]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf32-mips.c
* elf32-mips.c (mips_elf_create_dynamic_relocation): Change
[thirdparty/binutils-gdb.git] / bfd / elf32-mips.c
CommitLineData
252b5132
RH
1/* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
103186c6
MM
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
252b5132
RH
8
9This file is part of BFD, the Binary File Descriptor library.
10
11This program is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2 of the License, or
14(at your option) any later version.
15
16This program is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with this program; if not, write to the Free Software
23Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25/* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
26 different MIPS ELF from other targets. This matters when linking.
27 This file supports both, switching at runtime. */
28
29#include "bfd.h"
30#include "sysdep.h"
31#include "libbfd.h"
32#include "bfdlink.h"
33#include "genlink.h"
34#include "elf-bfd.h"
35#include "elf/mips.h"
36
37/* Get the ECOFF swapping routines. */
38#include "coff/sym.h"
39#include "coff/symconst.h"
40#include "coff/internal.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43#define ECOFF_32
44#include "ecoffswap.h"
45
7403cb63
MM
46/* This structure is used to hold .got information when linking. It
47 is stored in the tdata field of the bfd_elf_section_data structure. */
48
49struct mips_got_info
50{
51 /* The global symbol in the GOT with the lowest index in the dynamic
52 symbol table. */
53 struct elf_link_hash_entry *global_gotsym;
b3be9b46
RH
54 /* The number of global .got entries. */
55 unsigned int global_gotno;
7403cb63
MM
56 /* The number of local .got entries. */
57 unsigned int local_gotno;
58 /* The number of local .got entries we have used. */
59 unsigned int assigned_gotno;
60};
61
62/* The MIPS ELF linker needs additional information for each symbol in
63 the global hash table. */
64
65struct mips_elf_link_hash_entry
66{
67 struct elf_link_hash_entry root;
68
69 /* External symbol information. */
70 EXTR esym;
71
a3c7651d
MM
72 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
73 this symbol. */
74 unsigned int possibly_dynamic_relocs;
7403cb63
MM
75
76 /* The index of the first dynamic relocation (in the .rel.dyn
77 section) against this symbol. */
78 unsigned int min_dyn_reloc_index;
79
80 /* If there is a stub that 32 bit functions should use to call this
81 16 bit function, this points to the section containing the stub. */
82 asection *fn_stub;
83
84 /* Whether we need the fn_stub; this is set if this symbol appears
85 in any relocs other than a 16 bit call. */
86 boolean need_fn_stub;
87
88 /* If there is a stub that 16 bit functions should use to call this
89 32 bit function, this points to the section containing the stub. */
90 asection *call_stub;
91
92 /* This is like the call_stub field, but it is used if the function
93 being called returns a floating point value. */
94 asection *call_fp_stub;
95};
96
252b5132
RH
97static bfd_reloc_status_type mips32_64bit_reloc
98 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
99static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
100 PARAMS ((bfd *, bfd_reloc_code_real_type));
c9b3cbf3
RH
101static reloc_howto_type *mips_rtype_to_howto
102 PARAMS ((unsigned int));
252b5132
RH
103static void mips_info_to_howto_rel
104 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
3f830999
MM
105static void mips_info_to_howto_rela
106 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
252b5132
RH
107static void bfd_mips_elf32_swap_gptab_in
108 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
109static void bfd_mips_elf32_swap_gptab_out
110 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
c6142e5d
MM
111static void bfd_mips_elf_swap_msym_in
112 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
113static void bfd_mips_elf_swap_msym_out
114 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
252b5132 115static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
252b5132
RH
116static boolean mips_elf_create_procedure_table
117 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
118 struct ecoff_debug_info *));
252b5132
RH
119static INLINE int elf_mips_isa PARAMS ((flagword));
120static INLINE int elf_mips_mach PARAMS ((flagword));
103186c6 121static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
252b5132
RH
122static boolean mips_elf_is_local_label_name
123 PARAMS ((bfd *, const char *));
124static struct bfd_hash_entry *mips_elf_link_hash_newfunc
125 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
252b5132 126static int gptab_compare PARAMS ((const void *, const void *));
252b5132
RH
127static void mips_elf_relocate_hi16
128 PARAMS ((bfd *, Elf_Internal_Rela *, Elf_Internal_Rela *, bfd_byte *,
129 bfd_vma));
130static boolean mips_elf_relocate_got_local
131 PARAMS ((bfd *, bfd *, asection *, Elf_Internal_Rela *,
132 Elf_Internal_Rela *, bfd_byte *, bfd_vma));
133static void mips_elf_relocate_global_got
134 PARAMS ((bfd *, Elf_Internal_Rela *, bfd_byte *, bfd_vma));
135static bfd_reloc_status_type mips16_jump_reloc
136 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
137static bfd_reloc_status_type mips16_gprel_reloc
138 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
252b5132
RH
139static boolean mips_elf_create_compact_rel_section
140 PARAMS ((bfd *, struct bfd_link_info *));
141static boolean mips_elf_create_got_section
142 PARAMS ((bfd *, struct bfd_link_info *));
252b5132
RH
143static bfd_reloc_status_type mips_elf_final_gp
144 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
145static bfd_byte *elf32_mips_get_relocated_section_contents
146 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
147 bfd_byte *, boolean, asymbol **));
c6142e5d
MM
148static asection *mips_elf_create_msym_section
149 PARAMS ((bfd *));
7403cb63
MM
150static void mips_elf_irix6_finish_dynamic_symbol
151 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
152static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
153static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
154static bfd_vma mips_elf_high PARAMS ((bfd_vma));
155static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
156static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
157static bfd_vma mips_elf_global_got_index
158 PARAMS ((bfd *, struct elf_link_hash_entry *));
159static bfd_vma mips_elf_local_got_index
160 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
161static bfd_vma mips_elf_got_offset_from_index
162 PARAMS ((bfd *, bfd *, bfd_vma));
163static boolean mips_elf_record_global_got_symbol
164 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
165 struct mips_got_info *));
166static bfd_vma mips_elf_got_page
167 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
23b255aa
MM
168static const Elf_Internal_Rela *mips_elf_next_lo16_relocation
169 PARAMS ((const Elf_Internal_Rela *, const Elf_Internal_Rela *));
7403cb63
MM
170static bfd_reloc_status_type mips_elf_calculate_relocation
171 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
103186c6 172 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
197b9ca0
MM
173 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
174 boolean *));
7403cb63 175static bfd_vma mips_elf_obtain_contents
103186c6 176 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
197b9ca0 177static boolean mips_elf_perform_relocation
e53bd91b
MM
178 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
179 const Elf_Internal_Rela *, bfd_vma,
197b9ca0 180 bfd *, asection *, bfd_byte *, boolean));
7403cb63
MM
181static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
182static boolean mips_elf_sort_hash_table_f
183 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
184static boolean mips_elf_sort_hash_table
b3be9b46 185 PARAMS ((struct bfd_link_info *, unsigned long));
7403cb63
MM
186static asection * mips_elf_got_section PARAMS ((bfd *));
187static struct mips_got_info *mips_elf_got_info
188 PARAMS ((bfd *, asection **));
6387d602
ILT
189static boolean mips_elf_local_relocation_p
190 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **));
7403cb63
MM
191static bfd_vma mips_elf_create_local_got_entry
192 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
193static bfd_vma mips_elf_got16_entry
194 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
7b1f1231 195static boolean mips_elf_create_dynamic_relocation
103186c6 196 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
7b1f1231
MM
197 struct mips_elf_link_hash_entry *, asection *,
198 bfd_vma, bfd_vma *, asection *));
103186c6
MM
199static void mips_elf_allocate_dynamic_relocations
200 PARAMS ((bfd *, unsigned int));
197b9ca0
MM
201static boolean mips_elf_stub_section_p
202 PARAMS ((bfd *, asection *));
252b5132 203
a94a7c1c 204/* The level of IRIX compatibility we're striving for. */
252b5132 205
a94a7c1c
MM
206typedef enum {
207 ict_none,
208 ict_irix5,
209 ict_irix6
210} irix_compat_t;
211
212/* Nonzero if ABFD is using the N32 ABI. */
213
214#define ABI_N32_P(abfd) \
215 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
216
5e38c3b8
MM
217/* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never
218 true, yet. */
219#define ABI_64_P(abfd) \
220 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
221
a94a7c1c
MM
222/* What version of Irix we are trying to be compatible with. FIXME:
223 At the moment, we never generate "normal" MIPS ELF ABI executables;
224 we always use some version of Irix. */
225
226#define IRIX_COMPAT(abfd) \
5e38c3b8 227 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5)
a94a7c1c
MM
228
229/* Whether we are trying to be compatible with IRIX at all. */
230
231#define SGI_COMPAT(abfd) \
232 (IRIX_COMPAT (abfd) != ict_none)
252b5132 233
c6142e5d
MM
234/* The name of the msym section. */
235#define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
236
303f629d
MM
237/* The name of the srdata section. */
238#define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
239
240/* The name of the options section. */
241#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
242 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
243
244/* The name of the stub section. */
245#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
246 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
247
103186c6
MM
248/* The name of the dynamic relocation section. */
249#define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
250
251/* The size of an external REL relocation. */
252#define MIPS_ELF_REL_SIZE(abfd) \
253 (get_elf_backend_data (abfd)->s->sizeof_rel)
254
255/* The size of an external dynamic table entry. */
256#define MIPS_ELF_DYN_SIZE(abfd) \
257 (get_elf_backend_data (abfd)->s->sizeof_dyn)
258
259/* The size of a GOT entry. */
260#define MIPS_ELF_GOT_SIZE(abfd) \
261 (get_elf_backend_data (abfd)->s->arch_size / 8)
262
263/* The size of a symbol-table entry. */
264#define MIPS_ELF_SYM_SIZE(abfd) \
265 (get_elf_backend_data (abfd)->s->sizeof_sym)
266
267/* The default alignment for sections, as a power of two. */
268#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
269 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
270
271/* Get word-sized data. */
272#define MIPS_ELF_GET_WORD(abfd, ptr) \
273 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
274
275/* Put out word-sized data. */
276#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
277 (ABI_64_P (abfd) \
278 ? bfd_put_64 (abfd, val, ptr) \
279 : bfd_put_32 (abfd, val, ptr))
280
281/* Add a dynamic symbol table-entry. */
9ebbd33e 282#ifdef BFD64
103186c6
MM
283#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
284 (ABI_64_P (elf_hash_table (info)->dynobj) \
285 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
286 : bfd_elf32_add_dynamic_entry (info, tag, val))
9ebbd33e
MM
287#else
288#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
289 (ABI_64_P (elf_hash_table (info)->dynobj) \
e049a0de
ILT
290 ? (abort (), false) \
291 : bfd_elf32_add_dynamic_entry (info, tag, val))
9ebbd33e 292#endif
103186c6 293
252b5132
RH
294/* The number of local .got entries we reserve. */
295#define MIPS_RESERVED_GOTNO (2)
296
297/* Instructions which appear in a stub. For some reason the stub is
298 slightly different on an SGI system. */
299#define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
103186c6
MM
300#define STUB_LW(abfd) \
301 (SGI_COMPAT (abfd) \
302 ? (ABI_64_P (abfd) \
303 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
304 : 0x8f998010) /* lw t9,0x8010(gp) */ \
252b5132
RH
305 : 0x8f998000) /* lw t9,0x8000(gp) */
306#define STUB_MOVE 0x03e07825 /* move t7,ra */
307#define STUB_JALR 0x0320f809 /* jal t9 */
308#define STUB_LI16 0x34180000 /* ori t8,zero,0 */
309#define MIPS_FUNCTION_STUB_SIZE (16)
310
311#if 0
312/* We no longer try to identify particular sections for the .dynsym
313 section. When we do, we wind up crashing if there are other random
314 sections with relocations. */
315
316/* Names of sections which appear in the .dynsym section in an Irix 5
317 executable. */
318
319static const char * const mips_elf_dynsym_sec_names[] =
320{
321 ".text",
322 ".init",
323 ".fini",
324 ".data",
325 ".rodata",
326 ".sdata",
327 ".sbss",
328 ".bss",
329 NULL
330};
331
332#define SIZEOF_MIPS_DYNSYM_SECNAMES \
333 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
334
335/* The number of entries in mips_elf_dynsym_sec_names which go in the
336 text segment. */
337
338#define MIPS_TEXT_DYNSYM_SECNO (3)
339
340#endif /* 0 */
341
342/* The names of the runtime procedure table symbols used on Irix 5. */
343
344static const char * const mips_elf_dynsym_rtproc_names[] =
345{
346 "_procedure_table",
347 "_procedure_string_table",
348 "_procedure_table_size",
349 NULL
350};
351
352/* These structures are used to generate the .compact_rel section on
353 Irix 5. */
354
355typedef struct
356{
357 unsigned long id1; /* Always one? */
358 unsigned long num; /* Number of compact relocation entries. */
359 unsigned long id2; /* Always two? */
360 unsigned long offset; /* The file offset of the first relocation. */
361 unsigned long reserved0; /* Zero? */
362 unsigned long reserved1; /* Zero? */
363} Elf32_compact_rel;
364
365typedef struct
366{
367 bfd_byte id1[4];
368 bfd_byte num[4];
369 bfd_byte id2[4];
370 bfd_byte offset[4];
371 bfd_byte reserved0[4];
372 bfd_byte reserved1[4];
373} Elf32_External_compact_rel;
374
375typedef struct
376{
377 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
378 unsigned int rtype : 4; /* Relocation types. See below. */
379 unsigned int dist2to : 8;
380 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
381 unsigned long konst; /* KONST field. See below. */
382 unsigned long vaddr; /* VADDR to be relocated. */
383} Elf32_crinfo;
384
385typedef struct
386{
387 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
388 unsigned int rtype : 4; /* Relocation types. See below. */
389 unsigned int dist2to : 8;
390 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
391 unsigned long konst; /* KONST field. See below. */
392} Elf32_crinfo2;
393
394typedef struct
395{
396 bfd_byte info[4];
397 bfd_byte konst[4];
398 bfd_byte vaddr[4];
399} Elf32_External_crinfo;
400
401typedef struct
402{
403 bfd_byte info[4];
404 bfd_byte konst[4];
405} Elf32_External_crinfo2;
406
407/* These are the constants used to swap the bitfields in a crinfo. */
408
409#define CRINFO_CTYPE (0x1)
410#define CRINFO_CTYPE_SH (31)
411#define CRINFO_RTYPE (0xf)
412#define CRINFO_RTYPE_SH (27)
413#define CRINFO_DIST2TO (0xff)
414#define CRINFO_DIST2TO_SH (19)
415#define CRINFO_RELVADDR (0x7ffff)
416#define CRINFO_RELVADDR_SH (0)
417
418/* A compact relocation info has long (3 words) or short (2 words)
419 formats. A short format doesn't have VADDR field and relvaddr
420 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
421#define CRF_MIPS_LONG 1
422#define CRF_MIPS_SHORT 0
423
424/* There are 4 types of compact relocation at least. The value KONST
425 has different meaning for each type:
426
427 (type) (konst)
428 CT_MIPS_REL32 Address in data
429 CT_MIPS_WORD Address in word (XXX)
430 CT_MIPS_GPHI_LO GP - vaddr
431 CT_MIPS_JMPAD Address to jump
432 */
433
434#define CRT_MIPS_REL32 0xa
435#define CRT_MIPS_WORD 0xb
436#define CRT_MIPS_GPHI_LO 0xc
437#define CRT_MIPS_JMPAD 0xd
438
439#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
440#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
441#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
442#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
443
444static void bfd_elf32_swap_compact_rel_out
445 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
446static void bfd_elf32_swap_crinfo_out
447 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
448
449#define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
450
3f830999
MM
451/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
452 from smaller values. Start with zero, widen, *then* decrement. */
453#define MINUS_ONE (((bfd_vma)0) - 1)
454
252b5132
RH
455static reloc_howto_type elf_mips_howto_table[] =
456{
457 /* No relocation. */
458 HOWTO (R_MIPS_NONE, /* type */
459 0, /* rightshift */
460 0, /* size (0 = byte, 1 = short, 2 = long) */
461 0, /* bitsize */
462 false, /* pc_relative */
463 0, /* bitpos */
464 complain_overflow_dont, /* complain_on_overflow */
465 bfd_elf_generic_reloc, /* special_function */
466 "R_MIPS_NONE", /* name */
467 false, /* partial_inplace */
468 0, /* src_mask */
469 0, /* dst_mask */
470 false), /* pcrel_offset */
471
472 /* 16 bit relocation. */
473 HOWTO (R_MIPS_16, /* type */
474 0, /* rightshift */
475 1, /* size (0 = byte, 1 = short, 2 = long) */
476 16, /* bitsize */
477 false, /* pc_relative */
478 0, /* bitpos */
479 complain_overflow_bitfield, /* complain_on_overflow */
480 bfd_elf_generic_reloc, /* special_function */
481 "R_MIPS_16", /* name */
482 true, /* partial_inplace */
483 0xffff, /* src_mask */
484 0xffff, /* dst_mask */
485 false), /* pcrel_offset */
486
487 /* 32 bit relocation. */
488 HOWTO (R_MIPS_32, /* type */
489 0, /* rightshift */
490 2, /* size (0 = byte, 1 = short, 2 = long) */
491 32, /* bitsize */
492 false, /* pc_relative */
493 0, /* bitpos */
494 complain_overflow_bitfield, /* complain_on_overflow */
495 bfd_elf_generic_reloc, /* special_function */
496 "R_MIPS_32", /* name */
497 true, /* partial_inplace */
498 0xffffffff, /* src_mask */
499 0xffffffff, /* dst_mask */
500 false), /* pcrel_offset */
501
502 /* 32 bit symbol relative relocation. */
503 HOWTO (R_MIPS_REL32, /* type */
504 0, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 32, /* bitsize */
507 false, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_bitfield, /* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_MIPS_REL32", /* name */
512 true, /* partial_inplace */
513 0xffffffff, /* src_mask */
514 0xffffffff, /* dst_mask */
515 false), /* pcrel_offset */
516
517 /* 26 bit branch address. */
518 HOWTO (R_MIPS_26, /* type */
519 2, /* rightshift */
520 2, /* size (0 = byte, 1 = short, 2 = long) */
521 26, /* bitsize */
522 false, /* pc_relative */
523 0, /* bitpos */
524 complain_overflow_dont, /* complain_on_overflow */
525 /* This needs complex overflow
526 detection, because the upper four
527 bits must match the PC. */
528 bfd_elf_generic_reloc, /* special_function */
529 "R_MIPS_26", /* name */
530 true, /* partial_inplace */
531 0x3ffffff, /* src_mask */
532 0x3ffffff, /* dst_mask */
533 false), /* pcrel_offset */
534
535 /* High 16 bits of symbol value. */
536 HOWTO (R_MIPS_HI16, /* type */
537 0, /* rightshift */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
539 16, /* bitsize */
540 false, /* pc_relative */
541 0, /* bitpos */
542 complain_overflow_dont, /* complain_on_overflow */
543 _bfd_mips_elf_hi16_reloc, /* special_function */
544 "R_MIPS_HI16", /* name */
545 true, /* partial_inplace */
546 0xffff, /* src_mask */
547 0xffff, /* dst_mask */
548 false), /* pcrel_offset */
549
550 /* Low 16 bits of symbol value. */
551 HOWTO (R_MIPS_LO16, /* type */
552 0, /* rightshift */
553 2, /* size (0 = byte, 1 = short, 2 = long) */
554 16, /* bitsize */
555 false, /* pc_relative */
556 0, /* bitpos */
557 complain_overflow_dont, /* complain_on_overflow */
558 _bfd_mips_elf_lo16_reloc, /* special_function */
559 "R_MIPS_LO16", /* name */
560 true, /* partial_inplace */
561 0xffff, /* src_mask */
562 0xffff, /* dst_mask */
563 false), /* pcrel_offset */
564
565 /* GP relative reference. */
566 HOWTO (R_MIPS_GPREL16, /* type */
567 0, /* rightshift */
568 2, /* size (0 = byte, 1 = short, 2 = long) */
569 16, /* bitsize */
570 false, /* pc_relative */
571 0, /* bitpos */
572 complain_overflow_signed, /* complain_on_overflow */
573 _bfd_mips_elf_gprel16_reloc, /* special_function */
574 "R_MIPS_GPREL16", /* name */
575 true, /* partial_inplace */
576 0xffff, /* src_mask */
577 0xffff, /* dst_mask */
578 false), /* pcrel_offset */
579
580 /* Reference to literal section. */
581 HOWTO (R_MIPS_LITERAL, /* type */
582 0, /* rightshift */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
584 16, /* bitsize */
585 false, /* pc_relative */
586 0, /* bitpos */
587 complain_overflow_signed, /* complain_on_overflow */
588 _bfd_mips_elf_gprel16_reloc, /* special_function */
589 "R_MIPS_LITERAL", /* name */
590 true, /* partial_inplace */
591 0xffff, /* src_mask */
592 0xffff, /* dst_mask */
593 false), /* pcrel_offset */
594
595 /* Reference to global offset table. */
596 HOWTO (R_MIPS_GOT16, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 16, /* bitsize */
600 false, /* pc_relative */
601 0, /* bitpos */
602 complain_overflow_signed, /* complain_on_overflow */
603 _bfd_mips_elf_got16_reloc, /* special_function */
604 "R_MIPS_GOT16", /* name */
605 false, /* partial_inplace */
b944b044 606 0xffff, /* src_mask */
252b5132
RH
607 0xffff, /* dst_mask */
608 false), /* pcrel_offset */
609
610 /* 16 bit PC relative reference. */
611 HOWTO (R_MIPS_PC16, /* type */
612 0, /* rightshift */
613 2, /* size (0 = byte, 1 = short, 2 = long) */
614 16, /* bitsize */
615 true, /* pc_relative */
616 0, /* bitpos */
617 complain_overflow_signed, /* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 "R_MIPS_PC16", /* name */
620 true, /* partial_inplace */
621 0xffff, /* src_mask */
622 0xffff, /* dst_mask */
623 false), /* pcrel_offset */
624
625 /* 16 bit call through global offset table. */
252b5132
RH
626 HOWTO (R_MIPS_CALL16, /* type */
627 0, /* rightshift */
628 2, /* size (0 = byte, 1 = short, 2 = long) */
629 16, /* bitsize */
630 false, /* pc_relative */
631 0, /* bitpos */
632 complain_overflow_signed, /* complain_on_overflow */
633 bfd_elf_generic_reloc, /* special_function */
634 "R_MIPS_CALL16", /* name */
635 false, /* partial_inplace */
b944b044 636 0xffff, /* src_mask */
252b5132
RH
637 0xffff, /* dst_mask */
638 false), /* pcrel_offset */
639
640 /* 32 bit GP relative reference. */
641 HOWTO (R_MIPS_GPREL32, /* type */
642 0, /* rightshift */
643 2, /* size (0 = byte, 1 = short, 2 = long) */
644 32, /* bitsize */
645 false, /* pc_relative */
646 0, /* bitpos */
647 complain_overflow_bitfield, /* complain_on_overflow */
648 _bfd_mips_elf_gprel32_reloc, /* special_function */
649 "R_MIPS_GPREL32", /* name */
650 true, /* partial_inplace */
651 0xffffffff, /* src_mask */
652 0xffffffff, /* dst_mask */
653 false), /* pcrel_offset */
654
655 /* The remaining relocs are defined on Irix 5, although they are
656 not defined by the ABI. */
5f771d47
ILT
657 EMPTY_HOWTO (13),
658 EMPTY_HOWTO (14),
659 EMPTY_HOWTO (15),
252b5132
RH
660
661 /* A 5 bit shift field. */
662 HOWTO (R_MIPS_SHIFT5, /* type */
663 0, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 5, /* bitsize */
666 false, /* pc_relative */
667 6, /* bitpos */
668 complain_overflow_bitfield, /* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 "R_MIPS_SHIFT5", /* name */
671 true, /* partial_inplace */
672 0x000007c0, /* src_mask */
673 0x000007c0, /* dst_mask */
674 false), /* pcrel_offset */
675
676 /* A 6 bit shift field. */
677 /* FIXME: This is not handled correctly; a special function is
678 needed to put the most significant bit in the right place. */
679 HOWTO (R_MIPS_SHIFT6, /* type */
680 0, /* rightshift */
681 2, /* size (0 = byte, 1 = short, 2 = long) */
682 6, /* bitsize */
683 false, /* pc_relative */
684 6, /* bitpos */
685 complain_overflow_bitfield, /* complain_on_overflow */
686 bfd_elf_generic_reloc, /* special_function */
687 "R_MIPS_SHIFT6", /* name */
688 true, /* partial_inplace */
689 0x000007c4, /* src_mask */
690 0x000007c4, /* dst_mask */
691 false), /* pcrel_offset */
692
a3c7651d 693 /* A 64 bit relocation. */
252b5132
RH
694 HOWTO (R_MIPS_64, /* type */
695 0, /* rightshift */
a3c7651d
MM
696 4, /* size (0 = byte, 1 = short, 2 = long) */
697 64, /* bitsize */
252b5132
RH
698 false, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_bitfield, /* complain_on_overflow */
701 mips32_64bit_reloc, /* special_function */
702 "R_MIPS_64", /* name */
703 true, /* partial_inplace */
a3c7651d
MM
704 MINUS_ONE, /* src_mask */
705 MINUS_ONE, /* dst_mask */
252b5132
RH
706 false), /* pcrel_offset */
707
708 /* Displacement in the global offset table. */
252b5132
RH
709 HOWTO (R_MIPS_GOT_DISP, /* type */
710 0, /* rightshift */
711 2, /* size (0 = byte, 1 = short, 2 = long) */
712 16, /* bitsize */
713 false, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield, /* complain_on_overflow */
716 bfd_elf_generic_reloc, /* special_function */
717 "R_MIPS_GOT_DISP", /* name */
718 true, /* partial_inplace */
719 0x0000ffff, /* src_mask */
720 0x0000ffff, /* dst_mask */
721 false), /* pcrel_offset */
722
723 /* Displacement to page pointer in the global offset table. */
252b5132
RH
724 HOWTO (R_MIPS_GOT_PAGE, /* type */
725 0, /* rightshift */
726 2, /* size (0 = byte, 1 = short, 2 = long) */
727 16, /* bitsize */
728 false, /* pc_relative */
729 0, /* bitpos */
730 complain_overflow_bitfield, /* complain_on_overflow */
731 bfd_elf_generic_reloc, /* special_function */
732 "R_MIPS_GOT_PAGE", /* name */
733 true, /* partial_inplace */
734 0x0000ffff, /* src_mask */
735 0x0000ffff, /* dst_mask */
736 false), /* pcrel_offset */
737
738 /* Offset from page pointer in the global offset table. */
252b5132
RH
739 HOWTO (R_MIPS_GOT_OFST, /* type */
740 0, /* rightshift */
741 2, /* size (0 = byte, 1 = short, 2 = long) */
742 16, /* bitsize */
743 false, /* pc_relative */
744 0, /* bitpos */
745 complain_overflow_bitfield, /* complain_on_overflow */
746 bfd_elf_generic_reloc, /* special_function */
747 "R_MIPS_GOT_OFST", /* name */
748 true, /* partial_inplace */
749 0x0000ffff, /* src_mask */
750 0x0000ffff, /* dst_mask */
751 false), /* pcrel_offset */
752
753 /* High 16 bits of displacement in global offset table. */
252b5132
RH
754 HOWTO (R_MIPS_GOT_HI16, /* type */
755 0, /* rightshift */
756 2, /* size (0 = byte, 1 = short, 2 = long) */
757 16, /* bitsize */
758 false, /* pc_relative */
759 0, /* bitpos */
760 complain_overflow_dont, /* complain_on_overflow */
761 bfd_elf_generic_reloc, /* special_function */
762 "R_MIPS_GOT_HI16", /* name */
763 true, /* partial_inplace */
764 0x0000ffff, /* src_mask */
765 0x0000ffff, /* dst_mask */
766 false), /* pcrel_offset */
767
768 /* Low 16 bits of displacement in global offset table. */
252b5132
RH
769 HOWTO (R_MIPS_GOT_LO16, /* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 false, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont, /* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_MIPS_GOT_LO16", /* name */
778 true, /* partial_inplace */
779 0x0000ffff, /* src_mask */
780 0x0000ffff, /* dst_mask */
781 false), /* pcrel_offset */
782
3f830999 783 /* 64 bit subtraction. Used in the N32 ABI. */
3f830999
MM
784 HOWTO (R_MIPS_SUB, /* type */
785 0, /* rightshift */
786 4, /* size (0 = byte, 1 = short, 2 = long) */
787 64, /* bitsize */
788 false, /* pc_relative */
789 0, /* bitpos */
790 complain_overflow_bitfield, /* complain_on_overflow */
791 bfd_elf_generic_reloc, /* special_function */
792 "R_MIPS_SUB", /* name */
793 true, /* partial_inplace */
794 MINUS_ONE, /* src_mask */
795 MINUS_ONE, /* dst_mask */
796 false), /* pcrel_offset */
252b5132
RH
797
798 /* Used to cause the linker to insert and delete instructions? */
5f771d47
ILT
799 EMPTY_HOWTO (R_MIPS_INSERT_A),
800 EMPTY_HOWTO (R_MIPS_INSERT_B),
801 EMPTY_HOWTO (R_MIPS_DELETE),
252b5132 802
103186c6
MM
803 /* Get the higher value of a 64 bit addend. */
804 HOWTO (R_MIPS_HIGHER, /* type */
805 0, /* rightshift */
806 2, /* size (0 = byte, 1 = short, 2 = long) */
807 16, /* bitsize */
808 false, /* pc_relative */
809 0, /* bitpos */
810 complain_overflow_dont, /* complain_on_overflow */
811 bfd_elf_generic_reloc, /* special_function */
812 "R_MIPS_HIGHER", /* name */
813 true, /* partial_inplace */
814 0, /* src_mask */
815 0xffff, /* dst_mask */
816 false), /* pcrel_offset */
817
818 /* Get the highest value of a 64 bit addend. */
819 HOWTO (R_MIPS_HIGHEST, /* type */
820 0, /* rightshift */
821 2, /* size (0 = byte, 1 = short, 2 = long) */
822 16, /* bitsize */
823 false, /* pc_relative */
824 0, /* bitpos */
825 complain_overflow_dont, /* complain_on_overflow */
826 bfd_elf_generic_reloc, /* special_function */
827 "R_MIPS_HIGHEST", /* name */
828 true, /* partial_inplace */
829 0, /* src_mask */
830 0xffff, /* dst_mask */
831 false), /* pcrel_offset */
252b5132
RH
832
833 /* High 16 bits of displacement in global offset table. */
252b5132
RH
834 HOWTO (R_MIPS_CALL_HI16, /* type */
835 0, /* rightshift */
836 2, /* size (0 = byte, 1 = short, 2 = long) */
837 16, /* bitsize */
838 false, /* pc_relative */
839 0, /* bitpos */
840 complain_overflow_dont, /* complain_on_overflow */
841 bfd_elf_generic_reloc, /* special_function */
842 "R_MIPS_CALL_HI16", /* name */
843 true, /* partial_inplace */
844 0x0000ffff, /* src_mask */
845 0x0000ffff, /* dst_mask */
846 false), /* pcrel_offset */
847
848 /* Low 16 bits of displacement in global offset table. */
252b5132
RH
849 HOWTO (R_MIPS_CALL_LO16, /* type */
850 0, /* rightshift */
851 2, /* size (0 = byte, 1 = short, 2 = long) */
852 16, /* bitsize */
853 false, /* pc_relative */
854 0, /* bitpos */
855 complain_overflow_dont, /* complain_on_overflow */
856 bfd_elf_generic_reloc, /* special_function */
857 "R_MIPS_CALL_LO16", /* name */
858 true, /* partial_inplace */
859 0x0000ffff, /* src_mask */
860 0x0000ffff, /* dst_mask */
861 false), /* pcrel_offset */
862
7403cb63
MM
863 /* Section displacement. */
864 HOWTO (R_MIPS_SCN_DISP, /* type */
865 0, /* rightshift */
866 2, /* size (0 = byte, 1 = short, 2 = long) */
867 32, /* bitsize */
868 false, /* pc_relative */
869 0, /* bitpos */
870 complain_overflow_dont, /* complain_on_overflow */
871 bfd_elf_generic_reloc, /* special_function */
872 "R_MIPS_SCN_DISP", /* name */
873 false, /* partial_inplace */
874 0xffffffff, /* src_mask */
875 0xffffffff, /* dst_mask */
876 false), /* pcrel_offset */
877
5f771d47
ILT
878 EMPTY_HOWTO (R_MIPS_REL16),
879 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
880 EMPTY_HOWTO (R_MIPS_PJUMP),
881 EMPTY_HOWTO (R_MIPS_RELGOT),
d2905643
MM
882
883 /* Protected jump conversion. This is an optimization hint. No
884 relocation is required for correctness. */
885 HOWTO (R_MIPS_JALR, /* type */
886 0, /* rightshift */
887 0, /* size (0 = byte, 1 = short, 2 = long) */
888 0, /* bitsize */
889 false, /* pc_relative */
890 0, /* bitpos */
891 complain_overflow_dont, /* complain_on_overflow */
892 bfd_elf_generic_reloc, /* special_function */
893 "R_MIPS_JALR", /* name */
894 false, /* partial_inplace */
895 0x00000000, /* src_mask */
896 0x00000000, /* dst_mask */
897 false), /* pcrel_offset */
252b5132
RH
898};
899
900/* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
901 is a hack to make the linker think that we need 64 bit values. */
902static reloc_howto_type elf_mips_ctor64_howto =
903 HOWTO (R_MIPS_64, /* type */
904 0, /* rightshift */
905 4, /* size (0 = byte, 1 = short, 2 = long) */
906 32, /* bitsize */
907 false, /* pc_relative */
908 0, /* bitpos */
909 complain_overflow_signed, /* complain_on_overflow */
910 mips32_64bit_reloc, /* special_function */
911 "R_MIPS_64", /* name */
912 true, /* partial_inplace */
913 0xffffffff, /* src_mask */
914 0xffffffff, /* dst_mask */
915 false); /* pcrel_offset */
916
917/* The reloc used for the mips16 jump instruction. */
918static reloc_howto_type elf_mips16_jump_howto =
919 HOWTO (R_MIPS16_26, /* type */
920 2, /* rightshift */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
922 26, /* bitsize */
923 false, /* pc_relative */
924 0, /* bitpos */
925 complain_overflow_dont, /* complain_on_overflow */
926 /* This needs complex overflow
927 detection, because the upper four
928 bits must match the PC. */
929 mips16_jump_reloc, /* special_function */
930 "R_MIPS16_26", /* name */
931 true, /* partial_inplace */
932 0x3ffffff, /* src_mask */
933 0x3ffffff, /* dst_mask */
934 false); /* pcrel_offset */
935
b7233c24 936/* The reloc used for the mips16 gprel instruction. */
252b5132
RH
937static reloc_howto_type elf_mips16_gprel_howto =
938 HOWTO (R_MIPS16_GPREL, /* type */
939 0, /* rightshift */
940 2, /* size (0 = byte, 1 = short, 2 = long) */
941 16, /* bitsize */
942 false, /* pc_relative */
943 0, /* bitpos */
944 complain_overflow_signed, /* complain_on_overflow */
945 mips16_gprel_reloc, /* special_function */
946 "R_MIPS16_GPREL", /* name */
947 true, /* partial_inplace */
b7233c24
MM
948 0x07ff001f, /* src_mask */
949 0x07ff001f, /* dst_mask */
252b5132
RH
950 false); /* pcrel_offset */
951
952
953/* GNU extension to record C++ vtable hierarchy */
954static reloc_howto_type elf_mips_gnu_vtinherit_howto =
955 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
956 0, /* rightshift */
957 2, /* size (0 = byte, 1 = short, 2 = long) */
958 0, /* bitsize */
959 false, /* pc_relative */
960 0, /* bitpos */
961 complain_overflow_dont, /* complain_on_overflow */
962 NULL, /* special_function */
963 "R_MIPS_GNU_VTINHERIT", /* name */
964 false, /* partial_inplace */
965 0, /* src_mask */
966 0, /* dst_mask */
967 false); /* pcrel_offset */
968
969/* GNU extension to record C++ vtable member usage */
970static reloc_howto_type elf_mips_gnu_vtentry_howto =
971 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
972 0, /* rightshift */
973 2, /* size (0 = byte, 1 = short, 2 = long) */
974 0, /* bitsize */
975 false, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_dont, /* complain_on_overflow */
978 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
979 "R_MIPS_GNU_VTENTRY", /* name */
980 false, /* partial_inplace */
981 0, /* src_mask */
982 0, /* dst_mask */
983 false); /* pcrel_offset */
984
985/* Do a R_MIPS_HI16 relocation. This has to be done in combination
986 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
987 the HI16. Here we just save the information we need; we do the
988 actual relocation when we see the LO16. MIPS ELF requires that the
989 LO16 immediately follow the HI16. As a GNU extension, we permit an
990 arbitrary number of HI16 relocs to be associated with a single LO16
991 reloc. This extension permits gcc to output the HI and LO relocs
992 itself. */
993
994struct mips_hi16
995{
996 struct mips_hi16 *next;
997 bfd_byte *addr;
998 bfd_vma addend;
999};
1000
1001/* FIXME: This should not be a static variable. */
1002
1003static struct mips_hi16 *mips_hi16_list;
1004
1005bfd_reloc_status_type
1006_bfd_mips_elf_hi16_reloc (abfd,
1007 reloc_entry,
1008 symbol,
1009 data,
1010 input_section,
1011 output_bfd,
1012 error_message)
5f771d47 1013 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
1014 arelent *reloc_entry;
1015 asymbol *symbol;
1016 PTR data;
1017 asection *input_section;
1018 bfd *output_bfd;
1019 char **error_message;
1020{
1021 bfd_reloc_status_type ret;
1022 bfd_vma relocation;
1023 struct mips_hi16 *n;
1024
1025 /* If we're relocating, and this an external symbol, we don't want
1026 to change anything. */
1027 if (output_bfd != (bfd *) NULL
1028 && (symbol->flags & BSF_SECTION_SYM) == 0
1029 && reloc_entry->addend == 0)
1030 {
1031 reloc_entry->address += input_section->output_offset;
1032 return bfd_reloc_ok;
1033 }
1034
1035 ret = bfd_reloc_ok;
1036
1037 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1038 {
1039 boolean relocateable;
1040 bfd_vma gp;
1041
1042 if (ret == bfd_reloc_undefined)
1043 abort ();
1044
1045 if (output_bfd != NULL)
1046 relocateable = true;
1047 else
1048 {
1049 relocateable = false;
1050 output_bfd = symbol->section->output_section->owner;
1051 }
1052
1053 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1054 error_message, &gp);
1055 if (ret != bfd_reloc_ok)
1056 return ret;
1057
1058 relocation = gp - reloc_entry->address;
1059 }
1060 else
1061 {
1062 if (bfd_is_und_section (symbol->section)
1063 && output_bfd == (bfd *) NULL)
1064 ret = bfd_reloc_undefined;
1065
1066 if (bfd_is_com_section (symbol->section))
1067 relocation = 0;
1068 else
1069 relocation = symbol->value;
1070 }
1071
1072 relocation += symbol->section->output_section->vma;
1073 relocation += symbol->section->output_offset;
1074 relocation += reloc_entry->addend;
1075
1076 if (reloc_entry->address > input_section->_cooked_size)
1077 return bfd_reloc_outofrange;
1078
1079 /* Save the information, and let LO16 do the actual relocation. */
1080 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1081 if (n == NULL)
1082 return bfd_reloc_outofrange;
1083 n->addr = (bfd_byte *) data + reloc_entry->address;
1084 n->addend = relocation;
1085 n->next = mips_hi16_list;
1086 mips_hi16_list = n;
1087
1088 if (output_bfd != (bfd *) NULL)
1089 reloc_entry->address += input_section->output_offset;
1090
1091 return ret;
1092}
1093
1094/* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1095 inplace relocation; this function exists in order to do the
1096 R_MIPS_HI16 relocation described above. */
1097
1098bfd_reloc_status_type
1099_bfd_mips_elf_lo16_reloc (abfd,
1100 reloc_entry,
1101 symbol,
1102 data,
1103 input_section,
1104 output_bfd,
1105 error_message)
1106 bfd *abfd;
1107 arelent *reloc_entry;
1108 asymbol *symbol;
1109 PTR data;
1110 asection *input_section;
1111 bfd *output_bfd;
1112 char **error_message;
1113{
1114 arelent gp_disp_relent;
1115
1116 if (mips_hi16_list != NULL)
1117 {
1118 struct mips_hi16 *l;
1119
1120 l = mips_hi16_list;
1121 while (l != NULL)
1122 {
1123 unsigned long insn;
1124 unsigned long val;
1125 unsigned long vallo;
1126 struct mips_hi16 *next;
1127
1128 /* Do the HI16 relocation. Note that we actually don't need
1129 to know anything about the LO16 itself, except where to
1130 find the low 16 bits of the addend needed by the LO16. */
1131 insn = bfd_get_32 (abfd, l->addr);
1132 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1133 & 0xffff);
1134 val = ((insn & 0xffff) << 16) + vallo;
1135 val += l->addend;
1136
1137 /* The low order 16 bits are always treated as a signed
1138 value. Therefore, a negative value in the low order bits
1139 requires an adjustment in the high order bits. We need
1140 to make this adjustment in two ways: once for the bits we
1141 took from the data, and once for the bits we are putting
1142 back in to the data. */
1143 if ((vallo & 0x8000) != 0)
1144 val -= 0x10000;
1145 if ((val & 0x8000) != 0)
1146 val += 0x10000;
1147
1148 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1149 bfd_put_32 (abfd, insn, l->addr);
1150
1151 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1152 {
1153 gp_disp_relent = *reloc_entry;
1154 reloc_entry = &gp_disp_relent;
1155 reloc_entry->addend = l->addend;
1156 }
1157
1158 next = l->next;
1159 free (l);
1160 l = next;
1161 }
1162
1163 mips_hi16_list = NULL;
1164 }
1165 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1166 {
1167 bfd_reloc_status_type ret;
1168 bfd_vma gp, relocation;
1169
1170 /* FIXME: Does this case ever occur? */
1171
1172 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1173 if (ret != bfd_reloc_ok)
1174 return ret;
1175
1176 relocation = gp - reloc_entry->address;
1177 relocation += symbol->section->output_section->vma;
1178 relocation += symbol->section->output_offset;
1179 relocation += reloc_entry->addend;
1180
1181 if (reloc_entry->address > input_section->_cooked_size)
1182 return bfd_reloc_outofrange;
1183
1184 gp_disp_relent = *reloc_entry;
1185 reloc_entry = &gp_disp_relent;
1186 reloc_entry->addend = relocation - 4;
1187 }
1188
1189 /* Now do the LO16 reloc in the usual way. */
1190 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1191 input_section, output_bfd, error_message);
1192}
1193
1194/* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1195 table used for PIC code. If the symbol is an external symbol, the
1196 instruction is modified to contain the offset of the appropriate
1197 entry in the global offset table. If the symbol is a section
1198 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1199 addends are combined to form the real addend against the section
1200 symbol; the GOT16 is modified to contain the offset of an entry in
1201 the global offset table, and the LO16 is modified to offset it
1202 appropriately. Thus an offset larger than 16 bits requires a
1203 modified value in the global offset table.
