]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf32-xtensa.c
Include MI command in remotelog.
[thirdparty/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
aa820537
AM
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
e0001a05
NC
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License as
cd123cb7 9 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
10 License, or (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 20 02110-1301, USA. */
e0001a05 21
e0001a05 22#include "sysdep.h"
3db64b00 23#include "bfd.h"
e0001a05 24
e0001a05 25#include <stdarg.h>
e0001a05
NC
26#include <strings.h>
27
28#include "bfdlink.h"
29#include "libbfd.h"
30#include "elf-bfd.h"
31#include "elf/xtensa.h"
32#include "xtensa-isa.h"
33#include "xtensa-config.h"
34
43cd72b9
BW
35#define XTENSA_NO_NOP_REMOVAL 0
36
e0001a05
NC
37/* Local helper functions. */
38
f0e6fdb2 39static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 40static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 41static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 43static bfd_boolean do_fix_for_relocatable_link
7fa3d080 44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 45static void do_fix_for_final_link
7fa3d080 46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
47
48/* Local functions to handle Xtensa configurability. */
49
7fa3d080
BW
50static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53static xtensa_opcode get_const16_opcode (void);
54static xtensa_opcode get_l32r_opcode (void);
55static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56static int get_relocation_opnd (xtensa_opcode, int);
57static int get_relocation_slot (int);
e0001a05 58static xtensa_opcode get_relocation_opcode
7fa3d080 59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 60static bfd_boolean is_l32r_relocation
7fa3d080
BW
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62static bfd_boolean is_alt_relocation (int);
63static bfd_boolean is_operand_relocation (int);
43cd72b9 64static bfd_size_type insn_decode_len
7fa3d080 65 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 66static xtensa_opcode insn_decode_opcode
7fa3d080 67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 68static bfd_boolean check_branch_target_aligned
7fa3d080 69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 70static bfd_boolean check_loop_aligned
7fa3d080
BW
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 73static bfd_size_type get_asm_simplify_size
7fa3d080 74 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
75
76/* Functions for link-time code simplifications. */
77
43cd72b9 78static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 79 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 80static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
84
85/* Access to internal relocations, section contents and symbols. */
86
87static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
88 (bfd *, asection *, bfd_boolean);
89static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92static void pin_contents (asection *, bfd_byte *);
93static void release_contents (asection *, bfd_byte *);
94static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
95
96/* Miscellaneous utility functions. */
97
f0e6fdb2
BW
98static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 100static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 101static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
102 (bfd *, unsigned long);
103static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 107static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 108static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 109static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
110static int internal_reloc_compare (const void *, const void *);
111static int internal_reloc_matches (const void *, const void *);
51c8ebc1
BW
112static asection *xtensa_get_property_section (asection *, const char *);
113extern asection *xtensa_make_property_section (asection *, const char *);
7fa3d080 114static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
115
116/* Other functions called directly by the linker. */
117
118typedef void (*deps_callback_t)
7fa3d080 119 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 120extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
122
123
43cd72b9
BW
124/* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
7fa3d080 128
43cd72b9
BW
129int elf32xtensa_size_opt;
130
131
132/* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
e0001a05 135
7fa3d080 136typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 137
43cd72b9 138
43cd72b9
BW
139/* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
142 this information. */
143
144xtensa_isa xtensa_default_isa;
145
146
e0001a05
NC
147/* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
150
151static bfd_boolean relaxing_section = FALSE;
152
43cd72b9
BW
153/* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
155
156int elf32xtensa_no_literal_movement = 1;
157
e0001a05
NC
158\f
159static reloc_howto_type elf_howto_table[] =
160{
161 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
162 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 163 FALSE, 0, 0, FALSE),
e0001a05
NC
164 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
165 bfd_elf_xtensa_reloc, "R_XTENSA_32",
166 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 167
e0001a05
NC
168 /* Replace a 32-bit value with a value from the runtime linker (only
169 used by linker-generated stub functions). The r_addend value is
170 special: 1 means to substitute a pointer to the runtime linker's
171 dynamic resolver function; 2 means to substitute the link map for
172 the shared object. */
173 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
174 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
175
e0001a05
NC
176 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
177 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 178 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
179 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 181 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
182 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 184 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
185 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
187 FALSE, 0, 0xffffffff, FALSE),
188
e0001a05 189 EMPTY_HOWTO (7),
e5f131d1
BW
190
191 /* Old relocations for backward compatibility. */
e0001a05 192 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 193 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 194 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 195 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 196 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
197 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
198
e0001a05
NC
199 /* Assembly auto-expansion. */
200 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 201 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
202 /* Relax assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
205
e0001a05 206 EMPTY_HOWTO (13),
1bbb5f21
BW
207
208 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
209 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
210 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 211
e0001a05
NC
212 /* GNU extension to record C++ vtable hierarchy. */
213 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
214 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 215 FALSE, 0, 0, FALSE),
e0001a05
NC
216 /* GNU extension to record C++ vtable member usage. */
217 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 219 FALSE, 0, 0, FALSE),
43cd72b9
BW
220
221 /* Relocations for supporting difference of symbols. */
222 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 223 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 224 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 225 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 226 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
228
229 /* General immediate operand relocations. */
230 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 231 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 232 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 233 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 234 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 236 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 238 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 240 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 242 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 244 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 246 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 248 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 250 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 252 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 254 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 256 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 258 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
260
261 /* "Alternate" relocations. The meaning of these is opcode-specific. */
262 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 264 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 266 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 268 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 270 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 272 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 274 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 276 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 278 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 280 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 282 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 284 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 286 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 288 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 290 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
292
293 /* TLS relocations. */
294 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
296 FALSE, 0, 0xffffffff, FALSE),
297 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
299 FALSE, 0, 0xffffffff, FALSE),
300 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
302 FALSE, 0, 0xffffffff, FALSE),
303 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
305 FALSE, 0, 0xffffffff, FALSE),
306 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
308 FALSE, 0, 0, FALSE),
309 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
311 FALSE, 0, 0, FALSE),
312 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
314 FALSE, 0, 0, FALSE),
e0001a05
NC
315};
316
43cd72b9 317#if DEBUG_GEN_RELOC
e0001a05
NC
318#define TRACE(str) \
319 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
320#else
321#define TRACE(str)
322#endif
323
324static reloc_howto_type *
7fa3d080
BW
325elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
326 bfd_reloc_code_real_type code)
e0001a05
NC
327{
328 switch (code)
329 {
330 case BFD_RELOC_NONE:
331 TRACE ("BFD_RELOC_NONE");
332 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
333
334 case BFD_RELOC_32:
335 TRACE ("BFD_RELOC_32");
336 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
337
1bbb5f21
BW
338 case BFD_RELOC_32_PCREL:
339 TRACE ("BFD_RELOC_32_PCREL");
340 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
341
43cd72b9
BW
342 case BFD_RELOC_XTENSA_DIFF8:
343 TRACE ("BFD_RELOC_XTENSA_DIFF8");
344 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
345
346 case BFD_RELOC_XTENSA_DIFF16:
347 TRACE ("BFD_RELOC_XTENSA_DIFF16");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
349
350 case BFD_RELOC_XTENSA_DIFF32:
351 TRACE ("BFD_RELOC_XTENSA_DIFF32");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
353
e0001a05
NC
354 case BFD_RELOC_XTENSA_RTLD:
355 TRACE ("BFD_RELOC_XTENSA_RTLD");
356 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
357
358 case BFD_RELOC_XTENSA_GLOB_DAT:
359 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
360 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
361
362 case BFD_RELOC_XTENSA_JMP_SLOT:
363 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
364 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
365
366 case BFD_RELOC_XTENSA_RELATIVE:
367 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
368 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
369
370 case BFD_RELOC_XTENSA_PLT:
371 TRACE ("BFD_RELOC_XTENSA_PLT");
372 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
373
374 case BFD_RELOC_XTENSA_OP0:
375 TRACE ("BFD_RELOC_XTENSA_OP0");
376 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
377
378 case BFD_RELOC_XTENSA_OP1:
379 TRACE ("BFD_RELOC_XTENSA_OP1");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
381
382 case BFD_RELOC_XTENSA_OP2:
383 TRACE ("BFD_RELOC_XTENSA_OP2");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
385
386 case BFD_RELOC_XTENSA_ASM_EXPAND:
387 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
388 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
389
390 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
391 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
393
394 case BFD_RELOC_VTABLE_INHERIT:
395 TRACE ("BFD_RELOC_VTABLE_INHERIT");
396 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
397
398 case BFD_RELOC_VTABLE_ENTRY:
399 TRACE ("BFD_RELOC_VTABLE_ENTRY");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
401
28dbbc02
BW
402 case BFD_RELOC_XTENSA_TLSDESC_FN:
403 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
404 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
405
406 case BFD_RELOC_XTENSA_TLSDESC_ARG:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
409
410 case BFD_RELOC_XTENSA_TLS_DTPOFF:
411 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
413
414 case BFD_RELOC_XTENSA_TLS_TPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
417
418 case BFD_RELOC_XTENSA_TLS_FUNC:
419 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
421
422 case BFD_RELOC_XTENSA_TLS_ARG:
423 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
425
426 case BFD_RELOC_XTENSA_TLS_CALL:
427 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
429
e0001a05 430 default:
43cd72b9
BW
431 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
432 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
433 {
434 unsigned n = (R_XTENSA_SLOT0_OP +
435 (code - BFD_RELOC_XTENSA_SLOT0_OP));
436 return &elf_howto_table[n];
437 }
438
439 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
440 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
441 {
442 unsigned n = (R_XTENSA_SLOT0_ALT +
443 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
444 return &elf_howto_table[n];
445 }
446
e0001a05
NC
447 break;
448 }
449
450 TRACE ("Unknown");
451 return NULL;
452}
453
157090f7
AM
454static reloc_howto_type *
455elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
456 const char *r_name)
457{
458 unsigned int i;
459
460 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
461 if (elf_howto_table[i].name != NULL
462 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
463 return &elf_howto_table[i];
464
465 return NULL;
466}
467
e0001a05
NC
468
469/* Given an ELF "rela" relocation, find the corresponding howto and record
470 it in the BFD internal arelent representation of the relocation. */
471
472static void
7fa3d080
BW
473elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
474 arelent *cache_ptr,
475 Elf_Internal_Rela *dst)
e0001a05
NC
476{
477 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
478
479 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
480 cache_ptr->howto = &elf_howto_table[r_type];
481}
482
483\f
484/* Functions for the Xtensa ELF linker. */
485
486/* The name of the dynamic interpreter. This is put in the .interp
487 section. */
488
489#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
490
491/* The size in bytes of an entry in the procedure linkage table.
492 (This does _not_ include the space for the literals associated with
493 the PLT entry.) */
494
495#define PLT_ENTRY_SIZE 16
496
497/* For _really_ large PLTs, we may need to alternate between literals
498 and code to keep the literals within the 256K range of the L32R
499 instructions in the code. It's unlikely that anyone would ever need
500 such a big PLT, but an arbitrary limit on the PLT size would be bad.
501 Thus, we split the PLT into chunks. Since there's very little
502 overhead (2 extra literals) for each chunk, the chunk size is kept
503 small so that the code for handling multiple chunks get used and
504 tested regularly. With 254 entries, there are 1K of literals for
505 each chunk, and that seems like a nice round number. */
506
507#define PLT_ENTRIES_PER_CHUNK 254
508
509/* PLT entries are actually used as stub functions for lazy symbol
510 resolution. Once the symbol is resolved, the stub function is never
511 invoked. Note: the 32-byte frame size used here cannot be changed
512 without a corresponding change in the runtime linker. */
513
514static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
515{
516 0x6c, 0x10, 0x04, /* entry sp, 32 */
517 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
518 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
519 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
520 0x0a, 0x80, 0x00, /* jx a8 */
521 0 /* unused */
522};
523
524static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
525{
526 0x36, 0x41, 0x00, /* entry sp, 32 */
527 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
528 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
529 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
530 0xa0, 0x08, 0x00, /* jx a8 */
531 0 /* unused */
532};
533
28dbbc02
BW
534/* The size of the thread control block. */
535#define TCB_SIZE 8
536
537struct elf_xtensa_link_hash_entry
538{
539 struct elf_link_hash_entry elf;
540
541 bfd_signed_vma tlsfunc_refcount;
542
543#define GOT_UNKNOWN 0
544#define GOT_NORMAL 1
545#define GOT_TLS_GD 2 /* global or local dynamic */
546#define GOT_TLS_IE 4 /* initial or local exec */
547#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
548 unsigned char tls_type;
549};
550
551#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
552
553struct elf_xtensa_obj_tdata
554{
555 struct elf_obj_tdata root;
556
557 /* tls_type for each local got entry. */
558 char *local_got_tls_type;
559
560 bfd_signed_vma *local_tlsfunc_refcounts;
561};
562
563#define elf_xtensa_tdata(abfd) \
564 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
565
566#define elf_xtensa_local_got_tls_type(abfd) \
567 (elf_xtensa_tdata (abfd)->local_got_tls_type)
568
569#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
570 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
571
572#define is_xtensa_elf(bfd) \
573 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
574 && elf_tdata (bfd) != NULL \
575 && elf_object_id (bfd) == XTENSA_ELF_TDATA)
576
577static bfd_boolean
578elf_xtensa_mkobject (bfd *abfd)
579{
580 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
581 XTENSA_ELF_TDATA);
582}
583
f0e6fdb2
BW
584/* Xtensa ELF linker hash table. */
585
586struct elf_xtensa_link_hash_table
587{
588 struct elf_link_hash_table elf;
589
590 /* Short-cuts to get to dynamic linker sections. */
591 asection *sgot;
592 asection *sgotplt;
593 asection *srelgot;
594 asection *splt;
595 asection *srelplt;
596 asection *sgotloc;
597 asection *spltlittbl;
598
599 /* Total count of PLT relocations seen during check_relocs.
600 The actual PLT code must be split into multiple sections and all
601 the sections have to be created before size_dynamic_sections,
602 where we figure out the exact number of PLT entries that will be
603 needed. It is OK if this count is an overestimate, e.g., some
604 relocations may be removed by GC. */
605 int plt_reloc_count;
28dbbc02
BW
606
607 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
608};
609
610/* Get the Xtensa ELF linker hash table from a link_info structure. */
611
612#define elf_xtensa_hash_table(p) \
613 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
614
28dbbc02
BW
615/* Create an entry in an Xtensa ELF linker hash table. */
616
617static struct bfd_hash_entry *
618elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
619 struct bfd_hash_table *table,
620 const char *string)
621{
622 /* Allocate the structure if it has not already been allocated by a
623 subclass. */
624 if (entry == NULL)
625 {
626 entry = bfd_hash_allocate (table,
627 sizeof (struct elf_xtensa_link_hash_entry));
628 if (entry == NULL)
629 return entry;
630 }
631
632 /* Call the allocation method of the superclass. */
633 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
634 if (entry != NULL)
635 {
636 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
637 eh->tlsfunc_refcount = 0;
638 eh->tls_type = GOT_UNKNOWN;
639 }
640
641 return entry;
642}
643
f0e6fdb2
BW
644/* Create an Xtensa ELF linker hash table. */
645
646static struct bfd_link_hash_table *
647elf_xtensa_link_hash_table_create (bfd *abfd)
648{
28dbbc02 649 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
650 struct elf_xtensa_link_hash_table *ret;
651 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
652
653 ret = bfd_malloc (amt);
654 if (ret == NULL)
655 return NULL;
656
657 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02
BW
658 elf_xtensa_link_hash_newfunc,
659 sizeof (struct elf_xtensa_link_hash_entry)))
f0e6fdb2
BW
660 {
661 free (ret);
662 return NULL;
663 }
664
665 ret->sgot = NULL;
666 ret->sgotplt = NULL;
667 ret->srelgot = NULL;
668 ret->splt = NULL;
669 ret->srelplt = NULL;
670 ret->sgotloc = NULL;
671 ret->spltlittbl = NULL;
672
673 ret->plt_reloc_count = 0;
674
28dbbc02
BW
675 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
676 for it later. */
677 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
678 TRUE, FALSE, FALSE);
679 tlsbase->root.type = bfd_link_hash_new;
680 tlsbase->root.u.undef.abfd = NULL;
681 tlsbase->non_elf = 0;
682 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
683 ret->tlsbase->tls_type = GOT_UNKNOWN;
684
f0e6fdb2
BW
685 return &ret->elf.root;
686}
571b5725 687
28dbbc02
BW
688/* Copy the extra info we tack onto an elf_link_hash_entry. */
689
690static void
691elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
692 struct elf_link_hash_entry *dir,
693 struct elf_link_hash_entry *ind)
694{
695 struct elf_xtensa_link_hash_entry *edir, *eind;
696
697 edir = elf_xtensa_hash_entry (dir);
698 eind = elf_xtensa_hash_entry (ind);
699
700 if (ind->root.type == bfd_link_hash_indirect)
701 {
702 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
703 eind->tlsfunc_refcount = 0;
704
705 if (dir->got.refcount <= 0)
706 {
707 edir->tls_type = eind->tls_type;
708 eind->tls_type = GOT_UNKNOWN;
709 }
710 }
711
712 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
713}
714
571b5725 715static inline bfd_boolean
4608f3d9 716elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 717 struct bfd_link_info *info)
571b5725
BW
718{
719 /* Check if we should do dynamic things to this symbol. The
720 "ignore_protected" argument need not be set, because Xtensa code
721 does not require special handling of STV_PROTECTED to make function
722 pointer comparisons work properly. The PLT addresses are never
723 used for function pointers. */
724
725 return _bfd_elf_dynamic_symbol_p (h, info, 0);
726}
727
e0001a05
NC
728\f
729static int
7fa3d080 730property_table_compare (const void *ap, const void *bp)
e0001a05
NC
731{
732 const property_table_entry *a = (const property_table_entry *) ap;
733 const property_table_entry *b = (const property_table_entry *) bp;
734
43cd72b9
BW
735 if (a->address == b->address)
736 {
43cd72b9
BW
737 if (a->size != b->size)
738 return (a->size - b->size);
739
740 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
741 return ((b->flags & XTENSA_PROP_ALIGN)
742 - (a->flags & XTENSA_PROP_ALIGN));
743
744 if ((a->flags & XTENSA_PROP_ALIGN)
745 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
746 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
747 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
748 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
749
750 if ((a->flags & XTENSA_PROP_UNREACHABLE)
751 != (b->flags & XTENSA_PROP_UNREACHABLE))
752 return ((b->flags & XTENSA_PROP_UNREACHABLE)
753 - (a->flags & XTENSA_PROP_UNREACHABLE));
754
755 return (a->flags - b->flags);
756 }
757
758 return (a->address - b->address);
759}
760
761
762static int
7fa3d080 763property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
764{
765 const property_table_entry *a = (const property_table_entry *) ap;
766 const property_table_entry *b = (const property_table_entry *) bp;
767
768 /* Check if one entry overlaps with the other. */
e0001a05
NC
769 if ((b->address >= a->address && b->address < (a->address + a->size))
770 || (a->address >= b->address && a->address < (b->address + b->size)))
771 return 0;
772
773 return (a->address - b->address);
774}
775
776
43cd72b9
BW
777/* Get the literal table or property table entries for the given
778 section. Sets TABLE_P and returns the number of entries. On
779 error, returns a negative value. */
e0001a05 780
7fa3d080
BW
781static int
782xtensa_read_table_entries (bfd *abfd,
783 asection *section,
784 property_table_entry **table_p,
785 const char *sec_name,
786 bfd_boolean output_addr)
e0001a05
NC
787{
788 asection *table_section;
e0001a05
NC
789 bfd_size_type table_size = 0;
790 bfd_byte *table_data;
791 property_table_entry *blocks;
e4115460 792 int blk, block_count;
e0001a05 793 bfd_size_type num_records;
bcc2cc8e
BW
794 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
795 bfd_vma section_addr, off;
43cd72b9 796 flagword predef_flags;
bcc2cc8e 797 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
798
799 if (!section
800 || !(section->flags & SEC_ALLOC)
801 || (section->flags & SEC_DEBUGGING))
802 {
803 *table_p = NULL;
804 return 0;
805 }
e0001a05 806
74869ac7 807 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 808 if (table_section)
eea6121a 809 table_size = table_section->size;
43cd72b9 810
e0001a05
NC
811 if (table_size == 0)
812 {
813 *table_p = NULL;
814 return 0;
815 }
816
43cd72b9
BW
817 predef_flags = xtensa_get_property_predef_flags (table_section);
818 table_entry_size = 12;
819 if (predef_flags)
820 table_entry_size -= 4;
821
822 num_records = table_size / table_entry_size;
e0001a05
NC
823 table_data = retrieve_contents (abfd, table_section, TRUE);
824 blocks = (property_table_entry *)
825 bfd_malloc (num_records * sizeof (property_table_entry));
826 block_count = 0;
43cd72b9
BW
827
828 if (output_addr)
829 section_addr = section->output_section->vma + section->output_offset;
830 else
831 section_addr = section->vma;
3ba3bc8c 832
e0001a05 833 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 834 if (internal_relocs && !table_section->reloc_done)
e0001a05 835 {
bcc2cc8e
BW
836 qsort (internal_relocs, table_section->reloc_count,
837 sizeof (Elf_Internal_Rela), internal_reloc_compare);
838 irel = internal_relocs;
839 }
840 else
841 irel = NULL;
842
843 section_limit = bfd_get_section_limit (abfd, section);
844 rel_end = internal_relocs + table_section->reloc_count;
845
846 for (off = 0; off < table_size; off += table_entry_size)
847 {
848 bfd_vma address = bfd_get_32 (abfd, table_data + off);
849
850 /* Skip any relocations before the current offset. This should help
851 avoid confusion caused by unexpected relocations for the preceding
852 table entry. */
853 while (irel &&
854 (irel->r_offset < off
855 || (irel->r_offset == off
856 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
857 {
858 irel += 1;
859 if (irel >= rel_end)
860 irel = 0;
861 }
e0001a05 862
bcc2cc8e 863 if (irel && irel->r_offset == off)
e0001a05 864 {
bcc2cc8e
BW
865 bfd_vma sym_off;
866 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
867 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 868
bcc2cc8e 869 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
870 continue;
871
bcc2cc8e
BW
872 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
873 BFD_ASSERT (sym_off == 0);
874 address += (section_addr + sym_off + irel->r_addend);
e0001a05 875 }
bcc2cc8e 876 else
e0001a05 877 {
bcc2cc8e
BW
878 if (address < section_addr
879 || address >= section_addr + section_limit)
880 continue;
e0001a05 881 }
bcc2cc8e
BW
882
883 blocks[block_count].address = address;
884 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
885 if (predef_flags)
886 blocks[block_count].flags = predef_flags;
887 else
888 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
889 block_count++;
e0001a05
NC
890 }
891
892 release_contents (table_section, table_data);
893 release_internal_relocs (table_section, internal_relocs);
894
43cd72b9 895 if (block_count > 0)
e0001a05
NC
896 {
897 /* Now sort them into address order for easy reference. */
898 qsort (blocks, block_count, sizeof (property_table_entry),
899 property_table_compare);
e4115460
BW
900
901 /* Check that the table contents are valid. Problems may occur,
902 for example, if an unrelocated object file is stripped. */
903 for (blk = 1; blk < block_count; blk++)
904 {
905 /* The only circumstance where two entries may legitimately
906 have the same address is when one of them is a zero-size
907 placeholder to mark a place where fill can be inserted.
908 The zero-size entry should come first. */
909 if (blocks[blk - 1].address == blocks[blk].address &&
910 blocks[blk - 1].size != 0)
911 {
912 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
913 abfd, section);
914 bfd_set_error (bfd_error_bad_value);
915 free (blocks);
916 return -1;
917 }
918 }
e0001a05 919 }
43cd72b9 920
e0001a05
NC
921 *table_p = blocks;
922 return block_count;
923}
924
925
7fa3d080
BW
926static property_table_entry *
927elf_xtensa_find_property_entry (property_table_entry *property_table,
928 int property_table_size,
929 bfd_vma addr)
e0001a05
NC
930{
931 property_table_entry entry;
43cd72b9 932 property_table_entry *rv;
e0001a05 933
43cd72b9
BW
934 if (property_table_size == 0)
935 return NULL;
e0001a05
NC
936
937 entry.address = addr;
938 entry.size = 1;
43cd72b9 939 entry.flags = 0;
e0001a05 940
43cd72b9
BW
941 rv = bsearch (&entry, property_table, property_table_size,
942 sizeof (property_table_entry), property_table_matches);
943 return rv;
944}
945
946
947static bfd_boolean
7fa3d080
BW
948elf_xtensa_in_literal_pool (property_table_entry *lit_table,
949 int lit_table_size,
950 bfd_vma addr)
43cd72b9
BW
951{
952 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
953 return TRUE;
954
955 return FALSE;
956}
957
958\f
959/* Look through the relocs for a section during the first phase, and
960 calculate needed space in the dynamic reloc sections. */
961
962static bfd_boolean
7fa3d080
BW
963elf_xtensa_check_relocs (bfd *abfd,
964 struct bfd_link_info *info,
965 asection *sec,
966 const Elf_Internal_Rela *relocs)
e0001a05 967{
f0e6fdb2 968 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
969 Elf_Internal_Shdr *symtab_hdr;
970 struct elf_link_hash_entry **sym_hashes;
971 const Elf_Internal_Rela *rel;
972 const Elf_Internal_Rela *rel_end;
e0001a05 973
28dbbc02 974 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
975 return TRUE;
976
28dbbc02
BW
977 BFD_ASSERT (is_xtensa_elf (abfd));
978
f0e6fdb2 979 htab = elf_xtensa_hash_table (info);
e0001a05
NC
980 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
981 sym_hashes = elf_sym_hashes (abfd);
982
e0001a05
NC
983 rel_end = relocs + sec->reloc_count;
984 for (rel = relocs; rel < rel_end; rel++)
985 {
986 unsigned int r_type;
987 unsigned long r_symndx;
28dbbc02
BW
988 struct elf_link_hash_entry *h = NULL;
989 struct elf_xtensa_link_hash_entry *eh;
990 int tls_type, old_tls_type;
991 bfd_boolean is_got = FALSE;
992 bfd_boolean is_plt = FALSE;
993 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
994
995 r_symndx = ELF32_R_SYM (rel->r_info);
996 r_type = ELF32_R_TYPE (rel->r_info);
997
998 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
999 {
d003868e
AM
1000 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1001 abfd, r_symndx);
e0001a05
NC
1002 return FALSE;
1003 }
1004
28dbbc02 1005 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1006 {
1007 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1008 while (h->root.type == bfd_link_hash_indirect
1009 || h->root.type == bfd_link_hash_warning)
1010 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1011 }
28dbbc02 1012 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1013
1014 switch (r_type)
1015 {
28dbbc02
BW
1016 case R_XTENSA_TLSDESC_FN:
1017 if (info->shared)
1018 {
1019 tls_type = GOT_TLS_GD;
1020 is_got = TRUE;
1021 is_tlsfunc = TRUE;
1022 }
1023 else
1024 tls_type = GOT_TLS_IE;
1025 break;
e0001a05 1026
28dbbc02
BW
1027 case R_XTENSA_TLSDESC_ARG:
1028 if (info->shared)
e0001a05 1029 {
28dbbc02
BW
1030 tls_type = GOT_TLS_GD;
1031 is_got = TRUE;
1032 }
1033 else
1034 {
1035 tls_type = GOT_TLS_IE;
1036 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1037 is_got = TRUE;
e0001a05
NC
1038 }
1039 break;
1040
28dbbc02
BW
1041 case R_XTENSA_TLS_DTPOFF:
1042 if (info->shared)
1043 tls_type = GOT_TLS_GD;
1044 else
1045 tls_type = GOT_TLS_IE;
1046 break;
1047
1048 case R_XTENSA_TLS_TPOFF:
1049 tls_type = GOT_TLS_IE;
1050 if (info->shared)
1051 info->flags |= DF_STATIC_TLS;
1052 if (info->shared || h)
1053 is_got = TRUE;
1054 break;
1055
1056 case R_XTENSA_32:
1057 tls_type = GOT_NORMAL;
1058 is_got = TRUE;
1059 break;
1060
e0001a05 1061 case R_XTENSA_PLT:
28dbbc02
BW
1062 tls_type = GOT_NORMAL;
1063 is_plt = TRUE;
1064 break;
e0001a05 1065
28dbbc02
BW
1066 case R_XTENSA_GNU_VTINHERIT:
1067 /* This relocation describes the C++ object vtable hierarchy.
1068 Reconstruct it for later use during GC. */
1069 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1070 return FALSE;
1071 continue;
1072
1073 case R_XTENSA_GNU_VTENTRY:
1074 /* This relocation describes which C++ vtable entries are actually
1075 used. Record for later use during GC. */
1076 BFD_ASSERT (h != NULL);
1077 if (h != NULL
1078 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1079 return FALSE;
1080 continue;
1081
1082 default:
1083 /* Nothing to do for any other relocations. */
1084 continue;
1085 }
1086
1087 if (h)
1088 {
1089 if (is_plt)
e0001a05 1090 {
b45329f9
BW
1091 if (h->plt.refcount <= 0)
1092 {
1093 h->needs_plt = 1;
1094 h->plt.refcount = 1;
1095 }
1096 else
1097 h->plt.refcount += 1;
e0001a05
NC
1098
1099 /* Keep track of the total PLT relocation count even if we
1100 don't yet know whether the dynamic sections will be
1101 created. */
f0e6fdb2 1102 htab->plt_reloc_count += 1;
e0001a05
NC
1103
1104 if (elf_hash_table (info)->dynamic_sections_created)
1105 {
f0e6fdb2 1106 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1107 return FALSE;
1108 }
1109 }
28dbbc02 1110 else if (is_got)
b45329f9
BW
1111 {
1112 if (h->got.refcount <= 0)
1113 h->got.refcount = 1;
1114 else
1115 h->got.refcount += 1;
1116 }
28dbbc02
BW
1117
1118 if (is_tlsfunc)
1119 eh->tlsfunc_refcount += 1;
e0001a05 1120
28dbbc02
BW
1121 old_tls_type = eh->tls_type;
1122 }
1123 else
1124 {
1125 /* Allocate storage the first time. */
1126 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1127 {
28dbbc02
BW
1128 bfd_size_type size = symtab_hdr->sh_info;
1129 void *mem;
e0001a05 1130
28dbbc02
BW
1131 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1132 if (mem == NULL)
1133 return FALSE;
1134 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1135
28dbbc02
BW
1136 mem = bfd_zalloc (abfd, size);
1137 if (mem == NULL)
1138 return FALSE;
1139 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1140
1141 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1142 if (mem == NULL)
1143 return FALSE;
1144 elf_xtensa_local_tlsfunc_refcounts (abfd)
1145 = (bfd_signed_vma *) mem;
e0001a05 1146 }
e0001a05 1147
28dbbc02
BW
1148 /* This is a global offset table entry for a local symbol. */
1149 if (is_got || is_plt)
1150 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1151
28dbbc02
BW
1152 if (is_tlsfunc)
1153 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1154
28dbbc02
BW
1155 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1156 }
1157
1158 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1159 tls_type |= old_tls_type;
1160 /* If a TLS symbol is accessed using IE at least once,
1161 there is no point to use a dynamic model for it. */
1162 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1163 && ((old_tls_type & GOT_TLS_GD) == 0
1164 || (tls_type & GOT_TLS_IE) == 0))
1165 {
1166 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1167 tls_type = old_tls_type;
1168 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1169 tls_type |= old_tls_type;
1170 else
1171 {
1172 (*_bfd_error_handler)
1173 (_("%B: `%s' accessed both as normal and thread local symbol"),
1174 abfd,
1175 h ? h->root.root.string : "<local>");
1176 return FALSE;
1177 }
1178 }
1179
1180 if (old_tls_type != tls_type)
1181 {
1182 if (eh)
1183 eh->tls_type = tls_type;
1184 else
1185 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1186 }
1187 }
1188
e0001a05
NC
1189 return TRUE;
1190}
1191
1192
95147441
BW
1193static void
1194elf_xtensa_make_sym_local (struct bfd_link_info *info,
1195 struct elf_link_hash_entry *h)
1196{
1197 if (info->shared)
1198 {
1199 if (h->plt.refcount > 0)
1200 {
1201 /* For shared objects, there's no need for PLT entries for local
1202 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1203 if (h->got.refcount < 0)
1204 h->got.refcount = 0;
1205 h->got.refcount += h->plt.refcount;
1206 h->plt.refcount = 0;
1207 }
1208 }
1209 else
1210 {
1211 /* Don't need any dynamic relocations at all. */
1212 h->plt.refcount = 0;
1213 h->got.refcount = 0;
1214 }
1215}
1216
1217
1218static void
1219elf_xtensa_hide_symbol (struct bfd_link_info *info,
1220 struct elf_link_hash_entry *h,
1221 bfd_boolean force_local)
1222{
1223 /* For a shared link, move the plt refcount to the got refcount to leave
1224 space for RELATIVE relocs. */
1225 elf_xtensa_make_sym_local (info, h);
1226
1227 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1228}
1229
1230
e0001a05
NC
1231/* Return the section that should be marked against GC for a given
1232 relocation. */
1233
1234static asection *
7fa3d080 1235elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1236 struct bfd_link_info *info,
7fa3d080
BW
1237 Elf_Internal_Rela *rel,
1238 struct elf_link_hash_entry *h,
1239 Elf_Internal_Sym *sym)
e0001a05 1240{
e1e5c0b5
BW
1241 /* Property sections are marked "KEEP" in the linker scripts, but they
1242 should not cause other sections to be marked. (This approach relies
1243 on elf_xtensa_discard_info to remove property table entries that
1244 describe discarded sections. Alternatively, it might be more
1245 efficient to avoid using "KEEP" in the linker scripts and instead use
1246 the gc_mark_extra_sections hook to mark only the property sections
1247 that describe marked sections. That alternative does not work well
1248 with the current property table sections, which do not correspond
1249 one-to-one with the sections they describe, but that should be fixed
1250 someday.) */
1251 if (xtensa_is_property_section (sec))
1252 return NULL;
1253
07adf181
AM
1254 if (h != NULL)
1255 switch (ELF32_R_TYPE (rel->r_info))
1256 {
1257 case R_XTENSA_GNU_VTINHERIT:
1258 case R_XTENSA_GNU_VTENTRY:
1259 return NULL;
1260 }
1261
1262 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1263}
1264
7fa3d080 1265
e0001a05
NC
1266/* Update the GOT & PLT entry reference counts
1267 for the section being removed. */
1268
1269static bfd_boolean
7fa3d080 1270elf_xtensa_gc_sweep_hook (bfd *abfd,
28dbbc02 1271 struct bfd_link_info *info,
7fa3d080
BW
1272 asection *sec,
1273 const Elf_Internal_Rela *relocs)
e0001a05
NC
1274{
1275 Elf_Internal_Shdr *symtab_hdr;
1276 struct elf_link_hash_entry **sym_hashes;
e0001a05 1277 const Elf_Internal_Rela *rel, *relend;
28dbbc02
BW
1278 struct elf_xtensa_link_hash_table *htab;
1279
1280 htab = elf_xtensa_hash_table (info);
e0001a05 1281
7dda2462
TG
1282 if (info->relocatable)
1283 return TRUE;
1284
e0001a05
NC
1285 if ((sec->flags & SEC_ALLOC) == 0)
1286 return TRUE;
1287
1288 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1289 sym_hashes = elf_sym_hashes (abfd);
e0001a05
NC
1290
1291 relend = relocs + sec->reloc_count;
1292 for (rel = relocs; rel < relend; rel++)
1293 {
1294 unsigned long r_symndx;
1295 unsigned int r_type;
1296 struct elf_link_hash_entry *h = NULL;
28dbbc02
BW
1297 struct elf_xtensa_link_hash_entry *eh;
1298 bfd_boolean is_got = FALSE;
1299 bfd_boolean is_plt = FALSE;
1300 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1301
1302 r_symndx = ELF32_R_SYM (rel->r_info);
1303 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1304 {
1305 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1306 while (h->root.type == bfd_link_hash_indirect
1307 || h->root.type == bfd_link_hash_warning)
1308 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1309 }
28dbbc02 1310 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1311
1312 r_type = ELF32_R_TYPE (rel->r_info);
1313 switch (r_type)
1314 {
28dbbc02
BW
1315 case R_XTENSA_TLSDESC_FN:
1316 if (info->shared)
1317 {
1318 is_got = TRUE;
1319 is_tlsfunc = TRUE;
1320 }
e0001a05
NC
1321 break;
1322
28dbbc02
BW
1323 case R_XTENSA_TLSDESC_ARG:
1324 if (info->shared)
1325 is_got = TRUE;
1326 else
1327 {
1328 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1329 is_got = TRUE;
1330 }
e0001a05
NC
1331 break;
1332
28dbbc02
BW
1333 case R_XTENSA_TLS_TPOFF:
1334 if (info->shared || h)
1335 is_got = TRUE;
e0001a05
NC
1336 break;
1337
28dbbc02
BW
1338 case R_XTENSA_32:
1339 is_got = TRUE;
e0001a05 1340 break;
28dbbc02
BW
1341
1342 case R_XTENSA_PLT:
1343 is_plt = TRUE;
1344 break;
1345
1346 default:
1347 continue;
1348 }
1349
1350 if (h)
1351 {
1352 if (is_plt)
1353 {
1354 if (h->plt.refcount > 0)
1355 h->plt.refcount--;
1356 }
1357 else if (is_got)
1358 {
1359 if (h->got.refcount > 0)
1360 h->got.refcount--;
1361 }
1362 if (is_tlsfunc)
1363 {
1364 if (eh->tlsfunc_refcount > 0)
1365 eh->tlsfunc_refcount--;
1366 }
1367 }
1368 else
1369 {
1370 if (is_got || is_plt)
1371 {
1372 bfd_signed_vma *got_refcount
1373 = &elf_local_got_refcounts (abfd) [r_symndx];
1374 if (*got_refcount > 0)
1375 *got_refcount -= 1;
1376 }
1377 if (is_tlsfunc)
1378 {
1379 bfd_signed_vma *tlsfunc_refcount
1380 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1381 if (*tlsfunc_refcount > 0)
1382 *tlsfunc_refcount -= 1;
1383 }
e0001a05
NC
1384 }
1385 }
1386
1387 return TRUE;
1388}
1389
1390
1391/* Create all the dynamic sections. */
1392
1393static bfd_boolean
7fa3d080 1394elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1395{
f0e6fdb2 1396 struct elf_xtensa_link_hash_table *htab;
e901de89 1397 flagword flags, noalloc_flags;
f0e6fdb2
BW
1398
1399 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1400
1401 /* First do all the standard stuff. */
1402 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1403 return FALSE;
f0e6fdb2
BW
1404 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1405 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1406 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1407 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
64e77c6d 1408 htab->srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
e0001a05
NC
1409
1410 /* Create any extra PLT sections in case check_relocs has already
1411 been called on all the non-dynamic input files. */
f0e6fdb2 1412 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1413 return FALSE;
1414
e901de89
BW
1415 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1416 | SEC_LINKER_CREATED | SEC_READONLY);
1417 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1418
1419 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1420 if (htab->sgotplt == NULL
1421 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1422 return FALSE;
1423
e901de89 1424 /* Create ".got.loc" (literal tables for use by dynamic linker). */
f0e6fdb2
BW
1425 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1426 if (htab->sgotloc == NULL
1427 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1428 return FALSE;
1429
e0001a05 1430 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
f0e6fdb2
BW
1431 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1432 noalloc_flags);
1433 if (htab->spltlittbl == NULL
1434 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1435 return FALSE;
1436
1437 return TRUE;
1438}
1439
1440
1441static bfd_boolean
f0e6fdb2 1442add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1443{
f0e6fdb2 1444 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1445 int chunk;
1446
1447 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1448 ".got.plt" sections. */
1449 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1450 {
1451 char *sname;
1452 flagword flags;
1453 asection *s;
1454
1455 /* Stop when we find a section has already been created. */
f0e6fdb2 1456 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1457 break;
1458
1459 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1460 | SEC_LINKER_CREATED | SEC_READONLY);
1461
1462 sname = (char *) bfd_malloc (10);
1463 sprintf (sname, ".plt.%u", chunk);
ba05963f 1464 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1465 if (s == NULL
e0001a05
NC
1466 || ! bfd_set_section_alignment (dynobj, s, 2))
1467 return FALSE;
1468
1469 sname = (char *) bfd_malloc (14);
1470 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1471 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1472 if (s == NULL
e0001a05
NC
1473 || ! bfd_set_section_alignment (dynobj, s, 2))
1474 return FALSE;
1475 }
1476
1477 return TRUE;
1478}
1479
1480
1481/* Adjust a symbol defined by a dynamic object and referenced by a
1482 regular object. The current definition is in some section of the
1483 dynamic object, but we're not including those sections. We have to
1484 change the definition to something the rest of the link can
1485 understand. */
1486
1487static bfd_boolean
7fa3d080
BW
1488elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1489 struct elf_link_hash_entry *h)
e0001a05
NC
1490{
1491 /* If this is a weak symbol, and there is a real definition, the
1492 processor independent code will have arranged for us to see the
1493 real definition first, and we can just use the same value. */
7fa3d080 1494 if (h->u.weakdef)
e0001a05 1495 {
f6e332e6
AM
1496 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1497 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1498 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1499 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1500 return TRUE;
1501 }
1502
1503 /* This is a reference to a symbol defined by a dynamic object. The
1504 reference must go through the GOT, so there's no need for COPY relocs,
1505 .dynbss, etc. */
1506
1507 return TRUE;
1508}
1509
1510
e0001a05 1511static bfd_boolean
f1ab2340 1512elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1513{
f1ab2340
BW
1514 struct bfd_link_info *info;
1515 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1516 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1517
f1ab2340
BW
1518 if (h->root.type == bfd_link_hash_indirect)
1519 return TRUE;
e0001a05
NC
1520
1521 if (h->root.type == bfd_link_hash_warning)
1522 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1523
f1ab2340
BW
1524 info = (struct bfd_link_info *) arg;
1525 htab = elf_xtensa_hash_table (info);
e0001a05 1526
28dbbc02
BW
1527 /* If we saw any use of an IE model for this symbol, we can then optimize
1528 away GOT entries for any TLSDESC_FN relocs. */
1529 if ((eh->tls_type & GOT_TLS_IE) != 0)
1530 {
1531 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1532 h->got.refcount -= eh->tlsfunc_refcount;
1533 }
e0001a05 1534
28dbbc02 1535 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1536 elf_xtensa_make_sym_local (info, h);
e0001a05 1537
f1ab2340
BW
1538 if (h->plt.refcount > 0)
1539 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1540
1541 if (h->got.refcount > 0)
f1ab2340 1542 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1543
1544 return TRUE;
1545}
1546
1547
1548static void
f0e6fdb2 1549elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1550{
f0e6fdb2 1551 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1552 bfd *i;
1553
f0e6fdb2
BW
1554 htab = elf_xtensa_hash_table (info);
1555
e0001a05
NC
1556 for (i = info->input_bfds; i; i = i->link_next)
1557 {
1558 bfd_signed_vma *local_got_refcounts;
1559 bfd_size_type j, cnt;
1560 Elf_Internal_Shdr *symtab_hdr;
1561
1562 local_got_refcounts = elf_local_got_refcounts (i);
1563 if (!local_got_refcounts)
1564 continue;
1565
1566 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1567 cnt = symtab_hdr->sh_info;
1568
1569 for (j = 0; j < cnt; ++j)
1570 {
28dbbc02
BW
1571 /* If we saw any use of an IE model for this symbol, we can
1572 then optimize away GOT entries for any TLSDESC_FN relocs. */
1573 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1574 {
1575 bfd_signed_vma *tlsfunc_refcount
1576 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1577 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1578 local_got_refcounts[j] -= *tlsfunc_refcount;
1579 }
1580
e0001a05 1581 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1582 htab->srelgot->size += (local_got_refcounts[j]
1583 * sizeof (Elf32_External_Rela));
e0001a05
NC
1584 }
1585 }
1586}
1587
1588
1589/* Set the sizes of the dynamic sections. */
1590
1591static bfd_boolean
7fa3d080
BW
1592elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1593 struct bfd_link_info *info)
e0001a05 1594{
f0e6fdb2 1595 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1596 bfd *dynobj, *abfd;
1597 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1598 bfd_boolean relplt, relgot;
1599 int plt_entries, plt_chunks, chunk;
1600
1601 plt_entries = 0;
1602 plt_chunks = 0;
e0001a05 1603
f0e6fdb2 1604 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1605 dynobj = elf_hash_table (info)->dynobj;
1606 if (dynobj == NULL)
1607 abort ();
f0e6fdb2
BW
1608 srelgot = htab->srelgot;
1609 srelplt = htab->srelplt;
e0001a05
NC
1610
1611 if (elf_hash_table (info)->dynamic_sections_created)
1612 {
f0e6fdb2
BW
1613 BFD_ASSERT (htab->srelgot != NULL
1614 && htab->srelplt != NULL
1615 && htab->sgot != NULL
1616 && htab->spltlittbl != NULL
1617 && htab->sgotloc != NULL);
1618
e0001a05 1619 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1620 if (info->executable)
e0001a05
NC
1621 {
1622 s = bfd_get_section_by_name (dynobj, ".interp");
1623 if (s == NULL)
1624 abort ();
eea6121a 1625 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1626 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1627 }
1628
1629 /* Allocate room for one word in ".got". */
f0e6fdb2 1630 htab->sgot->size = 4;
e0001a05 1631
f1ab2340
BW
1632 /* Allocate space in ".rela.got" for literals that reference global
1633 symbols and space in ".rela.plt" for literals that have PLT
1634 entries. */
e0001a05 1635 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1636 elf_xtensa_allocate_dynrelocs,
7fa3d080 1637 (void *) info);
e0001a05 1638
e0001a05
NC
1639 /* If we are generating a shared object, we also need space in
1640 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1641 reference local symbols. */
1642 if (info->shared)
f0e6fdb2 1643 elf_xtensa_allocate_local_got_size (info);
e0001a05 1644
e0001a05
NC
1645 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1646 each PLT entry, we need the PLT code plus a 4-byte literal.
