]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf32-xtensa.c
2009-12-10 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
aa820537
AM
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
e0001a05
NC
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License as
cd123cb7 9 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
10 License, or (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 20 02110-1301, USA. */
e0001a05 21
e0001a05 22#include "sysdep.h"
3db64b00 23#include "bfd.h"
e0001a05 24
e0001a05 25#include <stdarg.h>
e0001a05
NC
26#include <strings.h>
27
28#include "bfdlink.h"
29#include "libbfd.h"
30#include "elf-bfd.h"
31#include "elf/xtensa.h"
32#include "xtensa-isa.h"
33#include "xtensa-config.h"
34
43cd72b9
BW
35#define XTENSA_NO_NOP_REMOVAL 0
36
e0001a05
NC
37/* Local helper functions. */
38
f0e6fdb2 39static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 40static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 41static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 43static bfd_boolean do_fix_for_relocatable_link
7fa3d080 44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 45static void do_fix_for_final_link
7fa3d080 46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
47
48/* Local functions to handle Xtensa configurability. */
49
7fa3d080
BW
50static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53static xtensa_opcode get_const16_opcode (void);
54static xtensa_opcode get_l32r_opcode (void);
55static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56static int get_relocation_opnd (xtensa_opcode, int);
57static int get_relocation_slot (int);
e0001a05 58static xtensa_opcode get_relocation_opcode
7fa3d080 59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 60static bfd_boolean is_l32r_relocation
7fa3d080
BW
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62static bfd_boolean is_alt_relocation (int);
63static bfd_boolean is_operand_relocation (int);
43cd72b9 64static bfd_size_type insn_decode_len
7fa3d080 65 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 66static xtensa_opcode insn_decode_opcode
7fa3d080 67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 68static bfd_boolean check_branch_target_aligned
7fa3d080 69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 70static bfd_boolean check_loop_aligned
7fa3d080
BW
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 73static bfd_size_type get_asm_simplify_size
7fa3d080 74 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
75
76/* Functions for link-time code simplifications. */
77
43cd72b9 78static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 79 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 80static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
84
85/* Access to internal relocations, section contents and symbols. */
86
87static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
88 (bfd *, asection *, bfd_boolean);
89static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92static void pin_contents (asection *, bfd_byte *);
93static void release_contents (asection *, bfd_byte *);
94static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
95
96/* Miscellaneous utility functions. */
97
f0e6fdb2
BW
98static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 100static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 101static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
102 (bfd *, unsigned long);
103static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 107static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 108static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 109static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
110static int internal_reloc_compare (const void *, const void *);
111static int internal_reloc_matches (const void *, const void *);
51c8ebc1
BW
112static asection *xtensa_get_property_section (asection *, const char *);
113extern asection *xtensa_make_property_section (asection *, const char *);
7fa3d080 114static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
115
116/* Other functions called directly by the linker. */
117
118typedef void (*deps_callback_t)
7fa3d080 119 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 120extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
122
123
43cd72b9
BW
124/* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
7fa3d080 128
43cd72b9
BW
129int elf32xtensa_size_opt;
130
131
132/* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
e0001a05 135
7fa3d080 136typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 137
43cd72b9 138
43cd72b9
BW
139/* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
142 this information. */
143
144xtensa_isa xtensa_default_isa;
145
146
e0001a05
NC
147/* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
150
151static bfd_boolean relaxing_section = FALSE;
152
43cd72b9
BW
153/* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
155
156int elf32xtensa_no_literal_movement = 1;
157
e0001a05
NC
158\f
159static reloc_howto_type elf_howto_table[] =
160{
161 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
162 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 163 FALSE, 0, 0, FALSE),
e0001a05
NC
164 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
165 bfd_elf_xtensa_reloc, "R_XTENSA_32",
166 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 167
e0001a05
NC
168 /* Replace a 32-bit value with a value from the runtime linker (only
169 used by linker-generated stub functions). The r_addend value is
170 special: 1 means to substitute a pointer to the runtime linker's
171 dynamic resolver function; 2 means to substitute the link map for
172 the shared object. */
173 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
174 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
175
e0001a05
NC
176 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
177 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 178 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
179 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 181 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
182 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 184 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
185 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
187 FALSE, 0, 0xffffffff, FALSE),
188
e0001a05 189 EMPTY_HOWTO (7),
e5f131d1
BW
190
191 /* Old relocations for backward compatibility. */
e0001a05 192 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 193 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 194 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 195 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 196 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
197 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
198
e0001a05
NC
199 /* Assembly auto-expansion. */
200 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 201 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
202 /* Relax assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
205
e0001a05 206 EMPTY_HOWTO (13),
1bbb5f21
BW
207
208 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
209 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
210 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 211
e0001a05
NC
212 /* GNU extension to record C++ vtable hierarchy. */
213 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
214 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 215 FALSE, 0, 0, FALSE),
e0001a05
NC
216 /* GNU extension to record C++ vtable member usage. */
217 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 219 FALSE, 0, 0, FALSE),
43cd72b9
BW
220
221 /* Relocations for supporting difference of symbols. */
222 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 223 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 224 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 225 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 226 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
228
229 /* General immediate operand relocations. */
230 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 231 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 232 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 233 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 234 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 236 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 238 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 240 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 242 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 244 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 246 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 248 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 250 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 252 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 254 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 256 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 258 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
260
261 /* "Alternate" relocations. The meaning of these is opcode-specific. */
262 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 264 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 266 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 268 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 270 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 272 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 274 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 276 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 278 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 280 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 282 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 284 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 286 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 288 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 290 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
292
293 /* TLS relocations. */
294 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
296 FALSE, 0, 0xffffffff, FALSE),
297 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
299 FALSE, 0, 0xffffffff, FALSE),
300 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
302 FALSE, 0, 0xffffffff, FALSE),
303 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
305 FALSE, 0, 0xffffffff, FALSE),
306 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
308 FALSE, 0, 0, FALSE),
309 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
311 FALSE, 0, 0, FALSE),
312 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
314 FALSE, 0, 0, FALSE),
e0001a05
NC
315};
316
43cd72b9 317#if DEBUG_GEN_RELOC
e0001a05
NC
318#define TRACE(str) \
319 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
320#else
321#define TRACE(str)
322#endif
323
324static reloc_howto_type *
7fa3d080
BW
325elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
326 bfd_reloc_code_real_type code)
e0001a05
NC
327{
328 switch (code)
329 {
330 case BFD_RELOC_NONE:
331 TRACE ("BFD_RELOC_NONE");
332 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
333
334 case BFD_RELOC_32:
335 TRACE ("BFD_RELOC_32");
336 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
337
1bbb5f21
BW
338 case BFD_RELOC_32_PCREL:
339 TRACE ("BFD_RELOC_32_PCREL");
340 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
341
43cd72b9
BW
342 case BFD_RELOC_XTENSA_DIFF8:
343 TRACE ("BFD_RELOC_XTENSA_DIFF8");
344 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
345
346 case BFD_RELOC_XTENSA_DIFF16:
347 TRACE ("BFD_RELOC_XTENSA_DIFF16");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
349
350 case BFD_RELOC_XTENSA_DIFF32:
351 TRACE ("BFD_RELOC_XTENSA_DIFF32");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
353
e0001a05
NC
354 case BFD_RELOC_XTENSA_RTLD:
355 TRACE ("BFD_RELOC_XTENSA_RTLD");
356 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
357
358 case BFD_RELOC_XTENSA_GLOB_DAT:
359 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
360 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
361
362 case BFD_RELOC_XTENSA_JMP_SLOT:
363 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
364 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
365
366 case BFD_RELOC_XTENSA_RELATIVE:
367 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
368 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
369
370 case BFD_RELOC_XTENSA_PLT:
371 TRACE ("BFD_RELOC_XTENSA_PLT");
372 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
373
374 case BFD_RELOC_XTENSA_OP0:
375 TRACE ("BFD_RELOC_XTENSA_OP0");
376 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
377
378 case BFD_RELOC_XTENSA_OP1:
379 TRACE ("BFD_RELOC_XTENSA_OP1");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
381
382 case BFD_RELOC_XTENSA_OP2:
383 TRACE ("BFD_RELOC_XTENSA_OP2");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
385
386 case BFD_RELOC_XTENSA_ASM_EXPAND:
387 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
388 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
389
390 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
391 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
393
394 case BFD_RELOC_VTABLE_INHERIT:
395 TRACE ("BFD_RELOC_VTABLE_INHERIT");
396 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
397
398 case BFD_RELOC_VTABLE_ENTRY:
399 TRACE ("BFD_RELOC_VTABLE_ENTRY");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
401
28dbbc02
BW
402 case BFD_RELOC_XTENSA_TLSDESC_FN:
403 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
404 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
405
406 case BFD_RELOC_XTENSA_TLSDESC_ARG:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
409
410 case BFD_RELOC_XTENSA_TLS_DTPOFF:
411 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
413
414 case BFD_RELOC_XTENSA_TLS_TPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
417
418 case BFD_RELOC_XTENSA_TLS_FUNC:
419 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
421
422 case BFD_RELOC_XTENSA_TLS_ARG:
423 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
425
426 case BFD_RELOC_XTENSA_TLS_CALL:
427 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
429
e0001a05 430 default:
43cd72b9
BW
431 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
432 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
433 {
434 unsigned n = (R_XTENSA_SLOT0_OP +
435 (code - BFD_RELOC_XTENSA_SLOT0_OP));
436 return &elf_howto_table[n];
437 }
438
439 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
440 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
441 {
442 unsigned n = (R_XTENSA_SLOT0_ALT +
443 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
444 return &elf_howto_table[n];
445 }
446
e0001a05
NC
447 break;
448 }
449
450 TRACE ("Unknown");
451 return NULL;
452}
453
157090f7
AM
454static reloc_howto_type *
455elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
456 const char *r_name)
457{
458 unsigned int i;
459
460 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
461 if (elf_howto_table[i].name != NULL
462 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
463 return &elf_howto_table[i];
464
465 return NULL;
466}
467
e0001a05
NC
468
469/* Given an ELF "rela" relocation, find the corresponding howto and record
470 it in the BFD internal arelent representation of the relocation. */
471
472static void
7fa3d080
BW
473elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
474 arelent *cache_ptr,
475 Elf_Internal_Rela *dst)
e0001a05
NC
476{
477 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
478
479 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
480 cache_ptr->howto = &elf_howto_table[r_type];
481}
482
483\f
484/* Functions for the Xtensa ELF linker. */
485
486/* The name of the dynamic interpreter. This is put in the .interp
487 section. */
488
489#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
490
491/* The size in bytes of an entry in the procedure linkage table.
492 (This does _not_ include the space for the literals associated with
493 the PLT entry.) */
494
495#define PLT_ENTRY_SIZE 16
496
497/* For _really_ large PLTs, we may need to alternate between literals
498 and code to keep the literals within the 256K range of the L32R
499 instructions in the code. It's unlikely that anyone would ever need
500 such a big PLT, but an arbitrary limit on the PLT size would be bad.
501 Thus, we split the PLT into chunks. Since there's very little
502 overhead (2 extra literals) for each chunk, the chunk size is kept
503 small so that the code for handling multiple chunks get used and
504 tested regularly. With 254 entries, there are 1K of literals for
505 each chunk, and that seems like a nice round number. */
506
507#define PLT_ENTRIES_PER_CHUNK 254
508
509/* PLT entries are actually used as stub functions for lazy symbol
510 resolution. Once the symbol is resolved, the stub function is never
511 invoked. Note: the 32-byte frame size used here cannot be changed
512 without a corresponding change in the runtime linker. */
513
514static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
515{
516 0x6c, 0x10, 0x04, /* entry sp, 32 */
517 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
518 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
519 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
520 0x0a, 0x80, 0x00, /* jx a8 */
521 0 /* unused */
522};
523
524static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
525{
526 0x36, 0x41, 0x00, /* entry sp, 32 */
527 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
528 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
529 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
530 0xa0, 0x08, 0x00, /* jx a8 */
531 0 /* unused */
532};
533
28dbbc02
BW
534/* The size of the thread control block. */
535#define TCB_SIZE 8
536
537struct elf_xtensa_link_hash_entry
538{
539 struct elf_link_hash_entry elf;
540
541 bfd_signed_vma tlsfunc_refcount;
542
543#define GOT_UNKNOWN 0
544#define GOT_NORMAL 1
545#define GOT_TLS_GD 2 /* global or local dynamic */
546#define GOT_TLS_IE 4 /* initial or local exec */
547#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
548 unsigned char tls_type;
549};
550
551#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
552
553struct elf_xtensa_obj_tdata
554{
555 struct elf_obj_tdata root;
556
557 /* tls_type for each local got entry. */
558 char *local_got_tls_type;
559
560 bfd_signed_vma *local_tlsfunc_refcounts;
561};
562
563#define elf_xtensa_tdata(abfd) \
564 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
565
566#define elf_xtensa_local_got_tls_type(abfd) \
567 (elf_xtensa_tdata (abfd)->local_got_tls_type)
568
569#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
570 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
571
572#define is_xtensa_elf(bfd) \
573 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
574 && elf_tdata (bfd) != NULL \
575 && elf_object_id (bfd) == XTENSA_ELF_TDATA)
576
577static bfd_boolean
578elf_xtensa_mkobject (bfd *abfd)
579{
580 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
581 XTENSA_ELF_TDATA);
582}
583
f0e6fdb2
BW
584/* Xtensa ELF linker hash table. */
585
586struct elf_xtensa_link_hash_table
587{
588 struct elf_link_hash_table elf;
589
590 /* Short-cuts to get to dynamic linker sections. */
591 asection *sgot;
592 asection *sgotplt;
593 asection *srelgot;
594 asection *splt;
595 asection *srelplt;
596 asection *sgotloc;
597 asection *spltlittbl;
598
599 /* Total count of PLT relocations seen during check_relocs.
600 The actual PLT code must be split into multiple sections and all
601 the sections have to be created before size_dynamic_sections,
602 where we figure out the exact number of PLT entries that will be
603 needed. It is OK if this count is an overestimate, e.g., some
604 relocations may be removed by GC. */
605 int plt_reloc_count;
28dbbc02
BW
606
607 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
608};
609
610/* Get the Xtensa ELF linker hash table from a link_info structure. */
611
612#define elf_xtensa_hash_table(p) \
613 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
614
28dbbc02
BW
615/* Create an entry in an Xtensa ELF linker hash table. */
616
617static struct bfd_hash_entry *
618elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
619 struct bfd_hash_table *table,
620 const char *string)
621{
622 /* Allocate the structure if it has not already been allocated by a
623 subclass. */
624 if (entry == NULL)
625 {
626 entry = bfd_hash_allocate (table,
627 sizeof (struct elf_xtensa_link_hash_entry));
628 if (entry == NULL)
629 return entry;
630 }
631
632 /* Call the allocation method of the superclass. */
633 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
634 if (entry != NULL)
635 {
636 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
637 eh->tlsfunc_refcount = 0;
638 eh->tls_type = GOT_UNKNOWN;
639 }
640
641 return entry;
642}
643
f0e6fdb2
BW
644/* Create an Xtensa ELF linker hash table. */
645
646static struct bfd_link_hash_table *
647elf_xtensa_link_hash_table_create (bfd *abfd)
648{
28dbbc02 649 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
650 struct elf_xtensa_link_hash_table *ret;
651 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
652
653 ret = bfd_malloc (amt);
654 if (ret == NULL)
655 return NULL;
656
657 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02
BW
658 elf_xtensa_link_hash_newfunc,
659 sizeof (struct elf_xtensa_link_hash_entry)))
f0e6fdb2
BW
660 {
661 free (ret);
662 return NULL;
663 }
664
665 ret->sgot = NULL;
666 ret->sgotplt = NULL;
667 ret->srelgot = NULL;
668 ret->splt = NULL;
669 ret->srelplt = NULL;
670 ret->sgotloc = NULL;
671 ret->spltlittbl = NULL;
672
673 ret->plt_reloc_count = 0;
674
28dbbc02
BW
675 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
676 for it later. */
677 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
678 TRUE, FALSE, FALSE);
679 tlsbase->root.type = bfd_link_hash_new;
680 tlsbase->root.u.undef.abfd = NULL;
681 tlsbase->non_elf = 0;
682 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
683 ret->tlsbase->tls_type = GOT_UNKNOWN;
684
f0e6fdb2
BW
685 return &ret->elf.root;
686}
571b5725 687
28dbbc02
BW
688/* Copy the extra info we tack onto an elf_link_hash_entry. */
689
690static void
691elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
692 struct elf_link_hash_entry *dir,
693 struct elf_link_hash_entry *ind)
694{
695 struct elf_xtensa_link_hash_entry *edir, *eind;
696
697 edir = elf_xtensa_hash_entry (dir);
698 eind = elf_xtensa_hash_entry (ind);
699
700 if (ind->root.type == bfd_link_hash_indirect)
701 {
702 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
703 eind->tlsfunc_refcount = 0;
704
705 if (dir->got.refcount <= 0)
706 {
707 edir->tls_type = eind->tls_type;
708 eind->tls_type = GOT_UNKNOWN;
709 }
710 }
711
712 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
713}
714
571b5725 715static inline bfd_boolean
4608f3d9 716elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 717 struct bfd_link_info *info)
571b5725
BW
718{
719 /* Check if we should do dynamic things to this symbol. The
720 "ignore_protected" argument need not be set, because Xtensa code
721 does not require special handling of STV_PROTECTED to make function
722 pointer comparisons work properly. The PLT addresses are never
723 used for function pointers. */
724
725 return _bfd_elf_dynamic_symbol_p (h, info, 0);
726}
727
e0001a05
NC
728\f
729static int
7fa3d080 730property_table_compare (const void *ap, const void *bp)
e0001a05
NC
731{
732 const property_table_entry *a = (const property_table_entry *) ap;
733 const property_table_entry *b = (const property_table_entry *) bp;
734
43cd72b9
BW
735 if (a->address == b->address)
736 {
43cd72b9
BW
737 if (a->size != b->size)
738 return (a->size - b->size);
739
740 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
741 return ((b->flags & XTENSA_PROP_ALIGN)
742 - (a->flags & XTENSA_PROP_ALIGN));
743
744 if ((a->flags & XTENSA_PROP_ALIGN)
745 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
746 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
747 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
748 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
749
750 if ((a->flags & XTENSA_PROP_UNREACHABLE)
751 != (b->flags & XTENSA_PROP_UNREACHABLE))
752 return ((b->flags & XTENSA_PROP_UNREACHABLE)
753 - (a->flags & XTENSA_PROP_UNREACHABLE));
754
755 return (a->flags - b->flags);
756 }
757
758 return (a->address - b->address);
759}
760
761
762static int
7fa3d080 763property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
764{
765 const property_table_entry *a = (const property_table_entry *) ap;
766 const property_table_entry *b = (const property_table_entry *) bp;
767
768 /* Check if one entry overlaps with the other. */
e0001a05
NC
769 if ((b->address >= a->address && b->address < (a->address + a->size))
770 || (a->address >= b->address && a->address < (b->address + b->size)))
771 return 0;
772
773 return (a->address - b->address);
774}
775
776
43cd72b9
BW
777/* Get the literal table or property table entries for the given
778 section. Sets TABLE_P and returns the number of entries. On
779 error, returns a negative value. */
e0001a05 780
7fa3d080
BW
781static int
782xtensa_read_table_entries (bfd *abfd,
783 asection *section,
784 property_table_entry **table_p,
785 const char *sec_name,
786 bfd_boolean output_addr)
e0001a05
NC
787{
788 asection *table_section;
e0001a05
NC
789 bfd_size_type table_size = 0;
790 bfd_byte *table_data;
791 property_table_entry *blocks;
e4115460 792 int blk, block_count;
e0001a05 793 bfd_size_type num_records;
bcc2cc8e
BW
794 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
795 bfd_vma section_addr, off;
43cd72b9 796 flagword predef_flags;
bcc2cc8e 797 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
798
799 if (!section
800 || !(section->flags & SEC_ALLOC)
801 || (section->flags & SEC_DEBUGGING))
802 {
803 *table_p = NULL;
804 return 0;
805 }
e0001a05 806
74869ac7 807 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 808 if (table_section)
eea6121a 809 table_size = table_section->size;
43cd72b9 810
e0001a05
NC
811 if (table_size == 0)
812 {
813 *table_p = NULL;
814 return 0;
815 }
816
43cd72b9
BW
817 predef_flags = xtensa_get_property_predef_flags (table_section);
818 table_entry_size = 12;
819 if (predef_flags)
820 table_entry_size -= 4;
821
822 num_records = table_size / table_entry_size;
e0001a05
NC
823 table_data = retrieve_contents (abfd, table_section, TRUE);
824 blocks = (property_table_entry *)
825 bfd_malloc (num_records * sizeof (property_table_entry));
826 block_count = 0;
43cd72b9
BW
827
828 if (output_addr)
829 section_addr = section->output_section->vma + section->output_offset;
830 else
831 section_addr = section->vma;
3ba3bc8c 832
e0001a05 833 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 834 if (internal_relocs && !table_section->reloc_done)
e0001a05 835 {
bcc2cc8e
BW
836 qsort (internal_relocs, table_section->reloc_count,
837 sizeof (Elf_Internal_Rela), internal_reloc_compare);
838 irel = internal_relocs;
839 }
840 else
841 irel = NULL;
842
843 section_limit = bfd_get_section_limit (abfd, section);
844 rel_end = internal_relocs + table_section->reloc_count;
845
846 for (off = 0; off < table_size; off += table_entry_size)
847 {
848 bfd_vma address = bfd_get_32 (abfd, table_data + off);
849
850 /* Skip any relocations before the current offset. This should help
851 avoid confusion caused by unexpected relocations for the preceding
852 table entry. */
853 while (irel &&
854 (irel->r_offset < off
855 || (irel->r_offset == off
856 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
857 {
858 irel += 1;
859 if (irel >= rel_end)
860 irel = 0;
861 }
e0001a05 862
bcc2cc8e 863 if (irel && irel->r_offset == off)
e0001a05 864 {
bcc2cc8e
BW
865 bfd_vma sym_off;
866 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
867 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 868
bcc2cc8e 869 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
870 continue;
871
bcc2cc8e
BW
872 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
873 BFD_ASSERT (sym_off == 0);
874 address += (section_addr + sym_off + irel->r_addend);
e0001a05 875 }
bcc2cc8e 876 else
e0001a05 877 {
bcc2cc8e
BW
878 if (address < section_addr
879 || address >= section_addr + section_limit)
880 continue;
e0001a05 881 }
bcc2cc8e
BW
882
883 blocks[block_count].address = address;
884 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
885 if (predef_flags)
886 blocks[block_count].flags = predef_flags;
887 else
888 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
889 block_count++;
e0001a05
NC
890 }
891
892 release_contents (table_section, table_data);
893 release_internal_relocs (table_section, internal_relocs);
894
43cd72b9 895 if (block_count > 0)
e0001a05
NC
896 {
897 /* Now sort them into address order for easy reference. */
898 qsort (blocks, block_count, sizeof (property_table_entry),
899 property_table_compare);
e4115460
BW
900
901 /* Check that the table contents are valid. Problems may occur,
902 for example, if an unrelocated object file is stripped. */
903 for (blk = 1; blk < block_count; blk++)
904 {
905 /* The only circumstance where two entries may legitimately
906 have the same address is when one of them is a zero-size
907 placeholder to mark a place where fill can be inserted.
908 The zero-size entry should come first. */
909 if (blocks[blk - 1].address == blocks[blk].address &&
910 blocks[blk - 1].size != 0)
911 {
912 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
913 abfd, section);
914 bfd_set_error (bfd_error_bad_value);
915 free (blocks);
916 return -1;
917 }
918 }
e0001a05 919 }
43cd72b9 920
e0001a05
NC
921 *table_p = blocks;
922 return block_count;
923}
924
925
7fa3d080
BW
926static property_table_entry *
927elf_xtensa_find_property_entry (property_table_entry *property_table,
928 int property_table_size,
929 bfd_vma addr)
e0001a05
NC
930{
931 property_table_entry entry;
43cd72b9 932 property_table_entry *rv;
e0001a05 933
43cd72b9
BW
934 if (property_table_size == 0)
935 return NULL;
e0001a05
NC
936
937 entry.address = addr;
938 entry.size = 1;
43cd72b9 939 entry.flags = 0;
e0001a05 940
43cd72b9
BW
941 rv = bsearch (&entry, property_table, property_table_size,
942 sizeof (property_table_entry), property_table_matches);
943 return rv;
944}
945
946
947static bfd_boolean
7fa3d080
BW
948elf_xtensa_in_literal_pool (property_table_entry *lit_table,
949 int lit_table_size,
950 bfd_vma addr)
43cd72b9
BW
951{
952 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
953 return TRUE;
954
955 return FALSE;
956}
957
958\f
959/* Look through the relocs for a section during the first phase, and
960 calculate needed space in the dynamic reloc sections. */
961
962static bfd_boolean
7fa3d080
BW
963elf_xtensa_check_relocs (bfd *abfd,
964 struct bfd_link_info *info,
965 asection *sec,
966 const Elf_Internal_Rela *relocs)
e0001a05 967{
f0e6fdb2 968 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
969 Elf_Internal_Shdr *symtab_hdr;
970 struct elf_link_hash_entry **sym_hashes;
971 const Elf_Internal_Rela *rel;
972 const Elf_Internal_Rela *rel_end;
e0001a05 973
28dbbc02 974 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
975 return TRUE;
976
28dbbc02
BW
977 BFD_ASSERT (is_xtensa_elf (abfd));
978
f0e6fdb2 979 htab = elf_xtensa_hash_table (info);
e0001a05
NC
980 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
981 sym_hashes = elf_sym_hashes (abfd);
982
e0001a05
NC
983 rel_end = relocs + sec->reloc_count;
984 for (rel = relocs; rel < rel_end; rel++)
985 {
986 unsigned int r_type;
987 unsigned long r_symndx;
28dbbc02
BW
988 struct elf_link_hash_entry *h = NULL;
989 struct elf_xtensa_link_hash_entry *eh;
990 int tls_type, old_tls_type;
991 bfd_boolean is_got = FALSE;
992 bfd_boolean is_plt = FALSE;
993 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
994
995 r_symndx = ELF32_R_SYM (rel->r_info);
996 r_type = ELF32_R_TYPE (rel->r_info);
997
998 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
999 {
d003868e
AM
1000 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1001 abfd, r_symndx);
e0001a05
NC
1002 return FALSE;
1003 }
1004
28dbbc02 1005 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1006 {
1007 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1008 while (h->root.type == bfd_link_hash_indirect
1009 || h->root.type == bfd_link_hash_warning)
1010 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1011 }
28dbbc02 1012 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1013
1014 switch (r_type)
1015 {
28dbbc02
BW
1016 case R_XTENSA_TLSDESC_FN:
1017 if (info->shared)
1018 {
1019 tls_type = GOT_TLS_GD;
1020 is_got = TRUE;
1021 is_tlsfunc = TRUE;
1022 }
1023 else
1024 tls_type = GOT_TLS_IE;
1025 break;
e0001a05 1026
28dbbc02
BW
1027 case R_XTENSA_TLSDESC_ARG:
1028 if (info->shared)
e0001a05 1029 {
28dbbc02
BW
1030 tls_type = GOT_TLS_GD;
1031 is_got = TRUE;
1032 }
1033 else
1034 {
1035 tls_type = GOT_TLS_IE;
1036 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1037 is_got = TRUE;
e0001a05
NC
1038 }
1039 break;
1040
28dbbc02
BW
1041 case R_XTENSA_TLS_DTPOFF:
1042 if (info->shared)
1043 tls_type = GOT_TLS_GD;
1044 else
1045 tls_type = GOT_TLS_IE;
1046 break;
1047
1048 case R_XTENSA_TLS_TPOFF:
1049 tls_type = GOT_TLS_IE;
1050 if (info->shared)
1051 info->flags |= DF_STATIC_TLS;
1052 if (info->shared || h)
1053 is_got = TRUE;
1054 break;
1055
1056 case R_XTENSA_32:
1057 tls_type = GOT_NORMAL;
1058 is_got = TRUE;
1059 break;
1060
e0001a05 1061 case R_XTENSA_PLT:
28dbbc02
BW
1062 tls_type = GOT_NORMAL;
1063 is_plt = TRUE;
1064 break;
e0001a05 1065
28dbbc02
BW
1066 case R_XTENSA_GNU_VTINHERIT:
1067 /* This relocation describes the C++ object vtable hierarchy.
1068 Reconstruct it for later use during GC. */
1069 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1070 return FALSE;
1071 continue;
1072
1073 case R_XTENSA_GNU_VTENTRY:
1074 /* This relocation describes which C++ vtable entries are actually
1075 used. Record for later use during GC. */
1076 BFD_ASSERT (h != NULL);
1077 if (h != NULL
1078 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1079 return FALSE;
1080 continue;
1081
1082 default:
1083 /* Nothing to do for any other relocations. */
1084 continue;
1085 }
1086
1087 if (h)
1088 {
1089 if (is_plt)
e0001a05 1090 {
b45329f9
BW
1091 if (h->plt.refcount <= 0)
1092 {
1093 h->needs_plt = 1;
1094 h->plt.refcount = 1;
1095 }
1096 else
1097 h->plt.refcount += 1;
e0001a05
NC
1098
1099 /* Keep track of the total PLT relocation count even if we
1100 don't yet know whether the dynamic sections will be
1101 created. */
f0e6fdb2 1102 htab->plt_reloc_count += 1;
e0001a05
NC
1103
1104 if (elf_hash_table (info)->dynamic_sections_created)
1105 {
f0e6fdb2 1106 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1107 return FALSE;
1108 }
1109 }
28dbbc02 1110 else if (is_got)
b45329f9
BW
1111 {
1112 if (h->got.refcount <= 0)
1113 h->got.refcount = 1;
1114 else
1115 h->got.refcount += 1;
1116 }
28dbbc02
BW
1117
1118 if (is_tlsfunc)
1119 eh->tlsfunc_refcount += 1;
e0001a05 1120
28dbbc02
BW
1121 old_tls_type = eh->tls_type;
1122 }
1123 else
1124 {
1125 /* Allocate storage the first time. */
1126 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1127 {
28dbbc02
BW
1128 bfd_size_type size = symtab_hdr->sh_info;
1129 void *mem;
e0001a05 1130
28dbbc02
BW
1131 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1132 if (mem == NULL)
1133 return FALSE;
1134 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1135
28dbbc02
BW
1136 mem = bfd_zalloc (abfd, size);
1137 if (mem == NULL)
1138 return FALSE;
1139 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1140
1141 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1142 if (mem == NULL)
1143 return FALSE;
1144 elf_xtensa_local_tlsfunc_refcounts (abfd)
1145 = (bfd_signed_vma *) mem;
e0001a05 1146 }
e0001a05 1147
28dbbc02
BW
1148 /* This is a global offset table entry for a local symbol. */
1149 if (is_got || is_plt)
1150 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1151
28dbbc02
BW
1152 if (is_tlsfunc)
1153 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1154
28dbbc02
BW
1155 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1156 }
1157
1158 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1159 tls_type |= old_tls_type;
1160 /* If a TLS symbol is accessed using IE at least once,
1161 there is no point to use a dynamic model for it. */
1162 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1163 && ((old_tls_type & GOT_TLS_GD) == 0
1164 || (tls_type & GOT_TLS_IE) == 0))
1165 {
1166 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1167 tls_type = old_tls_type;
1168 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1169 tls_type |= old_tls_type;
1170 else
1171 {
1172 (*_bfd_error_handler)
1173 (_("%B: `%s' accessed both as normal and thread local symbol"),
1174 abfd,
1175 h ? h->root.root.string : "<local>");
1176 return FALSE;
1177 }
1178 }
1179
1180 if (old_tls_type != tls_type)
1181 {
1182 if (eh)
1183 eh->tls_type = tls_type;
1184 else
1185 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1186 }
1187 }
1188
e0001a05
NC
1189 return TRUE;
1190}
1191
1192
95147441
BW
1193static void
1194elf_xtensa_make_sym_local (struct bfd_link_info *info,
1195 struct elf_link_hash_entry *h)
1196{
1197 if (info->shared)
1198 {
1199 if (h->plt.refcount > 0)
1200 {
1201 /* For shared objects, there's no need for PLT entries for local
1202 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1203 if (h->got.refcount < 0)
1204 h->got.refcount = 0;
1205 h->got.refcount += h->plt.refcount;
1206 h->plt.refcount = 0;
1207 }
1208 }
1209 else
1210 {
1211 /* Don't need any dynamic relocations at all. */
1212 h->plt.refcount = 0;
1213 h->got.refcount = 0;
1214 }
1215}
1216
1217
1218static void
1219elf_xtensa_hide_symbol (struct bfd_link_info *info,
1220 struct elf_link_hash_entry *h,
1221 bfd_boolean force_local)
1222{
1223 /* For a shared link, move the plt refcount to the got refcount to leave
1224 space for RELATIVE relocs. */
1225 elf_xtensa_make_sym_local (info, h);
1226
1227 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1228}
1229
1230
e0001a05
NC
1231/* Return the section that should be marked against GC for a given
1232 relocation. */
1233
1234static asection *
7fa3d080 1235elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1236 struct bfd_link_info *info,
7fa3d080
BW
1237 Elf_Internal_Rela *rel,
1238 struct elf_link_hash_entry *h,
1239 Elf_Internal_Sym *sym)
e0001a05 1240{
e1e5c0b5
BW
1241 /* Property sections are marked "KEEP" in the linker scripts, but they
1242 should not cause other sections to be marked. (This approach relies
1243 on elf_xtensa_discard_info to remove property table entries that
1244 describe discarded sections. Alternatively, it might be more
1245 efficient to avoid using "KEEP" in the linker scripts and instead use
1246 the gc_mark_extra_sections hook to mark only the property sections
1247 that describe marked sections. That alternative does not work well
1248 with the current property table sections, which do not correspond
1249 one-to-one with the sections they describe, but that should be fixed
1250 someday.) */
1251 if (xtensa_is_property_section (sec))
1252 return NULL;
1253
07adf181
AM
1254 if (h != NULL)
1255 switch (ELF32_R_TYPE (rel->r_info))
1256 {
1257 case R_XTENSA_GNU_VTINHERIT:
1258 case R_XTENSA_GNU_VTENTRY:
1259 return NULL;
1260 }
1261
1262 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1263}
1264
7fa3d080 1265
e0001a05
NC
1266/* Update the GOT & PLT entry reference counts
1267 for the section being removed. */
1268
1269static bfd_boolean
7fa3d080 1270elf_xtensa_gc_sweep_hook (bfd *abfd,
28dbbc02 1271 struct bfd_link_info *info,
7fa3d080
BW
1272 asection *sec,
1273 const Elf_Internal_Rela *relocs)
e0001a05
NC
1274{
1275 Elf_Internal_Shdr *symtab_hdr;
1276 struct elf_link_hash_entry **sym_hashes;
e0001a05 1277 const Elf_Internal_Rela *rel, *relend;
28dbbc02
BW
1278 struct elf_xtensa_link_hash_table *htab;
1279
1280 htab = elf_xtensa_hash_table (info);
e0001a05 1281
7dda2462
TG
1282 if (info->relocatable)
1283 return TRUE;
1284
e0001a05
NC
1285 if ((sec->flags & SEC_ALLOC) == 0)
1286 return TRUE;
1287
1288 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1289 sym_hashes = elf_sym_hashes (abfd);
e0001a05
NC
1290
1291 relend = relocs + sec->reloc_count;
1292 for (rel = relocs; rel < relend; rel++)
1293 {
1294 unsigned long r_symndx;
1295 unsigned int r_type;
1296 struct elf_link_hash_entry *h = NULL;
28dbbc02
BW
1297 struct elf_xtensa_link_hash_entry *eh;
1298 bfd_boolean is_got = FALSE;
1299 bfd_boolean is_plt = FALSE;
1300 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1301
1302 r_symndx = ELF32_R_SYM (rel->r_info);
1303 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1304 {
1305 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1306 while (h->root.type == bfd_link_hash_indirect
1307 || h->root.type == bfd_link_hash_warning)
1308 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1309 }
28dbbc02 1310 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1311
1312 r_type = ELF32_R_TYPE (rel->r_info);
1313 switch (r_type)
1314 {
28dbbc02
BW
1315 case R_XTENSA_TLSDESC_FN:
1316 if (info->shared)
1317 {
1318 is_got = TRUE;
1319 is_tlsfunc = TRUE;
1320 }
e0001a05
NC
1321 break;
1322
28dbbc02
BW
1323 case R_XTENSA_TLSDESC_ARG:
1324 if (info->shared)
1325 is_got = TRUE;
1326 else
1327 {
1328 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1329 is_got = TRUE;
1330 }
e0001a05
NC
1331 break;
1332
28dbbc02
BW
1333 case R_XTENSA_TLS_TPOFF:
1334 if (info->shared || h)
1335 is_got = TRUE;
e0001a05
NC
1336 break;
1337
28dbbc02
BW
1338 case R_XTENSA_32:
1339 is_got = TRUE;
e0001a05 1340 break;
28dbbc02
BW
1341
1342 case R_XTENSA_PLT:
1343 is_plt = TRUE;
1344 break;
1345
1346 default:
1347 continue;
1348 }
1349
1350 if (h)
1351 {
1352 if (is_plt)
1353 {
1354 if (h->plt.refcount > 0)
1355 h->plt.refcount--;
1356 }
1357 else if (is_got)
1358 {
1359 if (h->got.refcount > 0)
1360 h->got.refcount--;
1361 }
1362 if (is_tlsfunc)
1363 {
1364 if (eh->tlsfunc_refcount > 0)
1365 eh->tlsfunc_refcount--;
1366 }
1367 }
1368 else
1369 {
1370 if (is_got || is_plt)
1371 {
1372 bfd_signed_vma *got_refcount
1373 = &elf_local_got_refcounts (abfd) [r_symndx];
1374 if (*got_refcount > 0)
1375 *got_refcount -= 1;
1376 }
1377 if (is_tlsfunc)
1378 {
1379 bfd_signed_vma *tlsfunc_refcount
1380 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1381 if (*tlsfunc_refcount > 0)
1382 *tlsfunc_refcount -= 1;
1383 }
e0001a05
NC
1384 }
1385 }
1386
1387 return TRUE;
1388}
1389
1390
1391/* Create all the dynamic sections. */
1392
1393static bfd_boolean
7fa3d080 1394elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1395{
f0e6fdb2 1396 struct elf_xtensa_link_hash_table *htab;
e901de89 1397 flagword flags, noalloc_flags;
f0e6fdb2
BW
1398
1399 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1400
1401 /* First do all the standard stuff. */
1402 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1403 return FALSE;
f0e6fdb2
BW
1404 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1405 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1406 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1407 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
64e77c6d 1408 htab->srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
e0001a05
NC
1409
1410 /* Create any extra PLT sections in case check_relocs has already
1411 been called on all the non-dynamic input files. */
f0e6fdb2 1412 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1413 return FALSE;
1414
e901de89
BW
1415 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1416 | SEC_LINKER_CREATED | SEC_READONLY);
1417 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1418
1419 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1420 if (htab->sgotplt == NULL
1421 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1422 return FALSE;
1423
e901de89 1424 /* Create ".got.loc" (literal tables for use by dynamic linker). */
f0e6fdb2
BW
1425 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1426 if (htab->sgotloc == NULL
1427 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1428 return FALSE;
1429
e0001a05 1430 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
f0e6fdb2
BW
1431 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1432 noalloc_flags);
1433 if (htab->spltlittbl == NULL
1434 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1435 return FALSE;
1436
1437 return TRUE;
1438}
1439
1440
1441static bfd_boolean
f0e6fdb2 1442add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1443{
f0e6fdb2 1444 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1445 int chunk;
1446
1447 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1448 ".got.plt" sections. */
1449 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1450 {
1451 char *sname;
1452 flagword flags;
1453 asection *s;
1454
1455 /* Stop when we find a section has already been created. */
f0e6fdb2 1456 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1457 break;
1458
1459 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1460 | SEC_LINKER_CREATED | SEC_READONLY);
1461
1462 sname = (char *) bfd_malloc (10);
1463 sprintf (sname, ".plt.%u", chunk);
ba05963f 1464 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1465 if (s == NULL
e0001a05
NC
1466 || ! bfd_set_section_alignment (dynobj, s, 2))
1467 return FALSE;
1468
1469 sname = (char *) bfd_malloc (14);
1470 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1471 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1472 if (s == NULL
e0001a05
NC
1473 || ! bfd_set_section_alignment (dynobj, s, 2))
1474 return FALSE;
1475 }
1476
1477 return TRUE;
1478}
1479
1480
1481/* Adjust a symbol defined by a dynamic object and referenced by a
1482 regular object. The current definition is in some section of the
1483 dynamic object, but we're not including those sections. We have to
1484 change the definition to something the rest of the link can
1485 understand. */
1486
1487static bfd_boolean
7fa3d080
BW
1488elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1489 struct elf_link_hash_entry *h)
e0001a05
NC
1490{
1491 /* If this is a weak symbol, and there is a real definition, the
1492 processor independent code will have arranged for us to see the
1493 real definition first, and we can just use the same value. */
7fa3d080 1494 if (h->u.weakdef)
e0001a05 1495 {
f6e332e6
AM
1496 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1497 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1498 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1499 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1500 return TRUE;
1501 }
1502
1503 /* This is a reference to a symbol defined by a dynamic object. The
1504 reference must go through the GOT, so there's no need for COPY relocs,
1505 .dynbss, etc. */
1506
1507 return TRUE;
1508}
1509
1510
e0001a05 1511static bfd_boolean
f1ab2340 1512elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1513{
f1ab2340
BW
1514 struct bfd_link_info *info;
1515 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1516 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1517
f1ab2340
BW
1518 if (h->root.type == bfd_link_hash_indirect)
1519 return TRUE;
e0001a05
NC
1520
1521 if (h->root.type == bfd_link_hash_warning)
1522 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1523
f1ab2340
BW
1524 info = (struct bfd_link_info *) arg;
1525 htab = elf_xtensa_hash_table (info);
e0001a05 1526
28dbbc02
BW
1527 /* If we saw any use of an IE model for this symbol, we can then optimize
1528 away GOT entries for any TLSDESC_FN relocs. */
1529 if ((eh->tls_type & GOT_TLS_IE) != 0)
1530 {
1531 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1532 h->got.refcount -= eh->tlsfunc_refcount;
1533 }
e0001a05 1534
28dbbc02 1535 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1536 elf_xtensa_make_sym_local (info, h);
e0001a05 1537
f1ab2340
BW
1538 if (h->plt.refcount > 0)
1539 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1540
1541 if (h->got.refcount > 0)
f1ab2340 1542 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1543
1544 return TRUE;
1545}
1546
1547
1548static void
f0e6fdb2 1549elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1550{
f0e6fdb2 1551 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1552 bfd *i;
1553
f0e6fdb2
BW
1554 htab = elf_xtensa_hash_table (info);
1555
e0001a05
NC
1556 for (i = info->input_bfds; i; i = i->link_next)
1557 {
1558 bfd_signed_vma *local_got_refcounts;
1559 bfd_size_type j, cnt;
1560 Elf_Internal_Shdr *symtab_hdr;
1561
1562 local_got_refcounts = elf_local_got_refcounts (i);
1563 if (!local_got_refcounts)
1564 continue;
1565
1566 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1567 cnt = symtab_hdr->sh_info;
1568
1569 for (j = 0; j < cnt; ++j)
1570 {
28dbbc02
BW
1571 /* If we saw any use of an IE model for this symbol, we can
1572 then optimize away GOT entries for any TLSDESC_FN relocs. */
1573 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1574 {
1575 bfd_signed_vma *tlsfunc_refcount
1576 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1577 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1578 local_got_refcounts[j] -= *tlsfunc_refcount;
1579 }
1580
e0001a05 1581 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1582 htab->srelgot->size += (local_got_refcounts[j]
1583 * sizeof (Elf32_External_Rela));
e0001a05
NC
1584 }
1585 }
1586}
1587
1588
1589/* Set the sizes of the dynamic sections. */
1590
1591static bfd_boolean
7fa3d080
BW
1592elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1593 struct bfd_link_info *info)
e0001a05 1594{
f0e6fdb2 1595 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1596 bfd *dynobj, *abfd;
1597 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1598 bfd_boolean relplt, relgot;
1599 int plt_entries, plt_chunks, chunk;
1600
1601 plt_entries = 0;
1602 plt_chunks = 0;
e0001a05 1603
f0e6fdb2 1604 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1605 dynobj = elf_hash_table (info)->dynobj;
1606 if (dynobj == NULL)
1607 abort ();
f0e6fdb2
BW
1608 srelgot = htab->srelgot;
1609 srelplt = htab->srelplt;
e0001a05
NC
1610
1611 if (elf_hash_table (info)->dynamic_sections_created)
1612 {
f0e6fdb2
BW
1613 BFD_ASSERT (htab->srelgot != NULL
1614 && htab->srelplt != NULL
1615 && htab->sgot != NULL
1616 && htab->spltlittbl != NULL
1617 && htab->sgotloc != NULL);
1618
e0001a05 1619 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1620 if (info->executable)
e0001a05
NC
1621 {
1622 s = bfd_get_section_by_name (dynobj, ".interp");
1623 if (s == NULL)
1624 abort ();
eea6121a 1625 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1626 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1627 }
1628
1629 /* Allocate room for one word in ".got". */
f0e6fdb2 1630 htab->sgot->size = 4;
e0001a05 1631
f1ab2340
BW
1632 /* Allocate space in ".rela.got" for literals that reference global
1633 symbols and space in ".rela.plt" for literals that have PLT
1634 entries. */
e0001a05 1635 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1636 elf_xtensa_allocate_dynrelocs,
7fa3d080 1637 (void *) info);
e0001a05 1638
e0001a05
NC
1639 /* If we are generating a shared object, we also need space in
1640 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1641 reference local symbols. */
1642 if (info->shared)
f0e6fdb2 1643 elf_xtensa_allocate_local_got_size (info);
e0001a05 1644
e0001a05
NC
1645 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1646 each PLT entry, we need the PLT code plus a 4-byte literal.
