]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf32-xtensa.c
* emultempl/xtensaelf.em (elf_xtensa_before_allocation): Call new
[thirdparty/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
3eb128b2 2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05
NC
20
21#include "bfd.h"
22#include "sysdep.h"
23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
7fa3d080 38static bfd_boolean add_extra_plt_sections (bfd *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
7fa3d080
BW
97static asection *elf_xtensa_get_plt_section (bfd *, int);
98static asection *elf_xtensa_get_gotplt_section (bfd *, int);
99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
106static bfd_boolean xtensa_is_littable_section (asection *);
107static int internal_reloc_compare (const void *, const void *);
108static int internal_reloc_matches (const void *, const void *);
109extern char *xtensa_get_property_section_name (asection *, const char *);
110static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
111
112/* Other functions called directly by the linker. */
113
114typedef void (*deps_callback_t)
7fa3d080 115 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 116extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
118
119
43cd72b9
BW
120/* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
7fa3d080 124
43cd72b9
BW
125int elf32xtensa_size_opt;
126
127
128/* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
e0001a05 131
7fa3d080 132typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 133
43cd72b9 134
e0001a05
NC
135/* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
b536dc1e 139 needed. It is OK if this count is an overestimate, e.g., some
e0001a05
NC
140 relocations may be removed by GC. */
141
142static int plt_reloc_count = 0;
143
144
43cd72b9
BW
145/* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
148 this information. */
149
150xtensa_isa xtensa_default_isa;
151
152
e0001a05
NC
153/* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
156
157static bfd_boolean relaxing_section = FALSE;
158
43cd72b9
BW
159/* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
161
162int elf32xtensa_no_literal_movement = 1;
163
e0001a05
NC
164\f
165static reloc_howto_type elf_howto_table[] =
166{
167 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
168 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
169 FALSE, 0x00000000, 0x00000000, FALSE),
170 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_xtensa_reloc, "R_XTENSA_32",
172 TRUE, 0xffffffff, 0xffffffff, FALSE),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
179 NULL, "R_XTENSA_RTLD",
180 FALSE, 0x00000000, 0x00000000, FALSE),
181 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
183 FALSE, 0xffffffff, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
186 FALSE, 0xffffffff, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
189 FALSE, 0xffffffff, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
192 FALSE, 0xffffffff, 0xffffffff, FALSE),
193 EMPTY_HOWTO (7),
194 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
196 FALSE, 0x00000000, 0x00000000, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
199 FALSE, 0x00000000, 0x00000000, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
202 FALSE, 0x00000000, 0x00000000, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
206 FALSE, 0x00000000, 0x00000000, FALSE),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE, 0x00000000, 0x00000000, TRUE),
211 EMPTY_HOWTO (13),
212 EMPTY_HOWTO (14),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
215 NULL, "R_XTENSA_GNU_VTINHERIT",
216 FALSE, 0x00000000, 0x00000000, FALSE),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
219 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
43cd72b9
BW
220 FALSE, 0x00000000, 0x00000000, FALSE),
221
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8",
225 FALSE, 0xffffffff, 0xffffffff, FALSE),
226 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16",
228 FALSE, 0xffffffff, 0xffffffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32",
231 FALSE, 0xffffffff, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP",
236 FALSE, 0x00000000, 0x00000000, TRUE),
237 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP",
239 FALSE, 0x00000000, 0x00000000, TRUE),
240 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP",
242 FALSE, 0x00000000, 0x00000000, TRUE),
243 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP",
245 FALSE, 0x00000000, 0x00000000, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP",
248 FALSE, 0x00000000, 0x00000000, TRUE),
249 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP",
251 FALSE, 0x00000000, 0x00000000, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP",
254 FALSE, 0x00000000, 0x00000000, TRUE),
255 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP",
257 FALSE, 0x00000000, 0x00000000, TRUE),
258 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP",
260 FALSE, 0x00000000, 0x00000000, TRUE),
261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP",
263 FALSE, 0x00000000, 0x00000000, TRUE),
264 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP",
266 FALSE, 0x00000000, 0x00000000, TRUE),
267 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP",
269 FALSE, 0x00000000, 0x00000000, TRUE),
270 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP",
272 FALSE, 0x00000000, 0x00000000, TRUE),
273 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP",
275 FALSE, 0x00000000, 0x00000000, TRUE),
276 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP",
278 FALSE, 0x00000000, 0x00000000, TRUE),
279
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT",
283 FALSE, 0x00000000, 0x00000000, TRUE),
284 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT",
286 FALSE, 0x00000000, 0x00000000, TRUE),
287 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT",
289 FALSE, 0x00000000, 0x00000000, TRUE),
290 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT",
292 FALSE, 0x00000000, 0x00000000, TRUE),
293 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT",
295 FALSE, 0x00000000, 0x00000000, TRUE),
296 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT",
298 FALSE, 0x00000000, 0x00000000, TRUE),
299 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT",
301 FALSE, 0x00000000, 0x00000000, TRUE),
302 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT",
304 FALSE, 0x00000000, 0x00000000, TRUE),
305 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT",
307 FALSE, 0x00000000, 0x00000000, TRUE),
308 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT",
310 FALSE, 0x00000000, 0x00000000, TRUE),
311 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT",
313 FALSE, 0x00000000, 0x00000000, TRUE),
314 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT",
316 FALSE, 0x00000000, 0x00000000, TRUE),
317 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT",
319 FALSE, 0x00000000, 0x00000000, TRUE),
320 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT",
322 FALSE, 0x00000000, 0x00000000, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT",
325 FALSE, 0x00000000, 0x00000000, TRUE)
e0001a05
NC
326};
327
43cd72b9 328#if DEBUG_GEN_RELOC
e0001a05
NC
329#define TRACE(str) \
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
331#else
332#define TRACE(str)
333#endif
334
335static reloc_howto_type *
7fa3d080
BW
336elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
337 bfd_reloc_code_real_type code)
e0001a05
NC
338{
339 switch (code)
340 {
341 case BFD_RELOC_NONE:
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
344
345 case BFD_RELOC_32:
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
348
43cd72b9
BW
349 case BFD_RELOC_XTENSA_DIFF8:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
352
353 case BFD_RELOC_XTENSA_DIFF16:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
356
357 case BFD_RELOC_XTENSA_DIFF32:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
360
e0001a05
NC
361 case BFD_RELOC_XTENSA_RTLD:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
364
365 case BFD_RELOC_XTENSA_GLOB_DAT:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
368
369 case BFD_RELOC_XTENSA_JMP_SLOT:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
372
373 case BFD_RELOC_XTENSA_RELATIVE:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
376
377 case BFD_RELOC_XTENSA_PLT:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
380
381 case BFD_RELOC_XTENSA_OP0:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
384
385 case BFD_RELOC_XTENSA_OP1:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
388
389 case BFD_RELOC_XTENSA_OP2:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
392
393 case BFD_RELOC_XTENSA_ASM_EXPAND:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
396
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