1204
1205 This implementation suffices for the assembler, but the linker does
1206 not yet know how to create global offset tables. */
1207
1208bfd_reloc_status_type
1209_bfd_mips_elf_got16_reloc (abfd,
1210 reloc_entry,
1211 symbol,
1212 data,
1213 input_section,
1214 output_bfd,
1215 error_message)
1216 bfd *abfd;
1217 arelent *reloc_entry;
1218 asymbol *symbol;
1219 PTR data;
1220 asection *input_section;
1221 bfd *output_bfd;
1222 char **error_message;
1223{
1224 /* If we're relocating, and this an external symbol, we don't want
1225 to change anything. */
1226 if (output_bfd != (bfd *) NULL
1227 && (symbol->flags & BSF_SECTION_SYM) == 0
1228 && reloc_entry->addend == 0)
1229 {
1230 reloc_entry->address += input_section->output_offset;
1231 return bfd_reloc_ok;
1232 }
1233
1234 /* If we're relocating, and this is a local symbol, we can handle it
1235 just like HI16. */
1236 if (output_bfd != (bfd *) NULL
1237 && (symbol->flags & BSF_SECTION_SYM) != 0)
1238 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1239 input_section, output_bfd, error_message);
1240
1241 abort ();
1242}
1243
7403cb63
MM
1244/* Set the GP value for OUTPUT_BFD. Returns false if this is a
1245 dangerous relocation. */
1246
1247static boolean
1248mips_elf_assign_gp (output_bfd, pgp)
1249 bfd *output_bfd;
1250 bfd_vma *pgp;
1251{
1252 unsigned int count;
1253 asymbol **sym;
1254 unsigned int i;
1255
1256 /* If we've already figured out what GP will be, just return it. */
1257 *pgp = _bfd_get_gp_value (output_bfd);
1258 if (*pgp)
1259 return true;
1260
1261 count = bfd_get_symcount (output_bfd);
1262 sym = bfd_get_outsymbols (output_bfd);
1263
1264 /* The linker script will have created a symbol named `_gp' with the
1265 appropriate value. */
1266 if (sym == (asymbol **) NULL)
1267 i = count;
1268 else
1269 {
1270 for (i = 0; i < count; i++, sym++)
1271 {
1272 register CONST char *name;
1273
1274 name = bfd_asymbol_name (*sym);
1275 if (*name == '_' && strcmp (name, "_gp") == 0)
1276 {
1277 *pgp = bfd_asymbol_value (*sym);
1278 _bfd_set_gp_value (output_bfd, *pgp);
1279 break;
1280 }
1281 }
1282 }
1283
1284 if (i >= count)
1285 {
1286 /* Only get the error once. */
1287 *pgp = 4;
1288 _bfd_set_gp_value (output_bfd, *pgp);
1289 return false;
1290 }
1291
1292 return true;
1293}
1294
252b5132
RH
1295/* We have to figure out the gp value, so that we can adjust the
1296 symbol value correctly. We look up the symbol _gp in the output
1297 BFD. If we can't find it, we're stuck. We cache it in the ELF
1298 target data. We don't need to adjust the symbol value for an
1299 external symbol if we are producing relocateable output. */
1300
1301static bfd_reloc_status_type
1302mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1303 bfd *output_bfd;
1304 asymbol *symbol;
1305 boolean relocateable;
1306 char **error_message;
1307 bfd_vma *pgp;
1308{
1309 if (bfd_is_und_section (symbol->section)
1310 && ! relocateable)
1311 {
1312 *pgp = 0;
1313 return bfd_reloc_undefined;
1314 }
1315
1316 *pgp = _bfd_get_gp_value (output_bfd);
1317 if (*pgp == 0
1318 && (! relocateable
1319 || (symbol->flags & BSF_SECTION_SYM) != 0))
1320 {
1321 if (relocateable)
1322 {
1323 /* Make up a value. */
1324 *pgp = symbol->section->output_section->vma + 0x4000;
1325 _bfd_set_gp_value (output_bfd, *pgp);
1326 }
7403cb63 1327 else if (!mips_elf_assign_gp (output_bfd, pgp))
252b5132 1328 {
7403cb63
MM
1329 *error_message =
1330 (char *) _("GP relative relocation when _gp not defined");
1331 return bfd_reloc_dangerous;
252b5132
RH
1332 }
1333 }
1334
1335 return bfd_reloc_ok;
1336}
1337
1338/* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1339 become the offset from the gp register. This function also handles
1340 R_MIPS_LITERAL relocations, although those can be handled more
1341 cleverly because the entries in the .lit8 and .lit4 sections can be
1342 merged. */
1343
1344static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1345 arelent *, asection *,
1346 boolean, PTR, bfd_vma));
1347
1348bfd_reloc_status_type
1349_bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1350 output_bfd, error_message)
1351 bfd *abfd;
1352 arelent *reloc_entry;
1353 asymbol *symbol;
1354 PTR data;
1355 asection *input_section;
1356 bfd *output_bfd;
1357 char **error_message;
1358{
1359 boolean relocateable;
1360 bfd_reloc_status_type ret;
1361 bfd_vma gp;
1362
1363 /* If we're relocating, and this is an external symbol with no
1364 addend, we don't want to change anything. We will only have an
1365 addend if this is a newly created reloc, not read from an ELF
1366 file. */
1367 if (output_bfd != (bfd *) NULL
1368 && (symbol->flags & BSF_SECTION_SYM) == 0
1369 && reloc_entry->addend == 0)
1370 {
1371 reloc_entry->address += input_section->output_offset;
1372 return bfd_reloc_ok;
1373 }
1374
1375 if (output_bfd != (bfd *) NULL)
1376 relocateable = true;
1377 else
1378 {
1379 relocateable = false;
1380 output_bfd = symbol->section->output_section->owner;
1381 }
1382
1383 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1384 &gp);
1385 if (ret != bfd_reloc_ok)
1386 return ret;
1387
1388 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1389 relocateable, data, gp);
1390}
1391
1392static bfd_reloc_status_type
1393gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1394 gp)
1395 bfd *abfd;
1396 asymbol *symbol;
1397 arelent *reloc_entry;
1398 asection *input_section;
1399 boolean relocateable;
1400 PTR data;
1401 bfd_vma gp;
1402{
1403 bfd_vma relocation;
1404 unsigned long insn;
1405 unsigned long val;
1406
1407 if (bfd_is_com_section (symbol->section))
1408 relocation = 0;
1409 else
1410 relocation = symbol->value;
1411
1412 relocation += symbol->section->output_section->vma;
1413 relocation += symbol->section->output_offset;
1414
1415 if (reloc_entry->address > input_section->_cooked_size)
1416 return bfd_reloc_outofrange;
1417
1418 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1419
1420 /* Set val to the offset into the section or symbol. */
1421 if (reloc_entry->howto->src_mask == 0)
1422 {
1423 /* This case occurs with the 64-bit MIPS ELF ABI. */
1424 val = reloc_entry->addend;
1425 }
1426 else
1427 {
1428 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1429 if (val & 0x8000)
1430 val -= 0x10000;
1431 }
1432
1433 /* Adjust val for the final section location and GP value. If we
1434 are producing relocateable output, we don't want to do this for
1435 an external symbol. */
1436 if (! relocateable
1437 || (symbol->flags & BSF_SECTION_SYM) != 0)
1438 val += relocation - gp;
1439
1440 insn = (insn &~ 0xffff) | (val & 0xffff);
1441 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1442
1443 if (relocateable)
1444 reloc_entry->address += input_section->output_offset;
1445
1446 /* Make sure it fit in 16 bits. */
1447 if (val >= 0x8000 && val < 0xffff8000)
1448 return bfd_reloc_overflow;
1449
1450 return bfd_reloc_ok;
1451}
1452
1453/* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1454 from the gp register? XXX */
1455
1456static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1457 arelent *, asection *,
1458 boolean, PTR, bfd_vma));
1459
1460bfd_reloc_status_type
1461_bfd_mips_elf_gprel32_reloc (abfd,
1462 reloc_entry,
1463 symbol,
1464 data,
1465 input_section,
1466 output_bfd,
1467 error_message)
1468 bfd *abfd;
1469 arelent *reloc_entry;
1470 asymbol *symbol;
1471 PTR data;
1472 asection *input_section;
1473 bfd *output_bfd;
1474 char **error_message;
1475{
1476 boolean relocateable;
1477 bfd_reloc_status_type ret;
1478 bfd_vma gp;
1479
1480 /* If we're relocating, and this is an external symbol with no
1481 addend, we don't want to change anything. We will only have an
1482 addend if this is a newly created reloc, not read from an ELF
1483 file. */
1484 if (output_bfd != (bfd *) NULL
1485 && (symbol->flags & BSF_SECTION_SYM) == 0
1486 && reloc_entry->addend == 0)
1487 {
1488 *error_message = (char *)
1489 _("32bits gp relative relocation occurs for an external symbol");
1490 return bfd_reloc_outofrange;
1491 }
1492
1493 if (output_bfd != (bfd *) NULL)
1494 {
1495 relocateable = true;
1496 gp = _bfd_get_gp_value (output_bfd);
1497 }
1498 else
1499 {
1500 relocateable = false;
1501 output_bfd = symbol->section->output_section->owner;
1502
1503 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1504 error_message, &gp);
1505 if (ret != bfd_reloc_ok)
1506 return ret;
1507 }
1508
1509 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1510 relocateable, data, gp);
1511}
1512
1513static bfd_reloc_status_type
1514gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1515 gp)
1516 bfd *abfd;
1517 asymbol *symbol;
1518 arelent *reloc_entry;
1519 asection *input_section;
1520 boolean relocateable;
1521 PTR data;
1522 bfd_vma gp;
1523{
1524 bfd_vma relocation;
1525 unsigned long val;
1526
1527 if (bfd_is_com_section (symbol->section))
1528 relocation = 0;
1529 else
1530 relocation = symbol->value;
1531
1532 relocation += symbol->section->output_section->vma;
1533 relocation += symbol->section->output_offset;
1534
1535 if (reloc_entry->address > input_section->_cooked_size)
1536 return bfd_reloc_outofrange;
1537
1538 if (reloc_entry->howto->src_mask == 0)
1539 {
1540 /* This case arises with the 64-bit MIPS ELF ABI. */
1541 val = 0;
1542 }
1543 else
1544 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1545
1546 /* Set val to the offset into the section or symbol. */
1547 val += reloc_entry->addend;
1548
1549 /* Adjust val for the final section location and GP value. If we
1550 are producing relocateable output, we don't want to do this for
1551 an external symbol. */
1552 if (! relocateable
1553 || (symbol->flags & BSF_SECTION_SYM) != 0)
1554 val += relocation - gp;
1555
1556 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1557
1558 if (relocateable)
1559 reloc_entry->address += input_section->output_offset;
1560
1561 return bfd_reloc_ok;
1562}
1563
1564/* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1565 generated when addreses are 64 bits. The upper 32 bits are a simle
1566 sign extension. */
1567
1568static bfd_reloc_status_type
1569mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1570 output_bfd, error_message)
1571 bfd *abfd;
1572 arelent *reloc_entry;
1573 asymbol *symbol;
1574 PTR data;
1575 asection *input_section;
1576 bfd *output_bfd;
1577 char **error_message;
1578{
1579 bfd_reloc_status_type r;
1580 arelent reloc32;
1581 unsigned long val;
1582 bfd_size_type addr;
1583
1584 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1585 input_section, output_bfd, error_message);
1586 if (r != bfd_reloc_continue)
1587 return r;
1588
1589 /* Do a normal 32 bit relocation on the lower 32 bits. */
1590 reloc32 = *reloc_entry;
1591 if (bfd_big_endian (abfd))
1592 reloc32.address += 4;
1593 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1594 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1595 output_bfd, error_message);
1596
1597 /* Sign extend into the upper 32 bits. */
1598 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1599 if ((val & 0x80000000) != 0)
1600 val = 0xffffffff;
1601 else
1602 val = 0;
1603 addr = reloc_entry->address;
1604 if (bfd_little_endian (abfd))
1605 addr += 4;
1606 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1607
1608 return r;
1609}
1610
1611/* Handle a mips16 jump. */
1612
1613static bfd_reloc_status_type
1614mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1615 output_bfd, error_message)
5f771d47 1616 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
1617 arelent *reloc_entry;
1618 asymbol *symbol;
5f771d47 1619 PTR data ATTRIBUTE_UNUSED;
252b5132
RH
1620 asection *input_section;
1621 bfd *output_bfd;
5f771d47 1622 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
1623{
1624 if (output_bfd != (bfd *) NULL
1625 && (symbol->flags & BSF_SECTION_SYM) == 0
1626 && reloc_entry->addend == 0)
1627 {
1628 reloc_entry->address += input_section->output_offset;
1629 return bfd_reloc_ok;
1630 }
1631
1632 /* FIXME. */
1633 {
1634 static boolean warned;
1635
1636 if (! warned)
1637 (*_bfd_error_handler)
1638 (_("Linking mips16 objects into %s format is not supported"),
1639 bfd_get_target (input_section->output_section->owner));
1640 warned = true;
1641 }
1642
1643 return bfd_reloc_undefined;
1644}
1645
1646/* Handle a mips16 GP relative reloc. */
1647
1648static bfd_reloc_status_type
1649mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1650 output_bfd, error_message)
1651 bfd *abfd;
1652 arelent *reloc_entry;
1653 asymbol *symbol;
1654 PTR data;
1655 asection *input_section;
1656 bfd *output_bfd;
1657 char **error_message;
1658{
1659 boolean relocateable;
1660 bfd_reloc_status_type ret;
1661 bfd_vma gp;
1662 unsigned short extend, insn;
1663 unsigned long final;
1664
1665 /* If we're relocating, and this is an external symbol with no
1666 addend, we don't want to change anything. We will only have an
1667 addend if this is a newly created reloc, not read from an ELF
1668 file. */
1669 if (output_bfd != NULL
1670 && (symbol->flags & BSF_SECTION_SYM) == 0
1671 && reloc_entry->addend == 0)
1672 {
1673 reloc_entry->address += input_section->output_offset;
1674 return bfd_reloc_ok;
1675 }
1676
1677 if (output_bfd != NULL)
1678 relocateable = true;
1679 else
1680 {
1681 relocateable = false;
1682 output_bfd = symbol->section->output_section->owner;
1683 }
1684
1685 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1686 &gp);
1687 if (ret != bfd_reloc_ok)
1688 return ret;
1689
1690 if (reloc_entry->address > input_section->_cooked_size)
1691 return bfd_reloc_outofrange;
1692
1693 /* Pick up the mips16 extend instruction and the real instruction. */
1694 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1695 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1696
1697 /* Stuff the current addend back as a 32 bit value, do the usual
1698 relocation, and then clean up. */
1699 bfd_put_32 (abfd,
1700 (((extend & 0x1f) << 11)
1701 | (extend & 0x7e0)
1702 | (insn & 0x1f)),
1703 (bfd_byte *) data + reloc_entry->address);
1704
1705 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1706 relocateable, data, gp);
1707
1708 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1709 bfd_put_16 (abfd,
1710 ((extend & 0xf800)
1711 | ((final >> 11) & 0x1f)
1712 | (final & 0x7e0)),
1713 (bfd_byte *) data + reloc_entry->address);
1714 bfd_put_16 (abfd,
1715 ((insn & 0xffe0)
1716 | (final & 0x1f)),
1717 (bfd_byte *) data + reloc_entry->address + 2);
1718
1719 return ret;
1720}
1721
1722/* Return the ISA for a MIPS e_flags value. */
1723
1724static INLINE int
1725elf_mips_isa (flags)
1726 flagword flags;
1727{
1728 switch (flags & EF_MIPS_ARCH)
1729 {
1730 case E_MIPS_ARCH_1:
1731 return 1;
1732 case E_MIPS_ARCH_2:
1733 return 2;
1734 case E_MIPS_ARCH_3:
1735 return 3;
1736 case E_MIPS_ARCH_4:
1737 return 4;
1738 }
1739 return 4;
1740}
1741
1742/* Return the MACH for a MIPS e_flags value. */
1743
1744static INLINE int
1745elf_mips_mach (flags)
1746 flagword flags;
1747{
1748 switch (flags & EF_MIPS_MACH)
1749 {
1750 case E_MIPS_MACH_3900:
1751 return bfd_mach_mips3900;
1752
1753 case E_MIPS_MACH_4010:
1754 return bfd_mach_mips4010;
1755
1756 case E_MIPS_MACH_4100:
1757 return bfd_mach_mips4100;
1758
1759 case E_MIPS_MACH_4111:
1760 return bfd_mach_mips4111;
1761
1762 case E_MIPS_MACH_4650:
1763 return bfd_mach_mips4650;
1764
1765 default:
1766 switch (flags & EF_MIPS_ARCH)
1767 {
1768 default:
1769 case E_MIPS_ARCH_1:
1770 return bfd_mach_mips3000;
1771 break;
1772
1773 case E_MIPS_ARCH_2:
1774 return bfd_mach_mips6000;
1775 break;
1776
1777 case E_MIPS_ARCH_3:
1778 return bfd_mach_mips4000;
1779 break;
1780
1781 case E_MIPS_ARCH_4:
1782 return bfd_mach_mips8000;
1783 break;
1784 }
1785 }
1786
1787 return 0;
1788}
1789
103186c6 1790/* Return printable name for ABI. */
252b5132
RH
1791
1792static INLINE char*
103186c6
MM
1793elf_mips_abi_name (abfd)
1794 bfd *abfd;
252b5132 1795{
103186c6
MM
1796 flagword flags;
1797
1798 if (ABI_N32_P (abfd))
1799 return "N32";
1800 else if (ABI_64_P (abfd))
1801 return "64";
1802
1803 flags = elf_elfheader (abfd)->e_flags;
252b5132
RH
1804 switch (flags & EF_MIPS_ABI)
1805 {
1806 case 0:
1807 return "none";
1808 case E_MIPS_ABI_O32:
1809 return "O32";
1810 case E_MIPS_ABI_O64:
1811 return "O64";
1812 case E_MIPS_ABI_EABI32:
1813 return "EABI32";
1814 case E_MIPS_ABI_EABI64:
1815 return "EABI64";
1816 default:
1817 return "unknown abi";
1818 }
1819}
1820
1821/* A mapping from BFD reloc types to MIPS ELF reloc types. */
1822
1823struct elf_reloc_map {
1824 bfd_reloc_code_real_type bfd_reloc_val;
1825 enum elf_mips_reloc_type elf_reloc_val;
1826};
1827
1828static CONST struct elf_reloc_map mips_reloc_map[] =
1829{
1830 { BFD_RELOC_NONE, R_MIPS_NONE, },
1831 { BFD_RELOC_16, R_MIPS_16 },
1832 { BFD_RELOC_32, R_MIPS_32 },
1833 { BFD_RELOC_64, R_MIPS_64 },
1834 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1835 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1836 { BFD_RELOC_LO16, R_MIPS_LO16 },
1837 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1838 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1839 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1840 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1841 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1842 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1843 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1844 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1845 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
3f830999
MM
1846 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1847 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1848 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1849 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1850 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
252b5132
RH
1851};
1852
1853/* Given a BFD reloc type, return a howto structure. */
1854
1855static reloc_howto_type *
1856bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1857 bfd *abfd;
1858 bfd_reloc_code_real_type code;
1859{
1860 unsigned int i;
1861
1862 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1863 {
1864 if (mips_reloc_map[i].bfd_reloc_val == code)
1865 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1866 }
1867
1868 switch (code)
1869 {
1870 default:
1871 bfd_set_error (bfd_error_bad_value);
1872 return NULL;
1873
1874 case BFD_RELOC_CTOR:
1875 /* We need to handle BFD_RELOC_CTOR specially.
1876 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1877 size of addresses on this architecture. */
1878 if (bfd_arch_bits_per_address (abfd) == 32)
1879 return &elf_mips_howto_table[(int) R_MIPS_32];
1880 else
1881 return &elf_mips_ctor64_howto;
1882
1883 case BFD_RELOC_MIPS16_JMP:
1884 return &elf_mips16_jump_howto;
1885 case BFD_RELOC_MIPS16_GPREL:
1886 return &elf_mips16_gprel_howto;
1887 case BFD_RELOC_VTABLE_INHERIT:
1888 return &elf_mips_gnu_vtinherit_howto;
1889 case BFD_RELOC_VTABLE_ENTRY:
1890 return &elf_mips_gnu_vtentry_howto;
1891 }
1892}
1893
3f830999 1894/* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
252b5132 1895
c9b3cbf3
RH
1896static reloc_howto_type *
1897mips_rtype_to_howto (r_type)
1898 unsigned int r_type;
252b5132 1899{
252b5132
RH
1900 switch (r_type)
1901 {
1902 case R_MIPS16_26:
c9b3cbf3 1903 return &elf_mips16_jump_howto;
252b5132
RH
1904 break;
1905 case R_MIPS16_GPREL:
c9b3cbf3 1906 return &elf_mips16_gprel_howto;
252b5132
RH
1907 break;
1908 case R_MIPS_GNU_VTINHERIT:
c9b3cbf3 1909 return &elf_mips_gnu_vtinherit_howto;
252b5132
RH
1910 break;
1911 case R_MIPS_GNU_VTENTRY:
c9b3cbf3 1912 return &elf_mips_gnu_vtentry_howto;
252b5132
RH
1913 break;
1914
1915 default:
1916 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
c9b3cbf3 1917 return &elf_mips_howto_table[r_type];
252b5132
RH
1918 break;
1919 }
c9b3cbf3
RH
1920}
1921
1922/* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
1923
1924static void
1925mips_info_to_howto_rel (abfd, cache_ptr, dst)
1926 bfd *abfd;
1927 arelent *cache_ptr;
1928 Elf32_Internal_Rel *dst;
1929{
1930 unsigned int r_type;
1931
1932 r_type = ELF32_R_TYPE (dst->r_info);
1933 cache_ptr->howto = mips_rtype_to_howto (r_type);
252b5132
RH
1934
1935 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
1936 value for the object file. We get the addend now, rather than
1937 when we do the relocation, because the symbol manipulations done
1938 by the linker may cause us to lose track of the input BFD. */
1939 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
1940 && (r_type == (unsigned int) R_MIPS_GPREL16
1941 || r_type == (unsigned int) R_MIPS_LITERAL))
1942 cache_ptr->addend = elf_gp (abfd);
1943}
3f830999
MM
1944
1945/* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
1946
1947static void
1948mips_info_to_howto_rela (abfd, cache_ptr, dst)
1949 bfd *abfd;
1950 arelent *cache_ptr;
1951 Elf32_Internal_Rela *dst;
1952{
1953 /* Since an Elf32_Internal_Rel is an initial prefix of an
1954 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
1955 above. */
1956 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
1957
1958 /* If we ever need to do any extra processing with dst->r_addend
1959 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
1960}
252b5132
RH
1961\f
1962/* A .reginfo section holds a single Elf32_RegInfo structure. These
1963 routines swap this structure in and out. They are used outside of
1964 BFD, so they are globally visible. */
1965
1966void
1967bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1968 bfd *abfd;
1969 const Elf32_External_RegInfo *ex;
1970 Elf32_RegInfo *in;
1971{
1972 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
1973 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
1974 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
1975 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
1976 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
1977 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
1978}
1979
1980void
1981bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1982 bfd *abfd;
1983 const Elf32_RegInfo *in;
1984 Elf32_External_RegInfo *ex;
1985{
1986 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
1987 (bfd_byte *) ex->ri_gprmask);
1988 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
1989 (bfd_byte *) ex->ri_cprmask[0]);
1990 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
1991 (bfd_byte *) ex->ri_cprmask[1]);
1992 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
1993 (bfd_byte *) ex->ri_cprmask[2]);
1994 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
1995 (bfd_byte *) ex->ri_cprmask[3]);
1996 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
1997 (bfd_byte *) ex->ri_gp_value);
1998}
1999
2000/* In the 64 bit ABI, the .MIPS.options section holds register
2001 information in an Elf64_Reginfo structure. These routines swap
2002 them in and out. They are globally visible because they are used
2003 outside of BFD. These routines are here so that gas can call them
2004 without worrying about whether the 64 bit ABI has been included. */
2005
2006void
2007bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2008 bfd *abfd;
2009 const Elf64_External_RegInfo *ex;
2010 Elf64_Internal_RegInfo *in;
2011{
2012 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2013 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2014 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2015 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2016 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2017 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2018 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2019}
2020
2021void
2022bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2023 bfd *abfd;
2024 const Elf64_Internal_RegInfo *in;
2025 Elf64_External_RegInfo *ex;
2026{
2027 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2028 (bfd_byte *) ex->ri_gprmask);
2029 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2030 (bfd_byte *) ex->ri_pad);
2031 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2032 (bfd_byte *) ex->ri_cprmask[0]);
2033 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2034 (bfd_byte *) ex->ri_cprmask[1]);
2035 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2036 (bfd_byte *) ex->ri_cprmask[2]);
2037 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2038 (bfd_byte *) ex->ri_cprmask[3]);
2039 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2040 (bfd_byte *) ex->ri_gp_value);
2041}
2042
2043/* Swap an entry in a .gptab section. Note that these routines rely
2044 on the equivalence of the two elements of the union. */
2045
2046static void
2047bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2048 bfd *abfd;
2049 const Elf32_External_gptab *ex;
2050 Elf32_gptab *in;
2051{
2052 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2053 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2054}
2055
2056static void
2057bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2058 bfd *abfd;
2059 const Elf32_gptab *in;
2060 Elf32_External_gptab *ex;
2061{
2062 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2063 ex->gt_entry.gt_g_value);
2064 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2065 ex->gt_entry.gt_bytes);
2066}
2067
2068static void
2069bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2070 bfd *abfd;
2071 const Elf32_compact_rel *in;
2072 Elf32_External_compact_rel *ex;
2073{
2074 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2075 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2076 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2077 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2078 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2079 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2080}
2081
2082static void
2083bfd_elf32_swap_crinfo_out (abfd, in, ex)
2084 bfd *abfd;
2085 const Elf32_crinfo *in;
2086 Elf32_External_crinfo *ex;
2087{
2088 unsigned long l;
2089
2090 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2091 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2092 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2093 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2094 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2095 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2096 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2097}
2098
2099/* Swap in an options header. */
2100
2101void
2102bfd_mips_elf_swap_options_in (abfd, ex, in)
2103 bfd *abfd;
2104 const Elf_External_Options *ex;
2105 Elf_Internal_Options *in;
2106{
2107 in->kind = bfd_h_get_8 (abfd, ex->kind);
2108 in->size = bfd_h_get_8 (abfd, ex->size);
2109 in->section = bfd_h_get_16 (abfd, ex->section);
2110 in->info = bfd_h_get_32 (abfd, ex->info);
2111}
2112
2113/* Swap out an options header. */
2114
2115void
2116bfd_mips_elf_swap_options_out (abfd, in, ex)
2117 bfd *abfd;
2118 const Elf_Internal_Options *in;
2119 Elf_External_Options *ex;
2120{
2121 bfd_h_put_8 (abfd, in->kind, ex->kind);
2122 bfd_h_put_8 (abfd, in->size, ex->size);
2123 bfd_h_put_16 (abfd, in->section, ex->section);
2124 bfd_h_put_32 (abfd, in->info, ex->info);
2125}
c6142e5d
MM
2126
2127/* Swap in an MSYM entry. */
2128
2129static void
2130bfd_mips_elf_swap_msym_in (abfd, ex, in)
2131 bfd *abfd;
2132 const Elf32_External_Msym *ex;
2133 Elf32_Internal_Msym *in;
2134{
2135 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2136 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2137}
2138
2139/* Swap out an MSYM entry. */
2140
2141static void
2142bfd_mips_elf_swap_msym_out (abfd, in, ex)
2143 bfd *abfd;
2144 const Elf32_Internal_Msym *in;
2145 Elf32_External_Msym *ex;
2146{
2147 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2148 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2149}
2150
252b5132
RH
2151\f
2152/* Determine whether a symbol is global for the purposes of splitting
2153 the symbol table into global symbols and local symbols. At least
2154 on Irix 5, this split must be between section symbols and all other
2155 symbols. On most ELF targets the split is between static symbols
2156 and externally visible symbols. */
2157
2158/*ARGSUSED*/
2159static boolean
2160mips_elf_sym_is_global (abfd, sym)
5f771d47 2161 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
2162 asymbol *sym;
2163{
2164 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2165}
2166\f
2167/* Set the right machine number for a MIPS ELF file. This is used for
2168 both the 32-bit and the 64-bit ABI. */
2169
2170boolean
2171_bfd_mips_elf_object_p (abfd)
2172 bfd *abfd;
2173{
103186c6 2174 /* Irix 5 and 6 is broken. Object file symbol tables are not always
252b5132
RH
2175 sorted correctly such that local symbols precede global symbols,
2176 and the sh_info field in the symbol table is not always right. */
2177 elf_bad_symtab (abfd) = true;
2178
103186c6
MM
2179 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2180 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2181 return true;
252b5132
RH
2182}
2183
2184/* The final processing done just before writing out a MIPS ELF object
2185 file. This gets the MIPS architecture right based on the machine
2186 number. This is used by both the 32-bit and the 64-bit ABI. */
2187
2188/*ARGSUSED*/
2189void
2190_bfd_mips_elf_final_write_processing (abfd, linker)
2191 bfd *abfd;
5f771d47 2192 boolean linker ATTRIBUTE_UNUSED;
252b5132
RH
2193{
2194 unsigned long val;
2195 unsigned int i;
2196 Elf_Internal_Shdr **hdrpp;
2197 const char *name;
2198 asection *sec;
2199
2200 switch (bfd_get_mach (abfd))
2201 {
2202 default:
2203 case bfd_mach_mips3000:
2204 val = E_MIPS_ARCH_1;
2205 break;
2206
2207 case bfd_mach_mips3900:
2208 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2209 break;
2210
2211 case bfd_mach_mips6000:
2212 val = E_MIPS_ARCH_2;
2213 break;
2214
2215 case bfd_mach_mips4000:
2216 case bfd_mach_mips4300:
2217 val = E_MIPS_ARCH_3;
2218 break;
2219
2220 case bfd_mach_mips4010:
2221 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2222 break;
2223
2224 case bfd_mach_mips4100:
2225 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2226 break;
2227
2228 case bfd_mach_mips4111:
2229 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2230 break;
2231
2232 case bfd_mach_mips4650:
2233 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2234 break;
2235
2236 case bfd_mach_mips8000:
2237 val = E_MIPS_ARCH_4;
2238 break;
2239 }
2240
2241 elf_elfheader (abfd)->e_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2242 elf_elfheader (abfd)->e_flags |= val;
2243
2244 /* Set the sh_info field for .gptab sections and other appropriate
2245 info for each special section. */
2246 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2247 i < elf_elfheader (abfd)->e_shnum;
2248 i++, hdrpp++)
2249 {
2250 switch ((*hdrpp)->sh_type)
2251 {
c6142e5d 2252 case SHT_MIPS_MSYM:
252b5132
RH
2253 case SHT_MIPS_LIBLIST:
2254 sec = bfd_get_section_by_name (abfd, ".dynstr");
2255 if (sec != NULL)
2256 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2257 break;
2258
2259 case SHT_MIPS_GPTAB:
2260 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2261 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2262 BFD_ASSERT (name != NULL
2263 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2264 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2265 BFD_ASSERT (sec != NULL);
2266 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2267 break;
2268
2269 case SHT_MIPS_CONTENT:
2270 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2271 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2272 BFD_ASSERT (name != NULL
2273 && strncmp (name, ".MIPS.content",
2274 sizeof ".MIPS.content" - 1) == 0);
2275 sec = bfd_get_section_by_name (abfd,
2276 name + sizeof ".MIPS.content" - 1);
2277 BFD_ASSERT (sec != NULL);
3f830999 2278 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
252b5132
RH
2279 break;
2280
2281 case SHT_MIPS_SYMBOL_LIB:
2282 sec = bfd_get_section_by_name (abfd, ".dynsym");
2283 if (sec != NULL)
2284 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2285 sec = bfd_get_section_by_name (abfd, ".liblist");
2286 if (sec != NULL)
2287 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2288 break;
2289
2290 case SHT_MIPS_EVENTS:
2291 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2292 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2293 BFD_ASSERT (name != NULL);
2294 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2295 sec = bfd_get_section_by_name (abfd,
2296 name + sizeof ".MIPS.events" - 1);
2297 else
2298 {
2299 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2300 sizeof ".MIPS.post_rel" - 1) == 0);
2301 sec = bfd_get_section_by_name (abfd,
2302 (name
2303 + sizeof ".MIPS.post_rel" - 1));
2304 }
2305 BFD_ASSERT (sec != NULL);
2306 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2307 break;
2308
2309 }
2310 }
2311}
2312\f
2313/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2314
2315boolean
2316_bfd_mips_elf_set_private_flags (abfd, flags)
2317 bfd *abfd;
2318 flagword flags;
2319{
2320 BFD_ASSERT (!elf_flags_init (abfd)
2321 || elf_elfheader (abfd)->e_flags == flags);
2322
2323 elf_elfheader (abfd)->e_flags = flags;
2324 elf_flags_init (abfd) = true;
2325 return true;
2326}
2327
2328/* Copy backend specific data from one object module to another */
2329
2330boolean
2331_bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2332 bfd *ibfd;
2333 bfd *obfd;
2334{
2335 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2336 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2337 return true;
2338
2339 BFD_ASSERT (!elf_flags_init (obfd)
2340 || (elf_elfheader (obfd)->e_flags
2341 == elf_elfheader (ibfd)->e_flags));
2342
2343 elf_gp (obfd) = elf_gp (ibfd);
2344 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2345 elf_flags_init (obfd) = true;
2346 return true;
2347}
2348
2349/* Merge backend specific data from an object file to the output
2350 object file when linking. */
2351
2352boolean
2353_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2354 bfd *ibfd;
2355 bfd *obfd;
2356{
2357 flagword old_flags;
2358 flagword new_flags;
2359 boolean ok;
2360
2361 /* Check if we have the same endianess */
2362 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2363 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2364 {
2365 const char *msg;
2366
2367 if (bfd_big_endian (ibfd))
2368 msg = _("%s: compiled for a big endian system and target is little endian");
2369 else
2370 msg = _("%s: compiled for a little endian system and target is big endian");
2371
2372 (*_bfd_error_handler) (msg, bfd_get_filename (ibfd));
2373
2374 bfd_set_error (bfd_error_wrong_format);
2375 return false;
2376 }
2377
2378 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2379 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2380 return true;
2381
2382 new_flags = elf_elfheader (ibfd)->e_flags;
2383 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2384 old_flags = elf_elfheader (obfd)->e_flags;
2385
2386 if (! elf_flags_init (obfd))
2387 {
2388 elf_flags_init (obfd) = true;
2389 elf_elfheader (obfd)->e_flags = new_flags;
103186c6
MM
2390 elf_elfheader (obfd)->e_ident[EI_CLASS]
2391 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
252b5132
RH
2392
2393 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2394 && bfd_get_arch_info (obfd)->the_default)
2395 {
2396 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2397 bfd_get_mach (ibfd)))
2398 return false;
2399 }
2400
2401 return true;
2402 }
2403
2404 /* Check flag compatibility. */
2405
2406 new_flags &= ~EF_MIPS_NOREORDER;
2407 old_flags &= ~EF_MIPS_NOREORDER;
2408
2409 if (new_flags == old_flags)
2410 return true;
2411
2412 ok = true;
2413
2414 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2415 {
2416 new_flags &= ~EF_MIPS_PIC;
2417 old_flags &= ~EF_MIPS_PIC;
2418 (*_bfd_error_handler)
2419 (_("%s: linking PIC files with non-PIC files"),
2420 bfd_get_filename (ibfd));
2421 ok = false;
2422 }
2423
2424 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2425 {
2426 new_flags &= ~EF_MIPS_CPIC;
2427 old_flags &= ~EF_MIPS_CPIC;
2428 (*_bfd_error_handler)
2429 (_("%s: linking abicalls files with non-abicalls files"),
2430 bfd_get_filename (ibfd));
2431 ok = false;
2432 }
2433
2434 /* Compare the ISA's. */
2435 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2436 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2437 {
2438 int new_mach = new_flags & EF_MIPS_MACH;
2439 int old_mach = old_flags & EF_MIPS_MACH;
2440 int new_isa = elf_mips_isa (new_flags);
2441 int old_isa = elf_mips_isa (old_flags);
2442
2443 /* If either has no machine specified, just compare the general isa's.
