18054 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 18055 osi = (output_arch_syminfo *) in_arg;
da5938a2 18056
da5938a2
NC
18057 stub_sec = stub_entry->stub_sec;
18058
18059 /* Ensure this stub is attached to the current section being
7413f23f 18060 processed. */
da5938a2 18061 if (stub_sec != osi->sec)
0a1b45a2 18062 return true;
da5938a2 18063
7413f23f 18064 addr = (bfd_vma) stub_entry->stub_offset;
d3ce72d0 18065 template_sequence = stub_entry->stub_template;
4f4faa4d
TP
18066
18067 if (arm_stub_sym_claimed (stub_entry->stub_type))
18068 arm_stub_claim_sym (stub_entry);
18069 else
7413f23f 18070 {
4f4faa4d
TP
18071 stub_name = stub_entry->output_name;
18072 switch (template_sequence[0].type)
18073 {
18074 case ARM_TYPE:
18075 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18076 stub_entry->stub_size))
0a1b45a2 18077 return false;
4f4faa4d
TP
18078 break;
18079 case THUMB16_TYPE:
18080 case THUMB32_TYPE:
18081 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18082 stub_entry->stub_size))
0a1b45a2 18083 return false;
4f4faa4d
TP
18084 break;
18085 default:
18086 BFD_FAIL ();
18087 return 0;
18088 }
7413f23f 18089 }
da5938a2 18090
461a49ca
DJ
18091 prev_type = DATA_TYPE;
18092 size = 0;
18093 for (i = 0; i < stub_entry->stub_template_size; i++)
18094 {
d3ce72d0 18095 switch (template_sequence[i].type)
461a49ca
DJ
18096 {
18097 case ARM_TYPE:
18098 sym_type = ARM_MAP_ARM;
18099 break;
18100
18101 case THUMB16_TYPE:
48229727 18102 case THUMB32_TYPE:
461a49ca
DJ
18103 sym_type = ARM_MAP_THUMB;
18104 break;
18105
18106 case DATA_TYPE:
18107 sym_type = ARM_MAP_DATA;
18108 break;
18109
18110 default:
18111 BFD_FAIL ();
0a1b45a2 18112 return false;
461a49ca
DJ
18113 }
18114
d3ce72d0 18115 if (template_sequence[i].type != prev_type)
461a49ca 18116 {
d3ce72d0 18117 prev_type = template_sequence[i].type;
461a49ca 18118 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
0a1b45a2 18119 return false;
461a49ca
DJ
18120 }
18121
d3ce72d0 18122 switch (template_sequence[i].type)
461a49ca
DJ
18123 {
18124 case ARM_TYPE:
48229727 18125 case THUMB32_TYPE:
461a49ca
DJ
18126 size += 4;
18127 break;
18128
18129 case THUMB16_TYPE:
18130 size += 2;
18131 break;
18132
18133 case DATA_TYPE:
18134 size += 4;
18135 break;
18136
18137 default:
18138 BFD_FAIL ();
0a1b45a2 18139 return false;
461a49ca
DJ
18140 }
18141 }
18142
0a1b45a2 18143 return true;
da5938a2
NC
18144}
18145
33811162
DG
18146/* Output mapping symbols for linker generated sections,
18147 and for those data-only sections that do not have a
18148 $d. */
4e617b1e 18149
0a1b45a2 18150static bool
4e617b1e 18151elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 18152 struct bfd_link_info *info,
57402f1e 18153 void *flaginfo,
6e0b88f1
AM
18154 int (*func) (void *, const char *,
18155 Elf_Internal_Sym *,
18156 asection *,
18157 struct elf_link_hash_entry *))
4e617b1e
PB
18158{
18159 output_arch_syminfo osi;
18160 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
18161 bfd_vma offset;
18162 bfd_size_type size;
33811162 18163 bfd *input_bfd;
4e617b1e 18164
25d17459
L
18165 if (info->strip == strip_all
18166 && !info->emitrelocations
18167 && !bfd_link_relocatable (info))
18168 return true;
18169
4e617b1e 18170 htab = elf32_arm_hash_table (info);
4dfe6ac6 18171 if (htab == NULL)
0a1b45a2 18172 return false;
4dfe6ac6 18173
906e58ca 18174 check_use_blx (htab);
91a5743d 18175
57402f1e 18176 osi.flaginfo = flaginfo;
4e617b1e
PB
18177 osi.info = info;
18178 osi.func = func;
906e58ca 18179
33811162
DG
18180 /* Add a $d mapping symbol to data-only sections that
18181 don't have any mapping symbol. This may result in (harmless) redundant
18182 mapping symbols. */
18183 for (input_bfd = info->input_bfds;
18184 input_bfd != NULL;
c72f2fb2 18185 input_bfd = input_bfd->link.next)
33811162
DG
18186 {
18187 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18188 for (osi.sec = input_bfd->sections;
18189 osi.sec != NULL;
18190 osi.sec = osi.sec->next)
18191 {
18192 if (osi.sec->output_section != NULL
f7dd8c79
DJ
18193 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18194 != 0)
33811162
DG
18195 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18196 == SEC_HAS_CONTENTS
18197 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 18198 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
18199 && osi.sec->size > 0
18200 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
18201 {
18202 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18203 (output_bfd, osi.sec->output_section);
18204 if (osi.sec_shndx != (int)SHN_BAD)
18205 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18206 }
18207 }
18208 }
18209
91a5743d
PB
18210 /* ARM->Thumb glue. */
18211 if (htab->arm_glue_size > 0)
18212 {
3d4d4302
AM
18213 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18214 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
18215
18216 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18217 (output_bfd, osi.sec->output_section);
0e1862bb 18218 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
91a5743d
PB
18219 || htab->pic_veneer)
18220 size = ARM2THUMB_PIC_GLUE_SIZE;
18221 else if (htab->use_blx)
18222 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18223 else
18224 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 18225
91a5743d
PB
18226 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18227 {
7413f23f
DJ
18228 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18229 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
18230 }
18231 }
18232
18233 /* Thumb->ARM glue. */
18234 if (htab->thumb_glue_size > 0)
18235 {
3d4d4302
AM
18236 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18237 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
18238
18239 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18240 (output_bfd, osi.sec->output_section);
18241 size = THUMB2ARM_GLUE_SIZE;
18242
18243 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18244 {
7413f23f
DJ
18245 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18246 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
18247 }
18248 }
18249
845b51d6
PB
18250 /* ARMv4 BX veneers. */
18251 if (htab->bx_glue_size > 0)
18252 {
3d4d4302
AM
18253 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18254 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
18255
18256 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18257 (output_bfd, osi.sec->output_section);
18258
7413f23f 18259 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
18260 }
18261
8029a119
NC
18262 /* Long calls stubs. */
18263 if (htab->stub_bfd && htab->stub_bfd->sections)
18264 {
da5938a2 18265 asection* stub_sec;
8029a119 18266
da5938a2
NC
18267 for (stub_sec = htab->stub_bfd->sections;
18268 stub_sec != NULL;
8029a119
NC
18269 stub_sec = stub_sec->next)
18270 {
18271 /* Ignore non-stub sections. */
18272 if (!strstr (stub_sec->name, STUB_SUFFIX))
18273 continue;
da5938a2 18274
8029a119 18275 osi.sec = stub_sec;
da5938a2 18276
8029a119
NC
18277 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18278 (output_bfd, osi.sec->output_section);
da5938a2 18279
8029a119
NC
18280 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18281 }
18282 }
da5938a2 18283
91a5743d 18284 /* Finally, output mapping symbols for the PLT. */
34e77a92 18285 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 18286 {
34e77a92
RS
18287 osi.sec = htab->root.splt;
18288 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18289 (output_bfd, osi.sec->output_section));
18290
a57d1773 18291 /* Output mapping symbols for the plt header. */
90c14f0c 18292 if (htab->root.target_os == is_vxworks)
34e77a92
RS
18293 {
18294 /* VxWorks shared libraries have no PLT header. */
0e1862bb 18295 if (!bfd_link_pic (info))
34e77a92
RS
18296 {
18297 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18298 return false;
34e77a92 18299 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
0a1b45a2 18300 return false;
34e77a92
RS
18301 }
18302 }
90c14f0c 18303 else if (htab->root.target_os == is_nacl)
b38cadfb
NC
18304 {
18305 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18306 return false;
b38cadfb 18307 }
59029f57 18308 else if (using_thumb_only (htab) && !htab->fdpic_p)
eed94f8f
NC
18309 {
18310 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
0a1b45a2 18311 return false;
eed94f8f 18312 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
0a1b45a2 18313 return false;
eed94f8f 18314 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
0a1b45a2 18315 return false;
eed94f8f 18316 }
a57d1773 18317 else if (!htab->fdpic_p)
4e617b1e 18318 {
7413f23f 18319 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18320 return false;
34e77a92
RS
18321#ifndef FOUR_WORD_PLT
18322 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
0a1b45a2 18323 return false;
34e77a92 18324#endif
4e617b1e
PB
18325 }
18326 }
90c14f0c
L
18327 if (htab->root.target_os == is_nacl
18328 && htab->root.iplt
18329 && htab->root.iplt->size > 0)
99059e56
RM
18330 {
18331 /* NaCl uses a special first entry in .iplt too. */
18332 osi.sec = htab->root.iplt;
18333 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18334 (output_bfd, osi.sec->output_section));
18335 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18336 return false;
99059e56 18337 }
34e77a92
RS
18338 if ((htab->root.splt && htab->root.splt->size > 0)
18339 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 18340 {
34e77a92
RS
18341 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18342 for (input_bfd = info->input_bfds;
18343 input_bfd != NULL;
c72f2fb2 18344 input_bfd = input_bfd->link.next)
34e77a92
RS
18345 {
18346 struct arm_local_iplt_info **local_iplt;
18347 unsigned int i, num_syms;
4e617b1e 18348
34e77a92
RS
18349 local_iplt = elf32_arm_local_iplt (input_bfd);
18350 if (local_iplt != NULL)
18351 {
18352 num_syms = elf_symtab_hdr (input_bfd).sh_info;
74fd118f
NC
18353 if (num_syms > elf32_arm_num_entries (input_bfd))
18354 {
18355 _bfd_error_handler (_("\
18356%pB: Number of symbols in input file has increased from %lu to %u\n"),
18357 input_bfd,
18358 (unsigned long) elf32_arm_num_entries (input_bfd),
18359 num_syms);
18360 return false;
18361 }
34e77a92
RS
18362 for (i = 0; i < num_syms; i++)
18363 if (local_iplt[i] != NULL
0a1b45a2 18364 && !elf32_arm_output_plt_map_1 (&osi, true,
34e77a92
RS
18365 &local_iplt[i]->root,
18366 &local_iplt[i]->arm))
0a1b45a2 18367 return false;
34e77a92
RS
18368 }
18369 }
18370 }
9bcc30e4 18371 if (htab->root.tlsdesc_plt != 0)
0855e32b
NS
18372 {
18373 /* Mapping symbols for the lazy tls trampoline. */
9bcc30e4
L
18374 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM,
18375 htab->root.tlsdesc_plt))
0a1b45a2 18376 return false;
b38cadfb 18377
0855e32b 18378 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
9bcc30e4 18379 htab->root.tlsdesc_plt + 24))
0a1b45a2 18380 return false;
0855e32b
NS
18381 }
18382 if (htab->tls_trampoline != 0)
18383 {
18384 /* Mapping symbols for the tls trampoline. */
18385 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
0a1b45a2 18386 return false;
0855e32b
NS
18387#ifdef FOUR_WORD_PLT
18388 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18389 htab->tls_trampoline + 12))
0a1b45a2 18390 return false;
b38cadfb 18391#endif
0855e32b 18392 }
b38cadfb 18393
0a1b45a2 18394 return true;
4e617b1e
PB
18395}
18396
54ddd295
TP
18397/* Filter normal symbols of CMSE entry functions of ABFD to include in
18398 the import library. All SYMCOUNT symbols of ABFD can be examined
18399 from their pointers in SYMS. Pointers of symbols to keep should be
18400 stored continuously at the beginning of that array.