1647 For each chunk of ".plt", we also need two more 4-byte
1648 literals, two corresponding entries in ".rela.got", and an
1649 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1650 spltlittbl = htab->spltlittbl;
eea6121a 1651 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1652 plt_chunks =
1653 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1654
1655 /* Iterate over all the PLT chunks, including any extra sections
1656 created earlier because the initial count of PLT relocations
1657 was an overestimate. */
1658 for (chunk = 0;
f0e6fdb2 1659 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1660 chunk++)
1661 {
1662 int chunk_entries;
1663
f0e6fdb2
BW
1664 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1665 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1666
1667 if (chunk < plt_chunks - 1)
1668 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1669 else if (chunk == plt_chunks - 1)
1670 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1671 else
1672 chunk_entries = 0;
1673
1674 if (chunk_entries != 0)
1675 {
eea6121a
AM
1676 sgotplt->size = 4 * (chunk_entries + 2);
1677 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1678 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1679 spltlittbl->size += 8;
e0001a05
NC
1680 }
1681 else
1682 {
eea6121a
AM
1683 sgotplt->size = 0;
1684 splt->size = 0;
e0001a05
NC
1685 }
1686 }
e901de89
BW
1687
1688 /* Allocate space in ".got.loc" to match the total size of all the
1689 literal tables. */
f0e6fdb2 1690 sgotloc = htab->sgotloc;
eea6121a 1691 sgotloc->size = spltlittbl->size;
e901de89
BW
1692 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1693 {
1694 if (abfd->flags & DYNAMIC)
1695 continue;
1696 for (s = abfd->sections; s != NULL; s = s->next)
1697 {
b536dc1e
BW
1698 if (! elf_discarded_section (s)
1699 && xtensa_is_littable_section (s)
1700 && s != spltlittbl)
eea6121a 1701 sgotloc->size += s->size;
e901de89
BW
1702 }
1703 }
e0001a05
NC
1704 }
1705
1706 /* Allocate memory for dynamic sections. */
1707 relplt = FALSE;
1708 relgot = FALSE;
1709 for (s = dynobj->sections; s != NULL; s = s->next)
1710 {
1711 const char *name;
e0001a05
NC
1712
1713 if ((s->flags & SEC_LINKER_CREATED) == 0)
1714 continue;
1715
1716 /* It's OK to base decisions on the section name, because none
1717 of the dynobj section names depend upon the input files. */
1718 name = bfd_get_section_name (dynobj, s);
1719
0112cd26 1720 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1721 {
c456f082 1722 if (s->size != 0)
e0001a05 1723 {
c456f082
AM
1724 if (strcmp (name, ".rela.plt") == 0)
1725 relplt = TRUE;
1726 else if (strcmp (name, ".rela.got") == 0)
1727 relgot = TRUE;
1728
1729 /* We use the reloc_count field as a counter if we need
1730 to copy relocs into the output file. */
1731 s->reloc_count = 0;
e0001a05
NC
1732 }
1733 }
0112cd26
NC
1734 else if (! CONST_STRNEQ (name, ".plt.")
1735 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1736 && strcmp (name, ".got") != 0
e0001a05
NC
1737 && strcmp (name, ".plt") != 0
1738 && strcmp (name, ".got.plt") != 0
e901de89
BW
1739 && strcmp (name, ".xt.lit.plt") != 0
1740 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1741 {
1742 /* It's not one of our sections, so don't allocate space. */
1743 continue;
1744 }
1745
c456f082
AM
1746 if (s->size == 0)
1747 {
1748 /* If we don't need this section, strip it from the output
1749 file. We must create the ".plt*" and ".got.plt*"
1750 sections in create_dynamic_sections and/or check_relocs
1751 based on a conservative estimate of the PLT relocation
1752 count, because the sections must be created before the
1753 linker maps input sections to output sections. The
1754 linker does that before size_dynamic_sections, where we
1755 compute the exact size of the PLT, so there may be more
1756 of these sections than are actually needed. */
1757 s->flags |= SEC_EXCLUDE;
1758 }
1759 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1760 {
1761 /* Allocate memory for the section contents. */
eea6121a 1762 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1763 if (s->contents == NULL)
e0001a05
NC
1764 return FALSE;
1765 }
1766 }
1767
1768 if (elf_hash_table (info)->dynamic_sections_created)
1769 {
1770 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1771 known until finish_dynamic_sections, but we need to get the relocs
1772 in place before they are sorted. */
e0001a05
NC
1773 for (chunk = 0; chunk < plt_chunks; chunk++)
1774 {
1775 Elf_Internal_Rela irela;
1776 bfd_byte *loc;
1777
1778 irela.r_offset = 0;
1779 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1780 irela.r_addend = 0;
1781
1782 loc = (srelgot->contents
1783 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1784 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1785 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1786 loc + sizeof (Elf32_External_Rela));
1787 srelgot->reloc_count += 2;
1788 }
1789
1790 /* Add some entries to the .dynamic section. We fill in the
1791 values later, in elf_xtensa_finish_dynamic_sections, but we
1792 must add the entries now so that we get the correct size for
1793 the .dynamic section. The DT_DEBUG entry is filled in by the
1794 dynamic linker and used by the debugger. */
1795#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1796 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1797
ba05963f 1798 if (info->executable)
e0001a05
NC
1799 {
1800 if (!add_dynamic_entry (DT_DEBUG, 0))
1801 return FALSE;
1802 }
1803
1804 if (relplt)
1805 {
c243ad3b 1806 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1807 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1808 || !add_dynamic_entry (DT_JMPREL, 0))
1809 return FALSE;
1810 }
1811
1812 if (relgot)
1813 {
1814 if (!add_dynamic_entry (DT_RELA, 0)
1815 || !add_dynamic_entry (DT_RELASZ, 0)
1816 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1817 return FALSE;
1818 }
1819
c243ad3b
BW
1820 if (!add_dynamic_entry (DT_PLTGOT, 0)
1821 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1822 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1823 return FALSE;
1824 }
1825#undef add_dynamic_entry
1826
1827 return TRUE;
1828}
1829
28dbbc02
BW
1830static bfd_boolean
1831elf_xtensa_always_size_sections (bfd *output_bfd,
1832 struct bfd_link_info *info)
1833{
1834 struct elf_xtensa_link_hash_table *htab;
1835 asection *tls_sec;
1836
1837 htab = elf_xtensa_hash_table (info);
1838 tls_sec = htab->elf.tls_sec;
1839
1840 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1841 {
1842 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1843 struct bfd_link_hash_entry *bh = &tlsbase->root;
1844 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1845
1846 tlsbase->type = STT_TLS;
1847 if (!(_bfd_generic_link_add_one_symbol
1848 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1849 tls_sec, 0, NULL, FALSE,
1850 bed->collect, &bh)))
1851 return FALSE;
1852 tlsbase->def_regular = 1;
1853 tlsbase->other = STV_HIDDEN;
1854 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1855 }
1856
1857 return TRUE;
1858}
1859
e0001a05 1860\f
28dbbc02
BW
1861/* Return the base VMA address which should be subtracted from real addresses
1862 when resolving @dtpoff relocation.
1863 This is PT_TLS segment p_vaddr. */
1864
1865static bfd_vma
1866dtpoff_base (struct bfd_link_info *info)
1867{
1868 /* If tls_sec is NULL, we should have signalled an error already. */
1869 if (elf_hash_table (info)->tls_sec == NULL)
1870 return 0;
1871 return elf_hash_table (info)->tls_sec->vma;
1872}
1873
1874/* Return the relocation value for @tpoff relocation
1875 if STT_TLS virtual address is ADDRESS. */
1876
1877static bfd_vma
1878tpoff (struct bfd_link_info *info, bfd_vma address)
1879{
1880 struct elf_link_hash_table *htab = elf_hash_table (info);
1881 bfd_vma base;
1882
1883 /* If tls_sec is NULL, we should have signalled an error already. */
1884 if (htab->tls_sec == NULL)
1885 return 0;
1886 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1887 return address - htab->tls_sec->vma + base;
1888}
1889
e0001a05
NC
1890/* Perform the specified relocation. The instruction at (contents + address)
1891 is modified to set one operand to represent the value in "relocation". The
1892 operand position is determined by the relocation type recorded in the
1893 howto. */
1894
1895#define CALL_SEGMENT_BITS (30)
7fa3d080 1896#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1897
1898static bfd_reloc_status_type
7fa3d080
BW
1899elf_xtensa_do_reloc (reloc_howto_type *howto,
1900 bfd *abfd,
1901 asection *input_section,
1902 bfd_vma relocation,
1903 bfd_byte *contents,
1904 bfd_vma address,
1905 bfd_boolean is_weak_undef,
1906 char **error_message)
e0001a05 1907{
43cd72b9 1908 xtensa_format fmt;
e0001a05 1909 xtensa_opcode opcode;
e0001a05 1910 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1911 static xtensa_insnbuf ibuff = NULL;
1912 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1913 bfd_vma self_address;
43cd72b9
BW
1914 bfd_size_type input_size;
1915 int opnd, slot;
e0001a05
NC
1916 uint32 newval;
1917
43cd72b9
BW
1918 if (!ibuff)
1919 {
1920 ibuff = xtensa_insnbuf_alloc (isa);
1921 sbuff = xtensa_insnbuf_alloc (isa);
1922 }
1923
1924 input_size = bfd_get_section_limit (abfd, input_section);
1925
1bbb5f21
BW
1926 /* Calculate the PC address for this instruction. */
1927 self_address = (input_section->output_section->vma
1928 + input_section->output_offset
1929 + address);
1930
e0001a05
NC
1931 switch (howto->type)
1932 {
1933 case R_XTENSA_NONE:
43cd72b9
BW
1934 case R_XTENSA_DIFF8:
1935 case R_XTENSA_DIFF16:
1936 case R_XTENSA_DIFF32:
28dbbc02
BW
1937 case R_XTENSA_TLS_FUNC:
1938 case R_XTENSA_TLS_ARG:
1939 case R_XTENSA_TLS_CALL:
e0001a05
NC
1940 return bfd_reloc_ok;
1941
1942 case R_XTENSA_ASM_EXPAND:
1943 if (!is_weak_undef)
1944 {
1945 /* Check for windowed CALL across a 1GB boundary. */
1946 xtensa_opcode opcode =
1947 get_expanded_call_opcode (contents + address,
43cd72b9 1948 input_size - address, 0);
e0001a05
NC
1949 if (is_windowed_call_opcode (opcode))
1950 {
43cd72b9
BW
1951 if ((self_address >> CALL_SEGMENT_BITS)
1952 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1953 {
1954 *error_message = "windowed longcall crosses 1GB boundary; "
1955 "return may fail";
1956 return bfd_reloc_dangerous;
1957 }
1958 }
1959 }
1960 return bfd_reloc_ok;
1961
1962 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1963 {
e0001a05 1964 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1965 bfd_reloc_status_type retval =
1966 elf_xtensa_do_asm_simplify (contents, address, input_size,
1967 error_message);
e0001a05 1968 if (retval != bfd_reloc_ok)
43cd72b9 1969 return bfd_reloc_dangerous;
e0001a05
NC
1970
1971 /* The CALL needs to be relocated. Continue below for that part. */
1972 address += 3;
c46082c8 1973 self_address += 3;
43cd72b9 1974 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1975 }
1976 break;
1977
1978 case R_XTENSA_32:
e0001a05
NC
1979 {
1980 bfd_vma x;
1981 x = bfd_get_32 (abfd, contents + address);
1982 x = x + relocation;
1983 bfd_put_32 (abfd, x, contents + address);
1984 }
1985 return bfd_reloc_ok;
1bbb5f21
BW
1986
1987 case R_XTENSA_32_PCREL:
1988 bfd_put_32 (abfd, relocation - self_address, contents + address);
1989 return bfd_reloc_ok;
28dbbc02
BW
1990
1991 case R_XTENSA_PLT:
1992 case R_XTENSA_TLSDESC_FN:
1993 case R_XTENSA_TLSDESC_ARG:
1994 case R_XTENSA_TLS_DTPOFF:
1995 case R_XTENSA_TLS_TPOFF:
1996 bfd_put_32 (abfd, relocation, contents + address);
1997 return bfd_reloc_ok;
e0001a05
NC
1998 }
1999
43cd72b9
BW
2000 /* Only instruction slot-specific relocations handled below.... */
2001 slot = get_relocation_slot (howto->type);
2002 if (slot == XTENSA_UNDEFINED)
e0001a05 2003 {
43cd72b9 2004 *error_message = "unexpected relocation";
e0001a05
NC
2005 return bfd_reloc_dangerous;
2006 }
2007
43cd72b9
BW
2008 /* Read the instruction into a buffer and decode the opcode. */
2009 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2010 input_size - address);
2011 fmt = xtensa_format_decode (isa, ibuff);
2012 if (fmt == XTENSA_UNDEFINED)
e0001a05 2013 {
43cd72b9 2014 *error_message = "cannot decode instruction format";
e0001a05
NC
2015 return bfd_reloc_dangerous;
2016 }
2017
43cd72b9 2018 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 2019
43cd72b9
BW
2020 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2021 if (opcode == XTENSA_UNDEFINED)
e0001a05 2022 {
43cd72b9 2023 *error_message = "cannot decode instruction opcode";
e0001a05
NC
2024 return bfd_reloc_dangerous;
2025 }
2026
43cd72b9
BW
2027 /* Check for opcode-specific "alternate" relocations. */
2028 if (is_alt_relocation (howto->type))
2029 {
2030 if (opcode == get_l32r_opcode ())
2031 {
2032 /* Handle the special-case of non-PC-relative L32R instructions. */
2033 bfd *output_bfd = input_section->output_section->owner;
2034 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2035 if (!lit4_sec)
2036 {
2037 *error_message = "relocation references missing .lit4 section";
2038 return bfd_reloc_dangerous;
2039 }
2040 self_address = ((lit4_sec->vma & ~0xfff)
2041 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2042 newval = relocation;
2043 opnd = 1;
2044 }
2045 else if (opcode == get_const16_opcode ())
2046 {
2047 /* ALT used for high 16 bits. */
2048 newval = relocation >> 16;
2049 opnd = 1;
2050 }
2051 else
2052 {
2053 /* No other "alternate" relocations currently defined. */
2054 *error_message = "unexpected relocation";
2055 return bfd_reloc_dangerous;
2056 }
2057 }
2058 else /* Not an "alternate" relocation.... */
2059 {
2060 if (opcode == get_const16_opcode ())
2061 {
2062 newval = relocation & 0xffff;
2063 opnd = 1;
2064 }
2065 else
2066 {
2067 /* ...normal PC-relative relocation.... */
2068
2069 /* Determine which operand is being relocated. */
2070 opnd = get_relocation_opnd (opcode, howto->type);
2071 if (opnd == XTENSA_UNDEFINED)
2072 {
2073 *error_message = "unexpected relocation";
2074 return bfd_reloc_dangerous;
2075 }
2076
2077 if (!howto->pc_relative)
2078 {
2079 *error_message = "expected PC-relative relocation";
2080 return bfd_reloc_dangerous;
2081 }
e0001a05 2082
43cd72b9
BW
2083 newval = relocation;
2084 }
2085 }
e0001a05 2086
43cd72b9
BW
2087 /* Apply the relocation. */
2088 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2089 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2090 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2091 sbuff, newval))
e0001a05 2092 {
2db662be
BW
2093 const char *opname = xtensa_opcode_name (isa, opcode);
2094 const char *msg;
2095
2096 msg = "cannot encode";
2097 if (is_direct_call_opcode (opcode))
2098 {
2099 if ((relocation & 0x3) != 0)
2100 msg = "misaligned call target";
2101 else
2102 msg = "call target out of range";
2103 }
2104 else if (opcode == get_l32r_opcode ())
2105 {
2106 if ((relocation & 0x3) != 0)
2107 msg = "misaligned literal target";
2108 else if (is_alt_relocation (howto->type))
2109 msg = "literal target out of range (too many literals)";
2110 else if (self_address > relocation)
2111 msg = "literal target out of range (try using text-section-literals)";
2112 else
2113 msg = "literal placed after use";
2114 }
2115
2116 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2117 return bfd_reloc_dangerous;
2118 }
2119
43cd72b9 2120 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2121 if (is_direct_call_opcode (opcode)
2122 && is_windowed_call_opcode (opcode))
2123 {
43cd72b9
BW
2124 if ((self_address >> CALL_SEGMENT_BITS)
2125 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2126 {
43cd72b9
BW
2127 *error_message =
2128 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2129 return bfd_reloc_dangerous;
2130 }
2131 }
2132
43cd72b9
BW
2133 /* Write the modified instruction back out of the buffer. */
2134 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2135 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2136 input_size - address);
e0001a05
NC
2137 return bfd_reloc_ok;
2138}
2139
2140
2db662be 2141static char *
7fa3d080 2142vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2143{
2144 /* To reduce the size of the memory leak,
2145 we only use a single message buffer. */
2146 static bfd_size_type alloc_size = 0;
2147 static char *message = NULL;
2148 bfd_size_type orig_len, len = 0;
2149 bfd_boolean is_append;
2150
2151 VA_OPEN (ap, arglen);
2152 VA_FIXEDARG (ap, const char *, origmsg);
2153
2154 is_append = (origmsg == message);
2155
2156 orig_len = strlen (origmsg);
2157 len = orig_len + strlen (fmt) + arglen + 20;
2158 if (len > alloc_size)
2159 {
515ef31d 2160 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2161 alloc_size = len;
2162 }
515ef31d
NC
2163 if (message != NULL)
2164 {
2165 if (!is_append)
2166 memcpy (message, origmsg, orig_len);
2167 vsprintf (message + orig_len, fmt, ap);
2168 }
e0001a05
NC
2169 VA_CLOSE (ap);
2170 return message;
2171}
2172
2173
e0001a05
NC
2174/* This function is registered as the "special_function" in the
2175 Xtensa howto for handling simplify operations.
2176 bfd_perform_relocation / bfd_install_relocation use it to
2177 perform (install) the specified relocation. Since this replaces the code
2178 in bfd_perform_relocation, it is basically an Xtensa-specific,
2179 stripped-down version of bfd_perform_relocation. */
2180
2181static bfd_reloc_status_type
7fa3d080
BW
2182bfd_elf_xtensa_reloc (bfd *abfd,
2183 arelent *reloc_entry,
2184 asymbol *symbol,
2185 void *data,
2186 asection *input_section,
2187 bfd *output_bfd,
2188 char **error_message)
e0001a05
NC
2189{
2190 bfd_vma relocation;
2191 bfd_reloc_status_type flag;
2192 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2193 bfd_vma output_base = 0;
2194 reloc_howto_type *howto = reloc_entry->howto;
2195 asection *reloc_target_output_section;
2196 bfd_boolean is_weak_undef;
2197
dd1a320b
BW
2198 if (!xtensa_default_isa)
2199 xtensa_default_isa = xtensa_isa_init (0, 0);
2200
1049f94e 2201 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2202 output, and the reloc is against an external symbol, the resulting
2203 reloc will also be against the same symbol. In such a case, we
2204 don't want to change anything about the way the reloc is handled,
2205 since it will all be done at final link time. This test is similar
2206 to what bfd_elf_generic_reloc does except that it lets relocs with
2207 howto->partial_inplace go through even if the addend is non-zero.
2208 (The real problem is that partial_inplace is set for XTENSA_32
2209 relocs to begin with, but that's a long story and there's little we
2210 can do about it now....) */
2211
7fa3d080 2212 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2213 {
2214 reloc_entry->address += input_section->output_offset;
2215 return bfd_reloc_ok;
2216 }
2217
2218 /* Is the address of the relocation really within the section? */
07515404 2219 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2220 return bfd_reloc_outofrange;
2221
4cc11e76 2222 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2223 initial relocation command value. */
2224
2225 /* Get symbol value. (Common symbols are special.) */
2226 if (bfd_is_com_section (symbol->section))
2227 relocation = 0;
2228 else
2229 relocation = symbol->value;
2230
2231 reloc_target_output_section = symbol->section->output_section;
2232
2233 /* Convert input-section-relative symbol value to absolute. */
2234 if ((output_bfd && !howto->partial_inplace)
2235 || reloc_target_output_section == NULL)
2236 output_base = 0;
2237 else
2238 output_base = reloc_target_output_section->vma;
2239
2240 relocation += output_base + symbol->section->output_offset;
2241
2242 /* Add in supplied addend. */
2243 relocation += reloc_entry->addend;
2244
2245 /* Here the variable relocation holds the final address of the
2246 symbol we are relocating against, plus any addend. */
2247 if (output_bfd)
2248 {
2249 if (!howto->partial_inplace)
2250 {
2251 /* This is a partial relocation, and we want to apply the relocation
2252 to the reloc entry rather than the raw data. Everything except
2253 relocations against section symbols has already been handled
2254 above. */
43cd72b9 2255
e0001a05
NC
2256 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2257 reloc_entry->addend = relocation;
2258 reloc_entry->address += input_section->output_offset;
2259 return bfd_reloc_ok;
2260 }
2261 else
2262 {
2263 reloc_entry->address += input_section->output_offset;
2264 reloc_entry->addend = 0;
2265 }
2266 }
2267
2268 is_weak_undef = (bfd_is_und_section (symbol->section)
2269 && (symbol->flags & BSF_WEAK) != 0);
2270 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2271 (bfd_byte *) data, (bfd_vma) octets,
2272 is_weak_undef, error_message);
2273
2274 if (flag == bfd_reloc_dangerous)
2275 {
2276 /* Add the symbol name to the error message. */
2277 if (! *error_message)
2278 *error_message = "";
2279 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2280 strlen (symbol->name) + 17,
70961b9d
AM
2281 symbol->name,
2282 (unsigned long) reloc_entry->addend);
e0001a05
NC
2283 }
2284
2285 return flag;
2286}
2287
2288
2289/* Set up an entry in the procedure linkage table. */
2290
2291static bfd_vma
f0e6fdb2 2292elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2293 bfd *output_bfd,
2294 unsigned reloc_index)
e0001a05
NC
2295{
2296 asection *splt, *sgotplt;
2297 bfd_vma plt_base, got_base;
2298 bfd_vma code_offset, lit_offset;
2299 int chunk;
2300
2301 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2302 splt = elf_xtensa_get_plt_section (info, chunk);
2303 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2304 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2305
2306 plt_base = splt->output_section->vma + splt->output_offset;
2307 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2308
2309 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2310 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2311
2312 /* Fill in the literal entry. This is the offset of the dynamic
2313 relocation entry. */
2314 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2315 sgotplt->contents + lit_offset);
2316
2317 /* Fill in the entry in the procedure linkage table. */
2318 memcpy (splt->contents + code_offset,
2319 (bfd_big_endian (output_bfd)
2320 ? elf_xtensa_be_plt_entry
2321 : elf_xtensa_le_plt_entry),
2322 PLT_ENTRY_SIZE);
2323 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2324 plt_base + code_offset + 3),
2325 splt->contents + code_offset + 4);
2326 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2327 plt_base + code_offset + 6),
2328 splt->contents + code_offset + 7);
2329 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2330 plt_base + code_offset + 9),
2331 splt->contents + code_offset + 10);
2332
2333 return plt_base + code_offset;
2334}
2335
2336
28dbbc02
BW
2337static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2338
2339static bfd_boolean
2340replace_tls_insn (Elf_Internal_Rela *rel,
2341 bfd *abfd,
2342 asection *input_section,
2343 bfd_byte *contents,
2344 bfd_boolean is_ld_model,
2345 char **error_message)
2346{
2347 static xtensa_insnbuf ibuff = NULL;
2348 static xtensa_insnbuf sbuff = NULL;
2349 xtensa_isa isa = xtensa_default_isa;
2350 xtensa_format fmt;
2351 xtensa_opcode old_op, new_op;
2352 bfd_size_type input_size;
2353 int r_type;
2354 unsigned dest_reg, src_reg;
2355
2356 if (ibuff == NULL)
2357 {
2358 ibuff = xtensa_insnbuf_alloc (isa);
2359 sbuff = xtensa_insnbuf_alloc (isa);
2360 }
2361
2362 input_size = bfd_get_section_limit (abfd, input_section);
2363
2364 /* Read the instruction into a buffer and decode the opcode. */
2365 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2366 input_size - rel->r_offset);
2367 fmt = xtensa_format_decode (isa, ibuff);
2368 if (fmt == XTENSA_UNDEFINED)
2369 {
2370 *error_message = "cannot decode instruction format";
2371 return FALSE;
2372 }
2373
2374 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2375 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2376
2377 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2378 if (old_op == XTENSA_UNDEFINED)
2379 {
2380 *error_message = "cannot decode instruction opcode";
2381 return FALSE;
2382 }
2383
2384 r_type = ELF32_R_TYPE (rel->r_info);
2385 switch (r_type)
2386 {
2387 case R_XTENSA_TLS_FUNC:
2388 case R_XTENSA_TLS_ARG:
2389 if (old_op != get_l32r_opcode ()
2390 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2391 sbuff, &dest_reg) != 0)
2392 {
2393 *error_message = "cannot extract L32R destination for TLS access";
2394 return FALSE;
2395 }
2396 break;
2397
2398 case R_XTENSA_TLS_CALL:
2399 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2400 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2401 sbuff, &src_reg) != 0)
2402 {
2403 *error_message = "cannot extract CALLXn operands for TLS access";
2404 return FALSE;
2405 }
2406 break;
2407
2408 default:
2409 abort ();
2410 }
2411
2412 if (is_ld_model)
2413 {
2414 switch (r_type)
2415 {
2416 case R_XTENSA_TLS_FUNC:
2417 case R_XTENSA_TLS_ARG:
2418 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2419 versions of Xtensa). */
2420 new_op = xtensa_opcode_lookup (isa, "nop");
2421 if (new_op == XTENSA_UNDEFINED)
2422 {
2423 new_op = xtensa_opcode_lookup (isa, "or");
2424 if (new_op == XTENSA_UNDEFINED
2425 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2426 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2427 sbuff, 1) != 0
2428 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2429 sbuff, 1) != 0
2430 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2431 sbuff, 1) != 0)
2432 {
2433 *error_message = "cannot encode OR for TLS access";
2434 return FALSE;
2435 }
2436 }
2437 else
2438 {
2439 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2440 {
2441 *error_message = "cannot encode NOP for TLS access";
2442 return FALSE;
2443 }
2444 }
2445 break;
2446
2447 case R_XTENSA_TLS_CALL:
2448 /* Read THREADPTR into the CALLX's return value register. */
2449 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2450 if (new_op == XTENSA_UNDEFINED
2451 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2452 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2453 sbuff, dest_reg + 2) != 0)
2454 {
2455 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2456 return FALSE;
2457 }
2458 break;
2459 }
2460 }
2461 else
2462 {
2463 switch (r_type)
2464 {
2465 case R_XTENSA_TLS_FUNC:
2466 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2467 if (new_op == XTENSA_UNDEFINED
2468 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2469 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2470 sbuff, dest_reg) != 0)
2471 {
2472 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2473 return FALSE;
2474 }
2475 break;
2476
2477 case R_XTENSA_TLS_ARG:
2478 /* Nothing to do. Keep the original L32R instruction. */
2479 return TRUE;
2480
2481 case R_XTENSA_TLS_CALL:
2482 /* Add the CALLX's src register (holding the THREADPTR value)
2483 to the first argument register (holding the offset) and put
2484 the result in the CALLX's return value register. */
2485 new_op = xtensa_opcode_lookup (isa, "add");
2486 if (new_op == XTENSA_UNDEFINED
2487 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2488 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2489 sbuff, dest_reg + 2) != 0
2490 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2491 sbuff, dest_reg + 2) != 0
2492 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2493 sbuff, src_reg) != 0)
2494 {
2495 *error_message = "cannot encode ADD for TLS access";
2496 return FALSE;
2497 }
2498 break;
2499 }
2500 }
2501
2502 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2503 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2504 input_size - rel->r_offset);
2505
2506 return TRUE;
2507}
2508
2509
2510#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2511 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2512 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2513 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2514 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2515 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2516 || (R_TYPE) == R_XTENSA_TLS_ARG \
2517 || (R_TYPE) == R_XTENSA_TLS_CALL)
2518
e0001a05 2519/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2520 both relocatable and final links. */
e0001a05
NC
2521
2522static bfd_boolean
7fa3d080
BW
2523elf_xtensa_relocate_section (bfd *output_bfd,
2524 struct bfd_link_info *info,
2525 bfd *input_bfd,
2526 asection *input_section,
2527 bfd_byte *contents,
2528 Elf_Internal_Rela *relocs,
2529 Elf_Internal_Sym *local_syms,
2530 asection **local_sections)
e0001a05 2531{
f0e6fdb2 2532 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2533 Elf_Internal_Shdr *symtab_hdr;
2534 Elf_Internal_Rela *rel;
2535 Elf_Internal_Rela *relend;
2536 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2537 property_table_entry *lit_table = 0;
2538 int ltblsize = 0;
28dbbc02 2539 char *local_got_tls_types;
e0001a05 2540 char *error_message = NULL;
43cd72b9 2541 bfd_size_type input_size;
28dbbc02 2542 int tls_type;
e0001a05 2543
43cd72b9
BW
2544 if (!xtensa_default_isa)
2545 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2546
28dbbc02
BW
2547 BFD_ASSERT (is_xtensa_elf (input_bfd));
2548
f0e6fdb2 2549 htab = elf_xtensa_hash_table (info);
e0001a05
NC
2550 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2551 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2552 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2553
88d65ad6
BW
2554 if (elf_hash_table (info)->dynamic_sections_created)
2555 {
2556 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2557 &lit_table, XTENSA_LIT_SEC_NAME,
2558 TRUE);
88d65ad6
BW
2559 if (ltblsize < 0)
2560 return FALSE;
2561 }
2562
43cd72b9
BW
2563 input_size = bfd_get_section_limit (input_bfd, input_section);
2564
e0001a05
NC
2565 rel = relocs;
2566 relend = relocs + input_section->reloc_count;
2567 for (; rel < relend; rel++)
2568 {
2569 int r_type;
2570 reloc_howto_type *howto;
2571 unsigned long r_symndx;
2572 struct elf_link_hash_entry *h;
2573 Elf_Internal_Sym *sym;
28dbbc02
BW
2574 char sym_type;
2575 const char *name;
e0001a05
NC
2576 asection *sec;
2577 bfd_vma relocation;
2578 bfd_reloc_status_type r;
2579 bfd_boolean is_weak_undef;
2580 bfd_boolean unresolved_reloc;
9b8c98a4 2581 bfd_boolean warned;
28dbbc02 2582 bfd_boolean dynamic_symbol;
e0001a05
NC
2583
2584 r_type = ELF32_R_TYPE (rel->r_info);
2585 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2586 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2587 continue;
2588
2589 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2590 {
2591 bfd_set_error (bfd_error_bad_value);
2592 return FALSE;
2593 }
2594 howto = &elf_howto_table[r_type];
2595
2596 r_symndx = ELF32_R_SYM (rel->r_info);
2597
ab96bf03
AM
2598 h = NULL;
2599 sym = NULL;
2600 sec = NULL;
2601 is_weak_undef = FALSE;
2602 unresolved_reloc = FALSE;
2603 warned = FALSE;
2604
2605 if (howto->partial_inplace && !info->relocatable)
2606 {
2607 /* Because R_XTENSA_32 was made partial_inplace to fix some
2608 problems with DWARF info in partial links, there may be
2609 an addend stored in the contents. Take it out of there
2610 and move it back into the addend field of the reloc. */
2611 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2612 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2613 }
2614
2615 if (r_symndx < symtab_hdr->sh_info)
2616 {
2617 sym = local_syms + r_symndx;
28dbbc02 2618 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2619 sec = local_sections[r_symndx];
2620 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2621 }
2622 else
2623 {
2624 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2625 r_symndx, symtab_hdr, sym_hashes,
2626 h, sec, relocation,
2627 unresolved_reloc, warned);
2628
2629 if (relocation == 0
2630 && !unresolved_reloc
2631 && h->root.type == bfd_link_hash_undefweak)
2632 is_weak_undef = TRUE;
28dbbc02
BW
2633
2634 sym_type = h->type;
ab96bf03
AM
2635 }
2636
2637 if (sec != NULL && elf_discarded_section (sec))
2638 {
2639 /* For relocs against symbols from removed linkonce sections,
2640 or sections discarded by a linker script, we just want the
2641 section contents zeroed. Avoid any special processing. */
2642 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2643 rel->r_info = 0;
2644 rel->r_addend = 0;
2645 continue;
2646 }
2647
1049f94e 2648 if (info->relocatable)
e0001a05 2649 {
43cd72b9 2650 /* This is a relocatable link.
e0001a05
NC
2651 1) If the reloc is against a section symbol, adjust
2652 according to the output section.
2653 2) If there is a new target for this relocation,
2654 the new target will be in the same output section.
2655 We adjust the relocation by the output section
2656 difference. */
2657
2658 if (relaxing_section)
2659 {
2660 /* Check if this references a section in another input file. */
43cd72b9
BW
2661 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2662 contents))
2663 return FALSE;
e0001a05
NC
2664 }
2665
43cd72b9 2666 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2667 {
43cd72b9 2668 char *error_message = NULL;
e0001a05
NC
2669 /* Convert ASM_SIMPLIFY into the simpler relocation
2670 so that they never escape a relaxing link. */
43cd72b9
BW
2671 r = contract_asm_expansion (contents, input_size, rel,
2672 &error_message);
2673 if (r != bfd_reloc_ok)
2674 {
2675 if (!((*info->callbacks->reloc_dangerous)
2676 (info, error_message, input_bfd, input_section,
2677 rel->r_offset)))
2678 return FALSE;
2679 }
e0001a05
NC
2680 r_type = ELF32_R_TYPE (rel->r_info);
2681 }
2682
1049f94e 2683 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2684 anything unless the reloc is against a section symbol,
2685 in which case we have to adjust according to where the
2686 section symbol winds up in the output section. */
2687 if (r_symndx < symtab_hdr->sh_info)
2688 {
2689 sym = local_syms + r_symndx;
2690 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2691 {
2692 sec = local_sections[r_symndx];
2693 rel->r_addend += sec->output_offset + sym->st_value;
2694 }
2695 }
2696
2697 /* If there is an addend with a partial_inplace howto,
2698 then move the addend to the contents. This is a hack
1049f94e 2699 to work around problems with DWARF in relocatable links
e0001a05
NC
2700 with some previous version of BFD. Now we can't easily get
2701 rid of the hack without breaking backward compatibility.... */
2702 if (rel->r_addend)
2703 {
2704 howto = &elf_howto_table[r_type];
2705 if (howto->partial_inplace)
2706 {
2707 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2708 rel->r_addend, contents,
2709 rel->r_offset, FALSE,
2710 &error_message);
2711 if (r != bfd_reloc_ok)
2712 {
2713 if (!((*info->callbacks->reloc_dangerous)
2714 (info, error_message, input_bfd, input_section,
2715 rel->r_offset)))
2716 return FALSE;
2717 }
2718 rel->r_addend = 0;
2719 }
2720 }
2721
1049f94e 2722 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2723 continue;
2724 }
2725
2726 /* This is a final link. */
2727
e0001a05
NC
2728 if (relaxing_section)
2729 {
2730 /* Check if this references a section in another input file. */
43cd72b9
BW
2731 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2732 &relocation);
e0001a05
NC
2733 }
2734
2735 /* Sanity check the address. */
43cd72b9 2736 if (rel->r_offset >= input_size
e0001a05
NC
2737 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2738 {
43cd72b9
BW
2739 (*_bfd_error_handler)
2740 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2741 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2742 bfd_set_error (bfd_error_bad_value);
2743 return FALSE;
2744 }
2745
28dbbc02
BW
2746 if (h != NULL)
2747 name = h->root.root.string;
2748 else
e0001a05 2749 {
28dbbc02
BW
2750 name = (bfd_elf_string_from_elf_section
2751 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2752 if (name == NULL || *name == '\0')
2753 name = bfd_section_name (input_bfd, sec);
2754 }
e0001a05 2755
28dbbc02
BW
2756 if (r_symndx != 0
2757 && r_type != R_XTENSA_NONE
2758 && (h == NULL
2759 || h->root.type == bfd_link_hash_defined
2760 || h->root.type == bfd_link_hash_defweak)
2761 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2762 {
2763 (*_bfd_error_handler)
2764 ((sym_type == STT_TLS
2765 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2766 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2767 input_bfd,
2768 input_section,
2769 (long) rel->r_offset,
2770 howto->name,
2771 name);
2772 }
2773
2774 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2775
2776 tls_type = GOT_UNKNOWN;
2777 if (h)
2778 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2779 else if (local_got_tls_types)
2780 tls_type = local_got_tls_types [r_symndx];
2781
2782 switch (r_type)
2783 {
2784 case R_XTENSA_32:
2785 case R_XTENSA_PLT:
2786 if (elf_hash_table (info)->dynamic_sections_created
2787 && (input_section->flags & SEC_ALLOC) != 0
2788 && (dynamic_symbol || info->shared))
e0001a05
NC
2789 {
2790 Elf_Internal_Rela outrel;
2791 bfd_byte *loc;
2792 asection *srel;
2793
2794 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2795 srel = htab->srelplt;
e0001a05 2796 else
f0e6fdb2 2797 srel = htab->srelgot;
e0001a05
NC
2798
2799 BFD_ASSERT (srel != NULL);
2800
2801 outrel.r_offset =
2802 _bfd_elf_section_offset (output_bfd, info,
2803 input_section, rel->r_offset);
2804
2805 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2806 memset (&outrel, 0, sizeof outrel);
2807 else
2808 {
f0578e28
BW
2809 outrel.r_offset += (input_section->output_section->vma
2810 + input_section->output_offset);
e0001a05 2811
88d65ad6
BW
2812 /* Complain if the relocation is in a read-only section
2813 and not in a literal pool. */
2814 if ((input_section->flags & SEC_READONLY) != 0
2815 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2816 outrel.r_offset))
88d65ad6
BW
2817 {
2818 error_message =
2819 _("dynamic relocation in read-only section");
2820 if (!((*info->callbacks->reloc_dangerous)
2821 (info, error_message, input_bfd, input_section,
2822 rel->r_offset)))
2823 return FALSE;
2824 }
2825
e0001a05
NC
2826 if (dynamic_symbol)
2827 {
2828 outrel.r_addend = rel->r_addend;
2829 rel->r_addend = 0;
2830
2831 if (r_type == R_XTENSA_32)
2832 {
2833 outrel.r_info =
2834 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2835 relocation = 0;
2836 }
2837 else /* r_type == R_XTENSA_PLT */
2838 {
2839 outrel.r_info =
2840 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2841
2842 /* Create the PLT entry and set the initial
2843 contents of the literal entry to the address of
2844 the PLT entry. */
43cd72b9 2845 relocation =
f0e6fdb2 2846 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2847 srel->reloc_count);
2848 }
2849 unresolved_reloc = FALSE;
2850 }
2851 else
2852 {
2853 /* Generate a RELATIVE relocation. */
2854 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2855 outrel.r_addend = 0;
2856 }
2857 }
2858
2859 loc = (srel->contents
2860 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2861 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2862 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2863 <= srel->size);
e0001a05 2864 }
d9ab3f29
BW
2865 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2866 {
2867 /* This should only happen for non-PIC code, which is not
2868 supposed to be used on systems with dynamic linking.