400
401 case BFD_RELOC_VTABLE_INHERIT:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
404
405 case BFD_RELOC_VTABLE_ENTRY:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
408
409 default:
43cd72b9
BW
410 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
411 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
412 {
413 unsigned n = (R_XTENSA_SLOT0_OP +
414 (code - BFD_RELOC_XTENSA_SLOT0_OP));
415 return &elf_howto_table[n];
416 }
417
418 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
420 {
421 unsigned n = (R_XTENSA_SLOT0_ALT +
422 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
423 return &elf_howto_table[n];
424 }
425
e0001a05
NC
426 break;
427 }
428
429 TRACE ("Unknown");
430 return NULL;
431}
432
433
434/* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
436
437static void
7fa3d080
BW
438elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
439 arelent *cache_ptr,
440 Elf_Internal_Rela *dst)
e0001a05
NC
441{
442 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
443
444 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
445 cache_ptr->howto = &elf_howto_table[r_type];
446}
447
448\f
449/* Functions for the Xtensa ELF linker. */
450
451/* The name of the dynamic interpreter. This is put in the .interp
452 section. */
453
454#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
455
456/* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
458 the PLT entry.) */
459
460#define PLT_ENTRY_SIZE 16
461
462/* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
471
472#define PLT_ENTRIES_PER_CHUNK 254
473
474/* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
478
479static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
480{
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
486 0 /* unused */
487};
488
489static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
490{
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
496 0 /* unused */
497};
498
571b5725
BW
499
500static inline bfd_boolean
7fa3d080
BW
501xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
502 struct bfd_link_info *info)
571b5725
BW
503{
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
509
510 return _bfd_elf_dynamic_symbol_p (h, info, 0);
511}
512
e0001a05
NC
513\f
514static int
7fa3d080 515property_table_compare (const void *ap, const void *bp)
e0001a05
NC
516{
517 const property_table_entry *a = (const property_table_entry *) ap;
518 const property_table_entry *b = (const property_table_entry *) bp;
519
43cd72b9
BW
520 if (a->address == b->address)
521 {
43cd72b9
BW
522 if (a->size != b->size)
523 return (a->size - b->size);
524
525 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
526 return ((b->flags & XTENSA_PROP_ALIGN)
527 - (a->flags & XTENSA_PROP_ALIGN));
528
529 if ((a->flags & XTENSA_PROP_ALIGN)
530 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
531 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
533 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
534
535 if ((a->flags & XTENSA_PROP_UNREACHABLE)
536 != (b->flags & XTENSA_PROP_UNREACHABLE))
537 return ((b->flags & XTENSA_PROP_UNREACHABLE)
538 - (a->flags & XTENSA_PROP_UNREACHABLE));
539
540 return (a->flags - b->flags);
541 }
542
543 return (a->address - b->address);
544}
545
546
547static int
7fa3d080 548property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
549{
550 const property_table_entry *a = (const property_table_entry *) ap;
551 const property_table_entry *b = (const property_table_entry *) bp;
552
553 /* Check if one entry overlaps with the other. */
e0001a05
NC
554 if ((b->address >= a->address && b->address < (a->address + a->size))
555 || (a->address >= b->address && a->address < (b->address + b->size)))
556 return 0;
557
558 return (a->address - b->address);
559}
560
561
43cd72b9
BW
562/* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
e0001a05 565
7fa3d080
BW
566static int
567xtensa_read_table_entries (bfd *abfd,
568 asection *section,
569 property_table_entry **table_p,
570 const char *sec_name,
571 bfd_boolean output_addr)
e0001a05
NC
572{
573 asection *table_section;
574 char *table_section_name;
575 bfd_size_type table_size = 0;
576 bfd_byte *table_data;
577 property_table_entry *blocks;
e4115460 578 int blk, block_count;
e0001a05
NC
579 bfd_size_type num_records;
580 Elf_Internal_Rela *internal_relocs;
3ba3bc8c 581 bfd_vma section_addr;
43cd72b9
BW
582 flagword predef_flags;
583 bfd_size_type table_entry_size;
584
585 if (!section
586 || !(section->flags & SEC_ALLOC)
587 || (section->flags & SEC_DEBUGGING))
588 {
589 *table_p = NULL;
590 return 0;
591 }
e0001a05 592
43cd72b9 593 table_section_name = xtensa_get_property_section_name (section, sec_name);
e0001a05 594 table_section = bfd_get_section_by_name (abfd, table_section_name);
b614a702 595 free (table_section_name);
43cd72b9 596 if (table_section)
eea6121a 597 table_size = table_section->size;
43cd72b9 598
e0001a05
NC
599 if (table_size == 0)
600 {
601 *table_p = NULL;
602 return 0;
603 }
604
43cd72b9
BW
605 predef_flags = xtensa_get_property_predef_flags (table_section);
606 table_entry_size = 12;
607 if (predef_flags)
608 table_entry_size -= 4;
609
610 num_records = table_size / table_entry_size;
e0001a05
NC
611 table_data = retrieve_contents (abfd, table_section, TRUE);
612 blocks = (property_table_entry *)
613 bfd_malloc (num_records * sizeof (property_table_entry));
614 block_count = 0;
43cd72b9
BW
615
616 if (output_addr)
617 section_addr = section->output_section->vma + section->output_offset;
618 else
619 section_addr = section->vma;
3ba3bc8c 620
e0001a05
NC
621 /* If the file has not yet been relocated, process the relocations
622 and sort out the table entries that apply to the specified section. */
623 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 624 if (internal_relocs && !table_section->reloc_done)
e0001a05
NC
625 {
626 unsigned i;
627
628 for (i = 0; i < table_section->reloc_count; i++)
629 {
630 Elf_Internal_Rela *rel = &internal_relocs[i];
631 unsigned long r_symndx;
632
633 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
634 continue;
635
636 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
637 r_symndx = ELF32_R_SYM (rel->r_info);
638
639 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
640 {
641 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
43cd72b9 642 BFD_ASSERT (sym_off == 0);
e0001a05 643 blocks[block_count].address =
3ba3bc8c 644 (section_addr + sym_off + rel->r_addend
e0001a05
NC
645 + bfd_get_32 (abfd, table_data + rel->r_offset));
646 blocks[block_count].size =
647 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
43cd72b9
BW
648 if (predef_flags)
649 blocks[block_count].flags = predef_flags;
650 else
651 blocks[block_count].flags =
652 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
e0001a05
NC
653 block_count++;
654 }
655 }
656 }
657 else
658 {
3ba3bc8c
BW
659 /* The file has already been relocated and the addresses are
660 already in the table. */
e0001a05 661 bfd_vma off;
43cd72b9 662 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
e0001a05 663
43cd72b9 664 for (off = 0; off < table_size; off += table_entry_size)
e0001a05
NC
665 {
666 bfd_vma address = bfd_get_32 (abfd, table_data + off);
667
3ba3bc8c 668 if (address >= section_addr
43cd72b9 669 && address < section_addr + section_limit)
e0001a05
NC
670 {
671 blocks[block_count].address = address;
672 blocks[block_count].size =
673 bfd_get_32 (abfd, table_data + off + 4);
43cd72b9
BW
674 if (predef_flags)
675 blocks[block_count].flags = predef_flags;
676 else
677 blocks[block_count].flags =
678 bfd_get_32 (abfd, table_data + off + 8);
e0001a05
NC
679 block_count++;
680 }
681 }
682 }
683
684 release_contents (table_section, table_data);
685 release_internal_relocs (table_section, internal_relocs);
686
43cd72b9 687 if (block_count > 0)
e0001a05
NC
688 {
689 /* Now sort them into address order for easy reference. */
690 qsort (blocks, block_count, sizeof (property_table_entry),
691 property_table_compare);
e4115460
BW
692
693 /* Check that the table contents are valid. Problems may occur,
694 for example, if an unrelocated object file is stripped. */
695 for (blk = 1; blk < block_count; blk++)
696 {
697 /* The only circumstance where two entries may legitimately
698 have the same address is when one of them is a zero-size
699 placeholder to mark a place where fill can be inserted.
700 The zero-size entry should come first. */
701 if (blocks[blk - 1].address == blocks[blk].address &&
702 blocks[blk - 1].size != 0)
703 {
704 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
705 abfd, section);
706 bfd_set_error (bfd_error_bad_value);
707 free (blocks);
708 return -1;
709 }
710 }
e0001a05 711 }
43cd72b9 712
e0001a05
NC
713 *table_p = blocks;
714 return block_count;
715}
716
717
7fa3d080
BW