18401
18402 Returns the number of symbols to keep. */
18403
18404static unsigned int
18405elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18406 struct bfd_link_info *info,
18407 asymbol **syms, long symcount)
18408{
18409 size_t maxnamelen;
18410 char *cmse_name;
18411 long src_count, dst_count = 0;
18412 struct elf32_arm_link_hash_table *htab;
18413
18414 htab = elf32_arm_hash_table (info);
18415 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18416 symcount = 0;
18417
18418 maxnamelen = 128;
18419 cmse_name = (char *) bfd_malloc (maxnamelen);
7a0fb7be
NC
18420 BFD_ASSERT (cmse_name);
18421
54ddd295
TP
18422 for (src_count = 0; src_count < symcount; src_count++)
18423 {
18424 struct elf32_arm_link_hash_entry *cmse_hash;
18425 asymbol *sym;
18426 flagword flags;
18427 char *name;
18428 size_t namelen;
18429
18430 sym = syms[src_count];
18431 flags = sym->flags;
18432 name = (char *) bfd_asymbol_name (sym);
18433
18434 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18435 continue;
18436 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18437 continue;
18438
18439 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18440 if (namelen > maxnamelen)
18441 {
18442 cmse_name = (char *)
18443 bfd_realloc (cmse_name, namelen);
18444 maxnamelen = namelen;
18445 }
18446 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18447 cmse_hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 18448 elf_link_hash_lookup (&(htab)->root, cmse_name, false, false, true);
54ddd295
TP
18449
18450 if (!cmse_hash
18451 || (cmse_hash->root.root.type != bfd_link_hash_defined
18452 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18453 || cmse_hash->root.type != STT_FUNC)
18454 continue;
18455
54ddd295
TP
18456 syms[dst_count++] = sym;
18457 }
18458 free (cmse_name);
18459
18460 syms[dst_count] = NULL;
18461
18462 return dst_count;
18463}
18464
18465/* Filter symbols of ABFD to include in the import library. All
18466 SYMCOUNT symbols of ABFD can be examined from their pointers in
18467 SYMS. Pointers of symbols to keep should be stored continuously at
18468 the beginning of that array.
18469
18470 Returns the number of symbols to keep. */
18471
18472static unsigned int
18473elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18474 struct bfd_link_info *info,
18475 asymbol **syms, long symcount)
18476{
18477 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18478
046734ff
TP
18479 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18480 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18481 library to be a relocatable object file. */
18482 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
54ddd295
TP
18483 if (globals->cmse_implib)
18484 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18485 else
18486 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18487}
18488
e489d0ae
PB
18489/* Allocate target specific section data. */
18490
0a1b45a2 18491static bool
e489d0ae
PB
18492elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18493{
f592407e
AM
18494 if (!sec->used_by_bfd)
18495 {
18496 _arm_elf_section_data *sdata;
986f0783 18497 size_t amt = sizeof (*sdata);
e489d0ae 18498
21d799b5 18499 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e 18500 if (sdata == NULL)
0a1b45a2 18501 return false;
f592407e
AM
18502 sec->used_by_bfd = sdata;
18503 }
e489d0ae
PB
18504
18505 return _bfd_elf_new_section_hook (abfd, sec);
18506}
18507
18508
18509/* Used to order a list of mapping symbols by address. */
18510
18511static int
18512elf32_arm_compare_mapping (const void * a, const void * b)
18513{
7f6a71ff
JM
18514 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18515 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18516
18517 if (amap->vma > bmap->vma)
18518 return 1;
18519 else if (amap->vma < bmap->vma)
18520 return -1;
18521 else if (amap->type > bmap->type)
18522 /* Ensure results do not depend on the host qsort for objects with
18523 multiple mapping symbols at the same address by sorting on type
18524 after vma. */
18525 return 1;
18526 else if (amap->type < bmap->type)
18527 return -1;
18528 else
18529 return 0;
e489d0ae
PB
18530}
18531
2468f9c9
PB
18532/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18533
18534static unsigned long
18535offset_prel31 (unsigned long addr, bfd_vma offset)
18536{
18537 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18538}
18539
18540/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18541 relocations. */
18542
18543static void
18544copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18545{
18546 unsigned long first_word = bfd_get_32 (output_bfd, from);
18547 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 18548
2468f9c9
PB
18549 /* High bit of first word is supposed to be zero. */
18550 if ((first_word & 0x80000000ul) == 0)
18551 first_word = offset_prel31 (first_word, offset);
b38cadfb 18552
2468f9c9
PB
18553 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18554 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18555 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18556 second_word = offset_prel31 (second_word, offset);
b38cadfb 18557
2468f9c9
PB
18558 bfd_put_32 (output_bfd, first_word, to);
18559 bfd_put_32 (output_bfd, second_word, to + 4);
18560}
e489d0ae 18561
48229727
JB
18562/* Data for make_branch_to_a8_stub(). */
18563
b38cadfb
NC
18564struct a8_branch_to_stub_data
18565{
48229727
JB
18566 asection *writing_section;
18567 bfd_byte *contents;
18568};
18569
18570
18571/* Helper to insert branches to Cortex-A8 erratum stubs in the right
18572 places for a particular section. */
18573
0a1b45a2 18574static bool
48229727 18575make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
99059e56 18576 void *in_arg)
48229727
JB
18577{
18578 struct elf32_arm_stub_hash_entry *stub_entry;
18579 struct a8_branch_to_stub_data *data;
18580 bfd_byte *contents;
18581 unsigned long branch_insn;
18582 bfd_vma veneered_insn_loc, veneer_entry_loc;
18583 bfd_signed_vma branch_offset;
18584 bfd *abfd;
8d9d9490 18585 unsigned int loc;
48229727
JB
18586
18587 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18588 data = (struct a8_branch_to_stub_data *) in_arg;
18589
18590 if (stub_entry->target_section != data->writing_section
4563a860 18591 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
0a1b45a2 18592 return true;
48229727
JB
18593
18594 contents = data->contents;
18595
8d9d9490
TP
18596 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18597 generated when both source and target are in the same section. */
48229727
JB
18598 veneered_insn_loc = stub_entry->target_section->output_section->vma
18599 + stub_entry->target_section->output_offset
8d9d9490 18600 + stub_entry->source_value;
48229727
JB
18601
18602 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18603 + stub_entry->stub_sec->output_offset
18604 + stub_entry->stub_offset;
18605
18606 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18607 veneered_insn_loc &= ~3u;
18608
18609 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18610
18611 abfd = stub_entry->target_section->owner;
8d9d9490 18612 loc = stub_entry->source_value;
48229727
JB
18613
18614 /* We attempt to avoid this condition by setting stubs_always_after_branch
18615 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18616 This check is just to be on the safe side... */
18617 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18618 {
871b3ab2 18619 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
4eca0228 18620 "allocated in unsafe location"), abfd);
0a1b45a2 18621 return false;
48229727
JB
18622 }
18623
18624 switch (stub_entry->stub_type)
18625 {
18626 case arm_stub_a8_veneer_b:
18627 case arm_stub_a8_veneer_b_cond:
18628 branch_insn = 0xf0009000;
18629 goto jump24;
18630
18631 case arm_stub_a8_veneer_blx:
18632 branch_insn = 0xf000e800;
18633 goto jump24;
18634
18635 case arm_stub_a8_veneer_bl:
18636 {
18637 unsigned int i1, j1, i2, j2, s;
18638
18639 branch_insn = 0xf000d000;
18640
18641 jump24:
18642 if (branch_offset < -16777216 || branch_offset > 16777214)
18643 {
18644 /* There's not much we can do apart from complain if this
18645 happens. */
871b3ab2 18646 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
4eca0228 18647 "of range (input file too large)"), abfd);
0a1b45a2 18648 return false;
48229727
JB
18649 }
18650
18651 /* i1 = not(j1 eor s), so:
18652 not i1 = j1 eor s
18653 j1 = (not i1) eor s. */
18654
18655 branch_insn |= (branch_offset >> 1) & 0x7ff;
18656 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18657 i2 = (branch_offset >> 22) & 1;
18658 i1 = (branch_offset >> 23) & 1;
18659 s = (branch_offset >> 24) & 1;
18660 j1 = (!i1) ^ s;
18661 j2 = (!i2) ^ s;
18662 branch_insn |= j2 << 11;
18663 branch_insn |= j1 << 13;
18664 branch_insn |= s << 26;
18665 }
18666 break;
18667
18668 default:
18669 BFD_FAIL ();
0a1b45a2 18670 return false;
48229727
JB
18671 }
18672
8d9d9490
TP
18673 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18674 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
48229727 18675
0a1b45a2 18676 return true;
48229727
JB
18677}
18678
a504d23a
LA
18679/* Beginning of stm32l4xx work-around. */
18680
18681/* Functions encoding instructions necessary for the emission of the
18682 fix-stm32l4xx-629360.
18683 Encoding is extracted from the
18684 ARM (C) Architecture Reference Manual
18685 ARMv7-A and ARMv7-R edition
18686 ARM DDI 0406C.b (ID072512). */
18687
18688static inline bfd_vma
82188b29 18689create_instruction_branch_absolute (int branch_offset)
a504d23a
LA
18690{
18691 /* A8.8.18 B (A8-334)
18692 B target_address (Encoding T4). */
18693 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18694 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18695 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18696
a504d23a
LA
18697 int s = ((branch_offset & 0x1000000) >> 24);
18698 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18699 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18700
18701 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18702 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18703
18704 bfd_vma patched_inst = 0xf0009000
18705 | s << 26 /* S. */
18706 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18707 | j1 << 13 /* J1. */
18708 | j2 << 11 /* J2. */
18709 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18710
18711 return patched_inst;
18712}
18713
18714static inline bfd_vma
18715create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18716{
18717 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18718 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18719 bfd_vma patched_inst = 0xe8900000
18720 | (/*W=*/wback << 21)
18721 | (base_reg << 16)
18722 | (reg_mask & 0x0000ffff);
18723
18724 return patched_inst;
18725}
18726
18727static inline bfd_vma
18728create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18729{
18730 /* A8.8.60 LDMDB/LDMEA (A8-402)
18731 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18732 bfd_vma patched_inst = 0xe9100000
18733 | (/*W=*/wback << 21)
18734 | (base_reg << 16)
18735 | (reg_mask & 0x0000ffff);
18736
18737 return patched_inst;
18738}
18739
18740static inline bfd_vma
18741create_instruction_mov (int target_reg, int source_reg)
18742{
18743 /* A8.8.103 MOV (register) (A8-486)
18744 MOV Rd, Rm (Encoding T1). */
18745 bfd_vma patched_inst = 0x4600
18746 | (target_reg & 0x7)
18747 | ((target_reg & 0x8) >> 3) << 7
18748 | (source_reg << 3);
18749
18750 return patched_inst;
18751}
18752
18753static inline bfd_vma
18754create_instruction_sub (int target_reg, int source_reg, int value)
18755{
18756 /* A8.8.221 SUB (immediate) (A8-708)
18757 SUB Rd, Rn, #value (Encoding T3). */
18758 bfd_vma patched_inst = 0xf1a00000
18759 | (target_reg << 8)
18760 | (source_reg << 16)
18761 | (/*S=*/0 << 20)
18762 | ((value & 0x800) >> 11) << 26
18763 | ((value & 0x700) >> 8) << 12
18764 | (value & 0x0ff);
18765
18766 return patched_inst;
18767}
18768
18769static inline bfd_vma
9239bbd3 18770create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
a504d23a
LA
18771 int first_reg)
18772{
18773 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18774 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18775 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
a504d23a
LA
18776 | (/*W=*/wback << 21)
18777 | (base_reg << 16)
9239bbd3
CM
18778 | (num_words & 0x000000ff)
18779 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
a504d23a
LA
18780 | (first_reg & 0x00000001) << 22;
18781
18782 return patched_inst;
18783}
18784
18785static inline bfd_vma
9239bbd3
CM
18786create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18787 int first_reg)
a504d23a
LA
18788{
18789 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18790 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18791 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
a504d23a 18792 | (base_reg << 16)
9239bbd3
CM
18793 | (num_words & 0x000000ff)
18794 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
a504d23a
LA
18795 | (first_reg & 0x00000001) << 22;
18796
18797 return patched_inst;
18798}
18799
18800static inline bfd_vma
18801create_instruction_udf_w (int value)
18802{
18803 /* A8.8.247 UDF (A8-758)
18804 Undefined (Encoding T2). */
18805 bfd_vma patched_inst = 0xf7f0a000
18806 | (value & 0x00000fff)
18807 | (value & 0x000f0000) << 16;
18808
18809 return patched_inst;
18810}
18811
18812static inline bfd_vma
18813create_instruction_udf (int value)
18814{
18815 /* A8.8.247 UDF (A8-758)
18816 Undefined (Encoding T1). */
18817 bfd_vma patched_inst = 0xde00
18818 | (value & 0xff);
18819
18820 return patched_inst;
18821}
18822
18823/* Functions writing an instruction in memory, returning the next
18824 memory position to write to. */
18825
18826static inline bfd_byte *
18827push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18828 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18829{
18830 put_thumb2_insn (htab, output_bfd, insn, pt);
18831 return pt + 4;
18832}
18833
18834static inline bfd_byte *
18835push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18836 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18837{
18838 put_thumb_insn (htab, output_bfd, insn, pt);
18839 return pt + 2;
18840}
18841
18842/* Function filling up a region in memory with T1 and T2 UDFs taking
18843 care of alignment. */
18844
18845static bfd_byte *
18846stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
07d6d2b8
AM
18847 bfd * output_bfd,
18848 const bfd_byte * const base_stub_contents,
18849 bfd_byte * const from_stub_contents,
18850 const bfd_byte * const end_stub_contents)
a504d23a
LA
18851{
18852 bfd_byte *current_stub_contents = from_stub_contents;
18853
18854 /* Fill the remaining of the stub with deterministic contents : UDF
18855 instructions.