2869 Just ignore these relocations. */
2870 continue;
2871 }
28dbbc02
BW
2872 break;
2873
2874 case R_XTENSA_TLS_TPOFF:
2875 /* Switch to LE model for local symbols in an executable. */
2876 if (! info->shared && ! dynamic_symbol)
2877 {
2878 relocation = tpoff (info, relocation);
2879 break;
2880 }
2881 /* fall through */
2882
2883 case R_XTENSA_TLSDESC_FN:
2884 case R_XTENSA_TLSDESC_ARG:
2885 {
2886 if (r_type == R_XTENSA_TLSDESC_FN)
2887 {
2888 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2889 r_type = R_XTENSA_NONE;
2890 }
2891 else if (r_type == R_XTENSA_TLSDESC_ARG)
2892 {
2893 if (info->shared)
2894 {
2895 if ((tls_type & GOT_TLS_IE) != 0)
2896 r_type = R_XTENSA_TLS_TPOFF;
2897 }
2898 else
2899 {
2900 r_type = R_XTENSA_TLS_TPOFF;
2901 if (! dynamic_symbol)
2902 {
2903 relocation = tpoff (info, relocation);
2904 break;
2905 }
2906 }
2907 }
2908
2909 if (r_type == R_XTENSA_NONE)
2910 /* Nothing to do here; skip to the next reloc. */
2911 continue;
2912
2913 if (! elf_hash_table (info)->dynamic_sections_created)
2914 {
2915 error_message =
2916 _("TLS relocation invalid without dynamic sections");
2917 if (!((*info->callbacks->reloc_dangerous)
2918 (info, error_message, input_bfd, input_section,
2919 rel->r_offset)))
2920 return FALSE;
2921 }
2922 else
2923 {
2924 Elf_Internal_Rela outrel;
2925 bfd_byte *loc;
2926 asection *srel = htab->srelgot;
2927 int indx;
2928
2929 outrel.r_offset = (input_section->output_section->vma
2930 + input_section->output_offset
2931 + rel->r_offset);
2932
2933 /* Complain if the relocation is in a read-only section
2934 and not in a literal pool. */
2935 if ((input_section->flags & SEC_READONLY) != 0
2936 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2937 outrel.r_offset))
2938 {
2939 error_message =
2940 _("dynamic relocation in read-only section");
2941 if (!((*info->callbacks->reloc_dangerous)
2942 (info, error_message, input_bfd, input_section,
2943 rel->r_offset)))
2944 return FALSE;
2945 }
2946
2947 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2948 if (indx == 0)
2949 outrel.r_addend = relocation - dtpoff_base (info);
2950 else
2951 outrel.r_addend = 0;
2952 rel->r_addend = 0;
2953
2954 outrel.r_info = ELF32_R_INFO (indx, r_type);
2955 relocation = 0;
2956 unresolved_reloc = FALSE;
2957
2958 BFD_ASSERT (srel);
2959 loc = (srel->contents
2960 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2961 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2962 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2963 <= srel->size);
2964 }
2965 }
2966 break;
2967
2968 case R_XTENSA_TLS_DTPOFF:
2969 if (! info->shared)
2970 /* Switch from LD model to LE model. */
2971 relocation = tpoff (info, relocation);
2972 else
2973 relocation -= dtpoff_base (info);
2974 break;
2975
2976 case R_XTENSA_TLS_FUNC:
2977 case R_XTENSA_TLS_ARG:
2978 case R_XTENSA_TLS_CALL:
2979 /* Check if optimizing to IE or LE model. */
2980 if ((tls_type & GOT_TLS_IE) != 0)
2981 {
2982 bfd_boolean is_ld_model =
2983 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2984 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2985 is_ld_model, &error_message))
2986 {
2987 if (!((*info->callbacks->reloc_dangerous)
2988 (info, error_message, input_bfd, input_section,
2989 rel->r_offset)))
2990 return FALSE;
2991 }
2992
2993 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2994 {
2995 /* Skip subsequent relocations on the same instruction. */
2996 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2997 rel++;
2998 }
2999 }
3000 continue;
3001
3002 default:
3003 if (elf_hash_table (info)->dynamic_sections_created
3004 && dynamic_symbol && (is_operand_relocation (r_type)
3005 || r_type == R_XTENSA_32_PCREL))
3006 {
3007 error_message =
3008 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3009 strlen (name) + 2, name);
3010 if (!((*info->callbacks->reloc_dangerous)
3011 (info, error_message, input_bfd, input_section,
3012 rel->r_offset)))
3013 return FALSE;
3014 continue;
3015 }
3016 break;
e0001a05
NC
3017 }
3018
3019 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3020 because such sections are not SEC_ALLOC and thus ld.so will
3021 not process them. */
3022 if (unresolved_reloc
3023 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 3024 && h->def_dynamic))
bf1747de
BW
3025 {
3026 (*_bfd_error_handler)
3027 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3028 input_bfd,
3029 input_section,
3030 (long) rel->r_offset,
3031 howto->name,
28dbbc02 3032 name);
bf1747de
BW
3033 return FALSE;
3034 }
e0001a05 3035
28dbbc02
BW
3036 /* TLS optimizations may have changed r_type; update "howto". */
3037 howto = &elf_howto_table[r_type];
3038
e0001a05
NC
3039 /* There's no point in calling bfd_perform_relocation here.
3040 Just go directly to our "special function". */
3041 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3042 relocation + rel->r_addend,
3043 contents, rel->r_offset, is_weak_undef,
3044 &error_message);
43cd72b9 3045
9b8c98a4 3046 if (r != bfd_reloc_ok && !warned)
e0001a05 3047 {
43cd72b9 3048 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 3049 BFD_ASSERT (error_message != NULL);
e0001a05 3050
28dbbc02
BW
3051 if (rel->r_addend == 0)
3052 error_message = vsprint_msg (error_message, ": %s",
3053 strlen (name) + 2, name);
e0001a05 3054 else
28dbbc02
BW
3055 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3056 strlen (name) + 22,
3057 name, (int) rel->r_addend);
43cd72b9 3058
e0001a05
NC
3059 if (!((*info->callbacks->reloc_dangerous)
3060 (info, error_message, input_bfd, input_section,
3061 rel->r_offset)))
3062 return FALSE;
3063 }
3064 }
3065
88d65ad6
BW
3066 if (lit_table)
3067 free (lit_table);
3068
3ba3bc8c
BW
3069 input_section->reloc_done = TRUE;
3070
e0001a05
NC
3071 return TRUE;
3072}
3073
3074
3075/* Finish up dynamic symbol handling. There's not much to do here since
3076 the PLT and GOT entries are all set up by relocate_section. */
3077
3078static bfd_boolean
7fa3d080
BW
3079elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3080 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3081 struct elf_link_hash_entry *h,
3082 Elf_Internal_Sym *sym)
e0001a05 3083{
bf1747de 3084 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3085 {
3086 /* Mark the symbol as undefined, rather than as defined in
3087 the .plt section. Leave the value alone. */
3088 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3089 /* If the symbol is weak, we do need to clear the value.
3090 Otherwise, the PLT entry would provide a definition for
3091 the symbol even if the symbol wasn't defined anywhere,
3092 and so the symbol would never be NULL. */
3093 if (!h->ref_regular_nonweak)
3094 sym->st_value = 0;
e0001a05
NC
3095 }
3096
3097 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3098 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 3099 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3100 sym->st_shndx = SHN_ABS;
3101
3102 return TRUE;
3103}
3104
3105
3106/* Combine adjacent literal table entries in the output. Adjacent
3107 entries within each input section may have been removed during
3108 relaxation, but we repeat the process here, even though it's too late
3109 to shrink the output section, because it's important to minimize the
3110 number of literal table entries to reduce the start-up work for the
3111 runtime linker. Returns the number of remaining table entries or -1
3112 on error. */
3113
3114static int
7fa3d080
BW
3115elf_xtensa_combine_prop_entries (bfd *output_bfd,
3116 asection *sxtlit,
3117 asection *sgotloc)
e0001a05 3118{
e0001a05
NC
3119 bfd_byte *contents;
3120 property_table_entry *table;
e901de89 3121 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3122 bfd_vma offset;
3123 int n, m, num;
3124
eea6121a 3125 section_size = sxtlit->size;
e0001a05
NC
3126 BFD_ASSERT (section_size % 8 == 0);
3127 num = section_size / 8;
3128
eea6121a 3129 sgotloc_size = sgotloc->size;
e901de89 3130 if (sgotloc_size != section_size)
b536dc1e
BW
3131 {
3132 (*_bfd_error_handler)
43cd72b9 3133 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3134 return -1;
3135 }
e901de89 3136
eea6121a
AM
3137 table = bfd_malloc (num * sizeof (property_table_entry));
3138 if (table == 0)
e0001a05
NC
3139 return -1;
3140
3141 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3142 propagates to the output section, where it doesn't really apply and
eea6121a 3143 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3144 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3145
eea6121a
AM
3146 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3147 {
3148 if (contents != 0)
3149 free (contents);
3150 free (table);
3151 return -1;
3152 }
e0001a05
NC
3153
3154 /* There should never be any relocations left at this point, so this
3155 is quite a bit easier than what is done during relaxation. */
3156
3157 /* Copy the raw contents into a property table array and sort it. */
3158 offset = 0;
3159 for (n = 0; n < num; n++)
3160 {
3161 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3162 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3163 offset += 8;
3164 }
3165 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3166
3167 for (n = 0; n < num; n++)
3168 {
3169 bfd_boolean remove = FALSE;
3170
3171 if (table[n].size == 0)
3172 remove = TRUE;
3173 else if (n > 0 &&
3174 (table[n-1].address + table[n-1].size == table[n].address))
3175 {
3176 table[n-1].size += table[n].size;
3177 remove = TRUE;
3178 }
3179
3180 if (remove)
3181 {
3182 for (m = n; m < num - 1; m++)
3183 {
3184 table[m].address = table[m+1].address;
3185 table[m].size = table[m+1].size;
3186 }
3187
3188 n--;
3189 num--;
3190 }
3191 }
3192
3193 /* Copy the data back to the raw contents. */
3194 offset = 0;
3195 for (n = 0; n < num; n++)
3196 {
3197 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3198 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3199 offset += 8;
3200 }
3201
3202 /* Clear the removed bytes. */
3203 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3204 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3205
e901de89
BW
3206 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3207 section_size))
e0001a05
NC
3208 return -1;
3209
e901de89
BW
3210 /* Copy the contents to ".got.loc". */
3211 memcpy (sgotloc->contents, contents, section_size);
3212
e0001a05 3213 free (contents);
b614a702 3214 free (table);
e0001a05
NC
3215 return num;
3216}
3217
3218
3219/* Finish up the dynamic sections. */
3220
3221static bfd_boolean
7fa3d080
BW
3222elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3223 struct bfd_link_info *info)
e0001a05 3224{
f0e6fdb2 3225 struct elf_xtensa_link_hash_table *htab;
e0001a05 3226 bfd *dynobj;
e901de89 3227 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 3228 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3229 int num_xtlit_entries = 0;
e0001a05
NC
3230
3231 if (! elf_hash_table (info)->dynamic_sections_created)
3232 return TRUE;
3233
f0e6fdb2 3234 htab = elf_xtensa_hash_table (info);
e0001a05
NC
3235 dynobj = elf_hash_table (info)->dynobj;
3236 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3237 BFD_ASSERT (sdyn != NULL);
3238
3239 /* Set the first entry in the global offset table to the address of
3240 the dynamic section. */
f0e6fdb2 3241 sgot = htab->sgot;
e0001a05
NC
3242 if (sgot)
3243 {
eea6121a 3244 BFD_ASSERT (sgot->size == 4);
e0001a05 3245 if (sdyn == NULL)
7fa3d080 3246 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3247 else
3248 bfd_put_32 (output_bfd,
3249 sdyn->output_section->vma + sdyn->output_offset,
3250 sgot->contents);
3251 }
3252
f0e6fdb2 3253 srelplt = htab->srelplt;
7fa3d080 3254 if (srelplt && srelplt->size != 0)
e0001a05
NC
3255 {
3256 asection *sgotplt, *srelgot, *spltlittbl;
3257 int chunk, plt_chunks, plt_entries;
3258 Elf_Internal_Rela irela;
3259 bfd_byte *loc;
3260 unsigned rtld_reloc;
3261
f0e6fdb2
BW
3262 srelgot = htab->srelgot;
3263 spltlittbl = htab->spltlittbl;
3264 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3265
3266 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3267 of them follow immediately after.... */
3268 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3269 {
3270 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3271 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3272 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3273 break;
3274 }
3275 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3276
eea6121a 3277 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3278 plt_chunks =
3279 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3280
3281 for (chunk = 0; chunk < plt_chunks; chunk++)
3282 {
3283 int chunk_entries = 0;
3284
f0e6fdb2 3285 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3286 BFD_ASSERT (sgotplt != NULL);
3287
3288 /* Emit special RTLD relocations for the first two entries in
3289 each chunk of the .got.plt section. */
3290
3291 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3292 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3293 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3294 irela.r_offset = (sgotplt->output_section->vma
3295 + sgotplt->output_offset);
3296 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3297 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3298 rtld_reloc += 1;
3299 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3300
3301 /* Next literal immediately follows the first. */
3302 loc += sizeof (Elf32_External_Rela);
3303 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3304 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3305 irela.r_offset = (sgotplt->output_section->vma
3306 + sgotplt->output_offset + 4);
3307 /* Tell rtld to set value to object's link map. */
3308 irela.r_addend = 2;
3309 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3310 rtld_reloc += 1;
3311 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3312
3313 /* Fill in the literal table. */
3314 if (chunk < plt_chunks - 1)
3315 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3316 else
3317 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3318
eea6121a 3319 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3320 bfd_put_32 (output_bfd,
3321 sgotplt->output_section->vma + sgotplt->output_offset,
3322 spltlittbl->contents + (chunk * 8) + 0);
3323 bfd_put_32 (output_bfd,
3324 8 + (chunk_entries * 4),
3325 spltlittbl->contents + (chunk * 8) + 4);
3326 }
3327
3328 /* All the dynamic relocations have been emitted at this point.
3329 Make sure the relocation sections are the correct size. */
eea6121a
AM
3330 if (srelgot->size != (sizeof (Elf32_External_Rela)
3331 * srelgot->reloc_count)
3332 || srelplt->size != (sizeof (Elf32_External_Rela)
3333 * srelplt->reloc_count))
e0001a05
NC
3334 abort ();
3335
3336 /* The .xt.lit.plt section has just been modified. This must
3337 happen before the code below which combines adjacent literal
3338 table entries, and the .xt.lit.plt contents have to be forced to
3339 the output here. */
3340 if (! bfd_set_section_contents (output_bfd,
3341 spltlittbl->output_section,
3342 spltlittbl->contents,
3343 spltlittbl->output_offset,
eea6121a 3344 spltlittbl->size))
e0001a05
NC
3345 return FALSE;
3346 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3347 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3348 }
3349
3350 /* Combine adjacent literal table entries. */
1049f94e 3351 BFD_ASSERT (! info->relocatable);
e901de89 3352 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3353 sgotloc = htab->sgotloc;
d9ab3f29
BW
3354 BFD_ASSERT (sgotloc);
3355 if (sxtlit)
3356 {
3357 num_xtlit_entries =
3358 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3359 if (num_xtlit_entries < 0)
3360 return FALSE;
3361 }
e0001a05
NC
3362
3363 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3364 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3365 for (; dyncon < dynconend; dyncon++)
3366 {
3367 Elf_Internal_Dyn dyn;
e0001a05
NC
3368
3369 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3370
3371 switch (dyn.d_tag)
3372 {
3373 default:
3374 break;
3375
3376 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3377 dyn.d_un.d_val = num_xtlit_entries;
3378 break;
3379
3380 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 3381 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
3382 break;
3383
e0001a05 3384 case DT_PLTGOT:
e29297b7 3385 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
3386 break;
3387
e0001a05 3388 case DT_JMPREL:
e29297b7 3389 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
3390 break;
3391
3392 case DT_PLTRELSZ:
e29297b7 3393 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
3394 break;
3395
3396 case DT_RELASZ:
3397 /* Adjust RELASZ to not include JMPREL. This matches what
3398 glibc expects and what is done for several other ELF
3399 targets (e.g., i386, alpha), but the "correct" behavior
3400 seems to be unresolved. Since the linker script arranges
3401 for .rela.plt to follow all other relocation sections, we
3402 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 3403 if (htab->srelplt)
e29297b7 3404 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
3405 break;
3406 }
3407
3408 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3409 }
3410
3411 return TRUE;
3412}
3413
3414\f
3415/* Functions for dealing with the e_flags field. */
3416
3417/* Merge backend specific data from an object file to the output
3418 object file when linking. */
3419
3420static bfd_boolean
7fa3d080 3421elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
3422{
3423 unsigned out_mach, in_mach;
3424 flagword out_flag, in_flag;
3425
3426 /* Check if we have the same endianess. */
3427 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3428 return FALSE;
3429
3430 /* Don't even pretend to support mixed-format linking. */
3431 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3432 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3433 return FALSE;
3434
3435 out_flag = elf_elfheader (obfd)->e_flags;
3436 in_flag = elf_elfheader (ibfd)->e_flags;
3437
3438 out_mach = out_flag & EF_XTENSA_MACH;
3439 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3440 if (out_mach != in_mach)
e0001a05
NC
3441 {
3442 (*_bfd_error_handler)
43cd72b9 3443 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 3444 ibfd, out_mach, in_mach);
e0001a05
NC
3445 bfd_set_error (bfd_error_wrong_format);
3446 return FALSE;
3447 }
3448
3449 if (! elf_flags_init (obfd))
3450 {
3451 elf_flags_init (obfd) = TRUE;
3452 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3453
e0001a05
NC
3454 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3455 && bfd_get_arch_info (obfd)->the_default)
3456 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3457 bfd_get_mach (ibfd));
43cd72b9 3458
e0001a05
NC
3459 return TRUE;
3460 }
3461
43cd72b9
BW
3462 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3463 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3464
43cd72b9
BW
3465 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3466 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3467
3468 return TRUE;
3469}
3470
3471
3472static bfd_boolean
7fa3d080 3473elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3474{
3475 BFD_ASSERT (!elf_flags_init (abfd)
3476 || elf_elfheader (abfd)->e_flags == flags);
3477
3478 elf_elfheader (abfd)->e_flags |= flags;
3479 elf_flags_init (abfd) = TRUE;
3480
3481 return TRUE;
3482}
3483
3484
e0001a05 3485static bfd_boolean
7fa3d080 3486elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3487{
3488 FILE *f = (FILE *) farg;
3489 flagword e_flags = elf_elfheader (abfd)->e_flags;
3490
3491 fprintf (f, "\nXtensa header:\n");
43cd72b9 3492 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3493 fprintf (f, "\nMachine = Base\n");
3494 else
3495 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3496
3497 fprintf (f, "Insn tables = %s\n",
3498 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3499
3500 fprintf (f, "Literal tables = %s\n",
3501 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3502
3503 return _bfd_elf_print_private_bfd_data (abfd, farg);
3504}
3505
3506
3507/* Set the right machine number for an Xtensa ELF file. */
3508
3509static bfd_boolean
7fa3d080 3510elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3511{
3512 int mach;
3513 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3514
3515 switch (arch)
3516 {
3517 case E_XTENSA_MACH:
3518 mach = bfd_mach_xtensa;
3519 break;
3520 default:
3521 return FALSE;
3522 }
3523
3524 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3525 return TRUE;
3526}
3527
3528
3529/* The final processing done just before writing out an Xtensa ELF object
3530 file. This gets the Xtensa architecture right based on the machine
3531 number. */
3532
3533static void
7fa3d080
BW
3534elf_xtensa_final_write_processing (bfd *abfd,
3535 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3536{
3537 int mach;
3538 unsigned long val;
3539
3540 switch (mach = bfd_get_mach (abfd))
3541 {
3542 case bfd_mach_xtensa:
3543 val = E_XTENSA_MACH;
3544 break;
3545 default:
3546 return;
3547 }
3548
3549 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3550 elf_elfheader (abfd)->e_flags |= val;
3551}
3552
3553
3554static enum elf_reloc_type_class
7fa3d080 3555elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
3556{
3557 switch ((int) ELF32_R_TYPE (rela->r_info))
3558 {
3559 case R_XTENSA_RELATIVE:
3560 return reloc_class_relative;
3561 case R_XTENSA_JMP_SLOT:
3562 return reloc_class_plt;
3563 default:
3564 return reloc_class_normal;
3565 }
3566}
3567
3568\f
3569static bfd_boolean
7fa3d080
BW
3570elf_xtensa_discard_info_for_section (bfd *abfd,
3571 struct elf_reloc_cookie *cookie,
3572 struct bfd_link_info *info,
3573 asection *sec)
e0001a05
NC
3574{
3575 bfd_byte *contents;
e0001a05 3576 bfd_vma offset, actual_offset;
1d25768e
BW
3577 bfd_size_type removed_bytes = 0;
3578 bfd_size_type entry_size;
e0001a05
NC
3579
3580 if (sec->output_section
3581 && bfd_is_abs_section (sec->output_section))
3582 return FALSE;
3583
1d25768e
BW
3584 if (xtensa_is_proptable_section (sec))
3585 entry_size = 12;
3586 else
3587 entry_size = 8;
3588
a3ef2d63 3589 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3590 return FALSE;
3591
e0001a05
NC
3592 contents = retrieve_contents (abfd, sec, info->keep_memory);
3593 if (!contents)
3594 return FALSE;
3595
3596 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3597 if (!cookie->rels)
3598 {
3599 release_contents (sec, contents);
3600 return FALSE;
3601 }
3602
1d25768e
BW
3603 /* Sort the relocations. They should already be in order when
3604 relaxation is enabled, but it might not be. */
3605 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3606 internal_reloc_compare);
3607
e0001a05
NC
3608 cookie->rel = cookie->rels;
3609 cookie->relend = cookie->rels + sec->reloc_count;
3610
a3ef2d63 3611 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3612 {
3613 actual_offset = offset - removed_bytes;
3614
3615 /* The ...symbol_deleted_p function will skip over relocs but it
3616 won't adjust their offsets, so do that here. */
3617 while (cookie->rel < cookie->relend
3618 && cookie->rel->r_offset < offset)
3619 {
3620 cookie->rel->r_offset -= removed_bytes;
3621 cookie->rel++;
3622 }
3623
3624 while (cookie->rel < cookie->relend
3625 && cookie->rel->r_offset == offset)
3626 {
c152c796 3627 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3628 {
3629 /* Remove the table entry. (If the reloc type is NONE, then
3630 the entry has already been merged with another and deleted
3631 during relaxation.) */
3632 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3633 {
3634 /* Shift the contents up. */
a3ef2d63 3635 if (offset + entry_size < sec->size)
e0001a05 3636 memmove (&contents[actual_offset],
1d25768e 3637 &contents[actual_offset + entry_size],
a3ef2d63 3638 sec->size - offset - entry_size);
1d25768e 3639 removed_bytes += entry_size;
e0001a05
NC
3640 }
3641
3642 /* Remove this relocation. */
3643 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3644 }
3645
3646 /* Adjust the relocation offset for previous removals. This
3647 should not be done before calling ...symbol_deleted_p
3648 because it might mess up the offset comparisons there.
3649 Make sure the offset doesn't underflow in the case where
3650 the first entry is removed. */
3651 if (cookie->rel->r_offset >= removed_bytes)
3652 cookie->rel->r_offset -= removed_bytes;
3653 else
3654 cookie->rel->r_offset = 0;
3655
3656 cookie->rel++;
3657 }
3658 }
3659
3660 if (removed_bytes != 0)
3661 {
3662 /* Adjust any remaining relocs (shouldn't be any). */
3663 for (; cookie->rel < cookie->relend; cookie->rel++)
3664 {
3665 if (cookie->rel->r_offset >= removed_bytes)
3666 cookie->rel->r_offset -= removed_bytes;
3667 else
3668 cookie->rel->r_offset = 0;
3669 }
3670
3671 /* Clear the removed bytes. */
a3ef2d63 3672 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3673
3674 pin_contents (sec, contents);
3675 pin_internal_relocs (sec, cookie->rels);
3676
eea6121a 3677 /* Shrink size. */
a3ef2d63
BW
3678 if (sec->rawsize == 0)
3679 sec->rawsize = sec->size;
3680 sec->size -= removed_bytes;
b536dc1e
BW
3681
3682 if (xtensa_is_littable_section (sec))
3683 {
f0e6fdb2
BW
3684 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3685 if (sgotloc)
3686 sgotloc->size -= removed_bytes;
b536dc1e 3687 }
e0001a05
NC
3688 }
3689 else
3690 {
3691 release_contents (sec, contents);
3692 release_internal_relocs (sec, cookie->rels);
3693 }
3694
3695 return (removed_bytes != 0);
3696}
3697
3698
3699static bfd_boolean
7fa3d080
BW
3700elf_xtensa_discard_info (bfd *abfd,
3701 struct elf_reloc_cookie *cookie,
3702 struct bfd_link_info *info)
e0001a05
NC
3703{
3704 asection *sec;
3705 bfd_boolean changed = FALSE;
3706
3707 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3708 {
3709 if (xtensa_is_property_section (sec))
3710 {
3711 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3712 changed = TRUE;
3713 }
3714 }
3715
3716 return changed;
3717}
3718
3719
3720static bfd_boolean
7fa3d080 3721elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3722{
3723 return xtensa_is_property_section (sec);
3724}
3725
a77dc2cc
BW
3726
3727static unsigned int
3728elf_xtensa_action_discarded (asection *sec)
3729{
3730 if (strcmp (".xt_except_table", sec->name) == 0)
3731 return 0;
3732
3733 if (strcmp (".xt_except_desc", sec->name) == 0)
3734 return 0;
3735
3736 return _bfd_elf_default_action_discarded (sec);
3737}
3738
e0001a05
NC
3739\f
3740/* Support for core dump NOTE sections. */
3741
3742static bfd_boolean
7fa3d080 3743elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3744{
3745 int offset;
eea6121a 3746 unsigned int size;
e0001a05
NC
3747
3748 /* The size for Xtensa is variable, so don't try to recognize the format
3749 based on the size. Just assume this is GNU/Linux. */
3750
3751 /* pr_cursig */
3752 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3753
3754 /* pr_pid */
3755 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3756
3757 /* pr_reg */
3758 offset = 72;
eea6121a 3759 size = note->descsz - offset - 4;
e0001a05
NC
3760
3761 /* Make a ".reg/999" section. */
3762 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3763 size, note->descpos + offset);
e0001a05
NC
3764}
3765
3766
3767static bfd_boolean
7fa3d080 3768elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3769{
3770 switch (note->descsz)
3771 {
3772 default:
3773 return FALSE;
3774
3775 case 128: /* GNU/Linux elf_prpsinfo */
3776 elf_tdata (abfd)->core_program
3777 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3778 elf_tdata (abfd)->core_command
3779 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3780 }
3781
3782 /* Note that for some reason, a spurious space is tacked
3783 onto the end of the args in some (at least one anyway)
3784 implementations, so strip it off if it exists. */
3785
3786 {
3787 char *command = elf_tdata (abfd)->core_command;
3788 int n = strlen (command);
3789
3790 if (0 < n && command[n - 1] == ' ')
3791 command[n - 1] = '\0';
3792 }
3793
3794 return TRUE;
3795}
3796
3797\f
3798/* Generic Xtensa configurability stuff. */
3799
3800static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3801static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3802static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3803static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3804static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3805static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3806static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3807static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3808
3809static void
7fa3d080 3810init_call_opcodes (void)
e0001a05
NC
3811{
3812 if (callx0_op == XTENSA_UNDEFINED)
3813 {
3814 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3815 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3816 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3817 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3818 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3819 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3820 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3821 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3822 }
3823}
3824
3825
3826static bfd_boolean
7fa3d080 3827is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3828{
3829 init_call_opcodes ();
3830 return (opcode == callx0_op
3831 || opcode == callx4_op
3832 || opcode == callx8_op
3833 || opcode == callx12_op);
3834}
3835
3836
3837static bfd_boolean
7fa3d080 3838is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3839{
3840 init_call_opcodes ();
3841 return (opcode == call0_op
3842 || opcode == call4_op
3843 || opcode == call8_op
3844 || opcode == call12_op);
3845}
3846
3847
3848static bfd_boolean
7fa3d080 3849is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3850{
3851 init_call_opcodes ();
3852 return (opcode == call4_op
3853 || opcode == call8_op
3854 || opcode == call12_op
3855 || opcode == callx4_op
3856 || opcode == callx8_op
3857 || opcode == callx12_op);
3858}
3859
3860
28dbbc02
BW
3861static bfd_boolean
3862get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3863{
3864 unsigned dst = (unsigned) -1;
3865
3866 init_call_opcodes ();
3867 if (opcode == callx0_op)
3868 dst = 0;
3869 else if (opcode == callx4_op)
3870 dst = 4;
3871 else if (opcode == callx8_op)
3872 dst = 8;
3873 else if (opcode == callx12_op)
3874 dst = 12;
3875
3876 if (dst == (unsigned) -1)
3877 return FALSE;
3878
3879 *pdst = dst;
3880 return TRUE;
3881}
3882
3883
43cd72b9
BW
3884static xtensa_opcode
3885get_const16_opcode (void)
3886{
3887 static bfd_boolean done_lookup = FALSE;
3888 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3889 if (!done_lookup)
3890 {
3891 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3892 done_lookup = TRUE;
3893 }
3894 return const16_opcode;
3895}
3896
3897
e0001a05
NC
3898static xtensa_opcode
3899get_l32r_opcode (void)
3900{
3901 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3902 static bfd_boolean done_lookup = FALSE;
3903
3904 if (!done_lookup)
e0001a05
NC
3905 {
3906 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3907 done_lookup = TRUE;
e0001a05
NC
3908 }
3909 return l32r_opcode;
3910}
3911
3912
3913static bfd_vma
7fa3d080 3914l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3915{
3916 bfd_vma offset;
3917
3918 offset = addr - ((pc+3) & -4);
3919 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3920 offset = (signed int) offset >> 2;
3921 BFD_ASSERT ((signed int) offset >> 16 == -1);
3922 return offset;
3923}
3924
3925
e0001a05 3926static int
7fa3d080 3927get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3928{
43cd72b9
BW
3929 xtensa_isa isa = xtensa_default_isa;
3930 int last_immed, last_opnd, opi;
3931
3932 if (opcode == XTENSA_UNDEFINED)
3933 return XTENSA_UNDEFINED;
3934
3935 /* Find the last visible PC-relative immediate operand for the opcode.
3936 If there are no PC-relative immediates, then choose the last visible
3937 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3938 last_immed = XTENSA_UNDEFINED;
3939 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3940 for (opi = last_opnd - 1; opi >= 0; opi--)
3941 {
3942 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3943 continue;
3944 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3945 {
3946 last_immed = opi;
3947 break;
3948 }
3949 if (last_immed == XTENSA_UNDEFINED
3950 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3951 last_immed = opi;
3952 }
3953 if (last_immed < 0)
3954 return XTENSA_UNDEFINED;
3955
3956 /* If the operand number was specified in an old-style relocation,
3957 check for consistency with the operand computed above. */
3958 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3959 {
3960 int reloc_opnd = r_type - R_XTENSA_OP0;
3961 if (reloc_opnd != last_immed)
3962 return XTENSA_UNDEFINED;
3963 }
3964
3965 return last_immed;
3966}
3967
3968
3969int
7fa3d080 3970get_relocation_slot (int r_type)
43cd72b9
BW
3971{
3972 switch (r_type)
3973 {
3974 case R_XTENSA_OP0:
3975 case R_XTENSA_OP1:
3976 case R_XTENSA_OP2:
3977 return 0;
3978
3979 default:
3980 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3981 return r_type - R_XTENSA_SLOT0_OP;
3982 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3983 return r_type - R_XTENSA_SLOT0_ALT;
3984 break;
3985 }
3986
3987 return XTENSA_UNDEFINED;
e0001a05
NC
3988}
3989
3990
3991/* Get the opcode for a relocation. */
3992
3993static xtensa_opcode
7fa3d080
BW
3994get_relocation_opcode (bfd *abfd,
3995 asection *sec,
3996 bfd_byte *contents,
3997 Elf_Internal_Rela *irel)
e0001a05
NC
3998{
3999 static xtensa_insnbuf ibuff = NULL;
43cd72b9 4000 static xtensa_insnbuf sbuff = NULL;
e0001a05 4001 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4002 xtensa_format fmt;
4003 int slot;
e0001a05
NC
4004
4005 if (contents == NULL)
4006 return XTENSA_UNDEFINED;
4007
43cd72b9 4008 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
4009 return XTENSA_UNDEFINED;
4010
4011 if (ibuff == NULL)
43cd72b9
BW
4012 {
4013 ibuff = xtensa_insnbuf_alloc (isa);
4014 sbuff = xtensa_insnbuf_alloc (isa);
4015 }
4016
e0001a05 4017 /* Decode the instruction. */
43cd72b9
BW
4018 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4019 sec->size - irel->r_offset);
4020 fmt = xtensa_format_decode (isa, ibuff);
4021 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4022 if (slot == XTENSA_UNDEFINED)
4023 return XTENSA_UNDEFINED;
4024 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4025 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
4026}
4027
4028
4029bfd_boolean
7fa3d080
BW
4030is_l32r_relocation (bfd *abfd,
4031 asection *sec,
4032 bfd_byte *contents,
4033 Elf_Internal_Rela *irel)
e0001a05
NC
4034{
4035 xtensa_opcode opcode;
43cd72b9 4036 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 4037 return FALSE;
43cd72b9 4038 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
4039 return (opcode == get_l32r_opcode ());
4040}
4041
e0001a05 4042
43cd72b9 4043static bfd_size_type
7fa3d080
BW
4044get_asm_simplify_size (bfd_byte *contents,
4045 bfd_size_type content_len,
4046 bfd_size_type offset)
e0001a05 4047{
43cd72b9 4048 bfd_size_type insnlen, size = 0;
e0001a05 4049
43cd72b9
BW
4050 /* Decode the size of the next two instructions. */
4051 insnlen = insn_decode_len (contents, content_len, offset);
4052 if (insnlen == 0)
4053 return 0;
e0001a05 4054
43cd72b9 4055 size += insnlen;
e0001a05 4056
43cd72b9
BW
4057 insnlen = insn_decode_len (contents, content_len, offset + size);
4058 if (insnlen == 0)
4059 return 0;
e0001a05 4060
43cd72b9
BW
4061 size += insnlen;
4062 return size;
4063}
e0001a05 4064
43cd72b9
BW
4065
4066bfd_boolean
7fa3d080 4067is_alt_relocation (int r_type)
43cd72b9
BW
4068{
4069 return (r_type >= R_XTENSA_SLOT0_ALT
4070 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4071}
4072
4073
43cd72b9 4074bfd_boolean
7fa3d080 4075is_operand_relocation (int r_type)
e0001a05 4076{
43cd72b9
BW
4077 switch (r_type)
4078 {
4079 case R_XTENSA_OP0:
4080 case R_XTENSA_OP1:
4081 case R_XTENSA_OP2:
4082 return TRUE;
e0001a05 4083
43cd72b9
BW
4084 default:
4085 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4086 return TRUE;
4087 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4088 return TRUE;
4089 break;
4090 }
e0001a05 4091
43cd72b9 4092 return FALSE;
e0001a05
NC
4093}
4094
43cd72b9
BW
4095
4096#define MIN_INSN_LENGTH 2
e0001a05 4097
43cd72b9
BW
4098/* Return 0 if it fails to decode. */
4099
4100bfd_size_type
7fa3d080
BW
4101insn_decode_len (bfd_byte *contents,
4102 bfd_size_type content_len,
4103 bfd_size_type offset)
e0001a05 4104{
43cd72b9
BW
4105 int insn_len;
4106 xtensa_isa isa = xtensa_default_isa;
4107 xtensa_format fmt;
4108 static xtensa_insnbuf ibuff = NULL;
e0001a05 4109
43cd72b9
BW
4110 if (offset + MIN_INSN_LENGTH > content_len)
4111 return 0;
e0001a05 4112
43cd72b9
BW
4113 if (ibuff == NULL)
4114 ibuff = xtensa_insnbuf_alloc (isa);
4115 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4116 content_len - offset);
4117 fmt = xtensa_format_decode (isa, ibuff);
4118 if (fmt == XTENSA_UNDEFINED)
4119 return 0;
4120 insn_len = xtensa_format_length (isa, fmt);
4121 if (insn_len == XTENSA_UNDEFINED)
4122 return 0;
4123 return insn_len;
e0001a05
NC
4124}
4125
4126
43cd72b9
BW
4127/* Decode the opcode for a single slot instruction.
4128 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4129
43cd72b9 4130xtensa_opcode
7fa3d080
BW
4131insn_decode_opcode (bfd_byte *contents,
4132 bfd_size_type content_len,
4133 bfd_size_type offset,
4134 int slot)
e0001a05 4135{
e0001a05 4136 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4137 xtensa_format fmt;
4138 static xtensa_insnbuf insnbuf = NULL;
4139 static xtensa_insnbuf slotbuf = NULL;
4140
4141 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4142 return XTENSA_UNDEFINED;
4143
4144 if (insnbuf == NULL)
43cd72b9
BW
4145 {
4146 insnbuf = xtensa_insnbuf_alloc (isa);
4147 slotbuf = xtensa_insnbuf_alloc (isa);
4148 }
4149
4150 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4151 content_len - offset);
4152 fmt = xtensa_format_decode (isa, insnbuf);
4153 if (fmt == XTENSA_UNDEFINED)
e0001a05 4154 return XTENSA_UNDEFINED;
43cd72b9
BW
4155
4156 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4157 return XTENSA_UNDEFINED;
e0001a05 4158
43cd72b9
BW
4159 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4160 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4161}
e0001a05 4162
e0001a05 4163
43cd72b9
BW
4164/* The offset is the offset in the contents.