1647 For each chunk of ".plt", we also need two more 4-byte
1648 literals, two corresponding entries in ".rela.got", and an
1649 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1650 spltlittbl = htab->spltlittbl;
eea6121a 1651 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1652 plt_chunks =
1653 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1654
1655 /* Iterate over all the PLT chunks, including any extra sections
1656 created earlier because the initial count of PLT relocations
1657 was an overestimate. */
1658 for (chunk = 0;
f0e6fdb2 1659 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1660 chunk++)
1661 {
1662 int chunk_entries;
1663
f0e6fdb2
BW
1664 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1665 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1666
1667 if (chunk < plt_chunks - 1)
1668 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1669 else if (chunk == plt_chunks - 1)
1670 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1671 else
1672 chunk_entries = 0;
1673
1674 if (chunk_entries != 0)
1675 {
eea6121a
AM
1676 sgotplt->size = 4 * (chunk_entries + 2);
1677 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1678 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1679 spltlittbl->size += 8;
e0001a05
NC
1680 }
1681 else
1682 {
eea6121a
AM
1683 sgotplt->size = 0;
1684 splt->size = 0;
e0001a05
NC
1685 }
1686 }
e901de89
BW
1687
1688 /* Allocate space in ".got.loc" to match the total size of all the
1689 literal tables. */
f0e6fdb2 1690 sgotloc = htab->sgotloc;
eea6121a 1691 sgotloc->size = spltlittbl->size;
e901de89
BW
1692 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1693 {
1694 if (abfd->flags & DYNAMIC)
1695 continue;
1696 for (s = abfd->sections; s != NULL; s = s->next)
1697 {
b536dc1e
BW
1698 if (! elf_discarded_section (s)
1699 && xtensa_is_littable_section (s)
1700 && s != spltlittbl)
eea6121a 1701 sgotloc->size += s->size;
e901de89
BW
1702 }
1703 }
e0001a05
NC
1704 }
1705
1706 /* Allocate memory for dynamic sections. */
1707 relplt = FALSE;
1708 relgot = FALSE;
1709 for (s = dynobj->sections; s != NULL; s = s->next)
1710 {
1711 const char *name;
e0001a05
NC
1712
1713 if ((s->flags & SEC_LINKER_CREATED) == 0)
1714 continue;
1715
1716 /* It's OK to base decisions on the section name, because none
1717 of the dynobj section names depend upon the input files. */
1718 name = bfd_get_section_name (dynobj, s);
1719
0112cd26 1720 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1721 {
c456f082 1722 if (s->size != 0)
e0001a05 1723 {
c456f082
AM
1724 if (strcmp (name, ".rela.plt") == 0)
1725 relplt = TRUE;
1726 else if (strcmp (name, ".rela.got") == 0)
1727 relgot = TRUE;
1728
1729 /* We use the reloc_count field as a counter if we need
1730 to copy relocs into the output file. */
1731 s->reloc_count = 0;
e0001a05
NC
1732 }
1733 }
0112cd26
NC
1734 else if (! CONST_STRNEQ (name, ".plt.")
1735 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1736 && strcmp (name, ".got") != 0
e0001a05
NC
1737 && strcmp (name, ".plt") != 0
1738 && strcmp (name, ".got.plt") != 0
e901de89
BW
1739 && strcmp (name, ".xt.lit.plt") != 0
1740 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1741 {
1742 /* It's not one of our sections, so don't allocate space. */
1743 continue;
1744 }
1745
c456f082
AM
1746 if (s->size == 0)
1747 {
1748 /* If we don't need this section, strip it from the output
1749 file. We must create the ".plt*" and ".got.plt*"
1750 sections in create_dynamic_sections and/or check_relocs
1751 based on a conservative estimate of the PLT relocation
1752 count, because the sections must be created before the
1753 linker maps input sections to output sections. The
1754 linker does that before size_dynamic_sections, where we
1755 compute the exact size of the PLT, so there may be more
1756 of these sections than are actually needed. */
1757 s->flags |= SEC_EXCLUDE;
1758 }
1759 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1760 {
1761 /* Allocate memory for the section contents. */
eea6121a 1762 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1763 if (s->contents == NULL)
e0001a05
NC
1764 return FALSE;
1765 }
1766 }
1767
1768 if (elf_hash_table (info)->dynamic_sections_created)
1769 {
1770 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1771 known until finish_dynamic_sections, but we need to get the relocs
1772 in place before they are sorted. */
e0001a05
NC
1773 for (chunk = 0; chunk < plt_chunks; chunk++)
1774 {
1775 Elf_Internal_Rela irela;
1776 bfd_byte *loc;
1777
1778 irela.r_offset = 0;
1779 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1780 irela.r_addend = 0;
1781
1782 loc = (srelgot->contents
1783 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1784 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1785 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1786 loc + sizeof (Elf32_External_Rela));
1787 srelgot->reloc_count += 2;
1788 }
1789
1790 /* Add some entries to the .dynamic section. We fill in the
1791 values later, in elf_xtensa_finish_dynamic_sections, but we
1792 must add the entries now so that we get the correct size for
1793 the .dynamic section. The DT_DEBUG entry is filled in by the
1794 dynamic linker and used by the debugger. */
1795#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1796 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1797
ba05963f 1798 if (info->executable)
e0001a05
NC
1799 {
1800 if (!add_dynamic_entry (DT_DEBUG, 0))
1801 return FALSE;
1802 }
1803
1804 if (relplt)
1805 {
c243ad3b 1806 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1807 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1808 || !add_dynamic_entry (DT_JMPREL, 0))
1809 return FALSE;
1810 }
1811
1812 if (relgot)
1813 {
1814 if (!add_dynamic_entry (DT_RELA, 0)
1815 || !add_dynamic_entry (DT_RELASZ, 0)
1816 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1817 return FALSE;
1818 }
1819
c243ad3b
BW
1820 if (!add_dynamic_entry (DT_PLTGOT, 0)
1821 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1822 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1823 return FALSE;
1824 }
1825#undef add_dynamic_entry
1826
1827 return TRUE;
1828}
1829
28dbbc02
BW
1830static bfd_boolean
1831elf_xtensa_always_size_sections (bfd *output_bfd,
1832 struct bfd_link_info *info)
1833{
1834 struct elf_xtensa_link_hash_table *htab;
1835 asection *tls_sec;
1836
1837 htab = elf_xtensa_hash_table (info);
1838 tls_sec = htab->elf.tls_sec;
1839
1840 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1841 {
1842 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1843 struct bfd_link_hash_entry *bh = &tlsbase->root;
1844 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1845
1846 tlsbase->type = STT_TLS;
1847 if (!(_bfd_generic_link_add_one_symbol
1848 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1849 tls_sec, 0, NULL, FALSE,
1850 bed->collect, &bh)))
1851 return FALSE;
1852 tlsbase->def_regular = 1;
1853 tlsbase->other = STV_HIDDEN;
1854 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1855 }
1856
1857 return TRUE;
1858}
1859
e0001a05 1860\f
28dbbc02
BW
1861/* Return the base VMA address which should be subtracted from real addresses
1862 when resolving @dtpoff relocation.
1863 This is PT_TLS segment p_vaddr. */
1864
1865static bfd_vma
1866dtpoff_base (struct bfd_link_info *info)
1867{
1868 /* If tls_sec is NULL, we should have signalled an error already. */
1869 if (elf_hash_table (info)->tls_sec == NULL)
1870 return 0;
1871 return elf_hash_table (info)->tls_sec->vma;
1872}
1873
1874/* Return the relocation value for @tpoff relocation
1875 if STT_TLS virtual address is ADDRESS. */
1876
1877static bfd_vma
1878tpoff (struct bfd_link_info *info, bfd_vma address)
1879{
1880 struct elf_link_hash_table *htab = elf_hash_table (info);
1881 bfd_vma base;
1882
1883 /* If tls_sec is NULL, we should have signalled an error already. */
1884 if (htab->tls_sec == NULL)
1885 return 0;
1886 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1887 return address - htab->tls_sec->vma + base;
1888}
1889
e0001a05
NC
1890/* Perform the specified relocation. The instruction at (contents + address)
1891 is modified to set one operand to represent the value in "relocation". The
1892 operand position is determined by the relocation type recorded in the
1893 howto. */
1894
1895#define CALL_SEGMENT_BITS (30)
7fa3d080 1896#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1897
1898static bfd_reloc_status_type
7fa3d080
BW
1899elf_xtensa_do_reloc (reloc_howto_type *howto,
1900 bfd *abfd,
1901 asection *input_section,
1902 bfd_vma relocation,
1903 bfd_byte *contents,
1904 bfd_vma address,
1905 bfd_boolean is_weak_undef,
1906 char **error_message)
e0001a05 1907{
43cd72b9 1908 xtensa_format fmt;
e0001a05 1909 xtensa_opcode opcode;
e0001a05 1910 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1911 static xtensa_insnbuf ibuff = NULL;
1912 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1913 bfd_vma self_address;
43cd72b9
BW
1914 bfd_size_type input_size;
1915 int opnd, slot;
e0001a05
NC
1916 uint32 newval;
1917
43cd72b9
BW
1918 if (!ibuff)
1919 {
1920 ibuff = xtensa_insnbuf_alloc (isa);
1921 sbuff = xtensa_insnbuf_alloc (isa);
1922 }
1923
1924 input_size = bfd_get_section_limit (abfd, input_section);
1925
1bbb5f21
BW
1926 /* Calculate the PC address for this instruction. */
1927 self_address = (input_section->output_section->vma
1928 + input_section->output_offset
1929 + address);
1930
e0001a05
NC
1931 switch (howto->type)
1932 {
1933 case R_XTENSA_NONE:
43cd72b9
BW
1934 case R_XTENSA_DIFF8:
1935 case R_XTENSA_DIFF16:
1936 case R_XTENSA_DIFF32:
28dbbc02
BW
1937 case R_XTENSA_TLS_FUNC:
1938 case R_XTENSA_TLS_ARG:
1939 case R_XTENSA_TLS_CALL:
e0001a05
NC
1940 return bfd_reloc_ok;
1941
1942 case R_XTENSA_ASM_EXPAND:
1943 if (!is_weak_undef)
1944 {
1945 /* Check for windowed CALL across a 1GB boundary. */
91d6fa6a
NC
1946 opcode = get_expanded_call_opcode (contents + address,
1947 input_size - address, 0);
e0001a05
NC
1948 if (is_windowed_call_opcode (opcode))
1949 {
43cd72b9
BW
1950 if ((self_address >> CALL_SEGMENT_BITS)
1951 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1952 {
1953 *error_message = "windowed longcall crosses 1GB boundary; "
1954 "return may fail";
1955 return bfd_reloc_dangerous;
1956 }
1957 }
1958 }
1959 return bfd_reloc_ok;
1960
1961 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1962 {
e0001a05 1963 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1964 bfd_reloc_status_type retval =
1965 elf_xtensa_do_asm_simplify (contents, address, input_size,
1966 error_message);
e0001a05 1967 if (retval != bfd_reloc_ok)
43cd72b9 1968 return bfd_reloc_dangerous;
e0001a05
NC
1969
1970 /* The CALL needs to be relocated. Continue below for that part. */
1971 address += 3;
c46082c8 1972 self_address += 3;
43cd72b9 1973 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1974 }
1975 break;
1976
1977 case R_XTENSA_32:
e0001a05
NC
1978 {
1979 bfd_vma x;
1980 x = bfd_get_32 (abfd, contents + address);
1981 x = x + relocation;
1982 bfd_put_32 (abfd, x, contents + address);
1983 }
1984 return bfd_reloc_ok;
1bbb5f21
BW
1985
1986 case R_XTENSA_32_PCREL:
1987 bfd_put_32 (abfd, relocation - self_address, contents + address);
1988 return bfd_reloc_ok;
28dbbc02
BW
1989
1990 case R_XTENSA_PLT:
1991 case R_XTENSA_TLSDESC_FN:
1992 case R_XTENSA_TLSDESC_ARG:
1993 case R_XTENSA_TLS_DTPOFF:
1994 case R_XTENSA_TLS_TPOFF:
1995 bfd_put_32 (abfd, relocation, contents + address);
1996 return bfd_reloc_ok;
e0001a05
NC
1997 }
1998
43cd72b9
BW
1999 /* Only instruction slot-specific relocations handled below.... */
2000 slot = get_relocation_slot (howto->type);
2001 if (slot == XTENSA_UNDEFINED)
e0001a05 2002 {
43cd72b9 2003 *error_message = "unexpected relocation";
e0001a05
NC
2004 return bfd_reloc_dangerous;
2005 }
2006
43cd72b9
BW
2007 /* Read the instruction into a buffer and decode the opcode. */
2008 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2009 input_size - address);
2010 fmt = xtensa_format_decode (isa, ibuff);
2011 if (fmt == XTENSA_UNDEFINED)
e0001a05 2012 {
43cd72b9 2013 *error_message = "cannot decode instruction format";
e0001a05
NC
2014 return bfd_reloc_dangerous;
2015 }
2016
43cd72b9 2017 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 2018
43cd72b9
BW
2019 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2020 if (opcode == XTENSA_UNDEFINED)
e0001a05 2021 {
43cd72b9 2022 *error_message = "cannot decode instruction opcode";
e0001a05
NC
2023 return bfd_reloc_dangerous;
2024 }
2025
43cd72b9
BW
2026 /* Check for opcode-specific "alternate" relocations. */
2027 if (is_alt_relocation (howto->type))
2028 {
2029 if (opcode == get_l32r_opcode ())
2030 {
2031 /* Handle the special-case of non-PC-relative L32R instructions. */
2032 bfd *output_bfd = input_section->output_section->owner;
2033 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2034 if (!lit4_sec)
2035 {
2036 *error_message = "relocation references missing .lit4 section";
2037 return bfd_reloc_dangerous;
2038 }
2039 self_address = ((lit4_sec->vma & ~0xfff)
2040 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2041 newval = relocation;
2042 opnd = 1;
2043 }
2044 else if (opcode == get_const16_opcode ())
2045 {
2046 /* ALT used for high 16 bits. */
2047 newval = relocation >> 16;
2048 opnd = 1;
2049 }
2050 else
2051 {
2052 /* No other "alternate" relocations currently defined. */
2053 *error_message = "unexpected relocation";
2054 return bfd_reloc_dangerous;
2055 }
2056 }
2057 else /* Not an "alternate" relocation.... */
2058 {
2059 if (opcode == get_const16_opcode ())
2060 {
2061 newval = relocation & 0xffff;
2062 opnd = 1;
2063 }
2064 else
2065 {
2066 /* ...normal PC-relative relocation.... */
2067
2068 /* Determine which operand is being relocated. */
2069 opnd = get_relocation_opnd (opcode, howto->type);
2070 if (opnd == XTENSA_UNDEFINED)
2071 {
2072 *error_message = "unexpected relocation";
2073 return bfd_reloc_dangerous;
2074 }
2075
2076 if (!howto->pc_relative)
2077 {
2078 *error_message = "expected PC-relative relocation";
2079 return bfd_reloc_dangerous;
2080 }
e0001a05 2081
43cd72b9
BW
2082 newval = relocation;
2083 }
2084 }
e0001a05 2085
43cd72b9
BW
2086 /* Apply the relocation. */
2087 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2088 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2089 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2090 sbuff, newval))
e0001a05 2091 {
2db662be
BW
2092 const char *opname = xtensa_opcode_name (isa, opcode);
2093 const char *msg;
2094
2095 msg = "cannot encode";
2096 if (is_direct_call_opcode (opcode))
2097 {
2098 if ((relocation & 0x3) != 0)
2099 msg = "misaligned call target";
2100 else
2101 msg = "call target out of range";
2102 }
2103 else if (opcode == get_l32r_opcode ())
2104 {
2105 if ((relocation & 0x3) != 0)
2106 msg = "misaligned literal target";
2107 else if (is_alt_relocation (howto->type))
2108 msg = "literal target out of range (too many literals)";
2109 else if (self_address > relocation)
2110 msg = "literal target out of range (try using text-section-literals)";
2111 else
2112 msg = "literal placed after use";
2113 }
2114
2115 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2116 return bfd_reloc_dangerous;
2117 }
2118
43cd72b9 2119 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2120 if (is_direct_call_opcode (opcode)
2121 && is_windowed_call_opcode (opcode))
2122 {
43cd72b9
BW
2123 if ((self_address >> CALL_SEGMENT_BITS)
2124 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2125 {
43cd72b9
BW
2126 *error_message =
2127 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2128 return bfd_reloc_dangerous;
2129 }
2130 }
2131
43cd72b9
BW
2132 /* Write the modified instruction back out of the buffer. */
2133 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2134 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2135 input_size - address);
e0001a05
NC
2136 return bfd_reloc_ok;
2137}
2138
2139
2db662be 2140static char *
7fa3d080 2141vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2142{
2143 /* To reduce the size of the memory leak,
2144 we only use a single message buffer. */
2145 static bfd_size_type alloc_size = 0;
2146 static char *message = NULL;
2147 bfd_size_type orig_len, len = 0;
2148 bfd_boolean is_append;
2149
2150 VA_OPEN (ap, arglen);
2151 VA_FIXEDARG (ap, const char *, origmsg);
2152
2153 is_append = (origmsg == message);
2154
2155 orig_len = strlen (origmsg);
2156 len = orig_len + strlen (fmt) + arglen + 20;
2157 if (len > alloc_size)
2158 {
515ef31d 2159 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2160 alloc_size = len;
2161 }
515ef31d
NC
2162 if (message != NULL)
2163 {
2164 if (!is_append)
2165 memcpy (message, origmsg, orig_len);
2166 vsprintf (message + orig_len, fmt, ap);
2167 }
e0001a05
NC
2168 VA_CLOSE (ap);
2169 return message;
2170}
2171
2172
e0001a05
NC
2173/* This function is registered as the "special_function" in the
2174 Xtensa howto for handling simplify operations.
2175 bfd_perform_relocation / bfd_install_relocation use it to
2176 perform (install) the specified relocation. Since this replaces the code
2177 in bfd_perform_relocation, it is basically an Xtensa-specific,
2178 stripped-down version of bfd_perform_relocation. */
2179
2180static bfd_reloc_status_type
7fa3d080
BW
2181bfd_elf_xtensa_reloc (bfd *abfd,
2182 arelent *reloc_entry,
2183 asymbol *symbol,
2184 void *data,
2185 asection *input_section,
2186 bfd *output_bfd,
2187 char **error_message)
e0001a05
NC
2188{
2189 bfd_vma relocation;
2190 bfd_reloc_status_type flag;
2191 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2192 bfd_vma output_base = 0;
2193 reloc_howto_type *howto = reloc_entry->howto;
2194 asection *reloc_target_output_section;
2195 bfd_boolean is_weak_undef;
2196
dd1a320b
BW
2197 if (!xtensa_default_isa)
2198 xtensa_default_isa = xtensa_isa_init (0, 0);
2199
1049f94e 2200 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2201 output, and the reloc is against an external symbol, the resulting
2202 reloc will also be against the same symbol. In such a case, we
2203 don't want to change anything about the way the reloc is handled,
2204 since it will all be done at final link time. This test is similar
2205 to what bfd_elf_generic_reloc does except that it lets relocs with
2206 howto->partial_inplace go through even if the addend is non-zero.
2207 (The real problem is that partial_inplace is set for XTENSA_32
2208 relocs to begin with, but that's a long story and there's little we
2209 can do about it now....) */
2210
7fa3d080 2211 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2212 {
2213 reloc_entry->address += input_section->output_offset;
2214 return bfd_reloc_ok;
2215 }
2216
2217 /* Is the address of the relocation really within the section? */
07515404 2218 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2219 return bfd_reloc_outofrange;
2220
4cc11e76 2221 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2222 initial relocation command value. */
2223
2224 /* Get symbol value. (Common symbols are special.) */
2225 if (bfd_is_com_section (symbol->section))
2226 relocation = 0;
2227 else
2228 relocation = symbol->value;
2229
2230 reloc_target_output_section = symbol->section->output_section;
2231
2232 /* Convert input-section-relative symbol value to absolute. */
2233 if ((output_bfd && !howto->partial_inplace)
2234 || reloc_target_output_section == NULL)
2235 output_base = 0;
2236 else
2237 output_base = reloc_target_output_section->vma;
2238
2239 relocation += output_base + symbol->section->output_offset;
2240
2241 /* Add in supplied addend. */
2242 relocation += reloc_entry->addend;
2243
2244 /* Here the variable relocation holds the final address of the
2245 symbol we are relocating against, plus any addend. */
2246 if (output_bfd)
2247 {
2248 if (!howto->partial_inplace)
2249 {
2250 /* This is a partial relocation, and we want to apply the relocation
2251 to the reloc entry rather than the raw data. Everything except
2252 relocations against section symbols has already been handled
2253 above. */
43cd72b9 2254
e0001a05
NC
2255 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2256 reloc_entry->addend = relocation;
2257 reloc_entry->address += input_section->output_offset;
2258 return bfd_reloc_ok;
2259 }
2260 else
2261 {
2262 reloc_entry->address += input_section->output_offset;
2263 reloc_entry->addend = 0;
2264 }
2265 }
2266
2267 is_weak_undef = (bfd_is_und_section (symbol->section)
2268 && (symbol->flags & BSF_WEAK) != 0);
2269 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2270 (bfd_byte *) data, (bfd_vma) octets,
2271 is_weak_undef, error_message);
2272
2273 if (flag == bfd_reloc_dangerous)
2274 {
2275 /* Add the symbol name to the error message. */
2276 if (! *error_message)
2277 *error_message = "";
2278 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2279 strlen (symbol->name) + 17,
70961b9d
AM
2280 symbol->name,
2281 (unsigned long) reloc_entry->addend);
e0001a05
NC
2282 }
2283
2284 return flag;
2285}
2286
2287
2288/* Set up an entry in the procedure linkage table. */
2289
2290static bfd_vma
f0e6fdb2 2291elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2292 bfd *output_bfd,
2293 unsigned reloc_index)
e0001a05
NC
2294{
2295 asection *splt, *sgotplt;
2296 bfd_vma plt_base, got_base;
2297 bfd_vma code_offset, lit_offset;
2298 int chunk;
2299
2300 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2301 splt = elf_xtensa_get_plt_section (info, chunk);
2302 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2303 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2304
2305 plt_base = splt->output_section->vma + splt->output_offset;
2306 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2307
2308 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2309 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2310
2311 /* Fill in the literal entry. This is the offset of the dynamic
2312 relocation entry. */
2313 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2314 sgotplt->contents + lit_offset);
2315
2316 /* Fill in the entry in the procedure linkage table. */
2317 memcpy (splt->contents + code_offset,
2318 (bfd_big_endian (output_bfd)
2319 ? elf_xtensa_be_plt_entry
2320 : elf_xtensa_le_plt_entry),
2321 PLT_ENTRY_SIZE);
2322 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2323 plt_base + code_offset + 3),
2324 splt->contents + code_offset + 4);
2325 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2326 plt_base + code_offset + 6),
2327 splt->contents + code_offset + 7);
2328 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2329 plt_base + code_offset + 9),
2330 splt->contents + code_offset + 10);
2331
2332 return plt_base + code_offset;
2333}
2334
2335
28dbbc02
BW
2336static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2337
2338static bfd_boolean
2339replace_tls_insn (Elf_Internal_Rela *rel,
2340 bfd *abfd,
2341 asection *input_section,
2342 bfd_byte *contents,
2343 bfd_boolean is_ld_model,
2344 char **error_message)
2345{
2346 static xtensa_insnbuf ibuff = NULL;
2347 static xtensa_insnbuf sbuff = NULL;
2348 xtensa_isa isa = xtensa_default_isa;
2349 xtensa_format fmt;
2350 xtensa_opcode old_op, new_op;
2351 bfd_size_type input_size;
2352 int r_type;
2353 unsigned dest_reg, src_reg;
2354
2355 if (ibuff == NULL)
2356 {
2357 ibuff = xtensa_insnbuf_alloc (isa);
2358 sbuff = xtensa_insnbuf_alloc (isa);
2359 }
2360
2361 input_size = bfd_get_section_limit (abfd, input_section);
2362
2363 /* Read the instruction into a buffer and decode the opcode. */
2364 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2365 input_size - rel->r_offset);
2366 fmt = xtensa_format_decode (isa, ibuff);
2367 if (fmt == XTENSA_UNDEFINED)
2368 {
2369 *error_message = "cannot decode instruction format";
2370 return FALSE;
2371 }
2372
2373 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2374 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2375
2376 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2377 if (old_op == XTENSA_UNDEFINED)
2378 {
2379 *error_message = "cannot decode instruction opcode";
2380 return FALSE;
2381 }
2382
2383 r_type = ELF32_R_TYPE (rel->r_info);
2384 switch (r_type)
2385 {
2386 case R_XTENSA_TLS_FUNC:
2387 case R_XTENSA_TLS_ARG:
2388 if (old_op != get_l32r_opcode ()
2389 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2390 sbuff, &dest_reg) != 0)
2391 {
2392 *error_message = "cannot extract L32R destination for TLS access";
2393 return FALSE;
2394 }
2395 break;
2396
2397 case R_XTENSA_TLS_CALL:
2398 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2399 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2400 sbuff, &src_reg) != 0)
2401 {
2402 *error_message = "cannot extract CALLXn operands for TLS access";
2403 return FALSE;
2404 }
2405 break;
2406
2407 default:
2408 abort ();
2409 }
2410
2411 if (is_ld_model)
2412 {
2413 switch (r_type)
2414 {
2415 case R_XTENSA_TLS_FUNC:
2416 case R_XTENSA_TLS_ARG:
2417 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2418 versions of Xtensa). */
2419 new_op = xtensa_opcode_lookup (isa, "nop");
2420 if (new_op == XTENSA_UNDEFINED)
2421 {
2422 new_op = xtensa_opcode_lookup (isa, "or");
2423 if (new_op == XTENSA_UNDEFINED
2424 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2425 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2426 sbuff, 1) != 0
2427 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2428 sbuff, 1) != 0
2429 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2430 sbuff, 1) != 0)
2431 {
2432 *error_message = "cannot encode OR for TLS access";
2433 return FALSE;
2434 }
2435 }
2436 else
2437 {
2438 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2439 {
2440 *error_message = "cannot encode NOP for TLS access";
2441 return FALSE;
2442 }
2443 }
2444 break;
2445
2446 case R_XTENSA_TLS_CALL:
2447 /* Read THREADPTR into the CALLX's return value register. */
2448 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2449 if (new_op == XTENSA_UNDEFINED
2450 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2451 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2452 sbuff, dest_reg + 2) != 0)
2453 {
2454 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2455 return FALSE;
2456 }
2457 break;
2458 }
2459 }
2460 else
2461 {
2462 switch (r_type)
2463 {
2464 case R_XTENSA_TLS_FUNC:
2465 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2466 if (new_op == XTENSA_UNDEFINED
2467 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2468 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2469 sbuff, dest_reg) != 0)
2470 {
2471 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2472 return FALSE;
2473 }
2474 break;
2475
2476 case R_XTENSA_TLS_ARG:
2477 /* Nothing to do. Keep the original L32R instruction. */
2478 return TRUE;
2479
2480 case R_XTENSA_TLS_CALL:
2481 /* Add the CALLX's src register (holding the THREADPTR value)
2482 to the first argument register (holding the offset) and put
2483 the result in the CALLX's return value register. */
2484 new_op = xtensa_opcode_lookup (isa, "add");
2485 if (new_op == XTENSA_UNDEFINED
2486 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2487 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2488 sbuff, dest_reg + 2) != 0
2489 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2490 sbuff, dest_reg + 2) != 0
2491 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2492 sbuff, src_reg) != 0)
2493 {
2494 *error_message = "cannot encode ADD for TLS access";
2495 return FALSE;
2496 }
2497 break;
2498 }
2499 }
2500
2501 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2502 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2503 input_size - rel->r_offset);
2504
2505 return TRUE;
2506}
2507
2508
2509#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2510 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2511 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2512 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2513 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2514 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2515 || (R_TYPE) == R_XTENSA_TLS_ARG \
2516 || (R_TYPE) == R_XTENSA_TLS_CALL)
2517
e0001a05 2518/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2519 both relocatable and final links. */
e0001a05
NC
2520
2521static bfd_boolean
7fa3d080
BW
2522elf_xtensa_relocate_section (bfd *output_bfd,
2523 struct bfd_link_info *info,
2524 bfd *input_bfd,
2525 asection *input_section,
2526 bfd_byte *contents,
2527 Elf_Internal_Rela *relocs,
2528 Elf_Internal_Sym *local_syms,
2529 asection **local_sections)
e0001a05 2530{
f0e6fdb2 2531 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2532 Elf_Internal_Shdr *symtab_hdr;
2533 Elf_Internal_Rela *rel;
2534 Elf_Internal_Rela *relend;
2535 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2536 property_table_entry *lit_table = 0;
2537 int ltblsize = 0;
28dbbc02 2538 char *local_got_tls_types;
e0001a05 2539 char *error_message = NULL;
43cd72b9 2540 bfd_size_type input_size;
28dbbc02 2541 int tls_type;
e0001a05 2542
43cd72b9
BW
2543 if (!xtensa_default_isa)
2544 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2545
28dbbc02
BW
2546 BFD_ASSERT (is_xtensa_elf (input_bfd));
2547
f0e6fdb2 2548 htab = elf_xtensa_hash_table (info);
e0001a05
NC
2549 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2550 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2551 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2552
88d65ad6
BW
2553 if (elf_hash_table (info)->dynamic_sections_created)
2554 {
2555 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2556 &lit_table, XTENSA_LIT_SEC_NAME,
2557 TRUE);
88d65ad6
BW
2558 if (ltblsize < 0)
2559 return FALSE;
2560 }
2561
43cd72b9
BW
2562 input_size = bfd_get_section_limit (input_bfd, input_section);
2563
e0001a05
NC
2564 rel = relocs;
2565 relend = relocs + input_section->reloc_count;
2566 for (; rel < relend; rel++)
2567 {
2568 int r_type;
2569 reloc_howto_type *howto;
2570 unsigned long r_symndx;
2571 struct elf_link_hash_entry *h;
2572 Elf_Internal_Sym *sym;
28dbbc02
BW
2573 char sym_type;
2574 const char *name;
e0001a05
NC
2575 asection *sec;
2576 bfd_vma relocation;
2577 bfd_reloc_status_type r;
2578 bfd_boolean is_weak_undef;
2579 bfd_boolean unresolved_reloc;
9b8c98a4 2580 bfd_boolean warned;
28dbbc02 2581 bfd_boolean dynamic_symbol;
e0001a05
NC
2582
2583 r_type = ELF32_R_TYPE (rel->r_info);
2584 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2585 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2586 continue;
2587
2588 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2589 {
2590 bfd_set_error (bfd_error_bad_value);
2591 return FALSE;
2592 }
2593 howto = &elf_howto_table[r_type];
2594
2595 r_symndx = ELF32_R_SYM (rel->r_info);
2596
ab96bf03
AM
2597 h = NULL;
2598 sym = NULL;
2599 sec = NULL;
2600 is_weak_undef = FALSE;
2601 unresolved_reloc = FALSE;
2602 warned = FALSE;
2603
2604 if (howto->partial_inplace && !info->relocatable)
2605 {
2606 /* Because R_XTENSA_32 was made partial_inplace to fix some
2607 problems with DWARF info in partial links, there may be
2608 an addend stored in the contents. Take it out of there
2609 and move it back into the addend field of the reloc. */
2610 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2611 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2612 }
2613
2614 if (r_symndx < symtab_hdr->sh_info)
2615 {
2616 sym = local_syms + r_symndx;
28dbbc02 2617 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2618 sec = local_sections[r_symndx];
2619 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2620 }
2621 else
2622 {
2623 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2624 r_symndx, symtab_hdr, sym_hashes,
2625 h, sec, relocation,
2626 unresolved_reloc, warned);
2627
2628 if (relocation == 0
2629 && !unresolved_reloc
2630 && h->root.type == bfd_link_hash_undefweak)
2631 is_weak_undef = TRUE;
28dbbc02
BW
2632
2633 sym_type = h->type;
ab96bf03
AM
2634 }
2635
2636 if (sec != NULL && elf_discarded_section (sec))
2637 {
2638 /* For relocs against symbols from removed linkonce sections,
2639 or sections discarded by a linker script, we just want the
2640 section contents zeroed. Avoid any special processing. */
2641 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2642 rel->r_info = 0;
2643 rel->r_addend = 0;
2644 continue;
2645 }
2646
1049f94e 2647 if (info->relocatable)
e0001a05 2648 {
43cd72b9 2649 /* This is a relocatable link.
e0001a05
NC
2650 1) If the reloc is against a section symbol, adjust
2651 according to the output section.
2652 2) If there is a new target for this relocation,
2653 the new target will be in the same output section.
2654 We adjust the relocation by the output section
2655 difference. */
2656
2657 if (relaxing_section)
2658 {
2659 /* Check if this references a section in another input file. */
43cd72b9
BW
2660 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2661 contents))
2662 return FALSE;
e0001a05
NC
2663 }
2664
43cd72b9 2665 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2666 {
91d6fa6a 2667 error_message = NULL;
e0001a05
NC
2668 /* Convert ASM_SIMPLIFY into the simpler relocation
2669 so that they never escape a relaxing link. */
43cd72b9
BW
2670 r = contract_asm_expansion (contents, input_size, rel,
2671 &error_message);
2672 if (r != bfd_reloc_ok)
2673 {
2674 if (!((*info->callbacks->reloc_dangerous)
2675 (info, error_message, input_bfd, input_section,
2676 rel->r_offset)))
2677 return FALSE;
2678 }
e0001a05
NC
2679 r_type = ELF32_R_TYPE (rel->r_info);
2680 }
2681
1049f94e 2682 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2683 anything unless the reloc is against a section symbol,
2684 in which case we have to adjust according to where the
2685 section symbol winds up in the output section. */
2686 if (r_symndx < symtab_hdr->sh_info)
2687 {
2688 sym = local_syms + r_symndx;
2689 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2690 {
2691 sec = local_sections[r_symndx];
2692 rel->r_addend += sec->output_offset + sym->st_value;
2693 }
2694 }
2695
2696 /* If there is an addend with a partial_inplace howto,
2697 then move the addend to the contents. This is a hack
1049f94e 2698 to work around problems with DWARF in relocatable links
e0001a05
NC
2699 with some previous version of BFD. Now we can't easily get
2700 rid of the hack without breaking backward compatibility.... */
2701 if (rel->r_addend)
2702 {
2703 howto = &elf_howto_table[r_type];
2704 if (howto->partial_inplace)
2705 {
2706 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2707 rel->r_addend, contents,
2708 rel->r_offset, FALSE,
2709 &error_message);
2710 if (r != bfd_reloc_ok)
2711 {
2712 if (!((*info->callbacks->reloc_dangerous)
2713 (info, error_message, input_bfd, input_section,
2714 rel->r_offset)))
2715 return FALSE;
2716 }
2717 rel->r_addend = 0;
2718 }
2719 }
2720
1049f94e 2721 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2722 continue;
2723 }
2724
2725 /* This is a final link. */
2726
e0001a05
NC
2727 if (relaxing_section)
2728 {
2729 /* Check if this references a section in another input file. */
43cd72b9
BW
2730 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2731 &relocation);
e0001a05
NC
2732 }
2733
2734 /* Sanity check the address. */
43cd72b9 2735 if (rel->r_offset >= input_size
e0001a05
NC
2736 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2737 {
43cd72b9
BW
2738 (*_bfd_error_handler)
2739 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2740 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2741 bfd_set_error (bfd_error_bad_value);
2742 return FALSE;
2743 }
2744
28dbbc02
BW
2745 if (h != NULL)
2746 name = h->root.root.string;
2747 else
e0001a05 2748 {
28dbbc02
BW
2749 name = (bfd_elf_string_from_elf_section
2750 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2751 if (name == NULL || *name == '\0')
2752 name = bfd_section_name (input_bfd, sec);
2753 }
e0001a05 2754
28dbbc02
BW
2755 if (r_symndx != 0
2756 && r_type != R_XTENSA_NONE
2757 && (h == NULL
2758 || h->root.type == bfd_link_hash_defined
2759 || h->root.type == bfd_link_hash_defweak)
2760 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2761 {
2762 (*_bfd_error_handler)
2763 ((sym_type == STT_TLS
2764 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2765 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2766 input_bfd,
2767 input_section,
2768 (long) rel->r_offset,
2769 howto->name,
2770 name);
2771 }
2772
2773 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2774
2775 tls_type = GOT_UNKNOWN;
2776 if (h)
2777 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2778 else if (local_got_tls_types)
2779 tls_type = local_got_tls_types [r_symndx];
2780
2781 switch (r_type)
2782 {
2783 case R_XTENSA_32:
2784 case R_XTENSA_PLT:
2785 if (elf_hash_table (info)->dynamic_sections_created
2786 && (input_section->flags & SEC_ALLOC) != 0
2787 && (dynamic_symbol || info->shared))
e0001a05
NC
2788 {
2789 Elf_Internal_Rela outrel;
2790 bfd_byte *loc;
2791 asection *srel;
2792
2793 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2794 srel = htab->srelplt;
e0001a05 2795 else
f0e6fdb2 2796 srel = htab->srelgot;
e0001a05
NC
2797
2798 BFD_ASSERT (srel != NULL);
2799
2800 outrel.r_offset =
2801 _bfd_elf_section_offset (output_bfd, info,
2802 input_section, rel->r_offset);
2803
2804 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2805 memset (&outrel, 0, sizeof outrel);
2806 else
2807 {
f0578e28
BW
2808 outrel.r_offset += (input_section->output_section->vma
2809 + input_section->output_offset);
e0001a05 2810
88d65ad6
BW
2811 /* Complain if the relocation is in a read-only section
2812 and not in a literal pool. */
2813 if ((input_section->flags & SEC_READONLY) != 0
2814 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2815 outrel.r_offset))
88d65ad6
BW
2816 {
2817 error_message =
2818 _("dynamic relocation in read-only section");
2819 if (!((*info->callbacks->reloc_dangerous)
2820 (info, error_message, input_bfd, input_section,
2821 rel->r_offset)))
2822 return FALSE;
2823 }
2824
e0001a05
NC
2825 if (dynamic_symbol)
2826 {
2827 outrel.r_addend = rel->r_addend;
2828 rel->r_addend = 0;
2829
2830 if (r_type == R_XTENSA_32)
2831 {
2832 outrel.r_info =
2833 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2834 relocation = 0;
2835 }
2836 else /* r_type == R_XTENSA_PLT */
2837 {
2838 outrel.r_info =
2839 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2840
2841 /* Create the PLT entry and set the initial
2842 contents of the literal entry to the address of
2843 the PLT entry. */
43cd72b9 2844 relocation =
f0e6fdb2 2845 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2846 srel->reloc_count);
2847 }
2848 unresolved_reloc = FALSE;
2849 }
2850 else
2851 {
2852 /* Generate a RELATIVE relocation. */
2853 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2854 outrel.r_addend = 0;
2855 }
2856 }
2857
2858 loc = (srel->contents
2859 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2860 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2861 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2862 <= srel->size);
e0001a05 2863 }
d9ab3f29
BW
2864 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2865 {
2866 /* This should only happen for non-PIC code, which is not
2867 supposed to be used on systems with dynamic linking.