718static property_table_entry *
719elf_xtensa_find_property_entry (property_table_entry *property_table,
720 int property_table_size,
721 bfd_vma addr)
e0001a05
NC
722{
723 property_table_entry entry;
43cd72b9 724 property_table_entry *rv;
e0001a05 725
43cd72b9
BW
726 if (property_table_size == 0)
727 return NULL;
e0001a05
NC
728
729 entry.address = addr;
730 entry.size = 1;
43cd72b9 731 entry.flags = 0;
e0001a05 732
43cd72b9
BW
733 rv = bsearch (&entry, property_table, property_table_size,
734 sizeof (property_table_entry), property_table_matches);
735 return rv;
736}
737
738
739static bfd_boolean
7fa3d080
BW
740elf_xtensa_in_literal_pool (property_table_entry *lit_table,
741 int lit_table_size,
742 bfd_vma addr)
43cd72b9
BW
743{
744 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
745 return TRUE;
746
747 return FALSE;
748}
749
750\f
751/* Look through the relocs for a section during the first phase, and
752 calculate needed space in the dynamic reloc sections. */
753
754static bfd_boolean
7fa3d080
BW
755elf_xtensa_check_relocs (bfd *abfd,
756 struct bfd_link_info *info,
757 asection *sec,
758 const Elf_Internal_Rela *relocs)
e0001a05
NC
759{
760 Elf_Internal_Shdr *symtab_hdr;
761 struct elf_link_hash_entry **sym_hashes;
762 const Elf_Internal_Rela *rel;
763 const Elf_Internal_Rela *rel_end;
e0001a05 764
1049f94e 765 if (info->relocatable)
e0001a05
NC
766 return TRUE;
767
768 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
769 sym_hashes = elf_sym_hashes (abfd);
770
e0001a05
NC
771 rel_end = relocs + sec->reloc_count;
772 for (rel = relocs; rel < rel_end; rel++)
773 {
774 unsigned int r_type;
775 unsigned long r_symndx;
776 struct elf_link_hash_entry *h;
777
778 r_symndx = ELF32_R_SYM (rel->r_info);
779 r_type = ELF32_R_TYPE (rel->r_info);
780
781 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
782 {
d003868e
AM
783 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
784 abfd, r_symndx);
e0001a05
NC
785 return FALSE;
786 }
787
788 if (r_symndx < symtab_hdr->sh_info)
789 h = NULL;
790 else
791 {
792 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
793 while (h->root.type == bfd_link_hash_indirect
794 || h->root.type == bfd_link_hash_warning)
795 h = (struct elf_link_hash_entry *) h->root.u.i.link;
796 }
797
798 switch (r_type)
799 {
800 case R_XTENSA_32:
801 if (h == NULL)
802 goto local_literal;
803
804 if ((sec->flags & SEC_ALLOC) != 0)
805 {
e0001a05
NC
806 if (h->got.refcount <= 0)
807 h->got.refcount = 1;
808 else
809 h->got.refcount += 1;
810 }
811 break;
812
813 case R_XTENSA_PLT:
814 /* If this relocation is against a local symbol, then it's
815 exactly the same as a normal local GOT entry. */
816 if (h == NULL)
817 goto local_literal;
818
819 if ((sec->flags & SEC_ALLOC) != 0)
820 {
e0001a05
NC
821 if (h->plt.refcount <= 0)
822 {
f5385ebf 823 h->needs_plt = 1;
e0001a05
NC
824 h->plt.refcount = 1;
825 }
826 else
827 h->plt.refcount += 1;
828
829 /* Keep track of the total PLT relocation count even if we
830 don't yet know whether the dynamic sections will be
831 created. */
832 plt_reloc_count += 1;
833
834 if (elf_hash_table (info)->dynamic_sections_created)
835 {
836 if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
837 plt_reloc_count))
838 return FALSE;
839 }
840 }
841 break;
842
843 local_literal:
844 if ((sec->flags & SEC_ALLOC) != 0)
845 {
846 bfd_signed_vma *local_got_refcounts;
847
848 /* This is a global offset table entry for a local symbol. */
849 local_got_refcounts = elf_local_got_refcounts (abfd);
850 if (local_got_refcounts == NULL)
851 {
852 bfd_size_type size;
853
854 size = symtab_hdr->sh_info;
855 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
856 local_got_refcounts =
857 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
858 if (local_got_refcounts == NULL)
859 return FALSE;
860 elf_local_got_refcounts (abfd) = local_got_refcounts;
861 }
862 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
863 }
864 break;
865
866 case R_XTENSA_OP0:
867 case R_XTENSA_OP1:
868 case R_XTENSA_OP2:
43cd72b9
BW
869 case R_XTENSA_SLOT0_OP:
870 case R_XTENSA_SLOT1_OP:
871 case R_XTENSA_SLOT2_OP:
872 case R_XTENSA_SLOT3_OP:
873 case R_XTENSA_SLOT4_OP:
874 case R_XTENSA_SLOT5_OP:
875 case R_XTENSA_SLOT6_OP:
876 case R_XTENSA_SLOT7_OP:
877 case R_XTENSA_SLOT8_OP:
878 case R_XTENSA_SLOT9_OP:
879 case R_XTENSA_SLOT10_OP:
880 case R_XTENSA_SLOT11_OP:
881 case R_XTENSA_SLOT12_OP:
882 case R_XTENSA_SLOT13_OP:
883 case R_XTENSA_SLOT14_OP:
884 case R_XTENSA_SLOT0_ALT:
885 case R_XTENSA_SLOT1_ALT:
886 case R_XTENSA_SLOT2_ALT:
887 case R_XTENSA_SLOT3_ALT:
888 case R_XTENSA_SLOT4_ALT:
889 case R_XTENSA_SLOT5_ALT:
890 case R_XTENSA_SLOT6_ALT:
891 case R_XTENSA_SLOT7_ALT:
892 case R_XTENSA_SLOT8_ALT:
893 case R_XTENSA_SLOT9_ALT:
894 case R_XTENSA_SLOT10_ALT:
895 case R_XTENSA_SLOT11_ALT:
896 case R_XTENSA_SLOT12_ALT:
897 case R_XTENSA_SLOT13_ALT:
898 case R_XTENSA_SLOT14_ALT:
e0001a05
NC
899 case R_XTENSA_ASM_EXPAND:
900 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9
BW
901 case R_XTENSA_DIFF8:
902 case R_XTENSA_DIFF16:
903 case R_XTENSA_DIFF32:
e0001a05
NC
904 /* Nothing to do for these. */
905 break;
906
907 case R_XTENSA_GNU_VTINHERIT:
908 /* This relocation describes the C++ object vtable hierarchy.
909 Reconstruct it for later use during GC. */
c152c796 910 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
911 return FALSE;
912 break;
913
914 case R_XTENSA_GNU_VTENTRY:
915 /* This relocation describes which C++ vtable entries are actually
916 used. Record for later use during GC. */
c152c796 917 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
918 return FALSE;
919 break;
920
921 default:
922 break;
923 }
924 }
925
e0001a05
NC
926 return TRUE;
927}
928
929
930static void
7fa3d080
BW
931elf_xtensa_make_sym_local (struct bfd_link_info *info,
932 struct elf_link_hash_entry *h)
933{
934 if (info->shared)
935 {
936 if (h->plt.refcount > 0)
937 {
938 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
939 if (h->got.refcount < 0)
940 h->got.refcount = 0;
941 h->got.refcount += h->plt.refcount;
942 h->plt.refcount = 0;
943 }
944 }
945 else
946 {
947 /* Don't need any dynamic relocations at all. */
948 h->plt.refcount = 0;
949 h->got.refcount = 0;
950 }
951}
952
953
954static void
955elf_xtensa_hide_symbol (struct bfd_link_info *info,
956 struct elf_link_hash_entry *h,
957 bfd_boolean force_local)
e0001a05
NC
958{
959 /* For a shared link, move the plt refcount to the got refcount to leave
960 space for RELATIVE relocs. */
961 elf_xtensa_make_sym_local (info, h);
962
963 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
964}
965
966
e0001a05
NC
967/* Return the section that should be marked against GC for a given
968 relocation. */
969
970static asection *
7fa3d080
BW
971elf_xtensa_gc_mark_hook (asection *sec,
972 struct bfd_link_info *info ATTRIBUTE_UNUSED,
973 Elf_Internal_Rela *rel,
974 struct elf_link_hash_entry *h,
975 Elf_Internal_Sym *sym)
e0001a05 976{
7fa3d080 977 if (h)
e0001a05
NC
978 {
979 switch (ELF32_R_TYPE (rel->r_info))
980 {
981 case R_XTENSA_GNU_VTINHERIT:
982 case R_XTENSA_GNU_VTENTRY:
983 break;
984
985 default:
986 switch (h->root.type)
987 {
988 case bfd_link_hash_defined:
989 case bfd_link_hash_defweak:
990 return h->root.u.def.section;
991
992 case bfd_link_hash_common:
993 return h->root.u.c.p->section;
994
995 default:
996 break;
997 }
998 }
999 }
1000 else
1001 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1002
1003 return NULL;
1004}
1005
7fa3d080 1006
e0001a05
NC
1007/* Update the GOT & PLT entry reference counts
1008 for the section being removed. */
1009
1010static bfd_boolean
7fa3d080
BW
1011elf_xtensa_gc_sweep_hook (bfd *abfd,
1012 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1013 asection *sec,
1014 const Elf_Internal_Rela *relocs)
e0001a05
NC
1015{
1016 Elf_Internal_Shdr *symtab_hdr;
1017 struct elf_link_hash_entry **sym_hashes;
1018 bfd_signed_vma *local_got_refcounts;
1019 const Elf_Internal_Rela *rel, *relend;
1020
1021 if ((sec->flags & SEC_ALLOC) == 0)
1022 return TRUE;
1023
1024 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1025 sym_hashes = elf_sym_hashes (abfd);
1026 local_got_refcounts = elf_local_got_refcounts (abfd);
1027
1028 relend = relocs + sec->reloc_count;
1029 for (rel = relocs; rel < relend; rel++)
1030 {
1031 unsigned long r_symndx;
1032 unsigned int r_type;
1033 struct elf_link_hash_entry *h = NULL;
1034
1035 r_symndx = ELF32_R_SYM (rel->r_info);
1036 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1037 {
1038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1039 while (h->root.type == bfd_link_hash_indirect
1040 || h->root.type == bfd_link_hash_warning)
1041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1042 }
e0001a05
NC
1043
1044 r_type = ELF32_R_TYPE (rel->r_info);
1045 switch (r_type)
1046 {