4165 The address is the address of that offset. */
e0001a05 4166
43cd72b9 4167static bfd_boolean
7fa3d080
BW
4168check_branch_target_aligned (bfd_byte *contents,
4169 bfd_size_type content_length,
4170 bfd_vma offset,
4171 bfd_vma address)
43cd72b9
BW
4172{
4173 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4174 if (insn_len == 0)
4175 return FALSE;
4176 return check_branch_target_aligned_address (address, insn_len);
4177}
e0001a05 4178
e0001a05 4179
43cd72b9 4180static bfd_boolean
7fa3d080
BW
4181check_loop_aligned (bfd_byte *contents,
4182 bfd_size_type content_length,
4183 bfd_vma offset,
4184 bfd_vma address)
e0001a05 4185{
43cd72b9 4186 bfd_size_type loop_len, insn_len;
64b607e6 4187 xtensa_opcode opcode;
e0001a05 4188
64b607e6
BW
4189 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4190 if (opcode == XTENSA_UNDEFINED
4191 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4192 {
4193 BFD_ASSERT (FALSE);
4194 return FALSE;
4195 }
4196
43cd72b9 4197 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4198 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4199 if (loop_len == 0 || insn_len == 0)
4200 {
4201 BFD_ASSERT (FALSE);
4202 return FALSE;
4203 }
e0001a05 4204
43cd72b9
BW
4205 return check_branch_target_aligned_address (address + loop_len, insn_len);
4206}
e0001a05 4207
e0001a05
NC
4208
4209static bfd_boolean
7fa3d080 4210check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4211{
43cd72b9
BW
4212 if (len == 8)
4213 return (addr % 8 == 0);
4214 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4215}
4216
43cd72b9
BW
4217\f
4218/* Instruction widening and narrowing. */
e0001a05 4219
7fa3d080
BW
4220/* When FLIX is available we need to access certain instructions only
4221 when they are 16-bit or 24-bit instructions. This table caches
4222 information about such instructions by walking through all the
4223 opcodes and finding the smallest single-slot format into which each
4224 can be encoded. */
4225
4226static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4227
4228
7fa3d080
BW
4229static void
4230init_op_single_format_table (void)
e0001a05 4231{
7fa3d080
BW
4232 xtensa_isa isa = xtensa_default_isa;
4233 xtensa_insnbuf ibuf;
4234 xtensa_opcode opcode;
4235 xtensa_format fmt;
4236 int num_opcodes;
4237
4238 if (op_single_fmt_table)
4239 return;
4240
4241 ibuf = xtensa_insnbuf_alloc (isa);
4242 num_opcodes = xtensa_isa_num_opcodes (isa);
4243
4244 op_single_fmt_table = (xtensa_format *)
4245 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4246 for (opcode = 0; opcode < num_opcodes; opcode++)
4247 {
4248 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4249 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4250 {
4251 if (xtensa_format_num_slots (isa, fmt) == 1
4252 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4253 {
4254 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4255 int fmt_length = xtensa_format_length (isa, fmt);
4256 if (old_fmt == XTENSA_UNDEFINED
4257 || fmt_length < xtensa_format_length (isa, old_fmt))
4258 op_single_fmt_table[opcode] = fmt;
4259 }
4260 }
4261 }
4262 xtensa_insnbuf_free (isa, ibuf);
4263}
4264
4265
4266static xtensa_format
4267get_single_format (xtensa_opcode opcode)
4268{
4269 init_op_single_format_table ();
4270 return op_single_fmt_table[opcode];
4271}
e0001a05 4272
e0001a05 4273
43cd72b9
BW
4274/* For the set of narrowable instructions we do NOT include the
4275 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4276 involved during linker relaxation that may require these to
4277 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4278 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4279
7fa3d080
BW
4280struct string_pair
4281{
4282 const char *wide;
4283 const char *narrow;
4284};
4285
43cd72b9 4286struct string_pair narrowable[] =
e0001a05 4287{
43cd72b9
BW
4288 { "add", "add.n" },
4289 { "addi", "addi.n" },
4290 { "addmi", "addi.n" },
4291 { "l32i", "l32i.n" },
4292 { "movi", "movi.n" },
4293 { "ret", "ret.n" },
4294 { "retw", "retw.n" },
4295 { "s32i", "s32i.n" },
4296 { "or", "mov.n" } /* special case only when op1 == op2 */
4297};
e0001a05 4298
43cd72b9 4299struct string_pair widenable[] =
e0001a05 4300{
43cd72b9
BW
4301 { "add", "add.n" },
4302 { "addi", "addi.n" },
4303 { "addmi", "addi.n" },
4304 { "beqz", "beqz.n" },
4305 { "bnez", "bnez.n" },
4306 { "l32i", "l32i.n" },
4307 { "movi", "movi.n" },
4308 { "ret", "ret.n" },
4309 { "retw", "retw.n" },
4310 { "s32i", "s32i.n" },
4311 { "or", "mov.n" } /* special case only when op1 == op2 */
4312};
e0001a05
NC
4313
4314
64b607e6
BW
4315/* Check if an instruction can be "narrowed", i.e., changed from a standard
4316 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4317 return the instruction buffer holding the narrow instruction. Otherwise,
4318 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4319 but require some special case operand checks in some cases. */
4320
64b607e6
BW
4321static xtensa_insnbuf
4322can_narrow_instruction (xtensa_insnbuf slotbuf,
4323 xtensa_format fmt,
4324 xtensa_opcode opcode)
e0001a05 4325{
43cd72b9 4326 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4327 xtensa_format o_fmt;
4328 unsigned opi;
e0001a05 4329
43cd72b9
BW
4330 static xtensa_insnbuf o_insnbuf = NULL;
4331 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4332
64b607e6 4333 if (o_insnbuf == NULL)
43cd72b9 4334 {
43cd72b9
BW
4335 o_insnbuf = xtensa_insnbuf_alloc (isa);
4336 o_slotbuf = xtensa_insnbuf_alloc (isa);
4337 }
e0001a05 4338
64b607e6 4339 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4340 {
4341 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4342
43cd72b9
BW
4343 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4344 {
4345 uint32 value, newval;
4346 int i, operand_count, o_operand_count;
4347 xtensa_opcode o_opcode;
e0001a05 4348
43cd72b9
BW
4349 /* Address does not matter in this case. We might need to
4350 fix it to handle branches/jumps. */
4351 bfd_vma self_address = 0;
e0001a05 4352
43cd72b9
BW
4353 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4354 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4355 return 0;
43cd72b9
BW
4356 o_fmt = get_single_format (o_opcode);
4357 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4358 return 0;
e0001a05 4359
43cd72b9
BW
4360 if (xtensa_format_length (isa, fmt) != 3
4361 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4362 return 0;
e0001a05 4363
43cd72b9
BW
4364 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4365 operand_count = xtensa_opcode_num_operands (isa, opcode);
4366 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4367
43cd72b9 4368 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4369 return 0;
e0001a05 4370
43cd72b9
BW
4371 if (!is_or)
4372 {
4373 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4374 return 0;
43cd72b9
BW
4375 }
4376 else
4377 {
4378 uint32 rawval0, rawval1, rawval2;
e0001a05 4379
64b607e6
BW
4380 if (o_operand_count + 1 != operand_count
4381 || xtensa_operand_get_field (isa, opcode, 0,
4382 fmt, 0, slotbuf, &rawval0) != 0
4383 || xtensa_operand_get_field (isa, opcode, 1,
4384 fmt, 0, slotbuf, &rawval1) != 0
4385 || xtensa_operand_get_field (isa, opcode, 2,
4386 fmt, 0, slotbuf, &rawval2) != 0
4387 || rawval1 != rawval2
4388 || rawval0 == rawval1 /* it is a nop */)
4389 return 0;
43cd72b9 4390 }
e0001a05 4391
43cd72b9
BW
4392 for (i = 0; i < o_operand_count; ++i)
4393 {
4394 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4395 slotbuf, &value)
4396 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4397 return 0;
e0001a05 4398
43cd72b9
BW
4399 /* PC-relative branches need adjustment, but
4400 the PC-rel operand will always have a relocation. */
4401 newval = value;
4402 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4403 self_address)
4404 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4405 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4406 o_slotbuf, newval))
64b607e6 4407 return 0;
43cd72b9 4408 }
e0001a05 4409
64b607e6
BW
4410 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4411 return 0;
e0001a05 4412
64b607e6 4413 return o_insnbuf;
43cd72b9
BW
4414 }
4415 }
64b607e6 4416 return 0;
43cd72b9 4417}
e0001a05 4418
e0001a05 4419
64b607e6
BW
4420/* Attempt to narrow an instruction. If the narrowing is valid, perform
4421 the action in-place directly into the contents and return TRUE. Otherwise,
4422 the return value is FALSE and the contents are not modified. */
e0001a05 4423
43cd72b9 4424static bfd_boolean
64b607e6
BW
4425narrow_instruction (bfd_byte *contents,
4426 bfd_size_type content_length,
4427 bfd_size_type offset)
e0001a05 4428{
43cd72b9 4429 xtensa_opcode opcode;
64b607e6 4430 bfd_size_type insn_len;
43cd72b9 4431 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4432 xtensa_format fmt;
4433 xtensa_insnbuf o_insnbuf;
e0001a05 4434
43cd72b9
BW
4435 static xtensa_insnbuf insnbuf = NULL;
4436 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4437
43cd72b9
BW
4438 if (insnbuf == NULL)
4439 {
4440 insnbuf = xtensa_insnbuf_alloc (isa);
4441 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4442 }
e0001a05 4443
43cd72b9 4444 BFD_ASSERT (offset < content_length);
2c8c90bc 4445
43cd72b9 4446 if (content_length < 2)
e0001a05
NC
4447 return FALSE;
4448
64b607e6 4449 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4450 These have all been specified in the assembler aleady. */
4451 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4452 content_length - offset);
4453 fmt = xtensa_format_decode (isa, insnbuf);
4454 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4455 return FALSE;
4456
43cd72b9 4457 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4458 return FALSE;
4459
43cd72b9
BW
4460 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4461 if (opcode == XTENSA_UNDEFINED)
e0001a05 4462 return FALSE;
43cd72b9
BW
4463 insn_len = xtensa_format_length (isa, fmt);
4464 if (insn_len > content_length)
4465 return FALSE;
4466
64b607e6
BW
4467 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4468 if (o_insnbuf)
4469 {
4470 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4471 content_length - offset);
4472 return TRUE;
4473 }
4474
4475 return FALSE;
4476}
4477
4478
4479/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4480 "density" instruction to a standard 3-byte instruction. If it is valid,
4481 return the instruction buffer holding the wide instruction. Otherwise,
4482 return 0. The set of valid widenings are specified by a string table
4483 but require some special case operand checks in some cases. */
4484
4485static xtensa_insnbuf
4486can_widen_instruction (xtensa_insnbuf slotbuf,
4487 xtensa_format fmt,
4488 xtensa_opcode opcode)
4489{
4490 xtensa_isa isa = xtensa_default_isa;
4491 xtensa_format o_fmt;
4492 unsigned opi;
4493
4494 static xtensa_insnbuf o_insnbuf = NULL;
4495 static xtensa_insnbuf o_slotbuf = NULL;
4496
4497 if (o_insnbuf == NULL)
4498 {
4499 o_insnbuf = xtensa_insnbuf_alloc (isa);
4500 o_slotbuf = xtensa_insnbuf_alloc (isa);
4501 }
4502
4503 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4504 {
43cd72b9
BW
4505 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4506 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4507 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4508
43cd72b9
BW
4509 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4510 {
4511 uint32 value, newval;
4512 int i, operand_count, o_operand_count, check_operand_count;
4513 xtensa_opcode o_opcode;
e0001a05 4514
43cd72b9
BW
4515 /* Address does not matter in this case. We might need to fix it
4516 to handle branches/jumps. */
4517 bfd_vma self_address = 0;
e0001a05 4518
43cd72b9
BW
4519 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4520 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4521 return 0;
43cd72b9
BW
4522 o_fmt = get_single_format (o_opcode);
4523 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4524 return 0;
e0001a05 4525
43cd72b9
BW
4526 if (xtensa_format_length (isa, fmt) != 2
4527 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4528 return 0;
e0001a05 4529
43cd72b9
BW
4530 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4531 operand_count = xtensa_opcode_num_operands (isa, opcode);
4532 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4533 check_operand_count = o_operand_count;
e0001a05 4534
43cd72b9 4535 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4536 return 0;
e0001a05 4537
43cd72b9
BW
4538 if (!is_or)
4539 {
4540 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4541 return 0;
43cd72b9
BW
4542 }
4543 else
4544 {
4545 uint32 rawval0, rawval1;
4546
64b607e6
BW
4547 if (o_operand_count != operand_count + 1
4548 || xtensa_operand_get_field (isa, opcode, 0,
4549 fmt, 0, slotbuf, &rawval0) != 0
4550 || xtensa_operand_get_field (isa, opcode, 1,
4551 fmt, 0, slotbuf, &rawval1) != 0
4552 || rawval0 == rawval1 /* it is a nop */)
4553 return 0;
43cd72b9
BW
4554 }
4555 if (is_branch)
4556 check_operand_count--;
4557
64b607e6 4558 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4559 {
4560 int new_i = i;
4561 if (is_or && i == o_operand_count - 1)
4562 new_i = i - 1;
4563 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4564 slotbuf, &value)
4565 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4566 return 0;
43cd72b9
BW
4567
4568 /* PC-relative branches need adjustment, but
4569 the PC-rel operand will always have a relocation. */
4570 newval = value;
4571 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4572 self_address)
4573 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4574 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4575 o_slotbuf, newval))
64b607e6 4576 return 0;
43cd72b9
BW
4577 }
4578
4579 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4580 return 0;
43cd72b9 4581
64b607e6 4582 return o_insnbuf;
43cd72b9
BW
4583 }
4584 }
64b607e6
BW
4585 return 0;
4586}
4587
4588
4589/* Attempt to widen an instruction. If the widening is valid, perform
4590 the action in-place directly into the contents and return TRUE. Otherwise,
4591 the return value is FALSE and the contents are not modified. */
4592
4593static bfd_boolean
4594widen_instruction (bfd_byte *contents,
4595 bfd_size_type content_length,
4596 bfd_size_type offset)
4597{
4598 xtensa_opcode opcode;
4599 bfd_size_type insn_len;
4600 xtensa_isa isa = xtensa_default_isa;
4601 xtensa_format fmt;
4602 xtensa_insnbuf o_insnbuf;
4603
4604 static xtensa_insnbuf insnbuf = NULL;
4605 static xtensa_insnbuf slotbuf = NULL;
4606
4607 if (insnbuf == NULL)
4608 {
4609 insnbuf = xtensa_insnbuf_alloc (isa);
4610 slotbuf = xtensa_insnbuf_alloc (isa);
4611 }
4612
4613 BFD_ASSERT (offset < content_length);
4614
4615 if (content_length < 2)
4616 return FALSE;
4617
4618 /* We will hand-code a few of these for a little while.
4619 These have all been specified in the assembler aleady. */
4620 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4621 content_length - offset);
4622 fmt = xtensa_format_decode (isa, insnbuf);
4623 if (xtensa_format_num_slots (isa, fmt) != 1)
4624 return FALSE;
4625
4626 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4627 return FALSE;
4628
4629 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4630 if (opcode == XTENSA_UNDEFINED)
4631 return FALSE;
4632 insn_len = xtensa_format_length (isa, fmt);
4633 if (insn_len > content_length)
4634 return FALSE;
4635
4636 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4637 if (o_insnbuf)
4638 {
4639 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4640 content_length - offset);
4641 return TRUE;
4642 }
43cd72b9 4643 return FALSE;
e0001a05
NC
4644}
4645
43cd72b9
BW
4646\f
4647/* Code for transforming CALLs at link-time. */
e0001a05 4648
43cd72b9 4649static bfd_reloc_status_type
7fa3d080
BW
4650elf_xtensa_do_asm_simplify (bfd_byte *contents,
4651 bfd_vma address,
4652 bfd_vma content_length,
4653 char **error_message)
e0001a05 4654{
43cd72b9
BW
4655 static xtensa_insnbuf insnbuf = NULL;
4656 static xtensa_insnbuf slotbuf = NULL;
4657 xtensa_format core_format = XTENSA_UNDEFINED;
4658 xtensa_opcode opcode;
4659 xtensa_opcode direct_call_opcode;
4660 xtensa_isa isa = xtensa_default_isa;
4661 bfd_byte *chbuf = contents + address;
4662 int opn;
e0001a05 4663
43cd72b9 4664 if (insnbuf == NULL)
e0001a05 4665 {
43cd72b9
BW
4666 insnbuf = xtensa_insnbuf_alloc (isa);
4667 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4668 }
e0001a05 4669
43cd72b9
BW
4670 if (content_length < address)
4671 {
4672 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4673 return bfd_reloc_other;
4674 }
e0001a05 4675
43cd72b9
BW
4676 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4677 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4678 if (direct_call_opcode == XTENSA_UNDEFINED)
4679 {
4680 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4681 return bfd_reloc_other;
4682 }
4683
4684 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4685 core_format = xtensa_format_lookup (isa, "x24");
4686 opcode = xtensa_opcode_lookup (isa, "or");
4687 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4688 for (opn = 0; opn < 3; opn++)
4689 {
4690 uint32 regno = 1;
4691 xtensa_operand_encode (isa, opcode, opn, &regno);
4692 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4693 slotbuf, regno);
4694 }
4695 xtensa_format_encode (isa, core_format, insnbuf);
4696 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4697 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4698
43cd72b9
BW
4699 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4700 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4701 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4702
43cd72b9
BW
4703 xtensa_format_encode (isa, core_format, insnbuf);
4704 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4705 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4706 content_length - address - 3);
e0001a05 4707
43cd72b9
BW
4708 return bfd_reloc_ok;
4709}
e0001a05 4710
e0001a05 4711
43cd72b9 4712static bfd_reloc_status_type
7fa3d080
BW
4713contract_asm_expansion (bfd_byte *contents,
4714 bfd_vma content_length,
4715 Elf_Internal_Rela *irel,
4716 char **error_message)
43cd72b9
BW
4717{
4718 bfd_reloc_status_type retval =
4719 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4720 error_message);
e0001a05 4721
43cd72b9
BW
4722 if (retval != bfd_reloc_ok)
4723 return bfd_reloc_dangerous;
e0001a05 4724
43cd72b9
BW
4725 /* Update the irel->r_offset field so that the right immediate and
4726 the right instruction are modified during the relocation. */
4727 irel->r_offset += 3;
4728 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4729 return bfd_reloc_ok;
4730}
e0001a05 4731
e0001a05 4732
43cd72b9 4733static xtensa_opcode
7fa3d080 4734swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4735{
43cd72b9 4736 init_call_opcodes ();
e0001a05 4737
43cd72b9
BW
4738 if (opcode == callx0_op) return call0_op;
4739 if (opcode == callx4_op) return call4_op;
4740 if (opcode == callx8_op) return call8_op;
4741 if (opcode == callx12_op) return call12_op;
e0001a05 4742
43cd72b9
BW
4743 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4744 return XTENSA_UNDEFINED;
4745}
e0001a05 4746
e0001a05 4747
43cd72b9
BW
4748/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4749 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4750 If not, return XTENSA_UNDEFINED. */
e0001a05 4751
43cd72b9
BW
4752#define L32R_TARGET_REG_OPERAND 0
4753#define CONST16_TARGET_REG_OPERAND 0
4754#define CALLN_SOURCE_OPERAND 0
e0001a05 4755
43cd72b9 4756static xtensa_opcode
7fa3d080 4757get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4758{
43cd72b9
BW
4759 static xtensa_insnbuf insnbuf = NULL;
4760 static xtensa_insnbuf slotbuf = NULL;
4761 xtensa_format fmt;
4762 xtensa_opcode opcode;
4763 xtensa_isa isa = xtensa_default_isa;
4764 uint32 regno, const16_regno, call_regno;
4765 int offset = 0;
e0001a05 4766
43cd72b9 4767 if (insnbuf == NULL)
e0001a05 4768 {
43cd72b9
BW
4769 insnbuf = xtensa_insnbuf_alloc (isa);
4770 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4771 }
43cd72b9
BW
4772
4773 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4774 fmt = xtensa_format_decode (isa, insnbuf);
4775 if (fmt == XTENSA_UNDEFINED
4776 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4777 return XTENSA_UNDEFINED;
4778
4779 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4780 if (opcode == XTENSA_UNDEFINED)
4781 return XTENSA_UNDEFINED;
4782
4783 if (opcode == get_l32r_opcode ())
e0001a05 4784 {
43cd72b9
BW
4785 if (p_uses_l32r)
4786 *p_uses_l32r = TRUE;
4787 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4788 fmt, 0, slotbuf, &regno)
4789 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4790 &regno))
4791 return XTENSA_UNDEFINED;
e0001a05 4792 }
43cd72b9 4793 else if (opcode == get_const16_opcode ())
e0001a05 4794 {
43cd72b9
BW
4795 if (p_uses_l32r)
4796 *p_uses_l32r = FALSE;
4797 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4798 fmt, 0, slotbuf, &regno)
4799 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4800 &regno))
4801 return XTENSA_UNDEFINED;
4802
4803 /* Check that the next instruction is also CONST16. */
4804 offset += xtensa_format_length (isa, fmt);
4805 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4806 fmt = xtensa_format_decode (isa, insnbuf);
4807 if (fmt == XTENSA_UNDEFINED
4808 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4809 return XTENSA_UNDEFINED;
4810 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4811 if (opcode != get_const16_opcode ())
4812 return XTENSA_UNDEFINED;
4813
4814 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4815 fmt, 0, slotbuf, &const16_regno)
4816 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4817 &const16_regno)
4818 || const16_regno != regno)
4819 return XTENSA_UNDEFINED;
e0001a05 4820 }
43cd72b9
BW
4821 else
4822 return XTENSA_UNDEFINED;
e0001a05 4823
43cd72b9
BW
4824 /* Next instruction should be an CALLXn with operand 0 == regno. */
4825 offset += xtensa_format_length (isa, fmt);
4826 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4827 fmt = xtensa_format_decode (isa, insnbuf);
4828 if (fmt == XTENSA_UNDEFINED
4829 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4830 return XTENSA_UNDEFINED;
4831 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4832 if (opcode == XTENSA_UNDEFINED
4833 || !is_indirect_call_opcode (opcode))
4834 return XTENSA_UNDEFINED;
e0001a05 4835
43cd72b9
BW
4836 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4837 fmt, 0, slotbuf, &call_regno)
4838 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4839 &call_regno))
4840 return XTENSA_UNDEFINED;
e0001a05 4841
43cd72b9
BW
4842 if (call_regno != regno)
4843 return XTENSA_UNDEFINED;
e0001a05 4844
43cd72b9
BW
4845 return opcode;
4846}
e0001a05 4847
43cd72b9
BW
4848\f
4849/* Data structures used during relaxation. */
e0001a05 4850
43cd72b9 4851/* r_reloc: relocation values. */
e0001a05 4852
43cd72b9
BW
4853/* Through the relaxation process, we need to keep track of the values
4854 that will result from evaluating relocations. The standard ELF
4855 relocation structure is not sufficient for this purpose because we're
4856 operating on multiple input files at once, so we need to know which
4857 input file a relocation refers to. The r_reloc structure thus
4858 records both the input file (bfd) and ELF relocation.
e0001a05 4859
43cd72b9
BW
4860 For efficiency, an r_reloc also contains a "target_offset" field to
4861 cache the target-section-relative offset value that is represented by
4862 the relocation.
4863
4864 The r_reloc also contains a virtual offset that allows multiple
4865 inserted literals to be placed at the same "address" with
4866 different offsets. */
e0001a05 4867
43cd72b9 4868typedef struct r_reloc_struct r_reloc;
e0001a05 4869
43cd72b9 4870struct r_reloc_struct
e0001a05 4871{
43cd72b9
BW
4872 bfd *abfd;
4873 Elf_Internal_Rela rela;
e0001a05 4874 bfd_vma target_offset;
43cd72b9 4875 bfd_vma virtual_offset;
e0001a05
NC
4876};
4877
e0001a05 4878
43cd72b9
BW
4879/* The r_reloc structure is included by value in literal_value, but not
4880 every literal_value has an associated relocation -- some are simple
4881 constants. In such cases, we set all the fields in the r_reloc
4882 struct to zero. The r_reloc_is_const function should be used to
4883 detect this case. */
e0001a05 4884
43cd72b9 4885static bfd_boolean
7fa3d080 4886r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4887{
43cd72b9 4888 return (r_rel->abfd == NULL);
e0001a05
NC
4889}
4890
4891
43cd72b9 4892static bfd_vma
7fa3d080 4893r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4894{
43cd72b9
BW
4895 bfd_vma target_offset;
4896 unsigned long r_symndx;
e0001a05 4897
43cd72b9
BW
4898 BFD_ASSERT (!r_reloc_is_const (r_rel));
4899 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4900 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4901 return (target_offset + r_rel->rela.r_addend);
4902}
e0001a05 4903
e0001a05 4904
43cd72b9 4905static struct elf_link_hash_entry *
7fa3d080 4906r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4907{
43cd72b9
BW
4908 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4909 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4910}
e0001a05 4911
43cd72b9
BW
4912
4913static asection *
7fa3d080 4914r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4915{
4916 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4917 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4918}
e0001a05
NC
4919
4920
4921static bfd_boolean
7fa3d080 4922r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4923{
43cd72b9
BW
4924 asection *sec;
4925 if (r_rel == NULL)
e0001a05 4926 return FALSE;
e0001a05 4927
43cd72b9
BW
4928 sec = r_reloc_get_section (r_rel);
4929 if (sec == bfd_abs_section_ptr
4930 || sec == bfd_com_section_ptr
4931 || sec == bfd_und_section_ptr)
4932 return FALSE;
4933 return TRUE;
e0001a05
NC
4934}
4935
4936
7fa3d080
BW
4937static void
4938r_reloc_init (r_reloc *r_rel,
4939 bfd *abfd,
4940 Elf_Internal_Rela *irel,
4941 bfd_byte *contents,
4942 bfd_size_type content_length)
4943{
4944 int r_type;
4945 reloc_howto_type *howto;
4946
4947 if (irel)
4948 {
4949 r_rel->rela = *irel;
4950 r_rel->abfd = abfd;
4951 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4952 r_rel->virtual_offset = 0;
4953 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4954 howto = &elf_howto_table[r_type];
4955 if (howto->partial_inplace)
4956 {
4957 bfd_vma inplace_val;
4958 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4959
4960 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4961 r_rel->target_offset += inplace_val;
4962 }
4963 }
4964 else
4965 memset (r_rel, 0, sizeof (r_reloc));
4966}
4967
4968
43cd72b9
BW
4969#if DEBUG
4970
e0001a05 4971static void
7fa3d080 4972print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4973{
43cd72b9
BW
4974 if (r_reloc_is_defined (r_rel))
4975 {
4976 asection *sec = r_reloc_get_section (r_rel);
4977 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4978 }
4979 else if (r_reloc_get_hash_entry (r_rel))
4980 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4981 else
4982 fprintf (fp, " ?? + ");
e0001a05 4983
43cd72b9
BW
4984 fprintf_vma (fp, r_rel->target_offset);
4985 if (r_rel->virtual_offset)
4986 {
4987 fprintf (fp, " + ");
4988 fprintf_vma (fp, r_rel->virtual_offset);
4989 }
4990
4991 fprintf (fp, ")");
4992}
e0001a05 4993
43cd72b9 4994#endif /* DEBUG */
e0001a05 4995
43cd72b9
BW
4996\f
4997/* source_reloc: relocations that reference literals. */
e0001a05 4998
43cd72b9
BW
4999/* To determine whether literals can be coalesced, we need to first
5000 record all the relocations that reference the literals. The
5001 source_reloc structure below is used for this purpose. The
5002 source_reloc entries are kept in a per-literal-section array, sorted
5003 by offset within the literal section (i.e., target offset).
e0001a05 5004
43cd72b9
BW
5005 The source_sec and r_rel.rela.r_offset fields identify the source of
5006 the relocation. The r_rel field records the relocation value, i.e.,
5007 the offset of the literal being referenced. The opnd field is needed
5008 to determine the range of the immediate field to which the relocation
5009 applies, so we can determine whether another literal with the same
5010 value is within range. The is_null field is true when the relocation
5011 is being removed (e.g., when an L32R is being removed due to a CALLX
5012 that is converted to a direct CALL). */
e0001a05 5013
43cd72b9
BW
5014typedef struct source_reloc_struct source_reloc;
5015
5016struct source_reloc_struct
e0001a05 5017{
43cd72b9
BW
5018 asection *source_sec;
5019 r_reloc r_rel;
5020 xtensa_opcode opcode;
5021 int opnd;
5022 bfd_boolean is_null;
5023 bfd_boolean is_abs_literal;
5024};
e0001a05 5025
e0001a05 5026
e0001a05 5027static void
7fa3d080
BW
5028init_source_reloc (source_reloc *reloc,
5029 asection *source_sec,
5030 const r_reloc *r_rel,
5031 xtensa_opcode opcode,
5032 int opnd,
5033 bfd_boolean is_abs_literal)
e0001a05 5034{
43cd72b9
BW
5035 reloc->source_sec = source_sec;
5036 reloc->r_rel = *r_rel;
5037 reloc->opcode = opcode;
5038 reloc->opnd = opnd;
5039 reloc->is_null = FALSE;
5040 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
5041}
5042
e0001a05 5043
43cd72b9
BW
5044/* Find the source_reloc for a particular source offset and relocation
5045 type. Note that the array is sorted by _target_ offset, so this is
5046 just a linear search. */
e0001a05 5047
43cd72b9 5048static source_reloc *
7fa3d080
BW
5049find_source_reloc (source_reloc *src_relocs,
5050 int src_count,
5051 asection *sec,
5052 Elf_Internal_Rela *irel)
e0001a05 5053{
43cd72b9 5054 int i;
e0001a05 5055
43cd72b9
BW
5056 for (i = 0; i < src_count; i++)
5057 {
5058 if (src_relocs[i].source_sec == sec
5059 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5060 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5061 == ELF32_R_TYPE (irel->r_info)))
5062 return &src_relocs[i];
5063 }
e0001a05 5064
43cd72b9 5065 return NULL;
e0001a05
NC
5066}
5067
5068
43cd72b9 5069static int
7fa3d080 5070source_reloc_compare (const void *ap, const void *bp)
e0001a05 5071{
43cd72b9
BW
5072 const source_reloc *a = (const source_reloc *) ap;
5073 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5074
43cd72b9
BW
5075 if (a->r_rel.target_offset != b->r_rel.target_offset)
5076 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5077
43cd72b9
BW
5078 /* We don't need to sort on these criteria for correctness,
5079 but enforcing a more strict ordering prevents unstable qsort
5080 from behaving differently with different implementations.
5081 Without the code below we get correct but different results
5082 on Solaris 2.7 and 2.8. We would like to always produce the
5083 same results no matter the host. */
5084
5085 if ((!a->is_null) - (!b->is_null))
5086 return ((!a->is_null) - (!b->is_null));
5087 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5088}
5089
43cd72b9
BW
5090\f
5091/* Literal values and value hash tables. */
e0001a05 5092
43cd72b9
BW
5093/* Literals with the same value can be coalesced. The literal_value
5094 structure records the value of a literal: the "r_rel" field holds the
5095 information from the relocation on the literal (if there is one) and
5096 the "value" field holds the contents of the literal word itself.
e0001a05 5097
43cd72b9
BW
5098 The value_map structure records a literal value along with the
5099 location of a literal holding that value. The value_map hash table
5100 is indexed by the literal value, so that we can quickly check if a
5101 particular literal value has been seen before and is thus a candidate
5102 for coalescing. */
e0001a05 5103
43cd72b9
BW
5104typedef struct literal_value_struct literal_value;
5105typedef struct value_map_struct value_map;
5106typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5107
43cd72b9 5108struct literal_value_struct
e0001a05 5109{
43cd72b9
BW
5110 r_reloc r_rel;
5111 unsigned long value;
5112 bfd_boolean is_abs_literal;
5113};
5114
5115struct value_map_struct
5116{
5117 literal_value val; /* The literal value. */
5118 r_reloc loc; /* Location of the literal. */
5119 value_map *next;
5120};
5121
5122struct value_map_hash_table_struct
5123{
5124 unsigned bucket_count;
5125 value_map **buckets;
5126 unsigned count;
5127 bfd_boolean has_last_loc;
5128 r_reloc last_loc;
5129};
5130
5131
e0001a05 5132static void
7fa3d080
BW
5133init_literal_value (literal_value *lit,
5134 const r_reloc *r_rel,
5135 unsigned long value,
5136 bfd_boolean is_abs_literal)
e0001a05 5137{
43cd72b9
BW
5138 lit->r_rel = *r_rel;
5139 lit->value = value;
5140 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5141}
5142
5143
43cd72b9 5144static bfd_boolean
7fa3d080
BW
5145literal_value_equal (const literal_value *src1,
5146 const literal_value *src2,
5147 bfd_boolean final_static_link)
e0001a05 5148{
43cd72b9 5149 struct elf_link_hash_entry *h1, *h2;
e0001a05 5150
43cd72b9
BW
5151 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5152 return FALSE;
e0001a05 5153
43cd72b9
BW
5154 if (r_reloc_is_const (&src1->r_rel))
5155 return (src1->value == src2->value);
e0001a05 5156
43cd72b9
BW
5157 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5158 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5159 return FALSE;
e0001a05 5160
43cd72b9
BW
5161 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5162 return FALSE;
5163
5164 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5165 return FALSE;
5166
5167 if (src1->value != src2->value)
5168 return FALSE;
5169
5170 /* Now check for the same section (if defined) or the same elf_hash
5171 (if undefined or weak). */
5172 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5173 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5174 if (r_reloc_is_defined (&src1->r_rel)
5175 && (final_static_link
5176 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5177 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5178 {
5179 if (r_reloc_get_section (&src1->r_rel)
5180 != r_reloc_get_section (&src2->r_rel))
5181 return FALSE;
5182 }
5183 else
5184 {
5185 /* Require that the hash entries (i.e., symbols) be identical. */
5186 if (h1 != h2 || h1 == 0)
5187 return FALSE;
5188 }
5189
5190 if (src1->is_abs_literal != src2->is_abs_literal)
5191 return FALSE;
5192
5193 return TRUE;
e0001a05
NC
5194}
5195
e0001a05 5196
43cd72b9
BW
5197/* Must be power of 2. */
5198#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5199
43cd72b9 5200static value_map_hash_table *
7fa3d080 5201value_map_hash_table_init (void)
43cd72b9
BW
5202{
5203 value_map_hash_table *values;
e0001a05 5204
43cd72b9
BW
5205 values = (value_map_hash_table *)
5206 bfd_zmalloc (sizeof (value_map_hash_table));
5207 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5208 values->count = 0;
5209 values->buckets = (value_map **)
5210 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5211 if (values->buckets == NULL)
5212 {
5213 free (values);
5214 return NULL;
5215 }
5216 values->has_last_loc = FALSE;
5217
5218 return values;
5219}
5220
5221
5222static void
7fa3d080 5223value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5224{
43cd72b9
BW
5225 free (table->buckets);
5226 free (table);
5227}
5228
5229
5230static unsigned
7fa3d080 5231hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5232{
5233 return (val >> 2) + (val >> 10);
5234}
5235
5236
5237static unsigned
7fa3d080 5238literal_value_hash (const literal_value *src)
43cd72b9
BW
5239{
5240 unsigned hash_val;
e0001a05 5241
43cd72b9
BW
5242 hash_val = hash_bfd_vma (src->value);
5243 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5244 {
43cd72b9
BW
5245 void *sec_or_hash;
5246
5247 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5248 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5249 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5250
5251 /* Now check for the same section and the same elf_hash. */
5252 if (r_reloc_is_defined (&src->r_rel))
5253 sec_or_hash = r_reloc_get_section (&src->r_rel);
5254 else
5255 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5256 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5257 }
43cd72b9
BW
5258 return hash_val;
5259}
e0001a05 5260
e0001a05 5261
43cd72b9 5262/* Check if the specified literal_value has been seen before. */
e0001a05 5263
43cd72b9 5264static value_map *
7fa3d080
BW
5265value_map_get_cached_value (value_map_hash_table *map,
5266 const literal_value *val,
5267 bfd_boolean final_static_link)
43cd72b9
BW
5268{
5269 value_map *map_e;
5270 value_map *bucket;
5271 unsigned idx;
5272
5273 idx = literal_value_hash (val);
5274 idx = idx & (map->bucket_count - 1);
5275 bucket = map->buckets[idx];
5276 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5277 {
43cd72b9
BW
5278 if (literal_value_equal (&map_e->val, val, final_static_link))
5279 return map_e;
5280 }
5281 return NULL;
5282}
e0001a05 5283
e0001a05 5284
43cd72b9
BW
5285/* Record a new literal value. It is illegal to call this if VALUE
5286 already has an entry here. */
5287
5288static value_map *
7fa3d080
BW
5289add_value_map (value_map_hash_table *map,
5290 const literal_value *val,
5291 const r_reloc *loc,
5292 bfd_boolean final_static_link)
43cd72b9
BW
5293{
5294 value_map **bucket_p;
5295 unsigned idx;
5296
5297 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5298 if (val_e == NULL)
5299 {
5300 bfd_set_error (bfd_error_no_memory);
5301 return NULL;
e0001a05
NC
5302 }
5303
43cd72b9
BW
5304 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5305 val_e->val = *val;
5306 val_e->loc = *loc;
5307
5308 idx = literal_value_hash (val);
5309 idx = idx & (map->bucket_count - 1);
5310 bucket_p = &map->buckets[idx];
5311
5312 val_e->next = *bucket_p;
5313 *bucket_p = val_e;
5314 map->count++;
5315 /* FIXME: Consider resizing the hash table if we get too many entries. */
5316
5317 return val_e;
e0001a05
NC
5318}
5319
43cd72b9
BW
5320\f
5321/* Lists of text actions (ta_) for narrowing, widening, longcall
5322 conversion, space fill, code & literal removal, etc. */
5323
5324/* The following text actions are generated:
5325
5326 "ta_remove_insn" remove an instruction or instructions
5327 "ta_remove_longcall" convert longcall to call
5328 "ta_convert_longcall" convert longcall to nop/call
5329 "ta_narrow_insn" narrow a wide instruction
5330 "ta_widen" widen a narrow instruction
5331 "ta_fill" add fill or remove fill
5332 removed < 0 is a fill; branches to the fill address will be
5333 changed to address + fill size (e.g., address - removed)
5334 removed >= 0 branches to the fill address will stay unchanged
5335 "ta_remove_literal" remove a literal; this action is
5336 indicated when a literal is removed
5337 or replaced.
5338 "ta_add_literal" insert a new literal; this action is
5339 indicated when a literal has been moved.
5340 It may use a virtual_offset because
5341 multiple literals can be placed at the
5342 same location.