18856 Check if realignment is needed on modulo 4 frontier using T1, to
18857 further use T2. */
18858 if ((current_stub_contents < end_stub_contents)
18859 && !((current_stub_contents - base_stub_contents) % 2)
18860 && ((current_stub_contents - base_stub_contents) % 4))
18861 current_stub_contents =
18862 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18863 create_instruction_udf (0));
18864
18865 for (; current_stub_contents < end_stub_contents;)
18866 current_stub_contents =
18867 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18868 create_instruction_udf_w (0));
18869
18870 return current_stub_contents;
18871}
18872
18873/* Functions writing the stream of instructions equivalent to the
18874 derived sequence for ldmia, ldmdb, vldm respectively. */
18875
18876static void
18877stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
18878 bfd * output_bfd,
18879 const insn32 initial_insn,
18880 const bfd_byte *const initial_insn_addr,
18881 bfd_byte *const base_stub_contents)
18882{
18883 int wback = (initial_insn & 0x00200000) >> 21;
18884 int ri, rn = (initial_insn & 0x000F0000) >> 16;
18885 int insn_all_registers = initial_insn & 0x0000ffff;
18886 int insn_low_registers, insn_high_registers;
18887 int usable_register_mask;
b25e998d 18888 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
18889 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18890 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18891 bfd_byte *current_stub_contents = base_stub_contents;
18892
18893 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
18894
18895 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18896 smaller than 8 registers load sequences that do not cause the
18897 hardware issue. */
18898 if (nb_registers <= 8)
18899 {
18900 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18901 current_stub_contents =
18902 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18903 initial_insn);
18904
18905 /* B initial_insn_addr+4. */
18906 if (!restore_pc)
18907 current_stub_contents =
18908 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18909 create_instruction_branch_absolute
82188b29 18910 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18911
18912 /* Fill the remaining of the stub with deterministic contents. */
18913 current_stub_contents =
18914 stm32l4xx_fill_stub_udf (htab, output_bfd,
18915 base_stub_contents, current_stub_contents,
18916 base_stub_contents +
18917 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18918
18919 return;
18920 }
18921
18922 /* - reg_list[13] == 0. */
18923 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
18924
18925 /* - reg_list[14] & reg_list[15] != 1. */
18926 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18927
18928 /* - if (wback==1) reg_list[rn] == 0. */
18929 BFD_ASSERT (!wback || !restore_rn);
18930
18931 /* - nb_registers > 8. */
b25e998d 18932 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
18933
18934 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18935
18936 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
18937 - One with the 7 lowest registers (register mask 0x007F)
18938 This LDM will finally contain between 2 and 7 registers
18939 - One with the 7 highest registers (register mask 0xDF80)
18940 This ldm will finally contain between 2 and 7 registers. */
18941 insn_low_registers = insn_all_registers & 0x007F;
18942 insn_high_registers = insn_all_registers & 0xDF80;
18943
18944 /* A spare register may be needed during this veneer to temporarily
18945 handle the base register. This register will be restored with the
18946 last LDM operation.
18947 The usable register may be any general purpose register (that
18948 excludes PC, SP, LR : register mask is 0x1FFF). */
18949 usable_register_mask = 0x1FFF;
18950
18951 /* Generate the stub function. */
18952 if (wback)
18953 {
18954 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
18955 current_stub_contents =
18956 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18957 create_instruction_ldmia
18958 (rn, /*wback=*/1, insn_low_registers));
18959
18960 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
18961 current_stub_contents =
18962 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18963 create_instruction_ldmia
18964 (rn, /*wback=*/1, insn_high_registers));
18965 if (!restore_pc)
18966 {
18967 /* B initial_insn_addr+4. */
18968 current_stub_contents =
18969 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18970 create_instruction_branch_absolute
82188b29 18971 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18972 }
18973 }
18974 else /* if (!wback). */
18975 {
18976 ri = rn;
18977
18978 /* If Rn is not part of the high-register-list, move it there. */
18979 if (!(insn_high_registers & (1 << rn)))
18980 {
18981 /* Choose a Ri in the high-register-list that will be restored. */
18982 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18983
18984 /* MOV Ri, Rn. */
18985 current_stub_contents =
18986 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18987 create_instruction_mov (ri, rn));
18988 }
18989
18990 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18991 current_stub_contents =
18992 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18993 create_instruction_ldmia
18994 (ri, /*wback=*/1, insn_low_registers));
18995
18996 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18997 current_stub_contents =
18998 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18999 create_instruction_ldmia
19000 (ri, /*wback=*/0, insn_high_registers));
19001
19002 if (!restore_pc)
19003 {
19004 /* B initial_insn_addr+4. */
19005 current_stub_contents =
19006 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19007 create_instruction_branch_absolute
82188b29 19008 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19009 }
19010 }
19011
19012 /* Fill the remaining of the stub with deterministic contents. */
19013 current_stub_contents =
19014 stm32l4xx_fill_stub_udf (htab, output_bfd,
19015 base_stub_contents, current_stub_contents,
19016 base_stub_contents +
19017 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19018}
19019
19020static void
19021stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
19022 bfd * output_bfd,
19023 const insn32 initial_insn,
19024 const bfd_byte *const initial_insn_addr,
19025 bfd_byte *const base_stub_contents)
19026{
19027 int wback = (initial_insn & 0x00200000) >> 21;
19028 int ri, rn = (initial_insn & 0x000f0000) >> 16;
19029 int insn_all_registers = initial_insn & 0x0000ffff;
19030 int insn_low_registers, insn_high_registers;
19031 int usable_register_mask;
19032 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19033 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
b25e998d 19034 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
19035 bfd_byte *current_stub_contents = base_stub_contents;
19036
19037 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
19038
19039 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19040 smaller than 8 registers load sequences that do not cause the
19041 hardware issue. */
19042 if (nb_registers <= 8)
19043 {
19044 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19045 current_stub_contents =
19046 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19047 initial_insn);
19048
19049 /* B initial_insn_addr+4. */
19050 current_stub_contents =
19051 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19052 create_instruction_branch_absolute
82188b29 19053 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19054
19055 /* Fill the remaining of the stub with deterministic contents. */
19056 current_stub_contents =
19057 stm32l4xx_fill_stub_udf (htab, output_bfd,
19058 base_stub_contents, current_stub_contents,
19059 base_stub_contents +
19060 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19061
19062 return;
19063 }
19064
19065 /* - reg_list[13] == 0. */
19066 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19067
19068 /* - reg_list[14] & reg_list[15] != 1. */
19069 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19070
19071 /* - if (wback==1) reg_list[rn] == 0. */
19072 BFD_ASSERT (!wback || !restore_rn);
19073
19074 /* - nb_registers > 8. */
b25e998d 19075 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
19076
19077 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19078
19079 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19080 - One with the 7 lowest registers (register mask 0x007F)
19081 This LDM will finally contain between 2 and 7 registers
19082 - One with the 7 highest registers (register mask 0xDF80)
19083 This ldm will finally contain between 2 and 7 registers. */
19084 insn_low_registers = insn_all_registers & 0x007F;
19085 insn_high_registers = insn_all_registers & 0xDF80;
19086
19087 /* A spare register may be needed during this veneer to temporarily
19088 handle the base register. This register will be restored with
19089 the last LDM operation.