1047 case R_XTENSA_32:
1048 if (h == NULL)
1049 goto local_literal;
1050 if (h->got.refcount > 0)
1051 h->got.refcount--;
1052 break;
1053
1054 case R_XTENSA_PLT:
1055 if (h == NULL)
1056 goto local_literal;
1057 if (h->plt.refcount > 0)
1058 h->plt.refcount--;
1059 break;
1060
1061 local_literal:
1062 if (local_got_refcounts[r_symndx] > 0)
1063 local_got_refcounts[r_symndx] -= 1;
1064 break;
1065
1066 default:
1067 break;
1068 }
1069 }
1070
1071 return TRUE;
1072}
1073
1074
1075/* Create all the dynamic sections. */
1076
1077static bfd_boolean
7fa3d080 1078elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1079{
e901de89 1080 flagword flags, noalloc_flags;
e0001a05
NC
1081 asection *s;
1082
1083 /* First do all the standard stuff. */
1084 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1085 return FALSE;
1086
1087 /* Create any extra PLT sections in case check_relocs has already
1088 been called on all the non-dynamic input files. */
1089 if (!add_extra_plt_sections (dynobj, plt_reloc_count))
1090 return FALSE;
1091
e901de89
BW
1092 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1093 | SEC_LINKER_CREATED | SEC_READONLY);
1094 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1095
1096 /* Mark the ".got.plt" section READONLY. */
1097 s = bfd_get_section_by_name (dynobj, ".got.plt");
1098 if (s == NULL
1099 || ! bfd_set_section_flags (dynobj, s, flags))
1100 return FALSE;
1101
1102 /* Create ".rela.got". */
3496cb2a 1103 s = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
e0001a05 1104 if (s == NULL
e0001a05
NC
1105 || ! bfd_set_section_alignment (dynobj, s, 2))
1106 return FALSE;
1107
e901de89 1108 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3496cb2a 1109 s = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
e901de89 1110 if (s == NULL
e901de89
BW
1111 || ! bfd_set_section_alignment (dynobj, s, 2))
1112 return FALSE;
1113
e0001a05 1114 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3496cb2a
L
1115 s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1116 noalloc_flags);
e0001a05 1117 if (s == NULL
e0001a05
NC
1118 || ! bfd_set_section_alignment (dynobj, s, 2))
1119 return FALSE;
1120
1121 return TRUE;
1122}
1123
1124
1125static bfd_boolean
7fa3d080 1126add_extra_plt_sections (bfd *dynobj, int count)
e0001a05
NC
1127{
1128 int chunk;
1129
1130 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1131 ".got.plt" sections. */
1132 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1133 {
1134 char *sname;
1135 flagword flags;
1136 asection *s;
1137
1138 /* Stop when we find a section has already been created. */
1139 if (elf_xtensa_get_plt_section (dynobj, chunk))
1140 break;
1141
1142 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1143 | SEC_LINKER_CREATED | SEC_READONLY);
1144
1145 sname = (char *) bfd_malloc (10);
1146 sprintf (sname, ".plt.%u", chunk);
3496cb2a
L
1147 s = bfd_make_section_with_flags (dynobj, sname,
1148 flags | SEC_CODE);
e0001a05 1149 if (s == NULL
e0001a05
NC
1150 || ! bfd_set_section_alignment (dynobj, s, 2))
1151 return FALSE;
1152
1153 sname = (char *) bfd_malloc (14);
1154 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1155 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1156 if (s == NULL
e0001a05
NC
1157 || ! bfd_set_section_alignment (dynobj, s, 2))
1158 return FALSE;
1159 }
1160
1161 return TRUE;
1162}
1163
1164
1165/* Adjust a symbol defined by a dynamic object and referenced by a
1166 regular object. The current definition is in some section of the
1167 dynamic object, but we're not including those sections. We have to
1168 change the definition to something the rest of the link can
1169 understand. */
1170
1171static bfd_boolean
7fa3d080
BW
1172elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1173 struct elf_link_hash_entry *h)
e0001a05
NC
1174{
1175 /* If this is a weak symbol, and there is a real definition, the
1176 processor independent code will have arranged for us to see the
1177 real definition first, and we can just use the same value. */
7fa3d080 1178 if (h->u.weakdef)
e0001a05 1179 {
f6e332e6
AM
1180 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1181 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1182 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1183 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1184 return TRUE;
1185 }
1186
1187 /* This is a reference to a symbol defined by a dynamic object. The
1188 reference must go through the GOT, so there's no need for COPY relocs,
1189 .dynbss, etc. */
1190
1191 return TRUE;
1192}
1193
1194
e0001a05 1195static bfd_boolean
7fa3d080 1196elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1197{
1198 struct bfd_link_info *info = (struct bfd_link_info *) arg;
1199
1200 if (h->root.type == bfd_link_hash_warning)
1201 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1202
571b5725 1203 if (! xtensa_elf_dynamic_symbol_p (h, info))
e0001a05
NC
1204 elf_xtensa_make_sym_local (info, h);
1205
e0001a05
NC
1206 return TRUE;
1207}
1208
1209
1210static bfd_boolean
7fa3d080 1211elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1212{
1213 asection *srelplt = (asection *) arg;
1214
1215 if (h->root.type == bfd_link_hash_warning)
1216 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1217
1218 if (h->plt.refcount > 0)
eea6121a 1219 srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1220
1221 return TRUE;
1222}
1223
1224
1225static bfd_boolean
7fa3d080 1226elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1227{
1228 asection *srelgot = (asection *) arg;
1229
1230 if (h->root.type == bfd_link_hash_warning)
1231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1232
1233 if (h->got.refcount > 0)
eea6121a 1234 srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1235
1236 return TRUE;
1237}
1238
1239
1240static void
7fa3d080
BW
1241elf_xtensa_allocate_local_got_size (struct bfd_link_info *info,
1242 asection *srelgot)
e0001a05
NC
1243{
1244 bfd *i;
1245
1246 for (i = info->input_bfds; i; i = i->link_next)
1247 {
1248 bfd_signed_vma *local_got_refcounts;
1249 bfd_size_type j, cnt;
1250 Elf_Internal_Shdr *symtab_hdr;
1251
1252 local_got_refcounts = elf_local_got_refcounts (i);
1253 if (!local_got_refcounts)
1254 continue;
1255
1256 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1257 cnt = symtab_hdr->sh_info;
1258
1259 for (j = 0; j < cnt; ++j)
1260 {
1261 if (local_got_refcounts[j] > 0)
eea6121a
AM
1262 srelgot->size += (local_got_refcounts[j]
1263 * sizeof (Elf32_External_Rela));
e0001a05
NC
1264 }
1265 }
1266}
1267
1268
1269/* Set the sizes of the dynamic sections. */
1270
1271static bfd_boolean
7fa3d080
BW
1272elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1273 struct bfd_link_info *info)
e0001a05 1274{
e901de89
BW
1275 bfd *dynobj, *abfd;
1276 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1277 bfd_boolean relplt, relgot;
1278 int plt_entries, plt_chunks, chunk;
1279
1280 plt_entries = 0;
1281 plt_chunks = 0;
1282 srelgot = 0;
1283
1284 dynobj = elf_hash_table (info)->dynobj;
1285 if (dynobj == NULL)
1286 abort ();
1287
1288 if (elf_hash_table (info)->dynamic_sections_created)
1289 {
1290 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1291 if (info->executable)
e0001a05
NC
1292 {
1293 s = bfd_get_section_by_name (dynobj, ".interp");
1294 if (s == NULL)
1295 abort ();
eea6121a 1296 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1297 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1298 }
1299
1300 /* Allocate room for one word in ".got". */
1301 s = bfd_get_section_by_name (dynobj, ".got");
1302 if (s == NULL)
1303 abort ();
eea6121a 1304 s->size = 4;
e0001a05
NC
1305
1306 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1307 elf_link_hash_traverse (elf_hash_table (info),
1308 elf_xtensa_fix_refcounts,
7fa3d080 1309 (void *) info);
e0001a05
NC
1310
1311 /* Allocate space in ".rela.got" for literals that reference
1312 global symbols. */
1313 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1314 if (srelgot == NULL)
1315 abort ();
1316 elf_link_hash_traverse (elf_hash_table (info),
1317 elf_xtensa_allocate_got_size,
7fa3d080 1318 (void *) srelgot);
e0001a05
NC
1319
1320 /* If we are generating a shared object, we also need space in
1321 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1322 reference local symbols. */
1323 if (info->shared)
1324 elf_xtensa_allocate_local_got_size (info, srelgot);
1325
1326 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1327 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1328 if (srelplt == NULL)
1329 abort ();
1330 elf_link_hash_traverse (elf_hash_table (info),
1331 elf_xtensa_allocate_plt_size,
7fa3d080 1332 (void *) srelplt);
e0001a05
NC
1333
1334 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1335 each PLT entry, we need the PLT code plus a 4-byte literal.