5343
5344 For each of these text actions, we also record the number of bytes
5345 removed by performing the text action. In the case of a "ta_widen"
5346 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5347
5348typedef struct text_action_struct text_action;
5349typedef struct text_action_list_struct text_action_list;
5350typedef enum text_action_enum_t text_action_t;
5351
5352enum text_action_enum_t
5353{
5354 ta_none,
5355 ta_remove_insn, /* removed = -size */
5356 ta_remove_longcall, /* removed = -size */
5357 ta_convert_longcall, /* removed = 0 */
5358 ta_narrow_insn, /* removed = -1 */
5359 ta_widen_insn, /* removed = +1 */
5360 ta_fill, /* removed = +size */
5361 ta_remove_literal,
5362 ta_add_literal
5363};
e0001a05 5364
e0001a05 5365
43cd72b9
BW
5366/* Structure for a text action record. */
5367struct text_action_struct
e0001a05 5368{
43cd72b9
BW
5369 text_action_t action;
5370 asection *sec; /* Optional */
5371 bfd_vma offset;
5372 bfd_vma virtual_offset; /* Zero except for adding literals. */
5373 int removed_bytes;
5374 literal_value value; /* Only valid when adding literals. */
e0001a05 5375
43cd72b9
BW
5376 text_action *next;
5377};
e0001a05 5378
e0001a05 5379
43cd72b9
BW
5380/* List of all of the actions taken on a text section. */
5381struct text_action_list_struct
5382{
5383 text_action *head;
5384};
e0001a05 5385
e0001a05 5386
7fa3d080
BW
5387static text_action *
5388find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
5389{
5390 text_action **m_p;
5391
5392 /* It is not necessary to fill at the end of a section. */
5393 if (sec->size == offset)
5394 return NULL;
5395
7fa3d080 5396 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5397 {
5398 text_action *t = *m_p;
5399 /* When the action is another fill at the same address,
5400 just increase the size. */
5401 if (t->offset == offset && t->action == ta_fill)
5402 return t;
5403 }
5404 return NULL;
5405}
5406
5407
5408static int
7fa3d080
BW
5409compute_removed_action_diff (const text_action *ta,
5410 asection *sec,
5411 bfd_vma offset,
5412 int removed,
5413 int removable_space)
43cd72b9
BW
5414{
5415 int new_removed;
5416 int current_removed = 0;
5417
7fa3d080 5418 if (ta)
43cd72b9
BW
5419 current_removed = ta->removed_bytes;
5420
5421 BFD_ASSERT (ta == NULL || ta->offset == offset);
5422 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5423
5424 /* It is not necessary to fill at the end of a section. Clean this up. */
5425 if (sec->size == offset)
5426 new_removed = removable_space - 0;
5427 else
5428 {
5429 int space;
5430 int added = -removed - current_removed;
5431 /* Ignore multiples of the section alignment. */
5432 added = ((1 << sec->alignment_power) - 1) & added;
5433 new_removed = (-added);
5434
5435 /* Modify for removable. */
5436 space = removable_space - new_removed;
5437 new_removed = (removable_space
5438 - (((1 << sec->alignment_power) - 1) & space));
5439 }
5440 return (new_removed - current_removed);
5441}
5442
5443
7fa3d080
BW
5444static void
5445adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5446{
5447 ta->removed_bytes += fill_diff;
5448}
5449
5450
5451/* Add a modification action to the text. For the case of adding or
5452 removing space, modify any current fill and assume that
5453 "unreachable_space" bytes can be freely contracted. Note that a
5454 negative removed value is a fill. */
5455
5456static void
7fa3d080
BW
5457text_action_add (text_action_list *l,
5458 text_action_t action,
5459 asection *sec,
5460 bfd_vma offset,
5461 int removed)
43cd72b9
BW
5462{
5463 text_action **m_p;
5464 text_action *ta;
5465
5466 /* It is not necessary to fill at the end of a section. */
5467 if (action == ta_fill && sec->size == offset)
5468 return;
5469
5470 /* It is not necessary to fill 0 bytes. */
5471 if (action == ta_fill && removed == 0)
5472 return;
5473
7fa3d080 5474 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5475 {
5476 text_action *t = *m_p;
658ff993
SA
5477
5478 if (action == ta_fill)
43cd72b9 5479 {
658ff993
SA
5480 /* When the action is another fill at the same address,
5481 just increase the size. */
5482 if (t->offset == offset && t->action == ta_fill)
5483 {
5484 t->removed_bytes += removed;
5485 return;
5486 }
5487 /* Fills need to happen before widens so that we don't
5488 insert fill bytes into the instruction stream. */
5489 if (t->offset == offset && t->action == ta_widen_insn)
5490 break;
43cd72b9
BW
5491 }
5492 }
5493
5494 /* Create a new record and fill it up. */
5495 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5496 ta->action = action;
5497 ta->sec = sec;
5498 ta->offset = offset;
5499 ta->removed_bytes = removed;
5500 ta->next = (*m_p);
5501 *m_p = ta;
5502}
5503
5504
5505static void
7fa3d080
BW
5506text_action_add_literal (text_action_list *l,
5507 text_action_t action,
5508 const r_reloc *loc,
5509 const literal_value *value,
5510 int removed)
43cd72b9
BW
5511{
5512 text_action **m_p;
5513 text_action *ta;
5514 asection *sec = r_reloc_get_section (loc);
5515 bfd_vma offset = loc->target_offset;
5516 bfd_vma virtual_offset = loc->virtual_offset;
5517
5518 BFD_ASSERT (action == ta_add_literal);
5519
5520 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5521 {
5522 if ((*m_p)->offset > offset
5523 && ((*m_p)->offset != offset
5524 || (*m_p)->virtual_offset > virtual_offset))
5525 break;
5526 }
5527
5528 /* Create a new record and fill it up. */
5529 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5530 ta->action = action;
5531 ta->sec = sec;
5532 ta->offset = offset;
5533 ta->virtual_offset = virtual_offset;
5534 ta->value = *value;
5535 ta->removed_bytes = removed;
5536 ta->next = (*m_p);
5537 *m_p = ta;
5538}
5539
5540
03669f1c
BW
5541/* Find the total offset adjustment for the relaxations specified by
5542 text_actions, beginning from a particular starting action. This is
5543 typically used from offset_with_removed_text to search an entire list of
5544 actions, but it may also be called directly when adjusting adjacent offsets
5545 so that each search may begin where the previous one left off. */
5546
5547static int
5548removed_by_actions (text_action **p_start_action,
5549 bfd_vma offset,
5550 bfd_boolean before_fill)
43cd72b9
BW
5551{
5552 text_action *r;
5553 int removed = 0;
5554
03669f1c
BW
5555 r = *p_start_action;
5556 while (r)
43cd72b9 5557 {
03669f1c
BW
5558 if (r->offset > offset)
5559 break;
5560
5561 if (r->offset == offset
5562 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5563 break;
5564
5565 removed += r->removed_bytes;
5566
5567 r = r->next;
43cd72b9
BW
5568 }
5569
03669f1c
BW
5570 *p_start_action = r;
5571 return removed;
5572}
5573
5574
5575static bfd_vma
5576offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5577{
5578 text_action *r = action_list->head;
5579 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
5580}
5581
5582
03e94c08
BW
5583static unsigned
5584action_list_count (text_action_list *action_list)
5585{
5586 text_action *r = action_list->head;
5587 unsigned count = 0;
5588 for (r = action_list->head; r != NULL; r = r->next)
5589 {
5590 count++;
5591 }
5592 return count;
5593}
5594
5595
43cd72b9
BW
5596/* The find_insn_action routine will only find non-fill actions. */
5597
7fa3d080
BW
5598static text_action *
5599find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
5600{
5601 text_action *t;
5602 for (t = action_list->head; t; t = t->next)
5603 {
5604 if (t->offset == offset)
5605 {
5606 switch (t->action)
5607 {
5608 case ta_none:
5609 case ta_fill:
5610 break;
5611 case ta_remove_insn:
5612 case ta_remove_longcall:
5613 case ta_convert_longcall:
5614 case ta_narrow_insn:
5615 case ta_widen_insn:
5616 return t;
5617 case ta_remove_literal:
5618 case ta_add_literal:
5619 BFD_ASSERT (0);
5620 break;
5621 }
5622 }
5623 }
5624 return NULL;
5625}
5626
5627
5628#if DEBUG
5629
5630static void
7fa3d080 5631print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
5632{
5633 text_action *r;
5634
5635 fprintf (fp, "Text Action\n");
5636 for (r = action_list->head; r != NULL; r = r->next)
5637 {
5638 const char *t = "unknown";
5639 switch (r->action)
5640 {
5641 case ta_remove_insn:
5642 t = "remove_insn"; break;
5643 case ta_remove_longcall:
5644 t = "remove_longcall"; break;
5645 case ta_convert_longcall:
c46082c8 5646 t = "convert_longcall"; break;
43cd72b9
BW
5647 case ta_narrow_insn:
5648 t = "narrow_insn"; break;
5649 case ta_widen_insn:
5650 t = "widen_insn"; break;
5651 case ta_fill:
5652 t = "fill"; break;
5653 case ta_none:
5654 t = "none"; break;
5655 case ta_remove_literal:
5656 t = "remove_literal"; break;
5657 case ta_add_literal:
5658 t = "add_literal"; break;
5659 }
5660
5661 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5662 r->sec->owner->filename,
5663 r->sec->name, r->offset, t, r->removed_bytes);
5664 }
5665}
5666
5667#endif /* DEBUG */
5668
5669\f
5670/* Lists of literals being coalesced or removed. */
5671
5672/* In the usual case, the literal identified by "from" is being
5673 coalesced with another literal identified by "to". If the literal is
5674 unused and is being removed altogether, "to.abfd" will be NULL.
5675 The removed_literal entries are kept on a per-section list, sorted
5676 by the "from" offset field. */
5677
5678typedef struct removed_literal_struct removed_literal;
5679typedef struct removed_literal_list_struct removed_literal_list;
5680
5681struct removed_literal_struct
5682{
5683 r_reloc from;
5684 r_reloc to;
5685 removed_literal *next;
5686};
5687
5688struct removed_literal_list_struct
5689{
5690 removed_literal *head;
5691 removed_literal *tail;
5692};
5693
5694
43cd72b9
BW
5695/* Record that the literal at "from" is being removed. If "to" is not
5696 NULL, the "from" literal is being coalesced with the "to" literal. */
5697
5698static void
7fa3d080
BW
5699add_removed_literal (removed_literal_list *removed_list,
5700 const r_reloc *from,
5701 const r_reloc *to)
43cd72b9
BW
5702{
5703 removed_literal *r, *new_r, *next_r;
5704
5705 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5706
5707 new_r->from = *from;
5708 if (to)
5709 new_r->to = *to;
5710 else
5711 new_r->to.abfd = NULL;
5712 new_r->next = NULL;
5713
5714 r = removed_list->head;
5715 if (r == NULL)
5716 {
5717 removed_list->head = new_r;
5718 removed_list->tail = new_r;
5719 }
5720 /* Special check for common case of append. */
5721 else if (removed_list->tail->from.target_offset < from->target_offset)
5722 {
5723 removed_list->tail->next = new_r;
5724 removed_list->tail = new_r;
5725 }
5726 else
5727 {
7fa3d080 5728 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5729 {
5730 r = r->next;
5731 }
5732 next_r = r->next;
5733 r->next = new_r;
5734 new_r->next = next_r;
5735 if (next_r == NULL)
5736 removed_list->tail = new_r;
5737 }
5738}
5739
5740
5741/* Check if the list of removed literals contains an entry for the
5742 given address. Return the entry if found. */
5743
5744static removed_literal *
7fa3d080 5745find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
5746{
5747 removed_literal *r = removed_list->head;
5748 while (r && r->from.target_offset < addr)
5749 r = r->next;
5750 if (r && r->from.target_offset == addr)
5751 return r;
5752 return NULL;
5753}
5754
5755
5756#if DEBUG
5757
5758static void
7fa3d080 5759print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
5760{
5761 removed_literal *r;
5762 r = removed_list->head;
5763 if (r)
5764 fprintf (fp, "Removed Literals\n");
5765 for (; r != NULL; r = r->next)
5766 {
5767 print_r_reloc (fp, &r->from);
5768 fprintf (fp, " => ");
5769 if (r->to.abfd == NULL)
5770 fprintf (fp, "REMOVED");
5771 else
5772 print_r_reloc (fp, &r->to);
5773 fprintf (fp, "\n");
5774 }
5775}
5776
5777#endif /* DEBUG */
5778
5779\f
5780/* Per-section data for relaxation. */
5781
5782typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5783
5784struct xtensa_relax_info_struct
5785{
5786 bfd_boolean is_relaxable_literal_section;
5787 bfd_boolean is_relaxable_asm_section;
5788 int visited; /* Number of times visited. */
5789
5790 source_reloc *src_relocs; /* Array[src_count]. */
5791 int src_count;
5792 int src_next; /* Next src_relocs entry to assign. */
5793
5794 removed_literal_list removed_list;
5795 text_action_list action_list;
5796
5797 reloc_bfd_fix *fix_list;
5798 reloc_bfd_fix *fix_array;
5799 unsigned fix_array_count;
5800
5801 /* Support for expanding the reloc array that is stored
5802 in the section structure. If the relocations have been
5803 reallocated, the newly allocated relocations will be referenced
5804 here along with the actual size allocated. The relocation
5805 count will always be found in the section structure. */
5806 Elf_Internal_Rela *allocated_relocs;
5807 unsigned relocs_count;
5808 unsigned allocated_relocs_count;
5809};
5810
5811struct elf_xtensa_section_data
5812{
5813 struct bfd_elf_section_data elf;
5814 xtensa_relax_info relax_info;
5815};
5816
43cd72b9
BW
5817
5818static bfd_boolean
7fa3d080 5819elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5820{
f592407e
AM
5821 if (!sec->used_by_bfd)
5822 {
5823 struct elf_xtensa_section_data *sdata;
5824 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5825
f592407e
AM
5826 sdata = bfd_zalloc (abfd, amt);
5827 if (sdata == NULL)
5828 return FALSE;
5829 sec->used_by_bfd = sdata;
5830 }
43cd72b9
BW
5831
5832 return _bfd_elf_new_section_hook (abfd, sec);
5833}
5834
5835
7fa3d080
BW
5836static xtensa_relax_info *
5837get_xtensa_relax_info (asection *sec)
5838{
5839 struct elf_xtensa_section_data *section_data;
5840
5841 /* No info available if no section or if it is an output section. */
5842 if (!sec || sec == sec->output_section)
5843 return NULL;
5844
5845 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5846 return &section_data->relax_info;
5847}
5848
5849
43cd72b9 5850static void
7fa3d080 5851init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5852{
5853 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5854
5855 relax_info->is_relaxable_literal_section = FALSE;
5856 relax_info->is_relaxable_asm_section = FALSE;
5857 relax_info->visited = 0;
5858
5859 relax_info->src_relocs = NULL;
5860 relax_info->src_count = 0;
5861 relax_info->src_next = 0;
5862
5863 relax_info->removed_list.head = NULL;
5864 relax_info->removed_list.tail = NULL;
5865
5866 relax_info->action_list.head = NULL;
5867
5868 relax_info->fix_list = NULL;
5869 relax_info->fix_array = NULL;
5870 relax_info->fix_array_count = 0;
5871
5872 relax_info->allocated_relocs = NULL;
5873 relax_info->relocs_count = 0;
5874 relax_info->allocated_relocs_count = 0;
5875}
5876
43cd72b9
BW
5877\f
5878/* Coalescing literals may require a relocation to refer to a section in
5879 a different input file, but the standard relocation information
5880 cannot express that. Instead, the reloc_bfd_fix structures are used
5881 to "fix" the relocations that refer to sections in other input files.
5882 These structures are kept on per-section lists. The "src_type" field
5883 records the relocation type in case there are multiple relocations on
5884 the same location. FIXME: This is ugly; an alternative might be to
5885 add new symbols with the "owner" field to some other input file. */
5886
5887struct reloc_bfd_fix_struct
5888{
5889 asection *src_sec;
5890 bfd_vma src_offset;
5891 unsigned src_type; /* Relocation type. */
5892
43cd72b9
BW
5893 asection *target_sec;
5894 bfd_vma target_offset;
5895 bfd_boolean translated;
5896
5897 reloc_bfd_fix *next;
5898};
5899
5900
43cd72b9 5901static reloc_bfd_fix *
7fa3d080
BW
5902reloc_bfd_fix_init (asection *src_sec,
5903 bfd_vma src_offset,
5904 unsigned src_type,
7fa3d080
BW
5905 asection *target_sec,
5906 bfd_vma target_offset,
5907 bfd_boolean translated)
43cd72b9
BW
5908{
5909 reloc_bfd_fix *fix;
5910
5911 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5912 fix->src_sec = src_sec;
5913 fix->src_offset = src_offset;
5914 fix->src_type = src_type;
43cd72b9
BW
5915 fix->target_sec = target_sec;
5916 fix->target_offset = target_offset;
5917 fix->translated = translated;
5918
5919 return fix;
5920}
5921
5922
5923static void
7fa3d080 5924add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5925{
5926 xtensa_relax_info *relax_info;
5927
5928 relax_info = get_xtensa_relax_info (src_sec);
5929 fix->next = relax_info->fix_list;
5930 relax_info->fix_list = fix;
5931}
5932
5933
5934static int
7fa3d080 5935fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5936{
5937 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5938 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5939
5940 if (a->src_offset != b->src_offset)
5941 return (a->src_offset - b->src_offset);
5942 return (a->src_type - b->src_type);
5943}
5944
5945
5946static void
7fa3d080 5947cache_fix_array (asection *sec)
43cd72b9
BW
5948{
5949 unsigned i, count = 0;
5950 reloc_bfd_fix *r;
5951 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5952
5953 if (relax_info == NULL)
5954 return;
5955 if (relax_info->fix_list == NULL)
5956 return;
5957
5958 for (r = relax_info->fix_list; r != NULL; r = r->next)
5959 count++;
5960
5961 relax_info->fix_array =
5962 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5963 relax_info->fix_array_count = count;
5964
5965 r = relax_info->fix_list;
5966 for (i = 0; i < count; i++, r = r->next)
5967 {
5968 relax_info->fix_array[count - 1 - i] = *r;
5969 relax_info->fix_array[count - 1 - i].next = NULL;
5970 }
5971
5972 qsort (relax_info->fix_array, relax_info->fix_array_count,
5973 sizeof (reloc_bfd_fix), fix_compare);
5974}
5975
5976
5977static reloc_bfd_fix *
7fa3d080 5978get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5979{
5980 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5981 reloc_bfd_fix *rv;
5982 reloc_bfd_fix key;
5983
5984 if (relax_info == NULL)
5985 return NULL;
5986 if (relax_info->fix_list == NULL)
5987 return NULL;
5988
5989 if (relax_info->fix_array == NULL)
5990 cache_fix_array (sec);
5991
5992 key.src_offset = offset;
5993 key.src_type = type;
5994 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5995 sizeof (reloc_bfd_fix), fix_compare);
5996 return rv;
5997}
5998
5999\f
6000/* Section caching. */
6001
6002typedef struct section_cache_struct section_cache_t;
6003
6004struct section_cache_struct
6005{
6006 asection *sec;
6007
6008 bfd_byte *contents; /* Cache of the section contents. */
6009 bfd_size_type content_length;
6010
6011 property_table_entry *ptbl; /* Cache of the section property table. */
6012 unsigned pte_count;
6013
6014 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6015 unsigned reloc_count;
6016};
6017
6018
7fa3d080
BW
6019static void
6020init_section_cache (section_cache_t *sec_cache)
6021{
6022 memset (sec_cache, 0, sizeof (*sec_cache));
6023}
43cd72b9
BW
6024
6025
6026static void
7fa3d080 6027clear_section_cache (section_cache_t *sec_cache)
43cd72b9 6028{
7fa3d080
BW
6029 if (sec_cache->sec)
6030 {
6031 release_contents (sec_cache->sec, sec_cache->contents);
6032 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6033 if (sec_cache->ptbl)
6034 free (sec_cache->ptbl);
6035 memset (sec_cache, 0, sizeof (sec_cache));
6036 }
43cd72b9
BW
6037}
6038
6039
6040static bfd_boolean
7fa3d080
BW
6041section_cache_section (section_cache_t *sec_cache,
6042 asection *sec,
6043 struct bfd_link_info *link_info)
43cd72b9
BW
6044{
6045 bfd *abfd;
6046 property_table_entry *prop_table = NULL;
6047 int ptblsize = 0;
6048 bfd_byte *contents = NULL;
6049 Elf_Internal_Rela *internal_relocs = NULL;
6050 bfd_size_type sec_size;
6051
6052 if (sec == NULL)
6053 return FALSE;
6054 if (sec == sec_cache->sec)
6055 return TRUE;
6056
6057 abfd = sec->owner;
6058 sec_size = bfd_get_section_limit (abfd, sec);
6059
6060 /* Get the contents. */
6061 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6062 if (contents == NULL && sec_size != 0)
6063 goto err;
6064
6065 /* Get the relocations. */
6066 internal_relocs = retrieve_internal_relocs (abfd, sec,
6067 link_info->keep_memory);
6068
6069 /* Get the entry table. */
6070 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6071 XTENSA_PROP_SEC_NAME, FALSE);
6072 if (ptblsize < 0)
6073 goto err;
6074
6075 /* Fill in the new section cache. */
6076 clear_section_cache (sec_cache);
6077 memset (sec_cache, 0, sizeof (sec_cache));
6078
6079 sec_cache->sec = sec;
6080 sec_cache->contents = contents;
6081 sec_cache->content_length = sec_size;
6082 sec_cache->relocs = internal_relocs;
6083 sec_cache->reloc_count = sec->reloc_count;
6084 sec_cache->pte_count = ptblsize;
6085 sec_cache->ptbl = prop_table;
6086
6087 return TRUE;
6088
6089 err:
6090 release_contents (sec, contents);
6091 release_internal_relocs (sec, internal_relocs);
6092 if (prop_table)
6093 free (prop_table);
6094 return FALSE;
6095}
6096
43cd72b9
BW
6097\f
6098/* Extended basic blocks. */
6099
6100/* An ebb_struct represents an Extended Basic Block. Within this
6101 range, we guarantee that all instructions are decodable, the
6102 property table entries are contiguous, and no property table
6103 specifies a segment that cannot have instructions moved. This
6104 structure contains caches of the contents, property table and
6105 relocations for the specified section for easy use. The range is
6106 specified by ranges of indices for the byte offset, property table
6107 offsets and relocation offsets. These must be consistent. */
6108
6109typedef struct ebb_struct ebb_t;
6110
6111struct ebb_struct
6112{
6113 asection *sec;
6114
6115 bfd_byte *contents; /* Cache of the section contents. */
6116 bfd_size_type content_length;
6117
6118 property_table_entry *ptbl; /* Cache of the section property table. */
6119 unsigned pte_count;
6120
6121 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6122 unsigned reloc_count;
6123
6124 bfd_vma start_offset; /* Offset in section. */
6125 unsigned start_ptbl_idx; /* Offset in the property table. */
6126 unsigned start_reloc_idx; /* Offset in the relocations. */
6127
6128 bfd_vma end_offset;
6129 unsigned end_ptbl_idx;
6130 unsigned end_reloc_idx;
6131
6132 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6133
6134 /* The unreachable property table at the end of this set of blocks;
6135 NULL if the end is not an unreachable block. */
6136 property_table_entry *ends_unreachable;
6137};
6138
6139
6140enum ebb_target_enum
6141{
6142 EBB_NO_ALIGN = 0,
6143 EBB_DESIRE_TGT_ALIGN,
6144 EBB_REQUIRE_TGT_ALIGN,
6145 EBB_REQUIRE_LOOP_ALIGN,
6146 EBB_REQUIRE_ALIGN
6147};
6148
6149
6150/* proposed_action_struct is similar to the text_action_struct except
6151 that is represents a potential transformation, not one that will
6152 occur. We build a list of these for an extended basic block
6153 and use them to compute the actual actions desired. We must be
6154 careful that the entire set of actual actions we perform do not
6155 break any relocations that would fit if the actions were not
6156 performed. */
6157
6158typedef struct proposed_action_struct proposed_action;
6159
6160struct proposed_action_struct
6161{
6162 enum ebb_target_enum align_type; /* for the target alignment */
6163 bfd_vma alignment_pow;
6164 text_action_t action;
6165 bfd_vma offset;
6166 int removed_bytes;
6167 bfd_boolean do_action; /* If false, then we will not perform the action. */
6168};
6169
6170
6171/* The ebb_constraint_struct keeps a set of proposed actions for an
6172 extended basic block. */
6173
6174typedef struct ebb_constraint_struct ebb_constraint;
6175
6176struct ebb_constraint_struct
6177{
6178 ebb_t ebb;
6179 bfd_boolean start_movable;
6180
6181 /* Bytes of extra space at the beginning if movable. */
6182 int start_extra_space;
6183
6184 enum ebb_target_enum start_align;
6185
6186 bfd_boolean end_movable;
6187
6188 /* Bytes of extra space at the end if movable. */
6189 int end_extra_space;
6190
6191 unsigned action_count;
6192 unsigned action_allocated;
6193
6194 /* Array of proposed actions. */
6195 proposed_action *actions;
6196
6197 /* Action alignments -- one for each proposed action. */
6198 enum ebb_target_enum *action_aligns;
6199};
6200
6201
43cd72b9 6202static void
7fa3d080 6203init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6204{
6205 memset (c, 0, sizeof (ebb_constraint));
6206}
6207
6208
6209static void
7fa3d080 6210free_ebb_constraint (ebb_constraint *c)
43cd72b9 6211{
7fa3d080 6212 if (c->actions)
43cd72b9
BW
6213 free (c->actions);
6214}
6215
6216
6217static void
7fa3d080
BW
6218init_ebb (ebb_t *ebb,
6219 asection *sec,
6220 bfd_byte *contents,
6221 bfd_size_type content_length,
6222 property_table_entry *prop_table,
6223 unsigned ptblsize,
6224 Elf_Internal_Rela *internal_relocs,
6225 unsigned reloc_count)
43cd72b9
BW
6226{
6227 memset (ebb, 0, sizeof (ebb_t));
6228 ebb->sec = sec;
6229 ebb->contents = contents;
6230 ebb->content_length = content_length;
6231 ebb->ptbl = prop_table;
6232 ebb->pte_count = ptblsize;
6233 ebb->relocs = internal_relocs;
6234 ebb->reloc_count = reloc_count;
6235 ebb->start_offset = 0;
6236 ebb->end_offset = ebb->content_length - 1;
6237 ebb->start_ptbl_idx = 0;
6238 ebb->end_ptbl_idx = ptblsize;
6239 ebb->start_reloc_idx = 0;
6240 ebb->end_reloc_idx = reloc_count;
6241}
6242
6243
6244/* Extend the ebb to all decodable contiguous sections. The algorithm
6245 for building a basic block around an instruction is to push it
6246 forward until we hit the end of a section, an unreachable block or
6247 a block that cannot be transformed. Then we push it backwards
6248 searching for similar conditions. */
6249
7fa3d080
BW
6250static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6251static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6252static bfd_size_type insn_block_decodable_len
6253 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6254
43cd72b9 6255static bfd_boolean
7fa3d080 6256extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6257{
6258 if (!extend_ebb_bounds_forward (ebb))
6259 return FALSE;
6260 if (!extend_ebb_bounds_backward (ebb))
6261 return FALSE;
6262 return TRUE;
6263}
6264
6265
6266static bfd_boolean
7fa3d080 6267extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6268{
6269 property_table_entry *the_entry, *new_entry;
6270
6271 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6272
6273 /* Stop when (1) we cannot decode an instruction, (2) we are at
6274 the end of the property tables, (3) we hit a non-contiguous property
6275 table entry, (4) we hit a NO_TRANSFORM region. */
6276
6277 while (1)
6278 {
6279 bfd_vma entry_end;
6280 bfd_size_type insn_block_len;
6281
6282 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6283 insn_block_len =
6284 insn_block_decodable_len (ebb->contents, ebb->content_length,
6285 ebb->end_offset,
6286 entry_end - ebb->end_offset);
6287 if (insn_block_len != (entry_end - ebb->end_offset))
6288 {
6289 (*_bfd_error_handler)
6290 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6291 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6292 return FALSE;
6293 }
6294 ebb->end_offset += insn_block_len;
6295
6296 if (ebb->end_offset == ebb->sec->size)
6297 ebb->ends_section = TRUE;
6298
6299 /* Update the reloc counter. */
6300 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6301 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6302 < ebb->end_offset))
6303 {
6304 ebb->end_reloc_idx++;
6305 }
6306
6307 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6308 return TRUE;
6309
6310 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6311 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6312 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6313 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6314 break;
6315
6316 if (the_entry->address + the_entry->size != new_entry->address)
6317 break;
6318
6319 the_entry = new_entry;
6320 ebb->end_ptbl_idx++;
6321 }
6322
6323 /* Quick check for an unreachable or end of file just at the end. */
6324 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6325 {
6326 if (ebb->end_offset == ebb->content_length)
6327 ebb->ends_section = TRUE;
6328 }
6329 else
6330 {
6331 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6332 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6333 && the_entry->address + the_entry->size == new_entry->address)
6334 ebb->ends_unreachable = new_entry;
6335 }
6336
6337 /* Any other ending requires exact alignment. */
6338 return TRUE;
6339}
6340
6341
6342static bfd_boolean
7fa3d080 6343extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6344{
6345 property_table_entry *the_entry, *new_entry;
6346
6347 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6348
6349 /* Stop when (1) we cannot decode the instructions in the current entry.
6350 (2) we are at the beginning of the property tables, (3) we hit a
6351 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6352
6353 while (1)
6354 {
6355 bfd_vma block_begin;
6356 bfd_size_type insn_block_len;
6357
6358 block_begin = the_entry->address - ebb->sec->vma;
6359 insn_block_len =
6360 insn_block_decodable_len (ebb->contents, ebb->content_length,
6361 block_begin,
6362 ebb->start_offset - block_begin);
6363 if (insn_block_len != ebb->start_offset - block_begin)
6364 {
6365 (*_bfd_error_handler)
6366 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6367 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6368 return FALSE;
6369 }
6370 ebb->start_offset -= insn_block_len;
6371
6372 /* Update the reloc counter. */
6373 while (ebb->start_reloc_idx > 0
6374 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6375 >= ebb->start_offset))
6376 {
6377 ebb->start_reloc_idx--;
6378 }
6379
6380 if (ebb->start_ptbl_idx == 0)
6381 return TRUE;
6382
6383 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6384 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6385 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6386 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6387 return TRUE;
6388 if (new_entry->address + new_entry->size != the_entry->address)
6389 return TRUE;
6390
6391 the_entry = new_entry;
6392 ebb->start_ptbl_idx--;
6393 }
6394 return TRUE;
6395}
6396
6397
6398static bfd_size_type
7fa3d080
BW
6399insn_block_decodable_len (bfd_byte *contents,
6400 bfd_size_type content_len,
6401 bfd_vma block_offset,
6402 bfd_size_type block_len)
43cd72b9
BW
6403{
6404 bfd_vma offset = block_offset;
6405
6406 while (offset < block_offset + block_len)
6407 {
6408 bfd_size_type insn_len = 0;
6409
6410 insn_len = insn_decode_len (contents, content_len, offset);
6411 if (insn_len == 0)
6412 return (offset - block_offset);
6413 offset += insn_len;
6414 }
6415 return (offset - block_offset);
6416}
6417
6418
6419static void
7fa3d080 6420ebb_propose_action (ebb_constraint *c,
7fa3d080 6421 enum ebb_target_enum align_type,
288f74fa 6422 bfd_vma alignment_pow,
7fa3d080
BW
6423 text_action_t action,
6424 bfd_vma offset,
6425 int removed_bytes,
6426 bfd_boolean do_action)
43cd72b9 6427{
b08b5071 6428 proposed_action *act;
43cd72b9 6429
43cd72b9
BW
6430 if (c->action_allocated <= c->action_count)
6431 {
b08b5071 6432 unsigned new_allocated, i;
823fc61f 6433 proposed_action *new_actions;
b08b5071
BW
6434
6435 new_allocated = (c->action_count + 2) * 2;
823fc61f 6436 new_actions = (proposed_action *)
43cd72b9
BW
6437 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6438
6439 for (i = 0; i < c->action_count; i++)
6440 new_actions[i] = c->actions[i];
7fa3d080 6441 if (c->actions)
43cd72b9
BW
6442 free (c->actions);
6443 c->actions = new_actions;
6444 c->action_allocated = new_allocated;
6445 }
b08b5071
BW
6446
6447 act = &c->actions[c->action_count];
6448 act->align_type = align_type;
6449 act->alignment_pow = alignment_pow;
6450 act->action = action;
6451 act->offset = offset;
6452 act->removed_bytes = removed_bytes;
6453 act->do_action = do_action;
6454
43cd72b9
BW
6455 c->action_count++;
6456}
6457
6458\f
6459/* Access to internal relocations, section contents and symbols. */
6460
6461/* During relaxation, we need to modify relocations, section contents,
6462 and symbol definitions, and we need to keep the original values from
6463 being reloaded from the input files, i.e., we need to "pin" the
6464 modified values in memory. We also want to continue to observe the
6465 setting of the "keep-memory" flag. The following functions wrap the
6466 standard BFD functions to take care of this for us. */
6467
6468static Elf_Internal_Rela *
7fa3d080 6469retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6470{
6471 Elf_Internal_Rela *internal_relocs;
6472
6473 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6474 return NULL;
6475
6476 internal_relocs = elf_section_data (sec)->relocs;
6477 if (internal_relocs == NULL)
6478 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6479 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6480 return internal_relocs;
6481}
6482
6483
6484static void
7fa3d080 6485pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6486{
6487 elf_section_data (sec)->relocs = internal_relocs;
6488}
6489
6490
6491static void
7fa3d080 6492release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6493{
6494 if (internal_relocs
6495 && elf_section_data (sec)->relocs != internal_relocs)
6496 free (internal_relocs);
6497}
6498
6499
6500static bfd_byte *
7fa3d080 6501retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6502{
6503 bfd_byte *contents;
6504 bfd_size_type sec_size;
6505
6506 sec_size = bfd_get_section_limit (abfd, sec);
6507 contents = elf_section_data (sec)->this_hdr.contents;
6508
6509 if (contents == NULL && sec_size != 0)
6510 {
6511 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6512 {
7fa3d080 6513 if (contents)
43cd72b9
BW
6514 free (contents);
6515 return NULL;
6516 }
6517 if (keep_memory)
6518 elf_section_data (sec)->this_hdr.contents = contents;
6519 }
6520 return contents;
6521}
6522
6523
6524static void
7fa3d080 6525pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6526{
6527 elf_section_data (sec)->this_hdr.contents = contents;
6528}
6529
6530
6531static void
7fa3d080 6532release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6533{
6534 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6535 free (contents);
6536}
6537
6538
6539static Elf_Internal_Sym *
7fa3d080 6540retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6541{
6542 Elf_Internal_Shdr *symtab_hdr;
6543 Elf_Internal_Sym *isymbuf;
6544 size_t locsymcount;
6545
6546 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6547 locsymcount = symtab_hdr->sh_info;
6548
6549 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6550 if (isymbuf == NULL && locsymcount != 0)
6551 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6552 NULL, NULL, NULL);
6553
6554 /* Save the symbols for this input file so they won't be read again. */
6555 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6556 symtab_hdr->contents = (unsigned char *) isymbuf;
6557
6558 return isymbuf;
6559}
6560
6561\f
6562/* Code for link-time relaxation. */
6563
6564/* Initialization for relaxation: */
7fa3d080 6565static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6566static bfd_boolean find_relaxable_sections
7fa3d080 6567 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6568static bfd_boolean collect_source_relocs
7fa3d080 6569 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6570static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6571 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6572 bfd_boolean *);
43cd72b9 6573static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6574 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6575static bfd_boolean compute_text_actions
7fa3d080
BW
6576 (bfd *, asection *, struct bfd_link_info *);
6577static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6578static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 6579static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
6580 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6581 const xtensa_opcode *);
7fa3d080 6582static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6583static void text_action_add_proposed
7fa3d080
BW
6584 (text_action_list *, const ebb_constraint *, asection *);
6585static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
6586
6587/* First pass: */
6588static bfd_boolean compute_removed_literals
7fa3d080 6589 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6590static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6591 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 6592static bfd_boolean is_removable_literal
99ded152
BW
6593 (const source_reloc *, int, const source_reloc *, int, asection *,
6594 property_table_entry *, int);
43cd72b9 6595static bfd_boolean remove_dead_literal
7fa3d080
BW
6596 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6597 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6598static bfd_boolean identify_literal_placement
6599 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6600 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6601 source_reloc *, property_table_entry *, int, section_cache_t *,
6602 bfd_boolean);
6603static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6604static bfd_boolean coalesce_shared_literal
7fa3d080 6605 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6606static bfd_boolean move_shared_literal
7fa3d080
BW
6607 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6608 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6609
6610/* Second pass: */
7fa3d080
BW
6611static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6612static bfd_boolean translate_section_fixes (asection *);
6613static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6614static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6615static void shrink_dynamic_reloc_sections
7fa3d080 6616 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6617static bfd_boolean move_literal
7fa3d080
BW
6618 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6619 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6620static bfd_boolean relax_property_section
7fa3d080 6621 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6622
6623/* Third pass: */
7fa3d080 6624static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6625
6626
6627static bfd_boolean
7fa3d080
BW
6628elf_xtensa_relax_section (bfd *abfd,
6629 asection *sec,
6630 struct bfd_link_info *link_info,
6631 bfd_boolean *again)
43cd72b9
BW
6632{
6633 static value_map_hash_table *values = NULL;
6634 static bfd_boolean relocations_analyzed = FALSE;
6635 xtensa_relax_info *relax_info;
6636
6637 if (!relocations_analyzed)
6638 {
6639 /* Do some overall initialization for relaxation. */
6640 values = value_map_hash_table_init ();
6641 if (values == NULL)
6642 return FALSE;
6643 relaxing_section = TRUE;
6644 if (!analyze_relocations (link_info))
6645 return FALSE;
6646 relocations_analyzed = TRUE;
6647 }
6648 *again = FALSE;
6649
6650 /* Don't mess with linker-created sections. */
6651 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6652 return TRUE;
6653
6654 relax_info = get_xtensa_relax_info (sec);
6655 BFD_ASSERT (relax_info != NULL);
6656
6657 switch (relax_info->visited)
6658 {
6659 case 0:
6660 /* Note: It would be nice to fold this pass into
6661 analyze_relocations, but it is important for this step that the
6662 sections be examined in link order. */
6663 if (!compute_removed_literals (abfd, sec, link_info, values))
6664 return FALSE;
6665 *again = TRUE;
6666 break;
6667
6668 case 1:
6669 if (values)
6670 value_map_hash_table_delete (values);
6671 values = NULL;
6672 if (!relax_section (abfd, sec, link_info))
6673 return FALSE;
6674 *again = TRUE;
6675 break;
6676
6677 case 2:
6678 if (!relax_section_symbols (abfd, sec))
6679 return FALSE;
6680 break;
6681 }
6682
6683 relax_info->visited++;
6684 return TRUE;
6685}
6686
6687\f
6688/* Initialization for relaxation. */
6689
6690/* This function is called once at the start of relaxation. It scans
6691 all the input sections and marks the ones that are relaxable (i.e.,
6692 literal sections with L32R relocations against them), and then
6693 collects source_reloc information for all the relocations against
6694 those relaxable sections. During this process, it also detects
6695 longcalls, i.e., calls relaxed by the assembler into indirect
6696 calls, that can be optimized back into direct calls. Within each
6697 extended basic block (ebb) containing an optimized longcall, it
6698 computes a set of "text actions" that can be performed to remove
6699 the L32R associated with the longcall while optionally preserving
6700 branch target alignments. */
6701
6702static bfd_boolean
7fa3d080 6703analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6704{
6705 bfd *abfd;
6706 asection *sec;
6707 bfd_boolean is_relaxable = FALSE;
6708
6709 /* Initialize the per-section relaxation info. */
6710 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6711 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6712 {
6713 init_xtensa_relax_info (sec);
6714 }
6715
6716 /* Mark relaxable sections (and count relocations against each one). */
6717 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6718 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6719 {
6720 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6721 return FALSE;
6722 }
6723
6724 /* Bail out if there are no relaxable sections. */
6725 if (!is_relaxable)
6726 return TRUE;
6727
6728 /* Allocate space for source_relocs. */
6729 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6730 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6731 {
6732 xtensa_relax_info *relax_info;
6733
6734 relax_info = get_xtensa_relax_info (sec);
6735 if (relax_info->is_relaxable_literal_section
6736 || relax_info->is_relaxable_asm_section)
6737 {
6738 relax_info->src_relocs = (source_reloc *)
6739 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6740 }
25c6282a
BW
6741 else
6742 relax_info->src_count = 0;
43cd72b9
BW
6743 }
6744
6745 /* Collect info on relocations against each relaxable section. */
6746 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6747 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6748 {
6749 if (!collect_source_relocs (abfd, sec, link_info))
6750 return FALSE;
6751 }
6752
6753 /* Compute the text actions. */
6754 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6755 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6756 {
6757 if (!compute_text_actions (abfd, sec, link_info))
6758 return FALSE;
6759 }
6760
6761 return TRUE;
6762}
6763
6764
6765/* Find all the sections that might be relaxed. The motivation for
6766 this pass is that collect_source_relocs() needs to record _all_ the
6767 relocations that target each relaxable section. That is expensive
6768 and unnecessary unless the target section is actually going to be
6769 relaxed. This pass identifies all such sections by checking if
6770 they have L32Rs pointing to them. In the process, the total number
6771 of relocations targeting each section is also counted so that we
6772 know how much space to allocate for source_relocs against each
6773 relaxable literal section. */
6774
6775static bfd_boolean
7fa3d080
BW
6776find_relaxable_sections (bfd *abfd,
6777 asection *sec,
6778 struct bfd_link_info *link_info,
6779 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6780{
6781 Elf_Internal_Rela *internal_relocs;
6782 bfd_byte *contents;
6783 bfd_boolean ok = TRUE;
6784 unsigned i;
6785 xtensa_relax_info *source_relax_info;
25c6282a 6786 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6787
6788 internal_relocs = retrieve_internal_relocs (abfd, sec,
6789 link_info->keep_memory);
6790 if (internal_relocs == NULL)
6791 return ok;
6792
6793 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6794 if (contents == NULL && sec->size != 0)
6795 {
6796 ok = FALSE;
6797 goto error_return;
6798 }
6799
6800 source_relax_info = get_xtensa_relax_info (sec);
6801 for (i = 0; i < sec->reloc_count; i++)
6802 {
6803 Elf_Internal_Rela *irel = &internal_relocs[i];
6804 r_reloc r_rel;
6805 asection *target_sec;
6806 xtensa_relax_info *target_relax_info;
6807
6808 /* If this section has not already been marked as "relaxable", and
6809 if it contains any ASM_EXPAND relocations (marking expanded
6810 longcalls) that can be optimized into direct calls, then mark
6811 the section as "relaxable". */
6812 if (source_relax_info
6813 && !source_relax_info->is_relaxable_asm_section
6814 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6815 {
6816 bfd_boolean is_reachable = FALSE;
6817 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6818 link_info, &is_reachable)
6819 && is_reachable)
6820 {
6821 source_relax_info->is_relaxable_asm_section = TRUE;
6822 *is_relaxable_p = TRUE;
6823 }
6824 }
6825
6826 r_reloc_init (&r_rel, abfd, irel, contents,
6827 bfd_get_section_limit (abfd, sec));
6828
6829 target_sec = r_reloc_get_section (&r_rel);
6830 target_relax_info = get_xtensa_relax_info (target_sec);
6831 if (!target_relax_info)
6832 continue;
6833
6834 /* Count PC-relative operand relocations against the target section.