19090 The usable register may be any general purpose register (that excludes
19091 PC, SP, LR : register mask is 0x1FFF). */
19092 usable_register_mask = 0x1FFF;
19093
19094 /* Generate the stub function. */
19095 if (!wback && !restore_pc && !restore_rn)
19096 {
19097 /* Choose a Ri in the low-register-list that will be restored. */
19098 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19099
19100 /* MOV Ri, Rn. */
19101 current_stub_contents =
19102 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19103 create_instruction_mov (ri, rn));
19104
19105 /* LDMDB Ri!, {R-high-register-list}. */
19106 current_stub_contents =
19107 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19108 create_instruction_ldmdb
19109 (ri, /*wback=*/1, insn_high_registers));
19110
19111 /* LDMDB Ri, {R-low-register-list}. */
19112 current_stub_contents =
19113 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19114 create_instruction_ldmdb
19115 (ri, /*wback=*/0, insn_low_registers));
19116
19117 /* B initial_insn_addr+4. */
19118 current_stub_contents =
19119 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19120 create_instruction_branch_absolute
82188b29 19121 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19122 }
19123 else if (wback && !restore_pc && !restore_rn)
19124 {
19125 /* LDMDB Rn!, {R-high-register-list}. */
19126 current_stub_contents =
19127 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19128 create_instruction_ldmdb
19129 (rn, /*wback=*/1, insn_high_registers));
19130
19131 /* LDMDB Rn!, {R-low-register-list}. */
19132 current_stub_contents =
19133 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19134 create_instruction_ldmdb
19135 (rn, /*wback=*/1, insn_low_registers));
19136
19137 /* B initial_insn_addr+4. */
19138 current_stub_contents =
19139 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19140 create_instruction_branch_absolute
82188b29 19141 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19142 }
19143 else if (!wback && restore_pc && !restore_rn)
19144 {
19145 /* Choose a Ri in the high-register-list that will be restored. */
19146 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19147
19148 /* SUB Ri, Rn, #(4*nb_registers). */
19149 current_stub_contents =
19150 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19151 create_instruction_sub (ri, rn, (4 * nb_registers)));
19152
19153 /* LDMIA Ri!, {R-low-register-list}. */
19154 current_stub_contents =
19155 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19156 create_instruction_ldmia
19157 (ri, /*wback=*/1, insn_low_registers));
19158
19159 /* LDMIA Ri, {R-high-register-list}. */
19160 current_stub_contents =
19161 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19162 create_instruction_ldmia
19163 (ri, /*wback=*/0, insn_high_registers));
19164 }
19165 else if (wback && restore_pc && !restore_rn)
19166 {
19167 /* Choose a Ri in the high-register-list that will be restored. */
19168 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19169
19170 /* SUB Rn, Rn, #(4*nb_registers) */
19171 current_stub_contents =
19172 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19173 create_instruction_sub (rn, rn, (4 * nb_registers)));
19174
19175 /* MOV Ri, Rn. */
19176 current_stub_contents =
19177 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19178 create_instruction_mov (ri, rn));
19179
19180 /* LDMIA Ri!, {R-low-register-list}. */
19181 current_stub_contents =
19182 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19183 create_instruction_ldmia
19184 (ri, /*wback=*/1, insn_low_registers));
19185
19186 /* LDMIA Ri, {R-high-register-list}. */
19187 current_stub_contents =
19188 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19189 create_instruction_ldmia
19190 (ri, /*wback=*/0, insn_high_registers));
19191 }
19192 else if (!wback && !restore_pc && restore_rn)
19193 {
19194 ri = rn;
19195 if (!(insn_low_registers & (1 << rn)))
19196 {
19197 /* Choose a Ri in the low-register-list that will be restored. */
19198 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19199
19200 /* MOV Ri, Rn. */
19201 current_stub_contents =
19202 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19203 create_instruction_mov (ri, rn));
19204 }
19205
19206 /* LDMDB Ri!, {R-high-register-list}. */
19207 current_stub_contents =
19208 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19209 create_instruction_ldmdb
19210 (ri, /*wback=*/1, insn_high_registers));
19211
19212 /* LDMDB Ri, {R-low-register-list}. */
19213 current_stub_contents =
19214 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19215 create_instruction_ldmdb
19216 (ri, /*wback=*/0, insn_low_registers));
19217
19218 /* B initial_insn_addr+4. */
19219 current_stub_contents =
19220 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19221 create_instruction_branch_absolute
82188b29 19222 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19223 }
19224 else if (!wback && restore_pc && restore_rn)
19225 {
19226 ri = rn;
19227 if (!(insn_high_registers & (1 << rn)))
19228 {
19229 /* Choose a Ri in the high-register-list that will be restored. */
19230 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19231 }
19232
19233 /* SUB Ri, Rn, #(4*nb_registers). */
19234 current_stub_contents =
19235 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19236 create_instruction_sub (ri, rn, (4 * nb_registers)));
19237
19238 /* LDMIA Ri!, {R-low-register-list}. */
19239 current_stub_contents =
19240 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19241 create_instruction_ldmia
19242 (ri, /*wback=*/1, insn_low_registers));
19243
19244 /* LDMIA Ri, {R-high-register-list}. */
19245 current_stub_contents =
19246 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19247 create_instruction_ldmia
19248 (ri, /*wback=*/0, insn_high_registers));
19249 }
19250 else if (wback && restore_rn)
19251 {
19252 /* The assembler should not have accepted to encode this. */
19253 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19254 "undefined behavior.\n");
19255 }
19256
19257 /* Fill the remaining of the stub with deterministic contents. */
19258 current_stub_contents =
19259 stm32l4xx_fill_stub_udf (htab, output_bfd,
19260 base_stub_contents, current_stub_contents,
19261 base_stub_contents +
19262 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19263
19264}
19265
19266static void
19267stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19268 bfd * output_bfd,
19269 const insn32 initial_insn,
19270 const bfd_byte *const initial_insn_addr,
19271 bfd_byte *const base_stub_contents)
19272{
13c9c485 19273 int num_words = initial_insn & 0xff;
a504d23a
LA
19274 bfd_byte *current_stub_contents = base_stub_contents;
19275
19276 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19277
19278 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
9239bbd3 19279 smaller than 8 words load sequences that do not cause the
a504d23a 19280 hardware issue. */
9239bbd3 19281 if (num_words <= 8)
a504d23a
LA
19282 {
19283 /* Untouched instruction. */
19284 current_stub_contents =
19285 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19286 initial_insn);
19287
19288 /* B initial_insn_addr+4. */
19289 current_stub_contents =
19290 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19291 create_instruction_branch_absolute
82188b29 19292 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19293 }
19294 else
19295 {
0a1b45a2 19296 bool is_dp = /* DP encoding. */
9239bbd3 19297 (initial_insn & 0xfe100f00) == 0xec100b00;
0a1b45a2 19298 bool is_ia_nobang = /* (IA without !). */
a504d23a 19299 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
0a1b45a2 19300 bool is_ia_bang = /* (IA with !) - includes VPOP. */
a504d23a 19301 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
0a1b45a2 19302 bool is_db_bang = /* (DB with !). */
a504d23a 19303 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
9239bbd3 19304 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
a504d23a 19305 /* d = UInt (Vd:D);. */
9239bbd3 19306 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
a504d23a
LA
19307 | (((unsigned int)initial_insn << 9) >> 31);
19308
9239bbd3
CM
19309 /* Compute the number of 8-words chunks needed to split. */
19310 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
a504d23a
LA
19311 int chunk;
19312
19313 /* The test coverage has been done assuming the following
19314 hypothesis that exactly one of the previous is_ predicates is
19315 true. */
9239bbd3
CM
19316 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19317 && !(is_ia_nobang & is_ia_bang & is_db_bang));
a504d23a 19318
9239bbd3 19319 /* We treat the cutting of the words in one pass for all
a504d23a
LA
19320 cases, then we emit the adjustments:
19321
19322 vldm rx, {...}
19323 -> vldm rx!, {8_words_or_less} for each needed 8_word
19324 -> sub rx, rx, #size (list)
19325
19326 vldm rx!, {...}
19327 -> vldm rx!, {8_words_or_less} for each needed 8_word
19328 This also handles vpop instruction (when rx is sp)
19329
19330 vldmd rx!, {...}
19331 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
9239bbd3 19332 for (chunk = 0; chunk < chunks; ++chunk)
a504d23a 19333 {
9239bbd3
CM
19334 bfd_vma new_insn = 0;
19335
a504d23a
LA
19336 if (is_ia_nobang || is_ia_bang)
19337 {
9239bbd3
CM
19338 new_insn = create_instruction_vldmia
19339 (base_reg,
19340 is_dp,
19341 /*wback= . */1,
19342 chunks - (chunk + 1) ?
19343 8 : num_words - chunk * 8,
19344 first_reg + chunk * 8);
a504d23a
LA
19345 }
19346 else if (is_db_bang)
19347 {
9239bbd3
CM
19348 new_insn = create_instruction_vldmdb
19349 (base_reg,
19350 is_dp,
19351 chunks - (chunk + 1) ?
19352 8 : num_words - chunk * 8,
19353 first_reg + chunk * 8);
a504d23a 19354 }
9239bbd3
CM
19355
19356 if (new_insn)
19357 current_stub_contents =
19358 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19359 new_insn);
a504d23a
LA
19360 }
19361
19362 /* Only this case requires the base register compensation
19363 subtract. */
19364 if (is_ia_nobang)
19365 {
19366 current_stub_contents =
19367 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19368 create_instruction_sub
9239bbd3 19369 (base_reg, base_reg, 4*num_words));
a504d23a
LA
19370 }
19371
19372 /* B initial_insn_addr+4. */
19373 current_stub_contents =
19374 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19375 create_instruction_branch_absolute
82188b29 19376 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19377 }
19378
19379 /* Fill the remaining of the stub with deterministic contents. */
19380 current_stub_contents =
19381 stm32l4xx_fill_stub_udf (htab, output_bfd,
19382 base_stub_contents, current_stub_contents,
19383 base_stub_contents +
19384 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19385}
19386
19387static void
19388stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19389 bfd * output_bfd,
19390 const insn32 wrong_insn,
19391 const bfd_byte *const wrong_insn_addr,
19392 bfd_byte *const stub_contents)
19393{
19394 if (is_thumb2_ldmia (wrong_insn))
19395 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19396 wrong_insn, wrong_insn_addr,
19397 stub_contents);
19398 else if (is_thumb2_ldmdb (wrong_insn))
19399 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19400 wrong_insn, wrong_insn_addr,
19401 stub_contents);
19402 else if (is_thumb2_vldm (wrong_insn))
19403 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19404 wrong_insn, wrong_insn_addr,
19405 stub_contents);
19406}
19407
19408/* End of stm32l4xx work-around. */
19409
19410
e489d0ae
PB
19411/* Do code byteswapping. Return FALSE afterwards so that the section is
19412 written out as normal. */
19413
0a1b45a2 19414static bool
c7b8f16e 19415elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
19416 struct bfd_link_info *link_info,
19417 asection *sec,
e489d0ae
PB
19418 bfd_byte *contents)
19419{
48229727 19420 unsigned int mapcount, errcount;
8e3de13a 19421 _arm_elf_section_data *arm_data;
c7b8f16e 19422 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 19423 elf32_arm_section_map *map;
c7b8f16e 19424 elf32_vfp11_erratum_list *errnode;
a504d23a 19425 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
e489d0ae
PB
19426 bfd_vma ptr;
19427 bfd_vma end;
c7b8f16e 19428 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 19429 bfd_byte tmp;
48229727 19430 unsigned int i;
57e8b36a 19431
4dfe6ac6 19432 if (globals == NULL)
0a1b45a2 19433 return false;
4dfe6ac6 19434
8e3de13a
NC
19435 /* If this section has not been allocated an _arm_elf_section_data
19436 structure then we cannot record anything. */
19437 arm_data = get_arm_elf_section_data (sec);
19438 if (arm_data == NULL)
0a1b45a2 19439 return false;
8e3de13a
NC
19440
19441 mapcount = arm_data->mapcount;
19442 map = arm_data->map;
c7b8f16e
JB
19443 errcount = arm_data->erratumcount;
19444
19445 if (errcount != 0)
19446 {
19447 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19448
19449 for (errnode = arm_data->erratumlist; errnode != 0;
99059e56
RM
19450 errnode = errnode->next)
19451 {
19452 bfd_vma target = errnode->vma - offset;
19453
19454 switch (errnode->type)
19455 {
19456 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19457 {
19458 bfd_vma branch_to_veneer;
19459 /* Original condition code of instruction, plus bit mask for
19460 ARM B instruction. */
19461 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19462 | 0x0a000000;
c7b8f16e
JB
19463
19464 /* The instruction is before the label. */
91d6fa6a 19465 target -= 4;
c7b8f16e
JB
19466
19467 /* Above offset included in -4 below. */
19468 branch_to_veneer = errnode->u.b.veneer->vma
99059e56 19469 - errnode->vma - 4;
c7b8f16e
JB
19470
19471 if ((signed) branch_to_veneer < -(1 << 25)
19472 || (signed) branch_to_veneer >= (1 << 25))
871b3ab2 19473 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19474 "range"), output_bfd);
c7b8f16e 19475
99059e56
RM
19476 insn |= (branch_to_veneer >> 2) & 0xffffff;
19477 contents[endianflip ^ target] = insn & 0xff;
19478 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19479 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19480 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19481 }
19482 break;
c7b8f16e
JB
19483
19484 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
19485 {
19486 bfd_vma branch_from_veneer;
19487 unsigned int insn;
c7b8f16e 19488
99059e56
RM
19489 /* Take size of veneer into account. */
19490 branch_from_veneer = errnode->u.v.branch->vma
19491 - errnode->vma - 12;
c7b8f16e
JB
19492
19493 if ((signed) branch_from_veneer < -(1 << 25)
19494 || (signed) branch_from_veneer >= (1 << 25))
871b3ab2 19495 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19496 "range"), output_bfd);
c7b8f16e 19497
99059e56
RM
19498 /* Original instruction. */
19499 insn = errnode->u.v.branch->u.b.vfp_insn;
19500 contents[endianflip ^ target] = insn & 0xff;
19501 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19502 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19503 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19504
19505 /* Branch back to insn after original insn. */
19506 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19507 contents[endianflip ^ (target + 4)] = insn & 0xff;
19508 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19509 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19510 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19511 }
19512 break;
c7b8f16e 19513
99059e56
RM
19514 default:
19515 abort ();
19516 }
19517 }
c7b8f16e 19518 }
e489d0ae 19519
a504d23a
LA
19520 if (arm_data->stm32l4xx_erratumcount != 0)
19521 {
19522 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19523 stm32l4xx_errnode != 0;
19524 stm32l4xx_errnode = stm32l4xx_errnode->next)
19525 {
19526 bfd_vma target = stm32l4xx_errnode->vma - offset;
19527
19528 switch (stm32l4xx_errnode->type)
19529 {
19530 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19531 {
19532 unsigned int insn;
19533 bfd_vma branch_to_veneer =
19534 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19535
19536 if ((signed) branch_to_veneer < -(1 << 24)
19537 || (signed) branch_to_veneer >= (1 << 24))
19538 {
19539 bfd_vma out_of_range =
19540 ((signed) branch_to_veneer < -(1 << 24)) ?