1336 For each chunk of ".plt", we also need two more 4-byte
1337 literals, two corresponding entries in ".rela.got", and an
1338 8-byte entry in ".xt.lit.plt". */
1339 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
1340 if (spltlittbl == NULL)
1341 abort ();
1342
eea6121a 1343 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1344 plt_chunks =
1345 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1346
1347 /* Iterate over all the PLT chunks, including any extra sections
1348 created earlier because the initial count of PLT relocations
1349 was an overestimate. */
1350 for (chunk = 0;
1351 (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
1352 chunk++)
1353 {
1354 int chunk_entries;
1355
1356 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1357 if (sgotplt == NULL)
1358 abort ();
1359
1360 if (chunk < plt_chunks - 1)
1361 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1362 else if (chunk == plt_chunks - 1)
1363 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1364 else
1365 chunk_entries = 0;
1366
1367 if (chunk_entries != 0)
1368 {
eea6121a
AM
1369 sgotplt->size = 4 * (chunk_entries + 2);
1370 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1371 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1372 spltlittbl->size += 8;
e0001a05
NC
1373 }
1374 else
1375 {
eea6121a
AM
1376 sgotplt->size = 0;
1377 splt->size = 0;
e0001a05
NC
1378 }
1379 }
e901de89
BW
1380
1381 /* Allocate space in ".got.loc" to match the total size of all the
1382 literal tables. */
1383 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
1384 if (sgotloc == NULL)
1385 abort ();
eea6121a 1386 sgotloc->size = spltlittbl->size;
e901de89
BW
1387 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1388 {
1389 if (abfd->flags & DYNAMIC)
1390 continue;
1391 for (s = abfd->sections; s != NULL; s = s->next)
1392 {
b536dc1e
BW
1393 if (! elf_discarded_section (s)
1394 && xtensa_is_littable_section (s)
1395 && s != spltlittbl)
eea6121a 1396 sgotloc->size += s->size;
e901de89
BW
1397 }
1398 }
e0001a05
NC
1399 }
1400
1401 /* Allocate memory for dynamic sections. */
1402 relplt = FALSE;
1403 relgot = FALSE;
1404 for (s = dynobj->sections; s != NULL; s = s->next)
1405 {
1406 const char *name;
e0001a05
NC
1407
1408 if ((s->flags & SEC_LINKER_CREATED) == 0)
1409 continue;
1410
1411 /* It's OK to base decisions on the section name, because none
1412 of the dynobj section names depend upon the input files. */
1413 name = bfd_get_section_name (dynobj, s);
1414
e0001a05
NC
1415 if (strncmp (name, ".rela", 5) == 0)
1416 {
c456f082 1417 if (s->size != 0)
e0001a05 1418 {
c456f082
AM
1419 if (strcmp (name, ".rela.plt") == 0)
1420 relplt = TRUE;
1421 else if (strcmp (name, ".rela.got") == 0)
1422 relgot = TRUE;
1423
1424 /* We use the reloc_count field as a counter if we need
1425 to copy relocs into the output file. */
1426 s->reloc_count = 0;
e0001a05
NC
1427 }
1428 }
c456f082
AM
1429 else if (strncmp (name, ".plt.", 5) != 0
1430 && strncmp (name, ".got.plt.", 9) != 0
1431 && strcmp (name, ".got") != 0
e0001a05
NC
1432 && strcmp (name, ".plt") != 0
1433 && strcmp (name, ".got.plt") != 0
e901de89
BW
1434 && strcmp (name, ".xt.lit.plt") != 0
1435 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1436 {
1437 /* It's not one of our sections, so don't allocate space. */
1438 continue;
1439 }
1440
c456f082
AM
1441 if (s->size == 0)
1442 {
1443 /* If we don't need this section, strip it from the output
1444 file. We must create the ".plt*" and ".got.plt*"
1445 sections in create_dynamic_sections and/or check_relocs
1446 based on a conservative estimate of the PLT relocation
1447 count, because the sections must be created before the
1448 linker maps input sections to output sections. The
1449 linker does that before size_dynamic_sections, where we
1450 compute the exact size of the PLT, so there may be more
1451 of these sections than are actually needed. */
1452 s->flags |= SEC_EXCLUDE;
1453 }
1454 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1455 {
1456 /* Allocate memory for the section contents. */
eea6121a 1457 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1458 if (s->contents == NULL)
e0001a05
NC
1459 return FALSE;
1460 }
1461 }
1462
1463 if (elf_hash_table (info)->dynamic_sections_created)
1464 {
1465 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1466 known until finish_dynamic_sections, but we need to get the relocs
1467 in place before they are sorted. */
1468 if (srelgot == NULL)
1469 abort ();
1470 for (chunk = 0; chunk < plt_chunks; chunk++)
1471 {
1472 Elf_Internal_Rela irela;
1473 bfd_byte *loc;
1474
1475 irela.r_offset = 0;
1476 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1477 irela.r_addend = 0;
1478
1479 loc = (srelgot->contents
1480 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1481 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1482 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1483 loc + sizeof (Elf32_External_Rela));
1484 srelgot->reloc_count += 2;
1485 }
1486
1487 /* Add some entries to the .dynamic section. We fill in the
1488 values later, in elf_xtensa_finish_dynamic_sections, but we
1489 must add the entries now so that we get the correct size for
1490 the .dynamic section. The DT_DEBUG entry is filled in by the
1491 dynamic linker and used by the debugger. */
1492#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1493 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05
NC
1494
1495 if (! info->shared)
1496 {
1497 if (!add_dynamic_entry (DT_DEBUG, 0))
1498 return FALSE;
1499 }
1500
1501 if (relplt)
1502 {
1503 if (!add_dynamic_entry (DT_PLTGOT, 0)
1504 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1505 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1506 || !add_dynamic_entry (DT_JMPREL, 0))
1507 return FALSE;
1508 }
1509
1510 if (relgot)
1511 {
1512 if (!add_dynamic_entry (DT_RELA, 0)
1513 || !add_dynamic_entry (DT_RELASZ, 0)
1514 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1515 return FALSE;
1516 }
1517
e0001a05
NC
1518 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1519 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1520 return FALSE;
1521 }
1522#undef add_dynamic_entry
1523
1524 return TRUE;
1525}
1526
1527\f
1528/* Remove any PT_LOAD segments with no allocated sections. Prior to
1529 binutils 2.13, this function used to remove the non-SEC_ALLOC
1530 sections from PT_LOAD segments, but that task has now been moved
1531 into elf.c. We still need this function to remove any empty
1532 segments that result, but there's nothing Xtensa-specific about
1533 this and it probably ought to be moved into elf.c as well. */
1534
1535static bfd_boolean
7fa3d080
BW
1536elf_xtensa_modify_segment_map (bfd *abfd,
1537 struct bfd_link_info *info ATTRIBUTE_UNUSED)
e0001a05
NC
1538{
1539 struct elf_segment_map **m_p;
1540
1541 m_p = &elf_tdata (abfd)->segment_map;
7fa3d080 1542 while (*m_p)
e0001a05
NC
1543 {
1544 if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0)
1545 *m_p = (*m_p)->next;
1546 else
1547 m_p = &(*m_p)->next;
1548 }
1549 return TRUE;
1550}
1551
1552\f
1553/* Perform the specified relocation. The instruction at (contents + address)
1554 is modified to set one operand to represent the value in "relocation". The
1555 operand position is determined by the relocation type recorded in the
1556 howto. */
1557
1558#define CALL_SEGMENT_BITS (30)
7fa3d080 1559#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1560
1561static bfd_reloc_status_type
7fa3d080
BW
1562elf_xtensa_do_reloc (reloc_howto_type *howto,
1563 bfd *abfd,
1564 asection *input_section,
1565 bfd_vma relocation,
1566 bfd_byte *contents,
1567 bfd_vma address,
1568 bfd_boolean is_weak_undef,
1569 char **error_message)
e0001a05 1570{
43cd72b9 1571 xtensa_format fmt;
e0001a05 1572 xtensa_opcode opcode;
e0001a05 1573 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1574 static xtensa_insnbuf ibuff = NULL;
1575 static xtensa_insnbuf sbuff = NULL;
1576 bfd_vma self_address = 0;
1577 bfd_size_type input_size;
1578 int opnd, slot;
e0001a05
NC
1579 uint32 newval;
1580
43cd72b9
BW
1581 if (!ibuff)
1582 {
1583 ibuff = xtensa_insnbuf_alloc (isa);
1584 sbuff = xtensa_insnbuf_alloc (isa);
1585 }
1586
1587 input_size = bfd_get_section_limit (abfd, input_section);
1588
e0001a05
NC
1589 switch (howto->type)
1590 {
1591 case R_XTENSA_NONE:
43cd72b9
BW
1592 case R_XTENSA_DIFF8:
1593 case R_XTENSA_DIFF16:
1594 case R_XTENSA_DIFF32:
e0001a05
NC