2868 Just ignore these relocations. */
2869 continue;
2870 }
28dbbc02
BW
2871 break;
2872
2873 case R_XTENSA_TLS_TPOFF:
2874 /* Switch to LE model for local symbols in an executable. */
2875 if (! info->shared && ! dynamic_symbol)
2876 {
2877 relocation = tpoff (info, relocation);
2878 break;
2879 }
2880 /* fall through */
2881
2882 case R_XTENSA_TLSDESC_FN:
2883 case R_XTENSA_TLSDESC_ARG:
2884 {
2885 if (r_type == R_XTENSA_TLSDESC_FN)
2886 {
2887 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2888 r_type = R_XTENSA_NONE;
2889 }
2890 else if (r_type == R_XTENSA_TLSDESC_ARG)
2891 {
2892 if (info->shared)
2893 {
2894 if ((tls_type & GOT_TLS_IE) != 0)
2895 r_type = R_XTENSA_TLS_TPOFF;
2896 }
2897 else
2898 {
2899 r_type = R_XTENSA_TLS_TPOFF;
2900 if (! dynamic_symbol)
2901 {
2902 relocation = tpoff (info, relocation);
2903 break;
2904 }
2905 }
2906 }
2907
2908 if (r_type == R_XTENSA_NONE)
2909 /* Nothing to do here; skip to the next reloc. */
2910 continue;
2911
2912 if (! elf_hash_table (info)->dynamic_sections_created)
2913 {
2914 error_message =
2915 _("TLS relocation invalid without dynamic sections");
2916 if (!((*info->callbacks->reloc_dangerous)
2917 (info, error_message, input_bfd, input_section,
2918 rel->r_offset)))
2919 return FALSE;
2920 }
2921 else
2922 {
2923 Elf_Internal_Rela outrel;
2924 bfd_byte *loc;
2925 asection *srel = htab->srelgot;
2926 int indx;
2927
2928 outrel.r_offset = (input_section->output_section->vma
2929 + input_section->output_offset
2930 + rel->r_offset);
2931
2932 /* Complain if the relocation is in a read-only section
2933 and not in a literal pool. */
2934 if ((input_section->flags & SEC_READONLY) != 0
2935 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2936 outrel.r_offset))
2937 {
2938 error_message =
2939 _("dynamic relocation in read-only section");
2940 if (!((*info->callbacks->reloc_dangerous)
2941 (info, error_message, input_bfd, input_section,
2942 rel->r_offset)))
2943 return FALSE;
2944 }
2945
2946 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2947 if (indx == 0)
2948 outrel.r_addend = relocation - dtpoff_base (info);
2949 else
2950 outrel.r_addend = 0;
2951 rel->r_addend = 0;
2952
2953 outrel.r_info = ELF32_R_INFO (indx, r_type);
2954 relocation = 0;
2955 unresolved_reloc = FALSE;
2956
2957 BFD_ASSERT (srel);
2958 loc = (srel->contents
2959 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2960 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2961 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2962 <= srel->size);
2963 }
2964 }
2965 break;
2966
2967 case R_XTENSA_TLS_DTPOFF:
2968 if (! info->shared)
2969 /* Switch from LD model to LE model. */
2970 relocation = tpoff (info, relocation);
2971 else
2972 relocation -= dtpoff_base (info);
2973 break;
2974
2975 case R_XTENSA_TLS_FUNC:
2976 case R_XTENSA_TLS_ARG:
2977 case R_XTENSA_TLS_CALL:
2978 /* Check if optimizing to IE or LE model. */
2979 if ((tls_type & GOT_TLS_IE) != 0)
2980 {
2981 bfd_boolean is_ld_model =
2982 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2983 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2984 is_ld_model, &error_message))
2985 {
2986 if (!((*info->callbacks->reloc_dangerous)
2987 (info, error_message, input_bfd, input_section,
2988 rel->r_offset)))
2989 return FALSE;
2990 }
2991
2992 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2993 {
2994 /* Skip subsequent relocations on the same instruction. */
2995 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2996 rel++;
2997 }
2998 }
2999 continue;
3000
3001 default:
3002 if (elf_hash_table (info)->dynamic_sections_created
3003 && dynamic_symbol && (is_operand_relocation (r_type)
3004 || r_type == R_XTENSA_32_PCREL))
3005 {
3006 error_message =
3007 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3008 strlen (name) + 2, name);
3009 if (!((*info->callbacks->reloc_dangerous)
3010 (info, error_message, input_bfd, input_section,
3011 rel->r_offset)))
3012 return FALSE;
3013 continue;
3014 }
3015 break;
e0001a05
NC
3016 }
3017
3018 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3019 because such sections are not SEC_ALLOC and thus ld.so will
3020 not process them. */
3021 if (unresolved_reloc
3022 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 3023 && h->def_dynamic))
bf1747de
BW
3024 {
3025 (*_bfd_error_handler)
3026 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3027 input_bfd,
3028 input_section,
3029 (long) rel->r_offset,
3030 howto->name,
28dbbc02 3031 name);
bf1747de
BW
3032 return FALSE;
3033 }
e0001a05 3034
28dbbc02
BW
3035 /* TLS optimizations may have changed r_type; update "howto". */
3036 howto = &elf_howto_table[r_type];
3037
e0001a05
NC
3038 /* There's no point in calling bfd_perform_relocation here.
3039 Just go directly to our "special function". */
3040 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3041 relocation + rel->r_addend,
3042 contents, rel->r_offset, is_weak_undef,
3043 &error_message);
43cd72b9 3044
9b8c98a4 3045 if (r != bfd_reloc_ok && !warned)
e0001a05 3046 {
43cd72b9 3047 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 3048 BFD_ASSERT (error_message != NULL);
e0001a05 3049
28dbbc02
BW
3050 if (rel->r_addend == 0)
3051 error_message = vsprint_msg (error_message, ": %s",
3052 strlen (name) + 2, name);
e0001a05 3053 else
28dbbc02
BW
3054 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3055 strlen (name) + 22,
3056 name, (int) rel->r_addend);
43cd72b9 3057
e0001a05
NC
3058 if (!((*info->callbacks->reloc_dangerous)
3059 (info, error_message, input_bfd, input_section,
3060 rel->r_offset)))
3061 return FALSE;
3062 }
3063 }
3064
88d65ad6
BW
3065 if (lit_table)
3066 free (lit_table);
3067
3ba3bc8c
BW
3068 input_section->reloc_done = TRUE;
3069
e0001a05
NC
3070 return TRUE;
3071}
3072
3073
3074/* Finish up dynamic symbol handling. There's not much to do here since
3075 the PLT and GOT entries are all set up by relocate_section. */
3076
3077static bfd_boolean
7fa3d080
BW
3078elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3079 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3080 struct elf_link_hash_entry *h,
3081 Elf_Internal_Sym *sym)
e0001a05 3082{
bf1747de 3083 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3084 {
3085 /* Mark the symbol as undefined, rather than as defined in
3086 the .plt section. Leave the value alone. */
3087 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3088 /* If the symbol is weak, we do need to clear the value.
3089 Otherwise, the PLT entry would provide a definition for
3090 the symbol even if the symbol wasn't defined anywhere,
3091 and so the symbol would never be NULL. */
3092 if (!h->ref_regular_nonweak)
3093 sym->st_value = 0;
e0001a05
NC
3094 }
3095
3096 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3097 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 3098 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3099 sym->st_shndx = SHN_ABS;
3100
3101 return TRUE;
3102}
3103
3104
3105/* Combine adjacent literal table entries in the output. Adjacent
3106 entries within each input section may have been removed during
3107 relaxation, but we repeat the process here, even though it's too late
3108 to shrink the output section, because it's important to minimize the
3109 number of literal table entries to reduce the start-up work for the
3110 runtime linker. Returns the number of remaining table entries or -1
3111 on error. */
3112
3113static int
7fa3d080
BW
3114elf_xtensa_combine_prop_entries (bfd *output_bfd,
3115 asection *sxtlit,
3116 asection *sgotloc)
e0001a05 3117{
e0001a05
NC
3118 bfd_byte *contents;
3119 property_table_entry *table;
e901de89 3120 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3121 bfd_vma offset;
3122 int n, m, num;
3123
eea6121a 3124 section_size = sxtlit->size;
e0001a05
NC
3125 BFD_ASSERT (section_size % 8 == 0);
3126 num = section_size / 8;
3127
eea6121a 3128 sgotloc_size = sgotloc->size;
e901de89 3129 if (sgotloc_size != section_size)
b536dc1e
BW
3130 {
3131 (*_bfd_error_handler)
43cd72b9 3132 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3133 return -1;
3134 }
e901de89 3135
eea6121a
AM
3136 table = bfd_malloc (num * sizeof (property_table_entry));
3137 if (table == 0)
e0001a05
NC
3138 return -1;
3139
3140 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3141 propagates to the output section, where it doesn't really apply and
eea6121a 3142 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3143 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3144
eea6121a
AM
3145 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3146 {
3147 if (contents != 0)
3148 free (contents);
3149 free (table);
3150 return -1;
3151 }
e0001a05
NC
3152
3153 /* There should never be any relocations left at this point, so this
3154 is quite a bit easier than what is done during relaxation. */
3155
3156 /* Copy the raw contents into a property table array and sort it. */
3157 offset = 0;
3158 for (n = 0; n < num; n++)
3159 {
3160 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3161 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3162 offset += 8;
3163 }
3164 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3165
3166 for (n = 0; n < num; n++)
3167 {
91d6fa6a 3168 bfd_boolean remove_entry = FALSE;
e0001a05
NC
3169
3170 if (table[n].size == 0)
91d6fa6a
NC
3171 remove_entry = TRUE;
3172 else if (n > 0
3173 && (table[n-1].address + table[n-1].size == table[n].address))
e0001a05
NC
3174 {
3175 table[n-1].size += table[n].size;
91d6fa6a 3176 remove_entry = TRUE;
e0001a05
NC
3177 }
3178
91d6fa6a 3179 if (remove_entry)
e0001a05
NC
3180 {
3181 for (m = n; m < num - 1; m++)
3182 {
3183 table[m].address = table[m+1].address;
3184 table[m].size = table[m+1].size;
3185 }
3186
3187 n--;
3188 num--;
3189 }
3190 }
3191
3192 /* Copy the data back to the raw contents. */
3193 offset = 0;
3194 for (n = 0; n < num; n++)
3195 {
3196 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3197 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3198 offset += 8;
3199 }
3200
3201 /* Clear the removed bytes. */
3202 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3203 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3204
e901de89
BW
3205 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3206 section_size))
e0001a05
NC
3207 return -1;
3208
e901de89
BW
3209 /* Copy the contents to ".got.loc". */
3210 memcpy (sgotloc->contents, contents, section_size);
3211
e0001a05 3212 free (contents);
b614a702 3213 free (table);
e0001a05
NC
3214 return num;
3215}
3216
3217
3218/* Finish up the dynamic sections. */
3219
3220static bfd_boolean
7fa3d080
BW
3221elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3222 struct bfd_link_info *info)
e0001a05 3223{
f0e6fdb2 3224 struct elf_xtensa_link_hash_table *htab;
e0001a05 3225 bfd *dynobj;
e901de89 3226 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 3227 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3228 int num_xtlit_entries = 0;
e0001a05
NC
3229
3230 if (! elf_hash_table (info)->dynamic_sections_created)
3231 return TRUE;
3232
f0e6fdb2 3233 htab = elf_xtensa_hash_table (info);
e0001a05
NC
3234 dynobj = elf_hash_table (info)->dynobj;
3235 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3236 BFD_ASSERT (sdyn != NULL);
3237
3238 /* Set the first entry in the global offset table to the address of
3239 the dynamic section. */
f0e6fdb2 3240 sgot = htab->sgot;
e0001a05
NC
3241 if (sgot)
3242 {
eea6121a 3243 BFD_ASSERT (sgot->size == 4);
e0001a05 3244 if (sdyn == NULL)
7fa3d080 3245 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3246 else
3247 bfd_put_32 (output_bfd,
3248 sdyn->output_section->vma + sdyn->output_offset,
3249 sgot->contents);
3250 }
3251
f0e6fdb2 3252 srelplt = htab->srelplt;
7fa3d080 3253 if (srelplt && srelplt->size != 0)
e0001a05
NC
3254 {
3255 asection *sgotplt, *srelgot, *spltlittbl;
3256 int chunk, plt_chunks, plt_entries;
3257 Elf_Internal_Rela irela;
3258 bfd_byte *loc;
3259 unsigned rtld_reloc;
3260
f0e6fdb2
BW
3261 srelgot = htab->srelgot;
3262 spltlittbl = htab->spltlittbl;
3263 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3264
3265 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3266 of them follow immediately after.... */
3267 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3268 {
3269 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3270 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3271 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3272 break;
3273 }
3274 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3275
eea6121a 3276 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3277 plt_chunks =
3278 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3279
3280 for (chunk = 0; chunk < plt_chunks; chunk++)
3281 {
3282 int chunk_entries = 0;
3283
f0e6fdb2 3284 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3285 BFD_ASSERT (sgotplt != NULL);
3286
3287 /* Emit special RTLD relocations for the first two entries in
3288 each chunk of the .got.plt section. */
3289
3290 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3291 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3292 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3293 irela.r_offset = (sgotplt->output_section->vma
3294 + sgotplt->output_offset);
3295 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3296 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3297 rtld_reloc += 1;
3298 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3299
3300 /* Next literal immediately follows the first. */
3301 loc += sizeof (Elf32_External_Rela);
3302 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3303 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3304 irela.r_offset = (sgotplt->output_section->vma
3305 + sgotplt->output_offset + 4);
3306 /* Tell rtld to set value to object's link map. */
3307 irela.r_addend = 2;
3308 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3309 rtld_reloc += 1;
3310 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3311
3312 /* Fill in the literal table. */
3313 if (chunk < plt_chunks - 1)
3314 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3315 else
3316 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3317
eea6121a 3318 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3319 bfd_put_32 (output_bfd,
3320 sgotplt->output_section->vma + sgotplt->output_offset,
3321 spltlittbl->contents + (chunk * 8) + 0);
3322 bfd_put_32 (output_bfd,
3323 8 + (chunk_entries * 4),
3324 spltlittbl->contents + (chunk * 8) + 4);
3325 }
3326
3327 /* All the dynamic relocations have been emitted at this point.
3328 Make sure the relocation sections are the correct size. */
eea6121a
AM
3329 if (srelgot->size != (sizeof (Elf32_External_Rela)
3330 * srelgot->reloc_count)
3331 || srelplt->size != (sizeof (Elf32_External_Rela)
3332 * srelplt->reloc_count))
e0001a05
NC
3333 abort ();
3334
3335 /* The .xt.lit.plt section has just been modified. This must
3336 happen before the code below which combines adjacent literal
3337 table entries, and the .xt.lit.plt contents have to be forced to
3338 the output here. */
3339 if (! bfd_set_section_contents (output_bfd,
3340 spltlittbl->output_section,
3341 spltlittbl->contents,
3342 spltlittbl->output_offset,
eea6121a 3343 spltlittbl->size))
e0001a05
NC
3344 return FALSE;
3345 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3346 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3347 }
3348
3349 /* Combine adjacent literal table entries. */
1049f94e 3350 BFD_ASSERT (! info->relocatable);
e901de89 3351 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3352 sgotloc = htab->sgotloc;
d9ab3f29
BW
3353 BFD_ASSERT (sgotloc);
3354 if (sxtlit)
3355 {
3356 num_xtlit_entries =
3357 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3358 if (num_xtlit_entries < 0)
3359 return FALSE;
3360 }
e0001a05
NC
3361
3362 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3363 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3364 for (; dyncon < dynconend; dyncon++)
3365 {
3366 Elf_Internal_Dyn dyn;
e0001a05
NC
3367
3368 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3369
3370 switch (dyn.d_tag)
3371 {
3372 default:
3373 break;
3374
3375 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3376 dyn.d_un.d_val = num_xtlit_entries;
3377 break;
3378
3379 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 3380 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
3381 break;
3382
e0001a05 3383 case DT_PLTGOT:
e29297b7 3384 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
3385 break;
3386
e0001a05 3387 case DT_JMPREL:
e29297b7 3388 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
3389 break;
3390
3391 case DT_PLTRELSZ:
e29297b7 3392 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
3393 break;
3394
3395 case DT_RELASZ:
3396 /* Adjust RELASZ to not include JMPREL. This matches what
3397 glibc expects and what is done for several other ELF
3398 targets (e.g., i386, alpha), but the "correct" behavior
3399 seems to be unresolved. Since the linker script arranges
3400 for .rela.plt to follow all other relocation sections, we
3401 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 3402 if (htab->srelplt)
e29297b7 3403 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
3404 break;
3405 }
3406
3407 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3408 }
3409
3410 return TRUE;
3411}
3412
3413\f
3414/* Functions for dealing with the e_flags field. */
3415
3416/* Merge backend specific data from an object file to the output
3417 object file when linking. */
3418
3419static bfd_boolean
7fa3d080 3420elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
3421{
3422 unsigned out_mach, in_mach;
3423 flagword out_flag, in_flag;
3424
3425 /* Check if we have the same endianess. */
3426 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3427 return FALSE;
3428
3429 /* Don't even pretend to support mixed-format linking. */
3430 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3431 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3432 return FALSE;
3433
3434 out_flag = elf_elfheader (obfd)->e_flags;
3435 in_flag = elf_elfheader (ibfd)->e_flags;
3436
3437 out_mach = out_flag & EF_XTENSA_MACH;
3438 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3439 if (out_mach != in_mach)
e0001a05
NC
3440 {
3441 (*_bfd_error_handler)
43cd72b9 3442 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 3443 ibfd, out_mach, in_mach);
e0001a05
NC
3444 bfd_set_error (bfd_error_wrong_format);
3445 return FALSE;
3446 }
3447
3448 if (! elf_flags_init (obfd))
3449 {
3450 elf_flags_init (obfd) = TRUE;
3451 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3452
e0001a05
NC
3453 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3454 && bfd_get_arch_info (obfd)->the_default)
3455 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3456 bfd_get_mach (ibfd));
43cd72b9 3457
e0001a05
NC
3458 return TRUE;
3459 }
3460
43cd72b9
BW
3461 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3462 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3463
43cd72b9
BW
3464 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3465 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3466
3467 return TRUE;
3468}
3469
3470
3471static bfd_boolean
7fa3d080 3472elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3473{
3474 BFD_ASSERT (!elf_flags_init (abfd)
3475 || elf_elfheader (abfd)->e_flags == flags);
3476
3477 elf_elfheader (abfd)->e_flags |= flags;
3478 elf_flags_init (abfd) = TRUE;
3479
3480 return TRUE;
3481}
3482
3483
e0001a05 3484static bfd_boolean
7fa3d080 3485elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3486{
3487 FILE *f = (FILE *) farg;
3488 flagword e_flags = elf_elfheader (abfd)->e_flags;
3489
3490 fprintf (f, "\nXtensa header:\n");
43cd72b9 3491 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3492 fprintf (f, "\nMachine = Base\n");
3493 else
3494 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3495
3496 fprintf (f, "Insn tables = %s\n",
3497 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3498
3499 fprintf (f, "Literal tables = %s\n",
3500 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3501
3502 return _bfd_elf_print_private_bfd_data (abfd, farg);
3503}
3504
3505
3506/* Set the right machine number for an Xtensa ELF file. */
3507
3508static bfd_boolean
7fa3d080 3509elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3510{
3511 int mach;
3512 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3513
3514 switch (arch)
3515 {
3516 case E_XTENSA_MACH:
3517 mach = bfd_mach_xtensa;
3518 break;
3519 default:
3520 return FALSE;
3521 }
3522
3523 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3524 return TRUE;
3525}
3526
3527
3528/* The final processing done just before writing out an Xtensa ELF object
3529 file. This gets the Xtensa architecture right based on the machine
3530 number. */
3531
3532static void
7fa3d080
BW
3533elf_xtensa_final_write_processing (bfd *abfd,
3534 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3535{
3536 int mach;
3537 unsigned long val;
3538
3539 switch (mach = bfd_get_mach (abfd))
3540 {
3541 case bfd_mach_xtensa:
3542 val = E_XTENSA_MACH;
3543 break;
3544 default:
3545 return;
3546 }
3547
3548 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3549 elf_elfheader (abfd)->e_flags |= val;
3550}
3551
3552
3553static enum elf_reloc_type_class
7fa3d080 3554elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
3555{
3556 switch ((int) ELF32_R_TYPE (rela->r_info))
3557 {
3558 case R_XTENSA_RELATIVE:
3559 return reloc_class_relative;
3560 case R_XTENSA_JMP_SLOT:
3561 return reloc_class_plt;
3562 default:
3563 return reloc_class_normal;
3564 }
3565}
3566
3567\f
3568static bfd_boolean
7fa3d080
BW
3569elf_xtensa_discard_info_for_section (bfd *abfd,
3570 struct elf_reloc_cookie *cookie,
3571 struct bfd_link_info *info,
3572 asection *sec)
e0001a05
NC
3573{
3574 bfd_byte *contents;
e0001a05 3575 bfd_vma offset, actual_offset;
1d25768e
BW
3576 bfd_size_type removed_bytes = 0;
3577 bfd_size_type entry_size;
e0001a05
NC
3578
3579 if (sec->output_section
3580 && bfd_is_abs_section (sec->output_section))
3581 return FALSE;
3582
1d25768e
BW
3583 if (xtensa_is_proptable_section (sec))
3584 entry_size = 12;
3585 else
3586 entry_size = 8;
3587
a3ef2d63 3588 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3589 return FALSE;
3590
e0001a05
NC
3591 contents = retrieve_contents (abfd, sec, info->keep_memory);
3592 if (!contents)
3593 return FALSE;
3594
3595 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3596 if (!cookie->rels)
3597 {
3598 release_contents (sec, contents);
3599 return FALSE;
3600 }
3601
1d25768e
BW
3602 /* Sort the relocations. They should already be in order when
3603 relaxation is enabled, but it might not be. */
3604 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3605 internal_reloc_compare);
3606
e0001a05
NC
3607 cookie->rel = cookie->rels;
3608 cookie->relend = cookie->rels + sec->reloc_count;
3609
a3ef2d63 3610 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3611 {
3612 actual_offset = offset - removed_bytes;
3613
3614 /* The ...symbol_deleted_p function will skip over relocs but it
3615 won't adjust their offsets, so do that here. */
3616 while (cookie->rel < cookie->relend
3617 && cookie->rel->r_offset < offset)
3618 {
3619 cookie->rel->r_offset -= removed_bytes;
3620 cookie->rel++;
3621 }
3622
3623 while (cookie->rel < cookie->relend
3624 && cookie->rel->r_offset == offset)
3625 {
c152c796 3626 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3627 {
3628 /* Remove the table entry. (If the reloc type is NONE, then
3629 the entry has already been merged with another and deleted
3630 during relaxation.) */
3631 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3632 {
3633 /* Shift the contents up. */
a3ef2d63 3634 if (offset + entry_size < sec->size)
e0001a05 3635 memmove (&contents[actual_offset],
1d25768e 3636 &contents[actual_offset + entry_size],
a3ef2d63 3637 sec->size - offset - entry_size);
1d25768e 3638 removed_bytes += entry_size;
e0001a05
NC
3639 }
3640
3641 /* Remove this relocation. */
3642 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3643 }
3644
3645 /* Adjust the relocation offset for previous removals. This
3646 should not be done before calling ...symbol_deleted_p
3647 because it might mess up the offset comparisons there.
3648 Make sure the offset doesn't underflow in the case where
3649 the first entry is removed. */
3650 if (cookie->rel->r_offset >= removed_bytes)
3651 cookie->rel->r_offset -= removed_bytes;
3652 else
3653 cookie->rel->r_offset = 0;
3654
3655 cookie->rel++;
3656 }
3657 }
3658
3659 if (removed_bytes != 0)
3660 {
3661 /* Adjust any remaining relocs (shouldn't be any). */
3662 for (; cookie->rel < cookie->relend; cookie->rel++)
3663 {
3664 if (cookie->rel->r_offset >= removed_bytes)
3665 cookie->rel->r_offset -= removed_bytes;
3666 else
3667 cookie->rel->r_offset = 0;
3668 }
3669
3670 /* Clear the removed bytes. */
a3ef2d63 3671 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3672
3673 pin_contents (sec, contents);
3674 pin_internal_relocs (sec, cookie->rels);
3675
eea6121a 3676 /* Shrink size. */
a3ef2d63
BW
3677 if (sec->rawsize == 0)
3678 sec->rawsize = sec->size;
3679 sec->size -= removed_bytes;
b536dc1e
BW
3680
3681 if (xtensa_is_littable_section (sec))
3682 {
f0e6fdb2
BW
3683 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3684 if (sgotloc)
3685 sgotloc->size -= removed_bytes;
b536dc1e 3686 }
e0001a05
NC
3687 }
3688 else
3689 {
3690 release_contents (sec, contents);
3691 release_internal_relocs (sec, cookie->rels);
3692 }
3693
3694 return (removed_bytes != 0);
3695}
3696
3697
3698static bfd_boolean
7fa3d080
BW
3699elf_xtensa_discard_info (bfd *abfd,
3700 struct elf_reloc_cookie *cookie,
3701 struct bfd_link_info *info)
e0001a05
NC
3702{
3703 asection *sec;
3704 bfd_boolean changed = FALSE;
3705
3706 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3707 {
3708 if (xtensa_is_property_section (sec))
3709 {
3710 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3711 changed = TRUE;
3712 }
3713 }
3714
3715 return changed;
3716}
3717
3718
3719static bfd_boolean
7fa3d080 3720elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3721{
3722 return xtensa_is_property_section (sec);
3723}
3724
a77dc2cc
BW
3725
3726static unsigned int
3727elf_xtensa_action_discarded (asection *sec)
3728{
3729 if (strcmp (".xt_except_table", sec->name) == 0)
3730 return 0;
3731
3732 if (strcmp (".xt_except_desc", sec->name) == 0)
3733 return 0;
3734
3735 return _bfd_elf_default_action_discarded (sec);
3736}
3737
e0001a05
NC
3738\f
3739/* Support for core dump NOTE sections. */
3740
3741static bfd_boolean
7fa3d080 3742elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3743{
3744 int offset;
eea6121a 3745 unsigned int size;
e0001a05
NC
3746
3747 /* The size for Xtensa is variable, so don't try to recognize the format
3748 based on the size. Just assume this is GNU/Linux. */
3749
3750 /* pr_cursig */
3751 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3752
3753 /* pr_pid */
3754 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3755
3756 /* pr_reg */
3757 offset = 72;
eea6121a 3758 size = note->descsz - offset - 4;
e0001a05
NC
3759
3760 /* Make a ".reg/999" section. */
3761 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3762 size, note->descpos + offset);
e0001a05
NC
3763}
3764
3765
3766static bfd_boolean
7fa3d080 3767elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3768{
3769 switch (note->descsz)
3770 {
3771 default:
3772 return FALSE;
3773
3774 case 128: /* GNU/Linux elf_prpsinfo */
3775 elf_tdata (abfd)->core_program
3776 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3777 elf_tdata (abfd)->core_command
3778 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3779 }
3780
3781 /* Note that for some reason, a spurious space is tacked
3782 onto the end of the args in some (at least one anyway)
3783 implementations, so strip it off if it exists. */
3784
3785 {
3786 char *command = elf_tdata (abfd)->core_command;
3787 int n = strlen (command);
3788
3789 if (0 < n && command[n - 1] == ' ')
3790 command[n - 1] = '\0';
3791 }
3792
3793 return TRUE;
3794}
3795
3796\f
3797/* Generic Xtensa configurability stuff. */
3798
3799static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3800static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3801static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3802static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3803static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3804static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3805static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3806static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3807
3808static void
7fa3d080 3809init_call_opcodes (void)
e0001a05
NC
3810{
3811 if (callx0_op == XTENSA_UNDEFINED)
3812 {
3813 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3814 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3815 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3816 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3817 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3818 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3819 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3820 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3821 }
3822}
3823
3824
3825static bfd_boolean
7fa3d080 3826is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3827{
3828 init_call_opcodes ();
3829 return (opcode == callx0_op
3830 || opcode == callx4_op
3831 || opcode == callx8_op
3832 || opcode == callx12_op);
3833}
3834
3835
3836static bfd_boolean
7fa3d080 3837is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3838{
3839 init_call_opcodes ();
3840 return (opcode == call0_op
3841 || opcode == call4_op
3842 || opcode == call8_op
3843 || opcode == call12_op);
3844}
3845
3846
3847static bfd_boolean
7fa3d080 3848is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3849{
3850 init_call_opcodes ();
3851 return (opcode == call4_op
3852 || opcode == call8_op
3853 || opcode == call12_op
3854 || opcode == callx4_op
3855 || opcode == callx8_op
3856 || opcode == callx12_op);
3857}
3858
3859
28dbbc02
BW
3860static bfd_boolean
3861get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3862{
3863 unsigned dst = (unsigned) -1;
3864
3865 init_call_opcodes ();
3866 if (opcode == callx0_op)
3867 dst = 0;
3868 else if (opcode == callx4_op)
3869 dst = 4;
3870 else if (opcode == callx8_op)
3871 dst = 8;
3872 else if (opcode == callx12_op)
3873 dst = 12;
3874
3875 if (dst == (unsigned) -1)
3876 return FALSE;
3877
3878 *pdst = dst;
3879 return TRUE;
3880}
3881
3882
43cd72b9
BW
3883static xtensa_opcode
3884get_const16_opcode (void)
3885{
3886 static bfd_boolean done_lookup = FALSE;
3887 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3888 if (!done_lookup)
3889 {
3890 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3891 done_lookup = TRUE;
3892 }
3893 return const16_opcode;
3894}
3895
3896
e0001a05
NC
3897static xtensa_opcode
3898get_l32r_opcode (void)
3899{
3900 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3901 static bfd_boolean done_lookup = FALSE;
3902
3903 if (!done_lookup)
e0001a05
NC
3904 {
3905 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3906 done_lookup = TRUE;
e0001a05
NC
3907 }
3908 return l32r_opcode;
3909}
3910
3911
3912static bfd_vma
7fa3d080 3913l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3914{
3915 bfd_vma offset;
3916
3917 offset = addr - ((pc+3) & -4);
3918 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3919 offset = (signed int) offset >> 2;
3920 BFD_ASSERT ((signed int) offset >> 16 == -1);
3921 return offset;
3922}
3923
3924
e0001a05 3925static int
7fa3d080 3926get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3927{
43cd72b9
BW
3928 xtensa_isa isa = xtensa_default_isa;
3929 int last_immed, last_opnd, opi;
3930
3931 if (opcode == XTENSA_UNDEFINED)
3932 return XTENSA_UNDEFINED;
3933
3934 /* Find the last visible PC-relative immediate operand for the opcode.
3935 If there are no PC-relative immediates, then choose the last visible
3936 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3937 last_immed = XTENSA_UNDEFINED;
3938 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3939 for (opi = last_opnd - 1; opi >= 0; opi--)
3940 {
3941 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3942 continue;
3943 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3944 {
3945 last_immed = opi;
3946 break;
3947 }
3948 if (last_immed == XTENSA_UNDEFINED
3949 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3950 last_immed = opi;
3951 }
3952 if (last_immed < 0)
3953 return XTENSA_UNDEFINED;
3954
3955 /* If the operand number was specified in an old-style relocation,
3956 check for consistency with the operand computed above. */
3957 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3958 {
3959 int reloc_opnd = r_type - R_XTENSA_OP0;
3960 if (reloc_opnd != last_immed)
3961 return XTENSA_UNDEFINED;
3962 }
3963
3964 return last_immed;
3965}
3966
3967
3968int
7fa3d080 3969get_relocation_slot (int r_type)
43cd72b9
BW
3970{
3971 switch (r_type)
3972 {
3973 case R_XTENSA_OP0:
3974 case R_XTENSA_OP1:
3975 case R_XTENSA_OP2:
3976 return 0;
3977
3978 default:
3979 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3980 return r_type - R_XTENSA_SLOT0_OP;
3981 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3982 return r_type - R_XTENSA_SLOT0_ALT;
3983 break;
3984 }
3985
3986 return XTENSA_UNDEFINED;
e0001a05
NC
3987}
3988
3989
3990/* Get the opcode for a relocation. */
3991
3992static xtensa_opcode
7fa3d080
BW
3993get_relocation_opcode (bfd *abfd,
3994 asection *sec,
3995 bfd_byte *contents,
3996 Elf_Internal_Rela *irel)
e0001a05
NC
3997{
3998 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3999 static xtensa_insnbuf sbuff = NULL;
e0001a05 4000 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4001 xtensa_format fmt;
4002 int slot;
e0001a05
NC
4003
4004 if (contents == NULL)
4005 return XTENSA_UNDEFINED;
4006
43cd72b9 4007 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
4008 return XTENSA_UNDEFINED;
4009
4010 if (ibuff == NULL)
43cd72b9
BW
4011 {
4012 ibuff = xtensa_insnbuf_alloc (isa);
4013 sbuff = xtensa_insnbuf_alloc (isa);
4014 }
4015
e0001a05 4016 /* Decode the instruction. */
43cd72b9
BW
4017 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4018 sec->size - irel->r_offset);
4019 fmt = xtensa_format_decode (isa, ibuff);
4020 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4021 if (slot == XTENSA_UNDEFINED)
4022 return XTENSA_UNDEFINED;
4023 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4024 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
4025}
4026
4027
4028bfd_boolean
7fa3d080
BW
4029is_l32r_relocation (bfd *abfd,
4030 asection *sec,
4031 bfd_byte *contents,
4032 Elf_Internal_Rela *irel)
e0001a05
NC
4033{
4034 xtensa_opcode opcode;
43cd72b9 4035 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 4036 return FALSE;
43cd72b9 4037 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
4038 return (opcode == get_l32r_opcode ());
4039}
4040
e0001a05 4041
43cd72b9 4042static bfd_size_type
7fa3d080
BW
4043get_asm_simplify_size (bfd_byte *contents,
4044 bfd_size_type content_len,
4045 bfd_size_type offset)
e0001a05 4046{
43cd72b9 4047 bfd_size_type insnlen, size = 0;
e0001a05 4048
43cd72b9
BW
4049 /* Decode the size of the next two instructions. */
4050 insnlen = insn_decode_len (contents, content_len, offset);
4051 if (insnlen == 0)
4052 return 0;
e0001a05 4053
43cd72b9 4054 size += insnlen;
e0001a05 4055
43cd72b9
BW
4056 insnlen = insn_decode_len (contents, content_len, offset + size);
4057 if (insnlen == 0)
4058 return 0;
e0001a05 4059
43cd72b9
BW
4060 size += insnlen;
4061 return size;
4062}
e0001a05 4063
43cd72b9
BW
4064
4065bfd_boolean
7fa3d080 4066is_alt_relocation (int r_type)
43cd72b9
BW
4067{
4068 return (r_type >= R_XTENSA_SLOT0_ALT
4069 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4070}
4071
4072
43cd72b9 4073bfd_boolean
7fa3d080 4074is_operand_relocation (int r_type)
e0001a05 4075{
43cd72b9
BW
4076 switch (r_type)
4077 {
4078 case R_XTENSA_OP0:
4079 case R_XTENSA_OP1:
4080 case R_XTENSA_OP2:
4081 return TRUE;
e0001a05 4082
43cd72b9
BW
4083 default:
4084 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4085 return TRUE;
4086 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4087 return TRUE;
4088 break;
4089 }
e0001a05 4090
43cd72b9 4091 return FALSE;
e0001a05
NC
4092}
4093
43cd72b9
BW
4094
4095#define MIN_INSN_LENGTH 2
e0001a05 4096
43cd72b9
BW
4097/* Return 0 if it fails to decode. */
4098
4099bfd_size_type
7fa3d080
BW
4100insn_decode_len (bfd_byte *contents,
4101 bfd_size_type content_len,
4102 bfd_size_type offset)
e0001a05 4103{
43cd72b9
BW
4104 int insn_len;
4105 xtensa_isa isa = xtensa_default_isa;
4106 xtensa_format fmt;
4107 static xtensa_insnbuf ibuff = NULL;
e0001a05 4108
43cd72b9
BW
4109 if (offset + MIN_INSN_LENGTH > content_len)
4110 return 0;
e0001a05 4111
43cd72b9
BW
4112 if (ibuff == NULL)
4113 ibuff = xtensa_insnbuf_alloc (isa);
4114 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4115 content_len - offset);
4116 fmt = xtensa_format_decode (isa, ibuff);
4117 if (fmt == XTENSA_UNDEFINED)
4118 return 0;
4119 insn_len = xtensa_format_length (isa, fmt);
4120 if (insn_len == XTENSA_UNDEFINED)
4121 return 0;
4122 return insn_len;
e0001a05
NC
4123}
4124
4125
43cd72b9
BW
4126/* Decode the opcode for a single slot instruction.
4127 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4128
43cd72b9 4129xtensa_opcode
7fa3d080
BW
4130insn_decode_opcode (bfd_byte *contents,
4131 bfd_size_type content_len,
4132 bfd_size_type offset,
4133 int slot)
e0001a05 4134{
e0001a05 4135 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4136 xtensa_format fmt;
4137 static xtensa_insnbuf insnbuf = NULL;
4138 static xtensa_insnbuf slotbuf = NULL;
4139
4140 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4141 return XTENSA_UNDEFINED;
4142
4143 if (insnbuf == NULL)
43cd72b9
BW
4144 {
4145 insnbuf = xtensa_insnbuf_alloc (isa);
4146 slotbuf = xtensa_insnbuf_alloc (isa);
4147 }
4148
4149 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4150 content_len - offset);
4151 fmt = xtensa_format_decode (isa, insnbuf);
4152 if (fmt == XTENSA_UNDEFINED)
e0001a05 4153 return XTENSA_UNDEFINED;
43cd72b9
BW
4154
4155 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4156 return XTENSA_UNDEFINED;
e0001a05 4157
43cd72b9
BW
4158 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4159 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4160}
e0001a05 4161
e0001a05 4162
43cd72b9
BW
4163/* The offset is the offset in the contents.