19541 - branch_to_veneer - (1 << 24) :
19542 ((signed) branch_to_veneer >= (1 << 24)) ?
19543 branch_to_veneer - (1 << 24) : 0;
19544
4eca0228 19545 _bfd_error_handler
2dcf00ce 19546 (_("%pB(%#" PRIx64 "): error: "
90b6238f
AM
19547 "cannot create STM32L4XX veneer; "
19548 "jump out of range by %" PRId64 " bytes; "
19549 "cannot encode branch instruction"),
a504d23a 19550 output_bfd,
2dcf00ce
AM
19551 (uint64_t) (stm32l4xx_errnode->vma - 4),
19552 (int64_t) out_of_range);
a504d23a
LA
19553 continue;
19554 }
19555
19556 insn = create_instruction_branch_absolute
82188b29 19557 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
a504d23a 19558
a2699ef2
AM
19559 /* The instruction is before the label. */
19560 target -= 4;
19561
a504d23a
LA
19562 put_thumb2_insn (globals, output_bfd,
19563 (bfd_vma) insn, contents + target);
19564 }
19565 break;
19566
19567 case STM32L4XX_ERRATUM_VENEER:
19568 {
82188b29
NC
19569 bfd_byte * veneer;
19570 bfd_byte * veneer_r;
a504d23a
LA
19571 unsigned int insn;
19572
82188b29
NC
19573 veneer = contents + target;
19574 veneer_r = veneer
19575 + stm32l4xx_errnode->u.b.veneer->vma
19576 - stm32l4xx_errnode->vma - 4;
a504d23a
LA
19577
19578 if ((signed) (veneer_r - veneer -
19579 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19580 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19581 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19582 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19583 || (signed) (veneer_r - veneer) >= (1 << 24))
19584 {
90b6238f
AM
19585 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19586 "veneer"), output_bfd);
a504d23a
LA
19587 continue;
19588 }
19589
19590 /* Original instruction. */
19591 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19592
19593 stm32l4xx_create_replacing_stub
19594 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19595 }
19596 break;
19597
19598 default:
19599 abort ();
19600 }
19601 }
19602 }
19603
2468f9c9
PB
19604 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19605 {
19606 arm_unwind_table_edit *edit_node
99059e56 19607 = arm_data->u.exidx.unwind_edit_list;
2468f9c9 19608 /* Now, sec->size is the size of the section we will write. The original
99059e56 19609 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
2468f9c9
PB
19610 markers) was sec->rawsize. (This isn't the case if we perform no
19611 edits, then rawsize will be zero and we should use size). */
21d799b5 19612 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
19613 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19614 unsigned int in_index, out_index;
19615 bfd_vma add_to_offsets = 0;
19616
7a0fb7be 19617 if (edited_contents == NULL)
0a1b45a2 19618 return false;
2468f9c9 19619 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
99059e56 19620 {
2468f9c9
PB
19621 if (edit_node)
19622 {
19623 unsigned int edit_index = edit_node->index;
b38cadfb 19624
2468f9c9 19625 if (in_index < edit_index && in_index * 8 < input_size)
99059e56 19626 {
2468f9c9
PB
19627 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19628 contents + in_index * 8, add_to_offsets);
19629 out_index++;
19630 in_index++;
19631 }
19632 else if (in_index == edit_index
19633 || (in_index * 8 >= input_size
19634 && edit_index == UINT_MAX))
99059e56 19635 {
2468f9c9
PB
19636 switch (edit_node->type)
19637 {
19638 case DELETE_EXIDX_ENTRY:
19639 in_index++;
19640 add_to_offsets += 8;
19641 break;
b38cadfb 19642
2468f9c9
PB
19643 case INSERT_EXIDX_CANTUNWIND_AT_END:
19644 {
99059e56 19645 asection *text_sec = edit_node->linked_section;
2468f9c9
PB
19646 bfd_vma text_offset = text_sec->output_section->vma
19647 + text_sec->output_offset
19648 + text_sec->size;
19649 bfd_vma exidx_offset = offset + out_index * 8;
99059e56 19650 unsigned long prel31_offset;
2468f9c9
PB
19651
19652 /* Note: this is meant to be equivalent to an
19653 R_ARM_PREL31 relocation. These synthetic
19654 EXIDX_CANTUNWIND markers are not relocated by the
19655 usual BFD method. */
19656 prel31_offset = (text_offset - exidx_offset)
19657 & 0x7ffffffful;
491d01d3
YU
19658 if (bfd_link_relocatable (link_info))
19659 {
19660 /* Here relocation for new EXIDX_CANTUNWIND is
19661 created, so there is no need to
19662 adjust offset by hand. */
19663 prel31_offset = text_sec->output_offset
19664 + text_sec->size;
491d01d3 19665 }
2468f9c9
PB
19666
19667 /* First address we can't unwind. */
19668 bfd_put_32 (output_bfd, prel31_offset,
19669 &edited_contents[out_index * 8]);
19670
19671 /* Code for EXIDX_CANTUNWIND. */
19672 bfd_put_32 (output_bfd, 0x1,
19673 &edited_contents[out_index * 8 + 4]);
19674
19675 out_index++;
19676 add_to_offsets -= 8;
19677 }
19678 break;
19679 }
b38cadfb 19680
2468f9c9
PB
19681 edit_node = edit_node->next;
19682 }
19683 }
19684 else
19685 {
19686 /* No more edits, copy remaining entries verbatim. */
19687 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19688 contents + in_index * 8, add_to_offsets);
19689 out_index++;
19690 in_index++;
19691 }
19692 }
19693
19694 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19695 bfd_set_section_contents (output_bfd, sec->output_section,
19696 edited_contents,
19697 (file_ptr) sec->output_offset, sec->size);
19698
0a1b45a2 19699 return true;
2468f9c9
PB
19700 }
19701
48229727
JB
19702 /* Fix code to point to Cortex-A8 erratum stubs. */
19703 if (globals->fix_cortex_a8)
19704 {
19705 struct a8_branch_to_stub_data data;
19706
19707 data.writing_section = sec;
19708 data.contents = contents;
19709
a504d23a
LA
19710 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19711 & data);
48229727
JB
19712 }
19713
e489d0ae 19714 if (mapcount == 0)
0a1b45a2 19715 return false;
e489d0ae 19716
c7b8f16e 19717 if (globals->byteswap_code)
e489d0ae 19718 {
c7b8f16e 19719 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 19720
c7b8f16e
JB
19721 ptr = map[0].vma;
19722 for (i = 0; i < mapcount; i++)
99059e56
RM
19723 {
19724 if (i == mapcount - 1)
c7b8f16e 19725 end = sec->size;
99059e56
RM
19726 else
19727 end = map[i + 1].vma;
e489d0ae 19728
99059e56 19729 switch (map[i].type)
e489d0ae 19730 {
c7b8f16e
JB
19731 case 'a':
19732 /* Byte swap code words. */
19733 while (ptr + 3 < end)
99059e56
RM
19734 {
19735 tmp = contents[ptr];
19736 contents[ptr] = contents[ptr + 3];
19737 contents[ptr + 3] = tmp;
19738 tmp = contents[ptr + 1];
19739 contents[ptr + 1] = contents[ptr + 2];
19740 contents[ptr + 2] = tmp;
19741 ptr += 4;
19742 }
c7b8f16e 19743 break;
e489d0ae 19744
c7b8f16e
JB
19745 case 't':
19746 /* Byte swap code halfwords. */
19747 while (ptr + 1 < end)
99059e56
RM
19748 {
19749 tmp = contents[ptr];
19750 contents[ptr] = contents[ptr + 1];
19751 contents[ptr + 1] = tmp;
19752 ptr += 2;
19753 }
c7b8f16e
JB
19754 break;
19755
19756 case 'd':
19757 /* Leave data alone. */
19758 break;
19759 }
99059e56
RM
19760 ptr = end;
19761 }
e489d0ae 19762 }
8e3de13a 19763
93204d3a 19764 free (map);
47b2e99c 19765 arm_data->mapcount = -1;
c7b8f16e 19766 arm_data->mapsize = 0;
8e3de13a 19767 arm_data->map = NULL;
8e3de13a 19768
0a1b45a2 19769 return false;
e489d0ae
PB
19770}
19771
0beaef2b
PB
19772/* Mangle thumb function symbols as we read them in. */
19773
0a1b45a2 19774static bool
0beaef2b
PB
19775elf32_arm_swap_symbol_in (bfd * abfd,
19776 const void *psrc,
19777 const void *pshn,
19778 Elf_Internal_Sym *dst)
19779{
8384fb8f 19780 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
0a1b45a2 19781 return false;
39d911fc 19782 dst->st_target_internal = 0;
0beaef2b
PB
19783
19784 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 19785 the address. */
63e1a0fc
PB
19786 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19787 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 19788 {
63e1a0fc
PB
19789 if (dst->st_value & 1)
19790 {
19791 dst->st_value &= ~(bfd_vma) 1;
39d911fc
TP
19792 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19793 ST_BRANCH_TO_THUMB);
63e1a0fc
PB
19794 }
19795 else
39d911fc 19796 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
35fc36a8
RS
19797 }
19798 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19799 {
19800 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
39d911fc 19801 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
0beaef2b 19802 }
35fc36a8 19803 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
39d911fc 19804 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
35fc36a8 19805 else
39d911fc 19806 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
35fc36a8 19807
0a1b45a2 19808 return true;
0beaef2b
PB
19809}
19810
19811
19812/* Mangle thumb function symbols as we write them out. */
19813
19814static void
19815elf32_arm_swap_symbol_out (bfd *abfd,
19816 const Elf_Internal_Sym *src,
19817 void *cdst,
19818 void *shndx)
19819{
19820 Elf_Internal_Sym newsym;
19821
19822 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19823 of the address set, as per the new EABI. We do this unconditionally
19824 because objcopy does not set the elf header flags until after
19825 it writes out the symbol table. */
39d911fc 19826 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
0beaef2b
PB
19827 {
19828 newsym = *src;
34e77a92
RS
19829 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19830 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad 19831 if (newsym.st_shndx != SHN_UNDEF)
99059e56
RM
19832 {
19833 /* Do this only for defined symbols. At link type, the static
19834 linker will simulate the work of dynamic linker of resolving
19835 symbols and will carry over the thumbness of found symbols to
19836 the output symbol table. It's not clear how it happens, but
19837 the thumbness of undefined symbols can well be different at
19838 runtime, and writing '1' for them will be confusing for users
19839 and possibly for dynamic linker itself.