1595 return bfd_reloc_ok;
1596
1597 case R_XTENSA_ASM_EXPAND:
1598 if (!is_weak_undef)
1599 {
1600 /* Check for windowed CALL across a 1GB boundary. */
1601 xtensa_opcode opcode =
1602 get_expanded_call_opcode (contents + address,
43cd72b9 1603 input_size - address, 0);
e0001a05
NC
1604 if (is_windowed_call_opcode (opcode))
1605 {
1606 self_address = (input_section->output_section->vma
1607 + input_section->output_offset
1608 + address);
43cd72b9
BW
1609 if ((self_address >> CALL_SEGMENT_BITS)
1610 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1611 {
1612 *error_message = "windowed longcall crosses 1GB boundary; "
1613 "return may fail";
1614 return bfd_reloc_dangerous;
1615 }
1616 }
1617 }
1618 return bfd_reloc_ok;
1619
1620 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1621 {
e0001a05 1622 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1623 bfd_reloc_status_type retval =
1624 elf_xtensa_do_asm_simplify (contents, address, input_size,
1625 error_message);
e0001a05 1626 if (retval != bfd_reloc_ok)
43cd72b9 1627 return bfd_reloc_dangerous;
e0001a05
NC
1628
1629 /* The CALL needs to be relocated. Continue below for that part. */
1630 address += 3;
43cd72b9 1631 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1632 }
1633 break;
1634
1635 case R_XTENSA_32:
1636 case R_XTENSA_PLT:
1637 {
1638 bfd_vma x;
1639 x = bfd_get_32 (abfd, contents + address);
1640 x = x + relocation;
1641 bfd_put_32 (abfd, x, contents + address);
1642 }
1643 return bfd_reloc_ok;
1644 }
1645
43cd72b9
BW
1646 /* Only instruction slot-specific relocations handled below.... */
1647 slot = get_relocation_slot (howto->type);
1648 if (slot == XTENSA_UNDEFINED)
e0001a05 1649 {
43cd72b9 1650 *error_message = "unexpected relocation";
e0001a05
NC
1651 return bfd_reloc_dangerous;
1652 }
1653
43cd72b9
BW
1654 /* Read the instruction into a buffer and decode the opcode. */
1655 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1656 input_size - address);
1657 fmt = xtensa_format_decode (isa, ibuff);
1658 if (fmt == XTENSA_UNDEFINED)
e0001a05 1659 {
43cd72b9 1660 *error_message = "cannot decode instruction format";
e0001a05
NC
1661 return bfd_reloc_dangerous;
1662 }
1663
43cd72b9 1664 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1665
43cd72b9
BW
1666 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1667 if (opcode == XTENSA_UNDEFINED)
e0001a05 1668 {
43cd72b9 1669 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1670 return bfd_reloc_dangerous;
1671 }
1672
43cd72b9
BW
1673 /* Check for opcode-specific "alternate" relocations. */
1674 if (is_alt_relocation (howto->type))
1675 {
1676 if (opcode == get_l32r_opcode ())
1677 {
1678 /* Handle the special-case of non-PC-relative L32R instructions. */
1679 bfd *output_bfd = input_section->output_section->owner;
1680 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1681 if (!lit4_sec)
1682 {
1683 *error_message = "relocation references missing .lit4 section";
1684 return bfd_reloc_dangerous;
1685 }
1686 self_address = ((lit4_sec->vma & ~0xfff)
1687 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1688 newval = relocation;
1689 opnd = 1;
1690 }
1691 else if (opcode == get_const16_opcode ())
1692 {
1693 /* ALT used for high 16 bits. */
1694 newval = relocation >> 16;
1695 opnd = 1;
1696 }
1697 else
1698 {
1699 /* No other "alternate" relocations currently defined. */
1700 *error_message = "unexpected relocation";
1701 return bfd_reloc_dangerous;
1702 }
1703 }
1704 else /* Not an "alternate" relocation.... */
1705 {
1706 if (opcode == get_const16_opcode ())
1707 {
1708 newval = relocation & 0xffff;
1709 opnd = 1;
1710 }
1711 else
1712 {
1713 /* ...normal PC-relative relocation.... */
1714
1715 /* Determine which operand is being relocated. */
1716 opnd = get_relocation_opnd (opcode, howto->type);
1717 if (opnd == XTENSA_UNDEFINED)
1718 {
1719 *error_message = "unexpected relocation";
1720 return bfd_reloc_dangerous;
1721 }
1722
1723 if (!howto->pc_relative)
1724 {
1725 *error_message = "expected PC-relative relocation";
1726 return bfd_reloc_dangerous;
1727 }
e0001a05 1728
43cd72b9
BW
1729 /* Calculate the PC address for this instruction. */
1730 self_address = (input_section->output_section->vma
1731 + input_section->output_offset
1732 + address);
e0001a05 1733
43cd72b9
BW
1734 newval = relocation;
1735 }
1736 }
e0001a05 1737
43cd72b9
BW
1738 /* Apply the relocation. */
1739 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1740 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1741 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1742 sbuff, newval))
e0001a05 1743 {
2db662be
BW
1744 const char *opname = xtensa_opcode_name (isa, opcode);
1745 const char *msg;
1746
1747 msg = "cannot encode";
1748 if (is_direct_call_opcode (opcode))
1749 {
1750 if ((relocation & 0x3) != 0)
1751 msg = "misaligned call target";
1752 else
1753 msg = "call target out of range";
1754 }
1755 else if (opcode == get_l32r_opcode ())
1756 {
1757 if ((relocation & 0x3) != 0)
1758 msg = "misaligned literal target";
1759 else if (is_alt_relocation (howto->type))
1760 msg = "literal target out of range (too many literals)";
1761 else if (self_address > relocation)
1762 msg = "literal target out of range (try using text-section-literals)";
1763 else
1764 msg = "literal placed after use";
1765 }
1766
1767 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1768 return bfd_reloc_dangerous;
1769 }
1770
43cd72b9 1771 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1772 if (is_direct_call_opcode (opcode)
1773 && is_windowed_call_opcode (opcode))
1774 {
43cd72b9
BW
1775 if ((self_address >> CALL_SEGMENT_BITS)
1776 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1777 {
43cd72b9
BW
1778 *error_message =
1779 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1780 return bfd_reloc_dangerous;
1781 }
1782 }
1783
43cd72b9
BW
1784 /* Write the modified instruction back out of the buffer. */
1785 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1786 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1787 input_size - address);
e0001a05
NC
1788 return bfd_reloc_ok;
1789}
1790
1791
2db662be 1792static char *
7fa3d080 1793vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1794{
1795 /* To reduce the size of the memory leak,
1796 we only use a single message buffer. */
1797 static bfd_size_type alloc_size = 0;
1798 static char *message = NULL;
1799 bfd_size_type orig_len, len = 0;
1800 bfd_boolean is_append;
1801
1802 VA_OPEN (ap, arglen);
1803 VA_FIXEDARG (ap, const char *, origmsg);
1804
1805 is_append = (origmsg == message);
1806
1807 orig_len = strlen (origmsg);
1808 len = orig_len + strlen (fmt) + arglen + 20;
1809 if (len > alloc_size)
1810 {
1811 message = (char *) bfd_realloc (message, len);
1812 alloc_size = len;
1813 }
1814 if (!is_append)
1815 memcpy (message, origmsg, orig_len);
1816 vsprintf (message + orig_len, fmt, ap);
1817 VA_CLOSE (ap);
1818 return message;
1819}
1820
1821
e0001a05
NC
1822/* This function is registered as the "special_function" in the
1823 Xtensa howto for handling simplify operations.
1824 bfd_perform_relocation / bfd_install_relocation use it to
1825 perform (install) the specified relocation. Since this replaces the code
1826 in bfd_perform_relocation, it is basically an Xtensa-specific,
1827 stripped-down version of bfd_perform_relocation. */
1828
1829static bfd_reloc_status_type
7fa3d080
BW
1830bfd_elf_xtensa_reloc (bfd *abfd,
1831 arelent *reloc_entry,
1832 asymbol *symbol,
1833 void *data,
1834 asection *input_section,
1835 bfd *output_bfd,
1836 char **error_message)
e0001a05
NC
1837{
1838 bfd_vma relocation;
1839 bfd_reloc_status_type flag;
1840 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1841 bfd_vma output_base = 0;
1842 reloc_howto_type *howto = reloc_entry->howto;
1843 asection *reloc_target_output_section;
1844 bfd_boolean is_weak_undef;
1845
dd1a320b
BW
1846 if (!xtensa_default_isa)
1847 xtensa_default_isa = xtensa_isa_init (0, 0);
1848
1049f94e 1849 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1850 output, and the reloc is against an external symbol, the resulting
1851 reloc will also be against the same symbol. In such a case, we
1852 don't want to change anything about the way the reloc is handled,
1853 since it will all be done at final link time. This test is similar
1854 to what bfd_elf_generic_reloc does except that it lets relocs with
1855 howto->partial_inplace go through even if the addend is non-zero.