4164 The address is the address of that offset. */
e0001a05 4165
43cd72b9 4166static bfd_boolean
7fa3d080
BW
4167check_branch_target_aligned (bfd_byte *contents,
4168 bfd_size_type content_length,
4169 bfd_vma offset,
4170 bfd_vma address)
43cd72b9
BW
4171{
4172 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4173 if (insn_len == 0)
4174 return FALSE;
4175 return check_branch_target_aligned_address (address, insn_len);
4176}
e0001a05 4177
e0001a05 4178
43cd72b9 4179static bfd_boolean
7fa3d080
BW
4180check_loop_aligned (bfd_byte *contents,
4181 bfd_size_type content_length,
4182 bfd_vma offset,
4183 bfd_vma address)
e0001a05 4184{
43cd72b9 4185 bfd_size_type loop_len, insn_len;
64b607e6 4186 xtensa_opcode opcode;
e0001a05 4187
64b607e6
BW
4188 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4189 if (opcode == XTENSA_UNDEFINED
4190 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4191 {
4192 BFD_ASSERT (FALSE);
4193 return FALSE;
4194 }
4195
43cd72b9 4196 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4197 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4198 if (loop_len == 0 || insn_len == 0)
4199 {
4200 BFD_ASSERT (FALSE);
4201 return FALSE;
4202 }
e0001a05 4203
43cd72b9
BW
4204 return check_branch_target_aligned_address (address + loop_len, insn_len);
4205}
e0001a05 4206
e0001a05
NC
4207
4208static bfd_boolean
7fa3d080 4209check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4210{
43cd72b9
BW
4211 if (len == 8)
4212 return (addr % 8 == 0);
4213 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4214}
4215
43cd72b9
BW
4216\f
4217/* Instruction widening and narrowing. */
e0001a05 4218
7fa3d080
BW
4219/* When FLIX is available we need to access certain instructions only
4220 when they are 16-bit or 24-bit instructions. This table caches
4221 information about such instructions by walking through all the
4222 opcodes and finding the smallest single-slot format into which each
4223 can be encoded. */
4224
4225static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4226
4227
7fa3d080
BW
4228static void
4229init_op_single_format_table (void)
e0001a05 4230{
7fa3d080
BW
4231 xtensa_isa isa = xtensa_default_isa;
4232 xtensa_insnbuf ibuf;
4233 xtensa_opcode opcode;
4234 xtensa_format fmt;
4235 int num_opcodes;
4236
4237 if (op_single_fmt_table)
4238 return;
4239
4240 ibuf = xtensa_insnbuf_alloc (isa);
4241 num_opcodes = xtensa_isa_num_opcodes (isa);
4242
4243 op_single_fmt_table = (xtensa_format *)
4244 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4245 for (opcode = 0; opcode < num_opcodes; opcode++)
4246 {
4247 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4248 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4249 {
4250 if (xtensa_format_num_slots (isa, fmt) == 1
4251 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4252 {
4253 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4254 int fmt_length = xtensa_format_length (isa, fmt);
4255 if (old_fmt == XTENSA_UNDEFINED
4256 || fmt_length < xtensa_format_length (isa, old_fmt))
4257 op_single_fmt_table[opcode] = fmt;
4258 }
4259 }
4260 }
4261 xtensa_insnbuf_free (isa, ibuf);
4262}
4263
4264
4265static xtensa_format
4266get_single_format (xtensa_opcode opcode)
4267{
4268 init_op_single_format_table ();
4269 return op_single_fmt_table[opcode];
4270}
e0001a05 4271
e0001a05 4272
43cd72b9
BW
4273/* For the set of narrowable instructions we do NOT include the
4274 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4275 involved during linker relaxation that may require these to
4276 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4277 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4278
7fa3d080
BW
4279struct string_pair
4280{
4281 const char *wide;
4282 const char *narrow;
4283};
4284
43cd72b9 4285struct string_pair narrowable[] =
e0001a05 4286{
43cd72b9
BW
4287 { "add", "add.n" },
4288 { "addi", "addi.n" },
4289 { "addmi", "addi.n" },
4290 { "l32i", "l32i.n" },
4291 { "movi", "movi.n" },
4292 { "ret", "ret.n" },
4293 { "retw", "retw.n" },
4294 { "s32i", "s32i.n" },
4295 { "or", "mov.n" } /* special case only when op1 == op2 */
4296};
e0001a05 4297
43cd72b9 4298struct string_pair widenable[] =
e0001a05 4299{
43cd72b9
BW
4300 { "add", "add.n" },
4301 { "addi", "addi.n" },
4302 { "addmi", "addi.n" },
4303 { "beqz", "beqz.n" },
4304 { "bnez", "bnez.n" },
4305 { "l32i", "l32i.n" },
4306 { "movi", "movi.n" },
4307 { "ret", "ret.n" },
4308 { "retw", "retw.n" },
4309 { "s32i", "s32i.n" },
4310 { "or", "mov.n" } /* special case only when op1 == op2 */
4311};
e0001a05
NC
4312
4313
64b607e6
BW
4314/* Check if an instruction can be "narrowed", i.e., changed from a standard
4315 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4316 return the instruction buffer holding the narrow instruction. Otherwise,
4317 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4318 but require some special case operand checks in some cases. */
4319
64b607e6
BW
4320static xtensa_insnbuf
4321can_narrow_instruction (xtensa_insnbuf slotbuf,
4322 xtensa_format fmt,
4323 xtensa_opcode opcode)
e0001a05 4324{
43cd72b9 4325 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4326 xtensa_format o_fmt;
4327 unsigned opi;
e0001a05 4328
43cd72b9
BW
4329 static xtensa_insnbuf o_insnbuf = NULL;
4330 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4331
64b607e6 4332 if (o_insnbuf == NULL)
43cd72b9 4333 {
43cd72b9
BW
4334 o_insnbuf = xtensa_insnbuf_alloc (isa);
4335 o_slotbuf = xtensa_insnbuf_alloc (isa);
4336 }
e0001a05 4337
64b607e6 4338 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4339 {
4340 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4341
43cd72b9
BW
4342 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4343 {
4344 uint32 value, newval;
4345 int i, operand_count, o_operand_count;
4346 xtensa_opcode o_opcode;
e0001a05 4347
43cd72b9
BW
4348 /* Address does not matter in this case. We might need to
4349 fix it to handle branches/jumps. */
4350 bfd_vma self_address = 0;
e0001a05 4351
43cd72b9
BW
4352 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4353 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4354 return 0;
43cd72b9
BW
4355 o_fmt = get_single_format (o_opcode);
4356 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4357 return 0;
e0001a05 4358
43cd72b9
BW
4359 if (xtensa_format_length (isa, fmt) != 3
4360 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4361 return 0;
e0001a05 4362
43cd72b9
BW
4363 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4364 operand_count = xtensa_opcode_num_operands (isa, opcode);
4365 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4366
43cd72b9 4367 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4368 return 0;
e0001a05 4369
43cd72b9
BW
4370 if (!is_or)
4371 {
4372 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4373 return 0;
43cd72b9
BW
4374 }
4375 else
4376 {
4377 uint32 rawval0, rawval1, rawval2;
e0001a05 4378
64b607e6
BW
4379 if (o_operand_count + 1 != operand_count
4380 || xtensa_operand_get_field (isa, opcode, 0,
4381 fmt, 0, slotbuf, &rawval0) != 0
4382 || xtensa_operand_get_field (isa, opcode, 1,
4383 fmt, 0, slotbuf, &rawval1) != 0
4384 || xtensa_operand_get_field (isa, opcode, 2,
4385 fmt, 0, slotbuf, &rawval2) != 0
4386 || rawval1 != rawval2
4387 || rawval0 == rawval1 /* it is a nop */)
4388 return 0;
43cd72b9 4389 }
e0001a05 4390
43cd72b9
BW
4391 for (i = 0; i < o_operand_count; ++i)
4392 {
4393 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4394 slotbuf, &value)
4395 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4396 return 0;
e0001a05 4397
43cd72b9
BW
4398 /* PC-relative branches need adjustment, but
4399 the PC-rel operand will always have a relocation. */
4400 newval = value;
4401 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4402 self_address)
4403 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4404 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4405 o_slotbuf, newval))
64b607e6 4406 return 0;
43cd72b9 4407 }
e0001a05 4408
64b607e6
BW
4409 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4410 return 0;
e0001a05 4411
64b607e6 4412 return o_insnbuf;
43cd72b9
BW
4413 }
4414 }
64b607e6 4415 return 0;
43cd72b9 4416}
e0001a05 4417
e0001a05 4418
64b607e6
BW
4419/* Attempt to narrow an instruction. If the narrowing is valid, perform
4420 the action in-place directly into the contents and return TRUE. Otherwise,
4421 the return value is FALSE and the contents are not modified. */
e0001a05 4422
43cd72b9 4423static bfd_boolean
64b607e6
BW
4424narrow_instruction (bfd_byte *contents,
4425 bfd_size_type content_length,
4426 bfd_size_type offset)
e0001a05 4427{
43cd72b9 4428 xtensa_opcode opcode;
64b607e6 4429 bfd_size_type insn_len;
43cd72b9 4430 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4431 xtensa_format fmt;
4432 xtensa_insnbuf o_insnbuf;
e0001a05 4433
43cd72b9
BW
4434 static xtensa_insnbuf insnbuf = NULL;
4435 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4436
43cd72b9
BW
4437 if (insnbuf == NULL)
4438 {
4439 insnbuf = xtensa_insnbuf_alloc (isa);
4440 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4441 }
e0001a05 4442
43cd72b9 4443 BFD_ASSERT (offset < content_length);
2c8c90bc 4444
43cd72b9 4445 if (content_length < 2)
e0001a05
NC
4446 return FALSE;
4447
64b607e6 4448 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4449 These have all been specified in the assembler aleady. */
4450 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4451 content_length - offset);
4452 fmt = xtensa_format_decode (isa, insnbuf);
4453 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4454 return FALSE;
4455
43cd72b9 4456 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4457 return FALSE;
4458
43cd72b9
BW
4459 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4460 if (opcode == XTENSA_UNDEFINED)
e0001a05 4461 return FALSE;
43cd72b9
BW
4462 insn_len = xtensa_format_length (isa, fmt);
4463 if (insn_len > content_length)
4464 return FALSE;
4465
64b607e6
BW
4466 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4467 if (o_insnbuf)
4468 {
4469 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4470 content_length - offset);
4471 return TRUE;
4472 }
4473
4474 return FALSE;
4475}
4476
4477
4478/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4479 "density" instruction to a standard 3-byte instruction. If it is valid,
4480 return the instruction buffer holding the wide instruction. Otherwise,
4481 return 0. The set of valid widenings are specified by a string table
4482 but require some special case operand checks in some cases. */
4483
4484static xtensa_insnbuf
4485can_widen_instruction (xtensa_insnbuf slotbuf,
4486 xtensa_format fmt,
4487 xtensa_opcode opcode)
4488{
4489 xtensa_isa isa = xtensa_default_isa;
4490 xtensa_format o_fmt;
4491 unsigned opi;
4492
4493 static xtensa_insnbuf o_insnbuf = NULL;
4494 static xtensa_insnbuf o_slotbuf = NULL;
4495
4496 if (o_insnbuf == NULL)
4497 {
4498 o_insnbuf = xtensa_insnbuf_alloc (isa);
4499 o_slotbuf = xtensa_insnbuf_alloc (isa);
4500 }
4501
4502 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4503 {
43cd72b9
BW
4504 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4505 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4506 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4507
43cd72b9
BW
4508 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4509 {
4510 uint32 value, newval;
4511 int i, operand_count, o_operand_count, check_operand_count;
4512 xtensa_opcode o_opcode;
e0001a05 4513
43cd72b9
BW
4514 /* Address does not matter in this case. We might need to fix it
4515 to handle branches/jumps. */
4516 bfd_vma self_address = 0;
e0001a05 4517
43cd72b9
BW
4518 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4519 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4520 return 0;
43cd72b9
BW
4521 o_fmt = get_single_format (o_opcode);
4522 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4523 return 0;
e0001a05 4524
43cd72b9
BW
4525 if (xtensa_format_length (isa, fmt) != 2
4526 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4527 return 0;
e0001a05 4528
43cd72b9
BW
4529 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4530 operand_count = xtensa_opcode_num_operands (isa, opcode);
4531 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4532 check_operand_count = o_operand_count;
e0001a05 4533
43cd72b9 4534 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4535 return 0;
e0001a05 4536
43cd72b9
BW
4537 if (!is_or)
4538 {
4539 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4540 return 0;
43cd72b9
BW
4541 }
4542 else
4543 {
4544 uint32 rawval0, rawval1;
4545
64b607e6
BW
4546 if (o_operand_count != operand_count + 1
4547 || xtensa_operand_get_field (isa, opcode, 0,
4548 fmt, 0, slotbuf, &rawval0) != 0
4549 || xtensa_operand_get_field (isa, opcode, 1,
4550 fmt, 0, slotbuf, &rawval1) != 0
4551 || rawval0 == rawval1 /* it is a nop */)
4552 return 0;
43cd72b9
BW
4553 }
4554 if (is_branch)
4555 check_operand_count--;
4556
64b607e6 4557 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4558 {
4559 int new_i = i;
4560 if (is_or && i == o_operand_count - 1)
4561 new_i = i - 1;
4562 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4563 slotbuf, &value)
4564 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4565 return 0;
43cd72b9
BW
4566
4567 /* PC-relative branches need adjustment, but
4568 the PC-rel operand will always have a relocation. */
4569 newval = value;
4570 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4571 self_address)
4572 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4573 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4574 o_slotbuf, newval))
64b607e6 4575 return 0;
43cd72b9
BW
4576 }
4577
4578 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4579 return 0;
43cd72b9 4580
64b607e6 4581 return o_insnbuf;
43cd72b9
BW
4582 }
4583 }
64b607e6
BW
4584 return 0;
4585}
4586
4587
4588/* Attempt to widen an instruction. If the widening is valid, perform
4589 the action in-place directly into the contents and return TRUE. Otherwise,
4590 the return value is FALSE and the contents are not modified. */
4591
4592static bfd_boolean
4593widen_instruction (bfd_byte *contents,
4594 bfd_size_type content_length,
4595 bfd_size_type offset)
4596{
4597 xtensa_opcode opcode;
4598 bfd_size_type insn_len;
4599 xtensa_isa isa = xtensa_default_isa;
4600 xtensa_format fmt;
4601 xtensa_insnbuf o_insnbuf;
4602
4603 static xtensa_insnbuf insnbuf = NULL;
4604 static xtensa_insnbuf slotbuf = NULL;
4605
4606 if (insnbuf == NULL)
4607 {
4608 insnbuf = xtensa_insnbuf_alloc (isa);
4609 slotbuf = xtensa_insnbuf_alloc (isa);
4610 }
4611
4612 BFD_ASSERT (offset < content_length);
4613
4614 if (content_length < 2)
4615 return FALSE;
4616
4617 /* We will hand-code a few of these for a little while.
4618 These have all been specified in the assembler aleady. */
4619 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4620 content_length - offset);
4621 fmt = xtensa_format_decode (isa, insnbuf);
4622 if (xtensa_format_num_slots (isa, fmt) != 1)
4623 return FALSE;
4624
4625 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4626 return FALSE;
4627
4628 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4629 if (opcode == XTENSA_UNDEFINED)
4630 return FALSE;
4631 insn_len = xtensa_format_length (isa, fmt);
4632 if (insn_len > content_length)
4633 return FALSE;
4634
4635 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4636 if (o_insnbuf)
4637 {
4638 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4639 content_length - offset);
4640 return TRUE;
4641 }
43cd72b9 4642 return FALSE;
e0001a05
NC
4643}
4644
43cd72b9
BW
4645\f
4646/* Code for transforming CALLs at link-time. */
e0001a05 4647
43cd72b9 4648static bfd_reloc_status_type
7fa3d080
BW
4649elf_xtensa_do_asm_simplify (bfd_byte *contents,
4650 bfd_vma address,
4651 bfd_vma content_length,
4652 char **error_message)
e0001a05 4653{
43cd72b9
BW
4654 static xtensa_insnbuf insnbuf = NULL;
4655 static xtensa_insnbuf slotbuf = NULL;
4656 xtensa_format core_format = XTENSA_UNDEFINED;
4657 xtensa_opcode opcode;
4658 xtensa_opcode direct_call_opcode;
4659 xtensa_isa isa = xtensa_default_isa;
4660 bfd_byte *chbuf = contents + address;
4661 int opn;
e0001a05 4662
43cd72b9 4663 if (insnbuf == NULL)
e0001a05 4664 {
43cd72b9
BW
4665 insnbuf = xtensa_insnbuf_alloc (isa);
4666 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4667 }
e0001a05 4668
43cd72b9
BW
4669 if (content_length < address)
4670 {
4671 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4672 return bfd_reloc_other;
4673 }
e0001a05 4674
43cd72b9
BW
4675 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4676 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4677 if (direct_call_opcode == XTENSA_UNDEFINED)
4678 {
4679 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4680 return bfd_reloc_other;
4681 }
4682
4683 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4684 core_format = xtensa_format_lookup (isa, "x24");
4685 opcode = xtensa_opcode_lookup (isa, "or");
4686 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4687 for (opn = 0; opn < 3; opn++)
4688 {
4689 uint32 regno = 1;
4690 xtensa_operand_encode (isa, opcode, opn, &regno);
4691 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4692 slotbuf, regno);
4693 }
4694 xtensa_format_encode (isa, core_format, insnbuf);
4695 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4696 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4697
43cd72b9
BW
4698 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4699 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4700 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4701
43cd72b9
BW
4702 xtensa_format_encode (isa, core_format, insnbuf);
4703 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4704 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4705 content_length - address - 3);
e0001a05 4706
43cd72b9
BW
4707 return bfd_reloc_ok;
4708}
e0001a05 4709
e0001a05 4710
43cd72b9 4711static bfd_reloc_status_type
7fa3d080
BW
4712contract_asm_expansion (bfd_byte *contents,
4713 bfd_vma content_length,
4714 Elf_Internal_Rela *irel,
4715 char **error_message)
43cd72b9
BW
4716{
4717 bfd_reloc_status_type retval =
4718 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4719 error_message);
e0001a05 4720
43cd72b9
BW
4721 if (retval != bfd_reloc_ok)
4722 return bfd_reloc_dangerous;
e0001a05 4723
43cd72b9
BW
4724 /* Update the irel->r_offset field so that the right immediate and
4725 the right instruction are modified during the relocation. */
4726 irel->r_offset += 3;
4727 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4728 return bfd_reloc_ok;
4729}
e0001a05 4730
e0001a05 4731
43cd72b9 4732static xtensa_opcode
7fa3d080 4733swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4734{
43cd72b9 4735 init_call_opcodes ();
e0001a05 4736
43cd72b9
BW
4737 if (opcode == callx0_op) return call0_op;
4738 if (opcode == callx4_op) return call4_op;
4739 if (opcode == callx8_op) return call8_op;
4740 if (opcode == callx12_op) return call12_op;
e0001a05 4741
43cd72b9
BW
4742 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4743 return XTENSA_UNDEFINED;
4744}
e0001a05 4745
e0001a05 4746
43cd72b9
BW
4747/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4748 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4749 If not, return XTENSA_UNDEFINED. */
e0001a05 4750
43cd72b9
BW
4751#define L32R_TARGET_REG_OPERAND 0
4752#define CONST16_TARGET_REG_OPERAND 0
4753#define CALLN_SOURCE_OPERAND 0
e0001a05 4754
43cd72b9 4755static xtensa_opcode
7fa3d080 4756get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4757{
43cd72b9
BW
4758 static xtensa_insnbuf insnbuf = NULL;
4759 static xtensa_insnbuf slotbuf = NULL;
4760 xtensa_format fmt;
4761 xtensa_opcode opcode;
4762 xtensa_isa isa = xtensa_default_isa;
4763 uint32 regno, const16_regno, call_regno;
4764 int offset = 0;
e0001a05 4765
43cd72b9 4766 if (insnbuf == NULL)
e0001a05 4767 {
43cd72b9
BW
4768 insnbuf = xtensa_insnbuf_alloc (isa);
4769 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4770 }
43cd72b9
BW
4771
4772 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4773 fmt = xtensa_format_decode (isa, insnbuf);
4774 if (fmt == XTENSA_UNDEFINED
4775 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4776 return XTENSA_UNDEFINED;
4777
4778 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4779 if (opcode == XTENSA_UNDEFINED)
4780 return XTENSA_UNDEFINED;
4781
4782 if (opcode == get_l32r_opcode ())
e0001a05 4783 {
43cd72b9
BW
4784 if (p_uses_l32r)
4785 *p_uses_l32r = TRUE;
4786 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4787 fmt, 0, slotbuf, &regno)
4788 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4789 &regno))
4790 return XTENSA_UNDEFINED;
e0001a05 4791 }
43cd72b9 4792 else if (opcode == get_const16_opcode ())
e0001a05 4793 {
43cd72b9
BW
4794 if (p_uses_l32r)
4795 *p_uses_l32r = FALSE;
4796 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4797 fmt, 0, slotbuf, &regno)
4798 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4799 &regno))
4800 return XTENSA_UNDEFINED;
4801
4802 /* Check that the next instruction is also CONST16. */
4803 offset += xtensa_format_length (isa, fmt);
4804 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4805 fmt = xtensa_format_decode (isa, insnbuf);
4806 if (fmt == XTENSA_UNDEFINED
4807 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4808 return XTENSA_UNDEFINED;
4809 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4810 if (opcode != get_const16_opcode ())
4811 return XTENSA_UNDEFINED;
4812
4813 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4814 fmt, 0, slotbuf, &const16_regno)
4815 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4816 &const16_regno)
4817 || const16_regno != regno)
4818 return XTENSA_UNDEFINED;
e0001a05 4819 }
43cd72b9
BW
4820 else
4821 return XTENSA_UNDEFINED;
e0001a05 4822
43cd72b9
BW
4823 /* Next instruction should be an CALLXn with operand 0 == regno. */
4824 offset += xtensa_format_length (isa, fmt);
4825 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4826 fmt = xtensa_format_decode (isa, insnbuf);
4827 if (fmt == XTENSA_UNDEFINED
4828 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4829 return XTENSA_UNDEFINED;
4830 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4831 if (opcode == XTENSA_UNDEFINED
4832 || !is_indirect_call_opcode (opcode))
4833 return XTENSA_UNDEFINED;
e0001a05 4834
43cd72b9
BW
4835 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4836 fmt, 0, slotbuf, &call_regno)
4837 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4838 &call_regno))
4839 return XTENSA_UNDEFINED;
e0001a05 4840
43cd72b9
BW
4841 if (call_regno != regno)
4842 return XTENSA_UNDEFINED;
e0001a05 4843
43cd72b9
BW
4844 return opcode;
4845}
e0001a05 4846
43cd72b9
BW
4847\f
4848/* Data structures used during relaxation. */
e0001a05 4849
43cd72b9 4850/* r_reloc: relocation values. */
e0001a05 4851
43cd72b9
BW
4852/* Through the relaxation process, we need to keep track of the values
4853 that will result from evaluating relocations. The standard ELF
4854 relocation structure is not sufficient for this purpose because we're
4855 operating on multiple input files at once, so we need to know which
4856 input file a relocation refers to. The r_reloc structure thus
4857 records both the input file (bfd) and ELF relocation.
e0001a05 4858
43cd72b9
BW
4859 For efficiency, an r_reloc also contains a "target_offset" field to
4860 cache the target-section-relative offset value that is represented by
4861 the relocation.
4862
4863 The r_reloc also contains a virtual offset that allows multiple
4864 inserted literals to be placed at the same "address" with
4865 different offsets. */
e0001a05 4866
43cd72b9 4867typedef struct r_reloc_struct r_reloc;
e0001a05 4868
43cd72b9 4869struct r_reloc_struct
e0001a05 4870{
43cd72b9
BW
4871 bfd *abfd;
4872 Elf_Internal_Rela rela;
e0001a05 4873 bfd_vma target_offset;
43cd72b9 4874 bfd_vma virtual_offset;
e0001a05
NC
4875};
4876
e0001a05 4877
43cd72b9
BW
4878/* The r_reloc structure is included by value in literal_value, but not
4879 every literal_value has an associated relocation -- some are simple
4880 constants. In such cases, we set all the fields in the r_reloc
4881 struct to zero. The r_reloc_is_const function should be used to
4882 detect this case. */
e0001a05 4883
43cd72b9 4884static bfd_boolean
7fa3d080 4885r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4886{
43cd72b9 4887 return (r_rel->abfd == NULL);
e0001a05
NC
4888}
4889
4890
43cd72b9 4891static bfd_vma
7fa3d080 4892r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4893{
43cd72b9
BW
4894 bfd_vma target_offset;
4895 unsigned long r_symndx;
e0001a05 4896
43cd72b9
BW
4897 BFD_ASSERT (!r_reloc_is_const (r_rel));
4898 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4899 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4900 return (target_offset + r_rel->rela.r_addend);
4901}
e0001a05 4902
e0001a05 4903
43cd72b9 4904static struct elf_link_hash_entry *
7fa3d080 4905r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4906{
43cd72b9
BW
4907 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4908 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4909}
e0001a05 4910
43cd72b9
BW
4911
4912static asection *
7fa3d080 4913r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4914{
4915 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4916 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4917}
e0001a05
NC
4918
4919
4920static bfd_boolean
7fa3d080 4921r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4922{
43cd72b9
BW
4923 asection *sec;
4924 if (r_rel == NULL)
e0001a05 4925 return FALSE;
e0001a05 4926
43cd72b9
BW
4927 sec = r_reloc_get_section (r_rel);
4928 if (sec == bfd_abs_section_ptr
4929 || sec == bfd_com_section_ptr
4930 || sec == bfd_und_section_ptr)
4931 return FALSE;
4932 return TRUE;
e0001a05
NC
4933}
4934
4935
7fa3d080
BW
4936static void
4937r_reloc_init (r_reloc *r_rel,
4938 bfd *abfd,
4939 Elf_Internal_Rela *irel,
4940 bfd_byte *contents,
4941 bfd_size_type content_length)
4942{
4943 int r_type;
4944 reloc_howto_type *howto;
4945
4946 if (irel)
4947 {
4948 r_rel->rela = *irel;
4949 r_rel->abfd = abfd;
4950 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4951 r_rel->virtual_offset = 0;
4952 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4953 howto = &elf_howto_table[r_type];
4954 if (howto->partial_inplace)
4955 {
4956 bfd_vma inplace_val;
4957 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4958
4959 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4960 r_rel->target_offset += inplace_val;
4961 }
4962 }
4963 else
4964 memset (r_rel, 0, sizeof (r_reloc));
4965}
4966
4967
43cd72b9
BW
4968#if DEBUG
4969
e0001a05 4970static void
7fa3d080 4971print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4972{
43cd72b9
BW
4973 if (r_reloc_is_defined (r_rel))
4974 {
4975 asection *sec = r_reloc_get_section (r_rel);
4976 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4977 }
4978 else if (r_reloc_get_hash_entry (r_rel))
4979 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4980 else
4981 fprintf (fp, " ?? + ");
e0001a05 4982
43cd72b9
BW
4983 fprintf_vma (fp, r_rel->target_offset);
4984 if (r_rel->virtual_offset)
4985 {
4986 fprintf (fp, " + ");
4987 fprintf_vma (fp, r_rel->virtual_offset);
4988 }
4989
4990 fprintf (fp, ")");
4991}
e0001a05 4992
43cd72b9 4993#endif /* DEBUG */
e0001a05 4994
43cd72b9
BW
4995\f
4996/* source_reloc: relocations that reference literals. */
e0001a05 4997
43cd72b9
BW
4998/* To determine whether literals can be coalesced, we need to first
4999 record all the relocations that reference the literals. The
5000 source_reloc structure below is used for this purpose. The
5001 source_reloc entries are kept in a per-literal-section array, sorted
5002 by offset within the literal section (i.e., target offset).
e0001a05 5003
43cd72b9
BW
5004 The source_sec and r_rel.rela.r_offset fields identify the source of
5005 the relocation. The r_rel field records the relocation value, i.e.,
5006 the offset of the literal being referenced. The opnd field is needed
5007 to determine the range of the immediate field to which the relocation
5008 applies, so we can determine whether another literal with the same
5009 value is within range. The is_null field is true when the relocation
5010 is being removed (e.g., when an L32R is being removed due to a CALLX
5011 that is converted to a direct CALL). */
e0001a05 5012
43cd72b9
BW
5013typedef struct source_reloc_struct source_reloc;
5014
5015struct source_reloc_struct
e0001a05 5016{
43cd72b9
BW
5017 asection *source_sec;
5018 r_reloc r_rel;
5019 xtensa_opcode opcode;
5020 int opnd;
5021 bfd_boolean is_null;
5022 bfd_boolean is_abs_literal;
5023};
e0001a05 5024
e0001a05 5025
e0001a05 5026static void
7fa3d080
BW
5027init_source_reloc (source_reloc *reloc,
5028 asection *source_sec,
5029 const r_reloc *r_rel,
5030 xtensa_opcode opcode,
5031 int opnd,
5032 bfd_boolean is_abs_literal)
e0001a05 5033{
43cd72b9
BW
5034 reloc->source_sec = source_sec;
5035 reloc->r_rel = *r_rel;
5036 reloc->opcode = opcode;
5037 reloc->opnd = opnd;
5038 reloc->is_null = FALSE;
5039 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
5040}
5041
e0001a05 5042
43cd72b9
BW
5043/* Find the source_reloc for a particular source offset and relocation
5044 type. Note that the array is sorted by _target_ offset, so this is
5045 just a linear search. */
e0001a05 5046
43cd72b9 5047static source_reloc *
7fa3d080
BW
5048find_source_reloc (source_reloc *src_relocs,
5049 int src_count,
5050 asection *sec,
5051 Elf_Internal_Rela *irel)
e0001a05 5052{
43cd72b9 5053 int i;
e0001a05 5054
43cd72b9
BW
5055 for (i = 0; i < src_count; i++)
5056 {
5057 if (src_relocs[i].source_sec == sec
5058 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5059 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5060 == ELF32_R_TYPE (irel->r_info)))
5061 return &src_relocs[i];
5062 }
e0001a05 5063
43cd72b9 5064 return NULL;
e0001a05
NC
5065}
5066
5067
43cd72b9 5068static int
7fa3d080 5069source_reloc_compare (const void *ap, const void *bp)
e0001a05 5070{
43cd72b9
BW
5071 const source_reloc *a = (const source_reloc *) ap;
5072 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5073
43cd72b9
BW
5074 if (a->r_rel.target_offset != b->r_rel.target_offset)
5075 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5076
43cd72b9
BW
5077 /* We don't need to sort on these criteria for correctness,
5078 but enforcing a more strict ordering prevents unstable qsort
5079 from behaving differently with different implementations.
5080 Without the code below we get correct but different results
5081 on Solaris 2.7 and 2.8. We would like to always produce the
5082 same results no matter the host. */
5083
5084 if ((!a->is_null) - (!b->is_null))
5085 return ((!a->is_null) - (!b->is_null));
5086 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5087}
5088
43cd72b9
BW
5089\f
5090/* Literal values and value hash tables. */
e0001a05 5091
43cd72b9
BW
5092/* Literals with the same value can be coalesced. The literal_value
5093 structure records the value of a literal: the "r_rel" field holds the
5094 information from the relocation on the literal (if there is one) and
5095 the "value" field holds the contents of the literal word itself.
e0001a05 5096
43cd72b9
BW
5097 The value_map structure records a literal value along with the
5098 location of a literal holding that value. The value_map hash table
5099 is indexed by the literal value, so that we can quickly check if a
5100 particular literal value has been seen before and is thus a candidate
5101 for coalescing. */
e0001a05 5102
43cd72b9
BW
5103typedef struct literal_value_struct literal_value;
5104typedef struct value_map_struct value_map;
5105typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5106
43cd72b9 5107struct literal_value_struct
e0001a05 5108{
43cd72b9
BW
5109 r_reloc r_rel;
5110 unsigned long value;
5111 bfd_boolean is_abs_literal;
5112};
5113
5114struct value_map_struct
5115{
5116 literal_value val; /* The literal value. */
5117 r_reloc loc; /* Location of the literal. */
5118 value_map *next;
5119};
5120
5121struct value_map_hash_table_struct
5122{
5123 unsigned bucket_count;
5124 value_map **buckets;
5125 unsigned count;
5126 bfd_boolean has_last_loc;
5127 r_reloc last_loc;
5128};
5129
5130
e0001a05 5131static void
7fa3d080
BW
5132init_literal_value (literal_value *lit,
5133 const r_reloc *r_rel,
5134 unsigned long value,
5135 bfd_boolean is_abs_literal)
e0001a05 5136{
43cd72b9
BW
5137 lit->r_rel = *r_rel;
5138 lit->value = value;
5139 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5140}
5141
5142
43cd72b9 5143static bfd_boolean
7fa3d080
BW
5144literal_value_equal (const literal_value *src1,
5145 const literal_value *src2,
5146 bfd_boolean final_static_link)
e0001a05 5147{
43cd72b9 5148 struct elf_link_hash_entry *h1, *h2;
e0001a05 5149
43cd72b9
BW
5150 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5151 return FALSE;
e0001a05 5152
43cd72b9
BW
5153 if (r_reloc_is_const (&src1->r_rel))
5154 return (src1->value == src2->value);
e0001a05 5155
43cd72b9
BW
5156 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5157 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5158 return FALSE;
e0001a05 5159
43cd72b9
BW
5160 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5161 return FALSE;
5162
5163 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5164 return FALSE;
5165
5166 if (src1->value != src2->value)
5167 return FALSE;
5168
5169 /* Now check for the same section (if defined) or the same elf_hash
5170 (if undefined or weak). */
5171 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5172 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5173 if (r_reloc_is_defined (&src1->r_rel)
5174 && (final_static_link
5175 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5176 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5177 {
5178 if (r_reloc_get_section (&src1->r_rel)
5179 != r_reloc_get_section (&src2->r_rel))
5180 return FALSE;
5181 }
5182 else
5183 {
5184 /* Require that the hash entries (i.e., symbols) be identical. */
5185 if (h1 != h2 || h1 == 0)
5186 return FALSE;
5187 }
5188
5189 if (src1->is_abs_literal != src2->is_abs_literal)
5190 return FALSE;
5191
5192 return TRUE;
e0001a05
NC
5193}
5194
e0001a05 5195
43cd72b9
BW
5196/* Must be power of 2. */
5197#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5198
43cd72b9 5199static value_map_hash_table *
7fa3d080 5200value_map_hash_table_init (void)
43cd72b9
BW
5201{
5202 value_map_hash_table *values;
e0001a05 5203
43cd72b9
BW
5204 values = (value_map_hash_table *)
5205 bfd_zmalloc (sizeof (value_map_hash_table));
5206 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5207 values->count = 0;
5208 values->buckets = (value_map **)
5209 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5210 if (values->buckets == NULL)
5211 {
5212 free (values);
5213 return NULL;
5214 }
5215 values->has_last_loc = FALSE;
5216
5217 return values;
5218}
5219
5220
5221static void
7fa3d080 5222value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5223{
43cd72b9
BW
5224 free (table->buckets);
5225 free (table);
5226}
5227
5228
5229static unsigned
7fa3d080 5230hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5231{
5232 return (val >> 2) + (val >> 10);
5233}
5234
5235
5236static unsigned
7fa3d080 5237literal_value_hash (const literal_value *src)
43cd72b9
BW
5238{
5239 unsigned hash_val;
e0001a05 5240
43cd72b9
BW
5241 hash_val = hash_bfd_vma (src->value);
5242 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5243 {
43cd72b9
BW
5244 void *sec_or_hash;
5245
5246 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5247 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5248 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5249
5250 /* Now check for the same section and the same elf_hash. */
5251 if (r_reloc_is_defined (&src->r_rel))
5252 sec_or_hash = r_reloc_get_section (&src->r_rel);
5253 else
5254 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5255 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5256 }
43cd72b9
BW
5257 return hash_val;
5258}
e0001a05 5259
e0001a05 5260
43cd72b9 5261/* Check if the specified literal_value has been seen before. */
e0001a05 5262
43cd72b9 5263static value_map *
7fa3d080
BW
5264value_map_get_cached_value (value_map_hash_table *map,
5265 const literal_value *val,
5266 bfd_boolean final_static_link)
43cd72b9
BW
5267{
5268 value_map *map_e;
5269 value_map *bucket;
5270 unsigned idx;
5271
5272 idx = literal_value_hash (val);
5273 idx = idx & (map->bucket_count - 1);
5274 bucket = map->buckets[idx];
5275 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5276 {
43cd72b9
BW
5277 if (literal_value_equal (&map_e->val, val, final_static_link))
5278 return map_e;
5279 }
5280 return NULL;
5281}
e0001a05 5282
e0001a05 5283
43cd72b9
BW
5284/* Record a new literal value. It is illegal to call this if VALUE
5285 already has an entry here. */
5286
5287static value_map *
7fa3d080
BW
5288add_value_map (value_map_hash_table *map,
5289 const literal_value *val,
5290 const r_reloc *loc,
5291 bfd_boolean final_static_link)
43cd72b9
BW
5292{
5293 value_map **bucket_p;
5294 unsigned idx;
5295
5296 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5297 if (val_e == NULL)
5298 {
5299 bfd_set_error (bfd_error_no_memory);
5300 return NULL;
e0001a05
NC
5301 }
5302
43cd72b9
BW
5303 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5304 val_e->val = *val;
5305 val_e->loc = *loc;
5306
5307 idx = literal_value_hash (val);
5308 idx = idx & (map->bucket_count - 1);
5309 bucket_p = &map->buckets[idx];
5310
5311 val_e->next = *bucket_p;
5312 *bucket_p = val_e;
5313 map->count++;
5314 /* FIXME: Consider resizing the hash table if we get too many entries. */
5315
5316 return val_e;
e0001a05
NC
5317}
5318
43cd72b9
BW
5319\f
5320/* Lists of text actions (ta_) for narrowing, widening, longcall
5321 conversion, space fill, code & literal removal, etc. */
5322
5323/* The following text actions are generated:
5324
5325 "ta_remove_insn" remove an instruction or instructions
5326 "ta_remove_longcall" convert longcall to call
5327 "ta_convert_longcall" convert longcall to nop/call
5328 "ta_narrow_insn" narrow a wide instruction
5329 "ta_widen" widen a narrow instruction
5330 "ta_fill" add fill or remove fill
5331 removed < 0 is a fill; branches to the fill address will be
5332 changed to address + fill size (e.g., address - removed)
5333 removed >= 0 branches to the fill address will stay unchanged
5334 "ta_remove_literal" remove a literal; this action is
5335 indicated when a literal is removed
5336 or replaced.
5337 "ta_add_literal" insert a new literal; this action is
5338 indicated when a literal has been moved.
5339 It may use a virtual_offset because
5340 multiple literals can be placed at the
5341 same location.