19840 */
19841 newsym.st_value |= 1;
19842 }
906e58ca 19843
0beaef2b
PB
19844 src = &newsym;
19845 }
19846 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
19847}
19848
b294bdf8
MM
19849/* Add the PT_ARM_EXIDX program header. */
19850
0a1b45a2 19851static bool
906e58ca 19852elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
19853 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19854{
19855 struct elf_segment_map *m;
19856 asection *sec;
19857
19858 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19859 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19860 {
19861 /* If there is already a PT_ARM_EXIDX header, then we do not
19862 want to add another one. This situation arises when running
19863 "strip"; the input binary already has the header. */
12bd6957 19864 m = elf_seg_map (abfd);
b294bdf8
MM
19865 while (m && m->p_type != PT_ARM_EXIDX)
19866 m = m->next;
19867 if (!m)
19868 {
21d799b5 19869 m = (struct elf_segment_map *)
99059e56 19870 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8 19871 if (m == NULL)
0a1b45a2 19872 return false;
b294bdf8
MM
19873 m->p_type = PT_ARM_EXIDX;
19874 m->count = 1;
19875 m->sections[0] = sec;
19876
12bd6957
AM
19877 m->next = elf_seg_map (abfd);
19878 elf_seg_map (abfd) = m;
b294bdf8
MM
19879 }
19880 }
19881
0a1b45a2 19882 return true;
b294bdf8
MM
19883}
19884
19885/* We may add a PT_ARM_EXIDX program header. */
19886
19887static int
a6b96beb
AM
19888elf32_arm_additional_program_headers (bfd *abfd,
19889 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
19890{
19891 asection *sec;
19892
19893 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19894 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19895 return 1;
19896 else
19897 return 0;
19898}
19899
34e77a92
RS
19900/* Hook called by the linker routine which adds symbols from an object
19901 file. */
19902
0a1b45a2 19903static bool
34e77a92
RS
19904elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
19905 Elf_Internal_Sym *sym, const char **namep,
19906 flagword *flagsp, asection **secp, bfd_vma *valp)
19907{
c792917c 19908 if (elf32_arm_hash_table (info) == NULL)
0a1b45a2 19909 return false;
c792917c 19910
90c14f0c 19911 if (elf32_arm_hash_table (info)->root.target_os == is_vxworks
34e77a92
RS
19912 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
19913 flagsp, secp, valp))
0a1b45a2 19914 return false;
34e77a92 19915
0a1b45a2 19916 return true;
34e77a92
RS
19917}
19918
0beaef2b 19919/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
19920const struct elf_size_info elf32_arm_size_info =
19921{
0beaef2b
PB
19922 sizeof (Elf32_External_Ehdr),
19923 sizeof (Elf32_External_Phdr),
19924 sizeof (Elf32_External_Shdr),
19925 sizeof (Elf32_External_Rel),
19926 sizeof (Elf32_External_Rela),
19927 sizeof (Elf32_External_Sym),
19928 sizeof (Elf32_External_Dyn),
19929 sizeof (Elf_External_Note),
19930 4,
19931 1,
19932 32, 2,
19933 ELFCLASS32, EV_CURRENT,
19934 bfd_elf32_write_out_phdrs,
19935 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 19936 bfd_elf32_checksum_contents,
0beaef2b
PB
19937 bfd_elf32_write_relocs,
19938 elf32_arm_swap_symbol_in,
19939 elf32_arm_swap_symbol_out,
19940 bfd_elf32_slurp_reloc_table,
19941 bfd_elf32_slurp_symbol_table,
19942 bfd_elf32_swap_dyn_in,
19943 bfd_elf32_swap_dyn_out,
19944 bfd_elf32_swap_reloc_in,
19945 bfd_elf32_swap_reloc_out,
19946 bfd_elf32_swap_reloca_in,
19947 bfd_elf32_swap_reloca_out
19948};
19949
685e70ae
VK
19950static bfd_vma
19951read_code32 (const bfd *abfd, const bfd_byte *addr)
19952{
19953 /* V7 BE8 code is always little endian. */
19954 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19955 return bfd_getl32 (addr);
19956
19957 return bfd_get_32 (abfd, addr);
19958}
19959
19960static bfd_vma
19961read_code16 (const bfd *abfd, const bfd_byte *addr)
19962{
19963 /* V7 BE8 code is always little endian. */
19964 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19965 return bfd_getl16 (addr);
19966
19967 return bfd_get_16 (abfd, addr);
19968}
19969
6a631e86
YG
19970/* Return size of plt0 entry starting at ADDR
19971 or (bfd_vma) -1 if size can not be determined. */
19972
19973static bfd_vma
ae0d827f
AM
19974elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr,
19975 bfd_size_type data_size)
6a631e86
YG
19976{
19977 bfd_vma first_word;
19978 bfd_vma plt0_size;
19979
ae0d827f
AM
19980 if (data_size < 4)
19981 return (bfd_vma) -1;
19982
685e70ae 19983 first_word = read_code32 (abfd, addr);
6a631e86
YG
19984
19985 if (first_word == elf32_arm_plt0_entry[0])
19986 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19987 else if (first_word == elf32_thumb2_plt0_entry[0])
19988 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19989 else
19990 /* We don't yet handle this PLT format. */
19991 return (bfd_vma) -1;
19992
19993 return plt0_size;
19994}
19995
19996/* Return size of plt entry starting at offset OFFSET
19997 of plt section located at address START
19998 or (bfd_vma) -1 if size can not be determined. */
19999
20000static bfd_vma
ae0d827f
AM
20001elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset,
20002 bfd_size_type data_size)
6a631e86
YG
20003{
20004 bfd_vma first_insn;
20005 bfd_vma plt_size = 0;
6a631e86
YG
20006
20007 /* PLT entry size if fixed on Thumb-only platforms. */
685e70ae 20008 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
ae0d827f 20009 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
6a631e86
YG
20010
20011 /* Respect Thumb stub if necessary. */
ae0d827f
AM
20012 if (offset + 2 > data_size)
20013 return (bfd_vma) -1;
20014 if (read_code16 (abfd, start + offset) == elf32_arm_plt_thumb_stub[0])
6a631e86 20015 {
cc850f74 20016 plt_size += 2 * ARRAY_SIZE (elf32_arm_plt_thumb_stub);
6a631e86
YG
20017 }
20018
20019 /* Strip immediate from first add. */
ae0d827f
AM
20020 if (offset + plt_size + 4 > data_size)
20021 return (bfd_vma) -1;
20022 first_insn = read_code32 (abfd, start + offset + plt_size) & 0xffffff00;
6a631e86
YG
20023
20024#ifdef FOUR_WORD_PLT
20025 if (first_insn == elf32_arm_plt_entry[0])
20026 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
20027#else
20028 if (first_insn == elf32_arm_plt_entry_long[0])
20029 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
20030 else if (first_insn == elf32_arm_plt_entry_short[0])
20031 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
20032#endif
20033 else
20034 /* We don't yet handle this PLT format. */
20035 return (bfd_vma) -1;
20036
20037 return plt_size;
20038}
20039
20040/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20041
20042static long
20043elf32_arm_get_synthetic_symtab (bfd *abfd,
20044 long symcount ATTRIBUTE_UNUSED,
20045 asymbol **syms ATTRIBUTE_UNUSED,
20046 long dynsymcount,
20047 asymbol **dynsyms,
20048 asymbol **ret)
20049{
20050 asection *relplt;
20051 asymbol *s;
20052 arelent *p;
20053 long count, i, n;
20054 size_t size;
20055 Elf_Internal_Shdr *hdr;
20056 char *names;
20057 asection *plt;
20058 bfd_vma offset;
20059 bfd_byte *data;
20060
20061 *ret = NULL;
20062
20063 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20064 return 0;
20065
20066 if (dynsymcount <= 0)
20067 return 0;
20068
20069 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20070 if (relplt == NULL)
20071 return 0;
20072
20073 hdr = &elf_section_data (relplt)->this_hdr;
20074 if (hdr->sh_link != elf_dynsymtab (abfd)
20075 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20076 return 0;
20077
20078 plt = bfd_get_section_by_name (abfd, ".plt");
20079 if (plt == NULL)
20080 return 0;
20081
0a1b45a2 20082 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, true))
6a631e86
YG
20083 return -1;
20084
08edd976
AM
20085 data = NULL;
20086 if (!bfd_get_full_section_contents (abfd, plt, &data))
20087 return -1;
6a631e86 20088
93c6e8c3 20089 count = NUM_SHDR_ENTRIES (hdr);
6a631e86
YG
20090 size = count * sizeof (asymbol);
20091 p = relplt->relocation;
20092 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20093 {
20094 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20095 if (p->addend != 0)
20096 size += sizeof ("+0x") - 1 + 8;
20097 }
20098
ae0d827f 20099 offset = elf32_arm_plt0_size (abfd, data, plt->size);
08edd976
AM
20100 if (offset == (bfd_vma) -1
20101 || (s = *ret = (asymbol *) bfd_malloc (size)) == NULL)
20102 {
20103 free (data);
20104 return -1;
20105 }
6a631e86
YG
20106
20107 names = (char *) (s + count);
20108 p = relplt->relocation;
20109 n = 0;
20110 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20111 {
20112 size_t len;
20113
ae0d827f 20114 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset, plt->size);
6a631e86
YG
20115 if (plt_size == (bfd_vma) -1)
20116 break;
20117
20118 *s = **p->sym_ptr_ptr;
20119 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20120 we are defining a symbol, ensure one of them is set. */
20121 if ((s->flags & BSF_LOCAL) == 0)
20122 s->flags |= BSF_GLOBAL;
20123 s->flags |= BSF_SYNTHETIC;
20124 s->section = plt;
20125 s->value = offset;
20126 s->name = names;
20127 s->udata.p = NULL;
20128 len = strlen ((*p->sym_ptr_ptr)->name);
20129 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20130 names += len;
20131 if (p->addend != 0)
20132 {
20133 char buf[30], *a;
20134
20135 memcpy (names, "+0x", sizeof ("+0x") - 1);
20136 names += sizeof ("+0x") - 1;
20137 bfd_sprintf_vma (abfd, buf, p->addend);
20138 for (a = buf; *a == '0'; ++a)
20139 ;
20140 len = strlen (a);
20141 memcpy (names, a, len);
20142 names += len;
20143 }
20144 memcpy (names, "@plt", sizeof ("@plt"));
20145 names += sizeof ("@plt");
20146 ++s, ++n;
20147 offset += plt_size;
20148 }
20149
08edd976 20150 free (data);
6a631e86
YG
20151 return n;
20152}
20153
0a1b45a2 20154static bool
8c803a2d 20155elf32_arm_section_flags (const Elf_Internal_Shdr *hdr)
ac4c9b04 20156{
f0728ee3 20157 if (hdr->sh_flags & SHF_ARM_PURECODE)
8c803a2d 20158 hdr->bfd_section->flags |= SEC_ELF_PURECODE;
0a1b45a2 20159 return true;
ac4c9b04
MG
20160}
20161
20162static flagword
20163elf32_arm_lookup_section_flags (char *flag_name)
20164{
f0728ee3
AV
20165 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20166 return SHF_ARM_PURECODE;
ac4c9b04
MG
20167
20168 return SEC_NO_FLAGS;
20169}
20170
491d01d3
YU
20171static unsigned int
20172elf32_arm_count_additional_relocs (asection *sec)
20173{
20174 struct _arm_elf_section_data *arm_data;
20175 arm_data = get_arm_elf_section_data (sec);
5025eb7c 20176
6342be70 20177 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
491d01d3
YU
20178}
20179
5522f910 20180/* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
9eaff861 20181 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
5522f910
NC
20182 FALSE otherwise. ISECTION is the best guess matching section from the
20183 input bfd IBFD, but it might be NULL. */
20184
0a1b45a2 20185static bool
5522f910
NC
20186elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20187 bfd *obfd ATTRIBUTE_UNUSED,
20188 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20189 Elf_Internal_Shdr *osection)
20190{
20191 switch (osection->sh_type)
20192 {
20193 case SHT_ARM_EXIDX:
20194 {
20195 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20196 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20197 unsigned i = 0;
20198
20199 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20200 osection->sh_info = 0;
20201
20202 /* The sh_link field must be set to the text section associated with
20203 this index section. Unfortunately the ARM EHABI does not specify
20204 exactly how to determine this association. Our caller does try
20205 to match up OSECTION with its corresponding input section however
20206 so that is a good first guess. */
20207 if (isection != NULL
20208 && osection->bfd_section != NULL
20209 && isection->bfd_section != NULL
20210 && isection->bfd_section->output_section != NULL
20211 && isection->bfd_section->output_section == osection->bfd_section
20212 && iheaders != NULL
20213 && isection->sh_link > 0
20214 && isection->sh_link < elf_numsections (ibfd)
20215 && iheaders[isection->sh_link]->bfd_section != NULL
20216 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20217 )
20218 {
20219 for (i = elf_numsections (obfd); i-- > 0;)
20220 if (oheaders[i]->bfd_section
20221 == iheaders[isection->sh_link]->bfd_section->output_section)
20222 break;
20223 }
9eaff861 20224
5522f910
NC
20225 if (i == 0)
20226 {
20227 /* Failing that we have to find a matching section ourselves. If
20228 we had the output section name available we could compare that
20229 with input section names. Unfortunately we don't. So instead
20230 we use a simple heuristic and look for the nearest executable
20231 section before this one. */
20232 for (i = elf_numsections (obfd); i-- > 0;)
20233 if (oheaders[i] == osection)
20234 break;
20235 if (i == 0)
20236 break;
20237
20238 while (i-- > 0)
20239 if (oheaders[i]->sh_type == SHT_PROGBITS
20240 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20241 == (SHF_ALLOC | SHF_EXECINSTR))
20242 break;
20243 }
20244
20245 if (i)
20246 {
20247 osection->sh_link = i;
20248 /* If the text section was part of a group
20249 then the index section should be too. */
20250 if (oheaders[i]->sh_flags & SHF_GROUP)
20251 osection->sh_flags |= SHF_GROUP;
0a1b45a2 20252 return true;
5522f910
NC
20253 }
20254 }
20255 break;
20256
20257 case SHT_ARM_PREEMPTMAP:
20258 osection->sh_flags = SHF_ALLOC;
20259 break;
20260
20261 case SHT_ARM_ATTRIBUTES:
20262 case SHT_ARM_DEBUGOVERLAY:
20263 case SHT_ARM_OVERLAYSECTION:
20264 default:
20265 break;
20266 }
20267
0a1b45a2 20268 return false;
5522f910
NC
20269}
20270
d691934d
NC
20271/* Returns TRUE if NAME is an ARM mapping symbol.