2444 Some combinations of machines are ok, if the isa's match. */
2445 if (! new_mach
2446 || ! old_mach
2447 || new_mach == old_mach
2448 )
2449 {
2450 /* Don't warn about mixing -mips1 and -mips2 code, or mixing -mips3
2451 and -mips4 code. They will normally use the same data sizes and
2452 calling conventions. */
2453
2454 if ((new_isa == 1 || new_isa == 2)
2455 ? (old_isa != 1 && old_isa != 2)
2456 : (old_isa == 1 || old_isa == 2))
2457 {
2458 (*_bfd_error_handler)
2459 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2460 bfd_get_filename (ibfd), new_isa, old_isa);
2461 ok = false;
2462 }
2463 }
2464
2465 else
2466 {
2467 (*_bfd_error_handler)
2468 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2469 bfd_get_filename (ibfd),
2470 elf_mips_mach (new_flags),
2471 elf_mips_mach (old_flags));
2472 ok = false;
2473 }
2474
2475 new_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2476 old_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2477 }
2478
103186c6
MM
2479 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2480 does set EI_CLASS differently from any 32-bit ABI. */
2481 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2482 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2483 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
252b5132
RH
2484 {
2485 /* Only error if both are set (to different values). */
103186c6
MM
2486 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2487 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2488 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
252b5132
RH
2489 {
2490 (*_bfd_error_handler)
2491 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2492 bfd_get_filename (ibfd),
103186c6
MM
2493 elf_mips_abi_name (ibfd),
2494 elf_mips_abi_name (obfd));
252b5132
RH
2495 ok = false;
2496 }
2497 new_flags &= ~EF_MIPS_ABI;
2498 old_flags &= ~EF_MIPS_ABI;
2499 }
2500
2501 /* Warn about any other mismatches */
2502 if (new_flags != old_flags)
2503 {
2504 (*_bfd_error_handler)
2505 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2506 bfd_get_filename (ibfd), (unsigned long) new_flags,
2507 (unsigned long) old_flags);
2508 ok = false;
2509 }
2510
2511 if (! ok)
2512 {
2513 bfd_set_error (bfd_error_bad_value);
2514 return false;
2515 }
2516
2517 return true;
2518}
2519\f
103186c6 2520boolean
252b5132
RH
2521_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2522 bfd *abfd;
2523 PTR ptr;
2524{
2525 FILE *file = (FILE *) ptr;
2526
2527 BFD_ASSERT (abfd != NULL && ptr != NULL);
2528
2529 /* Print normal ELF private data. */
2530 _bfd_elf_print_private_bfd_data (abfd, ptr);
2531
2532 /* xgettext:c-format */
2533 fprintf (file, _ ("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2534
2535 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2536 fprintf (file, _ (" [abi=O32]"));
2537 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2538 fprintf (file, _ (" [abi=O64]"));
2539 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2540 fprintf (file, _ (" [abi=EABI32]"));
2541 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2542 fprintf (file, _ (" [abi=EABI64]"));
2543 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2544 fprintf (file, _ (" [abi unknown]"));
103186c6 2545 else if (ABI_N32_P (abfd))
7f7e7b68 2546 fprintf (file, _ (" [abi=N32]"));
103186c6
MM
2547 else if (ABI_64_P (abfd))
2548 fprintf (file, _ (" [abi=64]"));
252b5132
RH
2549 else
2550 fprintf (file, _ (" [no abi set]"));
2551
2552 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2553 fprintf (file, _ (" [mips1]"));
2554 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2555 fprintf (file, _ (" [mips2]"));
2556 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2557 fprintf (file, _ (" [mips3]"));
2558 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2559 fprintf (file, _ (" [mips4]"));
2560 else
2561 fprintf (file, _ (" [unknown ISA]"));
2562
2563 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2564 fprintf (file, _ (" [32bitmode]"));
2565 else
2566 fprintf (file, _ (" [not 32bitmode]"));
2567
2568 fputc ('\n', file);
2569
2570 return true;
2571}
2572\f
2573/* Handle a MIPS specific section when reading an object file. This
2574 is called when elfcode.h finds a section with an unknown type.
2575 This routine supports both the 32-bit and 64-bit ELF ABI.
2576
2577 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2578 how to. */
2579
2580boolean
2581_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2582 bfd *abfd;
2583 Elf_Internal_Shdr *hdr;
103186c6 2584 char *name;
252b5132
RH
2585{
2586 flagword flags = 0;
2587
2588 /* There ought to be a place to keep ELF backend specific flags, but
2589 at the moment there isn't one. We just keep track of the
2590 sections by their name, instead. Fortunately, the ABI gives
2591 suggested names for all the MIPS specific sections, so we will
2592 probably get away with this. */
2593 switch (hdr->sh_type)
2594 {
2595 case SHT_MIPS_LIBLIST:
2596 if (strcmp (name, ".liblist") != 0)
2597 return false;
2598 break;
2599 case SHT_MIPS_MSYM:
c6142e5d 2600 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
252b5132
RH
2601 return false;
2602 break;
2603 case SHT_MIPS_CONFLICT:
2604 if (strcmp (name, ".conflict") != 0)
2605 return false;
2606 break;
2607 case SHT_MIPS_GPTAB:
2608 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2609 return false;
2610 break;
2611 case SHT_MIPS_UCODE:
2612 if (strcmp (name, ".ucode") != 0)
2613 return false;
2614 break;
2615 case SHT_MIPS_DEBUG:
2616 if (strcmp (name, ".mdebug") != 0)
2617 return false;
2618 flags = SEC_DEBUGGING;
2619 break;
2620 case SHT_MIPS_REGINFO:
2621 if (strcmp (name, ".reginfo") != 0
2622 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2623 return false;
2624 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2625 break;
2626 case SHT_MIPS_IFACE:
2627 if (strcmp (name, ".MIPS.interfaces") != 0)
2628 return false;
2629 break;
2630 case SHT_MIPS_CONTENT:
2631 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2632 return false;
2633 break;
2634 case SHT_MIPS_OPTIONS:
303f629d 2635 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
252b5132
RH
2636 return false;
2637 break;
2638 case SHT_MIPS_DWARF:
2639 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2640 return false;
2641 break;
2642 case SHT_MIPS_SYMBOL_LIB:
2643 if (strcmp (name, ".MIPS.symlib") != 0)
2644 return false;
2645 break;
2646 case SHT_MIPS_EVENTS:
2647 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2648 && strncmp (name, ".MIPS.post_rel",
2649 sizeof ".MIPS.post_rel" - 1) != 0)
2650 return false;
2651 break;
2652 default:
2653 return false;
2654 }
2655
2656 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2657 return false;
2658
2659 if (flags)
2660 {
2661 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2662 (bfd_get_section_flags (abfd,
2663 hdr->bfd_section)
2664 | flags)))
2665 return false;
2666 }
2667
252b5132
RH
2668 /* FIXME: We should record sh_info for a .gptab section. */
2669
2670 /* For a .reginfo section, set the gp value in the tdata information
2671 from the contents of this section. We need the gp value while
2672 processing relocs, so we just get it now. The .reginfo section
2673 is not used in the 64-bit MIPS ELF ABI. */
2674 if (hdr->sh_type == SHT_MIPS_REGINFO)
2675 {
2676 Elf32_External_RegInfo ext;
2677 Elf32_RegInfo s;
2678
2679 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2680 (file_ptr) 0, sizeof ext))
2681 return false;
2682 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2683 elf_gp (abfd) = s.ri_gp_value;
2684 }
2685
2686 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2687 set the gp value based on what we find. We may see both
2688 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2689 they should agree. */
2690 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2691 {
2692 bfd_byte *contents, *l, *lend;
2693
2694 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2695 if (contents == NULL)
2696 return false;
2697 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2698 (file_ptr) 0, hdr->sh_size))
2699 {
2700 free (contents);
2701 return false;
2702 }
2703 l = contents;
2704 lend = contents + hdr->sh_size;
2705 while (l + sizeof (Elf_External_Options) <= lend)
2706 {
2707 Elf_Internal_Options intopt;
2708
2709 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2710 &intopt);
103186c6
MM
2711 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2712 {
2713 Elf64_Internal_RegInfo intreg;
2714
2715 bfd_mips_elf64_swap_reginfo_in
2716 (abfd,
2717 ((Elf64_External_RegInfo *)
2718 (l + sizeof (Elf_External_Options))),
2719 &intreg);
2720 elf_gp (abfd) = intreg.ri_gp_value;
2721 }
2722 else if (intopt.kind == ODK_REGINFO)
252b5132
RH
2723 {
2724 Elf32_RegInfo intreg;
2725
2726 bfd_mips_elf32_swap_reginfo_in
2727 (abfd,
2728 ((Elf32_External_RegInfo *)
2729 (l + sizeof (Elf_External_Options))),
2730 &intreg);
2731 elf_gp (abfd) = intreg.ri_gp_value;
2732 }
2733 l += intopt.size;
2734 }
2735 free (contents);
2736 }
2737
2738 return true;
2739}
2740
2741/* Set the correct type for a MIPS ELF section. We do this by the
2742 section name, which is a hack, but ought to work. This routine is
2743 used by both the 32-bit and the 64-bit ABI. */
2744
2745boolean
2746_bfd_mips_elf_fake_sections (abfd, hdr, sec)
2747 bfd *abfd;
2748 Elf32_Internal_Shdr *hdr;
2749 asection *sec;
2750{
2751 register const char *name;
2752
2753 name = bfd_get_section_name (abfd, sec);
2754
2755 if (strcmp (name, ".liblist") == 0)
2756 {
2757 hdr->sh_type = SHT_MIPS_LIBLIST;
2758 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2759 /* The sh_link field is set in final_write_processing. */
2760 }
252b5132
RH
2761 else if (strcmp (name, ".conflict") == 0)
2762 hdr->sh_type = SHT_MIPS_CONFLICT;
2763 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2764 {
2765 hdr->sh_type = SHT_MIPS_GPTAB;
2766 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2767 /* The sh_info field is set in final_write_processing. */
2768 }
2769 else if (strcmp (name, ".ucode") == 0)
2770 hdr->sh_type = SHT_MIPS_UCODE;
2771 else if (strcmp (name, ".mdebug") == 0)
2772 {
2773 hdr->sh_type = SHT_MIPS_DEBUG;
2774 /* In a shared object on Irix 5.3, the .mdebug section has an
2775 entsize of 0. FIXME: Does this matter? */
2776 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2777 hdr->sh_entsize = 0;
2778 else
2779 hdr->sh_entsize = 1;
2780 }
2781 else if (strcmp (name, ".reginfo") == 0)
2782 {
2783 hdr->sh_type = SHT_MIPS_REGINFO;
2784 /* In a shared object on Irix 5.3, the .reginfo section has an
2785 entsize of 0x18. FIXME: Does this matter? */
2786 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2787 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2788 else
2789 hdr->sh_entsize = 1;
2790 }
2791 else if (SGI_COMPAT (abfd)
2792 && (strcmp (name, ".hash") == 0
2793 || strcmp (name, ".dynamic") == 0
2794 || strcmp (name, ".dynstr") == 0))
2795 {
2796 hdr->sh_entsize = 0;
2797#if 0
2798 /* This isn't how the Irix 6 linker behaves. */
2799 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2800#endif
2801 }
2802 else if (strcmp (name, ".got") == 0
303f629d 2803 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
252b5132
RH
2804 || strcmp (name, ".sdata") == 0
2805 || strcmp (name, ".sbss") == 0
2806 || strcmp (name, ".lit4") == 0
2807 || strcmp (name, ".lit8") == 0)
2808 hdr->sh_flags |= SHF_MIPS_GPREL;
2809 else if (strcmp (name, ".MIPS.interfaces") == 0)
2810 {
2811 hdr->sh_type = SHT_MIPS_IFACE;
2812 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2813 }
3f830999 2814 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
252b5132
RH
2815 {
2816 hdr->sh_type = SHT_MIPS_CONTENT;
3f830999 2817 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
252b5132
RH
2818 /* The sh_info field is set in final_write_processing. */
2819 }
303f629d 2820 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
252b5132
RH
2821 {
2822 hdr->sh_type = SHT_MIPS_OPTIONS;
2823 hdr->sh_entsize = 1;
2824 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2825 }
2826 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
2827 hdr->sh_type = SHT_MIPS_DWARF;
2828 else if (strcmp (name, ".MIPS.symlib") == 0)
2829 {
2830 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
2831 /* The sh_link and sh_info fields are set in
2832 final_write_processing. */
2833 }
2834 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
2835 || strncmp (name, ".MIPS.post_rel",
2836 sizeof ".MIPS.post_rel" - 1) == 0)
2837 {
2838 hdr->sh_type = SHT_MIPS_EVENTS;
2839 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2840 /* The sh_link field is set in final_write_processing. */
2841 }
c6142e5d
MM
2842 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
2843 {
2844 hdr->sh_type = SHT_MIPS_MSYM;
2845 hdr->sh_flags |= SHF_ALLOC;
2846 hdr->sh_entsize = 8;
2847 }
252b5132 2848
23bc299b
MM
2849 /* The generic elf_fake_sections will set up REL_HDR using the
2850 default kind of relocations. But, we may actually need both
2851 kinds of relocations, so we set up the second header here. */
2852 if ((sec->flags & SEC_RELOC) != 0)
2853 {
2854 struct bfd_elf_section_data *esd;
2855
2856 esd = elf_section_data (sec);
2857 BFD_ASSERT (esd->rel_hdr2 == NULL);
2858 esd->rel_hdr2
2859 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2860 if (!esd->rel_hdr2)
2861 return false;
2862 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
2863 !elf_section_data (sec)->use_rela_p);
2864 }
2865
252b5132
RH
2866 return true;
2867}
2868
2869/* Given a BFD section, try to locate the corresponding ELF section
2870 index. This is used by both the 32-bit and the 64-bit ABI.
2871 Actually, it's not clear to me that the 64-bit ABI supports these,
2872 but for non-PIC objects we will certainly want support for at least
2873 the .scommon section. */
2874
2875boolean
2876_bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
5f771d47
ILT
2877 bfd *abfd ATTRIBUTE_UNUSED;
2878 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
252b5132
RH
2879 asection *sec;
2880 int *retval;
2881{
2882 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
2883 {
2884 *retval = SHN_MIPS_SCOMMON;
2885 return true;
2886 }
2887 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
2888 {
2889 *retval = SHN_MIPS_ACOMMON;
2890 return true;
2891 }
2892 return false;
2893}
2894
2895/* When are writing out the .options or .MIPS.options section,
2896 remember the bytes we are writing out, so that we can install the
2897 GP value in the section_processing routine. */
2898
2899boolean
2900_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
2901 bfd *abfd;
2902 sec_ptr section;
2903 PTR location;
2904 file_ptr offset;
2905 bfd_size_type count;
2906{
303f629d 2907 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
252b5132
RH
2908 {
2909 bfd_byte *c;
2910
2911 if (elf_section_data (section) == NULL)
2912 {
2913 section->used_by_bfd =
2914 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
2915 if (elf_section_data (section) == NULL)
2916 return false;
2917 }
2918 c = (bfd_byte *) elf_section_data (section)->tdata;
2919 if (c == NULL)
2920 {
2921 bfd_size_type size;
2922
2923 if (section->_cooked_size != 0)
2924 size = section->_cooked_size;
2925 else
2926 size = section->_raw_size;
2927 c = (bfd_byte *) bfd_zalloc (abfd, size);
2928 if (c == NULL)
2929 return false;
2930 elf_section_data (section)->tdata = (PTR) c;
2931 }
2932
2933 memcpy (c + offset, location, count);
2934 }
2935
2936 return _bfd_elf_set_section_contents (abfd, section, location, offset,
2937 count);
2938}
2939
2940/* Work over a section just before writing it out. This routine is
2941 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
2942 sections that need the SHF_MIPS_GPREL flag by name; there has to be
2943 a better way. */
2944
2945boolean
2946_bfd_mips_elf_section_processing (abfd, hdr)
2947 bfd *abfd;
2948 Elf_Internal_Shdr *hdr;
252b5132 2949{
cc3bfcee
ILT
2950 if (hdr->sh_type == SHT_MIPS_REGINFO
2951 && hdr->sh_size > 0)
252b5132
RH
2952 {
2953 bfd_byte buf[4];
2954
2955 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
2956 BFD_ASSERT (hdr->contents == NULL);
2957
2958 if (bfd_seek (abfd,
2959 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
2960 SEEK_SET) == -1)
2961 return false;
2962 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
2963 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
2964 return false;
2965 }
2966
2967 if (hdr->sh_type == SHT_MIPS_OPTIONS
2968 && hdr->bfd_section != NULL
2969 && elf_section_data (hdr->bfd_section) != NULL
2970 && elf_section_data (hdr->bfd_section)->tdata != NULL)
2971 {
2972 bfd_byte *contents, *l, *lend;
2973
2974 /* We stored the section contents in the elf_section_data tdata
2975 field in the set_section_contents routine. We save the
2976 section contents so that we don't have to read them again.
2977 At this point we know that elf_gp is set, so we can look
2978 through the section contents to see if there is an
2979 ODK_REGINFO structure. */
2980
2981 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
2982 l = contents;
2983 lend = contents + hdr->sh_size;
2984 while (l + sizeof (Elf_External_Options) <= lend)
2985 {
2986 Elf_Internal_Options intopt;
2987
2988 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2989 &intopt);
103186c6
MM
2990 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2991 {
2992 bfd_byte buf[8];
2993
2994 if (bfd_seek (abfd,
2995 (hdr->sh_offset
2996 + (l - contents)
2997 + sizeof (Elf_External_Options)
2998 + (sizeof (Elf64_External_RegInfo) - 8)),
2999 SEEK_SET) == -1)
3000 return false;
3001 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3002 if (bfd_write (buf, 1, 8, abfd) != 8)
3003 return false;
3004 }
3005 else if (intopt.kind == ODK_REGINFO)
252b5132
RH
3006 {
3007 bfd_byte buf[4];
3008
3009 if (bfd_seek (abfd,
3010 (hdr->sh_offset
3011 + (l - contents)
3012 + sizeof (Elf_External_Options)
3013 + (sizeof (Elf32_External_RegInfo) - 4)),
3014 SEEK_SET) == -1)
3015 return false;
3016 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3017 if (bfd_write (buf, 1, 4, abfd) != 4)
3018 return false;
3019 }
3020 l += intopt.size;
3021 }
3022 }
3023
103186c6
MM
3024 if (hdr->bfd_section != NULL)
3025 {
3026 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3027
3028 if (strcmp (name, ".sdata") == 0
3029 || strcmp (name, ".lit8") == 0
3030 || strcmp (name, ".lit4") == 0)
3031 {
3032 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3033 hdr->sh_type = SHT_PROGBITS;
3034 }
3035 else if (strcmp (name, ".sbss") == 0)
3036 {
3037 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3038 hdr->sh_type = SHT_NOBITS;
3039 }
3040 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3041 {
3042 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3043 hdr->sh_type = SHT_PROGBITS;
3044 }
3045 else if (strcmp (name, ".compact_rel") == 0)
3046 {
3047 hdr->sh_flags = 0;
3048 hdr->sh_type = SHT_PROGBITS;
3049 }
3050 else if (strcmp (name, ".rtproc") == 0)
3051 {
3052 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3053 {
3054 unsigned int adjust;
3055
3056 adjust = hdr->sh_size % hdr->sh_addralign;
3057 if (adjust != 0)
3058 hdr->sh_size += hdr->sh_addralign - adjust;
3059 }
3060 }
3061 }
3062
3063 return true;
252b5132 3064}
103186c6 3065
252b5132
RH
3066\f
3067/* MIPS ELF uses two common sections. One is the usual one, and the
3068 other is for small objects. All the small objects are kept
3069 together, and then referenced via the gp pointer, which yields
3070 faster assembler code. This is what we use for the small common
3071 section. This approach is copied from ecoff.c. */
3072static asection mips_elf_scom_section;
3073static asymbol mips_elf_scom_symbol;
3074static asymbol *mips_elf_scom_symbol_ptr;
3075
3076/* MIPS ELF also uses an acommon section, which represents an
3077 allocated common symbol which may be overridden by a
3078 definition in a shared library. */
3079static asection mips_elf_acom_section;
3080static asymbol mips_elf_acom_symbol;
3081static asymbol *mips_elf_acom_symbol_ptr;
3082
3083/* The Irix 5 support uses two virtual sections, which represent
3084 text/data symbols defined in dynamic objects. */
3085static asection mips_elf_text_section;
3086static asection *mips_elf_text_section_ptr;
3087static asymbol mips_elf_text_symbol;
3088static asymbol *mips_elf_text_symbol_ptr;
3089
3090static asection mips_elf_data_section;
3091static asection *mips_elf_data_section_ptr;
3092static asymbol mips_elf_data_symbol;
3093static asymbol *mips_elf_data_symbol_ptr;
3094
3095/* Handle the special MIPS section numbers that a symbol may use.
3096 This is used for both the 32-bit and the 64-bit ABI. */
3097
3098void
3099_bfd_mips_elf_symbol_processing (abfd, asym)
3100 bfd *abfd;
3101 asymbol *asym;
3102{
3103 elf_symbol_type *elfsym;
3104
3105 elfsym = (elf_symbol_type *) asym;
3106 switch (elfsym->internal_elf_sym.st_shndx)
3107 {
3108 case SHN_MIPS_ACOMMON:
3109 /* This section is used in a dynamically linked executable file.
3110 It is an allocated common section. The dynamic linker can
3111 either resolve these symbols to something in a shared
3112 library, or it can just leave them here. For our purposes,
3113 we can consider these symbols to be in a new section. */
3114 if (mips_elf_acom_section.name == NULL)
3115 {
3116 /* Initialize the acommon section. */
3117 mips_elf_acom_section.name = ".acommon";
3118 mips_elf_acom_section.flags = SEC_ALLOC;
3119 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3120 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3121 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3122 mips_elf_acom_symbol.name = ".acommon";
3123 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3124 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3125 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3126 }
3127 asym->section = &mips_elf_acom_section;
3128 break;
3129
3130 case SHN_COMMON:
3131 /* Common symbols less than the GP size are automatically
7403cb63
MM
3132 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3133 if (asym->value > elf_gp_size (abfd)
3134 || IRIX_COMPAT (abfd) == ict_irix6)
252b5132
RH
3135 break;
3136 /* Fall through. */
3137 case SHN_MIPS_SCOMMON:
3138 if (mips_elf_scom_section.name == NULL)
3139 {
3140 /* Initialize the small common section. */
3141 mips_elf_scom_section.name = ".scommon";
3142 mips_elf_scom_section.flags = SEC_IS_COMMON;
3143 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3144 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3145 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3146 mips_elf_scom_symbol.name = ".scommon";
3147 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3148 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3149 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3150 }
3151 asym->section = &mips_elf_scom_section;
3152 asym->value = elfsym->internal_elf_sym.st_size;
3153 break;
3154
3155 case SHN_MIPS_SUNDEFINED:
3156 asym->section = bfd_und_section_ptr;
3157 break;
3158
3159#if 0 /* for SGI_COMPAT */
3160 case SHN_MIPS_TEXT:
3161 asym->section = mips_elf_text_section_ptr;
3162 break;
3163
3164 case SHN_MIPS_DATA:
3165 asym->section = mips_elf_data_section_ptr;
3166 break;
3167#endif
3168 }
3169}
3170\f
3171/* When creating an Irix 5 executable, we need REGINFO and RTPROC
3172 segments. */
3173
103186c6
MM
3174int
3175_bfd_mips_elf_additional_program_headers (abfd)
252b5132
RH
3176 bfd *abfd;
3177{
3178 asection *s;
303f629d 3179 int ret = 0;
252b5132 3180
303f629d
MM
3181 if (!SGI_COMPAT (abfd))
3182 return 0;
252b5132 3183
303f629d 3184 /* See if we need a PT_MIPS_REGINFO segment. */
252b5132 3185 s = bfd_get_section_by_name (abfd, ".reginfo");
303f629d
MM
3186 if (s && (s->flags & SEC_LOAD))
3187 ++ret;
252b5132 3188
303f629d
MM
3189 /* See if we need a PT_MIPS_OPTIONS segment. */
3190 if (IRIX_COMPAT (abfd) == ict_irix6
3191 && bfd_get_section_by_name (abfd,
3192 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3193 ++ret;
3194
3195 /* See if we need a PT_MIPS_RTPROC segment. */
3196 if (IRIX_COMPAT (abfd) == ict_irix5
3197 && bfd_get_section_by_name (abfd, ".dynamic")
3198 && bfd_get_section_by_name (abfd, ".mdebug"))
3199 ++ret;
252b5132
RH
3200
3201 return ret;
3202}
3203
3204/* Modify the segment map for an Irix 5 executable. */
3205
103186c6
MM
3206boolean
3207_bfd_mips_elf_modify_segment_map (abfd)
252b5132
RH
3208 bfd *abfd;
3209{
3210 asection *s;
3211 struct elf_segment_map *m, **pm;
3212
3213 if (! SGI_COMPAT (abfd))
3214 return true;
3215
3216 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3217 segment. */
3218 s = bfd_get_section_by_name (abfd, ".reginfo");
3219 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3220 {
3221 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3222 if (m->p_type == PT_MIPS_REGINFO)
3223 break;
3224 if (m == NULL)
3225 {
3226 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3227 if (m == NULL)
3228 return false;
3229
3230 m->p_type = PT_MIPS_REGINFO;
3231 m->count = 1;
3232 m->sections[0] = s;
3233
3234 /* We want to put it after the PHDR and INTERP segments. */
3235 pm = &elf_tdata (abfd)->segment_map;
3236 while (*pm != NULL
3237 && ((*pm)->p_type == PT_PHDR
3238 || (*pm)->p_type == PT_INTERP))
3239 pm = &(*pm)->next;
3240
3241 m->next = *pm;
3242 *pm = m;
3243 }
3244 }
3245
303f629d
MM
3246 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3247 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3248 PT_OPTIONS segement immediately following the program header
3249 table. */
3250 if (IRIX_COMPAT (abfd) == ict_irix6)
252b5132 3251 {
303f629d
MM
3252 asection *s;
3253
3254 for (s = abfd->sections; s; s = s->next)
3255 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
252b5132 3256 break;
303f629d
MM
3257
3258 if (s)
252b5132 3259 {
303f629d
MM
3260 struct elf_segment_map *options_segment;
3261
435394bf
MM
3262 /* Usually, there's a program header table. But, sometimes
3263 there's not (like when running the `ld' testsuite). So,
3264 if there's no program header table, we just put the
3265 options segement at the end. */
3266 for (pm = &elf_tdata (abfd)->segment_map;
3267 *pm != NULL;
3268 pm = &(*pm)->next)
3269 if ((*pm)->p_type == PT_PHDR)
303f629d
MM
3270 break;
3271
303f629d
MM
3272 options_segment = bfd_zalloc (abfd,
3273 sizeof (struct elf_segment_map));
435394bf 3274 options_segment->next = *pm;
303f629d
MM
3275 options_segment->p_type = PT_MIPS_OPTIONS;
3276 options_segment->p_flags = PF_R;
3277 options_segment->p_flags_valid = true;
3278 options_segment->count = 1;
3279 options_segment->sections[0] = s;
435394bf 3280 *pm = options_segment;
303f629d
MM
3281 }
3282 }
3283 else
3284 {
3285 /* If there are .dynamic and .mdebug sections, we make a room
3286 for the RTPROC header. FIXME: Rewrite without section names. */
3287 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3288 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3289 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3290 {
3291 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3292 if (m->p_type == PT_MIPS_RTPROC)
3293 break;
3294 if (m == NULL)
252b5132 3295 {
303f629d
MM
3296 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3297 if (m == NULL)
3298 return false;
252b5132 3299
303f629d 3300 m->p_type = PT_MIPS_RTPROC;
252b5132 3301
303f629d
MM
3302 s = bfd_get_section_by_name (abfd, ".rtproc");
3303 if (s == NULL)
3304 {
3305 m->count = 0;
3306 m->p_flags = 0;
3307 m->p_flags_valid = 1;
3308 }
3309 else
3310 {
3311 m->count = 1;
3312 m->sections[0] = s;
3313 }
3314
3315 /* We want to put it after the DYNAMIC segment. */
3316 pm = &elf_tdata (abfd)->segment_map;
3317 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3318 pm = &(*pm)->next;
3319 if (*pm != NULL)
3320 pm = &(*pm)->next;
3321
3322 m->next = *pm;
3323 *pm = m;
3324 }
252b5132 3325 }
252b5132 3326
303f629d
MM
3327 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3328 .dynstr, .dynsym, and .hash sections, and everything in
3329 between. */
3330 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
3331 if ((*pm)->p_type == PT_DYNAMIC)
3332 break;
3333 m = *pm;
3334 if (m != NULL
3335 && m->count == 1
3336 && strcmp (m->sections[0]->name, ".dynamic") == 0)
252b5132 3337 {
303f629d
MM
3338 static const char *sec_names[] =
3339 { ".dynamic", ".dynstr", ".dynsym", ".hash" };
3340 bfd_vma low, high;
3341 unsigned int i, c;
3342 struct elf_segment_map *n;
3343
3344 low = 0xffffffff;
3345 high = 0;
3346 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
252b5132 3347 {
303f629d
MM
3348 s = bfd_get_section_by_name (abfd, sec_names[i]);
3349 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3350 {
3351 bfd_size_type sz;
3352
3353 if (low > s->vma)
3354 low = s->vma;
3355 sz = s->_cooked_size;
3356 if (sz == 0)
3357 sz = s->_raw_size;
3358 if (high < s->vma + sz)
3359 high = s->vma + sz;
3360 }
252b5132 3361 }
252b5132 3362
303f629d
MM
3363 c = 0;
3364 for (s = abfd->sections; s != NULL; s = s->next)
3365 if ((s->flags & SEC_LOAD) != 0
3366 && s->vma >= low
3367 && ((s->vma
3368 + (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size))
3369 <= high))
3370 ++c;
3371
3372 n = ((struct elf_segment_map *)
3373 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3374 if (n == NULL)
3375 return false;
3376 *n = *m;
3377 n->count = c;
252b5132 3378
303f629d
MM
3379 i = 0;
3380 for (s = abfd->sections; s != NULL; s = s->next)
252b5132 3381 {
303f629d
MM
3382 if ((s->flags & SEC_LOAD) != 0
3383 && s->vma >= low
3384 && ((s->vma
3385 + (s->_cooked_size != 0 ?