6835 Note: The conditions tested here must match the conditions under
6836 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6837 is_l32r_reloc = FALSE;
6838 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6839 {
6840 xtensa_opcode opcode =
6841 get_relocation_opcode (abfd, sec, contents, irel);
6842 if (opcode != XTENSA_UNDEFINED)
6843 {
6844 is_l32r_reloc = (opcode == get_l32r_opcode ());
6845 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6846 || is_l32r_reloc)
6847 target_relax_info->src_count++;
6848 }
6849 }
43cd72b9 6850
25c6282a 6851 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6852 {
6853 /* Mark the target section as relaxable. */
6854 target_relax_info->is_relaxable_literal_section = TRUE;
6855 *is_relaxable_p = TRUE;
6856 }
6857 }
6858
6859 error_return:
6860 release_contents (sec, contents);
6861 release_internal_relocs (sec, internal_relocs);
6862 return ok;
6863}
6864
6865
6866/* Record _all_ the relocations that point to relaxable sections, and
6867 get rid of ASM_EXPAND relocs by either converting them to
6868 ASM_SIMPLIFY or by removing them. */
6869
6870static bfd_boolean
7fa3d080
BW
6871collect_source_relocs (bfd *abfd,
6872 asection *sec,
6873 struct bfd_link_info *link_info)
43cd72b9
BW
6874{
6875 Elf_Internal_Rela *internal_relocs;
6876 bfd_byte *contents;
6877 bfd_boolean ok = TRUE;
6878 unsigned i;
6879 bfd_size_type sec_size;
6880
6881 internal_relocs = retrieve_internal_relocs (abfd, sec,
6882 link_info->keep_memory);
6883 if (internal_relocs == NULL)
6884 return ok;
6885
6886 sec_size = bfd_get_section_limit (abfd, sec);
6887 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6888 if (contents == NULL && sec_size != 0)
6889 {
6890 ok = FALSE;
6891 goto error_return;
6892 }
6893
6894 /* Record relocations against relaxable literal sections. */
6895 for (i = 0; i < sec->reloc_count; i++)
6896 {
6897 Elf_Internal_Rela *irel = &internal_relocs[i];
6898 r_reloc r_rel;
6899 asection *target_sec;
6900 xtensa_relax_info *target_relax_info;
6901
6902 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6903
6904 target_sec = r_reloc_get_section (&r_rel);
6905 target_relax_info = get_xtensa_relax_info (target_sec);
6906
6907 if (target_relax_info
6908 && (target_relax_info->is_relaxable_literal_section
6909 || target_relax_info->is_relaxable_asm_section))
6910 {
6911 xtensa_opcode opcode = XTENSA_UNDEFINED;
6912 int opnd = -1;
6913 bfd_boolean is_abs_literal = FALSE;
6914
6915 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6916 {
6917 /* None of the current alternate relocs are PC-relative,
6918 and only PC-relative relocs matter here. However, we
6919 still need to record the opcode for literal
6920 coalescing. */
6921 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6922 if (opcode == get_l32r_opcode ())
6923 {
6924 is_abs_literal = TRUE;
6925 opnd = 1;
6926 }
6927 else
6928 opcode = XTENSA_UNDEFINED;
6929 }
6930 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6931 {
6932 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6933 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6934 }
6935
6936 if (opcode != XTENSA_UNDEFINED)
6937 {
6938 int src_next = target_relax_info->src_next++;
6939 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6940
6941 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6942 is_abs_literal);
6943 }
6944 }
6945 }
6946
6947 /* Now get rid of ASM_EXPAND relocations. At this point, the
6948 src_relocs array for the target literal section may still be
6949 incomplete, but it must at least contain the entries for the L32R
6950 relocations associated with ASM_EXPANDs because they were just
6951 added in the preceding loop over the relocations. */
6952
6953 for (i = 0; i < sec->reloc_count; i++)
6954 {
6955 Elf_Internal_Rela *irel = &internal_relocs[i];
6956 bfd_boolean is_reachable;
6957
6958 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6959 &is_reachable))
6960 continue;
6961
6962 if (is_reachable)
6963 {
6964 Elf_Internal_Rela *l32r_irel;
6965 r_reloc r_rel;
6966 asection *target_sec;
6967 xtensa_relax_info *target_relax_info;
6968
6969 /* Mark the source_reloc for the L32R so that it will be
6970 removed in compute_removed_literals(), along with the
6971 associated literal. */
6972 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6973 irel, internal_relocs);
6974 if (l32r_irel == NULL)
6975 continue;
6976
6977 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6978
6979 target_sec = r_reloc_get_section (&r_rel);
6980 target_relax_info = get_xtensa_relax_info (target_sec);
6981
6982 if (target_relax_info
6983 && (target_relax_info->is_relaxable_literal_section
6984 || target_relax_info->is_relaxable_asm_section))
6985 {
6986 source_reloc *s_reloc;
6987
6988 /* Search the source_relocs for the entry corresponding to
6989 the l32r_irel. Note: The src_relocs array is not yet
6990 sorted, but it wouldn't matter anyway because we're
6991 searching by source offset instead of target offset. */
6992 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6993 target_relax_info->src_next,
6994 sec, l32r_irel);
6995 BFD_ASSERT (s_reloc);
6996 s_reloc->is_null = TRUE;
6997 }
6998
6999 /* Convert this reloc to ASM_SIMPLIFY. */
7000 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7001 R_XTENSA_ASM_SIMPLIFY);
7002 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7003
7004 pin_internal_relocs (sec, internal_relocs);
7005 }
7006 else
7007 {
7008 /* It is resolvable but doesn't reach. We resolve now
7009 by eliminating the relocation -- the call will remain
7010 expanded into L32R/CALLX. */
7011 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7012 pin_internal_relocs (sec, internal_relocs);
7013 }
7014 }
7015
7016 error_return:
7017 release_contents (sec, contents);
7018 release_internal_relocs (sec, internal_relocs);
7019 return ok;
7020}
7021
7022
7023/* Return TRUE if the asm expansion can be resolved. Generally it can
7024 be resolved on a final link or when a partial link locates it in the
7025 same section as the target. Set "is_reachable" flag if the target of
7026 the call is within the range of a direct call, given the current VMA
7027 for this section and the target section. */
7028
7029bfd_boolean
7fa3d080
BW
7030is_resolvable_asm_expansion (bfd *abfd,
7031 asection *sec,
7032 bfd_byte *contents,
7033 Elf_Internal_Rela *irel,
7034 struct bfd_link_info *link_info,
7035 bfd_boolean *is_reachable_p)
43cd72b9
BW
7036{
7037 asection *target_sec;
7038 bfd_vma target_offset;
7039 r_reloc r_rel;
7040 xtensa_opcode opcode, direct_call_opcode;
7041 bfd_vma self_address;
7042 bfd_vma dest_address;
7043 bfd_boolean uses_l32r;
7044 bfd_size_type sec_size;
7045
7046 *is_reachable_p = FALSE;
7047
7048 if (contents == NULL)
7049 return FALSE;
7050
7051 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7052 return FALSE;
7053
7054 sec_size = bfd_get_section_limit (abfd, sec);
7055 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7056 sec_size - irel->r_offset, &uses_l32r);
7057 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7058 if (!uses_l32r)
7059 return FALSE;
7060
7061 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7062 if (direct_call_opcode == XTENSA_UNDEFINED)
7063 return FALSE;
7064
7065 /* Check and see that the target resolves. */
7066 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7067 if (!r_reloc_is_defined (&r_rel))
7068 return FALSE;
7069
7070 target_sec = r_reloc_get_section (&r_rel);
7071 target_offset = r_rel.target_offset;
7072
7073 /* If the target is in a shared library, then it doesn't reach. This
7074 isn't supposed to come up because the compiler should never generate
7075 non-PIC calls on systems that use shared libraries, but the linker
7076 shouldn't crash regardless. */
7077 if (!target_sec->output_section)
7078 return FALSE;
7079
7080 /* For relocatable sections, we can only simplify when the output
7081 section of the target is the same as the output section of the
7082 source. */
7083 if (link_info->relocatable
7084 && (target_sec->output_section != sec->output_section
7085 || is_reloc_sym_weak (abfd, irel)))
7086 return FALSE;
7087
7088 self_address = (sec->output_section->vma
7089 + sec->output_offset + irel->r_offset + 3);
7090 dest_address = (target_sec->output_section->vma
7091 + target_sec->output_offset + target_offset);
7092
7093 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7094 self_address, dest_address);
7095
7096 if ((self_address >> CALL_SEGMENT_BITS) !=
7097 (dest_address >> CALL_SEGMENT_BITS))
7098 return FALSE;
7099
7100 return TRUE;
7101}
7102
7103
7104static Elf_Internal_Rela *
7fa3d080
BW
7105find_associated_l32r_irel (bfd *abfd,
7106 asection *sec,
7107 bfd_byte *contents,
7108 Elf_Internal_Rela *other_irel,
7109 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7110{
7111 unsigned i;
e0001a05 7112
43cd72b9
BW
7113 for (i = 0; i < sec->reloc_count; i++)
7114 {
7115 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7116
43cd72b9
BW
7117 if (irel == other_irel)
7118 continue;
7119 if (irel->r_offset != other_irel->r_offset)
7120 continue;
7121 if (is_l32r_relocation (abfd, sec, contents, irel))
7122 return irel;
7123 }
7124
7125 return NULL;
e0001a05
NC
7126}
7127
7128
cb337148
BW
7129static xtensa_opcode *
7130build_reloc_opcodes (bfd *abfd,
7131 asection *sec,
7132 bfd_byte *contents,
7133 Elf_Internal_Rela *internal_relocs)
7134{
7135 unsigned i;
7136 xtensa_opcode *reloc_opcodes =
7137 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7138 for (i = 0; i < sec->reloc_count; i++)
7139 {
7140 Elf_Internal_Rela *irel = &internal_relocs[i];
7141 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7142 }
7143 return reloc_opcodes;
7144}
7145
7146
43cd72b9
BW
7147/* The compute_text_actions function will build a list of potential
7148 transformation actions for code in the extended basic block of each
7149 longcall that is optimized to a direct call. From this list we
7150 generate a set of actions to actually perform that optimizes for
7151 space and, if not using size_opt, maintains branch target
7152 alignments.
e0001a05 7153
43cd72b9
BW
7154 These actions to be performed are placed on a per-section list.
7155 The actual changes are performed by relax_section() in the second
7156 pass. */
7157
7158bfd_boolean
7fa3d080
BW
7159compute_text_actions (bfd *abfd,
7160 asection *sec,
7161 struct bfd_link_info *link_info)
e0001a05 7162{
cb337148 7163 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7164 xtensa_relax_info *relax_info;
e0001a05 7165 bfd_byte *contents;
43cd72b9 7166 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7167 bfd_boolean ok = TRUE;
7168 unsigned i;
43cd72b9
BW
7169 property_table_entry *prop_table = 0;
7170 int ptblsize = 0;
7171 bfd_size_type sec_size;
43cd72b9 7172
43cd72b9
BW
7173 relax_info = get_xtensa_relax_info (sec);
7174 BFD_ASSERT (relax_info);
25c6282a
BW
7175 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7176
7177 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7178 if (!relax_info->is_relaxable_asm_section)
7179 return ok;
e0001a05
NC
7180
7181 internal_relocs = retrieve_internal_relocs (abfd, sec,
7182 link_info->keep_memory);
e0001a05 7183
43cd72b9
BW
7184 if (internal_relocs)
7185 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7186 internal_reloc_compare);
7187
7188 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7189 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7190 if (contents == NULL && sec_size != 0)
e0001a05
NC
7191 {
7192 ok = FALSE;
7193 goto error_return;
7194 }
7195
43cd72b9
BW
7196 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7197 XTENSA_PROP_SEC_NAME, FALSE);
7198 if (ptblsize < 0)
7199 {
7200 ok = FALSE;
7201 goto error_return;
7202 }
7203
7204 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7205 {
7206 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7207 bfd_vma r_offset;
7208 property_table_entry *the_entry;
7209 int ptbl_idx;
7210 ebb_t *ebb;
7211 ebb_constraint ebb_table;
7212 bfd_size_type simplify_size;
7213
7214 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7215 continue;
7216 r_offset = irel->r_offset;
e0001a05 7217
43cd72b9
BW
7218 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7219 if (simplify_size == 0)
7220 {
7221 (*_bfd_error_handler)
7222 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7223 sec->owner, sec, r_offset);
7224 continue;
7225 }
e0001a05 7226
43cd72b9
BW
7227 /* If the instruction table is not around, then don't do this
7228 relaxation. */
7229 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7230 sec->vma + irel->r_offset);
7231 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7232 {
7233 text_action_add (&relax_info->action_list,
7234 ta_convert_longcall, sec, r_offset,
7235 0);
7236 continue;
7237 }
7238
7239 /* If the next longcall happens to be at the same address as an
7240 unreachable section of size 0, then skip forward. */
7241 ptbl_idx = the_entry - prop_table;
7242 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7243 && the_entry->size == 0
7244 && ptbl_idx + 1 < ptblsize
7245 && (prop_table[ptbl_idx + 1].address
7246 == prop_table[ptbl_idx].address))
7247 {
7248 ptbl_idx++;
7249 the_entry++;
7250 }
e0001a05 7251
99ded152 7252 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7253 /* NO_REORDER is OK */
7254 continue;
e0001a05 7255
43cd72b9
BW
7256 init_ebb_constraint (&ebb_table);
7257 ebb = &ebb_table.ebb;
7258 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7259 internal_relocs, sec->reloc_count);
7260 ebb->start_offset = r_offset + simplify_size;
7261 ebb->end_offset = r_offset + simplify_size;
7262 ebb->start_ptbl_idx = ptbl_idx;
7263 ebb->end_ptbl_idx = ptbl_idx;
7264 ebb->start_reloc_idx = i;
7265 ebb->end_reloc_idx = i;
7266
cb337148
BW
7267 /* Precompute the opcode for each relocation. */
7268 if (reloc_opcodes == NULL)
7269 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7270 internal_relocs);
7271
43cd72b9
BW
7272 if (!extend_ebb_bounds (ebb)
7273 || !compute_ebb_proposed_actions (&ebb_table)
7274 || !compute_ebb_actions (&ebb_table)
7275 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
7276 internal_relocs, &ebb_table,
7277 reloc_opcodes)
43cd72b9 7278 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7279 {
43cd72b9
BW
7280 /* If anything goes wrong or we get unlucky and something does
7281 not fit, with our plan because of expansion between
7282 critical branches, just convert to a NOP. */
7283
7284 text_action_add (&relax_info->action_list,
7285 ta_convert_longcall, sec, r_offset, 0);
7286 i = ebb_table.ebb.end_reloc_idx;
7287 free_ebb_constraint (&ebb_table);
7288 continue;
e0001a05 7289 }
43cd72b9
BW
7290
7291 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7292
7293 /* Update the index so we do not go looking at the relocations
7294 we have already processed. */
7295 i = ebb_table.ebb.end_reloc_idx;
7296 free_ebb_constraint (&ebb_table);
e0001a05
NC
7297 }
7298
43cd72b9 7299#if DEBUG
7fa3d080 7300 if (relax_info->action_list.head)
43cd72b9
BW
7301 print_action_list (stderr, &relax_info->action_list);
7302#endif
7303
7304error_return:
e0001a05
NC
7305 release_contents (sec, contents);
7306 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7307 if (prop_table)
7308 free (prop_table);
cb337148
BW
7309 if (reloc_opcodes)
7310 free (reloc_opcodes);
43cd72b9 7311
e0001a05
NC
7312 return ok;
7313}
7314
7315
64b607e6
BW
7316/* Do not widen an instruction if it is preceeded by a
7317 loop opcode. It might cause misalignment. */
7318
7319static bfd_boolean
7320prev_instr_is_a_loop (bfd_byte *contents,
7321 bfd_size_type content_length,
7322 bfd_size_type offset)
7323{
7324 xtensa_opcode prev_opcode;
7325
7326 if (offset < 3)
7327 return FALSE;
7328 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7329 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7330}
7331
7332
43cd72b9 7333/* Find all of the possible actions for an extended basic block. */
e0001a05 7334
43cd72b9 7335bfd_boolean
7fa3d080 7336compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7337{
43cd72b9
BW
7338 const ebb_t *ebb = &ebb_table->ebb;
7339 unsigned rel_idx = ebb->start_reloc_idx;
7340 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7341 bfd_vma offset = 0;
7342 xtensa_isa isa = xtensa_default_isa;
7343 xtensa_format fmt;
7344 static xtensa_insnbuf insnbuf = NULL;
7345 static xtensa_insnbuf slotbuf = NULL;
7346
7347 if (insnbuf == NULL)
7348 {
7349 insnbuf = xtensa_insnbuf_alloc (isa);
7350 slotbuf = xtensa_insnbuf_alloc (isa);
7351 }
e0001a05 7352
43cd72b9
BW
7353 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7354 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7355
43cd72b9 7356 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7357 {
64b607e6 7358 bfd_vma start_offset, end_offset;
43cd72b9 7359 bfd_size_type insn_len;
e0001a05 7360
43cd72b9
BW
7361 start_offset = entry->address - ebb->sec->vma;
7362 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7363
43cd72b9
BW
7364 if (entry == start_entry)
7365 start_offset = ebb->start_offset;
7366 if (entry == end_entry)
7367 end_offset = ebb->end_offset;
7368 offset = start_offset;
e0001a05 7369
43cd72b9
BW
7370 if (offset == entry->address - ebb->sec->vma
7371 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7372 {
7373 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7374 BFD_ASSERT (offset != end_offset);
7375 if (offset == end_offset)
7376 return FALSE;
e0001a05 7377
43cd72b9
BW
7378 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7379 offset);
43cd72b9 7380 if (insn_len == 0)
64b607e6
BW
7381 goto decode_error;
7382
43cd72b9
BW
7383 if (check_branch_target_aligned_address (offset, insn_len))
7384 align_type = EBB_REQUIRE_TGT_ALIGN;
7385
7386 ebb_propose_action (ebb_table, align_type, 0,
7387 ta_none, offset, 0, TRUE);
7388 }
7389
7390 while (offset != end_offset)
e0001a05 7391 {
43cd72b9 7392 Elf_Internal_Rela *irel;
e0001a05 7393 xtensa_opcode opcode;
e0001a05 7394
43cd72b9
BW
7395 while (rel_idx < ebb->end_reloc_idx
7396 && (ebb->relocs[rel_idx].r_offset < offset
7397 || (ebb->relocs[rel_idx].r_offset == offset
7398 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7399 != R_XTENSA_ASM_SIMPLIFY))))
7400 rel_idx++;
7401
7402 /* Check for longcall. */
7403 irel = &ebb->relocs[rel_idx];
7404 if (irel->r_offset == offset
7405 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7406 {
7407 bfd_size_type simplify_size;
e0001a05 7408
43cd72b9
BW
7409 simplify_size = get_asm_simplify_size (ebb->contents,
7410 ebb->content_length,
7411 irel->r_offset);
7412 if (simplify_size == 0)
64b607e6 7413 goto decode_error;
43cd72b9
BW
7414
7415 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7416 ta_convert_longcall, offset, 0, TRUE);
7417
7418 offset += simplify_size;
7419 continue;
7420 }
e0001a05 7421
64b607e6
BW
7422 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7423 goto decode_error;
7424 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7425 ebb->content_length - offset);
7426 fmt = xtensa_format_decode (isa, insnbuf);
7427 if (fmt == XTENSA_UNDEFINED)
7428 goto decode_error;
7429 insn_len = xtensa_format_length (isa, fmt);
7430 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7431 goto decode_error;
7432
7433 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7434 {
64b607e6
BW
7435 offset += insn_len;
7436 continue;
43cd72b9 7437 }
64b607e6
BW
7438
7439 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7440 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7441 if (opcode == XTENSA_UNDEFINED)
7442 goto decode_error;
7443
43cd72b9 7444 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7445 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7446 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7447 {
7448 /* Add an instruction narrow action. */
7449 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7450 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7451 }
99ded152 7452 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7453 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7454 && ! prev_instr_is_a_loop (ebb->contents,
7455 ebb->content_length, offset))
43cd72b9
BW
7456 {
7457 /* Add an instruction widen action. */
7458 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7459 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7460 }
64b607e6 7461 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7462 {
7463 /* Check for branch targets. */
7464 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7465 ta_none, offset, 0, TRUE);
43cd72b9
BW
7466 }
7467
7468 offset += insn_len;
e0001a05
NC
7469 }
7470 }
7471
43cd72b9
BW
7472 if (ebb->ends_unreachable)
7473 {
7474 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7475 ta_fill, ebb->end_offset, 0, TRUE);
7476 }
e0001a05 7477
43cd72b9 7478 return TRUE;
64b607e6
BW
7479
7480 decode_error:
7481 (*_bfd_error_handler)
7482 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7483 ebb->sec->owner, ebb->sec, offset);
7484 return FALSE;
43cd72b9
BW
7485}
7486
7487
7488/* After all of the information has collected about the
7489 transformations possible in an EBB, compute the appropriate actions
7490 here in compute_ebb_actions. We still must check later to make
7491 sure that the actions do not break any relocations. The algorithm
7492 used here is pretty greedy. Basically, it removes as many no-ops
7493 as possible so that the end of the EBB has the same alignment
7494 characteristics as the original. First, it uses narrowing, then
7495 fill space at the end of the EBB, and finally widenings. If that
7496 does not work, it tries again with one fewer no-op removed. The
7497 optimization will only be performed if all of the branch targets
7498 that were aligned before transformation are also aligned after the
7499 transformation.
7500
7501 When the size_opt flag is set, ignore the branch target alignments,
7502 narrow all wide instructions, and remove all no-ops unless the end
7503 of the EBB prevents it. */
7504
7505bfd_boolean
7fa3d080 7506compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
7507{
7508 unsigned i = 0;
7509 unsigned j;
7510 int removed_bytes = 0;
7511 ebb_t *ebb = &ebb_table->ebb;
7512 unsigned seg_idx_start = 0;
7513 unsigned seg_idx_end = 0;
7514
7515 /* We perform this like the assembler relaxation algorithm: Start by
7516 assuming all instructions are narrow and all no-ops removed; then
7517 walk through.... */
7518
7519 /* For each segment of this that has a solid constraint, check to
7520 see if there are any combinations that will keep the constraint.
7521 If so, use it. */
7522 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 7523 {
43cd72b9
BW
7524 bfd_boolean requires_text_end_align = FALSE;
7525 unsigned longcall_count = 0;
7526 unsigned longcall_convert_count = 0;
7527 unsigned narrowable_count = 0;
7528 unsigned narrowable_convert_count = 0;
7529 unsigned widenable_count = 0;
7530 unsigned widenable_convert_count = 0;
e0001a05 7531
43cd72b9
BW
7532 proposed_action *action = NULL;
7533 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 7534
43cd72b9 7535 seg_idx_start = seg_idx_end;
e0001a05 7536
43cd72b9
BW
7537 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7538 {
7539 action = &ebb_table->actions[i];
7540 if (action->action == ta_convert_longcall)
7541 longcall_count++;
7542 if (action->action == ta_narrow_insn)
7543 narrowable_count++;
7544 if (action->action == ta_widen_insn)
7545 widenable_count++;
7546 if (action->action == ta_fill)
7547 break;
7548 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7549 break;
7550 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7551 && !elf32xtensa_size_opt)
7552 break;
7553 }
7554 seg_idx_end = i;
e0001a05 7555
43cd72b9
BW
7556 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7557 requires_text_end_align = TRUE;
e0001a05 7558
43cd72b9
BW
7559 if (elf32xtensa_size_opt && !requires_text_end_align
7560 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7561 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7562 {
7563 longcall_convert_count = longcall_count;
7564 narrowable_convert_count = narrowable_count;
7565 widenable_convert_count = 0;
7566 }
7567 else
7568 {
7569 /* There is a constraint. Convert the max number of longcalls. */
7570 narrowable_convert_count = 0;
7571 longcall_convert_count = 0;
7572 widenable_convert_count = 0;
e0001a05 7573
43cd72b9 7574 for (j = 0; j < longcall_count; j++)
e0001a05 7575 {
43cd72b9
BW
7576 int removed = (longcall_count - j) * 3 & (align - 1);
7577 unsigned desire_narrow = (align - removed) & (align - 1);
7578 unsigned desire_widen = removed;
7579 if (desire_narrow <= narrowable_count)
7580 {
7581 narrowable_convert_count = desire_narrow;
7582 narrowable_convert_count +=
7583 (align * ((narrowable_count - narrowable_convert_count)
7584 / align));
7585 longcall_convert_count = (longcall_count - j);
7586 widenable_convert_count = 0;
7587 break;
7588 }
7589 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7590 {
7591 narrowable_convert_count = 0;
7592 longcall_convert_count = longcall_count - j;
7593 widenable_convert_count = desire_widen;
7594 break;
7595 }
7596 }
7597 }
e0001a05 7598
43cd72b9
BW
7599 /* Now the number of conversions are saved. Do them. */
7600 for (i = seg_idx_start; i < seg_idx_end; i++)
7601 {
7602 action = &ebb_table->actions[i];
7603 switch (action->action)
7604 {
7605 case ta_convert_longcall:
7606 if (longcall_convert_count != 0)
7607 {
7608 action->action = ta_remove_longcall;
7609 action->do_action = TRUE;
7610 action->removed_bytes += 3;
7611 longcall_convert_count--;
7612 }
7613 break;
7614 case ta_narrow_insn:
7615 if (narrowable_convert_count != 0)
7616 {
7617 action->do_action = TRUE;
7618 action->removed_bytes += 1;
7619 narrowable_convert_count--;
7620 }
7621 break;
7622 case ta_widen_insn:
7623 if (widenable_convert_count != 0)
7624 {
7625 action->do_action = TRUE;
7626 action->removed_bytes -= 1;
7627 widenable_convert_count--;
7628 }
7629 break;
7630 default:
7631 break;
e0001a05 7632 }
43cd72b9
BW
7633 }
7634 }
e0001a05 7635
43cd72b9
BW
7636 /* Now we move on to some local opts. Try to remove each of the
7637 remaining longcalls. */
e0001a05 7638
43cd72b9
BW
7639 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7640 {
7641 removed_bytes = 0;
7642 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7643 {
43cd72b9
BW
7644 int old_removed_bytes = removed_bytes;
7645 proposed_action *action = &ebb_table->actions[i];
7646
7647 if (action->do_action && action->action == ta_convert_longcall)
7648 {
7649 bfd_boolean bad_alignment = FALSE;
7650 removed_bytes += 3;
7651 for (j = i + 1; j < ebb_table->action_count; j++)
7652 {
7653 proposed_action *new_action = &ebb_table->actions[j];
7654 bfd_vma offset = new_action->offset;
7655 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7656 {
7657 if (!check_branch_target_aligned
7658 (ebb_table->ebb.contents,
7659 ebb_table->ebb.content_length,
7660 offset, offset - removed_bytes))
7661 {
7662 bad_alignment = TRUE;
7663 break;
7664 }
7665 }
7666 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7667 {
7668 if (!check_loop_aligned (ebb_table->ebb.contents,
7669 ebb_table->ebb.content_length,
7670 offset,
7671 offset - removed_bytes))
7672 {
7673 bad_alignment = TRUE;
7674 break;
7675 }
7676 }
7677 if (new_action->action == ta_narrow_insn
7678 && !new_action->do_action
7679 && ebb_table->ebb.sec->alignment_power == 2)
7680 {
7681 /* Narrow an instruction and we are done. */
7682 new_action->do_action = TRUE;
7683 new_action->removed_bytes += 1;
7684 bad_alignment = FALSE;
7685 break;
7686 }
7687 if (new_action->action == ta_widen_insn
7688 && new_action->do_action
7689 && ebb_table->ebb.sec->alignment_power == 2)
7690 {
7691 /* Narrow an instruction and we are done. */
7692 new_action->do_action = FALSE;
7693 new_action->removed_bytes += 1;
7694 bad_alignment = FALSE;
7695 break;
7696 }
5c5d6806
BW
7697 if (new_action->do_action)
7698 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
7699 }
7700 if (!bad_alignment)
7701 {
7702 action->removed_bytes += 3;
7703 action->action = ta_remove_longcall;
7704 action->do_action = TRUE;
7705 }
7706 }
7707 removed_bytes = old_removed_bytes;
7708 if (action->do_action)
7709 removed_bytes += action->removed_bytes;
e0001a05
NC
7710 }
7711 }
7712
43cd72b9
BW
7713 removed_bytes = 0;
7714 for (i = 0; i < ebb_table->action_count; ++i)
7715 {
7716 proposed_action *action = &ebb_table->actions[i];
7717 if (action->do_action)
7718 removed_bytes += action->removed_bytes;
7719 }
7720
7721 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7722 && ebb->ends_unreachable)
7723 {
7724 proposed_action *action;
7725 int br;
7726 int extra_space;
7727
7728 BFD_ASSERT (ebb_table->action_count != 0);
7729 action = &ebb_table->actions[ebb_table->action_count - 1];
7730 BFD_ASSERT (action->action == ta_fill);
7731 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7732
7733 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7734 br = action->removed_bytes + removed_bytes + extra_space;
7735 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7736
7737 action->removed_bytes = extra_space - br;
7738 }
7739 return TRUE;
e0001a05
NC
7740}
7741
7742
03e94c08
BW
7743/* The xlate_map is a sorted array of address mappings designed to
7744 answer the offset_with_removed_text() query with a binary search instead
7745 of a linear search through the section's action_list. */
7746
7747typedef struct xlate_map_entry xlate_map_entry_t;
7748typedef struct xlate_map xlate_map_t;
7749
7750struct xlate_map_entry
7751{
7752 unsigned orig_address;
7753 unsigned new_address;
7754 unsigned size;
7755};
7756
7757struct xlate_map
7758{
7759 unsigned entry_count;
7760 xlate_map_entry_t *entry;
7761};
7762
7763
7764static int
7765xlate_compare (const void *a_v, const void *b_v)
7766{
7767 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7768 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7769 if (a->orig_address < b->orig_address)
7770 return -1;
7771 if (a->orig_address > (b->orig_address + b->size - 1))
7772 return 1;
7773 return 0;
7774}
7775
7776
7777static bfd_vma
7778xlate_offset_with_removed_text (const xlate_map_t *map,
7779 text_action_list *action_list,
7780 bfd_vma offset)
7781{
7782 xlate_map_entry_t tmp;
7783 void *r;
7784 xlate_map_entry_t *e;
7785
7786 if (map == NULL)
7787 return offset_with_removed_text (action_list, offset);
7788
7789 if (map->entry_count == 0)
7790 return offset;
7791
7792 tmp.orig_address = offset;
7793 tmp.new_address = offset;
7794 tmp.size = 1;
7795
7796 r = bsearch (&offset, map->entry, map->entry_count,
7797 sizeof (xlate_map_entry_t), &xlate_compare);
7798 e = (xlate_map_entry_t *) r;
7799
7800 BFD_ASSERT (e != NULL);
7801 if (e == NULL)
7802 return offset;
7803 return e->new_address - e->orig_address + offset;
7804}
7805
7806
7807/* Build a binary searchable offset translation map from a section's
7808 action list. */
7809
7810static xlate_map_t *
7811build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7812{
7813 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7814 text_action_list *action_list = &relax_info->action_list;
7815 unsigned num_actions = 0;
7816 text_action *r;
7817 int removed;
7818 xlate_map_entry_t *current_entry;
7819
7820 if (map == NULL)
7821 return NULL;
7822
7823 num_actions = action_list_count (action_list);
7824 map->entry = (xlate_map_entry_t *)
7825 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7826 if (map->entry == NULL)
7827 {
7828 free (map);
7829 return NULL;
7830 }
7831 map->entry_count = 0;
7832
7833 removed = 0;
7834 current_entry = &map->entry[0];
7835
7836 current_entry->orig_address = 0;
7837 current_entry->new_address = 0;
7838 current_entry->size = 0;
7839
7840 for (r = action_list->head; r != NULL; r = r->next)
7841 {
7842 unsigned orig_size = 0;
7843 switch (r->action)
7844 {
7845 case ta_none:
7846 case ta_remove_insn:
7847 case ta_convert_longcall:
7848 case ta_remove_literal:
7849 case ta_add_literal:
7850 break;
7851 case ta_remove_longcall:
7852 orig_size = 6;
7853 break;
7854 case ta_narrow_insn:
7855 orig_size = 3;
7856 break;
7857 case ta_widen_insn:
7858 orig_size = 2;
7859 break;
7860 case ta_fill:
7861 break;
7862 }
7863 current_entry->size =
7864 r->offset + orig_size - current_entry->orig_address;
7865 if (current_entry->size != 0)
7866 {
7867 current_entry++;
7868 map->entry_count++;
7869 }
7870 current_entry->orig_address = r->offset + orig_size;
7871 removed += r->removed_bytes;
7872 current_entry->new_address = r->offset + orig_size - removed;
7873 current_entry->size = 0;
7874 }
7875
7876 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7877 - current_entry->orig_address);
7878 if (current_entry->size != 0)
7879 map->entry_count++;
7880
7881 return map;
7882}
7883
7884
7885/* Free an offset translation map. */
7886
7887static void
7888free_xlate_map (xlate_map_t *map)
7889{
7890 if (map && map->entry)
7891 free (map->entry);
7892 if (map)
7893 free (map);
7894}
7895
7896
43cd72b9
BW
7897/* Use check_section_ebb_pcrels_fit to make sure that all of the
7898 relocations in a section will fit if a proposed set of actions
7899 are performed. */
e0001a05 7900
43cd72b9 7901static bfd_boolean
7fa3d080
BW
7902check_section_ebb_pcrels_fit (bfd *abfd,
7903 asection *sec,
7904 bfd_byte *contents,
7905 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7906 const ebb_constraint *constraint,
7907 const xtensa_opcode *reloc_opcodes)
e0001a05 7908{
43cd72b9
BW
7909 unsigned i, j;
7910 Elf_Internal_Rela *irel;
03e94c08
BW
7911 xlate_map_t *xmap = NULL;
7912 bfd_boolean ok = TRUE;
43cd72b9 7913 xtensa_relax_info *relax_info;
e0001a05 7914
43cd72b9 7915 relax_info = get_xtensa_relax_info (sec);
e0001a05 7916
03e94c08
BW
7917 if (relax_info && sec->reloc_count > 100)
7918 {
7919 xmap = build_xlate_map (sec, relax_info);
7920 /* NULL indicates out of memory, but the slow version
7921 can still be used. */
7922 }
7923
43cd72b9
BW
7924 for (i = 0; i < sec->reloc_count; i++)
7925 {
7926 r_reloc r_rel;
7927 bfd_vma orig_self_offset, orig_target_offset;
7928 bfd_vma self_offset, target_offset;
7929 int r_type;
7930 reloc_howto_type *howto;
7931 int self_removed_bytes, target_removed_bytes;
e0001a05 7932
43cd72b9
BW
7933 irel = &internal_relocs[i];
7934 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7935
43cd72b9
BW
7936 howto = &elf_howto_table[r_type];
7937 /* We maintain the required invariant: PC-relative relocations
7938 that fit before linking must fit after linking. Thus we only
7939 need to deal with relocations to the same section that are
7940 PC-relative. */
1bbb5f21
BW
7941 if (r_type == R_XTENSA_ASM_SIMPLIFY
7942 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
7943 || !howto->pc_relative)
7944 continue;
e0001a05 7945
43cd72b9
BW
7946 r_reloc_init (&r_rel, abfd, irel, contents,
7947 bfd_get_section_limit (abfd, sec));
e0001a05 7948
43cd72b9
BW
7949 if (r_reloc_get_section (&r_rel) != sec)
7950 continue;
e0001a05 7951
43cd72b9
BW
7952 orig_self_offset = irel->r_offset;
7953 orig_target_offset = r_rel.target_offset;
e0001a05 7954
43cd72b9
BW
7955 self_offset = orig_self_offset;
7956 target_offset = orig_target_offset;
7957
7958 if (relax_info)
7959 {
03e94c08
BW
7960 self_offset =
7961 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7962 orig_self_offset);
7963 target_offset =
7964 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7965 orig_target_offset);
43cd72b9
BW
7966 }
7967
7968 self_removed_bytes = 0;
7969 target_removed_bytes = 0;
7970
7971 for (j = 0; j < constraint->action_count; ++j)
7972 {
7973 proposed_action *action = &constraint->actions[j];
7974 bfd_vma offset = action->offset;
7975 int removed_bytes = action->removed_bytes;
7976 if (offset < orig_self_offset
7977 || (offset == orig_self_offset && action->action == ta_fill
7978 && action->removed_bytes < 0))
7979 self_removed_bytes += removed_bytes;
7980 if (offset < orig_target_offset
7981 || (offset == orig_target_offset && action->action == ta_fill
7982 && action->removed_bytes < 0))
7983 target_removed_bytes += removed_bytes;
7984 }
7985 self_offset -= self_removed_bytes;
7986 target_offset -= target_removed_bytes;
7987
7988 /* Try to encode it. Get the operand and check. */
7989 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7990 {
7991 /* None of the current alternate relocs are PC-relative,
7992 and only PC-relative relocs matter here. */
7993 }
7994 else
7995 {
7996 xtensa_opcode opcode;
7997 int opnum;
7998
cb337148
BW
7999 if (reloc_opcodes)
8000 opcode = reloc_opcodes[i];
8001 else
8002 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 8003 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
8004 {
8005 ok = FALSE;
8006 break;
8007 }
43cd72b9
BW
8008
8009 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8010 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
8011 {
8012 ok = FALSE;
8013 break;
8014 }
43cd72b9
BW
8015
8016 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8017 {
8018 ok = FALSE;
8019 break;
8020 }
43cd72b9
BW
8021 }
8022 }
8023
03e94c08
BW
8024 if (xmap)
8025 free_xlate_map (xmap);
8026
8027 return ok;
43cd72b9
BW
8028}
8029
8030
8031static bfd_boolean
7fa3d080 8032check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8033{
8034 int removed = 0;
8035 unsigned i;
8036
8037 for (i = 0; i < constraint->action_count; i++)
8038 {
8039 const proposed_action *action = &constraint->actions[i];
8040 if (action->do_action)
8041 removed += action->removed_bytes;
8042 }
8043 if (removed < 0)
e0001a05
NC
8044 return FALSE;
8045
8046 return TRUE;
8047}
8048
8049
43cd72b9 8050void
7fa3d080
BW
8051text_action_add_proposed (text_action_list *l,
8052 const ebb_constraint *ebb_table,
8053 asection *sec)
e0001a05
NC
8054{
8055 unsigned i;
8056
43cd72b9 8057 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8058 {
43cd72b9 8059 proposed_action *action = &ebb_table->actions[i];
e0001a05 8060
43cd72b9 8061 if (!action->do_action)
e0001a05 8062 continue;
43cd72b9
BW
8063 switch (action->action)
8064 {
8065 case ta_remove_insn:
8066 case ta_remove_longcall:
8067 case ta_convert_longcall:
8068 case ta_narrow_insn:
8069 case ta_widen_insn:
8070 case ta_fill:
8071 case ta_remove_literal:
8072 text_action_add (l, action->action, sec, action->offset,
8073 action->removed_bytes);
8074 break;
8075 case ta_none:
8076 break;
8077 default:
8078 BFD_ASSERT (0);
8079 break;
8080 }
e0001a05 8081 }
43cd72b9 8082}
e0001a05 8083
43cd72b9
BW
8084
8085int
7fa3d080 8086compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8087{
8088 int fill_extra_space;
8089
8090 if (!entry)
8091 return 0;
8092
8093 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8094 return 0;
8095
8096 fill_extra_space = entry->size;
8097 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8098 {
8099 /* Fill bytes for alignment:
8100 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8101 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8102 int nsm = (1 << pow) - 1;
8103 bfd_vma addr = entry->address + entry->size;
8104 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8105 fill_extra_space += align_fill;
8106 }
8107 return fill_extra_space;
e0001a05
NC
8108}
8109
43cd72b9 8110\f
e0001a05
NC
8111/* First relaxation pass. */
8112
43cd72b9
BW
8113/* If the section contains relaxable literals, check each literal to
8114 see if it has the same value as another literal that has already
8115 been seen, either in the current section or a previous one. If so,
8116 add an entry to the per-section list of removed literals. The
e0001a05
NC
8117 actual changes are deferred until the next pass. */
8118
8119static bfd_boolean
7fa3d080
BW
8120compute_removed_literals (bfd *abfd,
8121 asection *sec,
8122 struct bfd_link_info *link_info,
8123 value_map_hash_table *values)
e0001a05
NC
8124{
8125 xtensa_relax_info *relax_info;
8126 bfd_byte *contents;
8127 Elf_Internal_Rela *internal_relocs;
43cd72b9 8128 source_reloc *src_relocs, *rel;
e0001a05 8129 bfd_boolean ok = TRUE;
43cd72b9
BW
8130 property_table_entry *prop_table = NULL;
8131 int ptblsize;
8132 int i, prev_i;
8133 bfd_boolean last_loc_is_prev = FALSE;
8134 bfd_vma last_target_offset = 0;
8135 section_cache_t target_sec_cache;
8136 bfd_size_type sec_size;
8137
8138 init_section_cache (&target_sec_cache);
e0001a05
NC
8139
8140 /* Do nothing if it is not a relaxable literal section. */
8141 relax_info = get_xtensa_relax_info (sec);
8142 BFD_ASSERT (relax_info);
e0001a05
NC
8143 if (!relax_info->is_relaxable_literal_section)
8144 return ok;
8145
8146 internal_relocs = retrieve_internal_relocs (abfd, sec,
8147 link_info->keep_memory);
8148
43cd72b9 8149 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8150 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8151 if (contents == NULL && sec_size != 0)
e0001a05
NC
8152 {
8153 ok = FALSE;
8154 goto error_return;
8155 }
8156
8157 /* Sort the source_relocs by target offset. */
8158 src_relocs = relax_info->src_relocs;
8159 qsort (src_relocs, relax_info->src_count,
8160 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8161 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8162 internal_reloc_compare);
e0001a05 8163
43cd72b9
BW
8164 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8165 XTENSA_PROP_SEC_NAME, FALSE);
8166 if (ptblsize < 0)
8167 {
8168 ok = FALSE;
8169 goto error_return;
8170 }
8171
8172 prev_i = -1;
e0001a05
NC
8173 for (i = 0; i < relax_info->src_count; i++)
8174 {
e0001a05 8175 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8176
8177 rel = &src_relocs[i];
43cd72b9
BW
8178 if (get_l32r_opcode () != rel->opcode)
8179 continue;
e0001a05
NC
8180 irel = get_irel_at_offset (sec, internal_relocs,
8181 rel->r_rel.target_offset);
8182
43cd72b9
BW
8183 /* If the relocation on this is not a simple R_XTENSA_32 or
8184 R_XTENSA_PLT then do not consider it. This may happen when
8185 the difference of two symbols is used in a literal. */
8186 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8187 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8188 continue;
8189
e0001a05
NC
8190 /* If the target_offset for this relocation is the same as the
8191 previous relocation, then we've already considered whether the
8192 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8193 if (i != 0 && prev_i != -1
8194 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8195 continue;
43cd72b9
BW
8196 prev_i = i;
8197
8198 if (last_loc_is_prev &&
8199 last_target_offset + 4 != rel->r_rel.target_offset)
8200 last_loc_is_prev = FALSE;
e0001a05
NC
8201
8202 /* Check if the relocation was from an L32R that is being removed
8203 because a CALLX was converted to a direct CALL, and check if
8204 there are no other relocations to the literal. */
99ded152
BW
8205 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8206 sec, prop_table, ptblsize))
e0001a05 8207 {
43cd72b9
BW
8208 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8209 irel, rel, prop_table, ptblsize))
e0001a05 8210 {
43cd72b9
BW
8211 ok = FALSE;
8212 goto error_return;
e0001a05 8213 }
43cd72b9 8214 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8215 continue;
8216 }
8217
43cd72b9
BW
8218 if (!identify_literal_placement (abfd, sec, contents, link_info,
8219 values,
8220 &last_loc_is_prev, irel,
8221 relax_info->src_count - i, rel,
8222 prop_table, ptblsize,
8223 &target_sec_cache, rel->is_abs_literal))
e0001a05 8224 {
43cd72b9
BW
8225 ok = FALSE;
8226 goto error_return;
8227 }
8228 last_target_offset = rel->r_rel.target_offset;
8229 }
e0001a05 8230
43cd72b9
BW
8231#if DEBUG
8232 print_removed_literals (stderr, &relax_info->removed_list);
8233 print_action_list (stderr, &relax_info->action_list);
8234#endif /* DEBUG */
8235
8236error_return:
8237 if (prop_table) free (prop_table);
8238 clear_section_cache (&target_sec_cache);
8239
8240 release_contents (sec, contents);
8241 release_internal_relocs (sec, internal_relocs);
8242 return ok;
8243}
8244
8245
8246static Elf_Internal_Rela *
7fa3d080
BW
8247get_irel_at_offset (asection *sec,
8248 Elf_Internal_Rela *internal_relocs,
8249 bfd_vma offset)
43cd72b9
BW
8250{
8251 unsigned i;
8252 Elf_Internal_Rela *irel;
8253 unsigned r_type;
8254 Elf_Internal_Rela key;
8255
8256 if (!internal_relocs)
8257 return NULL;
8258
8259 key.r_offset = offset;
8260 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8261 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8262 if (!irel)
8263 return NULL;
8264
8265 /* bsearch does not guarantee which will be returned if there are
8266 multiple matches. We need the first that is not an alignment. */
8267 i = irel - internal_relocs;
8268 while (i > 0)
8269 {
8270 if (internal_relocs[i-1].r_offset != offset)
8271 break;
8272 i--;
8273 }
8274 for ( ; i < sec->reloc_count; i++)
8275 {
8276 irel = &internal_relocs[i];
8277 r_type = ELF32_R_TYPE (irel->r_info);
8278 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8279 return irel;
8280 }
8281
8282 return NULL;
8283}
8284
8285
8286bfd_boolean
7fa3d080
BW
8287is_removable_literal (const source_reloc *rel,
8288 int i,
8289 const source_reloc *src_relocs,
99ded152
BW
8290 int src_count,
8291 asection *sec,
8292 property_table_entry *prop_table,
8293 int ptblsize)
43cd72b9
BW
8294{
8295 const source_reloc *curr_rel;
99ded152
BW
8296 property_table_entry *entry;
8297
43cd72b9
BW
8298 if (!rel->is_null)
8299 return FALSE;
8300
99ded152
BW
8301 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8302 sec->vma + rel->r_rel.target_offset);
8303 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8304 return FALSE;
8305
43cd72b9
BW
8306 for (++i; i < src_count; ++i)
8307 {
8308 curr_rel = &src_relocs[i];
8309 /* If all others have the same target offset.... */
8310 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8311 return TRUE;
8312
8313 if (!curr_rel->is_null
8314 && !xtensa_is_property_section (curr_rel->source_sec)
8315 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8316 return FALSE;
8317 }
8318 return TRUE;
8319}
8320
8321
8322bfd_boolean
7fa3d080
BW
8323remove_dead_literal (bfd *abfd,
8324 asection *sec,
8325 struct bfd_link_info *link_info,
8326 Elf_Internal_Rela *internal_relocs,
8327 Elf_Internal_Rela *irel,
8328 source_reloc *rel,
8329 property_table_entry *prop_table,
8330 int ptblsize)
43cd72b9
BW
8331{
8332 property_table_entry *entry;
8333 xtensa_relax_info *relax_info;
8334
8335 relax_info = get_xtensa_relax_info (sec);
8336 if (!relax_info)
8337 return FALSE;
8338
8339 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8340 sec->vma + rel->r_rel.target_offset);
8341
8342 /* Mark the unused literal so that it will be removed. */
8343 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8344
8345 text_action_add (&relax_info->action_list,
8346 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8347
8348 /* If the section is 4-byte aligned, do not add fill. */
8349 if (sec->alignment_power > 2)
8350 {
8351 int fill_extra_space;
8352 bfd_vma entry_sec_offset;
8353 text_action *fa;
8354 property_table_entry *the_add_entry;
8355 int removed_diff;
8356
8357 if (entry)
8358 entry_sec_offset = entry->address - sec->vma + entry->size;
8359 else
8360 entry_sec_offset = rel->r_rel.target_offset + 4;
8361
8362 /* If the literal range is at the end of the section,
8363 do not add fill. */
8364 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8365 entry_sec_offset);
8366 fill_extra_space = compute_fill_extra_space (the_add_entry);
8367
8368 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8369 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8370 -4, fill_extra_space);
8371 if (fa)
8372 adjust_fill_action (fa, removed_diff);
8373 else
8374 text_action_add (&relax_info->action_list,
8375 ta_fill, sec, entry_sec_offset, removed_diff);
8376 }
8377
8378 /* Zero out the relocation on this literal location. */
8379 if (irel)
8380 {
8381 if (elf_hash_table (link_info)->dynamic_sections_created)
8382 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8383
8384 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8385 pin_internal_relocs (sec, internal_relocs);
8386 }
8387
8388 /* Do not modify "last_loc_is_prev". */
8389 return TRUE;
8390}
8391
8392
8393bfd_boolean
7fa3d080
BW
8394identify_literal_placement (bfd *abfd,
8395 asection *sec,
8396 bfd_byte *contents,
8397 struct bfd_link_info *link_info,
8398 value_map_hash_table *values,
8399 bfd_boolean *last_loc_is_prev_p,
8400 Elf_Internal_Rela *irel,
8401 int remaining_src_rels,
8402 source_reloc *rel,
8403 property_table_entry *prop_table,
8404 int ptblsize,
8405 section_cache_t *target_sec_cache,
8406 bfd_boolean is_abs_literal)
43cd72b9
BW
8407{
8408 literal_value val;
8409 value_map *val_map;
8410 xtensa_relax_info *relax_info;
8411 bfd_boolean literal_placed = FALSE;
8412 r_reloc r_rel;
8413 unsigned long value;
8414 bfd_boolean final_static_link;
8415 bfd_size_type sec_size;
8416
8417 relax_info = get_xtensa_relax_info (sec);
8418 if (!relax_info)
8419 return FALSE;
8420
8421 sec_size = bfd_get_section_limit (abfd, sec);
8422
8423 final_static_link =
8424 (!link_info->relocatable
8425 && !elf_hash_table (link_info)->dynamic_sections_created);
8426
8427 /* The placement algorithm first checks to see if the literal is
8428 already in the value map. If so and the value map is reachable
8429 from all uses, then the literal is moved to that location. If
8430 not, then we identify the last location where a fresh literal was
8431 placed. If the literal can be safely moved there, then we do so.