20272 Traditionally the symbols $a, $d and $t have been used.
20273 The ARM ELF standard also defines $x (for A64 code). It also allows a
20274 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20275 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20276 not support them here. $t.x indicates the start of ThumbEE instructions. */
20277
0a1b45a2 20278static bool
d691934d
NC
20279is_arm_mapping_symbol (const char * name)
20280{
20281 return name != NULL /* Paranoia. */
20282 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20283 the mapping symbols could have acquired a prefix.
20284 We do not support this here, since such symbols no
20285 longer conform to the ARM ELF ABI. */
20286 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20287 && (name[2] == 0 || name[2] == '.');
20288 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20289 any characters that follow the period are legal characters for the body
20290 of a symbol's name. For now we just assume that this is the case. */
20291}
20292
fca2a38f
NC
20293/* Make sure that mapping symbols in object files are not removed via the
20294 "strip --strip-unneeded" tool. These symbols are needed in order to
20295 correctly generate interworking veneers, and for byte swapping code
20296 regions. Once an object file has been linked, it is safe to remove the
20297 symbols as they will no longer be needed. */
20298
20299static void
20300elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20301{
20302 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
fca2a38f 20303 && sym->section != bfd_abs_section_ptr
d691934d 20304 && is_arm_mapping_symbol (sym->name))
fca2a38f
NC
20305 sym->flags |= BSF_KEEP;
20306}
20307
5522f910
NC
20308#undef elf_backend_copy_special_section_fields
20309#define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20310
252b5132 20311#define ELF_ARCH bfd_arch_arm
ae95ffa6 20312#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 20313#define ELF_MACHINE_CODE EM_ARM
d0facd1b 20314#define ELF_MAXPAGESIZE 0x1000
24718e3b 20315#define ELF_COMMONPAGESIZE 0x1000
252b5132 20316
07d6d2b8 20317#define bfd_elf32_mkobject elf32_arm_mkobject
ba93b8ac 20318
99e4ae17
AJ
20319#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20320#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
20321#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20322#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
07d6d2b8 20323#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
dc810e39 20324#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 20325#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
07d6d2b8 20326#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 20327#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 20328#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 20329#define bfd_elf32_bfd_final_link elf32_arm_final_link
07d6d2b8 20330#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
252b5132 20331
07d6d2b8 20332#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
e7679060 20333#define elf_backend_maybe_function_sym elf32_arm_maybe_function_sym
07d6d2b8 20334#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 20335#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
07d6d2b8 20336#define elf_backend_check_relocs elf32_arm_check_relocs
9eaff861 20337#define elf_backend_update_relocs elf32_arm_update_relocs
dc810e39 20338#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 20339#define elf_backend_write_section elf32_arm_write_section
252b5132 20340#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
07d6d2b8 20341#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
20342#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20343#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20344#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 20345#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 20346#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ed7e9d0b 20347#define elf_backend_init_file_header elf32_arm_init_file_header
99e4ae17 20348#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 20349#define elf_backend_object_p elf32_arm_object_p
07d6d2b8
AM
20350#define elf_backend_fake_sections elf32_arm_fake_sections
20351#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20352#define elf_backend_final_write_processing elf32_arm_final_write_processing
20353#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 20354#define elf_backend_size_info elf32_arm_size_info
b294bdf8 20355#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
07d6d2b8
AM
20356#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20357#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
54ddd295 20358#define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
07d6d2b8 20359#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 20360#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
491d01d3 20361#define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
fca2a38f 20362#define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
906e58ca
NC
20363
20364#define elf_backend_can_refcount 1
20365#define elf_backend_can_gc_sections 1
20366#define elf_backend_plt_readonly 1
20367#define elf_backend_want_got_plt 1
20368#define elf_backend_want_plt_sym 0
5474d94f 20369#define elf_backend_want_dynrelro 1
906e58ca
NC
20370#define elf_backend_may_use_rel_p 1
20371#define elf_backend_may_use_rela_p 0
4e7fd91e 20372#define elf_backend_default_use_rela_p 0
64f52338 20373#define elf_backend_dtrel_excludes_plt 1
252b5132 20374
04f7c78d 20375#define elf_backend_got_header_size 12
af9bf9cb 20376#define elf_backend_extern_protected_data 0
04f7c78d 20377
07d6d2b8 20378#undef elf_backend_obj_attrs_vendor
906e58ca 20379#define elf_backend_obj_attrs_vendor "aeabi"
07d6d2b8 20380#undef elf_backend_obj_attrs_section
906e58ca 20381#define elf_backend_obj_attrs_section ".ARM.attributes"
07d6d2b8 20382#undef elf_backend_obj_attrs_arg_type
906e58ca 20383#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
07d6d2b8 20384#undef elf_backend_obj_attrs_section_type
104d59d1 20385#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb 20386#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
07d6d2b8 20387#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 20388
07d6d2b8 20389#undef elf_backend_section_flags
ac4c9b04 20390#define elf_backend_section_flags elf32_arm_section_flags
07d6d2b8
AM
20391#undef elf_backend_lookup_section_flags_hook
20392#define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
ac4c9b04 20393
0a1b45a2 20394#define elf_backend_linux_prpsinfo32_ugid16 true
a2f63b2e 20395
252b5132 20396#include "elf32-target.h"
7f266840 20397
b38cadfb
NC
20398/* Native Client targets. */
20399
20400#undef TARGET_LITTLE_SYM
6d00b590 20401#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
b38cadfb
NC
20402#undef TARGET_LITTLE_NAME
20403#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20404#undef TARGET_BIG_SYM
6d00b590 20405#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
b38cadfb
NC
20406#undef TARGET_BIG_NAME
20407#define TARGET_BIG_NAME "elf32-bigarm-nacl"
20408
20409/* Like elf32_arm_link_hash_table_create -- but overrides
20410 appropriately for NaCl. */
20411
20412static struct bfd_link_hash_table *
20413elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20414{
20415 struct bfd_link_hash_table *ret;
20416
20417 ret = elf32_arm_link_hash_table_create (abfd);
20418 if (ret)
20419 {
20420 struct elf32_arm_link_hash_table *htab
20421 = (struct elf32_arm_link_hash_table *) ret;
20422
b38cadfb
NC
20423 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20424 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20425 }
20426 return ret;
20427}
20428
20429/* Since NaCl doesn't use the ARM-specific unwind format, we don't
20430 really need to use elf32_arm_modify_segment_map. But we do it
20431 anyway just to reduce gratuitous differences with the stock ARM backend. */
20432
0a1b45a2 20433static bool
b38cadfb
NC
20434elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20435{
20436 return (elf32_arm_modify_segment_map (abfd, info)
20437 && nacl_modify_segment_map (abfd, info));
20438}
20439
0a1b45a2 20440static bool
cc364be6 20441elf32_arm_nacl_final_write_processing (bfd *abfd)
887badb3 20442{
cc364be6
AM
20443 arm_final_write_processing (abfd);
20444 return nacl_final_write_processing (abfd);
887badb3
RM
20445}
20446
6a631e86
YG
20447static bfd_vma
20448elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20449 const arelent *rel ATTRIBUTE_UNUSED)
20450{
20451 return plt->vma
20452 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20453 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20454}
887badb3 20455
b38cadfb 20456#undef elf32_bed
6a631e86 20457#define elf32_bed elf32_arm_nacl_bed
b38cadfb
NC
20458#undef bfd_elf32_bfd_link_hash_table_create
20459#define bfd_elf32_bfd_link_hash_table_create \
20460 elf32_arm_nacl_link_hash_table_create
20461#undef elf_backend_plt_alignment
6a631e86 20462#define elf_backend_plt_alignment 4
b38cadfb
NC
20463#undef elf_backend_modify_segment_map
20464#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
6d6c25c8
AM
20465#undef elf_backend_modify_headers
20466#define elf_backend_modify_headers nacl_modify_headers
887badb3
RM
20467#undef elf_backend_final_write_processing
20468#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
6a631e86
YG
20469#undef bfd_elf32_get_synthetic_symtab
20470#undef elf_backend_plt_sym_val
20471#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
5522f910 20472#undef elf_backend_copy_special_section_fields
b38cadfb 20473
887badb3
RM
20474#undef ELF_MINPAGESIZE
20475#undef ELF_COMMONPAGESIZE
20476
90c14f0c
L
20477#undef ELF_TARGET_OS
20478#define ELF_TARGET_OS is_nacl
b38cadfb
NC
20479
20480#include "elf32-target.h"
20481
20482/* Reset to defaults. */
20483#undef elf_backend_plt_alignment
20484#undef elf_backend_modify_segment_map
20485#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
6d6c25c8 20486#undef elf_backend_modify_headers
887badb3
RM
20487#undef elf_backend_final_write_processing
20488#define elf_backend_final_write_processing elf32_arm_final_write_processing
20489#undef ELF_MINPAGESIZE
887badb3
RM
20490#undef ELF_COMMONPAGESIZE
20491#define ELF_COMMONPAGESIZE 0x1000
20492
b38cadfb 20493
617a5ada
CL
20494/* FDPIC Targets. */
20495
20496#undef TARGET_LITTLE_SYM
20497#define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20498#undef TARGET_LITTLE_NAME
20499#define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20500#undef TARGET_BIG_SYM
20501#define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20502#undef TARGET_BIG_NAME
20503#define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20504#undef elf_match_priority
20505#define elf_match_priority 128
18a20338
CL
20506#undef ELF_OSABI
20507#define ELF_OSABI ELFOSABI_ARM_FDPIC
617a5ada
CL
20508
20509/* Like elf32_arm_link_hash_table_create -- but overrides
20510 appropriately for FDPIC. */
20511
20512static struct bfd_link_hash_table *
20513elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20514{
20515 struct bfd_link_hash_table *ret;
20516
20517 ret = elf32_arm_link_hash_table_create (abfd);
20518 if (ret)
20519 {
20520 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20521
20522 htab->fdpic_p = 1;
20523 }
20524 return ret;
20525}
20526
e8b09b87
CL
20527/* We need dynamic symbols for every section, since segments can
20528 relocate independently. */
0a1b45a2 20529static bool
e8b09b87
CL
20530elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20531 struct bfd_link_info *info