3386 s->_cooked_size : s->_raw_size))
3387 <= high))
3388 {
3389 n->sections[i] = s;
3390 ++i;
3391 }
252b5132 3392 }
252b5132 3393
303f629d
MM
3394 *pm = n;
3395 }
252b5132
RH
3396 }
3397
3398 return true;
3399}
3400\f
3401/* The structure of the runtime procedure descriptor created by the
3402 loader for use by the static exception system. */
3403
3404typedef struct runtime_pdr {
3405 bfd_vma adr; /* memory address of start of procedure */
3406 long regmask; /* save register mask */
3407 long regoffset; /* save register offset */
3408 long fregmask; /* save floating point register mask */
3409 long fregoffset; /* save floating point register offset */
3410 long frameoffset; /* frame size */
3411 short framereg; /* frame pointer register */
3412 short pcreg; /* offset or reg of return pc */
3413 long irpss; /* index into the runtime string table */
3414 long reserved;
3415 struct exception_info *exception_info;/* pointer to exception array */
3416} RPDR, *pRPDR;
3417#define cbRPDR sizeof(RPDR)
3418#define rpdNil ((pRPDR) 0)
3419
3420/* Swap RPDR (runtime procedure table entry) for output. */
3421
3422static void ecoff_swap_rpdr_out
3423 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3424
3425static void
3426ecoff_swap_rpdr_out (abfd, in, ex)
3427 bfd *abfd;
3428 const RPDR *in;
3429 struct rpdr_ext *ex;
3430{
3431 /* ecoff_put_off was defined in ecoffswap.h. */
3432 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3433 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3434 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3435 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3436 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3437 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3438
3439 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3440 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3441
3442 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3443#if 0 /* FIXME */
3444 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3445#endif
3446}
3447\f
3448/* Read ECOFF debugging information from a .mdebug section into a
3449 ecoff_debug_info structure. */
3450
3451boolean
3452_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3453 bfd *abfd;
3454 asection *section;
3455 struct ecoff_debug_info *debug;
3456{
3457 HDRR *symhdr;
3458 const struct ecoff_debug_swap *swap;
3459 char *ext_hdr = NULL;
3460
3461 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3462 memset (debug, 0, sizeof(*debug));
3463
3464 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3465 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3466 goto error_return;
3467
3468 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3469 swap->external_hdr_size)
3470 == false)
3471 goto error_return;
3472
3473 symhdr = &debug->symbolic_header;
3474 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3475
3476 /* The symbolic header contains absolute file offsets and sizes to
3477 read. */
3478#define READ(ptr, offset, count, size, type) \
3479 if (symhdr->count == 0) \
3480 debug->ptr = NULL; \
3481 else \
3482 { \
3483 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3484 if (debug->ptr == NULL) \
3485 goto error_return; \
3486 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3487 || (bfd_read (debug->ptr, size, symhdr->count, \
3488 abfd) != size * symhdr->count)) \
3489 goto error_return; \
3490 }
3491
3492 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3493 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3494 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3495 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3496 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3497 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3498 union aux_ext *);
3499 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3500 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3501 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3502 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3503 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3504#undef READ
3505
3506 debug->fdr = NULL;
3507 debug->adjust = NULL;
3508
3509 return true;
3510
3511 error_return:
3512 if (ext_hdr != NULL)
3513 free (ext_hdr);
3514 if (debug->line != NULL)
3515 free (debug->line);
3516 if (debug->external_dnr != NULL)
3517 free (debug->external_dnr);
3518 if (debug->external_pdr != NULL)
3519 free (debug->external_pdr);
3520 if (debug->external_sym != NULL)
3521 free (debug->external_sym);
3522 if (debug->external_opt != NULL)
3523 free (debug->external_opt);
3524 if (debug->external_aux != NULL)
3525 free (debug->external_aux);
3526 if (debug->ss != NULL)
3527 free (debug->ss);
3528 if (debug->ssext != NULL)
3529 free (debug->ssext);
3530 if (debug->external_fdr != NULL)
3531 free (debug->external_fdr);
3532 if (debug->external_rfd != NULL)
3533 free (debug->external_rfd);
3534 if (debug->external_ext != NULL)
3535 free (debug->external_ext);
3536 return false;
3537}
3538\f
3539/* MIPS ELF local labels start with '$', not 'L'. */
3540
3541/*ARGSUSED*/
3542static boolean
3543mips_elf_is_local_label_name (abfd, name)
3544 bfd *abfd;
3545 const char *name;
3546{
3547 if (name[0] == '$')
3548 return true;
3549
3550 /* On Irix 6, the labels go back to starting with '.', so we accept
3551 the generic ELF local label syntax as well. */
3552 return _bfd_elf_is_local_label_name (abfd, name);
3553}
3554
3555/* MIPS ELF uses a special find_nearest_line routine in order the
3556 handle the ECOFF debugging information. */
3557
3558struct mips_elf_find_line
3559{
3560 struct ecoff_debug_info d;
3561 struct ecoff_find_line i;
3562};
3563
3564boolean
3565_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3566 functionname_ptr, line_ptr)
3567 bfd *abfd;
3568 asection *section;
3569 asymbol **symbols;
3570 bfd_vma offset;
3571 const char **filename_ptr;
3572 const char **functionname_ptr;
3573 unsigned int *line_ptr;
3574{
3575 asection *msec;
3576
3577 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3578 filename_ptr, functionname_ptr,
3579 line_ptr))
3580 return true;
3581
3582 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3583 filename_ptr, functionname_ptr,
5e38c3b8
MM
3584 line_ptr,
3585 ABI_64_P (abfd) ? 8 : 0))
252b5132
RH
3586 return true;
3587
3588 msec = bfd_get_section_by_name (abfd, ".mdebug");
3589 if (msec != NULL)
3590 {
3591 flagword origflags;
3592 struct mips_elf_find_line *fi;
3593 const struct ecoff_debug_swap * const swap =
3594 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3595
3596 /* If we are called during a link, mips_elf_final_link may have
3597 cleared the SEC_HAS_CONTENTS field. We force it back on here
3598 if appropriate (which it normally will be). */
3599 origflags = msec->flags;
3600 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3601 msec->flags |= SEC_HAS_CONTENTS;
3602
3603 fi = elf_tdata (abfd)->find_line_info;
3604 if (fi == NULL)
3605 {
3606 bfd_size_type external_fdr_size;
3607 char *fraw_src;
3608 char *fraw_end;
3609 struct fdr *fdr_ptr;
3610
3611 fi = ((struct mips_elf_find_line *)
3612 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3613 if (fi == NULL)
3614 {
3615 msec->flags = origflags;
3616 return false;
3617 }
3618
3619 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3620 {
3621 msec->flags = origflags;
3622 return false;
3623 }
3624
3625 /* Swap in the FDR information. */
3626 fi->d.fdr = ((struct fdr *)
3627 bfd_alloc (abfd,
3628 (fi->d.symbolic_header.ifdMax *
3629 sizeof (struct fdr))));
3630 if (fi->d.fdr == NULL)
3631 {
3632 msec->flags = origflags;
3633 return false;
3634 }
3635 external_fdr_size = swap->external_fdr_size;
3636 fdr_ptr = fi->d.fdr;
3637 fraw_src = (char *) fi->d.external_fdr;
3638 fraw_end = (fraw_src
3639 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3640 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3641 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3642
3643 elf_tdata (abfd)->find_line_info = fi;
3644
3645 /* Note that we don't bother to ever free this information.
3646 find_nearest_line is either called all the time, as in
3647 objdump -l, so the information should be saved, or it is
3648 rarely called, as in ld error messages, so the memory
3649 wasted is unimportant. Still, it would probably be a
3650 good idea for free_cached_info to throw it away. */
3651 }
3652
3653 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3654 &fi->i, filename_ptr, functionname_ptr,
3655 line_ptr))
3656 {
3657 msec->flags = origflags;
3658 return true;
3659 }
3660
3661 msec->flags = origflags;
3662 }
3663
3664 /* Fall back on the generic ELF find_nearest_line routine. */
3665
3666 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3667 filename_ptr, functionname_ptr,
3668 line_ptr);
3669}
3670\f
3671 /* The mips16 compiler uses a couple of special sections to handle
3672 floating point arguments.
3673
3674 Section names that look like .mips16.fn.FNNAME contain stubs that
3675 copy floating point arguments from the fp regs to the gp regs and
3676 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3677 call should be redirected to the stub instead. If no 32 bit
3678 function calls FNNAME, the stub should be discarded. We need to
3679 consider any reference to the function, not just a call, because
3680 if the address of the function is taken we will need the stub,
3681 since the address might be passed to a 32 bit function.
3682
3683 Section names that look like .mips16.call.FNNAME contain stubs
3684 that copy floating point arguments from the gp regs to the fp
3685 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3686 then any 16 bit function that calls FNNAME should be redirected
3687 to the stub instead. If FNNAME is not a 32 bit function, the
3688 stub should be discarded.
3689
3690 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3691 which call FNNAME and then copy the return value from the fp regs
3692 to the gp regs. These stubs store the return value in $18 while
3693 calling FNNAME; any function which might call one of these stubs
3694 must arrange to save $18 around the call. (This case is not
3695 needed for 32 bit functions that call 16 bit functions, because
3696 16 bit functions always return floating point values in both
3697 $f0/$f1 and $2/$3.)
3698
3699 Note that in all cases FNNAME might be defined statically.
3700 Therefore, FNNAME is not used literally. Instead, the relocation
3701 information will indicate which symbol the section is for.
3702
3703 We record any stubs that we find in the symbol table. */
3704
3705#define FN_STUB ".mips16.fn."
3706#define CALL_STUB ".mips16.call."
3707#define CALL_FP_STUB ".mips16.call.fp."
3708
252b5132
RH
3709/* MIPS ELF linker hash table. */
3710
3711struct mips_elf_link_hash_table
3712{
3713 struct elf_link_hash_table root;
3714#if 0
3715 /* We no longer use this. */
3716 /* String section indices for the dynamic section symbols. */
3717 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3718#endif
3719 /* The number of .rtproc entries. */
3720 bfd_size_type procedure_count;
3721 /* The size of the .compact_rel section (if SGI_COMPAT). */
3722 bfd_size_type compact_rel_size;
3723 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3724 entry is set to the address of __rld_obj_head as in Irix 5. */
3725 boolean use_rld_obj_head;
3726 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3727 bfd_vma rld_value;
3728 /* This is set if we see any mips16 stub sections. */
3729 boolean mips16_stubs_seen;
3730};
3731
3732/* Look up an entry in a MIPS ELF linker hash table. */
3733
3734#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3735 ((struct mips_elf_link_hash_entry *) \
3736 elf_link_hash_lookup (&(table)->root, (string), (create), \
3737 (copy), (follow)))
3738
3739/* Traverse a MIPS ELF linker hash table. */
3740
3741#define mips_elf_link_hash_traverse(table, func, info) \
3742 (elf_link_hash_traverse \
3743 (&(table)->root, \
3744 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3745 (info)))
3746
3747/* Get the MIPS ELF linker hash table from a link_info structure. */
3748
3749#define mips_elf_hash_table(p) \
3750 ((struct mips_elf_link_hash_table *) ((p)->hash))
3751
3752static boolean mips_elf_output_extsym
3753 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3754
3755/* Create an entry in a MIPS ELF linker hash table. */
3756
3757static struct bfd_hash_entry *
3758mips_elf_link_hash_newfunc (entry, table, string)
3759 struct bfd_hash_entry *entry;
3760 struct bfd_hash_table *table;
3761 const char *string;
3762{
3763 struct mips_elf_link_hash_entry *ret =
3764 (struct mips_elf_link_hash_entry *) entry;
3765
3766 /* Allocate the structure if it has not already been allocated by a
3767 subclass. */
3768 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3769 ret = ((struct mips_elf_link_hash_entry *)
3770 bfd_hash_allocate (table,
3771 sizeof (struct mips_elf_link_hash_entry)));
3772 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3773 return (struct bfd_hash_entry *) ret;
3774
3775 /* Call the allocation method of the superclass. */
3776 ret = ((struct mips_elf_link_hash_entry *)
3777 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3778 table, string));
3779 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3780 {
3781 /* Set local fields. */
3782 memset (&ret->esym, 0, sizeof (EXTR));
3783 /* We use -2 as a marker to indicate that the information has
3784 not been set. -1 means there is no associated ifd. */
3785 ret->esym.ifd = -2;
a3c7651d 3786 ret->possibly_dynamic_relocs = 0;
c6142e5d 3787 ret->min_dyn_reloc_index = 0;
252b5132
RH
3788 ret->fn_stub = NULL;
3789 ret->need_fn_stub = false;
3790 ret->call_stub = NULL;
3791 ret->call_fp_stub = NULL;
3792 }
3793
3794 return (struct bfd_hash_entry *) ret;
3795}
3796
3797/* Create a MIPS ELF linker hash table. */
3798
103186c6
MM
3799struct bfd_link_hash_table *
3800_bfd_mips_elf_link_hash_table_create (abfd)
252b5132
RH
3801 bfd *abfd;
3802{
3803 struct mips_elf_link_hash_table *ret;
3804
3805 ret = ((struct mips_elf_link_hash_table *)
3806 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
3807 if (ret == (struct mips_elf_link_hash_table *) NULL)
3808 return NULL;
3809
3810 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
3811 mips_elf_link_hash_newfunc))
3812 {
3813 bfd_release (abfd, ret);
3814 return NULL;
3815 }
3816
3817#if 0
3818 /* We no longer use this. */
3819 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
3820 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
3821#endif
3822 ret->procedure_count = 0;
3823 ret->compact_rel_size = 0;
3824 ret->use_rld_obj_head = false;
3825 ret->rld_value = 0;
3826 ret->mips16_stubs_seen = false;
3827
3828 return &ret->root.root;
3829}
3830
3831/* Hook called by the linker routine which adds symbols from an object
3832 file. We must handle the special MIPS section numbers here. */
3833
3834/*ARGSUSED*/
103186c6
MM
3835boolean
3836_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
252b5132
RH
3837 bfd *abfd;
3838 struct bfd_link_info *info;
3839 const Elf_Internal_Sym *sym;
3840 const char **namep;
5f771d47 3841 flagword *flagsp ATTRIBUTE_UNUSED;
252b5132
RH
3842 asection **secp;
3843 bfd_vma *valp;
3844{
3845 if (SGI_COMPAT (abfd)
3846 && (abfd->flags & DYNAMIC) != 0
3847 && strcmp (*namep, "_rld_new_interface") == 0)
3848 {
3849 /* Skip Irix 5 rld entry name. */
3850 *namep = NULL;
3851 return true;
3852 }
3853
3854 switch (sym->st_shndx)
3855 {
3856 case SHN_COMMON:
3857 /* Common symbols less than the GP size are automatically
3858 treated as SHN_MIPS_SCOMMON symbols. */
7403cb63
MM
3859 if (sym->st_size > elf_gp_size (abfd)
3860 || IRIX_COMPAT (abfd) == ict_irix6)
252b5132
RH
3861 break;
3862 /* Fall through. */
3863 case SHN_MIPS_SCOMMON:
3864 *secp = bfd_make_section_old_way (abfd, ".scommon");
3865 (*secp)->flags |= SEC_IS_COMMON;
3866 *valp = sym->st_size;
3867 break;
3868
3869 case SHN_MIPS_TEXT:
3870 /* This section is used in a shared object. */
3871 if (mips_elf_text_section_ptr == NULL)
3872 {
3873 /* Initialize the section. */
3874 mips_elf_text_section.name = ".text";
3875 mips_elf_text_section.flags = SEC_NO_FLAGS;
3876 mips_elf_text_section.output_section = NULL;
3877 mips_elf_text_section.symbol = &mips_elf_text_symbol;
3878 mips_elf_text_section.symbol_ptr_ptr = &mips_elf_text_symbol_ptr;
3879 mips_elf_text_symbol.name = ".text";
3880 mips_elf_text_symbol.flags = BSF_SECTION_SYM;
3881 mips_elf_text_symbol.section = &mips_elf_text_section;
3882 mips_elf_text_symbol_ptr = &mips_elf_text_symbol;
3883 mips_elf_text_section_ptr = &mips_elf_text_section;
3884 }
3885 /* This code used to do *secp = bfd_und_section_ptr if
3886 info->shared. I don't know why, and that doesn't make sense,
3887 so I took it out. */
3888 *secp = mips_elf_text_section_ptr;
3889 break;
3890
3891 case SHN_MIPS_ACOMMON:
3892 /* Fall through. XXX Can we treat this as allocated data? */
3893 case SHN_MIPS_DATA:
3894 /* This section is used in a shared object. */
3895 if (mips_elf_data_section_ptr == NULL)
3896 {
3897 /* Initialize the section. */
3898 mips_elf_data_section.name = ".data";
3899 mips_elf_data_section.flags = SEC_NO_FLAGS;
3900 mips_elf_data_section.output_section = NULL;
3901 mips_elf_data_section.symbol = &mips_elf_data_symbol;
3902 mips_elf_data_section.symbol_ptr_ptr = &mips_elf_data_symbol_ptr;
3903 mips_elf_data_symbol.name = ".data";
3904 mips_elf_data_symbol.flags = BSF_SECTION_SYM;
3905 mips_elf_data_symbol.section = &mips_elf_data_section;
3906 mips_elf_data_symbol_ptr = &mips_elf_data_symbol;
3907 mips_elf_data_section_ptr = &mips_elf_data_section;
3908 }
3909 /* This code used to do *secp = bfd_und_section_ptr if
3910 info->shared. I don't know why, and that doesn't make sense,
3911 so I took it out. */
3912 *secp = mips_elf_data_section_ptr;
3913 break;
3914
3915 case SHN_MIPS_SUNDEFINED:
3916 *secp = bfd_und_section_ptr;
3917 break;
3918 }
3919
3920 if (SGI_COMPAT (abfd)
3921 && ! info->shared
3922 && info->hash->creator == abfd->xvec
3923 && strcmp (*namep, "__rld_obj_head") == 0)
3924 {
3925 struct elf_link_hash_entry *h;
3926
3927 /* Mark __rld_obj_head as dynamic. */
3928 h = NULL;
3929 if (! (_bfd_generic_link_add_one_symbol
3930 (info, abfd, *namep, BSF_GLOBAL, *secp,
3931 (bfd_vma) *valp, (const char *) NULL, false,
3932 get_elf_backend_data (abfd)->collect,
3933 (struct bfd_link_hash_entry **) &h)))
3934 return false;
3935 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
3936 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3937 h->type = STT_OBJECT;
3938
3939 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3940 return false;
3941
3942 mips_elf_hash_table (info)->use_rld_obj_head = true;
3943 }
3944
3945 /* If this is a mips16 text symbol, add 1 to the value to make it
3946 odd. This will cause something like .word SYM to come up with
3947 the right value when it is loaded into the PC. */
3948 if (sym->st_other == STO_MIPS16)
3949 ++*valp;
3950
3951 return true;
3952}
3953
3954/* Structure used to pass information to mips_elf_output_extsym. */
3955
3956struct extsym_info
3957{
3958 bfd *abfd;
3959 struct bfd_link_info *info;
3960 struct ecoff_debug_info *debug;
3961 const struct ecoff_debug_swap *swap;
3962 boolean failed;
3963};
3964
3965/* This routine is used to write out ECOFF debugging external symbol
3966 information. It is called via mips_elf_link_hash_traverse. The
3967 ECOFF external symbol information must match the ELF external
3968 symbol information. Unfortunately, at this point we don't know
3969 whether a symbol is required by reloc information, so the two
3970 tables may wind up being different. We must sort out the external
3971 symbol information before we can set the final size of the .mdebug
3972 section, and we must set the size of the .mdebug section before we
3973 can relocate any sections, and we can't know which symbols are
3974 required by relocation until we relocate the sections.
3975 Fortunately, it is relatively unlikely that any symbol will be
3976 stripped but required by a reloc. In particular, it can not happen
3977 when generating a final executable. */
3978
3979static boolean
3980mips_elf_output_extsym (h, data)
3981 struct mips_elf_link_hash_entry *h;
3982 PTR data;
3983{
3984 struct extsym_info *einfo = (struct extsym_info *) data;
3985 boolean strip;
3986 asection *sec, *output_section;
3987
3988 if (h->root.indx == -2)
3989 strip = false;
3990 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3991 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
3992 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3993 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
3994 strip = true;
3995 else if (einfo->info->strip == strip_all
3996 || (einfo->info->strip == strip_some
3997 && bfd_hash_lookup (einfo->info->keep_hash,
3998 h->root.root.root.string,
3999 false, false) == NULL))
4000 strip = true;
4001 else
4002 strip = false;
4003
4004 if (strip)
4005 return true;
4006
4007 if (h->esym.ifd == -2)
4008 {
4009 h->esym.jmptbl = 0;
4010 h->esym.cobol_main = 0;
4011 h->esym.weakext = 0;
4012 h->esym.reserved = 0;
4013 h->esym.ifd = ifdNil;
4014 h->esym.asym.value = 0;
4015 h->esym.asym.st = stGlobal;
4016
4017 if (SGI_COMPAT (einfo->abfd)
4018 && (h->root.root.type == bfd_link_hash_undefined
4019 || h->root.root.type == bfd_link_hash_undefweak))
4020 {
4021 const char *name;
4022
4023 /* Use undefined class. Also, set class and type for some
4024 special symbols. */
4025 name = h->root.root.root.string;
4026 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4027 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4028 {
4029 h->esym.asym.sc = scData;
4030 h->esym.asym.st = stLabel;
4031 h->esym.asym.value = 0;
4032 }
4033 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4034 {
4035 h->esym.asym.sc = scAbs;
4036 h->esym.asym.st = stLabel;
4037 h->esym.asym.value =
4038 mips_elf_hash_table (einfo->info)->procedure_count;
4039 }
4040 else if (strcmp (name, "_gp_disp") == 0)
4041 {
4042 h->esym.asym.sc = scAbs;
4043 h->esym.asym.st = stLabel;
4044 h->esym.asym.value = elf_gp (einfo->abfd);
4045 }
4046 else
4047 h->esym.asym.sc = scUndefined;
4048 }
4049 else if (h->root.root.type != bfd_link_hash_defined
4050 && h->root.root.type != bfd_link_hash_defweak)
4051 h->esym.asym.sc = scAbs;
4052 else
4053 {
4054 const char *name;
4055
4056 sec = h->root.root.u.def.section;
4057 output_section = sec->output_section;
4058
4059 /* When making a shared library and symbol h is the one from
4060 the another shared library, OUTPUT_SECTION may be null. */
4061 if (output_section == NULL)
4062 h->esym.asym.sc = scUndefined;
4063 else
4064 {
4065 name = bfd_section_name (output_section->owner, output_section);
4066
4067 if (strcmp (name, ".text") == 0)
4068 h->esym.asym.sc = scText;
4069 else if (strcmp (name, ".data") == 0)
4070 h->esym.asym.sc = scData;
4071 else if (strcmp (name, ".sdata") == 0)
4072 h->esym.asym.sc = scSData;
4073 else if (strcmp (name, ".rodata") == 0
4074 || strcmp (name, ".rdata") == 0)
4075 h->esym.asym.sc = scRData;
4076 else if (strcmp (name, ".bss") == 0)
4077 h->esym.asym.sc = scBss;
4078 else if (strcmp (name, ".sbss") == 0)
4079 h->esym.asym.sc = scSBss;
4080 else if (strcmp (name, ".init") == 0)
4081 h->esym.asym.sc = scInit;
4082 else if (strcmp (name, ".fini") == 0)
4083 h->esym.asym.sc = scFini;
4084 else
4085 h->esym.asym.sc = scAbs;
4086 }
4087 }
4088
4089 h->esym.asym.reserved = 0;
4090 h->esym.asym.index = indexNil;
4091 }
4092
4093 if (h->root.root.type == bfd_link_hash_common)
4094 h->esym.asym.value = h->root.root.u.c.size;
4095 else if (h->root.root.type == bfd_link_hash_defined
4096 || h->root.root.type == bfd_link_hash_defweak)
4097 {
4098 if (h->esym.asym.sc == scCommon)
4099 h->esym.asym.sc = scBss;
4100 else if (h->esym.asym.sc == scSCommon)
4101 h->esym.asym.sc = scSBss;
4102
4103 sec = h->root.root.u.def.section;
4104 output_section = sec->output_section;
4105 if (output_section != NULL)
4106 h->esym.asym.value = (h->root.root.u.def.value
4107 + sec->output_offset
4108 + output_section->vma);
4109 else
4110 h->esym.asym.value = 0;
4111 }
4112 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4113 {
4114 /* Set type and value for a symbol with a function stub. */
4115 h->esym.asym.st = stProc;
4116 sec = h->root.root.u.def.section;
4117 if (sec == NULL)
4118 h->esym.asym.value = 0;
4119 else
4120 {
4121 output_section = sec->output_section;
4122 if (output_section != NULL)
4123 h->esym.asym.value = (h->root.plt.offset
4124 + sec->output_offset
4125 + output_section->vma);
4126 else
4127 h->esym.asym.value = 0;
4128 }
4129#if 0 /* FIXME? */
4130 h->esym.ifd = 0;
4131#endif
4132 }
4133
4134 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4135 h->root.root.root.string,
4136 &h->esym))
4137 {
4138 einfo->failed = true;
4139 return false;
4140 }
4141
4142 return true;
4143}
4144
4145/* Create a runtime procedure table from the .mdebug section. */
4146
4147static boolean
4148mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4149 PTR handle;
4150 bfd *abfd;
4151 struct bfd_link_info *info;
4152 asection *s;
4153 struct ecoff_debug_info *debug;
4154{
4155 const struct ecoff_debug_swap *swap;
4156 HDRR *hdr = &debug->symbolic_header;
4157 RPDR *rpdr, *rp;
4158 struct rpdr_ext *erp;
4159 PTR rtproc;
4160 struct pdr_ext *epdr;
4161 struct sym_ext *esym;
4162 char *ss, **sv;
4163 char *str;
4164 unsigned long size, count;
4165 unsigned long sindex;
4166 unsigned long i;
4167 PDR pdr;
4168 SYMR sym;
4169 const char *no_name_func = _("static procedure (no name)");
4170
4171 epdr = NULL;
4172 rpdr = NULL;
4173 esym = NULL;
4174 ss = NULL;
4175 sv = NULL;
4176
4177 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4178
4179 sindex = strlen (no_name_func) + 1;
4180 count = hdr->ipdMax;
4181 if (count > 0)
4182 {
4183 size = swap->external_pdr_size;
4184
4185 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4186 if (epdr == NULL)
4187 goto error_return;
4188
4189 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4190 goto error_return;
4191
4192 size = sizeof (RPDR);
4193 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4194 if (rpdr == NULL)
4195 goto error_return;
4196
4197 sv = (char **) bfd_malloc (sizeof (char *) * count);
4198 if (sv == NULL)
4199 goto error_return;
4200
4201 count = hdr->isymMax;
4202 size = swap->external_sym_size;
4203 esym = (struct sym_ext *) bfd_malloc (size * count);
4204 if (esym == NULL)
4205 goto error_return;
4206
4207 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4208 goto error_return;
4209
4210 count = hdr->issMax;
4211 ss = (char *) bfd_malloc (count);
4212 if (ss == NULL)
4213 goto error_return;
4214 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4215 goto error_return;
4216
4217 count = hdr->ipdMax;
4218 for (i = 0; i < count; i++, rp++)
4219 {
4220 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4221 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4222 rp->adr = sym.value;
4223 rp->regmask = pdr.regmask;
4224 rp->regoffset = pdr.regoffset;
4225 rp->fregmask = pdr.fregmask;
4226 rp->fregoffset = pdr.fregoffset;
4227 rp->frameoffset = pdr.frameoffset;
4228 rp->framereg = pdr.framereg;
4229 rp->pcreg = pdr.pcreg;
4230 rp->irpss = sindex;
4231 sv[i] = ss + sym.iss;
4232 sindex += strlen (sv[i]) + 1;
4233 }
4234 }
4235
4236 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4237 size = BFD_ALIGN (size, 16);
4238 rtproc = (PTR) bfd_alloc (abfd, size);
4239 if (rtproc == NULL)
4240 {
4241 mips_elf_hash_table (info)->procedure_count = 0;
4242 goto error_return;
4243 }
4244
4245 mips_elf_hash_table (info)->procedure_count = count + 2;
4246
4247 erp = (struct rpdr_ext *) rtproc;
4248 memset (erp, 0, sizeof (struct rpdr_ext));
4249 erp++;
4250 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4251 strcpy (str, no_name_func);
4252 str += strlen (no_name_func) + 1;
4253 for (i = 0; i < count; i++)
4254 {
4255 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4256 strcpy (str, sv[i]);
4257 str += strlen (sv[i]) + 1;
4258 }
4259 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4260
4261 /* Set the size and contents of .rtproc section. */
4262 s->_raw_size = size;
4263 s->contents = (bfd_byte *) rtproc;
4264
4265 /* Skip this section later on (I don't think this currently
4266 matters, but someday it might). */
4267 s->link_order_head = (struct bfd_link_order *) NULL;
4268
4269 if (epdr != NULL)
4270 free (epdr);
4271 if (rpdr != NULL)
4272 free (rpdr);
4273 if (esym != NULL)
4274 free (esym);
4275 if (ss != NULL)
4276 free (ss);
4277 if (sv != NULL)
4278 free (sv);
4279
4280 return true;
4281
4282 error_return:
4283 if (epdr != NULL)
4284 free (epdr);
4285 if (rpdr != NULL)
4286 free (rpdr);
4287 if (esym != NULL)
4288 free (esym);
4289 if (ss != NULL)
4290 free (ss);
4291 if (sv != NULL)
4292 free (sv);
4293 return false;
4294}
4295
4296/* A comparison routine used to sort .gptab entries. */
4297
4298static int
4299gptab_compare (p1, p2)
4300 const PTR p1;
4301 const PTR p2;
4302{
4303 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4304 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4305
4306 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4307}
4308
4309/* We need to use a special link routine to handle the .reginfo and
4310 the .mdebug sections. We need to merge all instances of these
4311 sections together, not write them all out sequentially. */
4312
103186c6
MM
4313boolean
4314_bfd_mips_elf_final_link (abfd, info)
252b5132
RH
4315 bfd *abfd;
4316 struct bfd_link_info *info;
4317{
4318 asection **secpp;
4319 asection *o;
4320 struct bfd_link_order *p;
4321 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4322 asection *rtproc_sec;
4323 Elf32_RegInfo reginfo;
4324 struct ecoff_debug_info debug;
4325 const struct ecoff_debug_swap *swap
4326 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4327 HDRR *symhdr = &debug.symbolic_header;
4328 PTR mdebug_handle = NULL;
4329
303f629d
MM
4330 /* If all the things we linked together were PIC, but we're
4331 producing an executable (rather than a shared object), then the
4332 resulting file is CPIC (i.e., it calls PIC code.) */
0dda5f7a
ILT
4333 if (!info->shared
4334 && !info->relocateable
4335 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
252b5132 4336 {
303f629d
MM
4337 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4338 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
252b5132
RH
4339 }
4340
b3be9b46
RH
4341 /* We'd carefully arranged the dynamic symbol indices, and then the
4342 generic size_dynamic_sections renumbered them out from under us.
4343 Rather than trying somehow to prevent the renumbering, just do
4344 the sort again. */
441d6d79 4345 if (elf_hash_table (info)->dynamic_sections_created)
b3be9b46
RH
4346 {
4347 bfd *dynobj;
4348 asection *got;
4349 struct mips_got_info *g;
4350
435394bf
MM
4351 /* When we resort, we must tell mips_elf_sort_hash_table what
4352 the lowest index it may use is. That's the number of section
4353 symbols we're going to add. The generic ELF linker only
4354 adds these symbols when building a shared object. Note that
4355 we count the sections after (possibly) removing the .options
4356 section above. */
4357 if (!mips_elf_sort_hash_table (info, (info->shared
4358 ? bfd_count_sections (abfd) + 1
4359 : 1)))
b3be9b46
RH
4360 return false;
4361
4362 /* Make sure we didn't grow the global .got region. */
4363 dynobj = elf_hash_table (info)->dynobj;
4364 got = bfd_get_section_by_name (dynobj, ".got");
4365 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4366
8b237a89
MM
4367 if (g->global_gotsym != NULL)
4368 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4369 - g->global_gotsym->dynindx)
4370 <= g->global_gotno);
b3be9b46
RH
4371 }
4372
303f629d
MM
4373 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4374 include it, even though we don't process it quite right. (Some
4375 entries are supposed to be merged.) Empirically, we seem to be
4376 better off including it then not. */
4377 if (IRIX_COMPAT (abfd) == ict_irix5)
4378 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4379 {
4380 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4381 {
4382 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4383 if (p->type == bfd_indirect_link_order)
4384 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
4385 (*secpp)->link_order_head = NULL;
4386 *secpp = (*secpp)->next;
4387 --abfd->section_count;
4388
4389 break;
4390 }
4391 }
4392
252b5132
RH
4393 /* Get a value for the GP register. */
4394 if (elf_gp (abfd) == 0)
4395 {
4396 struct bfd_link_hash_entry *h;
4397
4398 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4399 if (h != (struct bfd_link_hash_entry *) NULL
4400 && h->type == bfd_link_hash_defined)
4401 elf_gp (abfd) = (h->u.def.value
4402 + h->u.def.section->output_section->vma
4403 + h->u.def.section->output_offset);
0db63c18
MM
4404 else if (info->relocateable)
4405 {
4406 bfd_vma lo;
4407
4408 /* Find the GP-relative section with the lowest offset. */
4409 lo = (bfd_vma) -1;
4410 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4411 if (o->vma < lo
4412 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4413 lo = o->vma;
4414
4415 /* And calculate GP relative to that. */
4416 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4417 }
252b5132
RH
4418 else
4419 {
4420 /* If the relocate_section function needs to do a reloc
4421 involving the GP value, it should make a reloc_dangerous
4422 callback to warn that GP is not defined. */
4423 }
4424 }
4425
4426 /* Go through the sections and collect the .reginfo and .mdebug
4427 information. */
4428 reginfo_sec = NULL;
4429 mdebug_sec = NULL;
4430 gptab_data_sec = NULL;
4431 gptab_bss_sec = NULL;
4432 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4433 {
4434 if (strcmp (o->name, ".reginfo") == 0)
4435 {
4436 memset (&reginfo, 0, sizeof reginfo);
4437
4438 /* We have found the .reginfo section in the output file.
4439 Look through all the link_orders comprising it and merge
4440 the information together. */
4441 for (p = o->link_order_head;
4442 p != (struct bfd_link_order *) NULL;
4443 p = p->next)
4444 {
4445 asection *input_section;
4446 bfd *input_bfd;
4447 Elf32_External_RegInfo ext;
4448 Elf32_RegInfo sub;
4449
4450 if (p->type != bfd_indirect_link_order)
4451 {
4452 if (p->type == bfd_fill_link_order)
4453 continue;
4454 abort ();
4455 }
4456
4457 input_section = p->u.indirect.section;
4458 input_bfd = input_section->owner;
4459
4460 /* The linker emulation code has probably clobbered the
4461 size to be zero bytes. */
4462 if (input_section->_raw_size == 0)
4463 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4464
4465 if (! bfd_get_section_contents (input_bfd, input_section,
4466 (PTR) &ext,
4467 (file_ptr) 0,
4468 sizeof ext))
4469 return false;
4470
4471 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4472
4473 reginfo.ri_gprmask |= sub.ri_gprmask;
4474 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4475 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4476 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4477 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4478
4479 /* ri_gp_value is set by the function
4480 mips_elf32_section_processing when the section is
4481 finally written out. */
4482
4483 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4484 elf_link_input_bfd ignores this section. */
4485 input_section->flags &=~ SEC_HAS_CONTENTS;
4486 }
4487
4488 /* Size has been set in mips_elf_always_size_sections */
4489 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4490
4491 /* Skip this section later on (I don't think this currently
4492 matters, but someday it might). */
4493 o->link_order_head = (struct bfd_link_order *) NULL;
4494
4495 reginfo_sec = o;
4496 }
4497
4498 if (strcmp (o->name, ".mdebug") == 0)
4499 {
4500 struct extsym_info einfo;
4501
4502 /* We have found the .mdebug section in the output file.