5342
5343 For each of these text actions, we also record the number of bytes
5344 removed by performing the text action. In the case of a "ta_widen"
5345 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5346
5347typedef struct text_action_struct text_action;
5348typedef struct text_action_list_struct text_action_list;
5349typedef enum text_action_enum_t text_action_t;
5350
5351enum text_action_enum_t
5352{
5353 ta_none,
5354 ta_remove_insn, /* removed = -size */
5355 ta_remove_longcall, /* removed = -size */
5356 ta_convert_longcall, /* removed = 0 */
5357 ta_narrow_insn, /* removed = -1 */
5358 ta_widen_insn, /* removed = +1 */
5359 ta_fill, /* removed = +size */
5360 ta_remove_literal,
5361 ta_add_literal
5362};
e0001a05 5363
e0001a05 5364
43cd72b9
BW
5365/* Structure for a text action record. */
5366struct text_action_struct
e0001a05 5367{
43cd72b9
BW
5368 text_action_t action;
5369 asection *sec; /* Optional */
5370 bfd_vma offset;
5371 bfd_vma virtual_offset; /* Zero except for adding literals. */
5372 int removed_bytes;
5373 literal_value value; /* Only valid when adding literals. */
e0001a05 5374
43cd72b9
BW
5375 text_action *next;
5376};
e0001a05 5377
e0001a05 5378
43cd72b9
BW
5379/* List of all of the actions taken on a text section. */
5380struct text_action_list_struct
5381{
5382 text_action *head;
5383};
e0001a05 5384
e0001a05 5385
7fa3d080
BW
5386static text_action *
5387find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
5388{
5389 text_action **m_p;
5390
5391 /* It is not necessary to fill at the end of a section. */
5392 if (sec->size == offset)
5393 return NULL;
5394
7fa3d080 5395 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5396 {
5397 text_action *t = *m_p;
5398 /* When the action is another fill at the same address,
5399 just increase the size. */
5400 if (t->offset == offset && t->action == ta_fill)
5401 return t;
5402 }
5403 return NULL;
5404}
5405
5406
5407static int
7fa3d080
BW
5408compute_removed_action_diff (const text_action *ta,
5409 asection *sec,
5410 bfd_vma offset,
5411 int removed,
5412 int removable_space)
43cd72b9
BW
5413{
5414 int new_removed;
5415 int current_removed = 0;
5416
7fa3d080 5417 if (ta)
43cd72b9
BW
5418 current_removed = ta->removed_bytes;
5419
5420 BFD_ASSERT (ta == NULL || ta->offset == offset);
5421 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5422
5423 /* It is not necessary to fill at the end of a section. Clean this up. */
5424 if (sec->size == offset)
5425 new_removed = removable_space - 0;
5426 else
5427 {
5428 int space;
5429 int added = -removed - current_removed;
5430 /* Ignore multiples of the section alignment. */
5431 added = ((1 << sec->alignment_power) - 1) & added;
5432 new_removed = (-added);
5433
5434 /* Modify for removable. */
5435 space = removable_space - new_removed;
5436 new_removed = (removable_space
5437 - (((1 << sec->alignment_power) - 1) & space));
5438 }
5439 return (new_removed - current_removed);
5440}
5441
5442
7fa3d080
BW
5443static void
5444adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5445{
5446 ta->removed_bytes += fill_diff;
5447}
5448
5449
5450/* Add a modification action to the text. For the case of adding or
5451 removing space, modify any current fill and assume that
5452 "unreachable_space" bytes can be freely contracted. Note that a
5453 negative removed value is a fill. */
5454
5455static void
7fa3d080
BW
5456text_action_add (text_action_list *l,
5457 text_action_t action,
5458 asection *sec,
5459 bfd_vma offset,
5460 int removed)
43cd72b9
BW
5461{
5462 text_action **m_p;
5463 text_action *ta;
5464
5465 /* It is not necessary to fill at the end of a section. */
5466 if (action == ta_fill && sec->size == offset)
5467 return;
5468
5469 /* It is not necessary to fill 0 bytes. */
5470 if (action == ta_fill && removed == 0)
5471 return;
5472
7fa3d080 5473 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5474 {
5475 text_action *t = *m_p;
658ff993
SA
5476
5477 if (action == ta_fill)
43cd72b9 5478 {
658ff993
SA
5479 /* When the action is another fill at the same address,
5480 just increase the size. */
5481 if (t->offset == offset && t->action == ta_fill)
5482 {
5483 t->removed_bytes += removed;
5484 return;
5485 }
5486 /* Fills need to happen before widens so that we don't
5487 insert fill bytes into the instruction stream. */
5488 if (t->offset == offset && t->action == ta_widen_insn)
5489 break;
43cd72b9
BW
5490 }
5491 }
5492
5493 /* Create a new record and fill it up. */
5494 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5495 ta->action = action;
5496 ta->sec = sec;
5497 ta->offset = offset;
5498 ta->removed_bytes = removed;
5499 ta->next = (*m_p);
5500 *m_p = ta;
5501}
5502
5503
5504static void
7fa3d080
BW
5505text_action_add_literal (text_action_list *l,
5506 text_action_t action,
5507 const r_reloc *loc,
5508 const literal_value *value,
5509 int removed)
43cd72b9
BW
5510{
5511 text_action **m_p;
5512 text_action *ta;
5513 asection *sec = r_reloc_get_section (loc);
5514 bfd_vma offset = loc->target_offset;
5515 bfd_vma virtual_offset = loc->virtual_offset;
5516
5517 BFD_ASSERT (action == ta_add_literal);
5518
5519 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5520 {
5521 if ((*m_p)->offset > offset
5522 && ((*m_p)->offset != offset
5523 || (*m_p)->virtual_offset > virtual_offset))
5524 break;
5525 }
5526
5527 /* Create a new record and fill it up. */
5528 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5529 ta->action = action;
5530 ta->sec = sec;
5531 ta->offset = offset;
5532 ta->virtual_offset = virtual_offset;
5533 ta->value = *value;
5534 ta->removed_bytes = removed;
5535 ta->next = (*m_p);
5536 *m_p = ta;
5537}
5538
5539
03669f1c
BW
5540/* Find the total offset adjustment for the relaxations specified by
5541 text_actions, beginning from a particular starting action. This is
5542 typically used from offset_with_removed_text to search an entire list of
5543 actions, but it may also be called directly when adjusting adjacent offsets
5544 so that each search may begin where the previous one left off. */
5545
5546static int
5547removed_by_actions (text_action **p_start_action,
5548 bfd_vma offset,
5549 bfd_boolean before_fill)
43cd72b9
BW
5550{
5551 text_action *r;
5552 int removed = 0;
5553
03669f1c
BW
5554 r = *p_start_action;
5555 while (r)
43cd72b9 5556 {
03669f1c
BW
5557 if (r->offset > offset)
5558 break;
5559
5560 if (r->offset == offset
5561 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5562 break;
5563
5564 removed += r->removed_bytes;
5565
5566 r = r->next;
43cd72b9
BW
5567 }
5568
03669f1c
BW
5569 *p_start_action = r;
5570 return removed;
5571}
5572
5573
5574static bfd_vma
5575offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5576{
5577 text_action *r = action_list->head;
5578 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
5579}
5580
5581
03e94c08
BW
5582static unsigned
5583action_list_count (text_action_list *action_list)
5584{
5585 text_action *r = action_list->head;
5586 unsigned count = 0;
5587 for (r = action_list->head; r != NULL; r = r->next)
5588 {
5589 count++;
5590 }
5591 return count;
5592}
5593
5594
43cd72b9
BW
5595/* The find_insn_action routine will only find non-fill actions. */
5596
7fa3d080
BW
5597static text_action *
5598find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
5599{
5600 text_action *t;
5601 for (t = action_list->head; t; t = t->next)
5602 {
5603 if (t->offset == offset)
5604 {
5605 switch (t->action)
5606 {
5607 case ta_none:
5608 case ta_fill:
5609 break;
5610 case ta_remove_insn:
5611 case ta_remove_longcall:
5612 case ta_convert_longcall:
5613 case ta_narrow_insn:
5614 case ta_widen_insn:
5615 return t;
5616 case ta_remove_literal:
5617 case ta_add_literal:
5618 BFD_ASSERT (0);
5619 break;
5620 }
5621 }
5622 }
5623 return NULL;
5624}
5625
5626
5627#if DEBUG
5628
5629static void
7fa3d080 5630print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
5631{
5632 text_action *r;
5633
5634 fprintf (fp, "Text Action\n");
5635 for (r = action_list->head; r != NULL; r = r->next)
5636 {
5637 const char *t = "unknown";
5638 switch (r->action)
5639 {
5640 case ta_remove_insn:
5641 t = "remove_insn"; break;
5642 case ta_remove_longcall:
5643 t = "remove_longcall"; break;
5644 case ta_convert_longcall:
c46082c8 5645 t = "convert_longcall"; break;
43cd72b9
BW
5646 case ta_narrow_insn:
5647 t = "narrow_insn"; break;
5648 case ta_widen_insn:
5649 t = "widen_insn"; break;
5650 case ta_fill:
5651 t = "fill"; break;
5652 case ta_none:
5653 t = "none"; break;
5654 case ta_remove_literal:
5655 t = "remove_literal"; break;
5656 case ta_add_literal:
5657 t = "add_literal"; break;
5658 }
5659
5660 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5661 r->sec->owner->filename,
5662 r->sec->name, r->offset, t, r->removed_bytes);
5663 }
5664}
5665
5666#endif /* DEBUG */
5667
5668\f
5669/* Lists of literals being coalesced or removed. */
5670
5671/* In the usual case, the literal identified by "from" is being
5672 coalesced with another literal identified by "to". If the literal is
5673 unused and is being removed altogether, "to.abfd" will be NULL.
5674 The removed_literal entries are kept on a per-section list, sorted
5675 by the "from" offset field. */
5676
5677typedef struct removed_literal_struct removed_literal;
5678typedef struct removed_literal_list_struct removed_literal_list;
5679
5680struct removed_literal_struct
5681{
5682 r_reloc from;
5683 r_reloc to;
5684 removed_literal *next;
5685};
5686
5687struct removed_literal_list_struct
5688{
5689 removed_literal *head;
5690 removed_literal *tail;
5691};
5692
5693
43cd72b9
BW
5694/* Record that the literal at "from" is being removed. If "to" is not
5695 NULL, the "from" literal is being coalesced with the "to" literal. */
5696
5697static void
7fa3d080
BW
5698add_removed_literal (removed_literal_list *removed_list,
5699 const r_reloc *from,
5700 const r_reloc *to)
43cd72b9
BW
5701{
5702 removed_literal *r, *new_r, *next_r;
5703
5704 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5705
5706 new_r->from = *from;
5707 if (to)
5708 new_r->to = *to;
5709 else
5710 new_r->to.abfd = NULL;
5711 new_r->next = NULL;
5712
5713 r = removed_list->head;
5714 if (r == NULL)
5715 {
5716 removed_list->head = new_r;
5717 removed_list->tail = new_r;
5718 }
5719 /* Special check for common case of append. */
5720 else if (removed_list->tail->from.target_offset < from->target_offset)
5721 {
5722 removed_list->tail->next = new_r;
5723 removed_list->tail = new_r;
5724 }
5725 else
5726 {
7fa3d080 5727 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5728 {
5729 r = r->next;
5730 }
5731 next_r = r->next;
5732 r->next = new_r;
5733 new_r->next = next_r;
5734 if (next_r == NULL)
5735 removed_list->tail = new_r;
5736 }
5737}
5738
5739
5740/* Check if the list of removed literals contains an entry for the
5741 given address. Return the entry if found. */
5742
5743static removed_literal *
7fa3d080 5744find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
5745{
5746 removed_literal *r = removed_list->head;
5747 while (r && r->from.target_offset < addr)
5748 r = r->next;
5749 if (r && r->from.target_offset == addr)
5750 return r;
5751 return NULL;
5752}
5753
5754
5755#if DEBUG
5756
5757static void
7fa3d080 5758print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
5759{
5760 removed_literal *r;
5761 r = removed_list->head;
5762 if (r)
5763 fprintf (fp, "Removed Literals\n");
5764 for (; r != NULL; r = r->next)
5765 {
5766 print_r_reloc (fp, &r->from);
5767 fprintf (fp, " => ");
5768 if (r->to.abfd == NULL)
5769 fprintf (fp, "REMOVED");
5770 else
5771 print_r_reloc (fp, &r->to);
5772 fprintf (fp, "\n");
5773 }
5774}
5775
5776#endif /* DEBUG */
5777
5778\f
5779/* Per-section data for relaxation. */
5780
5781typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5782
5783struct xtensa_relax_info_struct
5784{
5785 bfd_boolean is_relaxable_literal_section;
5786 bfd_boolean is_relaxable_asm_section;
5787 int visited; /* Number of times visited. */
5788
5789 source_reloc *src_relocs; /* Array[src_count]. */
5790 int src_count;
5791 int src_next; /* Next src_relocs entry to assign. */
5792
5793 removed_literal_list removed_list;
5794 text_action_list action_list;
5795
5796 reloc_bfd_fix *fix_list;
5797 reloc_bfd_fix *fix_array;
5798 unsigned fix_array_count;
5799
5800 /* Support for expanding the reloc array that is stored
5801 in the section structure. If the relocations have been
5802 reallocated, the newly allocated relocations will be referenced
5803 here along with the actual size allocated. The relocation
5804 count will always be found in the section structure. */
5805 Elf_Internal_Rela *allocated_relocs;
5806 unsigned relocs_count;
5807 unsigned allocated_relocs_count;
5808};
5809
5810struct elf_xtensa_section_data
5811{
5812 struct bfd_elf_section_data elf;
5813 xtensa_relax_info relax_info;
5814};
5815
43cd72b9
BW
5816
5817static bfd_boolean
7fa3d080 5818elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5819{
f592407e
AM
5820 if (!sec->used_by_bfd)
5821 {
5822 struct elf_xtensa_section_data *sdata;
5823 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5824
f592407e
AM
5825 sdata = bfd_zalloc (abfd, amt);
5826 if (sdata == NULL)
5827 return FALSE;
5828 sec->used_by_bfd = sdata;
5829 }
43cd72b9
BW
5830
5831 return _bfd_elf_new_section_hook (abfd, sec);
5832}
5833
5834
7fa3d080
BW
5835static xtensa_relax_info *
5836get_xtensa_relax_info (asection *sec)
5837{
5838 struct elf_xtensa_section_data *section_data;
5839
5840 /* No info available if no section or if it is an output section. */
5841 if (!sec || sec == sec->output_section)
5842 return NULL;
5843
5844 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5845 return &section_data->relax_info;
5846}
5847
5848
43cd72b9 5849static void
7fa3d080 5850init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5851{
5852 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5853
5854 relax_info->is_relaxable_literal_section = FALSE;
5855 relax_info->is_relaxable_asm_section = FALSE;
5856 relax_info->visited = 0;
5857
5858 relax_info->src_relocs = NULL;
5859 relax_info->src_count = 0;
5860 relax_info->src_next = 0;
5861
5862 relax_info->removed_list.head = NULL;
5863 relax_info->removed_list.tail = NULL;
5864
5865 relax_info->action_list.head = NULL;
5866
5867 relax_info->fix_list = NULL;
5868 relax_info->fix_array = NULL;
5869 relax_info->fix_array_count = 0;
5870
5871 relax_info->allocated_relocs = NULL;
5872 relax_info->relocs_count = 0;
5873 relax_info->allocated_relocs_count = 0;
5874}
5875
43cd72b9
BW
5876\f
5877/* Coalescing literals may require a relocation to refer to a section in
5878 a different input file, but the standard relocation information
5879 cannot express that. Instead, the reloc_bfd_fix structures are used
5880 to "fix" the relocations that refer to sections in other input files.
5881 These structures are kept on per-section lists. The "src_type" field
5882 records the relocation type in case there are multiple relocations on
5883 the same location. FIXME: This is ugly; an alternative might be to
5884 add new symbols with the "owner" field to some other input file. */
5885
5886struct reloc_bfd_fix_struct
5887{
5888 asection *src_sec;
5889 bfd_vma src_offset;
5890 unsigned src_type; /* Relocation type. */
5891
43cd72b9
BW
5892 asection *target_sec;
5893 bfd_vma target_offset;
5894 bfd_boolean translated;
5895
5896 reloc_bfd_fix *next;
5897};
5898
5899
43cd72b9 5900static reloc_bfd_fix *
7fa3d080
BW
5901reloc_bfd_fix_init (asection *src_sec,
5902 bfd_vma src_offset,
5903 unsigned src_type,
7fa3d080
BW
5904 asection *target_sec,
5905 bfd_vma target_offset,
5906 bfd_boolean translated)
43cd72b9
BW
5907{
5908 reloc_bfd_fix *fix;
5909
5910 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5911 fix->src_sec = src_sec;
5912 fix->src_offset = src_offset;
5913 fix->src_type = src_type;
43cd72b9
BW
5914 fix->target_sec = target_sec;
5915 fix->target_offset = target_offset;
5916 fix->translated = translated;
5917
5918 return fix;
5919}
5920
5921
5922static void
7fa3d080 5923add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5924{
5925 xtensa_relax_info *relax_info;
5926
5927 relax_info = get_xtensa_relax_info (src_sec);
5928 fix->next = relax_info->fix_list;
5929 relax_info->fix_list = fix;
5930}
5931
5932
5933static int
7fa3d080 5934fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5935{
5936 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5937 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5938
5939 if (a->src_offset != b->src_offset)
5940 return (a->src_offset - b->src_offset);
5941 return (a->src_type - b->src_type);
5942}
5943
5944
5945static void
7fa3d080 5946cache_fix_array (asection *sec)
43cd72b9
BW
5947{
5948 unsigned i, count = 0;
5949 reloc_bfd_fix *r;
5950 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5951
5952 if (relax_info == NULL)
5953 return;
5954 if (relax_info->fix_list == NULL)
5955 return;
5956
5957 for (r = relax_info->fix_list; r != NULL; r = r->next)
5958 count++;
5959
5960 relax_info->fix_array =
5961 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5962 relax_info->fix_array_count = count;
5963
5964 r = relax_info->fix_list;
5965 for (i = 0; i < count; i++, r = r->next)
5966 {
5967 relax_info->fix_array[count - 1 - i] = *r;
5968 relax_info->fix_array[count - 1 - i].next = NULL;
5969 }
5970
5971 qsort (relax_info->fix_array, relax_info->fix_array_count,
5972 sizeof (reloc_bfd_fix), fix_compare);
5973}
5974
5975
5976static reloc_bfd_fix *
7fa3d080 5977get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5978{
5979 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5980 reloc_bfd_fix *rv;
5981 reloc_bfd_fix key;
5982
5983 if (relax_info == NULL)
5984 return NULL;
5985 if (relax_info->fix_list == NULL)
5986 return NULL;
5987
5988 if (relax_info->fix_array == NULL)
5989 cache_fix_array (sec);
5990
5991 key.src_offset = offset;
5992 key.src_type = type;
5993 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5994 sizeof (reloc_bfd_fix), fix_compare);
5995 return rv;
5996}
5997
5998\f
5999/* Section caching. */
6000
6001typedef struct section_cache_struct section_cache_t;
6002
6003struct section_cache_struct
6004{
6005 asection *sec;
6006
6007 bfd_byte *contents; /* Cache of the section contents. */
6008 bfd_size_type content_length;
6009
6010 property_table_entry *ptbl; /* Cache of the section property table. */
6011 unsigned pte_count;
6012
6013 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6014 unsigned reloc_count;
6015};
6016
6017
7fa3d080
BW
6018static void
6019init_section_cache (section_cache_t *sec_cache)
6020{
6021 memset (sec_cache, 0, sizeof (*sec_cache));
6022}
43cd72b9
BW
6023
6024
6025static void
7fa3d080 6026clear_section_cache (section_cache_t *sec_cache)
43cd72b9 6027{
7fa3d080
BW
6028 if (sec_cache->sec)
6029 {
6030 release_contents (sec_cache->sec, sec_cache->contents);
6031 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6032 if (sec_cache->ptbl)
6033 free (sec_cache->ptbl);
6034 memset (sec_cache, 0, sizeof (sec_cache));
6035 }
43cd72b9
BW
6036}
6037
6038
6039static bfd_boolean
7fa3d080
BW
6040section_cache_section (section_cache_t *sec_cache,
6041 asection *sec,
6042 struct bfd_link_info *link_info)
43cd72b9
BW
6043{
6044 bfd *abfd;
6045 property_table_entry *prop_table = NULL;
6046 int ptblsize = 0;
6047 bfd_byte *contents = NULL;
6048 Elf_Internal_Rela *internal_relocs = NULL;
6049 bfd_size_type sec_size;
6050
6051 if (sec == NULL)
6052 return FALSE;
6053 if (sec == sec_cache->sec)
6054 return TRUE;
6055
6056 abfd = sec->owner;
6057 sec_size = bfd_get_section_limit (abfd, sec);
6058
6059 /* Get the contents. */
6060 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6061 if (contents == NULL && sec_size != 0)
6062 goto err;
6063
6064 /* Get the relocations. */
6065 internal_relocs = retrieve_internal_relocs (abfd, sec,
6066 link_info->keep_memory);
6067
6068 /* Get the entry table. */
6069 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6070 XTENSA_PROP_SEC_NAME, FALSE);
6071 if (ptblsize < 0)
6072 goto err;
6073
6074 /* Fill in the new section cache. */
6075 clear_section_cache (sec_cache);
6076 memset (sec_cache, 0, sizeof (sec_cache));
6077
6078 sec_cache->sec = sec;
6079 sec_cache->contents = contents;
6080 sec_cache->content_length = sec_size;
6081 sec_cache->relocs = internal_relocs;
6082 sec_cache->reloc_count = sec->reloc_count;
6083 sec_cache->pte_count = ptblsize;
6084 sec_cache->ptbl = prop_table;
6085
6086 return TRUE;
6087
6088 err:
6089 release_contents (sec, contents);
6090 release_internal_relocs (sec, internal_relocs);
6091 if (prop_table)
6092 free (prop_table);
6093 return FALSE;
6094}
6095
43cd72b9
BW
6096\f
6097/* Extended basic blocks. */
6098
6099/* An ebb_struct represents an Extended Basic Block. Within this
6100 range, we guarantee that all instructions are decodable, the
6101 property table entries are contiguous, and no property table
6102 specifies a segment that cannot have instructions moved. This
6103 structure contains caches of the contents, property table and
6104 relocations for the specified section for easy use. The range is
6105 specified by ranges of indices for the byte offset, property table
6106 offsets and relocation offsets. These must be consistent. */
6107
6108typedef struct ebb_struct ebb_t;
6109
6110struct ebb_struct
6111{
6112 asection *sec;
6113
6114 bfd_byte *contents; /* Cache of the section contents. */
6115 bfd_size_type content_length;
6116
6117 property_table_entry *ptbl; /* Cache of the section property table. */
6118 unsigned pte_count;
6119
6120 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6121 unsigned reloc_count;
6122
6123 bfd_vma start_offset; /* Offset in section. */
6124 unsigned start_ptbl_idx; /* Offset in the property table. */
6125 unsigned start_reloc_idx; /* Offset in the relocations. */
6126
6127 bfd_vma end_offset;
6128 unsigned end_ptbl_idx;
6129 unsigned end_reloc_idx;
6130
6131 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6132
6133 /* The unreachable property table at the end of this set of blocks;
6134 NULL if the end is not an unreachable block. */
6135 property_table_entry *ends_unreachable;
6136};
6137
6138
6139enum ebb_target_enum
6140{
6141 EBB_NO_ALIGN = 0,
6142 EBB_DESIRE_TGT_ALIGN,
6143 EBB_REQUIRE_TGT_ALIGN,
6144 EBB_REQUIRE_LOOP_ALIGN,
6145 EBB_REQUIRE_ALIGN
6146};
6147
6148
6149/* proposed_action_struct is similar to the text_action_struct except
6150 that is represents a potential transformation, not one that will
6151 occur. We build a list of these for an extended basic block
6152 and use them to compute the actual actions desired. We must be
6153 careful that the entire set of actual actions we perform do not
6154 break any relocations that would fit if the actions were not
6155 performed. */
6156
6157typedef struct proposed_action_struct proposed_action;
6158
6159struct proposed_action_struct
6160{
6161 enum ebb_target_enum align_type; /* for the target alignment */
6162 bfd_vma alignment_pow;
6163 text_action_t action;
6164 bfd_vma offset;
6165 int removed_bytes;
6166 bfd_boolean do_action; /* If false, then we will not perform the action. */
6167};
6168
6169
6170/* The ebb_constraint_struct keeps a set of proposed actions for an
6171 extended basic block. */
6172
6173typedef struct ebb_constraint_struct ebb_constraint;
6174
6175struct ebb_constraint_struct
6176{
6177 ebb_t ebb;
6178 bfd_boolean start_movable;
6179
6180 /* Bytes of extra space at the beginning if movable. */
6181 int start_extra_space;
6182
6183 enum ebb_target_enum start_align;
6184
6185 bfd_boolean end_movable;
6186
6187 /* Bytes of extra space at the end if movable. */
6188 int end_extra_space;
6189
6190 unsigned action_count;
6191 unsigned action_allocated;
6192
6193 /* Array of proposed actions. */
6194 proposed_action *actions;
6195
6196 /* Action alignments -- one for each proposed action. */
6197 enum ebb_target_enum *action_aligns;
6198};
6199
6200
43cd72b9 6201static void
7fa3d080 6202init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6203{
6204 memset (c, 0, sizeof (ebb_constraint));
6205}
6206
6207
6208static void
7fa3d080 6209free_ebb_constraint (ebb_constraint *c)
43cd72b9 6210{
7fa3d080 6211 if (c->actions)
43cd72b9
BW
6212 free (c->actions);
6213}
6214
6215
6216static void
7fa3d080
BW
6217init_ebb (ebb_t *ebb,
6218 asection *sec,
6219 bfd_byte *contents,
6220 bfd_size_type content_length,
6221 property_table_entry *prop_table,
6222 unsigned ptblsize,
6223 Elf_Internal_Rela *internal_relocs,
6224 unsigned reloc_count)
43cd72b9
BW
6225{
6226 memset (ebb, 0, sizeof (ebb_t));
6227 ebb->sec = sec;
6228 ebb->contents = contents;
6229 ebb->content_length = content_length;
6230 ebb->ptbl = prop_table;
6231 ebb->pte_count = ptblsize;
6232 ebb->relocs = internal_relocs;
6233 ebb->reloc_count = reloc_count;
6234 ebb->start_offset = 0;
6235 ebb->end_offset = ebb->content_length - 1;
6236 ebb->start_ptbl_idx = 0;
6237 ebb->end_ptbl_idx = ptblsize;
6238 ebb->start_reloc_idx = 0;
6239 ebb->end_reloc_idx = reloc_count;
6240}
6241
6242
6243/* Extend the ebb to all decodable contiguous sections. The algorithm
6244 for building a basic block around an instruction is to push it
6245 forward until we hit the end of a section, an unreachable block or
6246 a block that cannot be transformed. Then we push it backwards
6247 searching for similar conditions. */
6248
7fa3d080
BW
6249static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6250static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6251static bfd_size_type insn_block_decodable_len
6252 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6253
43cd72b9 6254static bfd_boolean
7fa3d080 6255extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6256{
6257 if (!extend_ebb_bounds_forward (ebb))
6258 return FALSE;
6259 if (!extend_ebb_bounds_backward (ebb))
6260 return FALSE;
6261 return TRUE;
6262}
6263
6264
6265static bfd_boolean
7fa3d080 6266extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6267{
6268 property_table_entry *the_entry, *new_entry;
6269
6270 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6271
6272 /* Stop when (1) we cannot decode an instruction, (2) we are at
6273 the end of the property tables, (3) we hit a non-contiguous property
6274 table entry, (4) we hit a NO_TRANSFORM region. */
6275
6276 while (1)
6277 {
6278 bfd_vma entry_end;
6279 bfd_size_type insn_block_len;
6280
6281 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6282 insn_block_len =
6283 insn_block_decodable_len (ebb->contents, ebb->content_length,
6284 ebb->end_offset,
6285 entry_end - ebb->end_offset);
6286 if (insn_block_len != (entry_end - ebb->end_offset))
6287 {
6288 (*_bfd_error_handler)
6289 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6290 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6291 return FALSE;
6292 }
6293 ebb->end_offset += insn_block_len;
6294
6295 if (ebb->end_offset == ebb->sec->size)
6296 ebb->ends_section = TRUE;
6297
6298 /* Update the reloc counter. */
6299 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6300 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6301 < ebb->end_offset))
6302 {
6303 ebb->end_reloc_idx++;
6304 }
6305
6306 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6307 return TRUE;
6308
6309 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6310 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6311 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6312 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6313 break;
6314
6315 if (the_entry->address + the_entry->size != new_entry->address)
6316 break;
6317
6318 the_entry = new_entry;
6319 ebb->end_ptbl_idx++;
6320 }
6321
6322 /* Quick check for an unreachable or end of file just at the end. */
6323 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6324 {
6325 if (ebb->end_offset == ebb->content_length)
6326 ebb->ends_section = TRUE;
6327 }
6328 else
6329 {
6330 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6331 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6332 && the_entry->address + the_entry->size == new_entry->address)
6333 ebb->ends_unreachable = new_entry;
6334 }
6335
6336 /* Any other ending requires exact alignment. */
6337 return TRUE;
6338}
6339
6340
6341static bfd_boolean
7fa3d080 6342extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6343{
6344 property_table_entry *the_entry, *new_entry;
6345
6346 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6347
6348 /* Stop when (1) we cannot decode the instructions in the current entry.
6349 (2) we are at the beginning of the property tables, (3) we hit a
6350 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6351
6352 while (1)
6353 {
6354 bfd_vma block_begin;
6355 bfd_size_type insn_block_len;
6356
6357 block_begin = the_entry->address - ebb->sec->vma;
6358 insn_block_len =
6359 insn_block_decodable_len (ebb->contents, ebb->content_length,
6360 block_begin,
6361 ebb->start_offset - block_begin);
6362 if (insn_block_len != ebb->start_offset - block_begin)
6363 {
6364 (*_bfd_error_handler)
6365 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6366 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6367 return FALSE;
6368 }
6369 ebb->start_offset -= insn_block_len;
6370
6371 /* Update the reloc counter. */
6372 while (ebb->start_reloc_idx > 0
6373 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6374 >= ebb->start_offset))
6375 {
6376 ebb->start_reloc_idx--;
6377 }
6378
6379 if (ebb->start_ptbl_idx == 0)
6380 return TRUE;
6381
6382 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6383 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6384 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6385 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6386 return TRUE;
6387 if (new_entry->address + new_entry->size != the_entry->address)
6388 return TRUE;
6389
6390 the_entry = new_entry;
6391 ebb->start_ptbl_idx--;
6392 }
6393 return TRUE;
6394}
6395
6396
6397static bfd_size_type
7fa3d080
BW
6398insn_block_decodable_len (bfd_byte *contents,
6399 bfd_size_type content_len,
6400 bfd_vma block_offset,
6401 bfd_size_type block_len)
43cd72b9
BW
6402{
6403 bfd_vma offset = block_offset;
6404
6405 while (offset < block_offset + block_len)
6406 {
6407 bfd_size_type insn_len = 0;
6408
6409 insn_len = insn_decode_len (contents, content_len, offset);
6410 if (insn_len == 0)
6411 return (offset - block_offset);
6412 offset += insn_len;
6413 }
6414 return (offset - block_offset);
6415}
6416
6417
6418static void
7fa3d080 6419ebb_propose_action (ebb_constraint *c,
7fa3d080 6420 enum ebb_target_enum align_type,
288f74fa 6421 bfd_vma alignment_pow,
7fa3d080
BW
6422 text_action_t action,
6423 bfd_vma offset,
6424 int removed_bytes,
6425 bfd_boolean do_action)
43cd72b9 6426{
b08b5071 6427 proposed_action *act;
43cd72b9 6428
43cd72b9
BW
6429 if (c->action_allocated <= c->action_count)
6430 {
b08b5071 6431 unsigned new_allocated, i;
823fc61f 6432 proposed_action *new_actions;
b08b5071
BW
6433
6434 new_allocated = (c->action_count + 2) * 2;
823fc61f 6435 new_actions = (proposed_action *)
43cd72b9
BW
6436 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6437
6438 for (i = 0; i < c->action_count; i++)
6439 new_actions[i] = c->actions[i];
7fa3d080 6440 if (c->actions)
43cd72b9
BW
6441 free (c->actions);
6442 c->actions = new_actions;
6443 c->action_allocated = new_allocated;
6444 }
b08b5071
BW
6445
6446 act = &c->actions[c->action_count];
6447 act->align_type = align_type;
6448 act->alignment_pow = alignment_pow;
6449 act->action = action;
6450 act->offset = offset;
6451 act->removed_bytes = removed_bytes;
6452 act->do_action = do_action;
6453
43cd72b9
BW
6454 c->action_count++;
6455}
6456
6457\f
6458/* Access to internal relocations, section contents and symbols. */
6459
6460/* During relaxation, we need to modify relocations, section contents,
6461 and symbol definitions, and we need to keep the original values from
6462 being reloaded from the input files, i.e., we need to "pin" the
6463 modified values in memory. We also want to continue to observe the
6464 setting of the "keep-memory" flag. The following functions wrap the
6465 standard BFD functions to take care of this for us. */
6466
6467static Elf_Internal_Rela *
7fa3d080 6468retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6469{
6470 Elf_Internal_Rela *internal_relocs;
6471
6472 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6473 return NULL;
6474
6475 internal_relocs = elf_section_data (sec)->relocs;
6476 if (internal_relocs == NULL)
6477 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6478 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6479 return internal_relocs;
6480}
6481
6482
6483static void
7fa3d080 6484pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6485{
6486 elf_section_data (sec)->relocs = internal_relocs;
6487}
6488
6489
6490static void
7fa3d080 6491release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6492{
6493 if (internal_relocs
6494 && elf_section_data (sec)->relocs != internal_relocs)
6495 free (internal_relocs);
6496}
6497
6498
6499static bfd_byte *
7fa3d080 6500retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6501{
6502 bfd_byte *contents;
6503 bfd_size_type sec_size;
6504
6505 sec_size = bfd_get_section_limit (abfd, sec);
6506 contents = elf_section_data (sec)->this_hdr.contents;
6507
6508 if (contents == NULL && sec_size != 0)
6509 {
6510 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6511 {
7fa3d080 6512 if (contents)
43cd72b9
BW
6513 free (contents);
6514 return NULL;
6515 }
6516 if (keep_memory)
6517 elf_section_data (sec)->this_hdr.contents = contents;
6518 }
6519 return contents;
6520}
6521
6522
6523static void
7fa3d080 6524pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6525{
6526 elf_section_data (sec)->this_hdr.contents = contents;
6527}
6528
6529
6530static void
7fa3d080 6531release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6532{
6533 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6534 free (contents);
6535}
6536
6537
6538static Elf_Internal_Sym *
7fa3d080 6539retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6540{
6541 Elf_Internal_Shdr *symtab_hdr;
6542 Elf_Internal_Sym *isymbuf;
6543 size_t locsymcount;
6544
6545 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6546 locsymcount = symtab_hdr->sh_info;
6547
6548 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6549 if (isymbuf == NULL && locsymcount != 0)
6550 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6551 NULL, NULL, NULL);
6552
6553 /* Save the symbols for this input file so they won't be read again. */
6554 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6555 symtab_hdr->contents = (unsigned char *) isymbuf;
6556
6557 return isymbuf;
6558}
6559
6560\f
6561/* Code for link-time relaxation. */
6562
6563/* Initialization for relaxation: */
7fa3d080 6564static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6565static bfd_boolean find_relaxable_sections
7fa3d080 6566 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6567static bfd_boolean collect_source_relocs
7fa3d080 6568 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6569static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6570 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6571 bfd_boolean *);
43cd72b9 6572static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6573 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6574static bfd_boolean compute_text_actions
7fa3d080
BW
6575 (bfd *, asection *, struct bfd_link_info *);
6576static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6577static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 6578static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
6579 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6580 const xtensa_opcode *);
7fa3d080 6581static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6582static void text_action_add_proposed
7fa3d080
BW
6583 (text_action_list *, const ebb_constraint *, asection *);
6584static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
6585
6586/* First pass: */
6587static bfd_boolean compute_removed_literals
7fa3d080 6588 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6589static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6590 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 6591static bfd_boolean is_removable_literal
99ded152
BW
6592 (const source_reloc *, int, const source_reloc *, int, asection *,
6593 property_table_entry *, int);
43cd72b9 6594static bfd_boolean remove_dead_literal
7fa3d080
BW
6595 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6596 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6597static bfd_boolean identify_literal_placement
6598 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6599 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6600 source_reloc *, property_table_entry *, int, section_cache_t *,
6601 bfd_boolean);
6602static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6603static bfd_boolean coalesce_shared_literal
7fa3d080 6604 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6605static bfd_boolean move_shared_literal
7fa3d080
BW
6606 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6607 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6608
6609/* Second pass: */
7fa3d080
BW
6610static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6611static bfd_boolean translate_section_fixes (asection *);
6612static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6613static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6614static void shrink_dynamic_reloc_sections
7fa3d080 6615 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6616static bfd_boolean move_literal
7fa3d080
BW
6617 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6618 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6619static bfd_boolean relax_property_section
7fa3d080 6620 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6621
6622/* Third pass: */
7fa3d080 6623static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6624
6625
6626static bfd_boolean
7fa3d080
BW
6627elf_xtensa_relax_section (bfd *abfd,
6628 asection *sec,
6629 struct bfd_link_info *link_info,
6630 bfd_boolean *again)
43cd72b9
BW
6631{
6632 static value_map_hash_table *values = NULL;
6633 static bfd_boolean relocations_analyzed = FALSE;
6634 xtensa_relax_info *relax_info;
6635
6636 if (!relocations_analyzed)
6637 {
6638 /* Do some overall initialization for relaxation. */
6639 values = value_map_hash_table_init ();
6640 if (values == NULL)
6641 return FALSE;
6642 relaxing_section = TRUE;
6643 if (!analyze_relocations (link_info))
6644 return FALSE;
6645 relocations_analyzed = TRUE;
6646 }
6647 *again = FALSE;
6648
6649 /* Don't mess with linker-created sections. */
6650 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6651 return TRUE;
6652
6653 relax_info = get_xtensa_relax_info (sec);
6654 BFD_ASSERT (relax_info != NULL);
6655
6656 switch (relax_info->visited)
6657 {
6658 case 0:
6659 /* Note: It would be nice to fold this pass into
6660 analyze_relocations, but it is important for this step that the
6661 sections be examined in link order. */
6662 if (!compute_removed_literals (abfd, sec, link_info, values))
6663 return FALSE;
6664 *again = TRUE;
6665 break;
6666
6667 case 1:
6668 if (values)
6669 value_map_hash_table_delete (values);
6670 values = NULL;
6671 if (!relax_section (abfd, sec, link_info))
6672 return FALSE;
6673 *again = TRUE;
6674 break;
6675
6676 case 2:
6677 if (!relax_section_symbols (abfd, sec))
6678 return FALSE;
6679 break;
6680 }
6681
6682 relax_info->visited++;
6683 return TRUE;
6684}
6685
6686\f
6687/* Initialization for relaxation. */
6688
6689/* This function is called once at the start of relaxation. It scans
6690 all the input sections and marks the ones that are relaxable (i.e.,
6691 literal sections with L32R relocations against them), and then
6692 collects source_reloc information for all the relocations against
6693 those relaxable sections. During this process, it also detects
6694 longcalls, i.e., calls relaxed by the assembler into indirect
6695 calls, that can be optimized back into direct calls. Within each
6696 extended basic block (ebb) containing an optimized longcall, it
6697 computes a set of "text actions" that can be performed to remove
6698 the L32R associated with the longcall while optionally preserving
6699 branch target alignments. */
6700
6701static bfd_boolean
7fa3d080 6702analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6703{
6704 bfd *abfd;
6705 asection *sec;
6706 bfd_boolean is_relaxable = FALSE;
6707
6708 /* Initialize the per-section relaxation info. */
6709 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6710 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6711 {
6712 init_xtensa_relax_info (sec);
6713 }
6714
6715 /* Mark relaxable sections (and count relocations against each one). */
6716 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6717 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6718 {
6719 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6720 return FALSE;
6721 }
6722
6723 /* Bail out if there are no relaxable sections. */
6724 if (!is_relaxable)
6725 return TRUE;
6726
6727 /* Allocate space for source_relocs. */
6728 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6729 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6730 {
6731 xtensa_relax_info *relax_info;
6732
6733 relax_info = get_xtensa_relax_info (sec);
6734 if (relax_info->is_relaxable_literal_section
6735 || relax_info->is_relaxable_asm_section)
6736 {
6737 relax_info->src_relocs = (source_reloc *)
6738 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6739 }
25c6282a
BW
6740 else
6741 relax_info->src_count = 0;
43cd72b9
BW
6742 }
6743
6744 /* Collect info on relocations against each relaxable section. */
6745 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6746 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6747 {
6748 if (!collect_source_relocs (abfd, sec, link_info))
6749 return FALSE;
6750 }
6751
6752 /* Compute the text actions. */
6753 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6754 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6755 {
6756 if (!compute_text_actions (abfd, sec, link_info))
6757 return FALSE;
6758 }
6759
6760 return TRUE;
6761}
6762
6763
6764/* Find all the sections that might be relaxed. The motivation for
6765 this pass is that collect_source_relocs() needs to record _all_ the
6766 relocations that target each relaxable section. That is expensive
6767 and unnecessary unless the target section is actually going to be
6768 relaxed. This pass identifies all such sections by checking if
6769 they have L32Rs pointing to them. In the process, the total number
6770 of relocations targeting each section is also counted so that we
6771 know how much space to allocate for source_relocs against each
6772 relaxable literal section. */
6773
6774static bfd_boolean
7fa3d080
BW
6775find_relaxable_sections (bfd *abfd,
6776 asection *sec,
6777 struct bfd_link_info *link_info,
6778 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6779{
6780 Elf_Internal_Rela *internal_relocs;
6781 bfd_byte *contents;
6782 bfd_boolean ok = TRUE;
6783 unsigned i;
6784 xtensa_relax_info *source_relax_info;
25c6282a 6785 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6786
6787 internal_relocs = retrieve_internal_relocs (abfd, sec,
6788 link_info->keep_memory);
6789 if (internal_relocs == NULL)
6790 return ok;
6791
6792 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6793 if (contents == NULL && sec->size != 0)
6794 {
6795 ok = FALSE;
6796 goto error_return;
6797 }
6798
6799 source_relax_info = get_xtensa_relax_info (sec);
6800 for (i = 0; i < sec->reloc_count; i++)
6801 {
6802 Elf_Internal_Rela *irel = &internal_relocs[i];
6803 r_reloc r_rel;
6804 asection *target_sec;
6805 xtensa_relax_info *target_relax_info;
6806
6807 /* If this section has not already been marked as "relaxable", and
6808 if it contains any ASM_EXPAND relocations (marking expanded
6809 longcalls) that can be optimized into direct calls, then mark
6810 the section as "relaxable". */
6811 if (source_relax_info
6812 && !source_relax_info->is_relaxable_asm_section
6813 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6814 {
6815 bfd_boolean is_reachable = FALSE;
6816 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6817 link_info, &is_reachable)
6818 && is_reachable)
6819 {
6820 source_relax_info->is_relaxable_asm_section = TRUE;
6821 *is_relaxable_p = TRUE;
6822 }
6823 }
6824
6825 r_reloc_init (&r_rel, abfd, irel, contents,
6826 bfd_get_section_limit (abfd, sec));
6827
6828 target_sec = r_reloc_get_section (&r_rel);
6829 target_relax_info = get_xtensa_relax_info (target_sec);
6830 if (!target_relax_info)
6831 continue;
6832
6833 /* Count PC-relative operand relocations against the target section.