1856 (The real problem is that partial_inplace is set for XTENSA_32
1857 relocs to begin with, but that's a long story and there's little we
1858 can do about it now....) */
1859
7fa3d080 1860 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1861 {
1862 reloc_entry->address += input_section->output_offset;
1863 return bfd_reloc_ok;
1864 }
1865
1866 /* Is the address of the relocation really within the section? */
07515404 1867 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1868 return bfd_reloc_outofrange;
1869
4cc11e76 1870 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1871 initial relocation command value. */
1872
1873 /* Get symbol value. (Common symbols are special.) */
1874 if (bfd_is_com_section (symbol->section))
1875 relocation = 0;
1876 else
1877 relocation = symbol->value;
1878
1879 reloc_target_output_section = symbol->section->output_section;
1880
1881 /* Convert input-section-relative symbol value to absolute. */
1882 if ((output_bfd && !howto->partial_inplace)
1883 || reloc_target_output_section == NULL)
1884 output_base = 0;
1885 else
1886 output_base = reloc_target_output_section->vma;
1887
1888 relocation += output_base + symbol->section->output_offset;
1889
1890 /* Add in supplied addend. */
1891 relocation += reloc_entry->addend;
1892
1893 /* Here the variable relocation holds the final address of the
1894 symbol we are relocating against, plus any addend. */
1895 if (output_bfd)
1896 {
1897 if (!howto->partial_inplace)
1898 {
1899 /* This is a partial relocation, and we want to apply the relocation
1900 to the reloc entry rather than the raw data. Everything except
1901 relocations against section symbols has already been handled
1902 above. */
43cd72b9 1903
e0001a05
NC
1904 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1905 reloc_entry->addend = relocation;
1906 reloc_entry->address += input_section->output_offset;
1907 return bfd_reloc_ok;
1908 }
1909 else
1910 {
1911 reloc_entry->address += input_section->output_offset;
1912 reloc_entry->addend = 0;
1913 }
1914 }
1915
1916 is_weak_undef = (bfd_is_und_section (symbol->section)
1917 && (symbol->flags & BSF_WEAK) != 0);
1918 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1919 (bfd_byte *) data, (bfd_vma) octets,
1920 is_weak_undef, error_message);
1921
1922 if (flag == bfd_reloc_dangerous)
1923 {
1924 /* Add the symbol name to the error message. */
1925 if (! *error_message)
1926 *error_message = "";
1927 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1928 strlen (symbol->name) + 17,
70961b9d
AM
1929 symbol->name,
1930 (unsigned long) reloc_entry->addend);
e0001a05
NC
1931 }
1932
1933 return flag;
1934}
1935
1936
1937/* Set up an entry in the procedure linkage table. */
1938
1939static bfd_vma
7fa3d080
BW
1940elf_xtensa_create_plt_entry (bfd *dynobj,
1941 bfd *output_bfd,
1942 unsigned reloc_index)
e0001a05
NC
1943{
1944 asection *splt, *sgotplt;
1945 bfd_vma plt_base, got_base;
1946 bfd_vma code_offset, lit_offset;
1947 int chunk;
1948
1949 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1950 splt = elf_xtensa_get_plt_section (dynobj, chunk);
1951 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1952 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1953
1954 plt_base = splt->output_section->vma + splt->output_offset;
1955 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1956
1957 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1958 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1959
1960 /* Fill in the literal entry. This is the offset of the dynamic
1961 relocation entry. */
1962 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1963 sgotplt->contents + lit_offset);
1964
1965 /* Fill in the entry in the procedure linkage table. */
1966 memcpy (splt->contents + code_offset,
1967 (bfd_big_endian (output_bfd)
1968 ? elf_xtensa_be_plt_entry
1969 : elf_xtensa_le_plt_entry),
1970 PLT_ENTRY_SIZE);
1971 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1972 plt_base + code_offset + 3),
1973 splt->contents + code_offset + 4);
1974 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1975 plt_base + code_offset + 6),
1976 splt->contents + code_offset + 7);
1977 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1978 plt_base + code_offset + 9),
1979 splt->contents + code_offset + 10);
1980
1981 return plt_base + code_offset;
1982}
1983
1984
e0001a05 1985/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1986 both relocatable and final links. */
e0001a05
NC
1987
1988static bfd_boolean
7fa3d080
BW
1989elf_xtensa_relocate_section (bfd *output_bfd,
1990 struct bfd_link_info *info,
1991 bfd *input_bfd,
1992 asection *input_section,
1993 bfd_byte *contents,
1994 Elf_Internal_Rela *relocs,
1995 Elf_Internal_Sym *local_syms,
1996 asection **local_sections)
e0001a05
NC
1997{
1998 Elf_Internal_Shdr *symtab_hdr;
1999 Elf_Internal_Rela *rel;
2000 Elf_Internal_Rela *relend;
2001 struct elf_link_hash_entry **sym_hashes;
2002 asection *srelgot, *srelplt;
2003 bfd *dynobj;
88d65ad6
BW
2004 property_table_entry *lit_table = 0;
2005 int ltblsize = 0;
e0001a05 2006 char *error_message = NULL;
43cd72b9 2007 bfd_size_type input_size;
e0001a05 2008
43cd72b9
BW
2009 if (!xtensa_default_isa)
2010 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05
NC
2011
2012 dynobj = elf_hash_table (info)->dynobj;
2013 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2014 sym_hashes = elf_sym_hashes (input_bfd);
2015
2016 srelgot = NULL;
2017 srelplt = NULL;
7fa3d080 2018 if (dynobj)
e0001a05
NC
2019 {
2020 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2021 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2022 }
2023
88d65ad6
BW
2024 if (elf_hash_table (info)->dynamic_sections_created)
2025 {
2026 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2027 &lit_table, XTENSA_LIT_SEC_NAME,
2028 TRUE);
88d65ad6
BW
2029 if (ltblsize < 0)
2030 return FALSE;
2031 }
2032
43cd72b9
BW
2033 input_size = bfd_get_section_limit (input_bfd, input_section);
2034
e0001a05
NC
2035 rel = relocs;
2036 relend = relocs + input_section->reloc_count;
2037 for (; rel < relend; rel++)
2038 {
2039 int r_type;
2040 reloc_howto_type *howto;
2041 unsigned long r_symndx;
2042 struct elf_link_hash_entry *h;
2043 Elf_Internal_Sym *sym;
2044 asection *sec;
2045 bfd_vma relocation;
2046 bfd_reloc_status_type r;
2047 bfd_boolean is_weak_undef;
2048 bfd_boolean unresolved_reloc;
9b8c98a4 2049 bfd_boolean warned;
e0001a05
NC
2050
2051 r_type = ELF32_R_TYPE (rel->r_info);
2052 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2053 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2054 continue;
2055
2056 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2057 {
2058 bfd_set_error (bfd_error_bad_value);
2059 return FALSE;
2060 }
2061 howto = &elf_howto_table[r_type];
2062
2063 r_symndx = ELF32_R_SYM (rel->r_info);
2064
1049f94e 2065 if (info->relocatable)
e0001a05 2066 {
43cd72b9 2067 /* This is a relocatable link.
e0001a05
NC
2068 1) If the reloc is against a section symbol, adjust
2069 according to the output section.
2070 2) If there is a new target for this relocation,
2071 the new target will be in the same output section.
2072 We adjust the relocation by the output section
2073 difference. */
2074
2075 if (relaxing_section)
2076 {
2077 /* Check if this references a section in another input file. */
43cd72b9
BW
2078 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2079 contents))
2080 return FALSE;
e0001a05
NC
2081 r_type = ELF32_R_TYPE (rel->r_info);
2082 }
2083
43cd72b9 2084 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2085 {
43cd72b9 2086 char *error_message = NULL;
e0001a05
NC
2087 /* Convert ASM_SIMPLIFY into the simpler relocation
2088 so that they never escape a relaxing link. */
43cd72b9
BW
2089 r = contract_asm_expansion (contents, input_size, rel,
2090 &error_message);
2091 if (r != bfd_reloc_ok)
2092 {
2093 if (!((*info->callbacks->reloc_dangerous)
2094 (info, error_message, input_bfd, input_section,
2095 rel->r_offset)))
2096 return FALSE;
2097 }
e0001a05
NC
2098 r_type = ELF32_R_TYPE (rel->r_info);
2099 }
2100
1049f94e 2101 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2102 anything unless the reloc is against a section symbol,
2103 in which case we have to adjust according to where the
2104 section symbol winds up in the output section. */
2105 if (r_symndx < symtab_hdr->sh_info)
2106 {
2107 sym = local_syms + r_symndx;
2108 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2109 {
2110 sec = local_sections[r_symndx];
2111 rel->r_addend += sec->output_offset + sym->st_value;
2112 }
2113 }
2114
2115 /* If there is an addend with a partial_inplace howto,
2116 then move the addend to the contents. This is a hack
1049f94e 2117 to work around problems with DWARF in relocatable links
e0001a05
NC
2118 with some previous version of BFD. Now we can't easily get
2119 rid of the hack without breaking backward compatibility.... */
2120 if (rel->r_addend)
2121 {
2122 howto = &elf_howto_table[r_type];
2123 if (howto->partial_inplace)
2124 {
2125 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2126 rel->r_addend, contents,
2127 rel->r_offset, FALSE,
2128 &error_message);
2129 if (r != bfd_reloc_ok)
2130 {
2131 if (!((*info->callbacks->reloc_dangerous)
2132 (info, error_message, input_bfd, input_section,
2133 rel->r_offset)))
2134 return FALSE;
2135 }
2136 rel->r_addend = 0;
2137 }
2138 }
2139
1049f94e 2140 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2141 continue;
2142 }
2143
2144 /* This is a final link. */
2145
2146 h = NULL;
2147 sym = NULL;
2148 sec = NULL;