4503 Look through all the link_orders comprising it and merge
4504 the information together. */
4505 symhdr->magic = swap->sym_magic;
4506 /* FIXME: What should the version stamp be? */
4507 symhdr->vstamp = 0;
4508 symhdr->ilineMax = 0;
4509 symhdr->cbLine = 0;
4510 symhdr->idnMax = 0;
4511 symhdr->ipdMax = 0;
4512 symhdr->isymMax = 0;
4513 symhdr->ioptMax = 0;
4514 symhdr->iauxMax = 0;
4515 symhdr->issMax = 0;
4516 symhdr->issExtMax = 0;
4517 symhdr->ifdMax = 0;
4518 symhdr->crfd = 0;
4519 symhdr->iextMax = 0;
4520
4521 /* We accumulate the debugging information itself in the
4522 debug_info structure. */
4523 debug.line = NULL;
4524 debug.external_dnr = NULL;
4525 debug.external_pdr = NULL;
4526 debug.external_sym = NULL;
4527 debug.external_opt = NULL;
4528 debug.external_aux = NULL;
4529 debug.ss = NULL;
4530 debug.ssext = debug.ssext_end = NULL;
4531 debug.external_fdr = NULL;
4532 debug.external_rfd = NULL;
4533 debug.external_ext = debug.external_ext_end = NULL;
4534
4535 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4536 if (mdebug_handle == (PTR) NULL)
4537 return false;
4538
4539 if (SGI_COMPAT (abfd))
4540 {
4541 asection *s;
4542 EXTR esym;
4543 bfd_vma last;
4544 unsigned int i;
4545 static const char * const name[] =
4546 { ".text", ".init", ".fini", ".data",
4547 ".rodata", ".sdata", ".sbss", ".bss" };
4548 static const int sc[] = { scText, scInit, scFini, scData,
4549 scRData, scSData, scSBss, scBss };
4550
4551 esym.jmptbl = 0;
4552 esym.cobol_main = 0;
4553 esym.weakext = 0;
4554 esym.reserved = 0;
4555 esym.ifd = ifdNil;
4556 esym.asym.iss = issNil;
4557 esym.asym.st = stLocal;
4558 esym.asym.reserved = 0;
4559 esym.asym.index = indexNil;
4560 last = 0;
4561 for (i = 0; i < 8; i++)
4562 {
4563 esym.asym.sc = sc[i];
4564 s = bfd_get_section_by_name (abfd, name[i]);
4565 if (s != NULL)
4566 {
4567 esym.asym.value = s->vma;
4568 last = s->vma + s->_raw_size;
4569 }
4570 else
4571 esym.asym.value = last;
4572
4573 if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
4574 name[i], &esym))
4575 return false;
4576 }
4577 }
4578
4579 for (p = o->link_order_head;
4580 p != (struct bfd_link_order *) NULL;
4581 p = p->next)
4582 {
4583 asection *input_section;
4584 bfd *input_bfd;
4585 const struct ecoff_debug_swap *input_swap;
4586 struct ecoff_debug_info input_debug;
4587 char *eraw_src;
4588 char *eraw_end;
4589
4590 if (p->type != bfd_indirect_link_order)
4591 {
4592 if (p->type == bfd_fill_link_order)
4593 continue;
4594 abort ();
4595 }
4596
4597 input_section = p->u.indirect.section;
4598 input_bfd = input_section->owner;
4599
4600 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4601 || (get_elf_backend_data (input_bfd)
4602 ->elf_backend_ecoff_debug_swap) == NULL)
4603 {
4604 /* I don't know what a non MIPS ELF bfd would be
4605 doing with a .mdebug section, but I don't really
4606 want to deal with it. */
4607 continue;
4608 }
4609
4610 input_swap = (get_elf_backend_data (input_bfd)
4611 ->elf_backend_ecoff_debug_swap);
4612
4613 BFD_ASSERT (p->size == input_section->_raw_size);
4614
4615 /* The ECOFF linking code expects that we have already
4616 read in the debugging information and set up an
4617 ecoff_debug_info structure, so we do that now. */
4618 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4619 &input_debug))
4620 return false;
4621
4622 if (! (bfd_ecoff_debug_accumulate
4623 (mdebug_handle, abfd, &debug, swap, input_bfd,
4624 &input_debug, input_swap, info)))
4625 return false;
4626
4627 /* Loop through the external symbols. For each one with
4628 interesting information, try to find the symbol in
4629 the linker global hash table and save the information
4630 for the output external symbols. */
4631 eraw_src = input_debug.external_ext;
4632 eraw_end = (eraw_src
4633 + (input_debug.symbolic_header.iextMax
4634 * input_swap->external_ext_size));
4635 for (;
4636 eraw_src < eraw_end;
4637 eraw_src += input_swap->external_ext_size)
4638 {
4639 EXTR ext;
4640 const char *name;
4641 struct mips_elf_link_hash_entry *h;
4642
4643 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4644 if (ext.asym.sc == scNil
4645 || ext.asym.sc == scUndefined
4646 || ext.asym.sc == scSUndefined)
4647 continue;
4648
4649 name = input_debug.ssext + ext.asym.iss;
4650 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4651 name, false, false, true);
4652 if (h == NULL || h->esym.ifd != -2)
4653 continue;
4654
4655 if (ext.ifd != -1)
4656 {
4657 BFD_ASSERT (ext.ifd
4658 < input_debug.symbolic_header.ifdMax);
4659 ext.ifd = input_debug.ifdmap[ext.ifd];
4660 }
4661
4662 h->esym = ext;
4663 }
4664
4665 /* Free up the information we just read. */
4666 free (input_debug.line);
4667 free (input_debug.external_dnr);
4668 free (input_debug.external_pdr);
4669 free (input_debug.external_sym);
4670 free (input_debug.external_opt);
4671 free (input_debug.external_aux);
4672 free (input_debug.ss);
4673 free (input_debug.ssext);
4674 free (input_debug.external_fdr);
4675 free (input_debug.external_rfd);
4676 free (input_debug.external_ext);
4677
4678 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4679 elf_link_input_bfd ignores this section. */
4680 input_section->flags &=~ SEC_HAS_CONTENTS;
4681 }
4682
4683 if (SGI_COMPAT (abfd) && info->shared)
4684 {
4685 /* Create .rtproc section. */
4686 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4687 if (rtproc_sec == NULL)
4688 {
4689 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4690 | SEC_LINKER_CREATED | SEC_READONLY);
4691
4692 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4693 if (rtproc_sec == NULL
4694 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4695 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4696 return false;
4697 }
4698
4699 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4700 info, rtproc_sec, &debug))
4701 return false;
4702 }
4703
4704 /* Build the external symbol information. */
4705 einfo.abfd = abfd;
4706 einfo.info = info;
4707 einfo.debug = &debug;
4708 einfo.swap = swap;
4709 einfo.failed = false;
4710 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4711 mips_elf_output_extsym,
4712 (PTR) &einfo);
4713 if (einfo.failed)
4714 return false;
4715
4716 /* Set the size of the .mdebug section. */
4717 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4718
4719 /* Skip this section later on (I don't think this currently
4720 matters, but someday it might). */
4721 o->link_order_head = (struct bfd_link_order *) NULL;
4722
4723 mdebug_sec = o;
4724 }
4725
4726 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4727 {
4728 const char *subname;
4729 unsigned int c;
4730 Elf32_gptab *tab;
4731 Elf32_External_gptab *ext_tab;
4732 unsigned int i;
4733
4734 /* The .gptab.sdata and .gptab.sbss sections hold
4735 information describing how the small data area would
4736 change depending upon the -G switch. These sections
4737 not used in executables files. */
4738 if (! info->relocateable)
4739 {
4740 asection **secpp;
4741
4742 for (p = o->link_order_head;
4743 p != (struct bfd_link_order *) NULL;
4744 p = p->next)
4745 {
4746 asection *input_section;
4747
4748 if (p->type != bfd_indirect_link_order)
4749 {
4750 if (p->type == bfd_fill_link_order)
4751 continue;
4752 abort ();
4753 }
4754
4755 input_section = p->u.indirect.section;
4756
4757 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4758 elf_link_input_bfd ignores this section. */
4759 input_section->flags &=~ SEC_HAS_CONTENTS;
4760 }
4761
4762 /* Skip this section later on (I don't think this
4763 currently matters, but someday it might). */
4764 o->link_order_head = (struct bfd_link_order *) NULL;
4765
4766 /* Really remove the section. */
4767 for (secpp = &abfd->sections;
4768 *secpp != o;
4769 secpp = &(*secpp)->next)
4770 ;
4771 *secpp = (*secpp)->next;
4772 --abfd->section_count;
4773
4774 continue;
4775 }
4776
4777 /* There is one gptab for initialized data, and one for
4778 uninitialized data. */
4779 if (strcmp (o->name, ".gptab.sdata") == 0)
4780 gptab_data_sec = o;
4781 else if (strcmp (o->name, ".gptab.sbss") == 0)
4782 gptab_bss_sec = o;
4783 else
4784 {
4785 (*_bfd_error_handler)
4786 (_("%s: illegal section name `%s'"),
4787 bfd_get_filename (abfd), o->name);
4788 bfd_set_error (bfd_error_nonrepresentable_section);
4789 return false;
4790 }
4791
4792 /* The linker script always combines .gptab.data and
4793 .gptab.sdata into .gptab.sdata, and likewise for
4794 .gptab.bss and .gptab.sbss. It is possible that there is
4795 no .sdata or .sbss section in the output file, in which
4796 case we must change the name of the output section. */
4797 subname = o->name + sizeof ".gptab" - 1;
4798 if (bfd_get_section_by_name (abfd, subname) == NULL)
4799 {
4800 if (o == gptab_data_sec)
4801 o->name = ".gptab.data";
4802 else
4803 o->name = ".gptab.bss";
4804 subname = o->name + sizeof ".gptab" - 1;
4805 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
4806 }
4807
4808 /* Set up the first entry. */
4809 c = 1;
4810 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
4811 if (tab == NULL)
4812 return false;
4813 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
4814 tab[0].gt_header.gt_unused = 0;
4815
4816 /* Combine the input sections. */
4817 for (p = o->link_order_head;
4818 p != (struct bfd_link_order *) NULL;
4819 p = p->next)
4820 {
4821 asection *input_section;
4822 bfd *input_bfd;
4823 bfd_size_type size;
4824 unsigned long last;
4825 bfd_size_type gpentry;
4826
4827 if (p->type != bfd_indirect_link_order)
4828 {
4829 if (p->type == bfd_fill_link_order)
4830 continue;
4831 abort ();
4832 }
4833
4834 input_section = p->u.indirect.section;
4835 input_bfd = input_section->owner;
4836
4837 /* Combine the gptab entries for this input section one
4838 by one. We know that the input gptab entries are
4839 sorted by ascending -G value. */
4840 size = bfd_section_size (input_bfd, input_section);
4841 last = 0;
4842 for (gpentry = sizeof (Elf32_External_gptab);
4843 gpentry < size;
4844 gpentry += sizeof (Elf32_External_gptab))
4845 {
4846 Elf32_External_gptab ext_gptab;
4847 Elf32_gptab int_gptab;
4848 unsigned long val;
4849 unsigned long add;
4850 boolean exact;
4851 unsigned int look;
4852
4853 if (! (bfd_get_section_contents
4854 (input_bfd, input_section, (PTR) &ext_gptab,
4855 gpentry, sizeof (Elf32_External_gptab))))
4856 {
4857 free (tab);
4858 return false;
4859 }
4860
4861 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
4862 &int_gptab);
4863 val = int_gptab.gt_entry.gt_g_value;
4864 add = int_gptab.gt_entry.gt_bytes - last;
4865
4866 exact = false;
4867 for (look = 1; look < c; look++)
4868 {
4869 if (tab[look].gt_entry.gt_g_value >= val)
4870 tab[look].gt_entry.gt_bytes += add;
4871
4872 if (tab[look].gt_entry.gt_g_value == val)
4873 exact = true;
4874 }
4875
4876 if (! exact)
4877 {
4878 Elf32_gptab *new_tab;
4879 unsigned int max;
4880
4881 /* We need a new table entry. */
4882 new_tab = ((Elf32_gptab *)
4883 bfd_realloc ((PTR) tab,
4884 (c + 1) * sizeof (Elf32_gptab)));
4885 if (new_tab == NULL)
4886 {
4887 free (tab);
4888 return false;
4889 }
4890 tab = new_tab;
4891 tab[c].gt_entry.gt_g_value = val;
4892 tab[c].gt_entry.gt_bytes = add;
4893
4894 /* Merge in the size for the next smallest -G
4895 value, since that will be implied by this new
4896 value. */
4897 max = 0;
4898 for (look = 1; look < c; look++)
4899 {
4900 if (tab[look].gt_entry.gt_g_value < val
4901 && (max == 0
4902 || (tab[look].gt_entry.gt_g_value
4903 > tab[max].gt_entry.gt_g_value)))
4904 max = look;
4905 }
4906 if (max != 0)
4907 tab[c].gt_entry.gt_bytes +=
4908 tab[max].gt_entry.gt_bytes;
4909
4910 ++c;
4911 }
4912
4913 last = int_gptab.gt_entry.gt_bytes;
4914 }
4915
4916 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4917 elf_link_input_bfd ignores this section. */
4918 input_section->flags &=~ SEC_HAS_CONTENTS;
4919 }
4920
4921 /* The table must be sorted by -G value. */
4922 if (c > 2)
4923 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
4924
4925 /* Swap out the table. */
4926 ext_tab = ((Elf32_External_gptab *)
4927 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
4928 if (ext_tab == NULL)
4929 {
4930 free (tab);
4931 return false;
4932 }
4933
4934 for (i = 0; i < c; i++)
4935 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
4936 free (tab);
4937
4938 o->_raw_size = c * sizeof (Elf32_External_gptab);
4939 o->contents = (bfd_byte *) ext_tab;
4940
4941 /* Skip this section later on (I don't think this currently
4942 matters, but someday it might). */
4943 o->link_order_head = (struct bfd_link_order *) NULL;
4944 }
4945 }
4946
4947 /* Invoke the regular ELF backend linker to do all the work. */
9ebbd33e
MM
4948 if (ABI_64_P (abfd))
4949 {
4950#ifdef BFD64
4951 if (!bfd_elf64_bfd_final_link (abfd, info))
4952 return false;
4953#else
4954 abort ();
103186c6 4955 return false;
9ebbd33e
MM
4956#endif /* BFD64 */
4957 }
4958 else if (!bfd_elf32_bfd_final_link (abfd, info))
4959 return false;
252b5132
RH
4960
4961 /* Now write out the computed sections. */
4962
4963 if (reginfo_sec != (asection *) NULL)
4964 {
4965 Elf32_External_RegInfo ext;
4966
4967 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
4968 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
4969 (file_ptr) 0, sizeof ext))
4970 return false;
4971 }
4972
4973 if (mdebug_sec != (asection *) NULL)
4974 {
4975 BFD_ASSERT (abfd->output_has_begun);
4976 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
4977 swap, info,
4978 mdebug_sec->filepos))
4979 return false;
4980
4981 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
4982 }
4983
4984 if (gptab_data_sec != (asection *) NULL)
4985 {
4986 if (! bfd_set_section_contents (abfd, gptab_data_sec,
4987 gptab_data_sec->contents,
4988 (file_ptr) 0,
4989 gptab_data_sec->_raw_size))
4990 return false;
4991 }
4992
4993 if (gptab_bss_sec != (asection *) NULL)
4994 {
4995 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
4996 gptab_bss_sec->contents,
4997 (file_ptr) 0,
4998 gptab_bss_sec->_raw_size))
4999 return false;
5000 }
5001
5002 if (SGI_COMPAT (abfd))
5003 {
5004 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5005 if (rtproc_sec != NULL)
5006 {
5007 if (! bfd_set_section_contents (abfd, rtproc_sec,
5008 rtproc_sec->contents,
5009 (file_ptr) 0,
5010 rtproc_sec->_raw_size))
5011 return false;
5012 }
5013 }
5014
5015 return true;
5016}
5017
5018/* Handle a MIPS ELF HI16 reloc. */
5019
5020static void
5021mips_elf_relocate_hi16 (input_bfd, relhi, rello, contents, addend)
5022 bfd *input_bfd;
5023 Elf_Internal_Rela *relhi;
5024 Elf_Internal_Rela *rello;
5025 bfd_byte *contents;
5026 bfd_vma addend;
5027{
5028 bfd_vma insn;
5029 bfd_vma addlo;
5030
5031 insn = bfd_get_32 (input_bfd, contents + relhi->r_offset);
5032
5033 addlo = bfd_get_32 (input_bfd, contents + rello->r_offset);
5034 addlo &= 0xffff;
5035
5036 addend += ((insn & 0xffff) << 16) + addlo;
5037
5038 if ((addlo & 0x8000) != 0)
5039 addend -= 0x10000;
5040 if ((addend & 0x8000) != 0)
5041 addend += 0x10000;
5042
5043 bfd_put_32 (input_bfd,
5044 (insn & 0xffff0000) | ((addend >> 16) & 0xffff),
5045 contents + relhi->r_offset);
5046}
5047
5048/* Handle a MIPS ELF local GOT16 reloc. */
5049
5050static boolean
5051mips_elf_relocate_got_local (output_bfd, input_bfd, sgot, relhi, rello,
5052 contents, addend)
5053 bfd *output_bfd;
5054 bfd *input_bfd;
5055 asection *sgot;
5056 Elf_Internal_Rela *relhi;
5057 Elf_Internal_Rela *rello;
5058 bfd_byte *contents;
5059 bfd_vma addend;
5060{
5061 unsigned int assigned_gotno;
5062 unsigned int i;
5063 bfd_vma insn;
5064 bfd_vma addlo;
5065 bfd_vma address;
5066 bfd_vma hipage;
5067 bfd_byte *got_contents;
5068 struct mips_got_info *g;
5069
5070 insn = bfd_get_32 (input_bfd, contents + relhi->r_offset);
5071
5072 addlo = bfd_get_32 (input_bfd, contents + rello->r_offset);
5073 addlo &= 0xffff;
5074
5075 addend += ((insn & 0xffff) << 16) + addlo;
5076
5077 if ((addlo & 0x8000) != 0)
5078 addend -= 0x10000;
5079 if ((addend & 0x8000) != 0)
5080 addend += 0x10000;
5081
5082 /* Get a got entry representing requested hipage. */
5083 BFD_ASSERT (elf_section_data (sgot) != NULL);
5084 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5085 BFD_ASSERT (g != NULL);
5086
5087 assigned_gotno = g->assigned_gotno;
5088 got_contents = sgot->contents;
5089 hipage = addend & 0xffff0000;
5090
5091 for (i = MIPS_RESERVED_GOTNO; i < assigned_gotno; i++)
5092 {
5093 address = bfd_get_32 (input_bfd, got_contents + i * 4);
5094 if (hipage == (address & 0xffff0000))
5095 break;
5096 }
5097
5098 if (i == assigned_gotno)
5099 {
5100 if (assigned_gotno >= g->local_gotno)
5101 {
5102 (*_bfd_error_handler)
5103 (_("more got entries are needed for hipage relocations"));
5104 bfd_set_error (bfd_error_bad_value);
5105 return false;
5106 }
5107
5108 bfd_put_32 (input_bfd, hipage, got_contents + assigned_gotno * 4);
5109 ++g->assigned_gotno;
5110 }
5111
5112 i = - ELF_MIPS_GP_OFFSET (output_bfd) + i * 4;
5113 bfd_put_32 (input_bfd, (insn & 0xffff0000) | (i & 0xffff),
5114 contents + relhi->r_offset);
5115
5116 return true;
5117}
5118
5119/* Handle MIPS ELF CALL16 reloc and global GOT16 reloc. */
5120
5121static void
5122mips_elf_relocate_global_got (input_bfd, rel, contents, offset)
5123 bfd *input_bfd;
5124 Elf_Internal_Rela *rel;
5125 bfd_byte *contents;
5126 bfd_vma offset;
5127{
5128 bfd_vma insn;
5129
5130 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
5131 bfd_put_32 (input_bfd,
5132 (insn & 0xffff0000) | (offset & 0xffff),
5133 contents + rel->r_offset);
5134}
5135
7403cb63 5136/* Returns the GOT section for ABFD. */
252b5132 5137
7403cb63
MM
5138static asection *
5139mips_elf_got_section (abfd)
5140 bfd *abfd;
252b5132 5141{
7403cb63
MM
5142 return bfd_get_section_by_name (abfd, ".got");
5143}
5144
5145/* Returns the GOT information associated with the link indicated by
5146 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5147 section. */
5148
5149static struct mips_got_info *
5150mips_elf_got_info (abfd, sgotp)
5151 bfd *abfd;
5152 asection **sgotp;
5153{
5154 asection *sgot;
252b5132
RH
5155 struct mips_got_info *g;
5156
7403cb63
MM
5157 sgot = mips_elf_got_section (abfd);
5158 BFD_ASSERT (sgot != NULL);
5159 BFD_ASSERT (elf_section_data (sgot) != NULL);
5160 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5161 BFD_ASSERT (g != NULL);
252b5132 5162
7403cb63
MM
5163 if (sgotp)
5164 *sgotp = sgot;
5165 return g;
5166}
252b5132 5167
6387d602
ILT
5168/* Return whether a relocation is against a local symbol. */
5169
5170static boolean
5171mips_elf_local_relocation_p (input_bfd, relocation, local_sections)
5172 bfd *input_bfd;
5173 const Elf_Internal_Rela *relocation;
5174 asection **local_sections;
5175{
5176 unsigned long r_symndx;
5177 Elf_Internal_Shdr *symtab_hdr;
5178
5179 r_symndx = ELF32_R_SYM (relocation->r_info);
5180 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5181 if (! elf_bad_symtab (input_bfd))
5182 return r_symndx < symtab_hdr->sh_info;
5183 else
5184 {
5185 /* The symbol table does not follow the rule that local symbols
5186 must come before globals. */
5187 return local_sections[r_symndx] != NULL;
5188 }
5189}
5190
7403cb63 5191/* Sign-extend VALUE, which has the indicated number of BITS. */
252b5132 5192
7403cb63
MM
5193static bfd_vma
5194mips_elf_sign_extend (value, bits)
5195 bfd_vma value;
5196 int bits;
5197{
5198 if (value & (1 << (bits - 1)))
5199 /* VALUE is negative. */
5200 value |= ((bfd_vma) - 1) << bits;
5201
5202 return value;
5203}
252b5132 5204
7403cb63
MM
5205/* Return non-zero if the indicated VALUE has overflowed the maximum
5206 range expressable by a signed number with the indicated number of
5207 BITS. */
252b5132 5208
7403cb63
MM
5209static boolean
5210mips_elf_overflow_p (value, bits)
5211 bfd_vma value;
5212 int bits;
5213{
5214 bfd_signed_vma svalue = (bfd_signed_vma) value;
252b5132 5215
7403cb63
MM
5216 if (svalue > (1 << (bits - 1)) - 1)
5217 /* The value is too big. */
5218 return true;
5219 else if (svalue < -(1 << (bits - 1)))
5220 /* The value is too small. */
5221 return true;
5222
5223 /* All is well. */
5224 return false;
5225}
252b5132 5226
7403cb63 5227/* Calculate the %high function. */
252b5132 5228
7403cb63
MM
5229static bfd_vma
5230mips_elf_high (value)
5231 bfd_vma value;
5232{
5233 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5234}
252b5132 5235
7403cb63
MM
5236/* Calculate the %higher function. */
5237
5238static bfd_vma
5239mips_elf_higher (value)
5f771d47 5240 bfd_vma value ATTRIBUTE_UNUSED;
7403cb63
MM
5241{
5242#ifdef BFD64
5243 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5244#else
5245 abort ();
5246 return (bfd_vma) -1;
5247#endif
5248}
5249
5250/* Calculate the %highest function. */
5251
5252static bfd_vma
5253mips_elf_highest (value)
5f771d47 5254 bfd_vma value ATTRIBUTE_UNUSED;
7403cb63
MM
5255{
5256#ifdef BFD64
5257 return ((value + (bfd_vma) 0x800080008000) > 48) & 0xffff;
5258#else
5259 abort ();
5260 return (bfd_vma) -1;
5261#endif
5262}
5263
5264/* Returns the GOT index for the global symbol indicated by H. */
5265
5266static bfd_vma
5267mips_elf_global_got_index (abfd, h)
5268 bfd *abfd;
5269 struct elf_link_hash_entry *h;
5270{
5271 bfd_vma index;
5272 asection *sgot;
5273 struct mips_got_info *g;
5274
5275 g = mips_elf_got_info (abfd, &sgot);
5276
5277 /* Once we determine the global GOT entry with the lowest dynamic
5278 symbol table index, we must put all dynamic symbols with greater
5279 indices into the GOT. That makes it easy to calculate the GOT
5280 offset. */
5281 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
103186c6
MM
5282 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5283 * MIPS_ELF_GOT_SIZE (abfd));
7403cb63
MM
5284 BFD_ASSERT (index < sgot->_raw_size);
5285
5286 return index;
5287}
5288
5289/* Returns the offset for the entry at the INDEXth position
5290 in the GOT. */
5291
5292static bfd_vma
5293mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5294 bfd *dynobj;
5295 bfd *output_bfd;
5296 bfd_vma index;
5297{
5298 asection *sgot;
5299 bfd_vma gp;
7403cb63 5300
103186c6 5301 sgot = mips_elf_got_section (dynobj);
7403cb63
MM
5302 gp = _bfd_get_gp_value (output_bfd);
5303 return (sgot->output_section->vma + sgot->output_offset + index -
5304 gp);
5305}
5306
5307/* If H is a symbol that needs a global GOT entry, but has a dynamic
5308 symbol table index lower than any we've seen to date, record it for
5309 posterity. */
5310
5311static boolean
5312mips_elf_record_global_got_symbol (h, info, g)
5313 struct elf_link_hash_entry *h;
5314 struct bfd_link_info *info;
5f771d47 5315 struct mips_got_info *g ATTRIBUTE_UNUSED;
7403cb63
MM
5316{
5317 /* A global symbol in the GOT must also be in the dynamic symbol
5318 table. */
5319 if (h->dynindx == -1
5320 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5321 return false;
5322
5323 /* If we've already marked this entry as need GOT space, we don't
5324 need to do it again. */
5325 if (h->got.offset != (bfd_vma) - 1)
5326 return true;
5327
5328 /* By setting this to a value other than -1, we are indicating that
5329 there needs to be a GOT entry for H. */
5330 h->got.offset = 0;
5331
5332 return true;
5333}
5334
5335/* This structure is passed to mips_elf_sort_hash_table_f when sorting
5336 the dynamic symbols. */
5337
5338struct mips_elf_hash_sort_data
5339{
5340 /* The symbol in the global GOT with the lowest dynamic symbol table
5341 index. */
5342 struct elf_link_hash_entry *low;
5343 /* The least dynamic symbol table index corresponding to a symbol
5344 with a GOT entry. */
5345 long min_got_dynindx;
5346 /* The greatest dynamic symbol table index not corresponding to a
5347 symbol without a GOT entry. */
5348 long max_non_got_dynindx;
5349};
5350
5351/* If H needs a GOT entry, assign it the highest available dynamic
5352 index. Otherwise, assign it the lowest available dynamic
5353 index. */
5354
5355static boolean
5356mips_elf_sort_hash_table_f (h, data)
5357 struct mips_elf_link_hash_entry *h;
5358 PTR data;
5359{
5360 struct mips_elf_hash_sort_data *hsd
5361 = (struct mips_elf_hash_sort_data *) data;
5362
5363 /* Symbols without dynamic symbol table entries aren't interesting
5364 at all. */
5365 if (h->root.dynindx == -1)
5366 return true;
5367
5368 if (h->root.got.offset != 0)
5369 h->root.dynindx = hsd->max_non_got_dynindx++;
5370 else
5371 {
5372 h->root.dynindx = --hsd->min_got_dynindx;
5373 hsd->low = (struct elf_link_hash_entry *) h;
5374 }
5375
5376 return true;
5377}
5378
5379/* Sort the dynamic symbol table so that symbols that need GOT entries
5380 appear towards the end. This reduces the amount of GOT space
b3be9b46
RH
5381 required. MAX_LOCAL is used to set the number of local symbols
5382 known to be in the dynamic symbol table. During
5383 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5384 section symbols are added and the count is higher. */
7403cb63
MM
5385
5386static boolean
b3be9b46 5387mips_elf_sort_hash_table (info, max_local)
7403cb63 5388 struct bfd_link_info *info;
b3be9b46 5389 unsigned long max_local;
7403cb63
MM
5390{
5391 struct mips_elf_hash_sort_data hsd;
5392 struct mips_got_info *g;
5393 bfd *dynobj;
5394
5395 dynobj = elf_hash_table (info)->dynobj;
5396
5397 hsd.low = NULL;
5398 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
b3be9b46 5399 hsd.max_non_got_dynindx = max_local;
7403cb63
MM
5400 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5401 elf_hash_table (info)),
5402 mips_elf_sort_hash_table_f,
5403 &hsd);
5404
5405 /* There shoud have been enough room in the symbol table to
5406 accomodate both the GOT and non-GOT symbols. */
5407 BFD_ASSERT (hsd.min_got_dynindx == hsd.max_non_got_dynindx);
5408
5409 /* Now we know which dynamic symbol has the lowest dynamic symbol
5410 table index in the GOT. */
5411 g = mips_elf_got_info (dynobj, NULL);
5412 g->global_gotsym = hsd.low;
5413
5414 return true;
5415}
5416
5417/* Create a local GOT entry for VALUE. Return the index of the entry,
5418 or -1 if it could not be created. */
5419
5420static bfd_vma
5421mips_elf_create_local_got_entry (abfd, g, sgot, value)
5422 bfd *abfd;
5423 struct mips_got_info *g;
5424 asection *sgot;
5425 bfd_vma value;
5426{
5427 if (g->assigned_gotno >= g->local_gotno)
5428 {
5429 /* We didn't allocate enough space in the GOT. */
5430 (*_bfd_error_handler)
5431 (_("not enough GOT space for local GOT entries"));
5432 bfd_set_error (bfd_error_bad_value);
5433 return (bfd_vma) -1;
5434 }
5435
103186c6
MM
5436 MIPS_ELF_PUT_WORD (abfd, value,
5437 (sgot->contents
5438 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5439 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
7403cb63
MM
5440}
5441
5442/* Returns the GOT offset at which the indicated address can be found.
5443 If there is not yet a GOT entry for this value, create one. Returns
5444 -1 if no satisfactory GOT offset can be found. */
5445
5446static bfd_vma
5447mips_elf_local_got_index (abfd, info, value)
5448 bfd *abfd;
5449 struct bfd_link_info *info;
5450 bfd_vma value;
5451{
5452 asection *sgot;
5453 struct mips_got_info *g;
5454 bfd_byte *entry;
5455
5456 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5457
5458 /* Look to see if we already have an appropriate entry. */
103186c6
MM
5459 for (entry = (sgot->contents
5460 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5461 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5462 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5463 {
103186c6 5464 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
7403cb63
MM
5465 if (address == value)
5466 return entry - sgot->contents;
5467 }
5468
5469 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5470}
5471
5472/* Find a GOT entry that is within 32KB of the VALUE. These entries
5473 are supposed to be placed at small offsets in the GOT, i.e.,
5474 within 32KB of GP. Return the index into the GOT for this page,
5475 and store the offset from this entry to the desired address in
5476 OFFSETP, if it is non-NULL. */
5477
5478static bfd_vma
5479mips_elf_got_page (abfd, info, value, offsetp)
5480 bfd *abfd;
5481 struct bfd_link_info *info;
5482 bfd_vma value;
5483 bfd_vma *offsetp;
5484{
5485 asection *sgot;
5486 struct mips_got_info *g;
5487 bfd_byte *entry;
5488 bfd_byte *last_entry;
5489 bfd_vma index;
5490 bfd_vma address;
5491
5492 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5493
5494 /* Look to see if we aleady have an appropriate entry. */
103186c6
MM
5495 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5496 for (entry = (sgot->contents
5497 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
7403cb63 5498 entry != last_entry;
103186c6 5499 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5500 {
103186c6
MM
5501 address = MIPS_ELF_GET_WORD (abfd, entry);
5502
7403cb63
MM
5503 if (!mips_elf_overflow_p (value - address, 16))
5504 {
5505 /* This entry will serve as the page pointer. We can add a
5506 16-bit number to it to get the actual address. */
5507 index = entry - sgot->contents;
5508 break;
252b5132 5509 }
7403cb63
MM
5510 }
5511
5512 /* If we didn't have an appropriate entry, we create one now. */
5513 if (entry == last_entry)
5514 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5515
5516 if (offsetp)
5517 {
103186c6 5518 address = MIPS_ELF_GET_WORD (abfd, entry);
7403cb63
MM
5519 *offsetp = value - address;
5520 }
5521
5522 return index;
5523}
5524
5525/* Find a GOT entry whose higher-order 16 bits are the same as those
5526 for value. Return the index into the GOT for this entry. */
5527
5528static bfd_vma
5529mips_elf_got16_entry (abfd, info, value)
5530 bfd *abfd;
5531 struct bfd_link_info *info;
5532 bfd_vma value;
5533{
5534 asection *sgot;
5535 struct mips_got_info *g;
5536 bfd_byte *entry;
5537 bfd_byte *last_entry;
5538 bfd_vma index;
5539 bfd_vma address;
5540
b944b044
MM
5541 /* Although the ABI says that it is "the high-order 16 bits" that we
5542 want, it is really the %high value. The complete value is
5543 calculated with a `addiu' of a LO16 relocation, just as with a
5544 HI16/LO16 pair. */
7b1f1231 5545 value = mips_elf_high (value) << 16;
7403cb63
MM
5546 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5547
5548 /* Look to see if we already have an appropriate entry. */
103186c6
MM
5549 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5550 for (entry = (sgot->contents
5551 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
7403cb63 5552 entry != last_entry;
103186c6 5553 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5554 {
103186c6 5555 address = MIPS_ELF_GET_WORD (abfd, entry);
e049a0de 5556 if ((address & 0xffff0000) == value)
252b5132 5557 {
7403cb63 5558 /* This entry has the right high-order 16 bits. */
4f2860ca 5559 index = entry - sgot->contents;
7403cb63
MM
5560 break;
5561 }
5562 }
5563
5564 /* If we didn't have an appropriate entry, we create one now. */
5565 if (entry == last_entry)
5566 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5567
5568 return index;
5569}
5570
23b255aa
MM
5571/* Returns the first R_MIPS_LO16 relocation found, beginning with
5572 RELOCATION. RELEND is one-past-the-end of the relocation table. */
7403cb63 5573
23b255aa
MM
5574static const Elf_Internal_Rela *
5575mips_elf_next_lo16_relocation (relocation, relend)
103186c6
MM
5576 const Elf_Internal_Rela *relocation;
5577 const Elf_Internal_Rela *relend;
7403cb63
MM
5578{
5579 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5580 immediately following. However, for the IRIX6 ABI, the next
5581 relocation may be a composed relocation consisting of several
5582 relocations for the same address. In that case, the R_MIPS_LO16
435394bf 5583 relocation may occur as one of these. We permit a similar
7403cb63
MM
5584 extension in general, as that is useful for GCC. */
5585 while (relocation < relend)
5586 {
5587 if (ELF32_R_TYPE (relocation->r_info) == R_MIPS_LO16)
23b255aa 5588 return relocation;
7403cb63
MM
5589
5590 ++relocation;
5591 }
5592
5593 /* We didn't find it. */
6387d602 5594 bfd_set_error (bfd_error_bad_value);
23b255aa 5595 return NULL;
7403cb63
MM
5596}
5597
7b1f1231
MM
5598/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5599 is the original relocation, which is now being transformed into a
5600 dyanmic relocation. The ADDENDP is adjusted if necessary; the
5601 caller should store the result in place of the original addend. */
7403cb63 5602
7b1f1231
MM
5603static boolean
5604mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5605 symbol, addendp, input_section)
7403cb63
MM
5606 bfd *output_bfd;
5607 struct bfd_link_info *info;
103186c6 5608 const Elf_Internal_Rela *rel;
7b1f1231
MM
5609 struct mips_elf_link_hash_entry *h;
5610 asection *sec;
5611 bfd_vma symbol;
5612 bfd_vma *addendp;
7403cb63
MM
5613 asection *input_section;
5614{
5615 Elf_Internal_Rel outrel;
5616 boolean skip;
5617 asection *sreloc;
5618 bfd *dynobj;
5619 int r_type;
5620
5621 r_type = ELF32_R_TYPE (rel->r_info);
5622 dynobj = elf_hash_table (info)->dynobj;
103186c6
MM
5623 sreloc
5624 = bfd_get_section_by_name (dynobj,
5625 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
7403cb63
MM
5626 BFD_ASSERT (sreloc != NULL);
5627
5628 skip = false;
5629
7b1f1231
MM
5630 /* We begin by assuming that the offset for the dynamic relocation
5631 is the same as for the original relocation. We'll adjust this
5632 later to reflect the correct output offsets. */
7403cb63
MM
5633 if (elf_section_data (input_section)->stab_info == NULL)
5634 outrel.r_offset = rel->r_offset;
5635 else
5636 {
7b1f1231
MM
5637 /* Except that in a stab section things are more complex.
5638 Because we compress stab information, the offset given in the
5639 relocation may not be the one we want; we must let the stabs
5640 machinery tell us the offset. */
5641 outrel.r_offset
5642 = (_bfd_stab_section_offset
5643 (output_bfd, &elf_hash_table (info)->stab_info,
5644 input_section,
5645 &elf_section_data (input_section)->stab_info,
5646 rel->r_offset));
5647 /* If we didn't need the relocation at all, this value will be
5648 -1. */
5649 if (outrel.r_offset == (bfd_vma) -1)
7403cb63 5650 skip = true;
7403cb63 5651 }
7403cb63
MM
5652
5653 /* If we've decided to skip this relocation, just output an emtpy
7b1f1231
MM
5654 record. Note that R_MIPS_NONE == 0, so that this call to memset
5655 is a way of setting R_TYPE to R_MIPS_NONE. */
7403cb63
MM
5656 if (skip)
5657 memset (&outrel, 0, sizeof (outrel));
7b1f1231
MM
5658 else
5659 {
5660 long indx;
5661 bfd_vma section_offset;
5662
5663 /* We must now calculate the dynamic symbol table index to use
5664 in the relocation. */
5665 if (h != NULL
5666 && (! info->symbolic || (h->root.elf_link_hash_flags
5667 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5668 {
5669 indx = h->root.dynindx;
5670 BFD_ASSERT (indx != -1);
5671 }
5672 else
5673 {
5674 if (sec != NULL && bfd_is_abs_section (sec))
5675 indx = 0;
5676 else if (sec == NULL || sec->owner == NULL)
5677 {
5678 bfd_set_error (bfd_error_bad_value);
5679 return false;
5680 }
5681 else
5682 {
5683 indx = elf_section_data (sec->output_section)->dynindx;
5684 if (indx == 0)
5685 abort ();
5686 }
5687
5688 /* Figure out how far the target of the relocation is from
5689 the beginning of its section. */
5690 section_offset = symbol - sec->output_section->vma;
5691 /* The relocation we're building is section-relative.
5692 Therefore, the original addend must be adjusted by the
5693 section offset. */
5694 *addendp += symbol - sec->output_section->vma;
5695 /* Now, the relocation is just against the section. */
5696 symbol = sec->output_section->vma;
5697 }
5698
5699 /* If the relocation was previously an absolute relocation, we
5700 must adjust it by the value we give it in the dynamic symbol
5701 table. */
5702 if (r_type != R_MIPS_REL32)
5703 *addendp += symbol;
5704
5705 /* The relocation is always an REL32 relocation because we don't
5706 know where the shared library will wind up at load-time. */
5707 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5708
5709 /* Adjust the output offset of the relocation to reference the
5710 correct location in the output file. */
5711 outrel.r_offset += (input_section->output_section->vma
5712 + input_section->output_offset);
5713 }
7403cb63 5714
7b1f1231
MM
5715 /* Put the relocation back out. We have to use the special
5716 relocation outputter in the 64-bit case since the 64-bit
5717 relocation format is non-standard. */
103186c6
MM
5718 if (ABI_64_P (output_bfd))
5719 {
5720 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5721 (output_bfd, &outrel,
5722 (sreloc->contents
5723 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5724 }
5725 else
5726 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5727 (((Elf32_External_Rel *)
5728 sreloc->contents)
5729 + sreloc->reloc_count));
7b1f1231
MM
5730
5731 /* Record the index of the first relocation referencing H. This
5732 information is later emitted in the .msym section. */
5733 if (h != NULL
5734 && (h->min_dyn_reloc_index == 0
5735 || sreloc->reloc_count < h->min_dyn_reloc_index))
5736 h->min_dyn_reloc_index = sreloc->reloc_count;
5737
5738 /* We've now added another relocation. */
7403cb63
MM
5739 ++sreloc->reloc_count;
5740
5741 /* Make sure the output section is writable. The dynamic linker
5742 will be writing to it. */
5743 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5744 |= SHF_WRITE;
5745
5746 /* On IRIX5, make an entry of compact relocation info. */
5747 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5748 {
5749 asection* scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5750 bfd_byte *cr;
5751
5752 if (scpt)
5753 {
5754 Elf32_crinfo cptrel;
5755
5756 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5757 cptrel.vaddr = (rel->r_offset
5758 + input_section->output_section->vma
5759 + input_section->output_offset);
5760 if (r_type == R_MIPS_REL32)
5761 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
252b5132 5762 else
7403cb63
MM
5763 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5764 mips_elf_set_cr_dist2to (cptrel, 0);
7b1f1231 5765 cptrel.konst = *addendp;
7403cb63
MM
5766
5767 cr = (scpt->contents
5768 + sizeof (Elf32_External_compact_rel));
5769 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5770 ((Elf32_External_crinfo *) cr
5771 + scpt->reloc_count));
5772 ++scpt->reloc_count;
5773 }
5774 }
252b5132 5775
7b1f1231 5776 return true;
7403cb63 5777}
252b5132 5778
7403cb63
MM
5779/* Calculate the value produced by the RELOCATION (which comes from
5780 the INPUT_BFD). The ADDEND is the addend to use for this
5781 RELOCATION; RELOCATION->R_ADDEND is ignored.
5782
5783 The result of the relocation calculation is stored in VALUEP.
197b9ca0
MM
5784 REQUIRE_JALXP indicates whether or not the opcode used with this
5785 relocation must be JALX.