8432 If not, then we assume that the literal is not to move and leave
8433 the literal where it is, marking it as the last literal
8434 location. */
8435
8436 /* Find the literal value. */
8437 value = 0;
8438 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8439 if (!irel)
8440 {
8441 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8442 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8443 }
8444 init_literal_value (&val, &r_rel, value, is_abs_literal);
8445
8446 /* Check if we've seen another literal with the same value that
8447 is in the same output section. */
8448 val_map = value_map_get_cached_value (values, &val, final_static_link);
8449
8450 if (val_map
8451 && (r_reloc_get_section (&val_map->loc)->output_section
8452 == sec->output_section)
8453 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8454 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8455 {
8456 /* No change to last_loc_is_prev. */
8457 literal_placed = TRUE;
8458 }
8459
8460 /* For relocatable links, do not try to move literals. To do it
8461 correctly might increase the number of relocations in an input
8462 section making the default relocatable linking fail. */
8463 if (!link_info->relocatable && !literal_placed
8464 && values->has_last_loc && !(*last_loc_is_prev_p))
8465 {
8466 asection *target_sec = r_reloc_get_section (&values->last_loc);
8467 if (target_sec && target_sec->output_section == sec->output_section)
8468 {
8469 /* Increment the virtual offset. */
8470 r_reloc try_loc = values->last_loc;
8471 try_loc.virtual_offset += 4;
8472
8473 /* There is a last loc that was in the same output section. */
8474 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8475 && move_shared_literal (sec, link_info, rel,
8476 prop_table, ptblsize,
8477 &try_loc, &val, target_sec_cache))
e0001a05 8478 {
43cd72b9
BW
8479 values->last_loc.virtual_offset += 4;
8480 literal_placed = TRUE;
8481 if (!val_map)
8482 val_map = add_value_map (values, &val, &try_loc,
8483 final_static_link);
8484 else
8485 val_map->loc = try_loc;
e0001a05
NC
8486 }
8487 }
43cd72b9
BW
8488 }
8489
8490 if (!literal_placed)
8491 {
8492 /* Nothing worked, leave the literal alone but update the last loc. */
8493 values->has_last_loc = TRUE;
8494 values->last_loc = rel->r_rel;
8495 if (!val_map)
8496 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 8497 else
43cd72b9
BW
8498 val_map->loc = rel->r_rel;
8499 *last_loc_is_prev_p = TRUE;
e0001a05
NC
8500 }
8501
43cd72b9 8502 return TRUE;
e0001a05
NC
8503}
8504
8505
8506/* Check if the original relocations (presumably on L32R instructions)
8507 identified by reloc[0..N] can be changed to reference the literal
8508 identified by r_rel. If r_rel is out of range for any of the
8509 original relocations, then we don't want to coalesce the original
8510 literal with the one at r_rel. We only check reloc[0..N], where the
8511 offsets are all the same as for reloc[0] (i.e., they're all
8512 referencing the same literal) and where N is also bounded by the
8513 number of remaining entries in the "reloc" array. The "reloc" array
8514 is sorted by target offset so we know all the entries for the same
8515 literal will be contiguous. */
8516
8517static bfd_boolean
7fa3d080
BW
8518relocations_reach (source_reloc *reloc,
8519 int remaining_relocs,
8520 const r_reloc *r_rel)
e0001a05
NC
8521{
8522 bfd_vma from_offset, source_address, dest_address;
8523 asection *sec;
8524 int i;
8525
8526 if (!r_reloc_is_defined (r_rel))
8527 return FALSE;
8528
8529 sec = r_reloc_get_section (r_rel);
8530 from_offset = reloc[0].r_rel.target_offset;
8531
8532 for (i = 0; i < remaining_relocs; i++)
8533 {
8534 if (reloc[i].r_rel.target_offset != from_offset)
8535 break;
8536
8537 /* Ignore relocations that have been removed. */
8538 if (reloc[i].is_null)
8539 continue;
8540
8541 /* The original and new output section for these must be the same
8542 in order to coalesce. */
8543 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8544 != sec->output_section)
8545 return FALSE;
8546
d638e0ac
BW
8547 /* Absolute literals in the same output section can always be
8548 combined. */
8549 if (reloc[i].is_abs_literal)
8550 continue;
8551
43cd72b9
BW
8552 /* A literal with no PC-relative relocations can be moved anywhere. */
8553 if (reloc[i].opnd != -1)
e0001a05
NC
8554 {
8555 /* Otherwise, check to see that it fits. */
8556 source_address = (reloc[i].source_sec->output_section->vma
8557 + reloc[i].source_sec->output_offset
8558 + reloc[i].r_rel.rela.r_offset);
8559 dest_address = (sec->output_section->vma
8560 + sec->output_offset
8561 + r_rel->target_offset);
8562
43cd72b9
BW
8563 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8564 source_address, dest_address))
e0001a05
NC
8565 return FALSE;
8566 }
8567 }
8568
8569 return TRUE;
8570}
8571
8572
43cd72b9
BW
8573/* Move a literal to another literal location because it is
8574 the same as the other literal value. */
e0001a05 8575
43cd72b9 8576static bfd_boolean
7fa3d080
BW
8577coalesce_shared_literal (asection *sec,
8578 source_reloc *rel,
8579 property_table_entry *prop_table,
8580 int ptblsize,
8581 value_map *val_map)
e0001a05 8582{
43cd72b9
BW
8583 property_table_entry *entry;
8584 text_action *fa;
8585 property_table_entry *the_add_entry;
8586 int removed_diff;
8587 xtensa_relax_info *relax_info;
8588
8589 relax_info = get_xtensa_relax_info (sec);
8590 if (!relax_info)
8591 return FALSE;
8592
8593 entry = elf_xtensa_find_property_entry
8594 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 8595 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
8596 return TRUE;
8597
8598 /* Mark that the literal will be coalesced. */
8599 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8600
8601 text_action_add (&relax_info->action_list,
8602 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8603
8604 /* If the section is 4-byte aligned, do not add fill. */
8605 if (sec->alignment_power > 2)
e0001a05 8606 {
43cd72b9
BW
8607 int fill_extra_space;
8608 bfd_vma entry_sec_offset;
8609
8610 if (entry)
8611 entry_sec_offset = entry->address - sec->vma + entry->size;
8612 else
8613 entry_sec_offset = rel->r_rel.target_offset + 4;
8614
8615 /* If the literal range is at the end of the section,
8616 do not add fill. */
8617 fill_extra_space = 0;
8618 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8619 entry_sec_offset);
8620 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8621 fill_extra_space = the_add_entry->size;
8622
8623 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8624 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8625 -4, fill_extra_space);
8626 if (fa)
8627 adjust_fill_action (fa, removed_diff);
8628 else
8629 text_action_add (&relax_info->action_list,
8630 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 8631 }
43cd72b9
BW
8632
8633 return TRUE;
8634}
8635
8636
8637/* Move a literal to another location. This may actually increase the
8638 total amount of space used because of alignments so we need to do
8639 this carefully. Also, it may make a branch go out of range. */
8640
8641static bfd_boolean
7fa3d080
BW
8642move_shared_literal (asection *sec,
8643 struct bfd_link_info *link_info,
8644 source_reloc *rel,
8645 property_table_entry *prop_table,
8646 int ptblsize,
8647 const r_reloc *target_loc,
8648 const literal_value *lit_value,
8649 section_cache_t *target_sec_cache)
43cd72b9
BW
8650{
8651 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8652 text_action *fa, *target_fa;
8653 int removed_diff;
8654 xtensa_relax_info *relax_info, *target_relax_info;
8655 asection *target_sec;
8656 ebb_t *ebb;
8657 ebb_constraint ebb_table;
8658 bfd_boolean relocs_fit;
8659
8660 /* If this routine always returns FALSE, the literals that cannot be
8661 coalesced will not be moved. */
8662 if (elf32xtensa_no_literal_movement)
8663 return FALSE;
8664
8665 relax_info = get_xtensa_relax_info (sec);
8666 if (!relax_info)
8667 return FALSE;
8668
8669 target_sec = r_reloc_get_section (target_loc);
8670 target_relax_info = get_xtensa_relax_info (target_sec);
8671
8672 /* Literals to undefined sections may not be moved because they
8673 must report an error. */
8674 if (bfd_is_und_section (target_sec))
8675 return FALSE;
8676
8677 src_entry = elf_xtensa_find_property_entry
8678 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8679
8680 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8681 return FALSE;
8682
8683 target_entry = elf_xtensa_find_property_entry
8684 (target_sec_cache->ptbl, target_sec_cache->pte_count,
8685 target_sec->vma + target_loc->target_offset);
8686
8687 if (!target_entry)
8688 return FALSE;
8689
8690 /* Make sure that we have not broken any branches. */
8691 relocs_fit = FALSE;
8692
8693 init_ebb_constraint (&ebb_table);
8694 ebb = &ebb_table.ebb;
8695 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
8696 target_sec_cache->content_length,
8697 target_sec_cache->ptbl, target_sec_cache->pte_count,
8698 target_sec_cache->relocs, target_sec_cache->reloc_count);
8699
8700 /* Propose to add 4 bytes + worst-case alignment size increase to
8701 destination. */
8702 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8703 ta_fill, target_loc->target_offset,
8704 -4 - (1 << target_sec->alignment_power), TRUE);
8705
8706 /* Check all of the PC-relative relocations to make sure they still fit. */
8707 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
8708 target_sec_cache->contents,
8709 target_sec_cache->relocs,
cb337148 8710 &ebb_table, NULL);
43cd72b9
BW
8711
8712 if (!relocs_fit)
8713 return FALSE;
8714
8715 text_action_add_literal (&target_relax_info->action_list,
8716 ta_add_literal, target_loc, lit_value, -4);
8717
8718 if (target_sec->alignment_power > 2 && target_entry != src_entry)
8719 {
8720 /* May need to add or remove some fill to maintain alignment. */
8721 int fill_extra_space;
8722 bfd_vma entry_sec_offset;
8723
8724 entry_sec_offset =
8725 target_entry->address - target_sec->vma + target_entry->size;
8726
8727 /* If the literal range is at the end of the section,
8728 do not add fill. */
8729 fill_extra_space = 0;
8730 the_add_entry =
8731 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8732 target_sec_cache->pte_count,
8733 entry_sec_offset);
8734 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8735 fill_extra_space = the_add_entry->size;
8736
8737 target_fa = find_fill_action (&target_relax_info->action_list,
8738 target_sec, entry_sec_offset);
8739 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8740 entry_sec_offset, 4,
8741 fill_extra_space);
8742 if (target_fa)
8743 adjust_fill_action (target_fa, removed_diff);
8744 else
8745 text_action_add (&target_relax_info->action_list,
8746 ta_fill, target_sec, entry_sec_offset, removed_diff);
8747 }
8748
8749 /* Mark that the literal will be moved to the new location. */
8750 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8751
8752 /* Remove the literal. */
8753 text_action_add (&relax_info->action_list,
8754 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8755
8756 /* If the section is 4-byte aligned, do not add fill. */
8757 if (sec->alignment_power > 2 && target_entry != src_entry)
8758 {
8759 int fill_extra_space;
8760 bfd_vma entry_sec_offset;
8761
8762 if (src_entry)
8763 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8764 else
8765 entry_sec_offset = rel->r_rel.target_offset+4;
8766
8767 /* If the literal range is at the end of the section,
8768 do not add fill. */
8769 fill_extra_space = 0;
8770 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8771 entry_sec_offset);
8772 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8773 fill_extra_space = the_add_entry->size;
8774
8775 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8776 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8777 -4, fill_extra_space);
8778 if (fa)
8779 adjust_fill_action (fa, removed_diff);
8780 else
8781 text_action_add (&relax_info->action_list,
8782 ta_fill, sec, entry_sec_offset, removed_diff);
8783 }
8784
8785 return TRUE;
e0001a05
NC
8786}
8787
8788\f
8789/* Second relaxation pass. */
8790
8791/* Modify all of the relocations to point to the right spot, and if this
8792 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8793 section size. */
e0001a05 8794
43cd72b9 8795bfd_boolean
7fa3d080 8796relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8797{
8798 Elf_Internal_Rela *internal_relocs;
8799 xtensa_relax_info *relax_info;
8800 bfd_byte *contents;
8801 bfd_boolean ok = TRUE;
8802 unsigned i;
43cd72b9
BW
8803 bfd_boolean rv = FALSE;
8804 bfd_boolean virtual_action;
8805 bfd_size_type sec_size;
e0001a05 8806
43cd72b9 8807 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8808 relax_info = get_xtensa_relax_info (sec);
8809 BFD_ASSERT (relax_info);
8810
43cd72b9
BW
8811 /* First translate any of the fixes that have been added already. */
8812 translate_section_fixes (sec);
8813
e0001a05
NC
8814 /* Handle property sections (e.g., literal tables) specially. */
8815 if (xtensa_is_property_section (sec))
8816 {
8817 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8818 return relax_property_section (abfd, sec, link_info);
8819 }
8820
43cd72b9
BW
8821 internal_relocs = retrieve_internal_relocs (abfd, sec,
8822 link_info->keep_memory);
8823 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8824 if (contents == NULL && sec_size != 0)
8825 {
8826 ok = FALSE;
8827 goto error_return;
8828 }
8829
8830 if (internal_relocs)
8831 {
8832 for (i = 0; i < sec->reloc_count; i++)
8833 {
8834 Elf_Internal_Rela *irel;
8835 xtensa_relax_info *target_relax_info;
8836 bfd_vma source_offset, old_source_offset;
8837 r_reloc r_rel;
8838 unsigned r_type;
8839 asection *target_sec;
8840
8841 /* Locally change the source address.
8842 Translate the target to the new target address.
8843 If it points to this section and has been removed,
8844 NULLify it.
8845 Write it back. */
8846
8847 irel = &internal_relocs[i];
8848 source_offset = irel->r_offset;
8849 old_source_offset = source_offset;
8850
8851 r_type = ELF32_R_TYPE (irel->r_info);
8852 r_reloc_init (&r_rel, abfd, irel, contents,
8853 bfd_get_section_limit (abfd, sec));
8854
8855 /* If this section could have changed then we may need to
8856 change the relocation's offset. */
8857
8858 if (relax_info->is_relaxable_literal_section
8859 || relax_info->is_relaxable_asm_section)
8860 {
9b7f5d20
BW
8861 pin_internal_relocs (sec, internal_relocs);
8862
43cd72b9
BW
8863 if (r_type != R_XTENSA_NONE
8864 && find_removed_literal (&relax_info->removed_list,
8865 irel->r_offset))
8866 {
8867 /* Remove this relocation. */
8868 if (elf_hash_table (link_info)->dynamic_sections_created)
8869 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8870 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8871 irel->r_offset = offset_with_removed_text
8872 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
8873 continue;
8874 }
8875
8876 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8877 {
8878 text_action *action =
8879 find_insn_action (&relax_info->action_list,
8880 irel->r_offset);
8881 if (action && (action->action == ta_convert_longcall
8882 || action->action == ta_remove_longcall))
8883 {
8884 bfd_reloc_status_type retval;
8885 char *error_message = NULL;
8886
8887 retval = contract_asm_expansion (contents, sec_size,
8888 irel, &error_message);
8889 if (retval != bfd_reloc_ok)
8890 {
8891 (*link_info->callbacks->reloc_dangerous)
8892 (link_info, error_message, abfd, sec,
8893 irel->r_offset);
8894 goto error_return;
8895 }
8896 /* Update the action so that the code that moves
8897 the contents will do the right thing. */
8898 if (action->action == ta_remove_longcall)
8899 action->action = ta_remove_insn;
8900 else
8901 action->action = ta_none;
8902 /* Refresh the info in the r_rel. */
8903 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8904 r_type = ELF32_R_TYPE (irel->r_info);
8905 }
8906 }
8907
8908 source_offset = offset_with_removed_text
8909 (&relax_info->action_list, irel->r_offset);
8910 irel->r_offset = source_offset;
8911 }
8912
8913 /* If the target section could have changed then
8914 we may need to change the relocation's target offset. */
8915
8916 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 8917
ae326da8
BW
8918 /* For a reference to a discarded section from a DWARF section,
8919 i.e., where action_discarded is PRETEND, the symbol will
8920 eventually be modified to refer to the kept section (at least if
8921 the kept and discarded sections are the same size). Anticipate
8922 that here and adjust things accordingly. */
8923 if (! elf_xtensa_ignore_discarded_relocs (sec)
8924 && elf_xtensa_action_discarded (sec) == PRETEND
8925 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8926 && target_sec != NULL
8927 && elf_discarded_section (target_sec))
8928 {
8929 /* It would be natural to call _bfd_elf_check_kept_section
8930 here, but it's not exported from elflink.c. It's also a
8931 fairly expensive check. Adjusting the relocations to the
8932 discarded section is fairly harmless; it will only adjust
8933 some addends and difference values. If it turns out that
8934 _bfd_elf_check_kept_section fails later, it won't matter,
8935 so just compare the section names to find the right group
8936 member. */
8937 asection *kept = target_sec->kept_section;
8938 if (kept != NULL)
8939 {
8940 if ((kept->flags & SEC_GROUP) != 0)
8941 {
8942 asection *first = elf_next_in_group (kept);
8943 asection *s = first;
8944
8945 kept = NULL;
8946 while (s != NULL)
8947 {
8948 if (strcmp (s->name, target_sec->name) == 0)
8949 {
8950 kept = s;
8951 break;
8952 }
8953 s = elf_next_in_group (s);
8954 if (s == first)
8955 break;
8956 }
8957 }
8958 }
8959 if (kept != NULL
8960 && ((target_sec->rawsize != 0
8961 ? target_sec->rawsize : target_sec->size)
8962 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8963 target_sec = kept;
8964 }
8965
8966 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
8967 if (target_relax_info
8968 && (target_relax_info->is_relaxable_literal_section
8969 || target_relax_info->is_relaxable_asm_section))
8970 {
8971 r_reloc new_reloc;
9b7f5d20 8972 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
8973
8974 if (r_type == R_XTENSA_DIFF8
8975 || r_type == R_XTENSA_DIFF16
8976 || r_type == R_XTENSA_DIFF32)
8977 {
8978 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8979
8980 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8981 {
8982 (*link_info->callbacks->reloc_dangerous)
8983 (link_info, _("invalid relocation address"),
8984 abfd, sec, old_source_offset);
8985 goto error_return;
8986 }
8987
8988 switch (r_type)
8989 {
8990 case R_XTENSA_DIFF8:
8991 diff_value =
8992 bfd_get_8 (abfd, &contents[old_source_offset]);
8993 break;
8994 case R_XTENSA_DIFF16:
8995 diff_value =
8996 bfd_get_16 (abfd, &contents[old_source_offset]);
8997 break;
8998 case R_XTENSA_DIFF32:
8999 diff_value =
9000 bfd_get_32 (abfd, &contents[old_source_offset]);
9001 break;
9002 }
9003
9004 new_end_offset = offset_with_removed_text
9005 (&target_relax_info->action_list,
9006 r_rel.target_offset + diff_value);
9007 diff_value = new_end_offset - new_reloc.target_offset;
9008
9009 switch (r_type)
9010 {
9011 case R_XTENSA_DIFF8:
9012 diff_mask = 0xff;
9013 bfd_put_8 (abfd, diff_value,
9014 &contents[old_source_offset]);
9015 break;
9016 case R_XTENSA_DIFF16:
9017 diff_mask = 0xffff;
9018 bfd_put_16 (abfd, diff_value,
9019 &contents[old_source_offset]);
9020 break;
9021 case R_XTENSA_DIFF32:
9022 diff_mask = 0xffffffff;
9023 bfd_put_32 (abfd, diff_value,
9024 &contents[old_source_offset]);
9025 break;
9026 }
9027
9028 /* Check for overflow. */
9029 if ((diff_value & ~diff_mask) != 0)
9030 {
9031 (*link_info->callbacks->reloc_dangerous)
9032 (link_info, _("overflow after relaxation"),
9033 abfd, sec, old_source_offset);
9034 goto error_return;
9035 }
9036
9037 pin_contents (sec, contents);
9038 }
dc96b90a
BW
9039
9040 /* If the relocation still references a section in the same
9041 input file, modify the relocation directly instead of
9042 adding a "fix" record. */
9043 if (target_sec->owner == abfd)
9044 {
9045 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9046 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9047 irel->r_addend = new_reloc.rela.r_addend;
9048 pin_internal_relocs (sec, internal_relocs);
9049 }
9b7f5d20
BW
9050 else
9051 {
dc96b90a
BW
9052 bfd_vma addend_displacement;
9053 reloc_bfd_fix *fix;
9054
9055 addend_displacement =
9056 new_reloc.target_offset + new_reloc.virtual_offset;
9057 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9058 target_sec,
9059 addend_displacement, TRUE);
9060 add_fix (sec, fix);
9b7f5d20 9061 }
43cd72b9 9062 }
43cd72b9
BW
9063 }
9064 }
9065
9066 if ((relax_info->is_relaxable_literal_section
9067 || relax_info->is_relaxable_asm_section)
9068 && relax_info->action_list.head)
9069 {
9070 /* Walk through the planned actions and build up a table
9071 of move, copy and fill records. Use the move, copy and
9072 fill records to perform the actions once. */
9073
43cd72b9
BW
9074 int removed = 0;
9075 bfd_size_type final_size, copy_size, orig_insn_size;
9076 bfd_byte *scratch = NULL;
9077 bfd_byte *dup_contents = NULL;
a3ef2d63 9078 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9079 bfd_vma orig_dot = 0;
9080 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9081 orig dot in physical memory. */
9082 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9083 bfd_vma dup_dot = 0;
9084
9085 text_action *action = relax_info->action_list.head;
9086
9087 final_size = sec->size;
9088 for (action = relax_info->action_list.head; action;
9089 action = action->next)
9090 {
9091 final_size -= action->removed_bytes;
9092 }
9093
9094 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9095 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9096
9097 /* The dot is the current fill location. */
9098#if DEBUG
9099 print_action_list (stderr, &relax_info->action_list);
9100#endif
9101
9102 for (action = relax_info->action_list.head; action;
9103 action = action->next)
9104 {
9105 virtual_action = FALSE;
9106 if (action->offset > orig_dot)
9107 {
9108 orig_dot += orig_dot_copied;
9109 orig_dot_copied = 0;
9110 orig_dot_vo = 0;
9111 /* Out of the virtual world. */
9112 }
9113
9114 if (action->offset > orig_dot)
9115 {
9116 copy_size = action->offset - orig_dot;
9117 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9118 orig_dot += copy_size;
9119 dup_dot += copy_size;
9120 BFD_ASSERT (action->offset == orig_dot);
9121 }
9122 else if (action->offset < orig_dot)
9123 {
9124 if (action->action == ta_fill
9125 && action->offset - action->removed_bytes == orig_dot)
9126 {
9127 /* This is OK because the fill only effects the dup_dot. */
9128 }
9129 else if (action->action == ta_add_literal)
9130 {
9131 /* TBD. Might need to handle this. */
9132 }
9133 }
9134 if (action->offset == orig_dot)
9135 {
9136 if (action->virtual_offset > orig_dot_vo)
9137 {
9138 if (orig_dot_vo == 0)
9139 {
9140 /* Need to copy virtual_offset bytes. Probably four. */
9141 copy_size = action->virtual_offset - orig_dot_vo;
9142 memmove (&dup_contents[dup_dot],
9143 &contents[orig_dot], copy_size);
9144 orig_dot_copied = copy_size;
9145 dup_dot += copy_size;
9146 }
9147 virtual_action = TRUE;
9148 }
9149 else
9150 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9151 }
9152 switch (action->action)
9153 {
9154 case ta_remove_literal:
9155 case ta_remove_insn:
9156 BFD_ASSERT (action->removed_bytes >= 0);
9157 orig_dot += action->removed_bytes;
9158 break;
9159
9160 case ta_narrow_insn:
9161 orig_insn_size = 3;
9162 copy_size = 2;
9163 memmove (scratch, &contents[orig_dot], orig_insn_size);
9164 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9165 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9166 BFD_ASSERT (rv);
9167 memmove (&dup_contents[dup_dot], scratch, copy_size);
9168 orig_dot += orig_insn_size;
9169 dup_dot += copy_size;
9170 break;
9171
9172 case ta_fill:
9173 if (action->removed_bytes >= 0)
9174 orig_dot += action->removed_bytes;
9175 else
9176 {
9177 /* Already zeroed in dup_contents. Just bump the
9178 counters. */
9179 dup_dot += (-action->removed_bytes);
9180 }
9181 break;
9182
9183 case ta_none:
9184 BFD_ASSERT (action->removed_bytes == 0);
9185 break;
9186
9187 case ta_convert_longcall:
9188 case ta_remove_longcall:
9189 /* These will be removed or converted before we get here. */
9190 BFD_ASSERT (0);
9191 break;
9192
9193 case ta_widen_insn:
9194 orig_insn_size = 2;
9195 copy_size = 3;
9196 memmove (scratch, &contents[orig_dot], orig_insn_size);
9197 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9198 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9199 BFD_ASSERT (rv);
9200 memmove (&dup_contents[dup_dot], scratch, copy_size);
9201 orig_dot += orig_insn_size;
9202 dup_dot += copy_size;
9203 break;
9204
9205 case ta_add_literal:
9206 orig_insn_size = 0;
9207 copy_size = 4;
9208 BFD_ASSERT (action->removed_bytes == -4);
9209 /* TBD -- place the literal value here and insert
9210 into the table. */
9211 memset (&dup_contents[dup_dot], 0, 4);
9212 pin_internal_relocs (sec, internal_relocs);
9213 pin_contents (sec, contents);
9214
9215 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9216 relax_info, &internal_relocs, &action->value))
9217 goto error_return;
9218
9219 if (virtual_action)
9220 orig_dot_vo += copy_size;
9221
9222 orig_dot += orig_insn_size;
9223 dup_dot += copy_size;
9224 break;
9225
9226 default:
9227 /* Not implemented yet. */
9228 BFD_ASSERT (0);
9229 break;
9230 }
9231
43cd72b9
BW
9232 removed += action->removed_bytes;
9233 BFD_ASSERT (dup_dot <= final_size);
9234 BFD_ASSERT (orig_dot <= orig_size);
9235 }
9236
9237 orig_dot += orig_dot_copied;
9238 orig_dot_copied = 0;
9239
9240 if (orig_dot != orig_size)
9241 {
9242 copy_size = orig_size - orig_dot;
9243 BFD_ASSERT (orig_size > orig_dot);
9244 BFD_ASSERT (dup_dot + copy_size == final_size);
9245 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9246 orig_dot += copy_size;
9247 dup_dot += copy_size;
9248 }
9249 BFD_ASSERT (orig_size == orig_dot);
9250 BFD_ASSERT (final_size == dup_dot);
9251
9252 /* Move the dup_contents back. */
9253 if (final_size > orig_size)
9254 {
9255 /* Contents need to be reallocated. Swap the dup_contents into
9256 contents. */
9257 sec->contents = dup_contents;
9258 free (contents);
9259 contents = dup_contents;
9260 pin_contents (sec, contents);
9261 }
9262 else
9263 {
9264 BFD_ASSERT (final_size <= orig_size);
9265 memset (contents, 0, orig_size);
9266 memcpy (contents, dup_contents, final_size);
9267 free (dup_contents);
9268 }
9269 free (scratch);
9270 pin_contents (sec, contents);
9271
a3ef2d63
BW
9272 if (sec->rawsize == 0)
9273 sec->rawsize = sec->size;
43cd72b9
BW
9274 sec->size = final_size;
9275 }
9276
9277 error_return:
9278 release_internal_relocs (sec, internal_relocs);
9279 release_contents (sec, contents);
9280 return ok;
9281}
9282
9283
9284static bfd_boolean
7fa3d080 9285translate_section_fixes (asection *sec)
43cd72b9
BW
9286{
9287 xtensa_relax_info *relax_info;
9288 reloc_bfd_fix *r;
9289
9290 relax_info = get_xtensa_relax_info (sec);
9291 if (!relax_info)
9292 return TRUE;
9293
9294 for (r = relax_info->fix_list; r != NULL; r = r->next)
9295 if (!translate_reloc_bfd_fix (r))
9296 return FALSE;
e0001a05 9297
43cd72b9
BW
9298 return TRUE;
9299}
e0001a05 9300
e0001a05 9301
43cd72b9
BW
9302/* Translate a fix given the mapping in the relax info for the target
9303 section. If it has already been translated, no work is required. */
e0001a05 9304
43cd72b9 9305static bfd_boolean
7fa3d080 9306translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9307{
9308 reloc_bfd_fix new_fix;
9309 asection *sec;
9310 xtensa_relax_info *relax_info;
9311 removed_literal *removed;
9312 bfd_vma new_offset, target_offset;
e0001a05 9313
43cd72b9
BW
9314 if (fix->translated)
9315 return TRUE;
e0001a05 9316
43cd72b9
BW
9317 sec = fix->target_sec;
9318 target_offset = fix->target_offset;
e0001a05 9319
43cd72b9
BW
9320 relax_info = get_xtensa_relax_info (sec);
9321 if (!relax_info)
9322 {
9323 fix->translated = TRUE;
9324 return TRUE;
9325 }
e0001a05 9326
43cd72b9 9327 new_fix = *fix;
e0001a05 9328
43cd72b9
BW
9329 /* The fix does not need to be translated if the section cannot change. */
9330 if (!relax_info->is_relaxable_literal_section
9331 && !relax_info->is_relaxable_asm_section)
9332 {
9333 fix->translated = TRUE;
9334 return TRUE;
9335 }
e0001a05 9336
43cd72b9
BW
9337 /* If the literal has been moved and this relocation was on an
9338 opcode, then the relocation should move to the new literal
9339 location. Otherwise, the relocation should move within the
9340 section. */
9341
9342 removed = FALSE;
9343 if (is_operand_relocation (fix->src_type))
9344 {
9345 /* Check if the original relocation is against a literal being
9346 removed. */
9347 removed = find_removed_literal (&relax_info->removed_list,
9348 target_offset);
e0001a05
NC
9349 }
9350
43cd72b9 9351 if (removed)
e0001a05 9352 {
43cd72b9 9353 asection *new_sec;
e0001a05 9354
43cd72b9
BW
9355 /* The fact that there is still a relocation to this literal indicates
9356 that the literal is being coalesced, not simply removed. */
9357 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9358
43cd72b9
BW
9359 /* This was moved to some other address (possibly another section). */
9360 new_sec = r_reloc_get_section (&removed->to);
9361 if (new_sec != sec)
e0001a05 9362 {
43cd72b9
BW
9363 sec = new_sec;
9364 relax_info = get_xtensa_relax_info (sec);
9365 if (!relax_info ||
9366 (!relax_info->is_relaxable_literal_section
9367 && !relax_info->is_relaxable_asm_section))
e0001a05 9368 {
43cd72b9
BW
9369 target_offset = removed->to.target_offset;
9370 new_fix.target_sec = new_sec;
9371 new_fix.target_offset = target_offset;
9372 new_fix.translated = TRUE;
9373 *fix = new_fix;
9374 return TRUE;
e0001a05 9375 }
e0001a05 9376 }
43cd72b9
BW
9377 target_offset = removed->to.target_offset;
9378 new_fix.target_sec = new_sec;
e0001a05 9379 }
43cd72b9
BW
9380
9381 /* The target address may have been moved within its section. */
9382 new_offset = offset_with_removed_text (&relax_info->action_list,
9383 target_offset);
9384
9385 new_fix.target_offset = new_offset;
9386 new_fix.target_offset = new_offset;
9387 new_fix.translated = TRUE;
9388 *fix = new_fix;
9389 return TRUE;
e0001a05
NC
9390}
9391
9392
9393/* Fix up a relocation to take account of removed literals. */
9394
9b7f5d20
BW
9395static asection *
9396translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9397{
e0001a05
NC
9398 xtensa_relax_info *relax_info;
9399 removed_literal *removed;
9b7f5d20
BW
9400 bfd_vma target_offset, base_offset;
9401 text_action *act;
e0001a05
NC
9402
9403 *new_rel = *orig_rel;
9404
9405 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 9406 return sec ;
e0001a05
NC
9407
9408 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
9409 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9410 || relax_info->is_relaxable_asm_section));
e0001a05 9411
43cd72b9
BW
9412 target_offset = orig_rel->target_offset;
9413
9414 removed = FALSE;
9415 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9416 {
9417 /* Check if the original relocation is against a literal being
9418 removed. */
9419 removed = find_removed_literal (&relax_info->removed_list,
9420 target_offset);
9421 }
9422 if (removed && removed->to.abfd)
e0001a05
NC
9423 {
9424 asection *new_sec;
9425
9426 /* The fact that there is still a relocation to this literal indicates
9427 that the literal is being coalesced, not simply removed. */
9428 BFD_ASSERT (removed->to.abfd != NULL);
9429
43cd72b9
BW
9430 /* This was moved to some other address
9431 (possibly in another section). */
e0001a05
NC
9432 *new_rel = removed->to;
9433 new_sec = r_reloc_get_section (new_rel);
43cd72b9 9434 if (new_sec != sec)
e0001a05
NC
9435 {
9436 sec = new_sec;
9437 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
9438 if (!relax_info
9439 || (!relax_info->is_relaxable_literal_section
9440 && !relax_info->is_relaxable_asm_section))
9b7f5d20 9441 return sec;
e0001a05 9442 }
43cd72b9 9443 target_offset = new_rel->target_offset;
e0001a05
NC
9444 }
9445
9b7f5d20
BW
9446 /* Find the base offset of the reloc symbol, excluding any addend from the
9447 reloc or from the section contents (for a partial_inplace reloc). Then
9448 find the adjusted values of the offsets due to relaxation. The base
9449 offset is needed to determine the change to the reloc's addend; the reloc
9450 addend should not be adjusted due to relaxations located before the base
9451 offset. */
9452
9453 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9454 act = relax_info->action_list.head;
9455 if (base_offset <= target_offset)
9456 {
9457 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9458 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9459 new_rel->target_offset = target_offset - base_removed - addend_removed;
9460 new_rel->rela.r_addend -= addend_removed;
9461 }
9462 else
9463 {
9464 /* Handle a negative addend. The base offset comes first. */
9465 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9466 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9467 new_rel->target_offset = target_offset - tgt_removed;
9468 new_rel->rela.r_addend += addend_removed;
9469 }
e0001a05 9470
9b7f5d20 9471 return sec;
e0001a05
NC
9472}
9473
9474
9475/* For dynamic links, there may be a dynamic relocation for each
9476 literal. The number of dynamic relocations must be computed in
9477 size_dynamic_sections, which occurs before relaxation. When a
9478 literal is removed, this function checks if there is a corresponding
9479 dynamic relocation and shrinks the size of the appropriate dynamic
9480 relocation section accordingly. At this point, the contents of the
9481 dynamic relocation sections have not yet been filled in, so there's
9482 nothing else that needs to be done. */
9483
9484static void
7fa3d080
BW
9485shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9486 bfd *abfd,
9487 asection *input_section,
9488 Elf_Internal_Rela *rel)
e0001a05 9489{
f0e6fdb2 9490 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
9491 Elf_Internal_Shdr *symtab_hdr;
9492 struct elf_link_hash_entry **sym_hashes;
9493 unsigned long r_symndx;
9494 int r_type;
9495 struct elf_link_hash_entry *h;
9496 bfd_boolean dynamic_symbol;
9497
f0e6fdb2 9498 htab = elf_xtensa_hash_table (info);
e0001a05
NC
9499 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9500 sym_hashes = elf_sym_hashes (abfd);
9501
9502 r_type = ELF32_R_TYPE (rel->r_info);
9503 r_symndx = ELF32_R_SYM (rel->r_info);
9504
9505 if (r_symndx < symtab_hdr->sh_info)
9506 h = NULL;
9507 else
9508 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9509
4608f3d9 9510 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
9511
9512 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9513 && (input_section->flags & SEC_ALLOC) != 0
9514 && (dynamic_symbol || info->shared))
9515 {
e0001a05
NC
9516 asection *srel;
9517 bfd_boolean is_plt = FALSE;
9518
e0001a05
NC
9519 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9520 {
f0e6fdb2 9521 srel = htab->srelplt;
e0001a05
NC
9522 is_plt = TRUE;
9523 }
9524 else
f0e6fdb2 9525 srel = htab->srelgot;
e0001a05
NC
9526
9527 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 9528 BFD_ASSERT (srel != NULL);
eea6121a
AM
9529 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9530 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
9531
9532 if (is_plt)
9533 {
9534 asection *splt, *sgotplt, *srelgot;
9535 int reloc_index, chunk;
9536
9537 /* Find the PLT reloc index of the entry being removed. This
9538 is computed from the size of ".rela.plt". It is needed to
9539 figure out which PLT chunk to resize. Usually "last index
9540 = size - 1" since the index starts at zero, but in this
9541 context, the size has just been decremented so there's no
9542 need to subtract one. */
eea6121a 9543 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
9544
9545 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
9546 splt = elf_xtensa_get_plt_section (info, chunk);
9547 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
9548 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9549
9550 /* Check if an entire PLT chunk has just been eliminated. */
9551 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9552 {
9553 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 9554 srelgot = htab->srelgot;
e0001a05
NC
9555 BFD_ASSERT (srelgot != NULL);
9556 srelgot->reloc_count -= 2;
eea6121a
AM
9557 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9558 sgotplt->size -= 8;
e0001a05
NC
9559
9560 /* There should be only one entry left (and it will be
9561 removed below). */
eea6121a
AM
9562 BFD_ASSERT (sgotplt->size == 4);
9563 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
9564 }
9565
eea6121a
AM
9566 BFD_ASSERT (sgotplt->size >= 4);
9567 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 9568
eea6121a
AM
9569 sgotplt->size -= 4;
9570 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
9571 }
9572 }
9573}
9574
9575
43cd72b9
BW
9576/* Take an r_rel and move it to another section. This usually
9577 requires extending the interal_relocation array and pinning it. If
9578 the original r_rel is from the same BFD, we can complete this here.