20532 ATTRIBUTE_UNUSED,
20533 asection *p ATTRIBUTE_UNUSED)
20534{
20535 switch (elf_section_data (p)->this_hdr.sh_type)
20536 {
20537 case SHT_PROGBITS:
20538 case SHT_NOBITS:
20539 /* If sh_type is yet undecided, assume it could be
20540 SHT_PROGBITS/SHT_NOBITS. */
20541 case SHT_NULL:
0a1b45a2 20542 return false;
e8b09b87
CL
20543
20544 /* There shouldn't be section relative relocations
20545 against any other section. */
20546 default:
0a1b45a2 20547 return true;
e8b09b87
CL
20548 }
20549}
20550
617a5ada
CL
20551#undef elf32_bed
20552#define elf32_bed elf32_arm_fdpic_bed
20553
20554#undef bfd_elf32_bfd_link_hash_table_create
4b24dd1a 20555#define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
617a5ada 20556
e8b09b87
CL
20557#undef elf_backend_omit_section_dynsym
20558#define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20559
90c14f0c
L
20560#undef ELF_TARGET_OS
20561
617a5ada 20562#include "elf32-target.h"
e8b09b87 20563
617a5ada 20564#undef elf_match_priority
18a20338 20565#undef ELF_OSABI
e8b09b87 20566#undef elf_backend_omit_section_dynsym
617a5ada 20567
906e58ca 20568/* VxWorks Targets. */
4e7fd91e 20569
07d6d2b8
AM
20570#undef TARGET_LITTLE_SYM
20571#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20572#undef TARGET_LITTLE_NAME
20573#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20574#undef TARGET_BIG_SYM
20575#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20576#undef TARGET_BIG_NAME
20577#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
4e7fd91e
PB
20578
20579/* Like elf32_arm_link_hash_table_create -- but overrides
20580 appropriately for VxWorks. */
906e58ca 20581
4e7fd91e
PB
20582static struct bfd_link_hash_table *
20583elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20584{
20585 struct bfd_link_hash_table *ret;
20586
20587 ret = elf32_arm_link_hash_table_create (abfd);
20588 if (ret)
20589 {
20590 struct elf32_arm_link_hash_table *htab
00a97672 20591 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e
PB
20592 htab->use_rel = 0;
20593 }
20594 return ret;
906e58ca 20595}
4e7fd91e 20596
0a1b45a2 20597static bool
cc364be6 20598elf32_arm_vxworks_final_write_processing (bfd *abfd)
00a97672 20599{
cc364be6
AM
20600 arm_final_write_processing (abfd);
20601 return elf_vxworks_final_write_processing (abfd);
00a97672
RS
20602}
20603
906e58ca 20604#undef elf32_bed
4e7fd91e
PB
20605#define elf32_bed elf32_arm_vxworks_bed
20606
906e58ca
NC
20607#undef bfd_elf32_bfd_link_hash_table_create
20608#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
20609#undef elf_backend_final_write_processing
20610#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20611#undef elf_backend_emit_relocs
9eaff861 20612#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 20613
906e58ca 20614#undef elf_backend_may_use_rel_p
00a97672 20615#define elf_backend_may_use_rel_p 0
906e58ca 20616#undef elf_backend_may_use_rela_p
00a97672 20617#define elf_backend_may_use_rela_p 1
906e58ca 20618#undef elf_backend_default_use_rela_p
00a97672 20619#define elf_backend_default_use_rela_p 1
906e58ca 20620#undef elf_backend_want_plt_sym
00a97672 20621#define elf_backend_want_plt_sym 1
906e58ca 20622#undef ELF_MAXPAGESIZE
00a97672 20623#define ELF_MAXPAGESIZE 0x1000
90c14f0c
L
20624#undef ELF_TARGET_OS
20625#define ELF_TARGET_OS is_vxworks
4e7fd91e
PB
20626
20627#include "elf32-target.h"
20628
20629
21d799b5
NC
20630/* Merge backend specific data from an object file to the output
20631 object file when linking. */
20632
0a1b45a2 20633static bool
50e03d47 20634elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
21d799b5 20635{
50e03d47 20636 bfd *obfd = info->output_bfd;
21d799b5
NC
20637 flagword out_flags;
20638 flagword in_flags;
0a1b45a2 20639 bool flags_compatible = true;
21d799b5
NC
20640 asection *sec;
20641
cc643b88 20642 /* Check if we have the same endianness. */
50e03d47 20643 if (! _bfd_generic_verify_endian_match (ibfd, info))
0a1b45a2 20644 return false;
21d799b5
NC
20645
20646 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
0a1b45a2 20647 return true;
21d799b5 20648
50e03d47 20649 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
0a1b45a2 20650 return false;
21d799b5
NC
20651
20652 /* The input BFD must have had its flags initialised. */
20653 /* The following seems bogus to me -- The flags are initialized in
20654 the assembler but I don't think an elf_flags_init field is
20655 written into the object. */
20656 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20657
20658 in_flags = elf_elfheader (ibfd)->e_flags;
20659 out_flags = elf_elfheader (obfd)->e_flags;
20660
20661 /* In theory there is no reason why we couldn't handle this. However
20662 in practice it isn't even close to working and there is no real
20663 reason to want it. */
20664 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20665 && !(ibfd->flags & DYNAMIC)
20666 && (in_flags & EF_ARM_BE8))
20667 {
871b3ab2 20668 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
21d799b5 20669 ibfd);
0a1b45a2 20670 return false;
21d799b5
NC
20671 }
20672
20673 if (!elf_flags_init (obfd))
20674 {
fd00374f
NC
20675 /* If the input has no flags set, then do not set the output flags.
20676 This will allow future bfds to determine the desired output flags.
20677 If no input bfds have any flags set, then neither will the output bfd.
20678
20679 Note - we used to restrict this test to when the input architecture
20680 variant was the default variant, but this does not allow for
20681 linker scripts which override the default. See PR 28910 for an
20682 example. */
20683 if (in_flags == 0)
0a1b45a2 20684 return true;
fd00374f 20685
0a1b45a2 20686 elf_flags_init (obfd) = true;
21d799b5
NC
20687 elf_elfheader (obfd)->e_flags = in_flags;
20688
20689 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20690 && bfd_get_arch_info (obfd)->the_default)
20691 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20692
0a1b45a2 20693 return true;
21d799b5
NC
20694 }
20695
20696 /* Determine what should happen if the input ARM architecture
20697 does not match the output ARM architecture. */
20698 if (! bfd_arm_merge_machines (ibfd, obfd))
0a1b45a2 20699 return false;
21d799b5
NC
20700
20701 /* Identical flags must be compatible. */
20702 if (in_flags == out_flags)
0a1b45a2 20703 return true;
21d799b5
NC
20704
20705 /* Check to see if the input BFD actually contains any sections. If
20706 not, its flags may not have been initialised either, but it
20707 cannot actually cause any incompatiblity. Do not short-circuit
20708 dynamic objects; their section list may be emptied by
20709 elf_link_add_object_symbols.
20710
20711 Also check to see if there are no code sections in the input.
20712 In this case there is no need to check for code specific flags.
20713 XXX - do we need to worry about floating-point format compatability
20714 in data sections ? */
20715 if (!(ibfd->flags & DYNAMIC))
20716 {
0a1b45a2
AM
20717 bool null_input_bfd = true;
20718 bool only_data_sections = true;
21d799b5
NC
20719
20720 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20721 {
20722 /* Ignore synthetic glue sections. */
20723 if (strcmp (sec->name, ".glue_7")
20724 && strcmp (sec->name, ".glue_7t"))
20725 {
fd361982 20726 if ((bfd_section_flags (sec)
21d799b5
NC
20727 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20728 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
0a1b45a2 20729 only_data_sections = false;
21d799b5 20730
0a1b45a2 20731 null_input_bfd = false;
21d799b5
NC
20732 break;
20733 }
20734 }
20735
20736 if (null_input_bfd || only_data_sections)
0a1b45a2 20737 return true;
21d799b5
NC
20738 }
20739
20740 /* Complain about various flag mismatches. */
20741 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20742 EF_ARM_EABI_VERSION (out_flags)))
20743 {
20744 _bfd_error_handler
90b6238f 20745 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
c08bb8dd
AM
20746 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20747 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
0a1b45a2 20748 return false;
21d799b5
NC
20749 }
20750
20751 /* Not sure what needs to be checked for EABI versions >= 1. */
20752 /* VxWorks libraries do not use these flags. */
20753 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20754 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20755 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20756 {
20757 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20758 {
20759 _bfd_error_handler
871b3ab2 20760 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
c08bb8dd
AM
20761 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20762 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
0a1b45a2 20763 flags_compatible = false;
21d799b5
NC
20764 }
20765
20766 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20767 {
20768 if (in_flags & EF_ARM_APCS_FLOAT)
20769 _bfd_error_handler
871b3ab2 20770 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
21d799b5
NC
20771 ibfd, obfd);
20772 else
20773 _bfd_error_handler
871b3ab2 20774 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
21d799b5
NC
20775 ibfd, obfd);
20776
0a1b45a2 20777 flags_compatible = false;
21d799b5
NC
20778 }
20779
20780 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20781 {
20782 if (in_flags & EF_ARM_VFP_FLOAT)
20783 _bfd_error_handler
90b6238f
AM
20784 (_("error: %pB uses %s instructions, whereas %pB does not"),
20785 ibfd, "VFP", obfd);
21d799b5
NC
20786 else
20787 _bfd_error_handler
90b6238f
AM
20788 (_("error: %pB uses %s instructions, whereas %pB does not"),
20789 ibfd, "FPA", obfd);
21d799b5 20790
0a1b45a2 20791 flags_compatible = false;
21d799b5
NC
20792 }
20793
20794 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20795 {
20796 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20797 _bfd_error_handler
90b6238f
AM
20798 (_("error: %pB uses %s instructions, whereas %pB does not"),
20799 ibfd, "Maverick", obfd);
21d799b5
NC
20800 else
20801 _bfd_error_handler
90b6238f
AM
20802 (_("error: %pB does not use %s instructions, whereas %pB does"),
20803 ibfd, "Maverick", obfd);
21d799b5 20804
0a1b45a2 20805 flags_compatible = false;
21d799b5
NC
20806 }
20807
20808#ifdef EF_ARM_SOFT_FLOAT
20809 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20810 {
20811 /* We can allow interworking between code that is VFP format
20812 layout, and uses either soft float or integer regs for
20813 passing floating point arguments and results. We already
20814 know that the APCS_FLOAT flags match; similarly for VFP
20815 flags. */
20816 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20817 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20818 {
20819 if (in_flags & EF_ARM_SOFT_FLOAT)
20820 _bfd_error_handler
871b3ab2 20821 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
21d799b5
NC
20822 ibfd, obfd);
20823 else
20824 _bfd_error_handler
871b3ab2 20825 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
21d799b5
NC
20826 ibfd, obfd);
20827
0a1b45a2 20828 flags_compatible = false;
21d799b5
NC
20829 }
20830 }
20831#endif
20832
20833 /* Interworking mismatch is only a warning. */
20834 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20835 {
20836 if (in_flags & EF_ARM_INTERWORK)
20837 {
20838 _bfd_error_handler
90b6238f 20839 (_("warning: %pB supports interworking, whereas %pB does not"),
21d799b5
NC
20840 ibfd, obfd);
20841 }
20842 else
20843 {
20844 _bfd_error_handler
90b6238f 20845 (_("warning: %pB does not support interworking, whereas %pB does"),
21d799b5
NC
20846 ibfd, obfd);
20847 }
20848 }
20849 }
20850
20851 return flags_compatible;
20852}