7403cb63
MM
5786
5787 This function returns bfd_reloc_continue if the caller need take no
5788 further action regarding this relocation, bfd_reloc_notsupported if
5789 something goes dramatically wrong, bfd_reloc_overflow if an
5790 overflow occurs, and bfd_reloc_ok to indicate success. */
5791
5792static bfd_reloc_status_type
5793mips_elf_calculate_relocation (abfd,
5794 input_bfd,
5795 input_section,
5796 info,
5797 relocation,
5798 addend,
5799 howto,
7403cb63
MM
5800 local_syms,
5801 local_sections,
5802 valuep,
197b9ca0
MM
5803 namep,
5804 require_jalxp)
7403cb63
MM
5805 bfd *abfd;
5806 bfd *input_bfd;
5807 asection *input_section;
5808 struct bfd_link_info *info;
103186c6 5809 const Elf_Internal_Rela *relocation;
7403cb63
MM
5810 bfd_vma addend;
5811 reloc_howto_type *howto;
7403cb63
MM
5812 Elf_Internal_Sym *local_syms;
5813 asection **local_sections;
5814 bfd_vma *valuep;
5815 const char **namep;
197b9ca0 5816 boolean *require_jalxp;
7403cb63
MM
5817{
5818 /* The eventual value we will return. */
5819 bfd_vma value;
5820 /* The address of the symbol against which the relocation is
5821 occurring. */
5822 bfd_vma symbol = 0;
5823 /* The final GP value to be used for the relocatable, executable, or
5824 shared object file being produced. */
5825 bfd_vma gp = (bfd_vma) - 1;
5826 /* The place (section offset or address) of the storage unit being
5827 relocated. */
5828 bfd_vma p;
5829 /* The value of GP used to create the relocatable object. */
5830 bfd_vma gp0 = (bfd_vma) - 1;
5831 /* The offset into the global offset table at which the address of
5832 the relocation entry symbol, adjusted by the addend, resides
5833 during execution. */
5834 bfd_vma g = (bfd_vma) - 1;
5835 /* The section in which the symbol referenced by the relocation is
5836 located. */
5837 asection *sec = NULL;
5838 struct mips_elf_link_hash_entry* h = NULL;
103186c6
MM
5839 /* True if the symbol referred to by this relocation is a local
5840 symbol. */
7403cb63 5841 boolean local_p;
103186c6 5842 /* True if the symbol referred to by this relocation is "_gp_disp". */
7403cb63
MM
5843 boolean gp_disp_p = false;
5844 Elf_Internal_Shdr *symtab_hdr;
5845 size_t extsymoff;
103186c6 5846 unsigned long r_symndx;
7403cb63 5847 int r_type;
103186c6
MM
5848 /* True if overflow occurred during the calculation of the
5849 relocation value. */
7403cb63 5850 boolean overflowed_p;
197b9ca0
MM
5851 /* True if this relocation refers to a MIPS16 function. */
5852 boolean target_is_16_bit_code_p = false;
7403cb63
MM
5853
5854 /* Parse the relocation. */
5855 r_symndx = ELF32_R_SYM (relocation->r_info);
5856 r_type = ELF32_R_TYPE (relocation->r_info);
5857 p = (input_section->output_section->vma
5858 + input_section->output_offset
5859 + relocation->r_offset);
5860
5861 /* Assume that there will be no overflow. */
5862 overflowed_p = false;
5863
6387d602
ILT
5864 /* Figure out whether or not the symbol is local, and get the offset
5865 used in the array of hash table entries. */
7403cb63 5866 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6387d602
ILT
5867 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5868 local_sections);
5869 if (! elf_bad_symtab (input_bfd))
5870 extsymoff = symtab_hdr->sh_info;
5871 else
7403cb63
MM
5872 {
5873 /* The symbol table does not follow the rule that local symbols
5874 must come before globals. */
5875 extsymoff = 0;
7403cb63
MM
5876 }
5877
5878 /* Figure out the value of the symbol. */
5879 if (local_p)
5880 {
5881 Elf_Internal_Sym *sym;
5882
5883 sym = local_syms + r_symndx;
5884 sec = local_sections[r_symndx];
5885
5886 symbol = sec->output_section->vma + sec->output_offset;
5887 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5888 symbol += sym->st_value;
5889
5890 /* MIPS16 text labels should be treated as odd. */
5891 if (sym->st_other == STO_MIPS16)
5892 ++symbol;
5893
5894 /* Record the name of this symbol, for our caller. */
5895 *namep = bfd_elf_string_from_elf_section (input_bfd,
5896 symtab_hdr->sh_link,
5897 sym->st_name);
e049a0de 5898 if (*namep == '\0')
7403cb63 5899 *namep = bfd_section_name (input_bfd, sec);
197b9ca0
MM
5900
5901 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
7403cb63
MM
5902 }
5903 else
5904 {
5905 /* For global symbols we look up the symbol in the hash-table. */
5906 h = ((struct mips_elf_link_hash_entry *)
5907 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5908 /* Find the real hash-table entry for this symbol. */
5909 while (h->root.type == bfd_link_hash_indirect
5910 || h->root.type == bfd_link_hash_warning)
5911 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5912
5913 /* Record the name of this symbol, for our caller. */
5914 *namep = h->root.root.root.string;
5915
5916 /* See if this is the special _gp_disp symbol. Note that such a
5917 symbol must always be a global symbol. */
5918 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
5919 {
5920 /* Relocations against _gp_disp are permitted only with
5921 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5922 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
5923 return bfd_reloc_notsupported;
5924
5925 gp_disp_p = true;
5926 }
97a4bb05
MM
5927 /* If this symbol is defined, calculate its address. Note that
5928 _gp_disp is a magic symbol, always implicitly defined by the
5929 linker, so it's inappropriate to check to see whether or not
5930 its defined. */
5931 else if ((h->root.root.type == bfd_link_hash_defined
5932 || h->root.root.type == bfd_link_hash_defweak)
5933 && h->root.root.u.def.section)
7403cb63
MM
5934 {
5935 sec = h->root.root.u.def.section;
5936 if (sec->output_section)
5937 symbol = (h->root.root.u.def.value
5938 + sec->output_section->vma
5939 + sec->output_offset);
252b5132 5940 else
7403cb63
MM
5941 symbol = h->root.root.u.def.value;
5942 }
97287574
MM
5943 else if (h->root.root.type == bfd_link_hash_undefweak)
5944 /* We allow relocations against undefined weak symbols, giving
5945 it the value zero, so that you can undefined weak functions
5946 and check to see if they exist by looking at their
5947 addresses. */
5948 symbol = 0;
3811169e
MM
5949 else if (info->shared && !info->symbolic && !info->no_undefined)
5950 relocation = 0;
5951 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0)
5952 {
5953 /* If this is a dynamic link, we should have created a
5954 _DYNAMIC_LINK symbol in mips_elf_create_dynamic_sections.
5955 Otherwise, we should define the symbol with a value of 0.
5956 FIXME: It should probably get into the symbol table
5957 somehow as well. */
5958 BFD_ASSERT (! info->shared);
5959 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5960 relocation = 0;
5961 }
7403cb63
MM
5962 else
5963 {
5964 (*info->callbacks->undefined_symbol)
5965 (info, h->root.root.root.string, input_bfd,
5966 input_section, relocation->r_offset);
5967 return bfd_reloc_undefined;
5968 }
197b9ca0
MM
5969
5970 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
5971 }
5972
5973 /* If this is a 32-bit call to a 16-bit function with a stub, we
5974 need to redirect the call to the stub, unless we're already *in*
5975 a stub. */
5976 if (r_type != R_MIPS16_26 && !info->relocateable
5977 && ((h != NULL && h->fn_stub != NULL)
5978 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
5979 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5980 && !mips_elf_stub_section_p (input_bfd, input_section))
5981 {
5982 /* This is a 32-bit call to a 16-bit function. We should
5983 have already noticed that we were going to need the
5984 stub. */
5985 if (local_p)
5986 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5987 else
5988 {
5989 BFD_ASSERT (h->need_fn_stub);
5990 sec = h->fn_stub;
5991 }
5992
5993 symbol = sec->output_section->vma + sec->output_offset;
7403cb63 5994 }
197b9ca0
MM
5995 /* If this is a 16-bit call to a 32-bit function with a stub, we
5996 need to redirect the call to the stub. */
5997 else if (r_type == R_MIPS16_26 && !info->relocateable
5998 && h != NULL
5999 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6000 && !target_is_16_bit_code_p)
6001 {
6002 /* If both call_stub and call_fp_stub are defined, we can figure
6003 out which one to use by seeing which one appears in the input
6004 file. */
6005 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6006 {
6007 asection *o;
6008
6009 sec = NULL;
6010 for (o = input_bfd->sections; o != NULL; o = o->next)
6011 {
6012 if (strncmp (bfd_get_section_name (input_bfd, o),
6013 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6014 {
6015 sec = h->call_fp_stub;
6016 break;
6017 }
6018 }
6019 if (sec == NULL)
6020 sec = h->call_stub;
6021 }
6022 else if (h->call_stub != NULL)
6023 sec = h->call_stub;
6024 else
6025 sec = h->call_fp_stub;
6026
6027 BFD_ASSERT (sec->_raw_size > 0);
6028 symbol = sec->output_section->vma + sec->output_offset;
6029 }
6030
6031 /* Calls from 16-bit code to 32-bit code and vice versa require the
6032 special jalx instruction. */
6387d602
ILT
6033 *require_jalxp = (!info->relocateable
6034 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
252b5132 6035
7403cb63
MM
6036 /* If we haven't already determined the GOT offset, or the GP value,
6037 and we're going to need it, get it now. */
6038 switch (r_type)
6039 {
6040 case R_MIPS_CALL16:
2841ecd0 6041 case R_MIPS_GOT16:
7403cb63
MM
6042 case R_MIPS_GOT_DISP:
6043 case R_MIPS_GOT_HI16:
6044 case R_MIPS_CALL_HI16:
6045 case R_MIPS_GOT_LO16:
6046 case R_MIPS_CALL_LO16:
6047 /* Find the index into the GOT where this value is located. */
4f2860ca 6048 if (!local_p)
7403cb63
MM
6049 {
6050 BFD_ASSERT (addend == 0);
6051 g = mips_elf_global_got_index
6052 (elf_hash_table (info)->dynobj,
6053 (struct elf_link_hash_entry*) h);
6054 }
4f2860ca
MM
6055 else if (r_type == R_MIPS_GOT16)
6056 /* There's no need to create a local GOT entry here; the
6057 calculation for a local GOT16 entry does not involve G. */
6058 break;
7403cb63
MM
6059 else
6060 {
6061 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6062 if (g == (bfd_vma) -1)
6063 return false;
6064 }
252b5132 6065
7403cb63
MM
6066 /* Convert GOT indices to actual offsets. */
6067 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6068 abfd, g);
6069 break;
6070
6071 case R_MIPS_HI16:
6072 case R_MIPS_LO16:
6073 case R_MIPS_GPREL16:
6074 case R_MIPS_GPREL32:
6075 gp0 = _bfd_get_gp_value (input_bfd);
6076 gp = _bfd_get_gp_value (abfd);
6077 break;
252b5132 6078
7403cb63
MM
6079 default:
6080 break;
6081 }
252b5132 6082
7403cb63
MM
6083 /* Figure out what kind of relocation is being performed. */
6084 switch (r_type)
6085 {
6086 case R_MIPS_NONE:
6087 return bfd_reloc_continue;
252b5132 6088
7403cb63
MM
6089 case R_MIPS_16:
6090 value = symbol + mips_elf_sign_extend (addend, 16);
6091 overflowed_p = mips_elf_overflow_p (value, 16);
6092 break;
252b5132 6093
7403cb63
MM
6094 case R_MIPS_32:
6095 case R_MIPS_REL32:
a3c7651d 6096 case R_MIPS_64:
7b1f1231
MM
6097 if ((info->shared
6098 || (elf_hash_table (info)->dynamic_sections_created
6099 && h != NULL
6100 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
6101 == 0)))
6102 && (input_section->flags & SEC_ALLOC) != 0)
7403cb63 6103 {
7b1f1231
MM
6104 /* If we're creating a shared library, or this relocation is
6105 against a symbol in a shared library, then we can't know
6106 where the symbol will end up. So, we create a relocation
6107 record in the output, and leave the job up to the dynamic
6108 linker. */
6109 value = addend;
6110 if (!mips_elf_create_dynamic_relocation (abfd,
6111 info,
6112 relocation,
6113 h,
6114 sec,
6115 symbol,
6116 &value,
6117 input_section))
6118 return false;
7403cb63
MM
6119 }
6120 else
6121 {
a3c7651d 6122 if (r_type != R_MIPS_REL32)
7403cb63
MM
6123 value = symbol + addend;
6124 else
6125 value = addend;
6126 }
6127 value &= howto->dst_mask;
6128 break;
6129
e53bd91b
MM
6130 case R_MIPS16_26:
6131 /* The calculation for R_MIPS_26 is just the same as for an
6132 R_MIPS_26. It's only the storage of the relocated field into
1e52e2ee 6133 the output file that's different. That's handled in
e53bd91b
MM
6134 mips_elf_perform_relocation. So, we just fall through to the
6135 R_MIPS_26 case here. */
7403cb63
MM
6136 case R_MIPS_26:
6137 if (local_p)
6138 value = (((addend << 2) | (p & 0xf0000000)) + symbol) >> 2;
6139 else
6140 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_HI16:
6145 if (!gp_disp_p)
6146 {
6147 value = mips_elf_high (addend + symbol);
6148 value &= howto->dst_mask;
6149 }
6150 else
6151 {
6152 value = mips_elf_high (addend + gp - p);
6153 overflowed_p = mips_elf_overflow_p (value, 16);
6154 }
6155 break;
6156
6157 case R_MIPS_LO16:
6158 if (!gp_disp_p)
6159 value = (symbol + addend) & howto->dst_mask;
6160 else
6161 {
6162 value = addend + gp - p + 4;
97a4bb05
MM
6163 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6164 for overflow. But, on, say, Irix 5, relocations against
6165 _gp_disp are normally generated from the .cpload
6166 pseudo-op. It generates code that normally looks like
6167 this:
6168
6169 lui $gp,%hi(_gp_disp)
6170 addiu $gp,$gp,%lo(_gp_disp)
6171 addu $gp,$gp,$t9
6172
6173 Here $t9 holds the address of the function being called,
6174 as required by the MIPS ELF ABI. The R_MIPS_LO16
e53bd91b 6175 relocation can easily overflow in this situation, but the
97a4bb05
MM
6176 R_MIPS_HI16 relocation will handle the overflow.
6177 Therefore, we consider this a bug in the MIPS ABI, and do
6178 not check for overflow here. */
7403cb63
MM
6179 }
6180 break;
6181
6182 case R_MIPS_LITERAL:
6183 /* Because we don't merge literal sections, we can handle this
6184 just like R_MIPS_GPREL16. In the long run, we should merge
6185 shared literals, and then we will need to additional work
6186 here. */
6187
6188 /* Fall through. */
6189
b7233c24
MM
6190 case R_MIPS16_GPREL:
6191 /* The R_MIPS16_GPREL performs the same calculation as
6192 R_MIPS_GPREL16, but stores the relocated bits in a different
6193 order. We don't need to do anything special here; the
6194 differences are handled in mips_elf_perform_relocation. */
7403cb63
MM
6195 case R_MIPS_GPREL16:
6196 if (local_p)
6197 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6198 else
6199 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6200 overflowed_p = mips_elf_overflow_p (value, 16);
6201 break;
6202
6203 case R_MIPS_GOT16:
6204 if (local_p)
6205 {
6206 value = mips_elf_got16_entry (abfd, info, symbol + addend);
6207 if (value == (bfd_vma) -1)
6208 return false;
6209 value
6210 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6211 abfd,
6212 value);
6213 overflowed_p = mips_elf_overflow_p (value, 16);
6214 break;
6215 }
6216
6217 /* Fall through. */
6218
6219 case R_MIPS_CALL16:
6220 case R_MIPS_GOT_DISP:
6221 value = g;
6222 overflowed_p = mips_elf_overflow_p (value, 16);
6223 break;
6224
6225 case R_MIPS_GPREL32:
6226 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6227 break;
6228
6229 case R_MIPS_PC16:
6230 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6231 overflowed_p = mips_elf_overflow_p (value, 16);
6232 break;
6233
6234 case R_MIPS_GOT_HI16:
6235 case R_MIPS_CALL_HI16:
6236 /* We're allowed to handle these two relocations identically.
6237 The dynamic linker is allowed to handle the CALL relocations
6238 differently by creating a lazy evaluation stub. */
6239 value = g;
6240 value = mips_elf_high (value);
6241 value &= howto->dst_mask;
6242 break;
6243
6244 case R_MIPS_GOT_LO16:
6245 case R_MIPS_CALL_LO16:
6246 value = g & howto->dst_mask;
6247 break;
6248
7403cb63
MM
6249 case R_MIPS_GOT_PAGE:
6250 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6251 if (value == (bfd_vma) -1)
6252 return false;
6253 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6254 abfd,
6255 value);
6256 overflowed_p = mips_elf_overflow_p (value, 16);
6257 break;
6258
6259 case R_MIPS_GOT_OFST:
6260 mips_elf_got_page (abfd, info, symbol + addend, &value);
6261 overflowed_p = mips_elf_overflow_p (value, 16);
6262 break;
6263
6264 case R_MIPS_SUB:
6265 value = symbol - addend;
6266 value &= howto->dst_mask;
6267 break;
6268
6269 case R_MIPS_HIGHER:
6270 value = mips_elf_higher (addend + symbol);
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_HIGHEST:
6275 value = mips_elf_highest (addend + symbol);
6276 value &= howto->dst_mask;
6277 break;
6278
6279 case R_MIPS_SCN_DISP:
6280 value = symbol + addend - sec->output_offset;
6281 value &= howto->dst_mask;
6282 break;
6283
6284 case R_MIPS_PJUMP:
6285 case R_MIPS_JALR:
6286 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6287 hint; we could improve performance by honoring that hint. */
6288 return bfd_reloc_continue;
6289
6290 case R_MIPS_GNU_VTINHERIT:
6291 case R_MIPS_GNU_VTENTRY:
6292 /* We don't do anything with these at present. */
6293 return bfd_reloc_continue;
6294
7403cb63
MM
6295 default:
6296 /* An unrecognized relocation type. */
6297 return bfd_reloc_notsupported;
6298 }
6299
6300 /* Store the VALUE for our caller. */
6301 *valuep = value;
6302 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6303}
6304
6305/* Obtain the field relocated by RELOCATION. */
6306
6307static bfd_vma
6308mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6309 reloc_howto_type *howto;
103186c6 6310 const Elf_Internal_Rela *relocation;
7403cb63
MM
6311 bfd *input_bfd;
6312 bfd_byte *contents;
6313{
6314 bfd_vma x;
6315 bfd_byte *location = contents + relocation->r_offset;
6316
b7233c24
MM
6317 /* Obtain the bytes. */
6318 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
7403cb63 6319
6296902e
MM
6320 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6321 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
1e52e2ee
MM
6322 && bfd_little_endian (input_bfd))
6323 /* The two 16-bit words will be reversed on a little-endian
6324 system. See mips_elf_perform_relocation for more details. */
6325 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6326
7403cb63
MM
6327 return x;
6328}
6329
6330/* It has been determined that the result of the RELOCATION is the
6331 VALUE. Use HOWTO to place VALUE into the output file at the
6332 appropriate position. The SECTION is the section to which the
197b9ca0
MM
6333 relocation applies. If REQUIRE_JALX is true, then the opcode used
6334 for the relocation must be either JAL or JALX, and it is
6335 unconditionally converted to JALX.
7403cb63
MM
6336
6337 Returns false if anything goes wrong. */
252b5132 6338
197b9ca0 6339static boolean
e53bd91b 6340mips_elf_perform_relocation (info, howto, relocation, value,
197b9ca0
MM
6341 input_bfd, input_section,
6342 contents, require_jalx)
e53bd91b 6343 struct bfd_link_info *info;
7403cb63 6344 reloc_howto_type *howto;
103186c6 6345 const Elf_Internal_Rela *relocation;
7403cb63
MM
6346 bfd_vma value;
6347 bfd *input_bfd;
197b9ca0 6348 asection *input_section;
7403cb63 6349 bfd_byte *contents;
197b9ca0 6350 boolean require_jalx;
7403cb63
MM
6351{
6352 bfd_vma x;
e53bd91b 6353 bfd_byte *location;
197b9ca0 6354 int r_type = ELF32_R_TYPE (relocation->r_info);
e53bd91b
MM
6355
6356 /* Figure out where the relocation is occurring. */
6357 location = contents + relocation->r_offset;
252b5132 6358
7403cb63
MM
6359 /* Obtain the current value. */
6360 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
252b5132 6361
7403cb63
MM
6362 /* Clear the field we are setting. */
6363 x &= ~howto->dst_mask;
252b5132 6364
e53bd91b
MM
6365 /* If this is the R_MIPS16_26 relocation, we must store the
6366 value in a funny way. */
197b9ca0 6367 if (r_type == R_MIPS16_26)
7403cb63 6368 {
e53bd91b
MM
6369 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6370 Most mips16 instructions are 16 bits, but these instructions
6371 are 32 bits.
6372
6373 The format of these instructions is:
6374
6375 +--------------+--------------------------------+
6376 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6377 +--------------+--------------------------------+
6378 ! Immediate 15:0 !
6379 +-----------------------------------------------+
6380
6381 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6382 Note that the immediate value in the first word is swapped.
6383
6384 When producing a relocateable object file, R_MIPS16_26 is
6385 handled mostly like R_MIPS_26. In particular, the addend is
6386 stored as a straight 26-bit value in a 32-bit instruction.
6387 (gas makes life simpler for itself by never adjusting a
6388 R_MIPS16_26 reloc to be against a section, so the addend is
6389 always zero). However, the 32 bit instruction is stored as 2
6390 16-bit values, rather than a single 32-bit value. In a
6391 big-endian file, the result is the same; in a little-endian
6392 file, the two 16-bit halves of the 32 bit value are swapped.
6393 This is so that a disassembler can recognize the jal
6394 instruction.
6395
6396 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6397 instruction stored as two 16-bit values. The addend A is the
6398 contents of the targ26 field. The calculation is the same as
6399 R_MIPS_26. When storing the calculated value, reorder the
6400 immediate value as shown above, and don't forget to store the
6401 value as two 16-bit values.
6402
6403 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6404 defined as
6405
6406 big-endian:
6407 +--------+----------------------+
6408 | | |
6409 | | targ26-16 |
6410 |31 26|25 0|
6411 +--------+----------------------+
6412
6413 little-endian:
6414 +----------+------+-------------+
6415 | | | |
6416 | sub1 | | sub2 |
6417 |0 9|10 15|16 31|
6418 +----------+--------------------+
6419 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6420 ((sub1 << 16) | sub2)).
6421
6422 When producing a relocateable object file, the calculation is
6423 (((A < 2) | (P & 0xf0000000) + S) >> 2)
6424 When producing a fully linked file, the calculation is
6425 let R = (((A < 2) | (P & 0xf0000000) + S) >> 2)
6426 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6427
6428 if (!info->relocateable)
6429 /* Shuffle the bits according to the formula above. */
6430 value = (((value & 0x1f0000) << 5)
6431 | ((value & 0x3e00000) >> 5)
6432 | (value & 0xffff));
6433
e53bd91b 6434 }
197b9ca0 6435 else if (r_type == R_MIPS16_GPREL)
b7233c24
MM
6436 {
6437 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6438 mode. A typical instruction will have a format like this:
6439
6440 +--------------+--------------------------------+
6441 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6442 +--------------+--------------------------------+
6443 ! Major ! rx ! ry ! Imm 4:0 !
6444 +--------------+--------------------------------+
6445
6446 EXTEND is the five bit value 11110. Major is the instruction
6447 opcode.
6448
6449 This is handled exactly like R_MIPS_GPREL16, except that the
6450 addend is retrieved and stored as shown in this diagram; that
6451 is, the Imm fields above replace the V-rel16 field.
6452
6296902e
MM
6453 All we need to do here is shuffle the bits appropriately. As
6454 above, the two 16-bit halves must be swapped on a
6455 little-endian system. */
b7233c24
MM
6456 value = (((value & 0x7e0) << 16)
6457 | ((value & 0xf800) << 5)
6458 | (value & 0x1f));
6459 }
252b5132 6460
e53bd91b
MM
6461 /* Set the field. */
6462 x |= (value & howto->dst_mask);
252b5132 6463
197b9ca0
MM
6464 /* If required, turn JAL into JALX. */
6465 if (require_jalx)
6466 {
6467 boolean ok;
6468 bfd_vma opcode = x >> 26;
6469 bfd_vma jalx_opcode;
6470
6471 /* Check to see if the opcode is already JAL or JALX. */
6472 if (r_type == R_MIPS16_26)
6473 {
6474 ok = ((opcode == 0x6) || (opcode == 0x7));
6475 jalx_opcode = 0x7;
6476 }
6477 else
6478 {
6479 ok = ((opcode == 0x3) || (opcode == 0x1d));
6480 jalx_opcode = 0x1d;
6481 }
6482
6483 /* If the opcode is not JAL or JALX, there's a problem. */
6484 if (!ok)
6485 {
6486 (*_bfd_error_handler)
6487 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6488 bfd_get_filename (input_bfd),
6489 input_section->name,
6490 (unsigned long) relocation->r_offset);
6491 bfd_set_error (bfd_error_bad_value);
6492 return false;
6493 }
6494
6495 /* Make this the JALX opcode. */
6496 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6497 }
6498
6296902e
MM
6499 /* Swap the high- and low-order 16 bits on little-endian systems
6500 when doing a MIPS16 relocation. */
197b9ca0 6501 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6296902e
MM
6502 && bfd_little_endian (input_bfd))
6503 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6504
e53bd91b
MM
6505 /* Put the value into the output. */
6506 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
197b9ca0
MM
6507 return true;
6508}
6509
6510/* Returns true if SECTION is a MIPS16 stub section. */
6511
6512static boolean
6513mips_elf_stub_section_p (abfd, section)
6387d602 6514 bfd *abfd ATTRIBUTE_UNUSED;
197b9ca0
MM
6515 asection *section;
6516{
6517 const char *name = bfd_get_section_name (abfd, section);
6518
6519 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6520 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6521 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
7403cb63 6522}
252b5132 6523
7403cb63 6524/* Relocate a MIPS ELF section. */
252b5132 6525
103186c6
MM
6526boolean
6527_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6528 contents, relocs, local_syms, local_sections)
7403cb63
MM
6529 bfd *output_bfd;
6530 struct bfd_link_info *info;
6531 bfd *input_bfd;
6532 asection *input_section;
6533 bfd_byte *contents;
6534 Elf_Internal_Rela *relocs;
6535 Elf_Internal_Sym *local_syms;
6536 asection **local_sections;
6537{
31367b81 6538 Elf_Internal_Rela *rel;
103186c6 6539 const Elf_Internal_Rela *relend;
7403cb63
MM
6540 bfd_vma addend;
6541 bfd_vma last_hi16_addend;
7403cb63
MM
6542 boolean use_saved_addend_p = false;
6543 boolean last_hi16_addend_valid_p = false;
103186c6 6544 struct elf_backend_data *bed;
252b5132 6545
103186c6
MM
6546 bed = get_elf_backend_data (output_bfd);
6547 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7403cb63
MM
6548 for (rel = relocs; rel < relend; ++rel)
6549 {
6550 const char *name;
6551 bfd_vma value;
7403cb63 6552 reloc_howto_type *howto;
197b9ca0 6553 boolean require_jalx;
31367b81
MM
6554 /* True if the relocation is a RELA relocation, rather than a
6555 REL relocation. */
6556 boolean rela_relocation_p = true;
6557 int r_type = ELF32_R_TYPE (rel->r_info);
252b5132 6558
7403cb63 6559 /* Find the relocation howto for this relocation. */
31367b81 6560 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
a3c7651d
MM
6561 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6562 64-bit code, but make sure all their addresses are in the
6563 lowermost or uppermost 32-bit section of the 64-bit address
6564 space. Thus, when they use an R_MIPS_64 they mean what is
6565 usually meant by R_MIPS_32, with the exception that the
6566 stored value is sign-extended to 64 bits. */
6567 howto = elf_mips_howto_table + R_MIPS_32;
6568 else
c9b3cbf3 6569 howto = mips_rtype_to_howto (r_type);
252b5132 6570
7403cb63
MM
6571 if (!use_saved_addend_p)
6572 {
6573 Elf_Internal_Shdr *rel_hdr;
6574
6575 /* If these relocations were originally of the REL variety,
6576 we must pull the addend out of the field that will be
6577 relocated. Otherwise, we simply use the contents of the
6578 RELA relocation. To determine which flavor or relocation
6579 this is, we depend on the fact that the INPUT_SECTION's
6580 REL_HDR is read before its REL_HDR2. */
6581 rel_hdr = &elf_section_data (input_section)->rel_hdr;
5f771d47 6582 if ((size_t) (rel - relocs)
103186c6
MM
6583 >= (rel_hdr->sh_size / rel_hdr->sh_entsize
6584 * bed->s->int_rels_per_ext_rel))
7403cb63 6585 rel_hdr = elf_section_data (input_section)->rel_hdr2;
103186c6 6586 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7403cb63 6587 {
31367b81
MM
6588 /* Note that this is a REL relocation. */
6589 rela_relocation_p = false;
7403cb63 6590
31367b81 6591 /* Get the addend, which is stored in the input file. */
7403cb63
MM
6592 addend = mips_elf_obtain_contents (howto,
6593 rel,
6594 input_bfd,
6595 contents);
6596 addend &= howto->src_mask;
6597
6598 /* For some kinds of relocations, the ADDEND is a
6599 combination of the addend stored in two different
6600 relocations. */
6387d602
ILT
6601 if (r_type == R_MIPS_HI16
6602 || (r_type == R_MIPS_GOT16
6603 && mips_elf_local_relocation_p (input_bfd, rel,
6604 local_sections)))
252b5132 6605 {
23b255aa
MM
6606 bfd_vma l;
6607 const Elf_Internal_Rela *lo16_relocation;
6608 reloc_howto_type *lo16_howto;
6609
e7c44218
MM
6610 /* The combined value is the sum of the HI16 addend,
6611 left-shifted by sixteen bits, and the LO16
6612 addend, sign extended. (Usually, the code does
6613 a `lui' of the HI16 value, and then an `addiu' of
6614 the LO16 value.)
6615
6616 Scan ahead to find a matching R_MIPS_LO16
7403cb63 6617 relocation. */
23b255aa
MM
6618 lo16_relocation
6619 = mips_elf_next_lo16_relocation (rel, relend);
6620 if (lo16_relocation == NULL)
7403cb63 6621 return false;
252b5132 6622
23b255aa
MM
6623 /* Obtain the addend kept there. */
6624 lo16_howto = mips_rtype_to_howto (R_MIPS_LO16);
6625 l = mips_elf_obtain_contents (lo16_howto,
6626 lo16_relocation,
6627 input_bfd, contents);
6628 l &= lo16_howto->src_mask;
e7c44218 6629 l = mips_elf_sign_extend (l, 16);
23b255aa 6630
7403cb63
MM
6631 /* Save the high-order bit for later. When we
6632 encounter the R_MIPS_LO16 relocation we will need
6633 them again. */
6634 addend <<= 16;
6635 last_hi16_addend = addend;
6636 last_hi16_addend_valid_p = true;
252b5132 6637
7403cb63 6638 /* Compute the combined addend. */
e7c44218 6639 addend += l;
252b5132 6640 }
7403cb63 6641 else if (r_type == R_MIPS_LO16)
252b5132 6642 {
7403cb63
MM
6643 /* Used the saved HI16 addend. */
6644 if (!last_hi16_addend_valid_p)
6387d602
ILT
6645 {
6646 bfd_set_error (bfd_error_bad_value);
6647 return false;
6648 }
7403cb63 6649 addend |= last_hi16_addend;
252b5132 6650 }
b7233c24
MM
6651 else if (r_type == R_MIPS16_GPREL)
6652 {
6653 /* The addend is scrambled in the object file. See
6654 mips_elf_perform_relocation for details on the
6655 format. */
6656 addend = (((addend & 0x1f0000) >> 5)
6657 | ((addend & 0x7e00000) >> 16)
6658 | (addend & 0x1f));
6659 }
252b5132
RH
6660 }
6661 else
7403cb63
MM
6662 addend = rel->r_addend;
6663 }
252b5132 6664
31367b81
MM
6665 if (info->relocateable)
6666 {
6667 Elf_Internal_Sym *sym;
6668 unsigned long r_symndx;
6669
6670 /* Since we're just relocating, all we need to do is copy
0db63c18
MM
6671 the relocations back out to the object file, unless
6672 they're against a section symbol, in which case we need
6673 to adjust by the section offset, or unless they're GP
6674 relative in which case we need to adjust by the amount
6675 that we're adjusting GP in this relocateable object. */
31367b81
MM
6676
6677 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections))
f1a5f37e 6678 /* There's nothing to do for non-local relocations. */
31367b81
MM
6679 continue;
6680
0db63c18
MM
6681 if (r_type == R_MIPS16_GPREL
6682 || r_type == R_MIPS_GPREL16
6683 || r_type == R_MIPS_GPREL32)
6684 addend -= (_bfd_get_gp_value (output_bfd)
6685 - _bfd_get_gp_value (input_bfd));
4f2860ca 6686 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26)
e7c44218
MM
6687 /* The addend is stored without its two least
6688 significant bits (which are always zero.) In a
6689 non-relocateable link, calculate_relocation will do
6690 this shift; here, we must do it ourselves. */
6691 addend <<= 2;
31367b81 6692
4f2860ca
MM
6693 r_symndx = ELF32_R_SYM (rel->r_info);
6694 sym = local_syms + r_symndx;
6695 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6696 /* Adjust the addend appropriately. */
6697 addend += local_sections[r_symndx]->output_offset;
6698
f1a5f37e
MM
6699 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6700 then we only want to write out the high-order 16 bits.
6701 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6702 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16)
23b255aa 6703 addend = mips_elf_high (addend);
5a44662b
MM
6704 /* If the relocation is for an R_MIPS_26 relocation, then
6705 the two low-order bits are not stored in the object file;
6706 they are implicitly zero. */
6707 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26)
6708 addend >>= 2;
f1a5f37e 6709
31367b81
MM
6710 if (rela_relocation_p)
6711 /* If this is a RELA relocation, just update the addend.