9579 Otherwise, we add a fix record to let the final link fix the
9580 appropriate address. Contents and internal relocations for the
9581 section must be pinned after calling this routine. */
9582
9583static bfd_boolean
7fa3d080
BW
9584move_literal (bfd *abfd,
9585 struct bfd_link_info *link_info,
9586 asection *sec,
9587 bfd_vma offset,
9588 bfd_byte *contents,
9589 xtensa_relax_info *relax_info,
9590 Elf_Internal_Rela **internal_relocs_p,
9591 const literal_value *lit)
43cd72b9
BW
9592{
9593 Elf_Internal_Rela *new_relocs = NULL;
9594 size_t new_relocs_count = 0;
9595 Elf_Internal_Rela this_rela;
9596 const r_reloc *r_rel;
9597
9598 r_rel = &lit->r_rel;
9599 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9600
9601 if (r_reloc_is_const (r_rel))
9602 bfd_put_32 (abfd, lit->value, contents + offset);
9603 else
9604 {
9605 int r_type;
9606 unsigned i;
9607 asection *target_sec;
9608 reloc_bfd_fix *fix;
9609 unsigned insert_at;
9610
9611 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
9612 target_sec = r_reloc_get_section (r_rel);
9613
9614 /* This is the difficult case. We have to create a fix up. */
9615 this_rela.r_offset = offset;
9616 this_rela.r_info = ELF32_R_INFO (0, r_type);
9617 this_rela.r_addend =
9618 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9619 bfd_put_32 (abfd, lit->value, contents + offset);
9620
9621 /* Currently, we cannot move relocations during a relocatable link. */
9622 BFD_ASSERT (!link_info->relocatable);
0f5f1638 9623 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
9624 r_reloc_get_section (r_rel),
9625 r_rel->target_offset + r_rel->virtual_offset,
9626 FALSE);
9627 /* We also need to mark that relocations are needed here. */
9628 sec->flags |= SEC_RELOC;
9629
9630 translate_reloc_bfd_fix (fix);
9631 /* This fix has not yet been translated. */
9632 add_fix (sec, fix);
9633
9634 /* Add the relocation. If we have already allocated our own
9635 space for the relocations and we have room for more, then use
9636 it. Otherwise, allocate new space and move the literals. */
9637 insert_at = sec->reloc_count;
9638 for (i = 0; i < sec->reloc_count; ++i)
9639 {
9640 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9641 {
9642 insert_at = i;
9643 break;
9644 }
9645 }
9646
9647 if (*internal_relocs_p != relax_info->allocated_relocs
9648 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9649 {
9650 BFD_ASSERT (relax_info->allocated_relocs == NULL
9651 || sec->reloc_count == relax_info->relocs_count);
9652
9653 if (relax_info->allocated_relocs_count == 0)
9654 new_relocs_count = (sec->reloc_count + 2) * 2;
9655 else
9656 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9657
9658 new_relocs = (Elf_Internal_Rela *)
9659 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9660 if (!new_relocs)
9661 return FALSE;
9662
9663 /* We could handle this more quickly by finding the split point. */
9664 if (insert_at != 0)
9665 memcpy (new_relocs, *internal_relocs_p,
9666 insert_at * sizeof (Elf_Internal_Rela));
9667
9668 new_relocs[insert_at] = this_rela;
9669
9670 if (insert_at != sec->reloc_count)
9671 memcpy (new_relocs + insert_at + 1,
9672 (*internal_relocs_p) + insert_at,
9673 (sec->reloc_count - insert_at)
9674 * sizeof (Elf_Internal_Rela));
9675
9676 if (*internal_relocs_p != relax_info->allocated_relocs)
9677 {
9678 /* The first time we re-allocate, we can only free the
9679 old relocs if they were allocated with bfd_malloc.
9680 This is not true when keep_memory is in effect. */
9681 if (!link_info->keep_memory)
9682 free (*internal_relocs_p);
9683 }
9684 else
9685 free (*internal_relocs_p);
9686 relax_info->allocated_relocs = new_relocs;
9687 relax_info->allocated_relocs_count = new_relocs_count;
9688 elf_section_data (sec)->relocs = new_relocs;
9689 sec->reloc_count++;
9690 relax_info->relocs_count = sec->reloc_count;
9691 *internal_relocs_p = new_relocs;
9692 }
9693 else
9694 {
9695 if (insert_at != sec->reloc_count)
9696 {
9697 unsigned idx;
9698 for (idx = sec->reloc_count; idx > insert_at; idx--)
9699 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9700 }
9701 (*internal_relocs_p)[insert_at] = this_rela;
9702 sec->reloc_count++;
9703 if (relax_info->allocated_relocs)
9704 relax_info->relocs_count = sec->reloc_count;
9705 }
9706 }
9707 return TRUE;
9708}
9709
9710
e0001a05
NC
9711/* This is similar to relax_section except that when a target is moved,
9712 we shift addresses up. We also need to modify the size. This
9713 algorithm does NOT allow for relocations into the middle of the
9714 property sections. */
9715
43cd72b9 9716static bfd_boolean
7fa3d080
BW
9717relax_property_section (bfd *abfd,
9718 asection *sec,
9719 struct bfd_link_info *link_info)
e0001a05
NC
9720{
9721 Elf_Internal_Rela *internal_relocs;
9722 bfd_byte *contents;
1d25768e 9723 unsigned i;
e0001a05 9724 bfd_boolean ok = TRUE;
43cd72b9
BW
9725 bfd_boolean is_full_prop_section;
9726 size_t last_zfill_target_offset = 0;
9727 asection *last_zfill_target_sec = NULL;
9728 bfd_size_type sec_size;
1d25768e 9729 bfd_size_type entry_size;
e0001a05 9730
43cd72b9 9731 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9732 internal_relocs = retrieve_internal_relocs (abfd, sec,
9733 link_info->keep_memory);
9734 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9735 if (contents == NULL && sec_size != 0)
e0001a05
NC
9736 {
9737 ok = FALSE;
9738 goto error_return;
9739 }
9740
1d25768e
BW
9741 is_full_prop_section = xtensa_is_proptable_section (sec);
9742 if (is_full_prop_section)
9743 entry_size = 12;
9744 else
9745 entry_size = 8;
43cd72b9
BW
9746
9747 if (internal_relocs)
e0001a05 9748 {
43cd72b9 9749 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9750 {
9751 Elf_Internal_Rela *irel;
9752 xtensa_relax_info *target_relax_info;
e0001a05
NC
9753 unsigned r_type;
9754 asection *target_sec;
43cd72b9
BW
9755 literal_value val;
9756 bfd_byte *size_p, *flags_p;
e0001a05
NC
9757
9758 /* Locally change the source address.
9759 Translate the target to the new target address.
9760 If it points to this section and has been removed, MOVE IT.
9761 Also, don't forget to modify the associated SIZE at
9762 (offset + 4). */
9763
9764 irel = &internal_relocs[i];
9765 r_type = ELF32_R_TYPE (irel->r_info);
9766 if (r_type == R_XTENSA_NONE)
9767 continue;
9768
43cd72b9
BW
9769 /* Find the literal value. */
9770 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9771 size_p = &contents[irel->r_offset + 4];
9772 flags_p = NULL;
9773 if (is_full_prop_section)
1d25768e
BW
9774 flags_p = &contents[irel->r_offset + 8];
9775 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 9776
43cd72b9 9777 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
9778 target_relax_info = get_xtensa_relax_info (target_sec);
9779
9780 if (target_relax_info
43cd72b9
BW
9781 && (target_relax_info->is_relaxable_literal_section
9782 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
9783 {
9784 /* Translate the relocation's destination. */
03669f1c
BW
9785 bfd_vma old_offset = val.r_rel.target_offset;
9786 bfd_vma new_offset;
e0001a05 9787 long old_size, new_size;
03669f1c
BW
9788 text_action *act = target_relax_info->action_list.head;
9789 new_offset = old_offset -
9790 removed_by_actions (&act, old_offset, FALSE);
e0001a05
NC
9791
9792 /* Assert that we are not out of bounds. */
43cd72b9 9793 old_size = bfd_get_32 (abfd, size_p);
03669f1c 9794 new_size = old_size;
43cd72b9
BW
9795
9796 if (old_size == 0)
9797 {
9798 /* Only the first zero-sized unreachable entry is
9799 allowed to expand. In this case the new offset
9800 should be the offset before the fill and the new
9801 size is the expansion size. For other zero-sized
9802 entries the resulting size should be zero with an
9803 offset before or after the fill address depending
9804 on whether the expanding unreachable entry
9805 preceeds it. */
03669f1c
BW
9806 if (last_zfill_target_sec == 0
9807 || last_zfill_target_sec != target_sec
9808 || last_zfill_target_offset != old_offset)
43cd72b9 9809 {
03669f1c
BW
9810 bfd_vma new_end_offset = new_offset;
9811
9812 /* Recompute the new_offset, but this time don't
9813 include any fill inserted by relaxation. */
9814 act = target_relax_info->action_list.head;
9815 new_offset = old_offset -
9816 removed_by_actions (&act, old_offset, TRUE);
43cd72b9
BW
9817
9818 /* If it is not unreachable and we have not yet
9819 seen an unreachable at this address, place it
9820 before the fill address. */
03669f1c
BW
9821 if (flags_p && (bfd_get_32 (abfd, flags_p)
9822 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 9823 {
03669f1c
BW
9824 new_size = new_end_offset - new_offset;
9825
43cd72b9 9826 last_zfill_target_sec = target_sec;
03669f1c 9827 last_zfill_target_offset = old_offset;
43cd72b9
BW
9828 }
9829 }
9830 }
9831 else
03669f1c
BW
9832 new_size -=
9833 removed_by_actions (&act, old_offset + old_size, TRUE);
43cd72b9 9834
e0001a05
NC
9835 if (new_size != old_size)
9836 {
9837 bfd_put_32 (abfd, new_size, size_p);
9838 pin_contents (sec, contents);
9839 }
43cd72b9 9840
03669f1c 9841 if (new_offset != old_offset)
e0001a05 9842 {
03669f1c 9843 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
9844 irel->r_addend += diff;
9845 pin_internal_relocs (sec, internal_relocs);
9846 }
9847 }
9848 }
9849 }
9850
9851 /* Combine adjacent property table entries. This is also done in
9852 finish_dynamic_sections() but at that point it's too late to
9853 reclaim the space in the output section, so we do this twice. */
9854
43cd72b9 9855 if (internal_relocs && (!link_info->relocatable
1d25768e 9856 || xtensa_is_littable_section (sec)))
e0001a05
NC
9857 {
9858 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9859 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9860 int removed_bytes = 0;
1d25768e 9861 bfd_vma offset;
43cd72b9
BW
9862 flagword predef_flags;
9863
43cd72b9 9864 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9865
1d25768e 9866 /* Walk over memory and relocations at the same time.
e0001a05
NC
9867 This REQUIRES that the internal_relocs be sorted by offset. */
9868 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9869 internal_reloc_compare);
e0001a05
NC
9870
9871 pin_internal_relocs (sec, internal_relocs);
9872 pin_contents (sec, contents);
9873
1d25768e
BW
9874 next_rel = internal_relocs;
9875 rel_end = internal_relocs + sec->reloc_count;
9876
a3ef2d63 9877 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 9878
a3ef2d63 9879 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 9880 {
1d25768e 9881 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9882 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9883 bfd_boolean remove_this_rel;
43cd72b9 9884 flagword flags;
e0001a05 9885
1d25768e
BW
9886 /* Find the first relocation for the entry at the current offset.
9887 Adjust the offsets of any extra relocations for the previous
9888 entry. */
9889 offset_rel = NULL;
9890 if (next_rel)
9891 {
9892 for (irel = next_rel; irel < rel_end; irel++)
9893 {
9894 if ((irel->r_offset == offset
9895 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9896 || irel->r_offset > offset)
9897 {
9898 offset_rel = irel;
9899 break;
9900 }
9901 irel->r_offset -= removed_bytes;
1d25768e
BW
9902 }
9903 }
e0001a05 9904
1d25768e
BW
9905 /* Find the next relocation (if there are any left). */
9906 extra_rel = NULL;
9907 if (offset_rel)
e0001a05 9908 {
1d25768e 9909 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9910 {
1d25768e
BW
9911 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9912 {
9913 extra_rel = irel;
9914 break;
9915 }
e0001a05 9916 }
e0001a05
NC
9917 }
9918
1d25768e
BW
9919 /* Check if there are relocations on the current entry. There
9920 should usually be a relocation on the offset field. If there
9921 are relocations on the size or flags, then we can't optimize
9922 this entry. Also, find the next relocation to examine on the
9923 next iteration. */
9924 if (offset_rel)
e0001a05 9925 {
1d25768e 9926 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 9927 {
1d25768e
BW
9928 next_rel = offset_rel;
9929 /* There are no relocations on the current entry, but we
9930 might still be able to remove it if the size is zero. */
9931 offset_rel = NULL;
9932 }
9933 else if (offset_rel->r_offset > offset
9934 || (extra_rel
9935 && extra_rel->r_offset < offset + entry_size))
9936 {
9937 /* There is a relocation on the size or flags, so we can't
9938 do anything with this entry. Continue with the next. */
9939 next_rel = offset_rel;
9940 continue;
9941 }
9942 else
9943 {
9944 BFD_ASSERT (offset_rel->r_offset == offset);
9945 offset_rel->r_offset -= removed_bytes;
9946 next_rel = offset_rel + 1;
e0001a05 9947 }
e0001a05 9948 }
1d25768e
BW
9949 else
9950 next_rel = NULL;
e0001a05 9951
1d25768e 9952 remove_this_rel = FALSE;
e0001a05
NC
9953 bytes_to_remove = 0;
9954 actual_offset = offset - removed_bytes;
9955 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9956
43cd72b9
BW
9957 if (is_full_prop_section)
9958 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9959 else
9960 flags = predef_flags;
9961
1d25768e
BW
9962 if (size == 0
9963 && (flags & XTENSA_PROP_ALIGN) == 0
9964 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9965 {
43cd72b9
BW
9966 /* Always remove entries with zero size and no alignment. */
9967 bytes_to_remove = entry_size;
1d25768e
BW
9968 if (offset_rel)
9969 remove_this_rel = TRUE;
e0001a05 9970 }
1d25768e
BW
9971 else if (offset_rel
9972 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 9973 {
1d25768e 9974 if (last_irel)
e0001a05 9975 {
1d25768e
BW
9976 flagword old_flags;
9977 bfd_vma old_size =
9978 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9979 bfd_vma old_address =
9980 (last_irel->r_addend
9981 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9982 bfd_vma new_address =
9983 (offset_rel->r_addend
9984 + bfd_get_32 (abfd, &contents[actual_offset]));
9985 if (is_full_prop_section)
9986 old_flags = bfd_get_32
9987 (abfd, &contents[last_irel->r_offset + 8]);
9988 else
9989 old_flags = predef_flags;
9990
9991 if ((ELF32_R_SYM (offset_rel->r_info)
9992 == ELF32_R_SYM (last_irel->r_info))
9993 && old_address + old_size == new_address
9994 && old_flags == flags
9995 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9996 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9997 {
1d25768e
BW
9998 /* Fix the old size. */
9999 bfd_put_32 (abfd, old_size + size,
10000 &contents[last_irel->r_offset + 4]);
10001 bytes_to_remove = entry_size;
10002 remove_this_rel = TRUE;
e0001a05
NC
10003 }
10004 else
1d25768e 10005 last_irel = offset_rel;
e0001a05 10006 }
1d25768e
BW
10007 else
10008 last_irel = offset_rel;
e0001a05
NC
10009 }
10010
1d25768e 10011 if (remove_this_rel)
e0001a05 10012 {
1d25768e 10013 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10014 offset_rel->r_offset = 0;
e0001a05
NC
10015 }
10016
10017 if (bytes_to_remove != 0)
10018 {
10019 removed_bytes += bytes_to_remove;
a3ef2d63 10020 if (offset + bytes_to_remove < sec->size)
e0001a05 10021 memmove (&contents[actual_offset],
43cd72b9 10022 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10023 sec->size - offset - bytes_to_remove);
e0001a05
NC
10024 }
10025 }
10026
43cd72b9 10027 if (removed_bytes)
e0001a05 10028 {
1d25768e
BW
10029 /* Fix up any extra relocations on the last entry. */
10030 for (irel = next_rel; irel < rel_end; irel++)
10031 irel->r_offset -= removed_bytes;
10032
e0001a05 10033 /* Clear the removed bytes. */
a3ef2d63 10034 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10035
a3ef2d63
BW
10036 if (sec->rawsize == 0)
10037 sec->rawsize = sec->size;
10038 sec->size -= removed_bytes;
e901de89
BW
10039
10040 if (xtensa_is_littable_section (sec))
10041 {
f0e6fdb2
BW
10042 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10043 if (sgotloc)
10044 sgotloc->size -= removed_bytes;
e901de89 10045 }
e0001a05
NC
10046 }
10047 }
e901de89 10048
e0001a05
NC
10049 error_return:
10050 release_internal_relocs (sec, internal_relocs);
10051 release_contents (sec, contents);
10052 return ok;
10053}
10054
10055\f
10056/* Third relaxation pass. */
10057
10058/* Change symbol values to account for removed literals. */
10059
43cd72b9 10060bfd_boolean
7fa3d080 10061relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10062{
10063 xtensa_relax_info *relax_info;
10064 unsigned int sec_shndx;
10065 Elf_Internal_Shdr *symtab_hdr;
10066 Elf_Internal_Sym *isymbuf;
10067 unsigned i, num_syms, num_locals;
10068
10069 relax_info = get_xtensa_relax_info (sec);
10070 BFD_ASSERT (relax_info);
10071
43cd72b9
BW
10072 if (!relax_info->is_relaxable_literal_section
10073 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10074 return TRUE;
10075
10076 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10077
10078 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10079 isymbuf = retrieve_local_syms (abfd);
10080
10081 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10082 num_locals = symtab_hdr->sh_info;
10083
10084 /* Adjust the local symbols defined in this section. */
10085 for (i = 0; i < num_locals; i++)
10086 {
10087 Elf_Internal_Sym *isym = &isymbuf[i];
10088
10089 if (isym->st_shndx == sec_shndx)
10090 {
03669f1c
BW
10091 text_action *act = relax_info->action_list.head;
10092 bfd_vma orig_addr = isym->st_value;
43cd72b9 10093
03669f1c 10094 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10095
03669f1c
BW
10096 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10097 isym->st_size -=
10098 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
e0001a05
NC
10099 }
10100 }
10101
10102 /* Now adjust the global symbols defined in this section. */
10103 for (i = 0; i < (num_syms - num_locals); i++)
10104 {
10105 struct elf_link_hash_entry *sym_hash;
10106
10107 sym_hash = elf_sym_hashes (abfd)[i];
10108
10109 if (sym_hash->root.type == bfd_link_hash_warning)
10110 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10111
10112 if ((sym_hash->root.type == bfd_link_hash_defined
10113 || sym_hash->root.type == bfd_link_hash_defweak)
10114 && sym_hash->root.u.def.section == sec)
10115 {
03669f1c
BW
10116 text_action *act = relax_info->action_list.head;
10117 bfd_vma orig_addr = sym_hash->root.u.def.value;
43cd72b9 10118
03669f1c
BW
10119 sym_hash->root.u.def.value -=
10120 removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10121
03669f1c
BW
10122 if (sym_hash->type == STT_FUNC)
10123 sym_hash->size -=
10124 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
e0001a05
NC
10125 }
10126 }
10127
10128 return TRUE;
10129}
10130
10131\f
10132/* "Fix" handling functions, called while performing relocations. */
10133
43cd72b9 10134static bfd_boolean
7fa3d080
BW
10135do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10136 bfd *input_bfd,
10137 asection *input_section,
10138 bfd_byte *contents)
e0001a05
NC
10139{
10140 r_reloc r_rel;
10141 asection *sec, *old_sec;
10142 bfd_vma old_offset;
10143 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10144 reloc_bfd_fix *fix;
10145
10146 if (r_type == R_XTENSA_NONE)
43cd72b9 10147 return TRUE;
e0001a05 10148
43cd72b9
BW
10149 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10150 if (!fix)
10151 return TRUE;
e0001a05 10152
43cd72b9
BW
10153 r_reloc_init (&r_rel, input_bfd, rel, contents,
10154 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10155 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10156 old_offset = r_rel.target_offset;
10157
10158 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10159 {
43cd72b9
BW
10160 if (r_type != R_XTENSA_ASM_EXPAND)
10161 {
10162 (*_bfd_error_handler)
10163 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10164 input_bfd, input_section, rel->r_offset,
10165 elf_howto_table[r_type].name);
10166 return FALSE;
10167 }
e0001a05
NC
10168 /* Leave it be. Resolution will happen in a later stage. */
10169 }
10170 else
10171 {
10172 sec = fix->target_sec;
10173 rel->r_addend += ((sec->output_offset + fix->target_offset)
10174 - (old_sec->output_offset + old_offset));
10175 }
43cd72b9 10176 return TRUE;
e0001a05
NC
10177}
10178
10179
10180static void
7fa3d080
BW
10181do_fix_for_final_link (Elf_Internal_Rela *rel,
10182 bfd *input_bfd,
10183 asection *input_section,
10184 bfd_byte *contents,
10185 bfd_vma *relocationp)
e0001a05
NC
10186{
10187 asection *sec;
10188 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10189 reloc_bfd_fix *fix;
43cd72b9 10190 bfd_vma fixup_diff;
e0001a05
NC
10191
10192 if (r_type == R_XTENSA_NONE)
10193 return;
10194
43cd72b9
BW
10195 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10196 if (!fix)
e0001a05
NC
10197 return;
10198
10199 sec = fix->target_sec;
43cd72b9
BW
10200
10201 fixup_diff = rel->r_addend;
10202 if (elf_howto_table[fix->src_type].partial_inplace)
10203 {
10204 bfd_vma inplace_val;
10205 BFD_ASSERT (fix->src_offset
10206 < bfd_get_section_limit (input_bfd, input_section));
10207 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10208 fixup_diff += inplace_val;
10209 }
10210
e0001a05
NC
10211 *relocationp = (sec->output_section->vma
10212 + sec->output_offset
43cd72b9 10213 + fix->target_offset - fixup_diff);
e0001a05
NC
10214}
10215
10216\f
10217/* Miscellaneous utility functions.... */
10218
10219static asection *
f0e6fdb2 10220elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10221{
f0e6fdb2
BW
10222 struct elf_xtensa_link_hash_table *htab;
10223 bfd *dynobj;
e0001a05
NC
10224 char plt_name[10];
10225
10226 if (chunk == 0)
f0e6fdb2
BW
10227 {
10228 htab = elf_xtensa_hash_table (info);
10229 return htab->splt;
10230 }
e0001a05 10231
f0e6fdb2 10232 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
10233 sprintf (plt_name, ".plt.%u", chunk);
10234 return bfd_get_section_by_name (dynobj, plt_name);
10235}
10236
10237
10238static asection *
f0e6fdb2 10239elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10240{
f0e6fdb2
BW
10241 struct elf_xtensa_link_hash_table *htab;
10242 bfd *dynobj;
e0001a05
NC
10243 char got_name[14];
10244
10245 if (chunk == 0)
f0e6fdb2
BW
10246 {
10247 htab = elf_xtensa_hash_table (info);
10248 return htab->sgotplt;
10249 }
e0001a05 10250
f0e6fdb2 10251 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
10252 sprintf (got_name, ".got.plt.%u", chunk);
10253 return bfd_get_section_by_name (dynobj, got_name);
10254}
10255
10256
10257/* Get the input section for a given symbol index.
10258 If the symbol is:
10259 . a section symbol, return the section;
10260 . a common symbol, return the common section;
10261 . an undefined symbol, return the undefined section;
10262 . an indirect symbol, follow the links;
10263 . an absolute value, return the absolute section. */
10264
10265static asection *
7fa3d080 10266get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10267{
10268 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10269 asection *target_sec = NULL;
43cd72b9 10270 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10271 {
10272 Elf_Internal_Sym *isymbuf;
10273 unsigned int section_index;
10274
10275 isymbuf = retrieve_local_syms (abfd);
10276 section_index = isymbuf[r_symndx].st_shndx;
10277
10278 if (section_index == SHN_UNDEF)
10279 target_sec = bfd_und_section_ptr;
e0001a05
NC
10280 else if (section_index == SHN_ABS)
10281 target_sec = bfd_abs_section_ptr;
10282 else if (section_index == SHN_COMMON)
10283 target_sec = bfd_com_section_ptr;
43cd72b9 10284 else
cb33740c 10285 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10286 }
10287 else
10288 {
10289 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10290 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10291
10292 while (h->root.type == bfd_link_hash_indirect
10293 || h->root.type == bfd_link_hash_warning)
10294 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10295
10296 switch (h->root.type)
10297 {
10298 case bfd_link_hash_defined:
10299 case bfd_link_hash_defweak:
10300 target_sec = h->root.u.def.section;
10301 break;
10302 case bfd_link_hash_common:
10303 target_sec = bfd_com_section_ptr;
10304 break;
10305 case bfd_link_hash_undefined:
10306 case bfd_link_hash_undefweak:
10307 target_sec = bfd_und_section_ptr;
10308 break;
10309 default: /* New indirect warning. */
10310 target_sec = bfd_und_section_ptr;
10311 break;
10312 }
10313 }
10314 return target_sec;
10315}
10316
10317
10318static struct elf_link_hash_entry *
7fa3d080 10319get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10320{
10321 unsigned long indx;
10322 struct elf_link_hash_entry *h;
10323 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10324
10325 if (r_symndx < symtab_hdr->sh_info)
10326 return NULL;
43cd72b9 10327
e0001a05
NC
10328 indx = r_symndx - symtab_hdr->sh_info;
10329 h = elf_sym_hashes (abfd)[indx];
10330 while (h->root.type == bfd_link_hash_indirect
10331 || h->root.type == bfd_link_hash_warning)
10332 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10333 return h;
10334}
10335
10336
10337/* Get the section-relative offset for a symbol number. */
10338
10339static bfd_vma
7fa3d080 10340get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10341{
10342 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10343 bfd_vma offset = 0;
10344
43cd72b9 10345 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10346 {
10347 Elf_Internal_Sym *isymbuf;
10348 isymbuf = retrieve_local_syms (abfd);
10349 offset = isymbuf[r_symndx].st_value;
10350 }
10351 else
10352 {
10353 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10354 struct elf_link_hash_entry *h =
10355 elf_sym_hashes (abfd)[indx];
10356
10357 while (h->root.type == bfd_link_hash_indirect
10358 || h->root.type == bfd_link_hash_warning)
10359 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10360 if (h->root.type == bfd_link_hash_defined
10361 || h->root.type == bfd_link_hash_defweak)
10362 offset = h->root.u.def.value;
10363 }
10364 return offset;
10365}
10366
10367
10368static bfd_boolean
7fa3d080 10369is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10370{
10371 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10372 struct elf_link_hash_entry *h;
10373
10374 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10375 if (h && h->root.type == bfd_link_hash_defweak)
10376 return TRUE;
10377 return FALSE;
10378}
10379
10380
10381static bfd_boolean
7fa3d080
BW
10382pcrel_reloc_fits (xtensa_opcode opc,
10383 int opnd,
10384 bfd_vma self_address,
10385 bfd_vma dest_address)
e0001a05 10386{
43cd72b9
BW
10387 xtensa_isa isa = xtensa_default_isa;
10388 uint32 valp = dest_address;
10389 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10390 || xtensa_operand_encode (isa, opc, opnd, &valp))
10391 return FALSE;
10392 return TRUE;
e0001a05
NC
10393}
10394
10395
10396static bfd_boolean
7fa3d080 10397xtensa_is_property_section (asection *sec)
e0001a05 10398{
1d25768e
BW
10399 if (xtensa_is_insntable_section (sec)
10400 || xtensa_is_littable_section (sec)
10401 || xtensa_is_proptable_section (sec))
b614a702 10402 return TRUE;
e901de89 10403
1d25768e
BW
10404 return FALSE;
10405}
10406
10407
10408static bfd_boolean
10409xtensa_is_insntable_section (asection *sec)
10410{
10411 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10412 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
10413 return TRUE;
10414
e901de89
BW
10415 return FALSE;
10416}
10417
10418
10419static bfd_boolean
7fa3d080 10420xtensa_is_littable_section (asection *sec)
e901de89 10421{
1d25768e
BW
10422 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10423 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 10424 return TRUE;
e901de89 10425
1d25768e
BW
10426 return FALSE;
10427}
10428
10429
10430static bfd_boolean
10431xtensa_is_proptable_section (asection *sec)
10432{
10433 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10434 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 10435 return TRUE;
e0001a05 10436
e901de89 10437 return FALSE;
e0001a05
NC
10438}
10439
10440
43cd72b9 10441static int
7fa3d080 10442internal_reloc_compare (const void *ap, const void *bp)
e0001a05 10443{
43cd72b9
BW
10444 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10445 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10446
10447 if (a->r_offset != b->r_offset)
10448 return (a->r_offset - b->r_offset);
10449
10450 /* We don't need to sort on these criteria for correctness,
10451 but enforcing a more strict ordering prevents unstable qsort
10452 from behaving differently with different implementations.
10453 Without the code below we get correct but different results
10454 on Solaris 2.7 and 2.8. We would like to always produce the
10455 same results no matter the host. */
10456
10457 if (a->r_info != b->r_info)
10458 return (a->r_info - b->r_info);
10459
10460 return (a->r_addend - b->r_addend);
e0001a05
NC
10461}
10462
10463
10464static int
7fa3d080 10465internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
10466{
10467 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10468 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10469
43cd72b9
BW
10470 /* Check if one entry overlaps with the other; this shouldn't happen
10471 except when searching for a match. */
e0001a05
NC
10472 return (a->r_offset - b->r_offset);
10473}
10474
10475
74869ac7
BW
10476/* Predicate function used to look up a section in a particular group. */
10477
10478static bfd_boolean
10479match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10480{
10481 const char *gname = inf;
10482 const char *group_name = elf_group_name (sec);
10483
10484 return (group_name == gname
10485 || (group_name != NULL
10486 && gname != NULL
10487 && strcmp (group_name, gname) == 0));
10488}
10489
10490
1d25768e
BW
10491static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10492
51c8ebc1
BW
10493static char *
10494xtensa_property_section_name (asection *sec, const char *base_name)
e0001a05 10495{
74869ac7
BW
10496 const char *suffix, *group_name;
10497 char *prop_sec_name;
74869ac7
BW
10498
10499 group_name = elf_group_name (sec);
10500 if (group_name)
10501 {
10502 suffix = strrchr (sec->name, '.');
10503 if (suffix == sec->name)
10504 suffix = 0;
10505 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10506 + (suffix ? strlen (suffix) : 0));
10507 strcpy (prop_sec_name, base_name);
10508 if (suffix)
10509 strcat (prop_sec_name, suffix);
10510 }
10511 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 10512 {
43cd72b9 10513 char *linkonce_kind = 0;
b614a702
BW
10514
10515 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 10516 linkonce_kind = "x.";
b614a702 10517 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 10518 linkonce_kind = "p.";
43cd72b9
BW
10519 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10520 linkonce_kind = "prop.";
e0001a05 10521 else
b614a702
BW
10522 abort ();
10523
43cd72b9
BW
10524 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10525 + strlen (linkonce_kind) + 1);
b614a702 10526 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 10527 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
10528
10529 suffix = sec->name + linkonce_len;
096c35a7 10530 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 10531 the new linkonce_kind (but not for "prop" sections). */
0112cd26 10532 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
10533 suffix += 2;
10534 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
10535 }
10536 else
10537 prop_sec_name = strdup (base_name);
10538
51c8ebc1
BW
10539 return prop_sec_name;
10540}
10541
10542
10543static asection *
10544xtensa_get_property_section (asection *sec, const char *base_name)
10545{
10546 char *prop_sec_name;
10547 asection *prop_sec;
10548
10549 prop_sec_name = xtensa_property_section_name (sec, base_name);
10550 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10551 match_section_group,
10552 (void *) elf_group_name (sec));
10553 free (prop_sec_name);
10554 return prop_sec;
10555}
10556
10557
10558asection *
10559xtensa_make_property_section (asection *sec, const char *base_name)
10560{
10561 char *prop_sec_name;
10562 asection *prop_sec;
10563
74869ac7 10564 /* Check if the section already exists. */
51c8ebc1 10565 prop_sec_name = xtensa_property_section_name (sec, base_name);
74869ac7
BW
10566 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10567 match_section_group,
51c8ebc1 10568 (void *) elf_group_name (sec));
74869ac7
BW
10569 /* If not, create it. */
10570 if (! prop_sec)
10571 {
10572 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10573 flags |= (bfd_get_section_flags (sec->owner, sec)
10574 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10575
10576 prop_sec = bfd_make_section_anyway_with_flags
10577 (sec->owner, strdup (prop_sec_name), flags);
10578 if (! prop_sec)
10579 return 0;
b614a702 10580
51c8ebc1 10581 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
10582 }
10583
74869ac7
BW
10584 free (prop_sec_name);
10585 return prop_sec;
e0001a05
NC
10586}
10587
43cd72b9
BW
10588
10589flagword
7fa3d080 10590xtensa_get_property_predef_flags (asection *sec)
43cd72b9 10591{
1d25768e 10592 if (xtensa_is_insntable_section (sec))
43cd72b9 10593 return (XTENSA_PROP_INSN
99ded152 10594 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10595 | XTENSA_PROP_INSN_NO_REORDER);
10596
10597 if (xtensa_is_littable_section (sec))
10598 return (XTENSA_PROP_LITERAL
99ded152 10599 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10600 | XTENSA_PROP_INSN_NO_REORDER);
10601
10602 return 0;
10603}
10604
e0001a05
NC
10605\f
10606/* Other functions called directly by the linker. */
10607
10608bfd_boolean
7fa3d080
BW
10609xtensa_callback_required_dependence (bfd *abfd,
10610 asection *sec,
10611 struct bfd_link_info *link_info,
10612 deps_callback_t callback,
10613 void *closure)
e0001a05
NC
10614{
10615 Elf_Internal_Rela *internal_relocs;
10616 bfd_byte *contents;
10617 unsigned i;
10618 bfd_boolean ok = TRUE;
43cd72b9
BW
10619 bfd_size_type sec_size;
10620
10621 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
10622
10623 /* ".plt*" sections have no explicit relocations but they contain L32R
10624 instructions that reference the corresponding ".got.plt*" sections. */
10625 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 10626 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
10627 {
10628 asection *sgotplt;
10629
10630 /* Find the corresponding ".got.plt*" section. */
10631 if (sec->name[4] == '\0')
10632 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
10633 else
10634 {
10635 char got_name[14];
10636 int chunk = 0;
10637
10638 BFD_ASSERT (sec->name[4] == '.');
10639 chunk = strtol (&sec->name[5], NULL, 10);
10640
10641 sprintf (got_name, ".got.plt.%u", chunk);
10642 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
10643 }
10644 BFD_ASSERT (sgotplt);
10645
10646 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10647 section referencing a literal at the very beginning of
10648 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 10649 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
10650 }
10651
13161072
BW
10652 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10653 when building uclibc, which runs "ld -b binary /dev/null". */
10654 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10655 return ok;
10656
e0001a05
NC
10657 internal_relocs = retrieve_internal_relocs (abfd, sec,
10658 link_info->keep_memory);
10659 if (internal_relocs == NULL
43cd72b9 10660 || sec->reloc_count == 0)
e0001a05
NC
10661 return ok;
10662
10663 /* Cache the contents for the duration of this scan. */
10664 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10665 if (contents == NULL && sec_size != 0)
e0001a05
NC
10666 {
10667 ok = FALSE;
10668 goto error_return;
10669 }
10670
43cd72b9
BW
10671 if (!xtensa_default_isa)
10672 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 10673
43cd72b9 10674 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10675 {
10676 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 10677 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
10678 {
10679 r_reloc l32r_rel;
10680 asection *target_sec;
10681 bfd_vma target_offset;
43cd72b9
BW
10682
10683 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
10684 target_sec = NULL;
10685 target_offset = 0;
10686 /* L32Rs must be local to the input file. */
10687 if (r_reloc_is_defined (&l32r_rel))
10688 {
10689 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 10690 target_offset = l32r_rel.target_offset;
e0001a05
NC
10691 }
10692 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10693 closure);
10694 }
10695 }
10696
10697 error_return:
10698 release_internal_relocs (sec, internal_relocs);
10699 release_contents (sec, contents);
10700 return ok;
10701}
10702
2f89ff8d
L
10703/* The default literal sections should always be marked as "code" (i.e.,
10704 SHF_EXECINSTR). This is particularly important for the Linux kernel
10705 module loader so that the literals are not placed after the text. */
b35d266b 10706static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 10707{
0112cd26
NC
10708 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10709 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10710 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 10711 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 10712 { NULL, 0, 0, 0, 0 }
7f4d3958 10713};
e0001a05
NC
10714\f
10715#ifndef ELF_ARCH
10716#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10717#define TARGET_LITTLE_NAME "elf32-xtensa-le"
10718#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10719#define TARGET_BIG_NAME "elf32-xtensa-be"
10720#define ELF_ARCH bfd_arch_xtensa
10721
4af0a1d8
BW
10722#define ELF_MACHINE_CODE EM_XTENSA
10723#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
10724
10725#if XCHAL_HAVE_MMU
10726#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10727#else /* !XCHAL_HAVE_MMU */
10728#define ELF_MAXPAGESIZE 1
10729#endif /* !XCHAL_HAVE_MMU */
10730#endif /* ELF_ARCH */
10731
10732#define elf_backend_can_gc_sections 1
10733#define elf_backend_can_refcount 1
10734#define elf_backend_plt_readonly 1
10735#define elf_backend_got_header_size 4
10736#define elf_backend_want_dynbss 0
10737#define elf_backend_want_got_plt 1
10738
10739#define elf_info_to_howto elf_xtensa_info_to_howto_rela
10740
28dbbc02
BW
10741#define bfd_elf32_mkobject elf_xtensa_mkobject
10742
e0001a05
NC
10743#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10744#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10745#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10746#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10747#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
10748#define bfd_elf32_bfd_reloc_name_lookup \
10749 elf_xtensa_reloc_name_lookup
e0001a05 10750#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 10751#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
10752
10753#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10754#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
10755#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10756#define elf_backend_discard_info elf_xtensa_discard_info
10757#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10758#define elf_backend_final_write_processing elf_xtensa_final_write_processing
10759#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10760#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10761#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10762#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10763#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10764#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 10765#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
10766#define elf_backend_object_p elf_xtensa_object_p
10767#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10768#define elf_backend_relocate_section elf_xtensa_relocate_section
10769#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 10770#define elf_backend_always_size_sections elf_xtensa_always_size_sections
74541ad4
AM
10771#define elf_backend_omit_section_dynsym \
10772 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 10773#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 10774#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 10775#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
10776
10777#include "elf32-target.h"