6834 Note: The conditions tested here must match the conditions under
6835 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6836 is_l32r_reloc = FALSE;
6837 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6838 {
6839 xtensa_opcode opcode =
6840 get_relocation_opcode (abfd, sec, contents, irel);
6841 if (opcode != XTENSA_UNDEFINED)
6842 {
6843 is_l32r_reloc = (opcode == get_l32r_opcode ());
6844 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6845 || is_l32r_reloc)
6846 target_relax_info->src_count++;
6847 }
6848 }
43cd72b9 6849
25c6282a 6850 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6851 {
6852 /* Mark the target section as relaxable. */
6853 target_relax_info->is_relaxable_literal_section = TRUE;
6854 *is_relaxable_p = TRUE;
6855 }
6856 }
6857
6858 error_return:
6859 release_contents (sec, contents);
6860 release_internal_relocs (sec, internal_relocs);
6861 return ok;
6862}
6863
6864
6865/* Record _all_ the relocations that point to relaxable sections, and
6866 get rid of ASM_EXPAND relocs by either converting them to
6867 ASM_SIMPLIFY or by removing them. */
6868
6869static bfd_boolean
7fa3d080
BW
6870collect_source_relocs (bfd *abfd,
6871 asection *sec,
6872 struct bfd_link_info *link_info)
43cd72b9
BW
6873{
6874 Elf_Internal_Rela *internal_relocs;
6875 bfd_byte *contents;
6876 bfd_boolean ok = TRUE;
6877 unsigned i;
6878 bfd_size_type sec_size;
6879
6880 internal_relocs = retrieve_internal_relocs (abfd, sec,
6881 link_info->keep_memory);
6882 if (internal_relocs == NULL)
6883 return ok;
6884
6885 sec_size = bfd_get_section_limit (abfd, sec);
6886 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6887 if (contents == NULL && sec_size != 0)
6888 {
6889 ok = FALSE;
6890 goto error_return;
6891 }
6892
6893 /* Record relocations against relaxable literal sections. */
6894 for (i = 0; i < sec->reloc_count; i++)
6895 {
6896 Elf_Internal_Rela *irel = &internal_relocs[i];
6897 r_reloc r_rel;
6898 asection *target_sec;
6899 xtensa_relax_info *target_relax_info;
6900
6901 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6902
6903 target_sec = r_reloc_get_section (&r_rel);
6904 target_relax_info = get_xtensa_relax_info (target_sec);
6905
6906 if (target_relax_info
6907 && (target_relax_info->is_relaxable_literal_section
6908 || target_relax_info->is_relaxable_asm_section))
6909 {
6910 xtensa_opcode opcode = XTENSA_UNDEFINED;
6911 int opnd = -1;
6912 bfd_boolean is_abs_literal = FALSE;
6913
6914 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6915 {
6916 /* None of the current alternate relocs are PC-relative,
6917 and only PC-relative relocs matter here. However, we
6918 still need to record the opcode for literal
6919 coalescing. */
6920 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6921 if (opcode == get_l32r_opcode ())
6922 {
6923 is_abs_literal = TRUE;
6924 opnd = 1;
6925 }
6926 else
6927 opcode = XTENSA_UNDEFINED;
6928 }
6929 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6930 {
6931 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6932 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6933 }
6934
6935 if (opcode != XTENSA_UNDEFINED)
6936 {
6937 int src_next = target_relax_info->src_next++;
6938 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6939
6940 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6941 is_abs_literal);
6942 }
6943 }
6944 }
6945
6946 /* Now get rid of ASM_EXPAND relocations. At this point, the
6947 src_relocs array for the target literal section may still be
6948 incomplete, but it must at least contain the entries for the L32R
6949 relocations associated with ASM_EXPANDs because they were just
6950 added in the preceding loop over the relocations. */
6951
6952 for (i = 0; i < sec->reloc_count; i++)
6953 {
6954 Elf_Internal_Rela *irel = &internal_relocs[i];
6955 bfd_boolean is_reachable;
6956
6957 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6958 &is_reachable))
6959 continue;
6960
6961 if (is_reachable)
6962 {
6963 Elf_Internal_Rela *l32r_irel;
6964 r_reloc r_rel;
6965 asection *target_sec;
6966 xtensa_relax_info *target_relax_info;
6967
6968 /* Mark the source_reloc for the L32R so that it will be
6969 removed in compute_removed_literals(), along with the
6970 associated literal. */
6971 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6972 irel, internal_relocs);
6973 if (l32r_irel == NULL)
6974 continue;
6975
6976 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6977
6978 target_sec = r_reloc_get_section (&r_rel);
6979 target_relax_info = get_xtensa_relax_info (target_sec);
6980
6981 if (target_relax_info
6982 && (target_relax_info->is_relaxable_literal_section
6983 || target_relax_info->is_relaxable_asm_section))
6984 {
6985 source_reloc *s_reloc;
6986
6987 /* Search the source_relocs for the entry corresponding to
6988 the l32r_irel. Note: The src_relocs array is not yet
6989 sorted, but it wouldn't matter anyway because we're
6990 searching by source offset instead of target offset. */
6991 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6992 target_relax_info->src_next,
6993 sec, l32r_irel);
6994 BFD_ASSERT (s_reloc);
6995 s_reloc->is_null = TRUE;
6996 }
6997
6998 /* Convert this reloc to ASM_SIMPLIFY. */
6999 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7000 R_XTENSA_ASM_SIMPLIFY);
7001 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7002
7003 pin_internal_relocs (sec, internal_relocs);
7004 }
7005 else
7006 {
7007 /* It is resolvable but doesn't reach. We resolve now
7008 by eliminating the relocation -- the call will remain
7009 expanded into L32R/CALLX. */
7010 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7011 pin_internal_relocs (sec, internal_relocs);
7012 }
7013 }
7014
7015 error_return:
7016 release_contents (sec, contents);
7017 release_internal_relocs (sec, internal_relocs);
7018 return ok;
7019}
7020
7021
7022/* Return TRUE if the asm expansion can be resolved. Generally it can
7023 be resolved on a final link or when a partial link locates it in the
7024 same section as the target. Set "is_reachable" flag if the target of
7025 the call is within the range of a direct call, given the current VMA
7026 for this section and the target section. */
7027
7028bfd_boolean
7fa3d080
BW
7029is_resolvable_asm_expansion (bfd *abfd,
7030 asection *sec,
7031 bfd_byte *contents,
7032 Elf_Internal_Rela *irel,
7033 struct bfd_link_info *link_info,
7034 bfd_boolean *is_reachable_p)
43cd72b9
BW
7035{
7036 asection *target_sec;
7037 bfd_vma target_offset;
7038 r_reloc r_rel;
7039 xtensa_opcode opcode, direct_call_opcode;
7040 bfd_vma self_address;
7041 bfd_vma dest_address;
7042 bfd_boolean uses_l32r;
7043 bfd_size_type sec_size;
7044
7045 *is_reachable_p = FALSE;
7046
7047 if (contents == NULL)
7048 return FALSE;
7049
7050 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7051 return FALSE;
7052
7053 sec_size = bfd_get_section_limit (abfd, sec);
7054 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7055 sec_size - irel->r_offset, &uses_l32r);
7056 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7057 if (!uses_l32r)
7058 return FALSE;
7059
7060 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7061 if (direct_call_opcode == XTENSA_UNDEFINED)
7062 return FALSE;
7063
7064 /* Check and see that the target resolves. */
7065 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7066 if (!r_reloc_is_defined (&r_rel))
7067 return FALSE;
7068
7069 target_sec = r_reloc_get_section (&r_rel);
7070 target_offset = r_rel.target_offset;
7071
7072 /* If the target is in a shared library, then it doesn't reach. This
7073 isn't supposed to come up because the compiler should never generate
7074 non-PIC calls on systems that use shared libraries, but the linker
7075 shouldn't crash regardless. */
7076 if (!target_sec->output_section)
7077 return FALSE;
7078
7079 /* For relocatable sections, we can only simplify when the output
7080 section of the target is the same as the output section of the
7081 source. */
7082 if (link_info->relocatable
7083 && (target_sec->output_section != sec->output_section
7084 || is_reloc_sym_weak (abfd, irel)))
7085 return FALSE;
7086
7087 self_address = (sec->output_section->vma
7088 + sec->output_offset + irel->r_offset + 3);
7089 dest_address = (target_sec->output_section->vma
7090 + target_sec->output_offset + target_offset);
7091
7092 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7093 self_address, dest_address);
7094
7095 if ((self_address >> CALL_SEGMENT_BITS) !=
7096 (dest_address >> CALL_SEGMENT_BITS))
7097 return FALSE;
7098
7099 return TRUE;
7100}
7101
7102
7103static Elf_Internal_Rela *
7fa3d080
BW
7104find_associated_l32r_irel (bfd *abfd,
7105 asection *sec,
7106 bfd_byte *contents,
7107 Elf_Internal_Rela *other_irel,
7108 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7109{
7110 unsigned i;
e0001a05 7111
43cd72b9
BW
7112 for (i = 0; i < sec->reloc_count; i++)
7113 {
7114 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7115
43cd72b9
BW
7116 if (irel == other_irel)
7117 continue;
7118 if (irel->r_offset != other_irel->r_offset)
7119 continue;
7120 if (is_l32r_relocation (abfd, sec, contents, irel))
7121 return irel;
7122 }
7123
7124 return NULL;
e0001a05
NC
7125}
7126
7127
cb337148
BW
7128static xtensa_opcode *
7129build_reloc_opcodes (bfd *abfd,
7130 asection *sec,
7131 bfd_byte *contents,
7132 Elf_Internal_Rela *internal_relocs)
7133{
7134 unsigned i;
7135 xtensa_opcode *reloc_opcodes =
7136 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7137 for (i = 0; i < sec->reloc_count; i++)
7138 {
7139 Elf_Internal_Rela *irel = &internal_relocs[i];
7140 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7141 }
7142 return reloc_opcodes;
7143}
7144
7145
43cd72b9
BW
7146/* The compute_text_actions function will build a list of potential
7147 transformation actions for code in the extended basic block of each
7148 longcall that is optimized to a direct call. From this list we
7149 generate a set of actions to actually perform that optimizes for
7150 space and, if not using size_opt, maintains branch target
7151 alignments.
e0001a05 7152
43cd72b9
BW
7153 These actions to be performed are placed on a per-section list.
7154 The actual changes are performed by relax_section() in the second
7155 pass. */
7156
7157bfd_boolean
7fa3d080
BW
7158compute_text_actions (bfd *abfd,
7159 asection *sec,
7160 struct bfd_link_info *link_info)
e0001a05 7161{
cb337148 7162 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7163 xtensa_relax_info *relax_info;
e0001a05 7164 bfd_byte *contents;
43cd72b9 7165 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7166 bfd_boolean ok = TRUE;
7167 unsigned i;
43cd72b9
BW
7168 property_table_entry *prop_table = 0;
7169 int ptblsize = 0;
7170 bfd_size_type sec_size;
43cd72b9 7171
43cd72b9
BW
7172 relax_info = get_xtensa_relax_info (sec);
7173 BFD_ASSERT (relax_info);
25c6282a
BW
7174 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7175
7176 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7177 if (!relax_info->is_relaxable_asm_section)
7178 return ok;
e0001a05
NC
7179
7180 internal_relocs = retrieve_internal_relocs (abfd, sec,
7181 link_info->keep_memory);
e0001a05 7182
43cd72b9
BW
7183 if (internal_relocs)
7184 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7185 internal_reloc_compare);
7186
7187 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7188 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7189 if (contents == NULL && sec_size != 0)
e0001a05
NC
7190 {
7191 ok = FALSE;
7192 goto error_return;
7193 }
7194
43cd72b9
BW
7195 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7196 XTENSA_PROP_SEC_NAME, FALSE);
7197 if (ptblsize < 0)
7198 {
7199 ok = FALSE;
7200 goto error_return;
7201 }
7202
7203 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7204 {
7205 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7206 bfd_vma r_offset;
7207 property_table_entry *the_entry;
7208 int ptbl_idx;
7209 ebb_t *ebb;
7210 ebb_constraint ebb_table;
7211 bfd_size_type simplify_size;
7212
7213 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7214 continue;
7215 r_offset = irel->r_offset;
e0001a05 7216
43cd72b9
BW
7217 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7218 if (simplify_size == 0)
7219 {
7220 (*_bfd_error_handler)
7221 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7222 sec->owner, sec, r_offset);
7223 continue;
7224 }
e0001a05 7225
43cd72b9
BW
7226 /* If the instruction table is not around, then don't do this
7227 relaxation. */
7228 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7229 sec->vma + irel->r_offset);
7230 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7231 {
7232 text_action_add (&relax_info->action_list,
7233 ta_convert_longcall, sec, r_offset,
7234 0);
7235 continue;
7236 }
7237
7238 /* If the next longcall happens to be at the same address as an
7239 unreachable section of size 0, then skip forward. */
7240 ptbl_idx = the_entry - prop_table;
7241 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7242 && the_entry->size == 0
7243 && ptbl_idx + 1 < ptblsize
7244 && (prop_table[ptbl_idx + 1].address
7245 == prop_table[ptbl_idx].address))
7246 {
7247 ptbl_idx++;
7248 the_entry++;
7249 }
e0001a05 7250
99ded152 7251 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7252 /* NO_REORDER is OK */
7253 continue;
e0001a05 7254
43cd72b9
BW
7255 init_ebb_constraint (&ebb_table);
7256 ebb = &ebb_table.ebb;
7257 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7258 internal_relocs, sec->reloc_count);
7259 ebb->start_offset = r_offset + simplify_size;
7260 ebb->end_offset = r_offset + simplify_size;
7261 ebb->start_ptbl_idx = ptbl_idx;
7262 ebb->end_ptbl_idx = ptbl_idx;
7263 ebb->start_reloc_idx = i;
7264 ebb->end_reloc_idx = i;
7265
cb337148
BW
7266 /* Precompute the opcode for each relocation. */
7267 if (reloc_opcodes == NULL)
7268 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7269 internal_relocs);
7270
43cd72b9
BW
7271 if (!extend_ebb_bounds (ebb)
7272 || !compute_ebb_proposed_actions (&ebb_table)
7273 || !compute_ebb_actions (&ebb_table)
7274 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
7275 internal_relocs, &ebb_table,
7276 reloc_opcodes)
43cd72b9 7277 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7278 {
43cd72b9
BW
7279 /* If anything goes wrong or we get unlucky and something does
7280 not fit, with our plan because of expansion between
7281 critical branches, just convert to a NOP. */
7282
7283 text_action_add (&relax_info->action_list,
7284 ta_convert_longcall, sec, r_offset, 0);
7285 i = ebb_table.ebb.end_reloc_idx;
7286 free_ebb_constraint (&ebb_table);
7287 continue;
e0001a05 7288 }
43cd72b9
BW
7289
7290 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7291
7292 /* Update the index so we do not go looking at the relocations
7293 we have already processed. */
7294 i = ebb_table.ebb.end_reloc_idx;
7295 free_ebb_constraint (&ebb_table);
e0001a05
NC
7296 }
7297
43cd72b9 7298#if DEBUG
7fa3d080 7299 if (relax_info->action_list.head)
43cd72b9
BW
7300 print_action_list (stderr, &relax_info->action_list);
7301#endif
7302
7303error_return:
e0001a05
NC
7304 release_contents (sec, contents);
7305 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7306 if (prop_table)
7307 free (prop_table);
cb337148
BW
7308 if (reloc_opcodes)
7309 free (reloc_opcodes);
43cd72b9 7310
e0001a05
NC
7311 return ok;
7312}
7313
7314
64b607e6
BW
7315/* Do not widen an instruction if it is preceeded by a
7316 loop opcode. It might cause misalignment. */
7317
7318static bfd_boolean
7319prev_instr_is_a_loop (bfd_byte *contents,
7320 bfd_size_type content_length,
7321 bfd_size_type offset)
7322{
7323 xtensa_opcode prev_opcode;
7324
7325 if (offset < 3)
7326 return FALSE;
7327 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7328 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7329}
7330
7331
43cd72b9 7332/* Find all of the possible actions for an extended basic block. */
e0001a05 7333
43cd72b9 7334bfd_boolean
7fa3d080 7335compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7336{
43cd72b9
BW
7337 const ebb_t *ebb = &ebb_table->ebb;
7338 unsigned rel_idx = ebb->start_reloc_idx;
7339 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7340 bfd_vma offset = 0;
7341 xtensa_isa isa = xtensa_default_isa;
7342 xtensa_format fmt;
7343 static xtensa_insnbuf insnbuf = NULL;
7344 static xtensa_insnbuf slotbuf = NULL;
7345
7346 if (insnbuf == NULL)
7347 {
7348 insnbuf = xtensa_insnbuf_alloc (isa);
7349 slotbuf = xtensa_insnbuf_alloc (isa);
7350 }
e0001a05 7351
43cd72b9
BW
7352 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7353 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7354
43cd72b9 7355 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7356 {
64b607e6 7357 bfd_vma start_offset, end_offset;
43cd72b9 7358 bfd_size_type insn_len;
e0001a05 7359
43cd72b9
BW
7360 start_offset = entry->address - ebb->sec->vma;
7361 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7362
43cd72b9
BW
7363 if (entry == start_entry)
7364 start_offset = ebb->start_offset;
7365 if (entry == end_entry)
7366 end_offset = ebb->end_offset;
7367 offset = start_offset;
e0001a05 7368
43cd72b9
BW
7369 if (offset == entry->address - ebb->sec->vma
7370 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7371 {
7372 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7373 BFD_ASSERT (offset != end_offset);
7374 if (offset == end_offset)
7375 return FALSE;
e0001a05 7376
43cd72b9
BW
7377 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7378 offset);
43cd72b9 7379 if (insn_len == 0)
64b607e6
BW
7380 goto decode_error;
7381
43cd72b9
BW
7382 if (check_branch_target_aligned_address (offset, insn_len))
7383 align_type = EBB_REQUIRE_TGT_ALIGN;
7384
7385 ebb_propose_action (ebb_table, align_type, 0,
7386 ta_none, offset, 0, TRUE);
7387 }
7388
7389 while (offset != end_offset)
e0001a05 7390 {
43cd72b9 7391 Elf_Internal_Rela *irel;
e0001a05 7392 xtensa_opcode opcode;
e0001a05 7393
43cd72b9
BW
7394 while (rel_idx < ebb->end_reloc_idx
7395 && (ebb->relocs[rel_idx].r_offset < offset
7396 || (ebb->relocs[rel_idx].r_offset == offset
7397 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7398 != R_XTENSA_ASM_SIMPLIFY))))
7399 rel_idx++;
7400
7401 /* Check for longcall. */
7402 irel = &ebb->relocs[rel_idx];
7403 if (irel->r_offset == offset
7404 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7405 {
7406 bfd_size_type simplify_size;
e0001a05 7407
43cd72b9
BW
7408 simplify_size = get_asm_simplify_size (ebb->contents,
7409 ebb->content_length,
7410 irel->r_offset);
7411 if (simplify_size == 0)
64b607e6 7412 goto decode_error;
43cd72b9
BW
7413
7414 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7415 ta_convert_longcall, offset, 0, TRUE);
7416
7417 offset += simplify_size;
7418 continue;
7419 }
e0001a05 7420
64b607e6
BW
7421 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7422 goto decode_error;
7423 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7424 ebb->content_length - offset);
7425 fmt = xtensa_format_decode (isa, insnbuf);
7426 if (fmt == XTENSA_UNDEFINED)
7427 goto decode_error;
7428 insn_len = xtensa_format_length (isa, fmt);
7429 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7430 goto decode_error;
7431
7432 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7433 {
64b607e6
BW
7434 offset += insn_len;
7435 continue;
43cd72b9 7436 }
64b607e6
BW
7437
7438 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7439 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7440 if (opcode == XTENSA_UNDEFINED)
7441 goto decode_error;
7442
43cd72b9 7443 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7444 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7445 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7446 {
7447 /* Add an instruction narrow action. */
7448 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7449 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7450 }
99ded152 7451 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7452 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7453 && ! prev_instr_is_a_loop (ebb->contents,
7454 ebb->content_length, offset))
43cd72b9
BW
7455 {
7456 /* Add an instruction widen action. */
7457 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7458 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7459 }
64b607e6 7460 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7461 {
7462 /* Check for branch targets. */
7463 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7464 ta_none, offset, 0, TRUE);
43cd72b9
BW
7465 }
7466
7467 offset += insn_len;
e0001a05
NC
7468 }
7469 }
7470
43cd72b9
BW
7471 if (ebb->ends_unreachable)
7472 {
7473 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7474 ta_fill, ebb->end_offset, 0, TRUE);
7475 }
e0001a05 7476
43cd72b9 7477 return TRUE;
64b607e6
BW
7478
7479 decode_error:
7480 (*_bfd_error_handler)
7481 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7482 ebb->sec->owner, ebb->sec, offset);
7483 return FALSE;
43cd72b9
BW
7484}
7485
7486
7487/* After all of the information has collected about the
7488 transformations possible in an EBB, compute the appropriate actions
7489 here in compute_ebb_actions. We still must check later to make
7490 sure that the actions do not break any relocations. The algorithm
7491 used here is pretty greedy. Basically, it removes as many no-ops
7492 as possible so that the end of the EBB has the same alignment
7493 characteristics as the original. First, it uses narrowing, then
7494 fill space at the end of the EBB, and finally widenings. If that
7495 does not work, it tries again with one fewer no-op removed. The
7496 optimization will only be performed if all of the branch targets
7497 that were aligned before transformation are also aligned after the
7498 transformation.
7499
7500 When the size_opt flag is set, ignore the branch target alignments,
7501 narrow all wide instructions, and remove all no-ops unless the end
7502 of the EBB prevents it. */
7503
7504bfd_boolean
7fa3d080 7505compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
7506{
7507 unsigned i = 0;
7508 unsigned j;
7509 int removed_bytes = 0;
7510 ebb_t *ebb = &ebb_table->ebb;
7511 unsigned seg_idx_start = 0;
7512 unsigned seg_idx_end = 0;
7513
7514 /* We perform this like the assembler relaxation algorithm: Start by
7515 assuming all instructions are narrow and all no-ops removed; then
7516 walk through.... */
7517
7518 /* For each segment of this that has a solid constraint, check to
7519 see if there are any combinations that will keep the constraint.
7520 If so, use it. */
7521 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 7522 {
43cd72b9
BW
7523 bfd_boolean requires_text_end_align = FALSE;
7524 unsigned longcall_count = 0;
7525 unsigned longcall_convert_count = 0;
7526 unsigned narrowable_count = 0;
7527 unsigned narrowable_convert_count = 0;
7528 unsigned widenable_count = 0;
7529 unsigned widenable_convert_count = 0;
e0001a05 7530
43cd72b9
BW
7531 proposed_action *action = NULL;
7532 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 7533
43cd72b9 7534 seg_idx_start = seg_idx_end;
e0001a05 7535
43cd72b9
BW
7536 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7537 {
7538 action = &ebb_table->actions[i];
7539 if (action->action == ta_convert_longcall)
7540 longcall_count++;
7541 if (action->action == ta_narrow_insn)
7542 narrowable_count++;
7543 if (action->action == ta_widen_insn)
7544 widenable_count++;
7545 if (action->action == ta_fill)
7546 break;
7547 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7548 break;
7549 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7550 && !elf32xtensa_size_opt)
7551 break;
7552 }
7553 seg_idx_end = i;
e0001a05 7554
43cd72b9
BW
7555 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7556 requires_text_end_align = TRUE;
e0001a05 7557
43cd72b9
BW
7558 if (elf32xtensa_size_opt && !requires_text_end_align
7559 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7560 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7561 {
7562 longcall_convert_count = longcall_count;
7563 narrowable_convert_count = narrowable_count;
7564 widenable_convert_count = 0;
7565 }
7566 else
7567 {
7568 /* There is a constraint. Convert the max number of longcalls. */
7569 narrowable_convert_count = 0;
7570 longcall_convert_count = 0;
7571 widenable_convert_count = 0;
e0001a05 7572
43cd72b9 7573 for (j = 0; j < longcall_count; j++)
e0001a05 7574 {
43cd72b9
BW
7575 int removed = (longcall_count - j) * 3 & (align - 1);
7576 unsigned desire_narrow = (align - removed) & (align - 1);
7577 unsigned desire_widen = removed;
7578 if (desire_narrow <= narrowable_count)
7579 {
7580 narrowable_convert_count = desire_narrow;
7581 narrowable_convert_count +=
7582 (align * ((narrowable_count - narrowable_convert_count)
7583 / align));
7584 longcall_convert_count = (longcall_count - j);
7585 widenable_convert_count = 0;
7586 break;
7587 }
7588 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7589 {
7590 narrowable_convert_count = 0;
7591 longcall_convert_count = longcall_count - j;
7592 widenable_convert_count = desire_widen;
7593 break;
7594 }
7595 }
7596 }
e0001a05 7597
43cd72b9
BW
7598 /* Now the number of conversions are saved. Do them. */
7599 for (i = seg_idx_start; i < seg_idx_end; i++)
7600 {
7601 action = &ebb_table->actions[i];
7602 switch (action->action)
7603 {
7604 case ta_convert_longcall:
7605 if (longcall_convert_count != 0)
7606 {
7607 action->action = ta_remove_longcall;
7608 action->do_action = TRUE;
7609 action->removed_bytes += 3;
7610 longcall_convert_count--;
7611 }
7612 break;
7613 case ta_narrow_insn:
7614 if (narrowable_convert_count != 0)
7615 {
7616 action->do_action = TRUE;
7617 action->removed_bytes += 1;
7618 narrowable_convert_count--;
7619 }
7620 break;
7621 case ta_widen_insn:
7622 if (widenable_convert_count != 0)
7623 {
7624 action->do_action = TRUE;
7625 action->removed_bytes -= 1;
7626 widenable_convert_count--;
7627 }
7628 break;
7629 default:
7630 break;
e0001a05 7631 }
43cd72b9
BW
7632 }
7633 }
e0001a05 7634
43cd72b9
BW
7635 /* Now we move on to some local opts. Try to remove each of the
7636 remaining longcalls. */
e0001a05 7637
43cd72b9
BW
7638 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7639 {
7640 removed_bytes = 0;
7641 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7642 {
43cd72b9
BW
7643 int old_removed_bytes = removed_bytes;
7644 proposed_action *action = &ebb_table->actions[i];
7645
7646 if (action->do_action && action->action == ta_convert_longcall)
7647 {
7648 bfd_boolean bad_alignment = FALSE;
7649 removed_bytes += 3;
7650 for (j = i + 1; j < ebb_table->action_count; j++)
7651 {
7652 proposed_action *new_action = &ebb_table->actions[j];
7653 bfd_vma offset = new_action->offset;
7654 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7655 {
7656 if (!check_branch_target_aligned
7657 (ebb_table->ebb.contents,
7658 ebb_table->ebb.content_length,
7659 offset, offset - removed_bytes))
7660 {
7661 bad_alignment = TRUE;
7662 break;
7663 }
7664 }
7665 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7666 {
7667 if (!check_loop_aligned (ebb_table->ebb.contents,
7668 ebb_table->ebb.content_length,
7669 offset,
7670 offset - removed_bytes))
7671 {
7672 bad_alignment = TRUE;
7673 break;
7674 }
7675 }
7676 if (new_action->action == ta_narrow_insn
7677 && !new_action->do_action
7678 && ebb_table->ebb.sec->alignment_power == 2)
7679 {
7680 /* Narrow an instruction and we are done. */
7681 new_action->do_action = TRUE;
7682 new_action->removed_bytes += 1;
7683 bad_alignment = FALSE;
7684 break;
7685 }
7686 if (new_action->action == ta_widen_insn
7687 && new_action->do_action
7688 && ebb_table->ebb.sec->alignment_power == 2)
7689 {
7690 /* Narrow an instruction and we are done. */
7691 new_action->do_action = FALSE;
7692 new_action->removed_bytes += 1;
7693 bad_alignment = FALSE;
7694 break;
7695 }
5c5d6806
BW
7696 if (new_action->do_action)
7697 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
7698 }
7699 if (!bad_alignment)
7700 {
7701 action->removed_bytes += 3;
7702 action->action = ta_remove_longcall;
7703 action->do_action = TRUE;
7704 }
7705 }
7706 removed_bytes = old_removed_bytes;
7707 if (action->do_action)
7708 removed_bytes += action->removed_bytes;
e0001a05
NC
7709 }
7710 }
7711
43cd72b9
BW
7712 removed_bytes = 0;
7713 for (i = 0; i < ebb_table->action_count; ++i)
7714 {
7715 proposed_action *action = &ebb_table->actions[i];
7716 if (action->do_action)
7717 removed_bytes += action->removed_bytes;
7718 }
7719
7720 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7721 && ebb->ends_unreachable)
7722 {
7723 proposed_action *action;
7724 int br;
7725 int extra_space;
7726
7727 BFD_ASSERT (ebb_table->action_count != 0);
7728 action = &ebb_table->actions[ebb_table->action_count - 1];
7729 BFD_ASSERT (action->action == ta_fill);
7730 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7731
7732 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7733 br = action->removed_bytes + removed_bytes + extra_space;
7734 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7735
7736 action->removed_bytes = extra_space - br;
7737 }
7738 return TRUE;
e0001a05
NC
7739}
7740
7741
03e94c08
BW
7742/* The xlate_map is a sorted array of address mappings designed to
7743 answer the offset_with_removed_text() query with a binary search instead
7744 of a linear search through the section's action_list. */
7745
7746typedef struct xlate_map_entry xlate_map_entry_t;
7747typedef struct xlate_map xlate_map_t;
7748
7749struct xlate_map_entry
7750{
7751 unsigned orig_address;
7752 unsigned new_address;
7753 unsigned size;
7754};
7755
7756struct xlate_map
7757{
7758 unsigned entry_count;
7759 xlate_map_entry_t *entry;
7760};
7761
7762
7763static int
7764xlate_compare (const void *a_v, const void *b_v)
7765{
7766 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7767 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7768 if (a->orig_address < b->orig_address)
7769 return -1;
7770 if (a->orig_address > (b->orig_address + b->size - 1))
7771 return 1;
7772 return 0;
7773}
7774
7775
7776static bfd_vma
7777xlate_offset_with_removed_text (const xlate_map_t *map,
7778 text_action_list *action_list,
7779 bfd_vma offset)
7780{
7781 xlate_map_entry_t tmp;
7782 void *r;
7783 xlate_map_entry_t *e;
7784
7785 if (map == NULL)
7786 return offset_with_removed_text (action_list, offset);
7787
7788 if (map->entry_count == 0)
7789 return offset;
7790
7791 tmp.orig_address = offset;
7792 tmp.new_address = offset;
7793 tmp.size = 1;
7794
7795 r = bsearch (&offset, map->entry, map->entry_count,
7796 sizeof (xlate_map_entry_t), &xlate_compare);
7797 e = (xlate_map_entry_t *) r;
7798
7799 BFD_ASSERT (e != NULL);
7800 if (e == NULL)
7801 return offset;
7802 return e->new_address - e->orig_address + offset;
7803}
7804
7805
7806/* Build a binary searchable offset translation map from a section's
7807 action list. */
7808
7809static xlate_map_t *
7810build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7811{
7812 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7813 text_action_list *action_list = &relax_info->action_list;
7814 unsigned num_actions = 0;
7815 text_action *r;
7816 int removed;
7817 xlate_map_entry_t *current_entry;
7818
7819 if (map == NULL)
7820 return NULL;
7821
7822 num_actions = action_list_count (action_list);
7823 map->entry = (xlate_map_entry_t *)
7824 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7825 if (map->entry == NULL)
7826 {
7827 free (map);
7828 return NULL;
7829 }
7830 map->entry_count = 0;
7831
7832 removed = 0;
7833 current_entry = &map->entry[0];
7834
7835 current_entry->orig_address = 0;
7836 current_entry->new_address = 0;
7837 current_entry->size = 0;
7838
7839 for (r = action_list->head; r != NULL; r = r->next)
7840 {
7841 unsigned orig_size = 0;
7842 switch (r->action)
7843 {
7844 case ta_none:
7845 case ta_remove_insn:
7846 case ta_convert_longcall:
7847 case ta_remove_literal:
7848 case ta_add_literal:
7849 break;
7850 case ta_remove_longcall:
7851 orig_size = 6;
7852 break;
7853 case ta_narrow_insn:
7854 orig_size = 3;
7855 break;
7856 case ta_widen_insn:
7857 orig_size = 2;
7858 break;
7859 case ta_fill:
7860 break;
7861 }
7862 current_entry->size =
7863 r->offset + orig_size - current_entry->orig_address;
7864 if (current_entry->size != 0)
7865 {
7866 current_entry++;
7867 map->entry_count++;
7868 }
7869 current_entry->orig_address = r->offset + orig_size;
7870 removed += r->removed_bytes;
7871 current_entry->new_address = r->offset + orig_size - removed;
7872 current_entry->size = 0;
7873 }
7874
7875 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7876 - current_entry->orig_address);
7877 if (current_entry->size != 0)
7878 map->entry_count++;
7879
7880 return map;
7881}
7882
7883
7884/* Free an offset translation map. */
7885
7886static void
7887free_xlate_map (xlate_map_t *map)
7888{
7889 if (map && map->entry)
7890 free (map->entry);
7891 if (map)
7892 free (map);
7893}
7894
7895
43cd72b9
BW
7896/* Use check_section_ebb_pcrels_fit to make sure that all of the
7897 relocations in a section will fit if a proposed set of actions
7898 are performed. */
e0001a05 7899
43cd72b9 7900static bfd_boolean
7fa3d080
BW
7901check_section_ebb_pcrels_fit (bfd *abfd,
7902 asection *sec,
7903 bfd_byte *contents,
7904 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7905 const ebb_constraint *constraint,
7906 const xtensa_opcode *reloc_opcodes)
e0001a05 7907{
43cd72b9
BW
7908 unsigned i, j;
7909 Elf_Internal_Rela *irel;
03e94c08
BW
7910 xlate_map_t *xmap = NULL;
7911 bfd_boolean ok = TRUE;
43cd72b9 7912 xtensa_relax_info *relax_info;
e0001a05 7913
43cd72b9 7914 relax_info = get_xtensa_relax_info (sec);
e0001a05 7915
03e94c08
BW
7916 if (relax_info && sec->reloc_count > 100)
7917 {
7918 xmap = build_xlate_map (sec, relax_info);
7919 /* NULL indicates out of memory, but the slow version
7920 can still be used. */
7921 }
7922
43cd72b9
BW
7923 for (i = 0; i < sec->reloc_count; i++)
7924 {
7925 r_reloc r_rel;
7926 bfd_vma orig_self_offset, orig_target_offset;
7927 bfd_vma self_offset, target_offset;
7928 int r_type;
7929 reloc_howto_type *howto;
7930 int self_removed_bytes, target_removed_bytes;
e0001a05 7931
43cd72b9
BW
7932 irel = &internal_relocs[i];
7933 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7934
43cd72b9
BW
7935 howto = &elf_howto_table[r_type];
7936 /* We maintain the required invariant: PC-relative relocations
7937 that fit before linking must fit after linking. Thus we only
7938 need to deal with relocations to the same section that are
7939 PC-relative. */
1bbb5f21
BW
7940 if (r_type == R_XTENSA_ASM_SIMPLIFY
7941 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
7942 || !howto->pc_relative)
7943 continue;
e0001a05 7944
43cd72b9
BW
7945 r_reloc_init (&r_rel, abfd, irel, contents,
7946 bfd_get_section_limit (abfd, sec));
e0001a05 7947
43cd72b9
BW
7948 if (r_reloc_get_section (&r_rel) != sec)
7949 continue;
e0001a05 7950
43cd72b9
BW
7951 orig_self_offset = irel->r_offset;
7952 orig_target_offset = r_rel.target_offset;
e0001a05 7953
43cd72b9
BW
7954 self_offset = orig_self_offset;
7955 target_offset = orig_target_offset;
7956
7957 if (relax_info)
7958 {
03e94c08
BW
7959 self_offset =
7960 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7961 orig_self_offset);
7962 target_offset =
7963 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7964 orig_target_offset);
43cd72b9
BW
7965 }
7966
7967 self_removed_bytes = 0;
7968 target_removed_bytes = 0;
7969
7970 for (j = 0; j < constraint->action_count; ++j)
7971 {
7972 proposed_action *action = &constraint->actions[j];
7973 bfd_vma offset = action->offset;
7974 int removed_bytes = action->removed_bytes;
7975 if (offset < orig_self_offset
7976 || (offset == orig_self_offset && action->action == ta_fill
7977 && action->removed_bytes < 0))
7978 self_removed_bytes += removed_bytes;
7979 if (offset < orig_target_offset
7980 || (offset == orig_target_offset && action->action == ta_fill
7981 && action->removed_bytes < 0))
7982 target_removed_bytes += removed_bytes;
7983 }
7984 self_offset -= self_removed_bytes;
7985 target_offset -= target_removed_bytes;
7986
7987 /* Try to encode it. Get the operand and check. */
7988 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7989 {
7990 /* None of the current alternate relocs are PC-relative,
7991 and only PC-relative relocs matter here. */
7992 }
7993 else
7994 {
7995 xtensa_opcode opcode;
7996 int opnum;
7997
cb337148
BW
7998 if (reloc_opcodes)
7999 opcode = reloc_opcodes[i];
8000 else
8001 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 8002 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
8003 {
8004 ok = FALSE;
8005 break;
8006 }
43cd72b9
BW
8007
8008 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8009 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
8010 {
8011 ok = FALSE;
8012 break;
8013 }
43cd72b9
BW
8014
8015 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8016 {
8017 ok = FALSE;
8018 break;
8019 }
43cd72b9
BW
8020 }
8021 }
8022
03e94c08
BW
8023 if (xmap)
8024 free_xlate_map (xmap);
8025
8026 return ok;
43cd72b9
BW
8027}
8028
8029
8030static bfd_boolean
7fa3d080 8031check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8032{
8033 int removed = 0;
8034 unsigned i;
8035
8036 for (i = 0; i < constraint->action_count; i++)
8037 {
8038 const proposed_action *action = &constraint->actions[i];
8039 if (action->do_action)
8040 removed += action->removed_bytes;
8041 }
8042 if (removed < 0)
e0001a05
NC
8043 return FALSE;
8044
8045 return TRUE;
8046}
8047
8048
43cd72b9 8049void
7fa3d080
BW
8050text_action_add_proposed (text_action_list *l,
8051 const ebb_constraint *ebb_table,
8052 asection *sec)
e0001a05
NC
8053{
8054 unsigned i;
8055
43cd72b9 8056 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8057 {
43cd72b9 8058 proposed_action *action = &ebb_table->actions[i];
e0001a05 8059
43cd72b9 8060 if (!action->do_action)
e0001a05 8061 continue;
43cd72b9
BW
8062 switch (action->action)
8063 {
8064 case ta_remove_insn:
8065 case ta_remove_longcall:
8066 case ta_convert_longcall:
8067 case ta_narrow_insn:
8068 case ta_widen_insn:
8069 case ta_fill:
8070 case ta_remove_literal:
8071 text_action_add (l, action->action, sec, action->offset,
8072 action->removed_bytes);
8073 break;
8074 case ta_none:
8075 break;
8076 default:
8077 BFD_ASSERT (0);
8078 break;
8079 }
e0001a05 8080 }
43cd72b9 8081}
e0001a05 8082
43cd72b9
BW
8083
8084int
7fa3d080 8085compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8086{
8087 int fill_extra_space;
8088
8089 if (!entry)
8090 return 0;
8091
8092 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8093 return 0;
8094
8095 fill_extra_space = entry->size;
8096 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8097 {
8098 /* Fill bytes for alignment:
8099 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8100 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8101 int nsm = (1 << pow) - 1;
8102 bfd_vma addr = entry->address + entry->size;
8103 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8104 fill_extra_space += align_fill;
8105 }
8106 return fill_extra_space;
e0001a05
NC
8107}
8108
43cd72b9 8109\f
e0001a05
NC
8110/* First relaxation pass. */
8111
43cd72b9
BW
8112/* If the section contains relaxable literals, check each literal to
8113 see if it has the same value as another literal that has already
8114 been seen, either in the current section or a previous one. If so,
8115 add an entry to the per-section list of removed literals. The
e0001a05
NC
8116 actual changes are deferred until the next pass. */
8117
8118static bfd_boolean
7fa3d080
BW
8119compute_removed_literals (bfd *abfd,
8120 asection *sec,
8121 struct bfd_link_info *link_info,
8122 value_map_hash_table *values)
e0001a05
NC
8123{
8124 xtensa_relax_info *relax_info;
8125 bfd_byte *contents;
8126 Elf_Internal_Rela *internal_relocs;
43cd72b9 8127 source_reloc *src_relocs, *rel;
e0001a05 8128 bfd_boolean ok = TRUE;
43cd72b9
BW
8129 property_table_entry *prop_table = NULL;
8130 int ptblsize;
8131 int i, prev_i;
8132 bfd_boolean last_loc_is_prev = FALSE;
8133 bfd_vma last_target_offset = 0;
8134 section_cache_t target_sec_cache;
8135 bfd_size_type sec_size;
8136
8137 init_section_cache (&target_sec_cache);
e0001a05
NC
8138
8139 /* Do nothing if it is not a relaxable literal section. */
8140 relax_info = get_xtensa_relax_info (sec);
8141 BFD_ASSERT (relax_info);
e0001a05
NC
8142 if (!relax_info->is_relaxable_literal_section)
8143 return ok;
8144
8145 internal_relocs = retrieve_internal_relocs (abfd, sec,
8146 link_info->keep_memory);
8147
43cd72b9 8148 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8149 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8150 if (contents == NULL && sec_size != 0)
e0001a05
NC
8151 {
8152 ok = FALSE;
8153 goto error_return;
8154 }
8155
8156 /* Sort the source_relocs by target offset. */
8157 src_relocs = relax_info->src_relocs;
8158 qsort (src_relocs, relax_info->src_count,
8159 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8160 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8161 internal_reloc_compare);
e0001a05 8162
43cd72b9
BW
8163 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8164 XTENSA_PROP_SEC_NAME, FALSE);
8165 if (ptblsize < 0)
8166 {
8167 ok = FALSE;
8168 goto error_return;
8169 }
8170
8171 prev_i = -1;
e0001a05
NC
8172 for (i = 0; i < relax_info->src_count; i++)
8173 {
e0001a05 8174 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8175
8176 rel = &src_relocs[i];
43cd72b9
BW
8177 if (get_l32r_opcode () != rel->opcode)
8178 continue;
e0001a05
NC
8179 irel = get_irel_at_offset (sec, internal_relocs,
8180 rel->r_rel.target_offset);
8181
43cd72b9
BW
8182 /* If the relocation on this is not a simple R_XTENSA_32 or
8183 R_XTENSA_PLT then do not consider it. This may happen when
8184 the difference of two symbols is used in a literal. */
8185 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8186 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8187 continue;
8188
e0001a05
NC
8189 /* If the target_offset for this relocation is the same as the
8190 previous relocation, then we've already considered whether the
8191 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8192 if (i != 0 && prev_i != -1
8193 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8194 continue;
43cd72b9
BW
8195 prev_i = i;
8196
8197 if (last_loc_is_prev &&
8198 last_target_offset + 4 != rel->r_rel.target_offset)
8199 last_loc_is_prev = FALSE;
e0001a05
NC
8200
8201 /* Check if the relocation was from an L32R that is being removed
8202 because a CALLX was converted to a direct CALL, and check if
8203 there are no other relocations to the literal. */
99ded152
BW
8204 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8205 sec, prop_table, ptblsize))
e0001a05 8206 {
43cd72b9
BW
8207 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8208 irel, rel, prop_table, ptblsize))
e0001a05 8209 {
43cd72b9
BW
8210 ok = FALSE;
8211 goto error_return;
e0001a05 8212 }
43cd72b9 8213 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8214 continue;
8215 }
8216
43cd72b9
BW
8217 if (!identify_literal_placement (abfd, sec, contents, link_info,
8218 values,
8219 &last_loc_is_prev, irel,
8220 relax_info->src_count - i, rel,
8221 prop_table, ptblsize,
8222 &target_sec_cache, rel->is_abs_literal))
e0001a05 8223 {
43cd72b9
BW
8224 ok = FALSE;
8225 goto error_return;
8226 }
8227 last_target_offset = rel->r_rel.target_offset;
8228 }
e0001a05 8229
43cd72b9
BW
8230#if DEBUG
8231 print_removed_literals (stderr, &relax_info->removed_list);
8232 print_action_list (stderr, &relax_info->action_list);
8233#endif /* DEBUG */
8234
8235error_return:
8236 if (prop_table) free (prop_table);
8237 clear_section_cache (&target_sec_cache);
8238
8239 release_contents (sec, contents);
8240 release_internal_relocs (sec, internal_relocs);
8241 return ok;
8242}
8243
8244
8245static Elf_Internal_Rela *
7fa3d080
BW
8246get_irel_at_offset (asection *sec,
8247 Elf_Internal_Rela *internal_relocs,
8248 bfd_vma offset)
43cd72b9
BW
8249{
8250 unsigned i;
8251 Elf_Internal_Rela *irel;
8252 unsigned r_type;
8253 Elf_Internal_Rela key;
8254
8255 if (!internal_relocs)
8256 return NULL;
8257
8258 key.r_offset = offset;
8259 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8260 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8261 if (!irel)
8262 return NULL;
8263
8264 /* bsearch does not guarantee which will be returned if there are
8265 multiple matches. We need the first that is not an alignment. */
8266 i = irel - internal_relocs;
8267 while (i > 0)
8268 {
8269 if (internal_relocs[i-1].r_offset != offset)
8270 break;
8271 i--;
8272 }
8273 for ( ; i < sec->reloc_count; i++)
8274 {
8275 irel = &internal_relocs[i];
8276 r_type = ELF32_R_TYPE (irel->r_info);
8277 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8278 return irel;
8279 }
8280
8281 return NULL;
8282}
8283
8284
8285bfd_boolean
7fa3d080
BW
8286is_removable_literal (const source_reloc *rel,
8287 int i,
8288 const source_reloc *src_relocs,
99ded152
BW
8289 int src_count,
8290 asection *sec,
8291 property_table_entry *prop_table,
8292 int ptblsize)
43cd72b9
BW
8293{
8294 const source_reloc *curr_rel;
99ded152
BW
8295 property_table_entry *entry;
8296
43cd72b9
BW
8297 if (!rel->is_null)
8298 return FALSE;
8299
99ded152
BW
8300 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8301 sec->vma + rel->r_rel.target_offset);
8302 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8303 return FALSE;
8304
43cd72b9
BW
8305 for (++i; i < src_count; ++i)
8306 {
8307 curr_rel = &src_relocs[i];
8308 /* If all others have the same target offset.... */
8309 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8310 return TRUE;
8311
8312 if (!curr_rel->is_null
8313 && !xtensa_is_property_section (curr_rel->source_sec)
8314 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8315 return FALSE;
8316 }
8317 return TRUE;
8318}
8319
8320
8321bfd_boolean
7fa3d080
BW
8322remove_dead_literal (bfd *abfd,
8323 asection *sec,
8324 struct bfd_link_info *link_info,
8325 Elf_Internal_Rela *internal_relocs,
8326 Elf_Internal_Rela *irel,
8327 source_reloc *rel,
8328 property_table_entry *prop_table,
8329 int ptblsize)
43cd72b9
BW
8330{
8331 property_table_entry *entry;
8332 xtensa_relax_info *relax_info;
8333
8334 relax_info = get_xtensa_relax_info (sec);
8335 if (!relax_info)
8336 return FALSE;
8337
8338 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8339 sec->vma + rel->r_rel.target_offset);
8340
8341 /* Mark the unused literal so that it will be removed. */
8342 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8343
8344 text_action_add (&relax_info->action_list,
8345 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8346
8347 /* If the section is 4-byte aligned, do not add fill. */
8348 if (sec->alignment_power > 2)
8349 {
8350 int fill_extra_space;
8351 bfd_vma entry_sec_offset;
8352 text_action *fa;
8353 property_table_entry *the_add_entry;
8354 int removed_diff;
8355
8356 if (entry)
8357 entry_sec_offset = entry->address - sec->vma + entry->size;
8358 else
8359 entry_sec_offset = rel->r_rel.target_offset + 4;
8360
8361 /* If the literal range is at the end of the section,
8362 do not add fill. */
8363 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8364 entry_sec_offset);
8365 fill_extra_space = compute_fill_extra_space (the_add_entry);
8366
8367 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8368 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8369 -4, fill_extra_space);
8370 if (fa)
8371 adjust_fill_action (fa, removed_diff);
8372 else
8373 text_action_add (&relax_info->action_list,
8374 ta_fill, sec, entry_sec_offset, removed_diff);
8375 }
8376
8377 /* Zero out the relocation on this literal location. */
8378 if (irel)
8379 {
8380 if (elf_hash_table (link_info)->dynamic_sections_created)
8381 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8382
8383 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8384 pin_internal_relocs (sec, internal_relocs);
8385 }
8386
8387 /* Do not modify "last_loc_is_prev". */
8388 return TRUE;
8389}
8390
8391
8392bfd_boolean
7fa3d080
BW
8393identify_literal_placement (bfd *abfd,
8394 asection *sec,
8395 bfd_byte *contents,
8396 struct bfd_link_info *link_info,
8397 value_map_hash_table *values,
8398 bfd_boolean *last_loc_is_prev_p,
8399 Elf_Internal_Rela *irel,
8400 int remaining_src_rels,
8401 source_reloc *rel,
8402 property_table_entry *prop_table,
8403 int ptblsize,
8404 section_cache_t *target_sec_cache,
8405 bfd_boolean is_abs_literal)
43cd72b9
BW
8406{
8407 literal_value val;
8408 value_map *val_map;
8409 xtensa_relax_info *relax_info;
8410 bfd_boolean literal_placed = FALSE;
8411 r_reloc r_rel;
8412 unsigned long value;
8413 bfd_boolean final_static_link;
8414 bfd_size_type sec_size;
8415
8416 relax_info = get_xtensa_relax_info (sec);
8417 if (!relax_info)
8418 return FALSE;
8419
8420 sec_size = bfd_get_section_limit (abfd, sec);
8421
8422 final_static_link =
8423 (!link_info->relocatable
8424 && !elf_hash_table (link_info)->dynamic_sections_created);
8425
8426 /* The placement algorithm first checks to see if the literal is
8427 already in the value map. If so and the value map is reachable
8428 from all uses, then the literal is moved to that location. If
8429 not, then we identify the last location where a fresh literal was
8430 placed. If the literal can be safely moved there, then we do so.