6712 We have to cast away constness for REL. */
6713 rel->r_addend = addend;
6714 else
6715 {
6716 /* Otherwise, we have to write the value back out. Note
6717 that we use the source mask, rather than the
6718 destination mask because the place to which we are
6719 writing will be source of the addend in the final
6720 link. */
6721 addend &= howto->src_mask;
6722 if (!mips_elf_perform_relocation (info, howto, rel, addend,
6723 input_bfd, input_section,
6724 contents, false))
6725 return false;
6726 }
6727
6728 /* Go on to the next relocation. */
6729 continue;
6730 }
6731
7403cb63
MM
6732 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6733 relocations for the same offset. In that case we are
6734 supposed to treat the output of each relocation as the addend
6735 for the next. */
103186c6
MM
6736 if (rel + 1 < relend
6737 && rel->r_offset == rel[1].r_offset
b89db8f2 6738 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7403cb63
MM
6739 use_saved_addend_p = true;
6740 else
6741 use_saved_addend_p = false;
6742
6743 /* Figure out what value we are supposed to relocate. */
6744 switch (mips_elf_calculate_relocation (output_bfd,
6745 input_bfd,
6746 input_section,
6747 info,
6748 rel,
6749 addend,
6750 howto,
7403cb63
MM
6751 local_syms,
6752 local_sections,
6753 &value,
197b9ca0
MM
6754 &name,
6755 &require_jalx))
7403cb63
MM
6756 {
6757 case bfd_reloc_continue:
6758 /* There's nothing to do. */
6759 continue;
252b5132 6760
7403cb63 6761 case bfd_reloc_undefined:
6387d602 6762 /* mips_elf_calculate_relocation already called the
97287574
MM
6763 undefined_symbol callback. There's no real point in
6764 trying to perform the relocation at this point, so we
6765 just skip ahead to the next relocation. */
6766 continue;
252b5132 6767
7403cb63
MM
6768 case bfd_reloc_notsupported:
6769 abort ();
6770 break;
252b5132 6771
7403cb63
MM
6772 case bfd_reloc_overflow:
6773 if (use_saved_addend_p)
6774 /* Ignore overflow until we reach the last relocation for
6775 a given location. */
6776 ;
6387d602
ILT
6777 else
6778 {
6779 BFD_ASSERT (name != NULL);
6780 if (! ((*info->callbacks->reloc_overflow)
6781 (info, name, howto->name, (bfd_vma) 0,
6782 input_bfd, input_section, rel->r_offset)))
6783 return false;
6784 }
7403cb63 6785 break;
252b5132 6786
7403cb63
MM
6787 case bfd_reloc_ok:
6788 break;
6789
6790 default:
6791 abort ();
6792 break;
252b5132
RH
6793 }
6794
7403cb63
MM
6795 /* If we've got another relocation for the address, keep going
6796 until we reach the last one. */
6797 if (use_saved_addend_p)
252b5132 6798 {
7403cb63
MM
6799 addend = value;
6800 continue;
252b5132 6801 }
7403cb63 6802
31367b81 6803 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
a3c7651d
MM
6804 /* See the comment above about using R_MIPS_64 in the 32-bit
6805 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6806 that calculated the right value. Now, however, we
6807 sign-extend the 32-bit result to 64-bits, and store it as a
6808 64-bit value. We are especially generous here in that we
6809 go to extreme lengths to support this usage on systems with
6810 only a 32-bit VMA. */
6811 {
6812#ifdef BFD64
6813 /* Just sign-extend the value, and then fall through to the
6814 normal case, using the R_MIPS_64 howto. That will store
6815 the 64-bit value into a 64-bit area. */
6816 value = mips_elf_sign_extend (value, 64);
6817 howto = elf_mips_howto_table + R_MIPS_64;
6818#else /* !BFD64 */
6819 /* In the 32-bit VMA case, we must handle sign-extension and
6820 endianness manually. */
6821 bfd_vma sign_bits;
6822 bfd_vma low_bits;
6823 bfd_vma high_bits;
6824
6825 if (value & 0x80000000)
6826 sign_bits = 0xffffffff;
6827 else
6828 sign_bits = 0;
6829
6830 /* If only a 32-bit VMA is available do two separate
6831 stores. */
6832 if (bfd_big_endian (input_bfd))
6833 {
6834 /* Store the sign-bits (which are most significant)
6835 first. */
6836 low_bits = sign_bits;
6837 high_bits = value;
6838 }
6839 else
6840 {
6841 low_bits = value;
6842 high_bits = sign_bits;
6843 }
6844 bfd_put_32 (input_bfd, low_bits,
6845 contents + rel->r_offset);
6846 bfd_put_32 (input_bfd, high_bits,
6847 contents + rel->r_offset + 4);
6848 continue;
6849#endif /* !BFD64 */
6850 }
6851
7403cb63 6852 /* Actually perform the relocation. */
197b9ca0
MM
6853 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
6854 input_section, contents,
6855 require_jalx))
6856 return false;
252b5132
RH
6857 }
6858
6859 return true;
6860}
6861
6862/* This hook function is called before the linker writes out a global
6863 symbol. We mark symbols as small common if appropriate. This is
6864 also where we undo the increment of the value for a mips16 symbol. */
6865
6866/*ARGSIGNORED*/
103186c6
MM
6867boolean
6868_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
5f771d47
ILT
6869 bfd *abfd ATTRIBUTE_UNUSED;
6870 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6871 const char *name ATTRIBUTE_UNUSED;
252b5132
RH
6872 Elf_Internal_Sym *sym;
6873 asection *input_sec;
6874{
6875 /* If we see a common symbol, which implies a relocatable link, then
6876 if a symbol was small common in an input file, mark it as small
6877 common in the output file. */
6878 if (sym->st_shndx == SHN_COMMON
6879 && strcmp (input_sec->name, ".scommon") == 0)
6880 sym->st_shndx = SHN_MIPS_SCOMMON;
6881
6882 if (sym->st_other == STO_MIPS16
6883 && (sym->st_value & 1) != 0)
6884 --sym->st_value;
6885
6886 return true;
6887}
6888\f
6889/* Functions for the dynamic linker. */
6890
6891/* The name of the dynamic interpreter. This is put in the .interp
6892 section. */
6893
103186c6
MM
6894#define ELF_DYNAMIC_INTERPRETER(abfd) \
6895 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
6896 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
6897 : "/usr/lib/libc.so.1")
252b5132
RH
6898
6899/* Create dynamic sections when linking against a dynamic object. */
6900
103186c6
MM
6901boolean
6902_bfd_mips_elf_create_dynamic_sections (abfd, info)
252b5132
RH
6903 bfd *abfd;
6904 struct bfd_link_info *info;
6905{
6906 struct elf_link_hash_entry *h;
6907 flagword flags;
6908 register asection *s;
6909 const char * const *namep;
6910
6911 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6912 | SEC_LINKER_CREATED | SEC_READONLY);
6913
6914 /* Mips ABI requests the .dynamic section to be read only. */
6915 s = bfd_get_section_by_name (abfd, ".dynamic");
6916 if (s != NULL)
6917 {
6918 if (! bfd_set_section_flags (abfd, s, flags))
6919 return false;
6920 }
6921
6922 /* We need to create .got section. */
6923 if (! mips_elf_create_got_section (abfd, info))
6924 return false;
6925
c6142e5d
MM
6926 /* Create the .msym section on IRIX6. It is used by the dynamic
6927 linker to speed up dynamic relocations, and to avoid computing
6928 the ELF hash for symbols. */
6929 if (IRIX_COMPAT (abfd) == ict_irix6
6930 && !mips_elf_create_msym_section (abfd))
6931 return false;
6932
252b5132 6933 /* Create .stub section. */
7403cb63
MM
6934 if (bfd_get_section_by_name (abfd,
6935 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
252b5132 6936 {
7403cb63 6937 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
252b5132 6938 if (s == NULL
7403cb63 6939 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
103186c6
MM
6940 || ! bfd_set_section_alignment (abfd, s,
6941 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
6942 return false;
6943 }
6944
7403cb63 6945 if (IRIX_COMPAT (abfd) == ict_irix5
252b5132
RH
6946 && !info->shared
6947 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6948 {
6949 s = bfd_make_section (abfd, ".rld_map");
6950 if (s == NULL
6951 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
103186c6
MM
6952 || ! bfd_set_section_alignment (abfd, s,
6953 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
6954 return false;
6955 }
6956
303f629d
MM
6957 /* On IRIX5, we adjust add some additional symbols and change the
6958 alignments of several sections. There is no ABI documentation
6959 indicating that this is necessary on IRIX6, nor any evidence that
6960 the linker takes such action. */
6961 if (IRIX_COMPAT (abfd) == ict_irix5)
252b5132
RH
6962 {
6963 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6964 {
6965 h = NULL;
6966 if (! (_bfd_generic_link_add_one_symbol
6967 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
6968 (bfd_vma) 0, (const char *) NULL, false,
6969 get_elf_backend_data (abfd)->collect,
6970 (struct bfd_link_hash_entry **) &h)))
6971 return false;
6972 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
6973 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
6974 h->type = STT_SECTION;
6975
6976 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
6977 return false;
6978 }
6979
6980 /* We need to create a .compact_rel section. */
6981 if (! mips_elf_create_compact_rel_section (abfd, info))
6982 return false;
6983
6984 /* Change aligments of some sections. */
6985 s = bfd_get_section_by_name (abfd, ".hash");
6986 if (s != NULL)
6987 bfd_set_section_alignment (abfd, s, 4);
6988 s = bfd_get_section_by_name (abfd, ".dynsym");
6989 if (s != NULL)
6990 bfd_set_section_alignment (abfd, s, 4);
6991 s = bfd_get_section_by_name (abfd, ".dynstr");
6992 if (s != NULL)
6993 bfd_set_section_alignment (abfd, s, 4);
6994 s = bfd_get_section_by_name (abfd, ".reginfo");
6995 if (s != NULL)
6996 bfd_set_section_alignment (abfd, s, 4);
6997 s = bfd_get_section_by_name (abfd, ".dynamic");
6998 if (s != NULL)
6999 bfd_set_section_alignment (abfd, s, 4);
7000 }
7001
7002 if (!info->shared)
7003 {
7004 h = NULL;
7005 if (! (_bfd_generic_link_add_one_symbol
7006 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7007 (bfd_vma) 0, (const char *) NULL, false,
7008 get_elf_backend_data (abfd)->collect,
7009 (struct bfd_link_hash_entry **) &h)))
7010 return false;
7011 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7012 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7013 h->type = STT_SECTION;
7014
7015 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7016 return false;
7017
7018 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7019 {
7020 /* __rld_map is a four byte word located in the .data section
7021 and is filled in by the rtld to contain a pointer to
7022 the _r_debug structure. Its symbol value will be set in
7023 mips_elf_finish_dynamic_symbol. */
7024 s = bfd_get_section_by_name (abfd, ".rld_map");
7025 BFD_ASSERT (s != NULL);
7026
7027 h = NULL;
7028 if (! (_bfd_generic_link_add_one_symbol
7029 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7030 (bfd_vma) 0, (const char *) NULL, false,
7031 get_elf_backend_data (abfd)->collect,
7032 (struct bfd_link_hash_entry **) &h)))
7033 return false;
7034 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7035 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7036 h->type = STT_OBJECT;
7037
7038 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7039 return false;
7040 }
7041 }
7042
7043 return true;
7044}
7045
7046/* Create the .compact_rel section. */
7047
7048static boolean
7049mips_elf_create_compact_rel_section (abfd, info)
7050 bfd *abfd;
5f771d47 7051 struct bfd_link_info *info ATTRIBUTE_UNUSED;
252b5132
RH
7052{
7053 flagword flags;
7054 register asection *s;
7055
7056 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7057 {
7058 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7059 | SEC_READONLY);
7060
7061 s = bfd_make_section (abfd, ".compact_rel");
7062 if (s == NULL
7063 || ! bfd_set_section_flags (abfd, s, flags)
103186c6
MM
7064 || ! bfd_set_section_alignment (abfd, s,
7065 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
7066 return false;
7067
7068 s->_raw_size = sizeof (Elf32_External_compact_rel);
7069 }
7070
7071 return true;
7072}
7073
7074/* Create the .got section to hold the global offset table. */
7075
7076static boolean
7077mips_elf_create_got_section (abfd, info)
7078 bfd *abfd;
7079 struct bfd_link_info *info;
7080{
7081 flagword flags;
7082 register asection *s;
7083 struct elf_link_hash_entry *h;
7084 struct mips_got_info *g;
7085
7086 /* This function may be called more than once. */
103186c6 7087 if (mips_elf_got_section (abfd))
252b5132
RH
7088 return true;
7089
7090 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7091 | SEC_LINKER_CREATED);
7092
7093 s = bfd_make_section (abfd, ".got");
7094 if (s == NULL
7095 || ! bfd_set_section_flags (abfd, s, flags)
7096 || ! bfd_set_section_alignment (abfd, s, 4))
7097 return false;
7098
7099 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7100 linker script because we don't want to define the symbol if we
7101 are not creating a global offset table. */
7102 h = NULL;
7103 if (! (_bfd_generic_link_add_one_symbol
7104 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7105 (bfd_vma) 0, (const char *) NULL, false,
7106 get_elf_backend_data (abfd)->collect,
7107 (struct bfd_link_hash_entry **) &h)))
7108 return false;
7109 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7110 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7111 h->type = STT_OBJECT;
7112
7113 if (info->shared
7114 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7115 return false;
7116
7117 /* The first several global offset table entries are reserved. */
103186c6 7118 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
252b5132
RH
7119
7120 g = (struct mips_got_info *) bfd_alloc (abfd,
7121 sizeof (struct mips_got_info));
7122 if (g == NULL)
7123 return false;
7403cb63 7124 g->global_gotsym = NULL;
252b5132
RH
7125 g->local_gotno = MIPS_RESERVED_GOTNO;
7126 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7127 if (elf_section_data (s) == NULL)
7128 {
7129 s->used_by_bfd =
7130 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7131 if (elf_section_data (s) == NULL)
7132 return false;
7133 }
7134 elf_section_data (s)->tdata = (PTR) g;
7403cb63
MM
7135 elf_section_data (s)->this_hdr.sh_flags
7136 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
252b5132
RH
7137
7138 return true;
7139}
7140
c6142e5d
MM
7141/* Returns the .msym section for ABFD, creating it if it does not
7142 already exist. Returns NULL to indicate error. */
7143
7144static asection *
7145mips_elf_create_msym_section (abfd)
7146 bfd *abfd;
7147{
7148 asection *s;
7149
7150 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7151 if (!s)
7152 {
7153 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7154 if (!s
7155 || !bfd_set_section_flags (abfd, s,
7156 SEC_ALLOC
7157 | SEC_LOAD
7158 | SEC_HAS_CONTENTS
7159 | SEC_LINKER_CREATED
7160 | SEC_READONLY)
103186c6
MM
7161 || !bfd_set_section_alignment (abfd, s,
7162 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
c6142e5d
MM
7163 return NULL;
7164 }
7165
7166 return s;
7167}
7168
103186c6
MM
7169/* Add room for N relocations to the .rel.dyn section in ABFD. */
7170
7171static void
7172mips_elf_allocate_dynamic_relocations (abfd, n)
7173 bfd *abfd;
7174 unsigned int n;
7175{
7176 asection *s;
7177
7178 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7179 BFD_ASSERT (s != NULL);
7180
7181 if (s->_raw_size == 0)
7182 {
7183 /* Make room for a null element. */
7184 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7185 ++s->reloc_count;
7186 }
7187 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7188}
7189
252b5132
RH
7190/* Look through the relocs for a section during the first phase, and
7191 allocate space in the global offset table. */
7192
103186c6
MM
7193boolean
7194_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
252b5132
RH
7195 bfd *abfd;
7196 struct bfd_link_info *info;
7197 asection *sec;
7198 const Elf_Internal_Rela *relocs;
7199{
7200 const char *name;
7201 bfd *dynobj;
7202 Elf_Internal_Shdr *symtab_hdr;
7203 struct elf_link_hash_entry **sym_hashes;
7204 struct mips_got_info *g;
7205 size_t extsymoff;
7206 const Elf_Internal_Rela *rel;
7207 const Elf_Internal_Rela *rel_end;
7208 asection *sgot;
7209 asection *sreloc;
103186c6 7210 struct elf_backend_data *bed;
252b5132
RH
7211
7212 if (info->relocateable)
7213 return true;
7214
7215 dynobj = elf_hash_table (info)->dynobj;
7216 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7217 sym_hashes = elf_sym_hashes (abfd);
7218 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7219
7220 /* Check for the mips16 stub sections. */
7221
7222 name = bfd_get_section_name (abfd, sec);
7223 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7224 {
7225 unsigned long r_symndx;
7226
7227 /* Look at the relocation information to figure out which symbol
7228 this is for. */
7229
7230 r_symndx = ELF32_R_SYM (relocs->r_info);
7231
7232 if (r_symndx < extsymoff
7233 || sym_hashes[r_symndx - extsymoff] == NULL)
7234 {
7235 asection *o;
7236
7237 /* This stub is for a local symbol. This stub will only be
7238 needed if there is some relocation in this BFD, other
7239 than a 16 bit function call, which refers to this symbol. */
7240 for (o = abfd->sections; o != NULL; o = o->next)
7241 {
7242 Elf_Internal_Rela *sec_relocs;
7243 const Elf_Internal_Rela *r, *rend;
7244
7245 /* We can ignore stub sections when looking for relocs. */
7246 if ((o->flags & SEC_RELOC) == 0
7247 || o->reloc_count == 0
7248 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7249 sizeof FN_STUB - 1) == 0
7250 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7251 sizeof CALL_STUB - 1) == 0
7252 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7253 sizeof CALL_FP_STUB - 1) == 0)
7254 continue;
7255
7256 sec_relocs = (_bfd_elf32_link_read_relocs
7257 (abfd, o, (PTR) NULL,
7258 (Elf_Internal_Rela *) NULL,
7259 info->keep_memory));
7260 if (sec_relocs == NULL)
7261 return false;
7262
7263 rend = sec_relocs + o->reloc_count;
7264 for (r = sec_relocs; r < rend; r++)
7265 if (ELF32_R_SYM (r->r_info) == r_symndx
7266 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7267 break;
7268
7269 if (! info->keep_memory)
7270 free (sec_relocs);
7271
7272 if (r < rend)
7273 break;
7274 }
7275
7276 if (o == NULL)
7277 {
7278 /* There is no non-call reloc for this stub, so we do
7279 not need it. Since this function is called before
7280 the linker maps input sections to output sections, we
7281 can easily discard it by setting the SEC_EXCLUDE
7282 flag. */
7283 sec->flags |= SEC_EXCLUDE;
7284 return true;
7285 }
7286
7287 /* Record this stub in an array of local symbol stubs for
7288 this BFD. */
7289 if (elf_tdata (abfd)->local_stubs == NULL)
7290 {
7291 unsigned long symcount;
7292 asection **n;
7293
7294 if (elf_bad_symtab (abfd))
103186c6 7295 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
252b5132
RH
7296 else
7297 symcount = symtab_hdr->sh_info;
7298 n = (asection **) bfd_zalloc (abfd,
7299 symcount * sizeof (asection *));
7300 if (n == NULL)
7301 return false;
7302 elf_tdata (abfd)->local_stubs = n;
7303 }
7304
7305 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7306
7307 /* We don't need to set mips16_stubs_seen in this case.
7308 That flag is used to see whether we need to look through
7309 the global symbol table for stubs. We don't need to set
7310 it here, because we just have a local stub. */
7311 }
7312 else
7313 {
7314 struct mips_elf_link_hash_entry *h;
7315
7316 h = ((struct mips_elf_link_hash_entry *)
7317 sym_hashes[r_symndx - extsymoff]);
7318
7319 /* H is the symbol this stub is for. */
7320
7321 h->fn_stub = sec;
7322 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7323 }
7324 }
7325 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7326 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7327 {
7328 unsigned long r_symndx;
7329 struct mips_elf_link_hash_entry *h;
7330 asection **loc;
7331
7332 /* Look at the relocation information to figure out which symbol
7333 this is for. */
7334
7335 r_symndx = ELF32_R_SYM (relocs->r_info);
7336
7337 if (r_symndx < extsymoff
7338 || sym_hashes[r_symndx - extsymoff] == NULL)
7339 {
7340 /* This stub was actually built for a static symbol defined
7341 in the same file. We assume that all static symbols in
7342 mips16 code are themselves mips16, so we can simply
7343 discard this stub. Since this function is called before
7344 the linker maps input sections to output sections, we can
7345 easily discard it by setting the SEC_EXCLUDE flag. */
7346 sec->flags |= SEC_EXCLUDE;
7347 return true;
7348 }
7349
7350 h = ((struct mips_elf_link_hash_entry *)
7351 sym_hashes[r_symndx - extsymoff]);
7352
7353 /* H is the symbol this stub is for. */
7354
7355 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7356 loc = &h->call_fp_stub;
7357 else
7358 loc = &h->call_stub;
7359
7360 /* If we already have an appropriate stub for this function, we
7361 don't need another one, so we can discard this one. Since
7362 this function is called before the linker maps input sections
7363 to output sections, we can easily discard it by setting the
7364 SEC_EXCLUDE flag. We can also discard this section if we
7365 happen to already know that this is a mips16 function; it is
7366 not necessary to check this here, as it is checked later, but
7367 it is slightly faster to check now. */
7368 if (*loc != NULL || h->root.other == STO_MIPS16)
7369 {
7370 sec->flags |= SEC_EXCLUDE;
7371 return true;
7372 }
7373
7374 *loc = sec;
7375 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7376 }
7377
7378 if (dynobj == NULL)
7379 {
7380 sgot = NULL;
7381 g = NULL;
7382 }
7383 else
7384 {
103186c6 7385 sgot = mips_elf_got_section (dynobj);
252b5132
RH
7386 if (sgot == NULL)
7387 g = NULL;
7388 else
7389 {
7390 BFD_ASSERT (elf_section_data (sgot) != NULL);
7391 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7392 BFD_ASSERT (g != NULL);
7393 }
7394 }
7395
7396 sreloc = NULL;
103186c6
MM
7397 bed = get_elf_backend_data (abfd);
7398 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7399 for (rel = relocs; rel < rel_end; ++rel)
252b5132
RH
7400 {
7401 unsigned long r_symndx;
7403cb63 7402 int r_type;
252b5132
RH
7403 struct elf_link_hash_entry *h;
7404
7405 r_symndx = ELF32_R_SYM (rel->r_info);
7403cb63 7406 r_type = ELF32_R_TYPE (rel->r_info);
252b5132
RH
7407
7408 if (r_symndx < extsymoff)
7409 h = NULL;
7410 else
7411 {
7412 h = sym_hashes[r_symndx - extsymoff];
7413
7414 /* This may be an indirect symbol created because of a version. */
7415 if (h != NULL)
7416 {
7417 while (h->root.type == bfd_link_hash_indirect)
7418 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7419 }
7420 }
7421
7422 /* Some relocs require a global offset table. */
7423 if (dynobj == NULL || sgot == NULL)
7424 {
7403cb63 7425 switch (r_type)
252b5132
RH
7426 {
7427 case R_MIPS_GOT16:
7428 case R_MIPS_CALL16:
7429 case R_MIPS_CALL_HI16:
7430 case R_MIPS_CALL_LO16:
7431 case R_MIPS_GOT_HI16:
7432 case R_MIPS_GOT_LO16:
435394bf
MM
7433 case R_MIPS_GOT_PAGE:
7434 case R_MIPS_GOT_OFST:
7435 case R_MIPS_GOT_DISP:
252b5132
RH
7436 if (dynobj == NULL)
7437 elf_hash_table (info)->dynobj = dynobj = abfd;
7438 if (! mips_elf_create_got_section (dynobj, info))
7439 return false;
7403cb63 7440 g = mips_elf_got_info (dynobj, &sgot);
252b5132
RH
7441 break;
7442
7443 case R_MIPS_32:
7444 case R_MIPS_REL32:
a3c7651d 7445 case R_MIPS_64:
252b5132
RH
7446 if (dynobj == NULL
7447 && (info->shared || h != NULL)
7448 && (sec->flags & SEC_ALLOC) != 0)
7449 elf_hash_table (info)->dynobj = dynobj = abfd;
7450 break;
7451
7452 default:
7453 break;
7454 }
7455 }
7456
7403cb63
MM
7457 if (!h && (r_type == R_MIPS_CALL_LO16
7458 || r_type == R_MIPS_GOT_LO16
97287574
MM
7459 || r_type == R_MIPS_GOT_DISP
7460 || r_type == R_MIPS_GOT16))
252b5132 7461 {
7403cb63 7462 /* We may need a local GOT entry for this relocation. We
97287574
MM
7463 don't count R_MIPS_GOT_PAGE because we can estimate the
7464 maximum number of pages needed by looking at the size of
7465 the segment. We don't count R_MIPS_GOT_HI16, or
7466 R_MIPS_CALL_HI16 because these are always followed by an
7467 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
7403cb63
MM
7468
7469 This estimation is very conservative since we can merge
7470 duplicate entries in the GOT. In order to be less
7471 conservative, we could actually build the GOT here,
7472 rather than in relocate_section. */
7473 g->local_gotno++;
a3c7651d 7474 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7403cb63 7475 }
252b5132 7476
7403cb63
MM
7477 switch (r_type)
7478 {
7479 case R_MIPS_CALL16:
252b5132
RH
7480 if (h == NULL)
7481 {
7482 (*_bfd_error_handler)
7483 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7484 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7485 bfd_set_error (bfd_error_bad_value);
7486 return false;
7487 }
7403cb63 7488 /* Fall through. */
252b5132 7489
7403cb63
MM
7490 case R_MIPS_CALL_HI16:
7491 case R_MIPS_CALL_LO16:
5a44662b
MM
7492 if (h != NULL)
7493 {
7494 /* This symbol requires a global offset table entry. */
7495 if (!mips_elf_record_global_got_symbol (h, info, g))
7496 return false;
252b5132 7497
5a44662b
MM
7498 /* We need a stub, not a plt entry for the undefined
7499 function. But we record it as if it needs plt. See
7500 elf_adjust_dynamic_symbol in elflink.h. */
7501 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7502 h->type = STT_FUNC;
7503 }
252b5132
RH
7504 break;
7505
7506 case R_MIPS_GOT16:
7507 case R_MIPS_GOT_HI16:
7508 case R_MIPS_GOT_LO16:
7403cb63 7509 case R_MIPS_GOT_DISP:
252b5132 7510 /* This symbol requires a global offset table entry. */
7403cb63
MM
7511 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7512 return false;
252b5132
RH
7513 break;
7514
7515 case R_MIPS_32:
7516 case R_MIPS_REL32:
a3c7651d 7517 case R_MIPS_64:
252b5132
RH
7518 if ((info->shared || h != NULL)
7519 && (sec->flags & SEC_ALLOC) != 0)
7520 {
7521 if (sreloc == NULL)
7522 {
103186c6 7523 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
252b5132
RH
7524
7525 sreloc = bfd_get_section_by_name (dynobj, name);
7526 if (sreloc == NULL)
7527 {
7528 sreloc = bfd_make_section (dynobj, name);
7529 if (sreloc == NULL
7530 || ! bfd_set_section_flags (dynobj, sreloc,
7531 (SEC_ALLOC
7532 | SEC_LOAD
7533 | SEC_HAS_CONTENTS
7534 | SEC_IN_MEMORY
7535 | SEC_LINKER_CREATED
7536 | SEC_READONLY))
7537 || ! bfd_set_section_alignment (dynobj, sreloc,
7538 4))
7539 return false;
7540 }
7541 }
7542 if (info->shared)
103186c6
MM
7543 /* When creating a shared object, we must copy these
7544 reloc types into the output file as R_MIPS_REL32
7545 relocs. We make room for this reloc in the
7546 .rel.dyn reloc section. */
7547 mips_elf_allocate_dynamic_relocations (dynobj, 1);
252b5132
RH
7548 else
7549 {
7550 struct mips_elf_link_hash_entry *hmips;
7551
7552 /* We only need to copy this reloc if the symbol is
7553 defined in a dynamic object. */
7554 hmips = (struct mips_elf_link_hash_entry *) h;
a3c7651d 7555 ++hmips->possibly_dynamic_relocs;
252b5132 7556 }
7403cb63
MM
7557
7558 /* Even though we don't directly need a GOT entry for
7559 this symbol, a symbol must have a dynamic symbol
7560 table index greater that DT_GOTSYM if there are
7561 dynamic relocations against it. */
7b1f1231
MM
7562 if (h != NULL
7563 && !mips_elf_record_global_got_symbol (h, info, g))
7403cb63 7564 return false;
252b5132
RH
7565 }
7566
103186c6 7567 if (SGI_COMPAT (dynobj))
252b5132
RH
7568 mips_elf_hash_table (info)->compact_rel_size +=
7569 sizeof (Elf32_External_crinfo);
252b5132
RH
7570 break;
7571
7572 case R_MIPS_26:
7573 case R_MIPS_GPREL16:
7574 case R_MIPS_LITERAL:
7575 case R_MIPS_GPREL32:
103186c6 7576 if (SGI_COMPAT (dynobj))
252b5132
RH
7577 mips_elf_hash_table (info)->compact_rel_size +=
7578 sizeof (Elf32_External_crinfo);
7579 break;
7580
7581 /* This relocation describes the C++ object vtable hierarchy.
7582 Reconstruct it for later use during GC. */
7583 case R_MIPS_GNU_VTINHERIT:
7584 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7585 return false;
7586 break;
7587
7588 /* This relocation describes which C++ vtable entries are actually
7589 used. Record for later use during GC. */
7590 case R_MIPS_GNU_VTENTRY:
7591 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7592 return false;
7593 break;
7594
7595 default:
7596 break;
7597 }
7598
7599 /* If this reloc is not a 16 bit call, and it has a global
7600 symbol, then we will need the fn_stub if there is one.
7601 References from a stub section do not count. */
7602 if (h != NULL
7403cb63 7603 && r_type != R_MIPS16_26
252b5132
RH
7604 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7605 sizeof FN_STUB - 1) != 0
7606 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7607 sizeof CALL_STUB - 1) != 0
7608 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7609 sizeof CALL_FP_STUB - 1) != 0)
7610 {
7611 struct mips_elf_link_hash_entry *mh;
7612
7613 mh = (struct mips_elf_link_hash_entry *) h;
7614 mh->need_fn_stub = true;
7615 }
7616 }
7617
7618 return true;
7619}
7620
7621/* Return the section that should be marked against GC for a given
7622 relocation. */
7623
103186c6
MM
7624asection *
7625_bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
252b5132 7626 bfd *abfd;
5f771d47 7627 struct bfd_link_info *info ATTRIBUTE_UNUSED;
252b5132
RH
7628 Elf_Internal_Rela *rel;
7629 struct elf_link_hash_entry *h;
7630 Elf_Internal_Sym *sym;
7631{
7632 /* ??? Do mips16 stub sections need to be handled special? */
7633
7634 if (h != NULL)
7635 {
7636 switch (ELF32_R_TYPE (rel->r_info))
7637 {
7638 case R_MIPS_GNU_VTINHERIT:
7639 case R_MIPS_GNU_VTENTRY:
7640 break;
7641
7642 default:
7643 switch (h->root.type)
7644 {
7645 case bfd_link_hash_defined:
7646 case bfd_link_hash_defweak:
7647 return h->root.u.def.section;
7648
7649 case bfd_link_hash_common:
7650 return h->root.u.c.p->section;
7651
7652 default:
7653 break;
7654 }
7655 }
7656 }
7657 else
7658 {
7659 if (!(elf_bad_symtab (abfd)
7660 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7661 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
7662 && sym->st_shndx != SHN_COMMON))
7663 {
7664 return bfd_section_from_elf_index (abfd, sym->st_shndx);
7665 }
7666 }
7667
7668 return NULL;
7669}
7670
7671/* Update the got entry reference counts for the section being removed. */
7672
103186c6
MM
7673boolean
7674_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
5f771d47
ILT
7675 bfd *abfd ATTRIBUTE_UNUSED;
7676 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7677 asection *sec ATTRIBUTE_UNUSED;
7678 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
252b5132
RH
7679{
7680#if 0
7681 Elf_Internal_Shdr *symtab_hdr;
7682 struct elf_link_hash_entry **sym_hashes;
7683 bfd_signed_vma *local_got_refcounts;
7684 const Elf_Internal_Rela *rel, *relend;
7685 unsigned long r_symndx;
7686 struct elf_link_hash_entry *h;
7687
7688 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7689 sym_hashes = elf_sym_hashes (abfd);
7690 local_got_refcounts = elf_local_got_refcounts (abfd);
7691
7692 relend = relocs + sec->reloc_count;
7693 for (rel = relocs; rel < relend; rel++)
7694 switch (ELF32_R_TYPE (rel->r_info))
7695 {
7696 case R_MIPS_GOT16:
7697 case R_MIPS_CALL16:
7698 case R_MIPS_CALL_HI16:
7699 case R_MIPS_CALL_LO16:
7700 case R_MIPS_GOT_HI16:
7701 case R_MIPS_GOT_LO16:
7702 /* ??? It would seem that the existing MIPS code does no sort
7703 of reference counting or whatnot on its GOT and PLT entries,
7704 so it is not possible to garbage collect them at this time. */
7705 break;
7706
7707 default:
7708 break;
7709 }
7710#endif
7711
7712 return true;
7713}
7714
7715
7716/* Adjust a symbol defined by a dynamic object and referenced by a
7717 regular object. The current definition is in some section of the
7718 dynamic object, but we're not including those sections. We have to
7719 change the definition to something the rest of the link can
7720 understand. */
7721
103186c6
MM
7722boolean
7723_bfd_mips_elf_adjust_dynamic_symbol (info, h)
252b5132
RH
7724 struct bfd_link_info *info;
7725 struct elf_link_hash_entry *h;
7726{
7727 bfd *dynobj;
7728 struct mips_elf_link_hash_entry *hmips;
7729 asection *s;
7730
7731 dynobj = elf_hash_table (info)->dynobj;
7732
7733 /* Make sure we know what is going on here. */
7734 BFD_ASSERT (dynobj != NULL
7735 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
7736 || h->weakdef != NULL
7737 || ((h->elf_link_hash_flags
7738 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
7739 && (h->elf_link_hash_flags
7740 & ELF_LINK_HASH_REF_REGULAR) != 0
7741 && (h->elf_link_hash_flags
7742 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
7743
7744 /* If this symbol is defined in a dynamic object, we need to copy
7745 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7746 file. */
7747 hmips = (struct mips_elf_link_hash_entry *) h;
7748 if (! info->relocateable
a3c7651d 7749 && hmips->possibly_dynamic_relocs != 0
252b5132 7750 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
a3c7651d
MM
7751 mips_elf_allocate_dynamic_relocations (dynobj,
7752 hmips->possibly_dynamic_relocs);
252b5132
RH
7753
7754 /* For a function, create a stub, if needed. */
7755 if (h->type == STT_FUNC
7756 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
7757 {
7758 if (! elf_hash_table (info)->dynamic_sections_created)
7759 return true;
7760
7761 /* If this symbol is not defined in a regular file, then set
7762 the symbol to the stub location. This is required to make
7763 function pointers compare as equal between the normal
7764 executable and the shared library. */
7765 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7766 {
7767 /* We need .stub section. */
303f629d
MM
7768 s = bfd_get_section_by_name (dynobj,
7769 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
7770 BFD_ASSERT (s != NULL);
7771
7772 h->root.u.def.section = s;
7773 h->root.u.def.value = s->_raw_size;
7774
7775 /* XXX Write this stub address somewhere. */
7776 h->plt.offset = s->_raw_size;
7777
7778 /* Make room for this stub code. */
7779 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
7780
7781 /* The last half word of the stub will be filled with the index
7782 of this symbol in .dynsym section. */
7783 return true;
7784 }
7785 }
7786
7787 /* If this is a weak symbol, and there is a real definition, the
7788 processor independent code will have arranged for us to see the
7789 real definition first, and we can just use the same value. */
7790 if (h->weakdef != NULL)
7791 {
7792 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
7793 || h->weakdef->root.type == bfd_link_hash_defweak);
7794 h->root.u.def.section = h->weakdef->root.u.def.section;
7795 h->root.u.def.value = h->weakdef->root.u.def.value;
7796 return true;
7797 }
7798
7799 /* This is a reference to a symbol defined by a dynamic object which
7800 is not a function. */
7801
7802 return true;
7803}
7804
7805/* This function is called after all the input files have been read,
7806 and the input sections have been assigned to output sections. We
7807 check for any mips16 stub sections that we can discard. */
7808
7809static boolean mips_elf_check_mips16_stubs
7810 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
7811
103186c6
MM
7812boolean
7813_bfd_mips_elf_always_size_sections (output_bfd, info)
252b5132
RH
7814 bfd *output_bfd;
7815 struct bfd_link_info *info;
7816{
7817 asection *ri;
7818
7819 /* The .reginfo section has a fixed size. */
7820 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7821 if (ri != NULL)
7822 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7823
7824 if (info->relocateable
7825 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
7826 return true;
7827
7828 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7829 mips_elf_check_mips16_stubs,
7830 (PTR) NULL);
7831
7832 return true;
7833}
7834
7835/* Check the mips16 stubs for a particular symbol, and see if we can
7836 discard them. */
7837
7838/*ARGSUSED*/
7839static boolean
7840mips_elf_check_mips16_stubs (h, data)
7841 struct mips_elf_link_hash_entry *h;
5f771d47 7842 PTR data ATTRIBUTE_UNUSED;
252b5132
RH
7843{
7844 if (h->fn_stub != NULL
7845 && ! h->need_fn_stub)
7846 {
7847 /* We don't need the fn_stub; the only references to this symbol
7848 are 16 bit calls. Clobber the size to 0 to prevent it from
7849 being included in the link. */
7850 h->fn_stub->_raw_size = 0;
7851 h->fn_stub->_cooked_size = 0;
7852 h->fn_stub->flags &= ~ SEC_RELOC;
7853 h->fn_stub->reloc_count = 0;
7854 h->fn_stub->flags |= SEC_EXCLUDE;
7855 }
7856
7857 if (h->call_stub != NULL
7858 && h->root.other == STO_MIPS16)
7859 {
7860 /* We don't need the call_stub; this is a 16 bit function, so
7861 calls from other 16 bit functions are OK. Clobber the size
7862 to 0 to prevent it from being included in the link. */
7863 h->call_stub->_raw_size = 0;
7864 h->call_stub->_cooked_size = 0;
7865 h->call_stub->flags &= ~ SEC_RELOC;
7866 h->call_stub->reloc_count = 0;
7867 h->call_stub->flags |= SEC_EXCLUDE;
7868 }
7869
7870 if (h->call_fp_stub != NULL
7871 && h->root.other == STO_MIPS16)
7872 {
7873 /* We don't need the call_stub; this is a 16 bit function, so
7874 calls from other 16 bit functions are OK. Clobber the size
7875 to 0 to prevent it from being included in the link. */
7876 h->call_fp_stub->_raw_size = 0;
7877 h->call_fp_stub->_cooked_size = 0;
7878 h->call_fp_stub->flags &= ~ SEC_RELOC;
7879 h->call_fp_stub->reloc_count = 0;
7880 h->call_fp_stub->flags |= SEC_EXCLUDE;
7881 }
7882
7883 return true;
7884}
7885
7886/* Set the sizes of the dynamic sections. */
7887
103186c6
MM
7888boolean
7889_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
252b5132
RH
7890 bfd *output_bfd;
7891 struct bfd_link_info *info;
7892{
7893 bfd *dynobj;
7894 asection *s;
7895 boolean reltext;
7a12753d 7896 struct mips_got_info *g = NULL;
252b5132
RH
7897
7898 dynobj = elf_hash_table (info)->dynobj;
7899 BFD_ASSERT (dynobj != NULL);
7900
7901 if (elf_hash_table (info)->dynamic_sections_created)
7902 {
7903 /* Set the contents of the .interp section to the interpreter. */
7904 if (! info->shared)
7905 {
7906 s = bfd_get_section_by_name (dynobj, ".interp");
7907 BFD_ASSERT (s != NULL);
303f629d
MM
7908 s->_raw_size
7909 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7910 s->contents
7403cb63 7911 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
252b5132
RH
7912 }
7913 }
7914
252b5132
RH
7915 /* The check_relocs and adjust_dynamic_symbol entry points have
7916 determined the sizes of the various dynamic sections. Allocate
7917 memory for them. */
7918 reltext = false;
7919 for (s = dynobj->sections; s != NULL; s = s->next)
7920 {
7921 const char *name;
7922 boolean strip;
7923
7924 /* It's OK to base decisions on the section name, because none
7925 of the dynobj section names depend upon the input files. */
7926 name = bfd_get_section_name (dynobj, s);
7927
7928 if ((s->flags & SEC_LINKER_CREATED) == 0)
7929 continue;
7930
7931 strip = false;
7932
7933 if (strncmp (name, ".rel", 4) == 0)
7934 {
7935 if (s->_raw_size == 0)
7936 {
7937 /* We only strip the section if the output section name
7938 has the same name. Otherwise, there might be several
7939 input sections for this output section. FIXME: This
7940 code is probably not needed these days anyhow, since
7941 the linker now does not create empty output sections. */
7942 if (s->output_section != NULL
7943 && strcmp (name,
7944 bfd_get_section_name (s->output_section->owner,
7945 s->output_section)) == 0)
7946 strip = true;
7947 }
7948 else
7949 {
7950 const char *outname;
7951 asection *target;
7952
7953 /* If this relocation section applies to a read only
7954 section, then we probably need a DT_TEXTREL entry.