8431 If not, then we assume that the literal is not to move and leave
8432 the literal where it is, marking it as the last literal
8433 location. */
8434
8435 /* Find the literal value. */
8436 value = 0;
8437 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8438 if (!irel)
8439 {
8440 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8441 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8442 }
8443 init_literal_value (&val, &r_rel, value, is_abs_literal);
8444
8445 /* Check if we've seen another literal with the same value that
8446 is in the same output section. */
8447 val_map = value_map_get_cached_value (values, &val, final_static_link);
8448
8449 if (val_map
8450 && (r_reloc_get_section (&val_map->loc)->output_section
8451 == sec->output_section)
8452 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8453 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8454 {
8455 /* No change to last_loc_is_prev. */
8456 literal_placed = TRUE;
8457 }
8458
8459 /* For relocatable links, do not try to move literals. To do it
8460 correctly might increase the number of relocations in an input
8461 section making the default relocatable linking fail. */
8462 if (!link_info->relocatable && !literal_placed
8463 && values->has_last_loc && !(*last_loc_is_prev_p))
8464 {
8465 asection *target_sec = r_reloc_get_section (&values->last_loc);
8466 if (target_sec && target_sec->output_section == sec->output_section)
8467 {
8468 /* Increment the virtual offset. */
8469 r_reloc try_loc = values->last_loc;
8470 try_loc.virtual_offset += 4;
8471
8472 /* There is a last loc that was in the same output section. */
8473 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8474 && move_shared_literal (sec, link_info, rel,
8475 prop_table, ptblsize,
8476 &try_loc, &val, target_sec_cache))
e0001a05 8477 {
43cd72b9
BW
8478 values->last_loc.virtual_offset += 4;
8479 literal_placed = TRUE;
8480 if (!val_map)
8481 val_map = add_value_map (values, &val, &try_loc,
8482 final_static_link);
8483 else
8484 val_map->loc = try_loc;
e0001a05
NC
8485 }
8486 }
43cd72b9
BW
8487 }
8488
8489 if (!literal_placed)
8490 {
8491 /* Nothing worked, leave the literal alone but update the last loc. */
8492 values->has_last_loc = TRUE;
8493 values->last_loc = rel->r_rel;
8494 if (!val_map)
8495 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 8496 else
43cd72b9
BW
8497 val_map->loc = rel->r_rel;
8498 *last_loc_is_prev_p = TRUE;
e0001a05
NC
8499 }
8500
43cd72b9 8501 return TRUE;
e0001a05
NC
8502}
8503
8504
8505/* Check if the original relocations (presumably on L32R instructions)
8506 identified by reloc[0..N] can be changed to reference the literal
8507 identified by r_rel. If r_rel is out of range for any of the
8508 original relocations, then we don't want to coalesce the original
8509 literal with the one at r_rel. We only check reloc[0..N], where the
8510 offsets are all the same as for reloc[0] (i.e., they're all
8511 referencing the same literal) and where N is also bounded by the
8512 number of remaining entries in the "reloc" array. The "reloc" array
8513 is sorted by target offset so we know all the entries for the same
8514 literal will be contiguous. */
8515
8516static bfd_boolean
7fa3d080
BW
8517relocations_reach (source_reloc *reloc,
8518 int remaining_relocs,
8519 const r_reloc *r_rel)
e0001a05
NC
8520{
8521 bfd_vma from_offset, source_address, dest_address;
8522 asection *sec;
8523 int i;
8524
8525 if (!r_reloc_is_defined (r_rel))
8526 return FALSE;
8527
8528 sec = r_reloc_get_section (r_rel);
8529 from_offset = reloc[0].r_rel.target_offset;
8530
8531 for (i = 0; i < remaining_relocs; i++)
8532 {
8533 if (reloc[i].r_rel.target_offset != from_offset)
8534 break;
8535
8536 /* Ignore relocations that have been removed. */
8537 if (reloc[i].is_null)
8538 continue;
8539
8540 /* The original and new output section for these must be the same
8541 in order to coalesce. */
8542 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8543 != sec->output_section)
8544 return FALSE;
8545
d638e0ac
BW
8546 /* Absolute literals in the same output section can always be
8547 combined. */
8548 if (reloc[i].is_abs_literal)
8549 continue;
8550
43cd72b9
BW
8551 /* A literal with no PC-relative relocations can be moved anywhere. */
8552 if (reloc[i].opnd != -1)
e0001a05
NC
8553 {
8554 /* Otherwise, check to see that it fits. */
8555 source_address = (reloc[i].source_sec->output_section->vma
8556 + reloc[i].source_sec->output_offset
8557 + reloc[i].r_rel.rela.r_offset);
8558 dest_address = (sec->output_section->vma
8559 + sec->output_offset
8560 + r_rel->target_offset);
8561
43cd72b9
BW
8562 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8563 source_address, dest_address))
e0001a05
NC
8564 return FALSE;
8565 }
8566 }
8567
8568 return TRUE;
8569}
8570
8571
43cd72b9
BW
8572/* Move a literal to another literal location because it is
8573 the same as the other literal value. */
e0001a05 8574
43cd72b9 8575static bfd_boolean
7fa3d080
BW
8576coalesce_shared_literal (asection *sec,
8577 source_reloc *rel,
8578 property_table_entry *prop_table,
8579 int ptblsize,
8580 value_map *val_map)
e0001a05 8581{
43cd72b9
BW
8582 property_table_entry *entry;
8583 text_action *fa;
8584 property_table_entry *the_add_entry;
8585 int removed_diff;
8586 xtensa_relax_info *relax_info;
8587
8588 relax_info = get_xtensa_relax_info (sec);
8589 if (!relax_info)
8590 return FALSE;
8591
8592 entry = elf_xtensa_find_property_entry
8593 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 8594 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
8595 return TRUE;
8596
8597 /* Mark that the literal will be coalesced. */
8598 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8599
8600 text_action_add (&relax_info->action_list,
8601 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8602
8603 /* If the section is 4-byte aligned, do not add fill. */
8604 if (sec->alignment_power > 2)
e0001a05 8605 {
43cd72b9
BW
8606 int fill_extra_space;
8607 bfd_vma entry_sec_offset;
8608
8609 if (entry)
8610 entry_sec_offset = entry->address - sec->vma + entry->size;
8611 else
8612 entry_sec_offset = rel->r_rel.target_offset + 4;
8613
8614 /* If the literal range is at the end of the section,
8615 do not add fill. */
8616 fill_extra_space = 0;
8617 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8618 entry_sec_offset);
8619 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8620 fill_extra_space = the_add_entry->size;
8621
8622 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8623 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8624 -4, fill_extra_space);
8625 if (fa)
8626 adjust_fill_action (fa, removed_diff);
8627 else
8628 text_action_add (&relax_info->action_list,
8629 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 8630 }
43cd72b9
BW
8631
8632 return TRUE;
8633}
8634
8635
8636/* Move a literal to another location. This may actually increase the
8637 total amount of space used because of alignments so we need to do
8638 this carefully. Also, it may make a branch go out of range. */
8639
8640static bfd_boolean
7fa3d080
BW
8641move_shared_literal (asection *sec,
8642 struct bfd_link_info *link_info,
8643 source_reloc *rel,
8644 property_table_entry *prop_table,
8645 int ptblsize,
8646 const r_reloc *target_loc,
8647 const literal_value *lit_value,
8648 section_cache_t *target_sec_cache)
43cd72b9
BW
8649{
8650 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8651 text_action *fa, *target_fa;
8652 int removed_diff;
8653 xtensa_relax_info *relax_info, *target_relax_info;
8654 asection *target_sec;
8655 ebb_t *ebb;
8656 ebb_constraint ebb_table;
8657 bfd_boolean relocs_fit;
8658
8659 /* If this routine always returns FALSE, the literals that cannot be
8660 coalesced will not be moved. */
8661 if (elf32xtensa_no_literal_movement)
8662 return FALSE;
8663
8664 relax_info = get_xtensa_relax_info (sec);
8665 if (!relax_info)
8666 return FALSE;
8667
8668 target_sec = r_reloc_get_section (target_loc);
8669 target_relax_info = get_xtensa_relax_info (target_sec);
8670
8671 /* Literals to undefined sections may not be moved because they
8672 must report an error. */
8673 if (bfd_is_und_section (target_sec))
8674 return FALSE;
8675
8676 src_entry = elf_xtensa_find_property_entry
8677 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8678
8679 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8680 return FALSE;
8681
8682 target_entry = elf_xtensa_find_property_entry
8683 (target_sec_cache->ptbl, target_sec_cache->pte_count,
8684 target_sec->vma + target_loc->target_offset);
8685
8686 if (!target_entry)
8687 return FALSE;
8688
8689 /* Make sure that we have not broken any branches. */
8690 relocs_fit = FALSE;
8691
8692 init_ebb_constraint (&ebb_table);
8693 ebb = &ebb_table.ebb;
8694 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
8695 target_sec_cache->content_length,
8696 target_sec_cache->ptbl, target_sec_cache->pte_count,
8697 target_sec_cache->relocs, target_sec_cache->reloc_count);
8698
8699 /* Propose to add 4 bytes + worst-case alignment size increase to
8700 destination. */
8701 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8702 ta_fill, target_loc->target_offset,
8703 -4 - (1 << target_sec->alignment_power), TRUE);
8704
8705 /* Check all of the PC-relative relocations to make sure they still fit. */
8706 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
8707 target_sec_cache->contents,
8708 target_sec_cache->relocs,
cb337148 8709 &ebb_table, NULL);
43cd72b9
BW
8710
8711 if (!relocs_fit)
8712 return FALSE;
8713
8714 text_action_add_literal (&target_relax_info->action_list,
8715 ta_add_literal, target_loc, lit_value, -4);
8716
8717 if (target_sec->alignment_power > 2 && target_entry != src_entry)
8718 {
8719 /* May need to add or remove some fill to maintain alignment. */
8720 int fill_extra_space;
8721 bfd_vma entry_sec_offset;
8722
8723 entry_sec_offset =
8724 target_entry->address - target_sec->vma + target_entry->size;
8725
8726 /* If the literal range is at the end of the section,
8727 do not add fill. */
8728 fill_extra_space = 0;
8729 the_add_entry =
8730 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8731 target_sec_cache->pte_count,
8732 entry_sec_offset);
8733 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8734 fill_extra_space = the_add_entry->size;
8735
8736 target_fa = find_fill_action (&target_relax_info->action_list,
8737 target_sec, entry_sec_offset);
8738 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8739 entry_sec_offset, 4,
8740 fill_extra_space);
8741 if (target_fa)
8742 adjust_fill_action (target_fa, removed_diff);
8743 else
8744 text_action_add (&target_relax_info->action_list,
8745 ta_fill, target_sec, entry_sec_offset, removed_diff);
8746 }
8747
8748 /* Mark that the literal will be moved to the new location. */
8749 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8750
8751 /* Remove the literal. */
8752 text_action_add (&relax_info->action_list,
8753 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8754
8755 /* If the section is 4-byte aligned, do not add fill. */
8756 if (sec->alignment_power > 2 && target_entry != src_entry)
8757 {
8758 int fill_extra_space;
8759 bfd_vma entry_sec_offset;
8760
8761 if (src_entry)
8762 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8763 else
8764 entry_sec_offset = rel->r_rel.target_offset+4;
8765
8766 /* If the literal range is at the end of the section,
8767 do not add fill. */
8768 fill_extra_space = 0;
8769 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8770 entry_sec_offset);
8771 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8772 fill_extra_space = the_add_entry->size;
8773
8774 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8775 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8776 -4, fill_extra_space);
8777 if (fa)
8778 adjust_fill_action (fa, removed_diff);
8779 else
8780 text_action_add (&relax_info->action_list,
8781 ta_fill, sec, entry_sec_offset, removed_diff);
8782 }
8783
8784 return TRUE;
e0001a05
NC
8785}
8786
8787\f
8788/* Second relaxation pass. */
8789
8790/* Modify all of the relocations to point to the right spot, and if this
8791 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8792 section size. */
e0001a05 8793
43cd72b9 8794bfd_boolean
7fa3d080 8795relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8796{
8797 Elf_Internal_Rela *internal_relocs;
8798 xtensa_relax_info *relax_info;
8799 bfd_byte *contents;
8800 bfd_boolean ok = TRUE;
8801 unsigned i;
43cd72b9
BW
8802 bfd_boolean rv = FALSE;
8803 bfd_boolean virtual_action;
8804 bfd_size_type sec_size;
e0001a05 8805
43cd72b9 8806 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8807 relax_info = get_xtensa_relax_info (sec);
8808 BFD_ASSERT (relax_info);
8809
43cd72b9
BW
8810 /* First translate any of the fixes that have been added already. */
8811 translate_section_fixes (sec);
8812
e0001a05
NC
8813 /* Handle property sections (e.g., literal tables) specially. */
8814 if (xtensa_is_property_section (sec))
8815 {
8816 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8817 return relax_property_section (abfd, sec, link_info);
8818 }
8819
43cd72b9
BW
8820 internal_relocs = retrieve_internal_relocs (abfd, sec,
8821 link_info->keep_memory);
8822 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8823 if (contents == NULL && sec_size != 0)
8824 {
8825 ok = FALSE;
8826 goto error_return;
8827 }
8828
8829 if (internal_relocs)
8830 {
8831 for (i = 0; i < sec->reloc_count; i++)
8832 {
8833 Elf_Internal_Rela *irel;
8834 xtensa_relax_info *target_relax_info;
8835 bfd_vma source_offset, old_source_offset;
8836 r_reloc r_rel;
8837 unsigned r_type;
8838 asection *target_sec;
8839
8840 /* Locally change the source address.
8841 Translate the target to the new target address.
8842 If it points to this section and has been removed,
8843 NULLify it.
8844 Write it back. */
8845
8846 irel = &internal_relocs[i];
8847 source_offset = irel->r_offset;
8848 old_source_offset = source_offset;
8849
8850 r_type = ELF32_R_TYPE (irel->r_info);
8851 r_reloc_init (&r_rel, abfd, irel, contents,
8852 bfd_get_section_limit (abfd, sec));
8853
8854 /* If this section could have changed then we may need to
8855 change the relocation's offset. */
8856
8857 if (relax_info->is_relaxable_literal_section
8858 || relax_info->is_relaxable_asm_section)
8859 {
9b7f5d20
BW
8860 pin_internal_relocs (sec, internal_relocs);
8861
43cd72b9
BW
8862 if (r_type != R_XTENSA_NONE
8863 && find_removed_literal (&relax_info->removed_list,
8864 irel->r_offset))
8865 {
8866 /* Remove this relocation. */
8867 if (elf_hash_table (link_info)->dynamic_sections_created)
8868 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8869 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8870 irel->r_offset = offset_with_removed_text
8871 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
8872 continue;
8873 }
8874
8875 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8876 {
8877 text_action *action =
8878 find_insn_action (&relax_info->action_list,
8879 irel->r_offset);
8880 if (action && (action->action == ta_convert_longcall
8881 || action->action == ta_remove_longcall))
8882 {
8883 bfd_reloc_status_type retval;
8884 char *error_message = NULL;
8885
8886 retval = contract_asm_expansion (contents, sec_size,
8887 irel, &error_message);
8888 if (retval != bfd_reloc_ok)
8889 {
8890 (*link_info->callbacks->reloc_dangerous)
8891 (link_info, error_message, abfd, sec,
8892 irel->r_offset);
8893 goto error_return;
8894 }
8895 /* Update the action so that the code that moves
8896 the contents will do the right thing. */
8897 if (action->action == ta_remove_longcall)
8898 action->action = ta_remove_insn;
8899 else
8900 action->action = ta_none;
8901 /* Refresh the info in the r_rel. */
8902 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8903 r_type = ELF32_R_TYPE (irel->r_info);
8904 }
8905 }
8906
8907 source_offset = offset_with_removed_text
8908 (&relax_info->action_list, irel->r_offset);
8909 irel->r_offset = source_offset;
8910 }
8911
8912 /* If the target section could have changed then
8913 we may need to change the relocation's target offset. */
8914
8915 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 8916
ae326da8
BW
8917 /* For a reference to a discarded section from a DWARF section,
8918 i.e., where action_discarded is PRETEND, the symbol will
8919 eventually be modified to refer to the kept section (at least if
8920 the kept and discarded sections are the same size). Anticipate
8921 that here and adjust things accordingly. */
8922 if (! elf_xtensa_ignore_discarded_relocs (sec)
8923 && elf_xtensa_action_discarded (sec) == PRETEND
8924 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8925 && target_sec != NULL
8926 && elf_discarded_section (target_sec))
8927 {
8928 /* It would be natural to call _bfd_elf_check_kept_section
8929 here, but it's not exported from elflink.c. It's also a
8930 fairly expensive check. Adjusting the relocations to the
8931 discarded section is fairly harmless; it will only adjust
8932 some addends and difference values. If it turns out that
8933 _bfd_elf_check_kept_section fails later, it won't matter,
8934 so just compare the section names to find the right group
8935 member. */
8936 asection *kept = target_sec->kept_section;
8937 if (kept != NULL)
8938 {
8939 if ((kept->flags & SEC_GROUP) != 0)
8940 {
8941 asection *first = elf_next_in_group (kept);
8942 asection *s = first;
8943
8944 kept = NULL;
8945 while (s != NULL)
8946 {
8947 if (strcmp (s->name, target_sec->name) == 0)
8948 {
8949 kept = s;
8950 break;
8951 }
8952 s = elf_next_in_group (s);
8953 if (s == first)
8954 break;
8955 }
8956 }
8957 }
8958 if (kept != NULL
8959 && ((target_sec->rawsize != 0
8960 ? target_sec->rawsize : target_sec->size)
8961 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8962 target_sec = kept;
8963 }
8964
8965 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
8966 if (target_relax_info
8967 && (target_relax_info->is_relaxable_literal_section
8968 || target_relax_info->is_relaxable_asm_section))
8969 {
8970 r_reloc new_reloc;
9b7f5d20 8971 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
8972
8973 if (r_type == R_XTENSA_DIFF8
8974 || r_type == R_XTENSA_DIFF16
8975 || r_type == R_XTENSA_DIFF32)
8976 {
8977 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8978
8979 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8980 {
8981 (*link_info->callbacks->reloc_dangerous)
8982 (link_info, _("invalid relocation address"),
8983 abfd, sec, old_source_offset);
8984 goto error_return;
8985 }
8986
8987 switch (r_type)
8988 {
8989 case R_XTENSA_DIFF8:
8990 diff_value =
8991 bfd_get_8 (abfd, &contents[old_source_offset]);
8992 break;
8993 case R_XTENSA_DIFF16:
8994 diff_value =
8995 bfd_get_16 (abfd, &contents[old_source_offset]);
8996 break;
8997 case R_XTENSA_DIFF32:
8998 diff_value =
8999 bfd_get_32 (abfd, &contents[old_source_offset]);
9000 break;
9001 }
9002
9003 new_end_offset = offset_with_removed_text
9004 (&target_relax_info->action_list,
9005 r_rel.target_offset + diff_value);
9006 diff_value = new_end_offset - new_reloc.target_offset;
9007
9008 switch (r_type)
9009 {
9010 case R_XTENSA_DIFF8:
9011 diff_mask = 0xff;
9012 bfd_put_8 (abfd, diff_value,
9013 &contents[old_source_offset]);
9014 break;
9015 case R_XTENSA_DIFF16:
9016 diff_mask = 0xffff;
9017 bfd_put_16 (abfd, diff_value,
9018 &contents[old_source_offset]);
9019 break;
9020 case R_XTENSA_DIFF32:
9021 diff_mask = 0xffffffff;
9022 bfd_put_32 (abfd, diff_value,
9023 &contents[old_source_offset]);
9024 break;
9025 }
9026
9027 /* Check for overflow. */
9028 if ((diff_value & ~diff_mask) != 0)
9029 {
9030 (*link_info->callbacks->reloc_dangerous)
9031 (link_info, _("overflow after relaxation"),
9032 abfd, sec, old_source_offset);
9033 goto error_return;
9034 }
9035
9036 pin_contents (sec, contents);
9037 }
dc96b90a
BW
9038
9039 /* If the relocation still references a section in the same
9040 input file, modify the relocation directly instead of
9041 adding a "fix" record. */
9042 if (target_sec->owner == abfd)
9043 {
9044 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9045 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9046 irel->r_addend = new_reloc.rela.r_addend;
9047 pin_internal_relocs (sec, internal_relocs);
9048 }
9b7f5d20
BW
9049 else
9050 {
dc96b90a
BW
9051 bfd_vma addend_displacement;
9052 reloc_bfd_fix *fix;
9053
9054 addend_displacement =
9055 new_reloc.target_offset + new_reloc.virtual_offset;
9056 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9057 target_sec,
9058 addend_displacement, TRUE);
9059 add_fix (sec, fix);
9b7f5d20 9060 }
43cd72b9 9061 }
43cd72b9
BW
9062 }
9063 }
9064
9065 if ((relax_info->is_relaxable_literal_section
9066 || relax_info->is_relaxable_asm_section)
9067 && relax_info->action_list.head)
9068 {
9069 /* Walk through the planned actions and build up a table
9070 of move, copy and fill records. Use the move, copy and
9071 fill records to perform the actions once. */
9072
43cd72b9
BW
9073 int removed = 0;
9074 bfd_size_type final_size, copy_size, orig_insn_size;
9075 bfd_byte *scratch = NULL;
9076 bfd_byte *dup_contents = NULL;
a3ef2d63 9077 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9078 bfd_vma orig_dot = 0;
9079 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9080 orig dot in physical memory. */
9081 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9082 bfd_vma dup_dot = 0;
9083
9084 text_action *action = relax_info->action_list.head;
9085
9086 final_size = sec->size;
9087 for (action = relax_info->action_list.head; action;
9088 action = action->next)
9089 {
9090 final_size -= action->removed_bytes;
9091 }
9092
9093 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9094 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9095
9096 /* The dot is the current fill location. */
9097#if DEBUG
9098 print_action_list (stderr, &relax_info->action_list);
9099#endif
9100
9101 for (action = relax_info->action_list.head; action;
9102 action = action->next)
9103 {
9104 virtual_action = FALSE;
9105 if (action->offset > orig_dot)
9106 {
9107 orig_dot += orig_dot_copied;
9108 orig_dot_copied = 0;
9109 orig_dot_vo = 0;
9110 /* Out of the virtual world. */
9111 }
9112
9113 if (action->offset > orig_dot)
9114 {
9115 copy_size = action->offset - orig_dot;
9116 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9117 orig_dot += copy_size;
9118 dup_dot += copy_size;
9119 BFD_ASSERT (action->offset == orig_dot);
9120 }
9121 else if (action->offset < orig_dot)
9122 {
9123 if (action->action == ta_fill
9124 && action->offset - action->removed_bytes == orig_dot)
9125 {
9126 /* This is OK because the fill only effects the dup_dot. */
9127 }
9128 else if (action->action == ta_add_literal)
9129 {
9130 /* TBD. Might need to handle this. */
9131 }
9132 }
9133 if (action->offset == orig_dot)
9134 {
9135 if (action->virtual_offset > orig_dot_vo)
9136 {
9137 if (orig_dot_vo == 0)
9138 {
9139 /* Need to copy virtual_offset bytes. Probably four. */
9140 copy_size = action->virtual_offset - orig_dot_vo;
9141 memmove (&dup_contents[dup_dot],
9142 &contents[orig_dot], copy_size);
9143 orig_dot_copied = copy_size;
9144 dup_dot += copy_size;
9145 }
9146 virtual_action = TRUE;
9147 }
9148 else
9149 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9150 }
9151 switch (action->action)
9152 {
9153 case ta_remove_literal:
9154 case ta_remove_insn:
9155 BFD_ASSERT (action->removed_bytes >= 0);
9156 orig_dot += action->removed_bytes;
9157 break;
9158
9159 case ta_narrow_insn:
9160 orig_insn_size = 3;
9161 copy_size = 2;
9162 memmove (scratch, &contents[orig_dot], orig_insn_size);
9163 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9164 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9165 BFD_ASSERT (rv);
9166 memmove (&dup_contents[dup_dot], scratch, copy_size);
9167 orig_dot += orig_insn_size;
9168 dup_dot += copy_size;
9169 break;
9170
9171 case ta_fill:
9172 if (action->removed_bytes >= 0)
9173 orig_dot += action->removed_bytes;
9174 else
9175 {
9176 /* Already zeroed in dup_contents. Just bump the
9177 counters. */
9178 dup_dot += (-action->removed_bytes);
9179 }
9180 break;
9181
9182 case ta_none:
9183 BFD_ASSERT (action->removed_bytes == 0);
9184 break;
9185
9186 case ta_convert_longcall:
9187 case ta_remove_longcall:
9188 /* These will be removed or converted before we get here. */
9189 BFD_ASSERT (0);
9190 break;
9191
9192 case ta_widen_insn:
9193 orig_insn_size = 2;
9194 copy_size = 3;
9195 memmove (scratch, &contents[orig_dot], orig_insn_size);
9196 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9197 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9198 BFD_ASSERT (rv);
9199 memmove (&dup_contents[dup_dot], scratch, copy_size);
9200 orig_dot += orig_insn_size;
9201 dup_dot += copy_size;
9202 break;
9203
9204 case ta_add_literal:
9205 orig_insn_size = 0;
9206 copy_size = 4;
9207 BFD_ASSERT (action->removed_bytes == -4);
9208 /* TBD -- place the literal value here and insert
9209 into the table. */
9210 memset (&dup_contents[dup_dot], 0, 4);
9211 pin_internal_relocs (sec, internal_relocs);
9212 pin_contents (sec, contents);
9213
9214 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9215 relax_info, &internal_relocs, &action->value))
9216 goto error_return;
9217
9218 if (virtual_action)
9219 orig_dot_vo += copy_size;
9220
9221 orig_dot += orig_insn_size;
9222 dup_dot += copy_size;
9223 break;
9224
9225 default:
9226 /* Not implemented yet. */
9227 BFD_ASSERT (0);
9228 break;
9229 }
9230
43cd72b9
BW
9231 removed += action->removed_bytes;
9232 BFD_ASSERT (dup_dot <= final_size);
9233 BFD_ASSERT (orig_dot <= orig_size);
9234 }
9235
9236 orig_dot += orig_dot_copied;
9237 orig_dot_copied = 0;
9238
9239 if (orig_dot != orig_size)
9240 {
9241 copy_size = orig_size - orig_dot;
9242 BFD_ASSERT (orig_size > orig_dot);
9243 BFD_ASSERT (dup_dot + copy_size == final_size);
9244 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9245 orig_dot += copy_size;
9246 dup_dot += copy_size;
9247 }
9248 BFD_ASSERT (orig_size == orig_dot);
9249 BFD_ASSERT (final_size == dup_dot);
9250
9251 /* Move the dup_contents back. */
9252 if (final_size > orig_size)
9253 {
9254 /* Contents need to be reallocated. Swap the dup_contents into
9255 contents. */
9256 sec->contents = dup_contents;
9257 free (contents);
9258 contents = dup_contents;
9259 pin_contents (sec, contents);
9260 }
9261 else
9262 {
9263 BFD_ASSERT (final_size <= orig_size);
9264 memset (contents, 0, orig_size);
9265 memcpy (contents, dup_contents, final_size);
9266 free (dup_contents);
9267 }
9268 free (scratch);
9269 pin_contents (sec, contents);
9270
a3ef2d63
BW
9271 if (sec->rawsize == 0)
9272 sec->rawsize = sec->size;
43cd72b9
BW
9273 sec->size = final_size;
9274 }
9275
9276 error_return:
9277 release_internal_relocs (sec, internal_relocs);
9278 release_contents (sec, contents);
9279 return ok;
9280}
9281
9282
9283static bfd_boolean
7fa3d080 9284translate_section_fixes (asection *sec)
43cd72b9
BW
9285{
9286 xtensa_relax_info *relax_info;
9287 reloc_bfd_fix *r;
9288
9289 relax_info = get_xtensa_relax_info (sec);
9290 if (!relax_info)
9291 return TRUE;
9292
9293 for (r = relax_info->fix_list; r != NULL; r = r->next)
9294 if (!translate_reloc_bfd_fix (r))
9295 return FALSE;
e0001a05 9296
43cd72b9
BW
9297 return TRUE;
9298}
e0001a05 9299
e0001a05 9300
43cd72b9
BW
9301/* Translate a fix given the mapping in the relax info for the target
9302 section. If it has already been translated, no work is required. */
e0001a05 9303
43cd72b9 9304static bfd_boolean
7fa3d080 9305translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9306{
9307 reloc_bfd_fix new_fix;
9308 asection *sec;
9309 xtensa_relax_info *relax_info;
9310 removed_literal *removed;
9311 bfd_vma new_offset, target_offset;
e0001a05 9312
43cd72b9
BW
9313 if (fix->translated)
9314 return TRUE;
e0001a05 9315
43cd72b9
BW
9316 sec = fix->target_sec;
9317 target_offset = fix->target_offset;
e0001a05 9318
43cd72b9
BW
9319 relax_info = get_xtensa_relax_info (sec);
9320 if (!relax_info)
9321 {
9322 fix->translated = TRUE;
9323 return TRUE;
9324 }
e0001a05 9325
43cd72b9 9326 new_fix = *fix;
e0001a05 9327
43cd72b9
BW
9328 /* The fix does not need to be translated if the section cannot change. */
9329 if (!relax_info->is_relaxable_literal_section
9330 && !relax_info->is_relaxable_asm_section)
9331 {
9332 fix->translated = TRUE;
9333 return TRUE;
9334 }
e0001a05 9335
43cd72b9
BW
9336 /* If the literal has been moved and this relocation was on an
9337 opcode, then the relocation should move to the new literal
9338 location. Otherwise, the relocation should move within the
9339 section. */
9340
9341 removed = FALSE;
9342 if (is_operand_relocation (fix->src_type))
9343 {
9344 /* Check if the original relocation is against a literal being
9345 removed. */
9346 removed = find_removed_literal (&relax_info->removed_list,
9347 target_offset);
e0001a05
NC
9348 }
9349
43cd72b9 9350 if (removed)
e0001a05 9351 {
43cd72b9 9352 asection *new_sec;
e0001a05 9353
43cd72b9
BW
9354 /* The fact that there is still a relocation to this literal indicates
9355 that the literal is being coalesced, not simply removed. */
9356 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9357
43cd72b9
BW
9358 /* This was moved to some other address (possibly another section). */
9359 new_sec = r_reloc_get_section (&removed->to);
9360 if (new_sec != sec)
e0001a05 9361 {
43cd72b9
BW
9362 sec = new_sec;
9363 relax_info = get_xtensa_relax_info (sec);
9364 if (!relax_info ||
9365 (!relax_info->is_relaxable_literal_section
9366 && !relax_info->is_relaxable_asm_section))
e0001a05 9367 {
43cd72b9
BW
9368 target_offset = removed->to.target_offset;
9369 new_fix.target_sec = new_sec;
9370 new_fix.target_offset = target_offset;
9371 new_fix.translated = TRUE;
9372 *fix = new_fix;
9373 return TRUE;
e0001a05 9374 }
e0001a05 9375 }
43cd72b9
BW
9376 target_offset = removed->to.target_offset;
9377 new_fix.target_sec = new_sec;
e0001a05 9378 }
43cd72b9
BW
9379
9380 /* The target address may have been moved within its section. */
9381 new_offset = offset_with_removed_text (&relax_info->action_list,
9382 target_offset);
9383
9384 new_fix.target_offset = new_offset;
9385 new_fix.target_offset = new_offset;
9386 new_fix.translated = TRUE;
9387 *fix = new_fix;
9388 return TRUE;
e0001a05
NC
9389}
9390
9391
9392/* Fix up a relocation to take account of removed literals. */
9393
9b7f5d20
BW
9394static asection *
9395translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9396{
e0001a05
NC
9397 xtensa_relax_info *relax_info;
9398 removed_literal *removed;
9b7f5d20
BW
9399 bfd_vma target_offset, base_offset;
9400 text_action *act;
e0001a05
NC
9401
9402 *new_rel = *orig_rel;
9403
9404 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 9405 return sec ;
e0001a05
NC
9406
9407 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
9408 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9409 || relax_info->is_relaxable_asm_section));
e0001a05 9410
43cd72b9
BW
9411 target_offset = orig_rel->target_offset;
9412
9413 removed = FALSE;
9414 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9415 {
9416 /* Check if the original relocation is against a literal being
9417 removed. */
9418 removed = find_removed_literal (&relax_info->removed_list,
9419 target_offset);
9420 }
9421 if (removed && removed->to.abfd)
e0001a05
NC
9422 {
9423 asection *new_sec;
9424
9425 /* The fact that there is still a relocation to this literal indicates
9426 that the literal is being coalesced, not simply removed. */
9427 BFD_ASSERT (removed->to.abfd != NULL);
9428
43cd72b9
BW
9429 /* This was moved to some other address
9430 (possibly in another section). */
e0001a05
NC
9431 *new_rel = removed->to;
9432 new_sec = r_reloc_get_section (new_rel);
43cd72b9 9433 if (new_sec != sec)
e0001a05
NC
9434 {
9435 sec = new_sec;
9436 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
9437 if (!relax_info
9438 || (!relax_info->is_relaxable_literal_section
9439 && !relax_info->is_relaxable_asm_section))
9b7f5d20 9440 return sec;
e0001a05 9441 }
43cd72b9 9442 target_offset = new_rel->target_offset;
e0001a05
NC
9443 }
9444
9b7f5d20
BW
9445 /* Find the base offset of the reloc symbol, excluding any addend from the
9446 reloc or from the section contents (for a partial_inplace reloc). Then
9447 find the adjusted values of the offsets due to relaxation. The base
9448 offset is needed to determine the change to the reloc's addend; the reloc
9449 addend should not be adjusted due to relaxations located before the base
9450 offset. */
9451
9452 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9453 act = relax_info->action_list.head;
9454 if (base_offset <= target_offset)
9455 {
9456 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9457 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9458 new_rel->target_offset = target_offset - base_removed - addend_removed;
9459 new_rel->rela.r_addend -= addend_removed;
9460 }
9461 else
9462 {
9463 /* Handle a negative addend. The base offset comes first. */
9464 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9465 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9466 new_rel->target_offset = target_offset - tgt_removed;
9467 new_rel->rela.r_addend += addend_removed;
9468 }
e0001a05 9469
9b7f5d20 9470 return sec;
e0001a05
NC
9471}
9472
9473
9474/* For dynamic links, there may be a dynamic relocation for each
9475 literal. The number of dynamic relocations must be computed in
9476 size_dynamic_sections, which occurs before relaxation. When a
9477 literal is removed, this function checks if there is a corresponding
9478 dynamic relocation and shrinks the size of the appropriate dynamic
9479 relocation section accordingly. At this point, the contents of the
9480 dynamic relocation sections have not yet been filled in, so there's
9481 nothing else that needs to be done. */
9482
9483static void
7fa3d080
BW
9484shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9485 bfd *abfd,
9486 asection *input_section,
9487 Elf_Internal_Rela *rel)
e0001a05 9488{
f0e6fdb2 9489 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
9490 Elf_Internal_Shdr *symtab_hdr;
9491 struct elf_link_hash_entry **sym_hashes;
9492 unsigned long r_symndx;
9493 int r_type;
9494 struct elf_link_hash_entry *h;
9495 bfd_boolean dynamic_symbol;
9496
f0e6fdb2 9497 htab = elf_xtensa_hash_table (info);
e0001a05
NC
9498 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9499 sym_hashes = elf_sym_hashes (abfd);
9500
9501 r_type = ELF32_R_TYPE (rel->r_info);
9502 r_symndx = ELF32_R_SYM (rel->r_info);
9503
9504 if (r_symndx < symtab_hdr->sh_info)
9505 h = NULL;
9506 else
9507 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9508
4608f3d9 9509 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
9510
9511 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9512 && (input_section->flags & SEC_ALLOC) != 0
9513 && (dynamic_symbol || info->shared))
9514 {
e0001a05
NC
9515 asection *srel;
9516 bfd_boolean is_plt = FALSE;
9517
e0001a05
NC
9518 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9519 {
f0e6fdb2 9520 srel = htab->srelplt;
e0001a05
NC
9521 is_plt = TRUE;
9522 }
9523 else
f0e6fdb2 9524 srel = htab->srelgot;
e0001a05
NC
9525
9526 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 9527 BFD_ASSERT (srel != NULL);
eea6121a
AM
9528 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9529 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
9530
9531 if (is_plt)
9532 {
9533 asection *splt, *sgotplt, *srelgot;
9534 int reloc_index, chunk;
9535
9536 /* Find the PLT reloc index of the entry being removed. This
9537 is computed from the size of ".rela.plt". It is needed to
9538 figure out which PLT chunk to resize. Usually "last index
9539 = size - 1" since the index starts at zero, but in this
9540 context, the size has just been decremented so there's no
9541 need to subtract one. */
eea6121a 9542 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
9543
9544 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
9545 splt = elf_xtensa_get_plt_section (info, chunk);
9546 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
9547 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9548
9549 /* Check if an entire PLT chunk has just been eliminated. */
9550 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9551 {
9552 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 9553 srelgot = htab->srelgot;
e0001a05
NC
9554 BFD_ASSERT (srelgot != NULL);
9555 srelgot->reloc_count -= 2;
eea6121a
AM
9556 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9557 sgotplt->size -= 8;
e0001a05
NC
9558
9559 /* There should be only one entry left (and it will be
9560 removed below). */
eea6121a
AM
9561 BFD_ASSERT (sgotplt->size == 4);
9562 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
9563 }
9564
eea6121a
AM
9565 BFD_ASSERT (sgotplt->size >= 4);
9566 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 9567
eea6121a
AM
9568 sgotplt->size -= 4;
9569 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
9570 }
9571 }
9572}
9573
9574
43cd72b9
BW
9575/* Take an r_rel and move it to another section. This usually
9576 requires extending the interal_relocation array and pinning it. If
9577 the original r_rel is from the same BFD, we can complete this here.