7955 If the relocation section is .rel.dyn, we always
7956 assert a DT_TEXTREL entry rather than testing whether
7957 there exists a relocation to a read only section or
7958 not. */
7959 outname = bfd_get_section_name (output_bfd,
7960 s->output_section);
7961 target = bfd_get_section_by_name (output_bfd, outname + 4);
7962 if ((target != NULL
7963 && (target->flags & SEC_READONLY) != 0
7964 && (target->flags & SEC_ALLOC) != 0)
103186c6
MM
7965 || strcmp (outname,
7966 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
252b5132
RH
7967 reltext = true;
7968
7969 /* We use the reloc_count field as a counter if we need
7970 to copy relocs into the output file. */
103186c6
MM
7971 if (strcmp (name,
7972 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
252b5132
RH
7973 s->reloc_count = 0;
7974 }
7975 }
7976 else if (strncmp (name, ".got", 4) == 0)
7977 {
7978 int i;
7403cb63
MM
7979 bfd_size_type loadable_size = 0;
7980 bfd_size_type local_gotno;
7981 struct _bfd *sub;
252b5132 7982
7403cb63 7983 BFD_ASSERT (elf_section_data (s) != NULL);
252b5132 7984 g = (struct mips_got_info *) elf_section_data (s)->tdata;
7403cb63
MM
7985 BFD_ASSERT (g != NULL);
7986
7987 /* Calculate the total loadable size of the output. That
7988 will give us the maximum number of GOT_PAGE entries
7989 required. */
7990 for (sub = info->input_bfds; sub; sub = sub->link_next)
7991 {
7992 asection *subsection;
7993
7994 for (subsection = sub->sections;
7995 subsection;
7996 subsection = subsection->next)
7997 {
7998 if ((subsection->flags & SEC_ALLOC) == 0)
7999 continue;
8000 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
8001 }
8002 }
8003 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8004
8005 /* Assume there are two loadable segments consisting of
8006 contiguous sections. Is 5 enough? */
8007 local_gotno = (loadable_size >> 16) + 5;
8008 g->local_gotno += local_gotno;
103186c6 8009 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
7403cb63
MM
8010
8011 /* There has to be a global GOT entry for every symbol with
8012 a dynamic symbol table index of DT_MIPS_GOTSYM or
8013 higher. Therefore, it make sense to put those symbols
8014 that need GOT entries at the end of the symbol table. We
8015 do that here. */
b3be9b46 8016 if (!mips_elf_sort_hash_table (info, 1))
7403cb63
MM
8017 return false;
8018
8b237a89
MM
8019 if (g->global_gotsym != NULL)
8020 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8021 else
8022 /* If there are no global symbols, or none requiring
8023 relocations, then GLOBAL_GOTSYM will be NULL. */
8024 i = 0;
b3be9b46 8025 g->global_gotno = i;
103186c6 8026 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
252b5132 8027 }
303f629d 8028 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
252b5132
RH
8029 {
8030 /* Irix rld assumes that the function stub isn't at the end
8031 of .text section. So put a dummy. XXX */
8032 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8033 }
8034 else if (! info->shared
8035 && ! mips_elf_hash_table (info)->use_rld_obj_head
8036 && strncmp (name, ".rld_map", 8) == 0)
8037 {
8038 /* We add a room for __rld_map. It will be filled in by the
8039 rtld to contain a pointer to the _r_debug structure. */
8040 s->_raw_size += 4;
8041 }
8042 else if (SGI_COMPAT (output_bfd)
8043 && strncmp (name, ".compact_rel", 12) == 0)
8044 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
c6142e5d
MM
8045 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8046 == 0)
8047 s->_raw_size = (sizeof (Elf32_External_Msym)
8048 * (elf_hash_table (info)->dynsymcount
8049 + bfd_count_sections (output_bfd)));
252b5132
RH
8050 else if (strncmp (name, ".init", 5) != 0)
8051 {
8052 /* It's not one of our sections, so don't allocate space. */
8053 continue;
8054 }
8055
8056 if (strip)
8057 {
8058 _bfd_strip_section_from_output (s);
8059 continue;
8060 }
8061
8062 /* Allocate memory for the section contents. */
303f629d 8063 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
252b5132
RH
8064 if (s->contents == NULL && s->_raw_size != 0)
8065 {
8066 bfd_set_error (bfd_error_no_memory);
8067 return false;
8068 }
252b5132
RH
8069 }
8070
8071 if (elf_hash_table (info)->dynamic_sections_created)
8072 {
8073 /* Add some entries to the .dynamic section. We fill in the
8074 values later, in elf_mips_finish_dynamic_sections, but we
8075 must add the entries now so that we get the correct size for
8076 the .dynamic section. The DT_DEBUG entry is filled in by the
8077 dynamic linker and used by the debugger. */
8078 if (! info->shared)
8079 {
8080 if (SGI_COMPAT (output_bfd))
8081 {
8082 /* SGI object has the equivalence of DT_DEBUG in the
8083 DT_MIPS_RLD_MAP entry. */
103186c6 8084 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
252b5132
RH
8085 return false;
8086 }
8087 else
103186c6 8088 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
252b5132
RH
8089 return false;
8090 }
8091
8092 if (reltext)
8093 {
103186c6 8094 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
252b5132
RH
8095 return false;
8096 }
8097
103186c6 8098 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
252b5132
RH
8099 return false;
8100
103186c6
MM
8101 if (bfd_get_section_by_name (dynobj,
8102 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
252b5132 8103 {
103186c6 8104 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
252b5132
RH
8105 return false;
8106
103186c6 8107 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
252b5132
RH
8108 return false;
8109
103186c6 8110 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
252b5132
RH
8111 return false;
8112 }
8113
103186c6 8114 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
252b5132
RH
8115 return false;
8116
103186c6 8117 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
252b5132
RH
8118 return false;
8119
8120 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8121 {
103186c6 8122 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
252b5132
RH
8123 return false;
8124
8125 s = bfd_get_section_by_name (dynobj, ".liblist");
8126 BFD_ASSERT (s != NULL);
8127
103186c6 8128 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
252b5132
RH
8129 return false;
8130 }
8131
103186c6 8132 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
252b5132
RH
8133 return false;
8134
103186c6 8135 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
252b5132
RH
8136 return false;
8137
8138#if 0
8139 /* Time stamps in executable files are a bad idea. */
103186c6 8140 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
252b5132
RH
8141 return false;
8142#endif
8143
8144#if 0 /* FIXME */
103186c6 8145 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
252b5132
RH
8146 return false;
8147#endif
8148
8149#if 0 /* FIXME */
103186c6 8150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
252b5132
RH
8151 return false;
8152#endif
8153
103186c6 8154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
252b5132
RH
8155 return false;
8156
103186c6 8157 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
252b5132
RH
8158 return false;
8159
103186c6 8160 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
252b5132
RH
8161 return false;
8162
103186c6 8163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
252b5132
RH
8164 return false;
8165
7a12753d
MM
8166 if (g != NULL && g->global_gotsym != NULL
8167 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
252b5132
RH
8168 return false;
8169
7403cb63 8170 if (IRIX_COMPAT (dynobj) == ict_irix5
103186c6 8171 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
252b5132
RH
8172 return false;
8173
7403cb63
MM
8174 if (IRIX_COMPAT (dynobj) == ict_irix6
8175 && (bfd_get_section_by_name
8176 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
103186c6 8177 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7403cb63 8178 return false;
c6142e5d
MM
8179
8180 if (bfd_get_section_by_name (dynobj,
8181 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
103186c6 8182 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
c6142e5d 8183 return false;
252b5132
RH
8184 }
8185
252b5132
RH
8186 return true;
8187}
8188
7403cb63
MM
8189/* If NAME is one of the special IRIX6 symbols defined by the linker,
8190 adjust it appropriately now. */
8191
8192static void
8193mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
5f771d47 8194 bfd *abfd ATTRIBUTE_UNUSED;
7403cb63
MM
8195 const char *name;
8196 Elf_Internal_Sym *sym;
8197{
8198 /* The linker script takes care of providing names and values for
8199 these, but we must place them into the right sections. */
8200 static const char* const text_section_symbols[] = {
8201 "_ftext",
8202 "_etext",
8203 "__dso_displacement",
8204 "__elf_header",
8205 "__program_header_table",
8206 NULL
8207 };
8208
8209 static const char* const data_section_symbols[] = {
8210 "_fdata",
8211 "_edata",
8212 "_end",
8213 "_fbss",
8214 NULL
8215 };
8216
8217 const char* const *p;
8218 int i;
8219
8220 for (i = 0; i < 2; ++i)
8221 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8222 *p;
8223 ++p)
8224 if (strcmp (*p, name) == 0)
8225 {
8226 /* All of these symbols are given type STT_SECTION by the
8227 IRIX6 linker. */
8228 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8229
8230 /* The IRIX linker puts these symbols in special sections. */
8231 if (i == 0)
8232 sym->st_shndx = SHN_MIPS_TEXT;
8233 else
8234 sym->st_shndx = SHN_MIPS_DATA;
8235
8236 break;
8237 }
8238}
8239
252b5132
RH
8240/* Finish up dynamic symbol handling. We set the contents of various
8241 dynamic sections here. */
8242
103186c6
MM
8243boolean
8244_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
252b5132
RH
8245 bfd *output_bfd;
8246 struct bfd_link_info *info;
8247 struct elf_link_hash_entry *h;
8248 Elf_Internal_Sym *sym;
8249{
8250 bfd *dynobj;
8251 bfd_vma gval;
8252 asection *sgot;
c6142e5d 8253 asection *smsym;
252b5132
RH
8254 struct mips_got_info *g;
8255 const char *name;
c6142e5d 8256 struct mips_elf_link_hash_entry *mh;
252b5132
RH
8257
8258 dynobj = elf_hash_table (info)->dynobj;
8259 gval = sym->st_value;
c6142e5d 8260 mh = (struct mips_elf_link_hash_entry *) h;
252b5132
RH
8261
8262 if (h->plt.offset != (bfd_vma) -1)
8263 {
8264 asection *s;
8265 bfd_byte *p;
8266 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8267
8268 /* This symbol has a stub. Set it up. */
8269
8270 BFD_ASSERT (h->dynindx != -1);
8271
303f629d
MM
8272 s = bfd_get_section_by_name (dynobj,
8273 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
8274 BFD_ASSERT (s != NULL);
8275
8276 /* Fill the stub. */
8277 p = stub;
8278 bfd_put_32 (output_bfd, STUB_LW(output_bfd), p);
8279 p += 4;
8280 bfd_put_32 (output_bfd, STUB_MOVE, p);
8281 p += 4;
8282
8283 /* FIXME: Can h->dynindex be more than 64K? */
8284 if (h->dynindx & 0xffff0000)
8285 return false;
8286
8287 bfd_put_32 (output_bfd, STUB_JALR, p);
8288 p += 4;
8289 bfd_put_32 (output_bfd, STUB_LI16 + h->dynindx, p);
8290
8291 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8292 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8293
8294 /* Mark the symbol as undefined. plt.offset != -1 occurs
8295 only for the referenced symbol. */
8296 sym->st_shndx = SHN_UNDEF;
8297
8298 /* The run-time linker uses the st_value field of the symbol
8299 to reset the global offset table entry for this external
8300 to its stub address when unlinking a shared object. */
8301 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8302 sym->st_value = gval;
8303 }
8304
8305 BFD_ASSERT (h->dynindx != -1);
8306
103186c6 8307 sgot = mips_elf_got_section (dynobj);
252b5132
RH
8308 BFD_ASSERT (sgot != NULL);
8309 BFD_ASSERT (elf_section_data (sgot) != NULL);
8310 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8311 BFD_ASSERT (g != NULL);
8312
7403cb63
MM
8313 /* Run through the global symbol table, creating GOT entries for all
8314 the symbols that need them. */
8b237a89
MM
8315 if (g->global_gotsym != NULL
8316 && h->dynindx >= g->global_gotsym->dynindx)
252b5132 8317 {
7403cb63
MM
8318 bfd_vma offset;
8319 bfd_vma value;
252b5132 8320
7403cb63
MM
8321 if (sym->st_value)
8322 value = sym->st_value;
8323 else
8324 /* For an entity defined in a shared object, this will be
8325 NULL. (For functions in shared objects for
8326 which we have created stubs, ST_VALUE will be non-NULL.
8327 That's because such the functions are now no longer defined
8328 in a shared object.) */
8329 value = h->root.u.def.value;
8330
8331 offset = mips_elf_global_got_index (dynobj, h);
103186c6 8332 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
252b5132
RH
8333 }
8334
c6142e5d
MM
8335 /* Create a .msym entry, if appropriate. */
8336 smsym = bfd_get_section_by_name (dynobj,
8337 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8338 if (smsym)
8339 {
8340 Elf32_Internal_Msym msym;
8341
8342 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8343 /* It is undocumented what the `1' indicates, but IRIX6 uses
8344 this value. */
8345 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8346 bfd_mips_elf_swap_msym_out
8347 (dynobj, &msym,
8348 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8349 }
8350
252b5132
RH
8351 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8352 name = h->root.root.string;
8353 if (strcmp (name, "_DYNAMIC") == 0
8354 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8355 sym->st_shndx = SHN_ABS;
8356 else if (strcmp (name, "_DYNAMIC_LINK") == 0)
8357 {
8358 sym->st_shndx = SHN_ABS;
8359 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8360 sym->st_value = 1;
8361 }
8362 else if (SGI_COMPAT (output_bfd))
8363 {
8364 if (strcmp (name, "_gp_disp") == 0)
8365 {
8366 sym->st_shndx = SHN_ABS;
8367 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8368 sym->st_value = elf_gp (output_bfd);
8369 }
8370 else if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8371 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8372 {
8373 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8374 sym->st_other = STO_PROTECTED;
8375 sym->st_value = 0;
8376 sym->st_shndx = SHN_MIPS_DATA;
8377 }
8378 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8379 {
8380 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8381 sym->st_other = STO_PROTECTED;
8382 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8383 sym->st_shndx = SHN_ABS;
8384 }
8385 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8386 {
8387 if (h->type == STT_FUNC)
8388 sym->st_shndx = SHN_MIPS_TEXT;
8389 else if (h->type == STT_OBJECT)
8390 sym->st_shndx = SHN_MIPS_DATA;
8391 }
8392 }
8393
7403cb63
MM
8394 /* Handle the IRIX6-specific symbols. */
8395 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8396 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8397
252b5132
RH
8398 if (SGI_COMPAT (output_bfd)
8399 && ! info->shared)
8400 {
8401 if (! mips_elf_hash_table (info)->use_rld_obj_head
8402 && strcmp (name, "__rld_map") == 0)
8403 {
8404 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8405 BFD_ASSERT (s != NULL);
8406 sym->st_value = s->output_section->vma + s->output_offset;
8407 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8408 if (mips_elf_hash_table (info)->rld_value == 0)
8409 mips_elf_hash_table (info)->rld_value = sym->st_value;
8410 }
8411 else if (mips_elf_hash_table (info)->use_rld_obj_head
8412 && strcmp (name, "__rld_obj_head") == 0)
8413 {
303f629d
MM
8414 /* IRIX6 does not use a .rld_map section. */
8415 if (IRIX_COMPAT (output_bfd) == ict_irix5)
8416 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8417 != NULL);
252b5132
RH
8418 mips_elf_hash_table (info)->rld_value = sym->st_value;
8419 }
8420 }
8421
8422 /* If this is a mips16 symbol, force the value to be even. */
8423 if (sym->st_other == STO_MIPS16
8424 && (sym->st_value & 1) != 0)
8425 --sym->st_value;
8426
8427 return true;
8428}
8429
8430/* Finish up the dynamic sections. */
8431
103186c6
MM
8432boolean
8433_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
252b5132
RH
8434 bfd *output_bfd;
8435 struct bfd_link_info *info;
8436{
8437 bfd *dynobj;
8438 asection *sdyn;
8439 asection *sgot;
8440 struct mips_got_info *g;
8441
8442 dynobj = elf_hash_table (info)->dynobj;
8443
8444 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8445
103186c6 8446 sgot = mips_elf_got_section (dynobj);
252b5132
RH
8447 if (sgot == NULL)
8448 g = NULL;
8449 else
8450 {
8451 BFD_ASSERT (elf_section_data (sgot) != NULL);
8452 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8453 BFD_ASSERT (g != NULL);
8454 }
8455
8456 if (elf_hash_table (info)->dynamic_sections_created)
8457 {
103186c6 8458 bfd_byte *b;
252b5132
RH
8459
8460 BFD_ASSERT (sdyn != NULL);
8461 BFD_ASSERT (g != NULL);
8462
103186c6
MM
8463 for (b = sdyn->contents;
8464 b < sdyn->contents + sdyn->_raw_size;
8465 b += MIPS_ELF_DYN_SIZE (dynobj))
252b5132
RH
8466 {
8467 Elf_Internal_Dyn dyn;
8468 const char *name;
8469 size_t elemsize;
8470 asection *s;
103186c6 8471 boolean swap_out_p;
252b5132 8472
103186c6
MM
8473 /* Read in the current dynamic entry. */
8474 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8475
8476 /* Assume that we're going to modify it and write it out. */
8477 swap_out_p = true;
252b5132
RH
8478
8479 switch (dyn.d_tag)
8480 {
252b5132 8481 case DT_RELENT:
103186c6
MM
8482 s = (bfd_get_section_by_name
8483 (dynobj,
8484 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
252b5132 8485 BFD_ASSERT (s != NULL);
103186c6 8486 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
252b5132
RH
8487 break;
8488
8489 case DT_STRSZ:
8490 /* Rewrite DT_STRSZ. */
8491 dyn.d_un.d_val =
8492 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
252b5132
RH
8493 break;
8494
8495 case DT_PLTGOT:
8496 name = ".got";
8497 goto get_vma;
8498 case DT_MIPS_CONFLICT:
8499 name = ".conflict";
8500 goto get_vma;
8501 case DT_MIPS_LIBLIST:
8502 name = ".liblist";
8503 get_vma:
8504 s = bfd_get_section_by_name (output_bfd, name);
8505 BFD_ASSERT (s != NULL);
8506 dyn.d_un.d_ptr = s->vma;
252b5132
RH
8507 break;
8508
8509 case DT_MIPS_RLD_VERSION:
8510 dyn.d_un.d_val = 1; /* XXX */
252b5132
RH
8511 break;
8512
8513 case DT_MIPS_FLAGS:
8514 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
252b5132
RH
8515 break;
8516
8517 case DT_MIPS_CONFLICTNO:
8518 name = ".conflict";
8519 elemsize = sizeof (Elf32_Conflict);
8520 goto set_elemno;
8521
8522 case DT_MIPS_LIBLISTNO:
8523 name = ".liblist";
8524 elemsize = sizeof (Elf32_Lib);
8525 set_elemno:
8526 s = bfd_get_section_by_name (output_bfd, name);
8527 if (s != NULL)
8528 {
8529 if (s->_cooked_size != 0)
8530 dyn.d_un.d_val = s->_cooked_size / elemsize;
8531 else
8532 dyn.d_un.d_val = s->_raw_size / elemsize;
8533 }
8534 else
8535 dyn.d_un.d_val = 0;
252b5132
RH
8536 break;
8537
8538 case DT_MIPS_TIME_STAMP:
8539 time ((time_t *) &dyn.d_un.d_val);
252b5132
RH
8540 break;
8541
8542 case DT_MIPS_ICHECKSUM:
8543 /* XXX FIXME: */
103186c6 8544 swap_out_p = false;
252b5132
RH
8545 break;
8546
8547 case DT_MIPS_IVERSION:
8548 /* XXX FIXME: */
103186c6 8549 swap_out_p = false;
252b5132
RH
8550 break;
8551
8552 case DT_MIPS_BASE_ADDRESS:
8553 s = output_bfd->sections;
8554 BFD_ASSERT (s != NULL);
8555 dyn.d_un.d_ptr = s->vma & ~(0xffff);
252b5132
RH
8556 break;
8557
8558 case DT_MIPS_LOCAL_GOTNO:
8559 dyn.d_un.d_val = g->local_gotno;
252b5132
RH
8560 break;
8561
8562 case DT_MIPS_SYMTABNO:
8563 name = ".dynsym";
103186c6 8564 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
252b5132
RH
8565 s = bfd_get_section_by_name (output_bfd, name);
8566 BFD_ASSERT (s != NULL);
8567
8568 if (s->_cooked_size != 0)
8569 dyn.d_un.d_val = s->_cooked_size / elemsize;
8570 else
8571 dyn.d_un.d_val = s->_raw_size / elemsize;
252b5132
RH
8572 break;
8573
8574 case DT_MIPS_UNREFEXTNO:
7403cb63
MM
8575 /* The index into the dynamic symbol table which is the
8576 entry of the first external symbol that is not
8577 referenced within the same object. */
8578 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
252b5132
RH
8579 break;
8580
8581 case DT_MIPS_GOTSYM:
7a12753d 8582 dyn.d_un.d_val = g->global_gotsym->dynindx;
252b5132
RH
8583 break;
8584
8585 case DT_MIPS_HIPAGENO:
8586 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
252b5132
RH
8587 break;
8588
8589 case DT_MIPS_RLD_MAP:
8590 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
252b5132
RH
8591 break;
8592
7403cb63
MM
8593 case DT_MIPS_OPTIONS:
8594 s = (bfd_get_section_by_name
8595 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8596 dyn.d_un.d_ptr = s->vma;
7403cb63
MM
8597 break;
8598
c6142e5d
MM
8599 case DT_MIPS_MSYM:
8600 s = (bfd_get_section_by_name
8601 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
8602 dyn.d_un.d_ptr = s->vma;
103186c6
MM
8603 break;
8604
8605 default:
8606 swap_out_p = false;
c6142e5d 8607 break;
252b5132 8608 }
103186c6
MM
8609
8610 if (swap_out_p)
8611 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8612 (dynobj, &dyn, b);
252b5132
RH
8613 }
8614 }
8615
8616 /* The first entry of the global offset table will be filled at
8617 runtime. The second entry will be used by some runtime loaders.
8618 This isn't the case of Irix rld. */
8619 if (sgot != NULL && sgot->_raw_size > 0)
8620 {
103186c6
MM
8621 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8622 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8623 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
252b5132
RH
8624 }
8625
8626 if (sgot != NULL)
103186c6
MM
8627 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8628 = MIPS_ELF_GOT_SIZE (output_bfd);
252b5132
RH
8629
8630 {
c6142e5d 8631 asection *smsym;
252b5132 8632 asection *s;
252b5132
RH
8633 Elf32_compact_rel cpt;
8634
30b30c21
RH
8635 /* ??? The section symbols for the output sections were set up in
8636 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
8637 symbols. Should we do so? */
252b5132 8638
c6142e5d
MM
8639 smsym = bfd_get_section_by_name (dynobj,
8640 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
30b30c21 8641 if (smsym != NULL)
252b5132 8642 {
103186c6 8643 Elf32_Internal_Msym msym;
c6142e5d 8644
103186c6
MM
8645 msym.ms_hash_value = 0;
8646 msym.ms_info = ELF32_MS_INFO (0, 1);
c6142e5d 8647
103186c6
MM
8648 for (s = output_bfd->sections; s != NULL; s = s->next)
8649 {
30b30c21 8650 long dynindx = elf_section_data (s)->dynindx;
252b5132 8651
30b30c21
RH
8652 bfd_mips_elf_swap_msym_out
8653 (output_bfd, &msym,
8654 (((Elf32_External_Msym *) smsym->contents)
8655 + dynindx));
8656 }
252b5132
RH
8657 }
8658
8659 if (SGI_COMPAT (output_bfd))
8660 {
8661 /* Write .compact_rel section out. */
8662 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8663 if (s != NULL)
8664 {
8665 cpt.id1 = 1;
8666 cpt.num = s->reloc_count;
8667 cpt.id2 = 2;
8668 cpt.offset = (s->output_section->filepos
8669 + sizeof (Elf32_External_compact_rel));
8670 cpt.reserved0 = 0;
8671 cpt.reserved1 = 0;
8672 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8673 ((Elf32_External_compact_rel *)
8674 s->contents));
8675
8676 /* Clean up a dummy stub function entry in .text. */
303f629d
MM
8677 s = bfd_get_section_by_name (dynobj,
8678 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
8679 if (s != NULL)
8680 {
8681 file_ptr dummy_offset;
8682
8683 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
8684 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
8685 memset (s->contents + dummy_offset, 0,
8686 MIPS_FUNCTION_STUB_SIZE);
8687 }
8688 }
8689 }
8690
8691 /* Clean up a first relocation in .rel.dyn. */
103186c6
MM
8692 s = bfd_get_section_by_name (dynobj,
8693 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
252b5132 8694 if (s != NULL && s->_raw_size > 0)
103186c6 8695 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
252b5132
RH
8696 }
8697
8698 return true;
8699}
8700\f
8701/* This is almost identical to bfd_generic_get_... except that some
8702 MIPS relocations need to be handled specially. Sigh. */
8703
8704static bfd_byte *
8705elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
8706 relocateable, symbols)
8707 bfd *abfd;
8708 struct bfd_link_info *link_info;
8709 struct bfd_link_order *link_order;
8710 bfd_byte *data;
8711 boolean relocateable;
8712 asymbol **symbols;
8713{
8714 /* Get enough memory to hold the stuff */
8715 bfd *input_bfd = link_order->u.indirect.section->owner;
8716 asection *input_section = link_order->u.indirect.section;
8717
8718 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8719 arelent **reloc_vector = NULL;
8720 long reloc_count;
8721
8722 if (reloc_size < 0)
8723 goto error_return;
8724
8725 reloc_vector = (arelent **) bfd_malloc (reloc_size);
8726 if (reloc_vector == NULL && reloc_size != 0)
8727 goto error_return;
8728
8729 /* read in the section */
8730 if (!bfd_get_section_contents (input_bfd,
8731 input_section,
8732 (PTR) data,
8733 0,
8734 input_section->_raw_size))
8735 goto error_return;
8736
8737 /* We're not relaxing the section, so just copy the size info */
8738 input_section->_cooked_size = input_section->_raw_size;
8739 input_section->reloc_done = true;
8740
8741 reloc_count = bfd_canonicalize_reloc (input_bfd,
8742 input_section,
8743 reloc_vector,
8744 symbols);
8745 if (reloc_count < 0)
8746 goto error_return;
8747
8748 if (reloc_count > 0)
8749 {
8750 arelent **parent;
8751 /* for mips */
8752 int gp_found;
8753 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8754
8755 {
8756 struct bfd_hash_entry *h;
8757 struct bfd_link_hash_entry *lh;
8758 /* Skip all this stuff if we aren't mixing formats. */
8759 if (abfd && input_bfd
8760 && abfd->xvec == input_bfd->xvec)
8761 lh = 0;
8762 else
8763 {
8764 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
8765 lh = (struct bfd_link_hash_entry *) h;
8766 }
8767 lookup:
8768 if (lh)
8769 {
8770 switch (lh->type)
8771 {
8772 case bfd_link_hash_undefined:
8773 case bfd_link_hash_undefweak:
8774 case bfd_link_hash_common:
8775 gp_found = 0;
8776 break;
8777 case bfd_link_hash_defined:
8778 case bfd_link_hash_defweak:
8779 gp_found = 1;
8780 gp = lh->u.def.value;
8781 break;
8782 case bfd_link_hash_indirect:
8783 case bfd_link_hash_warning:
8784 lh = lh->u.i.link;
8785 /* @@FIXME ignoring warning for now */
8786 goto lookup;
8787 case bfd_link_hash_new:
8788 default:
8789 abort ();
8790 }
8791 }
8792 else
8793 gp_found = 0;
8794 }
8795 /* end mips */
8796 for (parent = reloc_vector; *parent != (arelent *) NULL;
8797 parent++)
8798 {
8799 char *error_message = (char *) NULL;
8800 bfd_reloc_status_type r;
8801
8802 /* Specific to MIPS: Deal with relocation types that require
8803 knowing the gp of the output bfd. */
8804 asymbol *sym = *(*parent)->sym_ptr_ptr;
8805 if (bfd_is_abs_section (sym->section) && abfd)
8806 {
8807 /* The special_function wouldn't get called anyways. */
8808 }
8809 else if (!gp_found)
8810 {
8811 /* The gp isn't there; let the special function code
8812 fall over on its own. */
8813 }
8814 else if ((*parent)->howto->special_function
8815 == _bfd_mips_elf_gprel16_reloc)
8816 {
8817 /* bypass special_function call */
8818 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
8819 relocateable, (PTR) data, gp);
8820 goto skip_bfd_perform_relocation;
8821 }
8822 /* end mips specific stuff */
8823
8824 r = bfd_perform_relocation (input_bfd,
8825 *parent,
8826 (PTR) data,
8827 input_section,
8828 relocateable ? abfd : (bfd *) NULL,
8829 &error_message);
8830 skip_bfd_perform_relocation:
8831
8832 if (relocateable)
8833 {
8834 asection *os = input_section->output_section;
8835
8836 /* A partial link, so keep the relocs */
8837 os->orelocation[os->reloc_count] = *parent;
8838 os->reloc_count++;
8839 }
8840
8841 if (r != bfd_reloc_ok)
8842 {
8843 switch (r)
8844 {
8845 case bfd_reloc_undefined:
8846 if (!((*link_info->callbacks->undefined_symbol)
8847 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8848 input_bfd, input_section, (*parent)->address)))
8849 goto error_return;
8850 break;
8851 case bfd_reloc_dangerous:
8852 BFD_ASSERT (error_message != (char *) NULL);
8853 if (!((*link_info->callbacks->reloc_dangerous)
8854 (link_info, error_message, input_bfd, input_section,
8855 (*parent)->address)))
8856 goto error_return;
8857 break;
8858 case bfd_reloc_overflow:
8859 if (!((*link_info->callbacks->reloc_overflow)
8860 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8861 (*parent)->howto->name, (*parent)->addend,
8862 input_bfd, input_section, (*parent)->address)))
8863 goto error_return;
8864 break;
8865 case bfd_reloc_outofrange:
8866 default:
8867 abort ();
8868 break;
8869 }
8870
8871 }
8872 }
8873 }
8874 if (reloc_vector != NULL)
8875 free (reloc_vector);
8876 return data;
8877
8878error_return:
8879 if (reloc_vector != NULL)
8880 free (reloc_vector);
8881 return NULL;
8882}
8883#define bfd_elf32_bfd_get_relocated_section_contents \
8884 elf32_mips_get_relocated_section_contents
8885\f
8886/* ECOFF swapping routines. These are used when dealing with the
8887 .mdebug section, which is in the ECOFF debugging format. */
8888static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap =
8889{
8890 /* Symbol table magic number. */
8891 magicSym,
8892 /* Alignment of debugging information. E.g., 4. */
8893 4,
8894 /* Sizes of external symbolic information. */
8895 sizeof (struct hdr_ext),
8896 sizeof (struct dnr_ext),
8897 sizeof (struct pdr_ext),
8898 sizeof (struct sym_ext),
8899 sizeof (struct opt_ext),
8900 sizeof (struct fdr_ext),
8901 sizeof (struct rfd_ext),
8902 sizeof (struct ext_ext),
8903 /* Functions to swap in external symbolic data. */
8904 ecoff_swap_hdr_in,
8905 ecoff_swap_dnr_in,
8906 ecoff_swap_pdr_in,
8907 ecoff_swap_sym_in,
8908 ecoff_swap_opt_in,
8909 ecoff_swap_fdr_in,
8910 ecoff_swap_rfd_in,
8911 ecoff_swap_ext_in,
8912 _bfd_ecoff_swap_tir_in,
8913 _bfd_ecoff_swap_rndx_in,
8914 /* Functions to swap out external symbolic data. */
8915 ecoff_swap_hdr_out,
8916 ecoff_swap_dnr_out,
8917 ecoff_swap_pdr_out,
8918 ecoff_swap_sym_out,
8919 ecoff_swap_opt_out,
8920 ecoff_swap_fdr_out,
8921 ecoff_swap_rfd_out,
8922 ecoff_swap_ext_out,
8923 _bfd_ecoff_swap_tir_out,
8924 _bfd_ecoff_swap_rndx_out,
8925 /* Function to read in symbolic data. */
8926 _bfd_mips_elf_read_ecoff_info
8927};
8928\f
8929#define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
8930#define TARGET_LITTLE_NAME "elf32-littlemips"
8931#define TARGET_BIG_SYM bfd_elf32_bigmips_vec
8932#define TARGET_BIG_NAME "elf32-bigmips"
8933#define ELF_ARCH bfd_arch_mips
8934#define ELF_MACHINE_CODE EM_MIPS
8935
8936/* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
8937 a value of 0x1000, and we are compatible. */
8938#define ELF_MAXPAGESIZE 0x1000
8939
8940#define elf_backend_collect true
8941#define elf_backend_type_change_ok true
8942#define elf_backend_can_gc_sections true
3f830999 8943#define elf_info_to_howto mips_info_to_howto_rela
252b5132
RH
8944#define elf_info_to_howto_rel mips_info_to_howto_rel
8945#define elf_backend_sym_is_global mips_elf_sym_is_global
103186c6
MM
8946#define elf_backend_object_p _bfd_mips_elf_object_p
8947#define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
252b5132
RH
8948#define elf_backend_fake_sections _bfd_mips_elf_fake_sections
8949#define elf_backend_section_from_bfd_section \
8950 _bfd_mips_elf_section_from_bfd_section
103186c6 8951#define elf_backend_section_processing _bfd_mips_elf_section_processing
252b5132
RH
8952#define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
8953#define elf_backend_additional_program_headers \
103186c6
MM
8954 _bfd_mips_elf_additional_program_headers
8955#define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
252b5132
RH
8956#define elf_backend_final_write_processing \
8957 _bfd_mips_elf_final_write_processing
8958#define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
103186c6
MM
8959#define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
8960#define elf_backend_create_dynamic_sections \
8961 _bfd_mips_elf_create_dynamic_sections
8962#define elf_backend_check_relocs _bfd_mips_elf_check_relocs
8963#define elf_backend_adjust_dynamic_symbol \
8964 _bfd_mips_elf_adjust_dynamic_symbol
8965#define elf_backend_always_size_sections \
8966 _bfd_mips_elf_always_size_sections
8967#define elf_backend_size_dynamic_sections \
8968 _bfd_mips_elf_size_dynamic_sections
8969#define elf_backend_relocate_section _bfd_mips_elf_relocate_section
8970#define elf_backend_link_output_symbol_hook \
8971 _bfd_mips_elf_link_output_symbol_hook
8972#define elf_backend_finish_dynamic_symbol \
8973 _bfd_mips_elf_finish_dynamic_symbol
8974#define elf_backend_finish_dynamic_sections \
8975 _bfd_mips_elf_finish_dynamic_sections
8976#define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
8977#define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
8978
8979#define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
8980#define elf_backend_plt_header_size 0
252b5132
RH
8981
8982#define bfd_elf32_bfd_is_local_label_name \
8983 mips_elf_is_local_label_name
8984#define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
8985#define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
8986#define bfd_elf32_bfd_link_hash_table_create \
103186c6
MM
8987 _bfd_mips_elf_link_hash_table_create
8988#define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
252b5132
RH
8989#define bfd_elf32_bfd_copy_private_bfd_data \
8990 _bfd_mips_elf_copy_private_bfd_data
8991#define bfd_elf32_bfd_merge_private_bfd_data \
8992 _bfd_mips_elf_merge_private_bfd_data
8993#define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
8994#define bfd_elf32_bfd_print_private_bfd_data \
8995 _bfd_mips_elf_print_private_bfd_data
252b5132 8996#include "elf32-target.h"