9578 Otherwise, we add a fix record to let the final link fix the
9579 appropriate address. Contents and internal relocations for the
9580 section must be pinned after calling this routine. */
9581
9582static bfd_boolean
7fa3d080
BW
9583move_literal (bfd *abfd,
9584 struct bfd_link_info *link_info,
9585 asection *sec,
9586 bfd_vma offset,
9587 bfd_byte *contents,
9588 xtensa_relax_info *relax_info,
9589 Elf_Internal_Rela **internal_relocs_p,
9590 const literal_value *lit)
43cd72b9
BW
9591{
9592 Elf_Internal_Rela *new_relocs = NULL;
9593 size_t new_relocs_count = 0;
9594 Elf_Internal_Rela this_rela;
9595 const r_reloc *r_rel;
9596
9597 r_rel = &lit->r_rel;
9598 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9599
9600 if (r_reloc_is_const (r_rel))
9601 bfd_put_32 (abfd, lit->value, contents + offset);
9602 else
9603 {
9604 int r_type;
9605 unsigned i;
9606 asection *target_sec;
9607 reloc_bfd_fix *fix;
9608 unsigned insert_at;
9609
9610 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
9611 target_sec = r_reloc_get_section (r_rel);
9612
9613 /* This is the difficult case. We have to create a fix up. */
9614 this_rela.r_offset = offset;
9615 this_rela.r_info = ELF32_R_INFO (0, r_type);
9616 this_rela.r_addend =
9617 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9618 bfd_put_32 (abfd, lit->value, contents + offset);
9619
9620 /* Currently, we cannot move relocations during a relocatable link. */
9621 BFD_ASSERT (!link_info->relocatable);
0f5f1638 9622 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
9623 r_reloc_get_section (r_rel),
9624 r_rel->target_offset + r_rel->virtual_offset,
9625 FALSE);
9626 /* We also need to mark that relocations are needed here. */
9627 sec->flags |= SEC_RELOC;
9628
9629 translate_reloc_bfd_fix (fix);
9630 /* This fix has not yet been translated. */
9631 add_fix (sec, fix);
9632
9633 /* Add the relocation. If we have already allocated our own
9634 space for the relocations and we have room for more, then use
9635 it. Otherwise, allocate new space and move the literals. */
9636 insert_at = sec->reloc_count;
9637 for (i = 0; i < sec->reloc_count; ++i)
9638 {
9639 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9640 {
9641 insert_at = i;
9642 break;
9643 }
9644 }
9645
9646 if (*internal_relocs_p != relax_info->allocated_relocs
9647 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9648 {
9649 BFD_ASSERT (relax_info->allocated_relocs == NULL
9650 || sec->reloc_count == relax_info->relocs_count);
9651
9652 if (relax_info->allocated_relocs_count == 0)
9653 new_relocs_count = (sec->reloc_count + 2) * 2;
9654 else
9655 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9656
9657 new_relocs = (Elf_Internal_Rela *)
9658 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9659 if (!new_relocs)
9660 return FALSE;
9661
9662 /* We could handle this more quickly by finding the split point. */
9663 if (insert_at != 0)
9664 memcpy (new_relocs, *internal_relocs_p,
9665 insert_at * sizeof (Elf_Internal_Rela));
9666
9667 new_relocs[insert_at] = this_rela;
9668
9669 if (insert_at != sec->reloc_count)
9670 memcpy (new_relocs + insert_at + 1,
9671 (*internal_relocs_p) + insert_at,
9672 (sec->reloc_count - insert_at)
9673 * sizeof (Elf_Internal_Rela));
9674
9675 if (*internal_relocs_p != relax_info->allocated_relocs)
9676 {
9677 /* The first time we re-allocate, we can only free the
9678 old relocs if they were allocated with bfd_malloc.
9679 This is not true when keep_memory is in effect. */
9680 if (!link_info->keep_memory)
9681 free (*internal_relocs_p);
9682 }
9683 else
9684 free (*internal_relocs_p);
9685 relax_info->allocated_relocs = new_relocs;
9686 relax_info->allocated_relocs_count = new_relocs_count;
9687 elf_section_data (sec)->relocs = new_relocs;
9688 sec->reloc_count++;
9689 relax_info->relocs_count = sec->reloc_count;
9690 *internal_relocs_p = new_relocs;
9691 }
9692 else
9693 {
9694 if (insert_at != sec->reloc_count)
9695 {
9696 unsigned idx;
9697 for (idx = sec->reloc_count; idx > insert_at; idx--)
9698 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9699 }
9700 (*internal_relocs_p)[insert_at] = this_rela;
9701 sec->reloc_count++;
9702 if (relax_info->allocated_relocs)
9703 relax_info->relocs_count = sec->reloc_count;
9704 }
9705 }
9706 return TRUE;
9707}
9708
9709
e0001a05
NC
9710/* This is similar to relax_section except that when a target is moved,
9711 we shift addresses up. We also need to modify the size. This
9712 algorithm does NOT allow for relocations into the middle of the
9713 property sections. */
9714
43cd72b9 9715static bfd_boolean
7fa3d080
BW
9716relax_property_section (bfd *abfd,
9717 asection *sec,
9718 struct bfd_link_info *link_info)
e0001a05
NC
9719{
9720 Elf_Internal_Rela *internal_relocs;
9721 bfd_byte *contents;
1d25768e 9722 unsigned i;
e0001a05 9723 bfd_boolean ok = TRUE;
43cd72b9
BW
9724 bfd_boolean is_full_prop_section;
9725 size_t last_zfill_target_offset = 0;
9726 asection *last_zfill_target_sec = NULL;
9727 bfd_size_type sec_size;
1d25768e 9728 bfd_size_type entry_size;
e0001a05 9729
43cd72b9 9730 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9731 internal_relocs = retrieve_internal_relocs (abfd, sec,
9732 link_info->keep_memory);
9733 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9734 if (contents == NULL && sec_size != 0)
e0001a05
NC
9735 {
9736 ok = FALSE;
9737 goto error_return;
9738 }
9739
1d25768e
BW
9740 is_full_prop_section = xtensa_is_proptable_section (sec);
9741 if (is_full_prop_section)
9742 entry_size = 12;
9743 else
9744 entry_size = 8;
43cd72b9
BW
9745
9746 if (internal_relocs)
e0001a05 9747 {
43cd72b9 9748 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9749 {
9750 Elf_Internal_Rela *irel;
9751 xtensa_relax_info *target_relax_info;
e0001a05
NC
9752 unsigned r_type;
9753 asection *target_sec;
43cd72b9
BW
9754 literal_value val;
9755 bfd_byte *size_p, *flags_p;
e0001a05
NC
9756
9757 /* Locally change the source address.
9758 Translate the target to the new target address.
9759 If it points to this section and has been removed, MOVE IT.
9760 Also, don't forget to modify the associated SIZE at
9761 (offset + 4). */
9762
9763 irel = &internal_relocs[i];
9764 r_type = ELF32_R_TYPE (irel->r_info);
9765 if (r_type == R_XTENSA_NONE)
9766 continue;
9767
43cd72b9
BW
9768 /* Find the literal value. */
9769 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9770 size_p = &contents[irel->r_offset + 4];
9771 flags_p = NULL;
9772 if (is_full_prop_section)
1d25768e
BW
9773 flags_p = &contents[irel->r_offset + 8];
9774 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 9775
43cd72b9 9776 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
9777 target_relax_info = get_xtensa_relax_info (target_sec);
9778
9779 if (target_relax_info
43cd72b9
BW
9780 && (target_relax_info->is_relaxable_literal_section
9781 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
9782 {
9783 /* Translate the relocation's destination. */
03669f1c
BW
9784 bfd_vma old_offset = val.r_rel.target_offset;
9785 bfd_vma new_offset;
e0001a05 9786 long old_size, new_size;
03669f1c
BW
9787 text_action *act = target_relax_info->action_list.head;
9788 new_offset = old_offset -
9789 removed_by_actions (&act, old_offset, FALSE);
e0001a05
NC
9790
9791 /* Assert that we are not out of bounds. */
43cd72b9 9792 old_size = bfd_get_32 (abfd, size_p);
03669f1c 9793 new_size = old_size;
43cd72b9
BW
9794
9795 if (old_size == 0)
9796 {
9797 /* Only the first zero-sized unreachable entry is
9798 allowed to expand. In this case the new offset
9799 should be the offset before the fill and the new
9800 size is the expansion size. For other zero-sized
9801 entries the resulting size should be zero with an
9802 offset before or after the fill address depending
9803 on whether the expanding unreachable entry
9804 preceeds it. */
03669f1c
BW
9805 if (last_zfill_target_sec == 0
9806 || last_zfill_target_sec != target_sec
9807 || last_zfill_target_offset != old_offset)
43cd72b9 9808 {
03669f1c
BW
9809 bfd_vma new_end_offset = new_offset;
9810
9811 /* Recompute the new_offset, but this time don't
9812 include any fill inserted by relaxation. */
9813 act = target_relax_info->action_list.head;
9814 new_offset = old_offset -
9815 removed_by_actions (&act, old_offset, TRUE);
43cd72b9
BW
9816
9817 /* If it is not unreachable and we have not yet
9818 seen an unreachable at this address, place it
9819 before the fill address. */
03669f1c
BW
9820 if (flags_p && (bfd_get_32 (abfd, flags_p)
9821 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 9822 {
03669f1c
BW
9823 new_size = new_end_offset - new_offset;
9824
43cd72b9 9825 last_zfill_target_sec = target_sec;
03669f1c 9826 last_zfill_target_offset = old_offset;
43cd72b9
BW
9827 }
9828 }
9829 }
9830 else
03669f1c
BW
9831 new_size -=
9832 removed_by_actions (&act, old_offset + old_size, TRUE);
43cd72b9 9833
e0001a05
NC
9834 if (new_size != old_size)
9835 {
9836 bfd_put_32 (abfd, new_size, size_p);
9837 pin_contents (sec, contents);
9838 }
43cd72b9 9839
03669f1c 9840 if (new_offset != old_offset)
e0001a05 9841 {
03669f1c 9842 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
9843 irel->r_addend += diff;
9844 pin_internal_relocs (sec, internal_relocs);
9845 }
9846 }
9847 }
9848 }
9849
9850 /* Combine adjacent property table entries. This is also done in
9851 finish_dynamic_sections() but at that point it's too late to
9852 reclaim the space in the output section, so we do this twice. */
9853
43cd72b9 9854 if (internal_relocs && (!link_info->relocatable
1d25768e 9855 || xtensa_is_littable_section (sec)))
e0001a05
NC
9856 {
9857 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9858 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9859 int removed_bytes = 0;
1d25768e 9860 bfd_vma offset;
43cd72b9
BW
9861 flagword predef_flags;
9862
43cd72b9 9863 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9864
1d25768e 9865 /* Walk over memory and relocations at the same time.
e0001a05
NC
9866 This REQUIRES that the internal_relocs be sorted by offset. */
9867 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9868 internal_reloc_compare);
e0001a05
NC
9869
9870 pin_internal_relocs (sec, internal_relocs);
9871 pin_contents (sec, contents);
9872
1d25768e
BW
9873 next_rel = internal_relocs;
9874 rel_end = internal_relocs + sec->reloc_count;
9875
a3ef2d63 9876 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 9877
a3ef2d63 9878 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 9879 {
1d25768e 9880 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9881 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9882 bfd_boolean remove_this_rel;
43cd72b9 9883 flagword flags;
e0001a05 9884
1d25768e
BW
9885 /* Find the first relocation for the entry at the current offset.
9886 Adjust the offsets of any extra relocations for the previous
9887 entry. */
9888 offset_rel = NULL;
9889 if (next_rel)
9890 {
9891 for (irel = next_rel; irel < rel_end; irel++)
9892 {
9893 if ((irel->r_offset == offset
9894 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9895 || irel->r_offset > offset)
9896 {
9897 offset_rel = irel;
9898 break;
9899 }
9900 irel->r_offset -= removed_bytes;
1d25768e
BW
9901 }
9902 }
e0001a05 9903
1d25768e
BW
9904 /* Find the next relocation (if there are any left). */
9905 extra_rel = NULL;
9906 if (offset_rel)
e0001a05 9907 {
1d25768e 9908 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9909 {
1d25768e
BW
9910 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9911 {
9912 extra_rel = irel;
9913 break;
9914 }
e0001a05 9915 }
e0001a05
NC
9916 }
9917
1d25768e
BW
9918 /* Check if there are relocations on the current entry. There
9919 should usually be a relocation on the offset field. If there
9920 are relocations on the size or flags, then we can't optimize
9921 this entry. Also, find the next relocation to examine on the
9922 next iteration. */
9923 if (offset_rel)
e0001a05 9924 {
1d25768e 9925 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 9926 {
1d25768e
BW
9927 next_rel = offset_rel;
9928 /* There are no relocations on the current entry, but we
9929 might still be able to remove it if the size is zero. */
9930 offset_rel = NULL;
9931 }
9932 else if (offset_rel->r_offset > offset
9933 || (extra_rel
9934 && extra_rel->r_offset < offset + entry_size))
9935 {
9936 /* There is a relocation on the size or flags, so we can't
9937 do anything with this entry. Continue with the next. */
9938 next_rel = offset_rel;
9939 continue;
9940 }
9941 else
9942 {
9943 BFD_ASSERT (offset_rel->r_offset == offset);
9944 offset_rel->r_offset -= removed_bytes;
9945 next_rel = offset_rel + 1;
e0001a05 9946 }
e0001a05 9947 }
1d25768e
BW
9948 else
9949 next_rel = NULL;
e0001a05 9950
1d25768e 9951 remove_this_rel = FALSE;
e0001a05
NC
9952 bytes_to_remove = 0;
9953 actual_offset = offset - removed_bytes;
9954 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9955
43cd72b9
BW
9956 if (is_full_prop_section)
9957 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9958 else
9959 flags = predef_flags;
9960
1d25768e
BW
9961 if (size == 0
9962 && (flags & XTENSA_PROP_ALIGN) == 0
9963 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9964 {
43cd72b9
BW
9965 /* Always remove entries with zero size and no alignment. */
9966 bytes_to_remove = entry_size;
1d25768e
BW
9967 if (offset_rel)
9968 remove_this_rel = TRUE;
e0001a05 9969 }
1d25768e
BW
9970 else if (offset_rel
9971 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 9972 {
1d25768e 9973 if (last_irel)
e0001a05 9974 {
1d25768e
BW
9975 flagword old_flags;
9976 bfd_vma old_size =
9977 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9978 bfd_vma old_address =
9979 (last_irel->r_addend
9980 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9981 bfd_vma new_address =
9982 (offset_rel->r_addend
9983 + bfd_get_32 (abfd, &contents[actual_offset]));
9984 if (is_full_prop_section)
9985 old_flags = bfd_get_32
9986 (abfd, &contents[last_irel->r_offset + 8]);
9987 else
9988 old_flags = predef_flags;
9989
9990 if ((ELF32_R_SYM (offset_rel->r_info)
9991 == ELF32_R_SYM (last_irel->r_info))
9992 && old_address + old_size == new_address
9993 && old_flags == flags
9994 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9995 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9996 {
1d25768e
BW
9997 /* Fix the old size. */
9998 bfd_put_32 (abfd, old_size + size,
9999 &contents[last_irel->r_offset + 4]);
10000 bytes_to_remove = entry_size;
10001 remove_this_rel = TRUE;
e0001a05
NC
10002 }
10003 else
1d25768e 10004 last_irel = offset_rel;
e0001a05 10005 }
1d25768e
BW
10006 else
10007 last_irel = offset_rel;
e0001a05
NC
10008 }
10009
1d25768e 10010 if (remove_this_rel)
e0001a05 10011 {
1d25768e 10012 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10013 offset_rel->r_offset = 0;
e0001a05
NC
10014 }
10015
10016 if (bytes_to_remove != 0)
10017 {
10018 removed_bytes += bytes_to_remove;
a3ef2d63 10019 if (offset + bytes_to_remove < sec->size)
e0001a05 10020 memmove (&contents[actual_offset],
43cd72b9 10021 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10022 sec->size - offset - bytes_to_remove);
e0001a05
NC
10023 }
10024 }
10025
43cd72b9 10026 if (removed_bytes)
e0001a05 10027 {
1d25768e
BW
10028 /* Fix up any extra relocations on the last entry. */
10029 for (irel = next_rel; irel < rel_end; irel++)
10030 irel->r_offset -= removed_bytes;
10031
e0001a05 10032 /* Clear the removed bytes. */
a3ef2d63 10033 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10034
a3ef2d63
BW
10035 if (sec->rawsize == 0)
10036 sec->rawsize = sec->size;
10037 sec->size -= removed_bytes;
e901de89
BW
10038
10039 if (xtensa_is_littable_section (sec))
10040 {
f0e6fdb2
BW
10041 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10042 if (sgotloc)
10043 sgotloc->size -= removed_bytes;
e901de89 10044 }
e0001a05
NC
10045 }
10046 }
e901de89 10047
e0001a05
NC
10048 error_return:
10049 release_internal_relocs (sec, internal_relocs);
10050 release_contents (sec, contents);
10051 return ok;
10052}
10053
10054\f
10055/* Third relaxation pass. */
10056
10057/* Change symbol values to account for removed literals. */
10058
43cd72b9 10059bfd_boolean
7fa3d080 10060relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10061{
10062 xtensa_relax_info *relax_info;
10063 unsigned int sec_shndx;
10064 Elf_Internal_Shdr *symtab_hdr;
10065 Elf_Internal_Sym *isymbuf;
10066 unsigned i, num_syms, num_locals;
10067
10068 relax_info = get_xtensa_relax_info (sec);
10069 BFD_ASSERT (relax_info);
10070
43cd72b9
BW
10071 if (!relax_info->is_relaxable_literal_section
10072 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10073 return TRUE;
10074
10075 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10076
10077 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10078 isymbuf = retrieve_local_syms (abfd);
10079
10080 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10081 num_locals = symtab_hdr->sh_info;
10082
10083 /* Adjust the local symbols defined in this section. */
10084 for (i = 0; i < num_locals; i++)
10085 {
10086 Elf_Internal_Sym *isym = &isymbuf[i];
10087
10088 if (isym->st_shndx == sec_shndx)
10089 {
03669f1c
BW
10090 text_action *act = relax_info->action_list.head;
10091 bfd_vma orig_addr = isym->st_value;
43cd72b9 10092
03669f1c 10093 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10094
03669f1c
BW
10095 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10096 isym->st_size -=
10097 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
e0001a05
NC
10098 }
10099 }
10100
10101 /* Now adjust the global symbols defined in this section. */
10102 for (i = 0; i < (num_syms - num_locals); i++)
10103 {
10104 struct elf_link_hash_entry *sym_hash;
10105
10106 sym_hash = elf_sym_hashes (abfd)[i];
10107
10108 if (sym_hash->root.type == bfd_link_hash_warning)
10109 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10110
10111 if ((sym_hash->root.type == bfd_link_hash_defined
10112 || sym_hash->root.type == bfd_link_hash_defweak)
10113 && sym_hash->root.u.def.section == sec)
10114 {
03669f1c
BW
10115 text_action *act = relax_info->action_list.head;
10116 bfd_vma orig_addr = sym_hash->root.u.def.value;
43cd72b9 10117
03669f1c
BW
10118 sym_hash->root.u.def.value -=
10119 removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10120
03669f1c
BW
10121 if (sym_hash->type == STT_FUNC)
10122 sym_hash->size -=
10123 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
e0001a05
NC
10124 }
10125 }
10126
10127 return TRUE;
10128}
10129
10130\f
10131/* "Fix" handling functions, called while performing relocations. */
10132
43cd72b9 10133static bfd_boolean
7fa3d080
BW
10134do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10135 bfd *input_bfd,
10136 asection *input_section,
10137 bfd_byte *contents)
e0001a05
NC
10138{
10139 r_reloc r_rel;
10140 asection *sec, *old_sec;
10141 bfd_vma old_offset;
10142 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10143 reloc_bfd_fix *fix;
10144
10145 if (r_type == R_XTENSA_NONE)
43cd72b9 10146 return TRUE;
e0001a05 10147
43cd72b9
BW
10148 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10149 if (!fix)
10150 return TRUE;
e0001a05 10151
43cd72b9
BW
10152 r_reloc_init (&r_rel, input_bfd, rel, contents,
10153 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10154 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10155 old_offset = r_rel.target_offset;
10156
10157 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10158 {
43cd72b9
BW
10159 if (r_type != R_XTENSA_ASM_EXPAND)
10160 {
10161 (*_bfd_error_handler)
10162 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10163 input_bfd, input_section, rel->r_offset,
10164 elf_howto_table[r_type].name);
10165 return FALSE;
10166 }
e0001a05
NC
10167 /* Leave it be. Resolution will happen in a later stage. */
10168 }
10169 else
10170 {
10171 sec = fix->target_sec;
10172 rel->r_addend += ((sec->output_offset + fix->target_offset)
10173 - (old_sec->output_offset + old_offset));
10174 }
43cd72b9 10175 return TRUE;
e0001a05
NC
10176}
10177
10178
10179static void
7fa3d080
BW
10180do_fix_for_final_link (Elf_Internal_Rela *rel,
10181 bfd *input_bfd,
10182 asection *input_section,
10183 bfd_byte *contents,
10184 bfd_vma *relocationp)
e0001a05
NC
10185{
10186 asection *sec;
10187 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10188 reloc_bfd_fix *fix;
43cd72b9 10189 bfd_vma fixup_diff;
e0001a05
NC
10190
10191 if (r_type == R_XTENSA_NONE)
10192 return;
10193
43cd72b9
BW
10194 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10195 if (!fix)
e0001a05
NC
10196 return;
10197
10198 sec = fix->target_sec;
43cd72b9
BW
10199
10200 fixup_diff = rel->r_addend;
10201 if (elf_howto_table[fix->src_type].partial_inplace)
10202 {
10203 bfd_vma inplace_val;
10204 BFD_ASSERT (fix->src_offset
10205 < bfd_get_section_limit (input_bfd, input_section));
10206 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10207 fixup_diff += inplace_val;
10208 }
10209
e0001a05
NC
10210 *relocationp = (sec->output_section->vma
10211 + sec->output_offset
43cd72b9 10212 + fix->target_offset - fixup_diff);
e0001a05
NC
10213}
10214
10215\f
10216/* Miscellaneous utility functions.... */
10217
10218static asection *
f0e6fdb2 10219elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10220{
f0e6fdb2
BW
10221 struct elf_xtensa_link_hash_table *htab;
10222 bfd *dynobj;
e0001a05
NC
10223 char plt_name[10];
10224
10225 if (chunk == 0)
f0e6fdb2
BW
10226 {
10227 htab = elf_xtensa_hash_table (info);
10228 return htab->splt;
10229 }
e0001a05 10230
f0e6fdb2 10231 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
10232 sprintf (plt_name, ".plt.%u", chunk);
10233 return bfd_get_section_by_name (dynobj, plt_name);
10234}
10235
10236
10237static asection *
f0e6fdb2 10238elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10239{
f0e6fdb2
BW
10240 struct elf_xtensa_link_hash_table *htab;
10241 bfd *dynobj;
e0001a05
NC
10242 char got_name[14];
10243
10244 if (chunk == 0)
f0e6fdb2
BW
10245 {
10246 htab = elf_xtensa_hash_table (info);
10247 return htab->sgotplt;
10248 }
e0001a05 10249
f0e6fdb2 10250 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
10251 sprintf (got_name, ".got.plt.%u", chunk);
10252 return bfd_get_section_by_name (dynobj, got_name);
10253}
10254
10255
10256/* Get the input section for a given symbol index.
10257 If the symbol is:
10258 . a section symbol, return the section;
10259 . a common symbol, return the common section;
10260 . an undefined symbol, return the undefined section;
10261 . an indirect symbol, follow the links;
10262 . an absolute value, return the absolute section. */
10263
10264static asection *
7fa3d080 10265get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10266{
10267 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10268 asection *target_sec = NULL;
43cd72b9 10269 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10270 {
10271 Elf_Internal_Sym *isymbuf;
10272 unsigned int section_index;
10273
10274 isymbuf = retrieve_local_syms (abfd);
10275 section_index = isymbuf[r_symndx].st_shndx;
10276
10277 if (section_index == SHN_UNDEF)
10278 target_sec = bfd_und_section_ptr;
e0001a05
NC
10279 else if (section_index == SHN_ABS)
10280 target_sec = bfd_abs_section_ptr;
10281 else if (section_index == SHN_COMMON)
10282 target_sec = bfd_com_section_ptr;
43cd72b9 10283 else
cb33740c 10284 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10285 }
10286 else
10287 {
10288 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10289 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10290
10291 while (h->root.type == bfd_link_hash_indirect
10292 || h->root.type == bfd_link_hash_warning)
10293 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10294
10295 switch (h->root.type)
10296 {
10297 case bfd_link_hash_defined:
10298 case bfd_link_hash_defweak:
10299 target_sec = h->root.u.def.section;
10300 break;
10301 case bfd_link_hash_common:
10302 target_sec = bfd_com_section_ptr;
10303 break;
10304 case bfd_link_hash_undefined:
10305 case bfd_link_hash_undefweak:
10306 target_sec = bfd_und_section_ptr;
10307 break;
10308 default: /* New indirect warning. */
10309 target_sec = bfd_und_section_ptr;
10310 break;
10311 }
10312 }
10313 return target_sec;
10314}
10315
10316
10317static struct elf_link_hash_entry *
7fa3d080 10318get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10319{
10320 unsigned long indx;
10321 struct elf_link_hash_entry *h;
10322 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10323
10324 if (r_symndx < symtab_hdr->sh_info)
10325 return NULL;
43cd72b9 10326
e0001a05
NC
10327 indx = r_symndx - symtab_hdr->sh_info;
10328 h = elf_sym_hashes (abfd)[indx];
10329 while (h->root.type == bfd_link_hash_indirect
10330 || h->root.type == bfd_link_hash_warning)
10331 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10332 return h;
10333}
10334
10335
10336/* Get the section-relative offset for a symbol number. */
10337
10338static bfd_vma
7fa3d080 10339get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10340{
10341 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10342 bfd_vma offset = 0;
10343
43cd72b9 10344 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10345 {
10346 Elf_Internal_Sym *isymbuf;
10347 isymbuf = retrieve_local_syms (abfd);
10348 offset = isymbuf[r_symndx].st_value;
10349 }
10350 else
10351 {
10352 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10353 struct elf_link_hash_entry *h =
10354 elf_sym_hashes (abfd)[indx];
10355
10356 while (h->root.type == bfd_link_hash_indirect
10357 || h->root.type == bfd_link_hash_warning)
10358 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10359 if (h->root.type == bfd_link_hash_defined
10360 || h->root.type == bfd_link_hash_defweak)
10361 offset = h->root.u.def.value;
10362 }
10363 return offset;
10364}
10365
10366
10367static bfd_boolean
7fa3d080 10368is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10369{
10370 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10371 struct elf_link_hash_entry *h;
10372
10373 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10374 if (h && h->root.type == bfd_link_hash_defweak)
10375 return TRUE;
10376 return FALSE;
10377}
10378
10379
10380static bfd_boolean
7fa3d080
BW
10381pcrel_reloc_fits (xtensa_opcode opc,
10382 int opnd,
10383 bfd_vma self_address,
10384 bfd_vma dest_address)
e0001a05 10385{
43cd72b9
BW
10386 xtensa_isa isa = xtensa_default_isa;
10387 uint32 valp = dest_address;
10388 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10389 || xtensa_operand_encode (isa, opc, opnd, &valp))
10390 return FALSE;
10391 return TRUE;
e0001a05
NC
10392}
10393
10394
10395static bfd_boolean
7fa3d080 10396xtensa_is_property_section (asection *sec)
e0001a05 10397{
1d25768e
BW
10398 if (xtensa_is_insntable_section (sec)
10399 || xtensa_is_littable_section (sec)
10400 || xtensa_is_proptable_section (sec))
b614a702 10401 return TRUE;
e901de89 10402
1d25768e
BW
10403 return FALSE;
10404}
10405
10406
10407static bfd_boolean
10408xtensa_is_insntable_section (asection *sec)
10409{
10410 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10411 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
10412 return TRUE;
10413
e901de89
BW
10414 return FALSE;
10415}
10416
10417
10418static bfd_boolean
7fa3d080 10419xtensa_is_littable_section (asection *sec)
e901de89 10420{
1d25768e
BW
10421 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10422 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 10423 return TRUE;
e901de89 10424
1d25768e
BW
10425 return FALSE;
10426}
10427
10428
10429static bfd_boolean
10430xtensa_is_proptable_section (asection *sec)
10431{
10432 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10433 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 10434 return TRUE;
e0001a05 10435
e901de89 10436 return FALSE;
e0001a05
NC
10437}
10438
10439
43cd72b9 10440static int
7fa3d080 10441internal_reloc_compare (const void *ap, const void *bp)
e0001a05 10442{
43cd72b9
BW
10443 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10444 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10445
10446 if (a->r_offset != b->r_offset)
10447 return (a->r_offset - b->r_offset);
10448
10449 /* We don't need to sort on these criteria for correctness,
10450 but enforcing a more strict ordering prevents unstable qsort
10451 from behaving differently with different implementations.
10452 Without the code below we get correct but different results
10453 on Solaris 2.7 and 2.8. We would like to always produce the
10454 same results no matter the host. */
10455
10456 if (a->r_info != b->r_info)
10457 return (a->r_info - b->r_info);
10458
10459 return (a->r_addend - b->r_addend);
e0001a05
NC
10460}
10461
10462
10463static int
7fa3d080 10464internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
10465{
10466 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10467 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10468
43cd72b9
BW
10469 /* Check if one entry overlaps with the other; this shouldn't happen
10470 except when searching for a match. */
e0001a05
NC
10471 return (a->r_offset - b->r_offset);
10472}
10473
10474
74869ac7
BW
10475/* Predicate function used to look up a section in a particular group. */
10476
10477static bfd_boolean
10478match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10479{
10480 const char *gname = inf;
10481 const char *group_name = elf_group_name (sec);
10482
10483 return (group_name == gname
10484 || (group_name != NULL
10485 && gname != NULL
10486 && strcmp (group_name, gname) == 0));
10487}
10488
10489
1d25768e
BW
10490static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10491
51c8ebc1
BW
10492static char *
10493xtensa_property_section_name (asection *sec, const char *base_name)
e0001a05 10494{
74869ac7
BW
10495 const char *suffix, *group_name;
10496 char *prop_sec_name;
74869ac7
BW
10497
10498 group_name = elf_group_name (sec);
10499 if (group_name)
10500 {
10501 suffix = strrchr (sec->name, '.');
10502 if (suffix == sec->name)
10503 suffix = 0;
10504 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10505 + (suffix ? strlen (suffix) : 0));
10506 strcpy (prop_sec_name, base_name);
10507 if (suffix)
10508 strcat (prop_sec_name, suffix);
10509 }
10510 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 10511 {
43cd72b9 10512 char *linkonce_kind = 0;
b614a702
BW
10513
10514 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 10515 linkonce_kind = "x.";
b614a702 10516 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 10517 linkonce_kind = "p.";
43cd72b9
BW
10518 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10519 linkonce_kind = "prop.";
e0001a05 10520 else
b614a702
BW
10521 abort ();
10522
43cd72b9
BW
10523 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10524 + strlen (linkonce_kind) + 1);
b614a702 10525 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 10526 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
10527
10528 suffix = sec->name + linkonce_len;
096c35a7 10529 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 10530 the new linkonce_kind (but not for "prop" sections). */
0112cd26 10531 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
10532 suffix += 2;
10533 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
10534 }
10535 else
10536 prop_sec_name = strdup (base_name);
10537
51c8ebc1
BW
10538 return prop_sec_name;
10539}
10540
10541
10542static asection *
10543xtensa_get_property_section (asection *sec, const char *base_name)
10544{
10545 char *prop_sec_name;
10546 asection *prop_sec;
10547
10548 prop_sec_name = xtensa_property_section_name (sec, base_name);
10549 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10550 match_section_group,
10551 (void *) elf_group_name (sec));
10552 free (prop_sec_name);
10553 return prop_sec;
10554}
10555
10556
10557asection *
10558xtensa_make_property_section (asection *sec, const char *base_name)
10559{
10560 char *prop_sec_name;
10561 asection *prop_sec;
10562
74869ac7 10563 /* Check if the section already exists. */
51c8ebc1 10564 prop_sec_name = xtensa_property_section_name (sec, base_name);
74869ac7
BW
10565 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10566 match_section_group,
51c8ebc1 10567 (void *) elf_group_name (sec));
74869ac7
BW
10568 /* If not, create it. */
10569 if (! prop_sec)
10570 {
10571 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10572 flags |= (bfd_get_section_flags (sec->owner, sec)
10573 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10574
10575 prop_sec = bfd_make_section_anyway_with_flags
10576 (sec->owner, strdup (prop_sec_name), flags);
10577 if (! prop_sec)
10578 return 0;
b614a702 10579
51c8ebc1 10580 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
10581 }
10582
74869ac7
BW
10583 free (prop_sec_name);
10584 return prop_sec;
e0001a05
NC
10585}
10586
43cd72b9
BW
10587
10588flagword
7fa3d080 10589xtensa_get_property_predef_flags (asection *sec)
43cd72b9 10590{
1d25768e 10591 if (xtensa_is_insntable_section (sec))
43cd72b9 10592 return (XTENSA_PROP_INSN
99ded152 10593 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10594 | XTENSA_PROP_INSN_NO_REORDER);
10595
10596 if (xtensa_is_littable_section (sec))
10597 return (XTENSA_PROP_LITERAL
99ded152 10598 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10599 | XTENSA_PROP_INSN_NO_REORDER);
10600
10601 return 0;
10602}
10603
e0001a05
NC
10604\f
10605/* Other functions called directly by the linker. */
10606
10607bfd_boolean
7fa3d080
BW
10608xtensa_callback_required_dependence (bfd *abfd,
10609 asection *sec,
10610 struct bfd_link_info *link_info,
10611 deps_callback_t callback,
10612 void *closure)
e0001a05
NC
10613{
10614 Elf_Internal_Rela *internal_relocs;
10615 bfd_byte *contents;
10616 unsigned i;
10617 bfd_boolean ok = TRUE;
43cd72b9
BW
10618 bfd_size_type sec_size;
10619
10620 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
10621
10622 /* ".plt*" sections have no explicit relocations but they contain L32R
10623 instructions that reference the corresponding ".got.plt*" sections. */
10624 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 10625 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
10626 {
10627 asection *sgotplt;
10628
10629 /* Find the corresponding ".got.plt*" section. */
10630 if (sec->name[4] == '\0')
10631 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
10632 else
10633 {
10634 char got_name[14];
10635 int chunk = 0;
10636
10637 BFD_ASSERT (sec->name[4] == '.');
10638 chunk = strtol (&sec->name[5], NULL, 10);
10639
10640 sprintf (got_name, ".got.plt.%u", chunk);
10641 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
10642 }
10643 BFD_ASSERT (sgotplt);
10644
10645 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10646 section referencing a literal at the very beginning of
10647 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 10648 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
10649 }
10650
13161072
BW
10651 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10652 when building uclibc, which runs "ld -b binary /dev/null". */
10653 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10654 return ok;
10655
e0001a05
NC
10656 internal_relocs = retrieve_internal_relocs (abfd, sec,
10657 link_info->keep_memory);
10658 if (internal_relocs == NULL
43cd72b9 10659 || sec->reloc_count == 0)
e0001a05
NC
10660 return ok;
10661
10662 /* Cache the contents for the duration of this scan. */
10663 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10664 if (contents == NULL && sec_size != 0)
e0001a05
NC
10665 {
10666 ok = FALSE;
10667 goto error_return;
10668 }
10669
43cd72b9
BW
10670 if (!xtensa_default_isa)
10671 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 10672
43cd72b9 10673 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10674 {
10675 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 10676 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
10677 {
10678 r_reloc l32r_rel;
10679 asection *target_sec;
10680 bfd_vma target_offset;
43cd72b9
BW
10681
10682 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
10683 target_sec = NULL;
10684 target_offset = 0;
10685 /* L32Rs must be local to the input file. */
10686 if (r_reloc_is_defined (&l32r_rel))
10687 {
10688 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 10689 target_offset = l32r_rel.target_offset;
e0001a05
NC
10690 }
10691 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10692 closure);
10693 }
10694 }
10695
10696 error_return:
10697 release_internal_relocs (sec, internal_relocs);
10698 release_contents (sec, contents);
10699 return ok;
10700}
10701
2f89ff8d
L
10702/* The default literal sections should always be marked as "code" (i.e.,
10703 SHF_EXECINSTR). This is particularly important for the Linux kernel
10704 module loader so that the literals are not placed after the text. */
b35d266b 10705static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 10706{
0112cd26
NC
10707 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10708 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10709 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 10710 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 10711 { NULL, 0, 0, 0, 0 }
7f4d3958 10712};
e0001a05
NC
10713\f
10714#ifndef ELF_ARCH
10715#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10716#define TARGET_LITTLE_NAME "elf32-xtensa-le"
10717#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10718#define TARGET_BIG_NAME "elf32-xtensa-be"
10719#define ELF_ARCH bfd_arch_xtensa
10720
4af0a1d8
BW
10721#define ELF_MACHINE_CODE EM_XTENSA
10722#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
10723
10724#if XCHAL_HAVE_MMU
10725#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10726#else /* !XCHAL_HAVE_MMU */
10727#define ELF_MAXPAGESIZE 1
10728#endif /* !XCHAL_HAVE_MMU */
10729#endif /* ELF_ARCH */
10730
10731#define elf_backend_can_gc_sections 1
10732#define elf_backend_can_refcount 1
10733#define elf_backend_plt_readonly 1
10734#define elf_backend_got_header_size 4
10735#define elf_backend_want_dynbss 0
10736#define elf_backend_want_got_plt 1
10737
10738#define elf_info_to_howto elf_xtensa_info_to_howto_rela
10739
28dbbc02
BW
10740#define bfd_elf32_mkobject elf_xtensa_mkobject
10741
e0001a05
NC
10742#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10743#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10744#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10745#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10746#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
10747#define bfd_elf32_bfd_reloc_name_lookup \
10748 elf_xtensa_reloc_name_lookup
e0001a05 10749#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 10750#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
10751
10752#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10753#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
10754#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10755#define elf_backend_discard_info elf_xtensa_discard_info
10756#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10757#define elf_backend_final_write_processing elf_xtensa_final_write_processing
10758#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10759#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10760#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10761#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10762#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10763#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 10764#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
10765#define elf_backend_object_p elf_xtensa_object_p
10766#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10767#define elf_backend_relocate_section elf_xtensa_relocate_section
10768#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 10769#define elf_backend_always_size_sections elf_xtensa_always_size_sections
74541ad4
AM
10770#define elf_backend_omit_section_dynsym \
10771 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 10772#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 10773#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 10774#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
10775
10776#include "elf32-target.h"