2149 is_weak_undef = FALSE;
2150 unresolved_reloc = FALSE;
9b8c98a4 2151 warned = FALSE;
e0001a05
NC
2152
2153 if (howto->partial_inplace)
2154 {
2155 /* Because R_XTENSA_32 was made partial_inplace to fix some
2156 problems with DWARF info in partial links, there may be
2157 an addend stored in the contents. Take it out of there
2158 and move it back into the addend field of the reloc. */
2159 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2160 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2161 }
2162
2163 if (r_symndx < symtab_hdr->sh_info)
2164 {
2165 sym = local_syms + r_symndx;
2166 sec = local_sections[r_symndx];
8517fae7 2167 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
e0001a05
NC
2168 }
2169 else
2170 {
b2a8e766
AM
2171 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2172 r_symndx, symtab_hdr, sym_hashes,
2173 h, sec, relocation,
2174 unresolved_reloc, warned);
560e09e9
NC
2175
2176 if (relocation == 0
2177 && !unresolved_reloc
2178 && h->root.type == bfd_link_hash_undefweak)
e0001a05 2179 is_weak_undef = TRUE;
e0001a05
NC
2180 }
2181
2182 if (relaxing_section)
2183 {
2184 /* Check if this references a section in another input file. */
43cd72b9
BW
2185 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2186 &relocation);
e0001a05
NC
2187
2188 /* Update some already cached values. */
2189 r_type = ELF32_R_TYPE (rel->r_info);
2190 howto = &elf_howto_table[r_type];
2191 }
2192
2193 /* Sanity check the address. */
43cd72b9 2194 if (rel->r_offset >= input_size
e0001a05
NC
2195 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2196 {
43cd72b9
BW
2197 (*_bfd_error_handler)
2198 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2199 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2200 bfd_set_error (bfd_error_bad_value);
2201 return FALSE;
2202 }
2203
2204 /* Generate dynamic relocations. */
2205 if (elf_hash_table (info)->dynamic_sections_created)
2206 {
571b5725 2207 bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05 2208
43cd72b9 2209 if (dynamic_symbol && is_operand_relocation (r_type))
e0001a05
NC
2210 {
2211 /* This is an error. The symbol's real value won't be known
2212 until runtime and it's likely to be out of range anyway. */
2213 const char *name = h->root.root.string;
2214 error_message = vsprint_msg ("invalid relocation for dynamic "
2215 "symbol", ": %s",
2216 strlen (name) + 2, name);
2217 if (!((*info->callbacks->reloc_dangerous)
2218 (info, error_message, input_bfd, input_section,
2219 rel->r_offset)))
2220 return FALSE;
2221 }
2222 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2223 && (input_section->flags & SEC_ALLOC) != 0
2224 && (dynamic_symbol || info->shared))
2225 {
2226 Elf_Internal_Rela outrel;
2227 bfd_byte *loc;
2228 asection *srel;
2229
2230 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2231 srel = srelplt;
2232 else
2233 srel = srelgot;
2234
2235 BFD_ASSERT (srel != NULL);
2236
2237 outrel.r_offset =
2238 _bfd_elf_section_offset (output_bfd, info,
2239 input_section, rel->r_offset);
2240
2241 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2242 memset (&outrel, 0, sizeof outrel);
2243 else
2244 {
f0578e28
BW
2245 outrel.r_offset += (input_section->output_section->vma
2246 + input_section->output_offset);
e0001a05 2247
88d65ad6
BW
2248 /* Complain if the relocation is in a read-only section
2249 and not in a literal pool. */
2250 if ((input_section->flags & SEC_READONLY) != 0
2251 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2252 outrel.r_offset))
88d65ad6
BW
2253 {
2254 error_message =
2255 _("dynamic relocation in read-only section");
2256 if (!((*info->callbacks->reloc_dangerous)
2257 (info, error_message, input_bfd, input_section,
2258 rel->r_offset)))
2259 return FALSE;
2260 }
2261
e0001a05
NC
2262 if (dynamic_symbol)
2263 {
2264 outrel.r_addend = rel->r_addend;
2265 rel->r_addend = 0;
2266
2267 if (r_type == R_XTENSA_32)
2268 {
2269 outrel.r_info =
2270 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2271 relocation = 0;
2272 }
2273 else /* r_type == R_XTENSA_PLT */
2274 {
2275 outrel.r_info =
2276 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2277
2278 /* Create the PLT entry and set the initial
2279 contents of the literal entry to the address of
2280 the PLT entry. */
43cd72b9 2281 relocation =
e0001a05
NC
2282 elf_xtensa_create_plt_entry (dynobj, output_bfd,
2283 srel->reloc_count);
2284 }
2285 unresolved_reloc = FALSE;
2286 }
2287 else
2288 {
2289 /* Generate a RELATIVE relocation. */
2290 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2291 outrel.r_addend = 0;
2292 }
2293 }
2294
2295 loc = (srel->contents
2296 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2297 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2298 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2299 <= srel->size);
e0001a05
NC
2300 }
2301 }
2302
2303 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2304 because such sections are not SEC_ALLOC and thus ld.so will
2305 not process them. */
2306 if (unresolved_reloc
2307 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2308 && h->def_dynamic))
e0001a05 2309 (*_bfd_error_handler)
843fe662 2310 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
d003868e
AM
2311 input_bfd,
2312 input_section,
e0001a05 2313 (long) rel->r_offset,
843fe662 2314 howto->name,
e0001a05
NC
2315 h->root.root.string);
2316
2317 /* There's no point in calling bfd_perform_relocation here.
2318 Just go directly to our "special function". */
2319 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2320 relocation + rel->r_addend,
2321 contents, rel->r_offset, is_weak_undef,
2322 &error_message);
43cd72b9 2323
9b8c98a4 2324 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2325 {
2326 const char *name;
2327
43cd72b9 2328 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2329 BFD_ASSERT (error_message != NULL);
e0001a05 2330
7fa3d080 2331 if (h)
e0001a05
NC
2332 name = h->root.root.string;
2333 else
2334 {
2335 name = bfd_elf_string_from_elf_section
2336 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2337 if (name && *name == '\0')
2338 name = bfd_section_name (input_bfd, sec);
2339 }
2340 if (name)
43cd72b9
BW
2341 {
2342 if (rel->r_addend == 0)
2343 error_message = vsprint_msg (error_message, ": %s",
2344 strlen (name) + 2, name);
2345 else
2346 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2347 strlen (name) + 22,
0fd3a477 2348 name, (int)rel->r_addend);
43cd72b9
BW
2349 }
2350
e0001a05
NC
2351 if (!((*info->callbacks->reloc_dangerous)
2352 (info, error_message, input_bfd, input_section,
2353 rel->r_offset)))
2354 return FALSE;
2355 }
2356 }
2357
88d65ad6
BW
2358 if (lit_table)
2359 free (lit_table);
2360
3ba3bc8c
BW
2361 input_section->reloc_done = TRUE;
2362
e0001a05
NC
2363 return TRUE;
2364}
2365
2366
2367/* Finish up dynamic symbol handling. There's not much to do here since
2368 the PLT and GOT entries are all set up by relocate_section. */
2369
2370static bfd_boolean
7fa3d080
BW
2371elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2372 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2373 struct elf_link_hash_entry *h,
2374 Elf_Internal_Sym *sym)
e0001a05 2375{
f5385ebf
AM
2376 if (h->needs_plt
2377 && !h->def_regular)
e0001a05
NC
2378 {
2379 /* Mark the symbol as undefined, rather than as defined in
2380 the .plt section. Leave the value alone. */
2381 sym->st_shndx = SHN_UNDEF;
2382 }
2383
2384 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2385 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 2386 || h == elf_hash_table (info)->hgot)
e0001a05
NC
2387 sym->st_shndx = SHN_ABS;
2388
2389 return TRUE;
2390}
2391
2392
2393/* Combine adjacent literal table entries in the output. Adjacent
2394 entries within each input section may have been removed during
2395 relaxation, but we repeat the process here, even though it's too late
2396 to shrink the output section, because it's important to minimize the
2397 number of literal table entries to reduce the start-up work for the
2398 runtime linker. Returns the number of remaining table entries or -1
2399 on error. */
2400
2401static int
7fa3d080
BW
2402elf_xtensa_combine_prop_entries (bfd *output_bfd,
2403 asection *sxtlit,
2404 asection *sgotloc)
e0001a05 2405{
e0001a05
NC
2406 bfd_byte *contents;
2407 property_table_entry *table;
e901de89 2408 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2409 bfd_vma offset;
2410 int n, m, num;
2411
eea6121a 2412 section_size = sxtlit->size;
e0001a05
NC
2413 BFD_ASSERT (section_size % 8 == 0);
2414 num = section_size / 8;
2415
eea6121a 2416 sgotloc_size = sgotloc->size;
e901de89 2417 if (sgotloc_size != section_size)
b536dc1e
BW
2418 {
2419 (*_bfd_error_handler)
43cd72b9 2420 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2421 return -1;
2422 }
e901de89 2423
eea6121a
AM
2424 table = bfd_malloc (num * sizeof (property_table_entry));
2425 if (table == 0)
e0001a05
NC
2426 return -1;
2427
2428 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2429 propagates to the output section, where it doesn't really apply and
eea6121a 2430 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2431 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2432
eea6121a
AM
2433 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2434 {
2435 if (contents != 0)
2436 free (contents);
2437 free (table);
2438 return -1;
2439 }
e0001a05
NC
2440
2441 /* There should never be any relocations left at this point, so this
2442 is quite a bit easier than what is done during relaxation. */
2443
2444 /* Copy the raw contents into a property table array and sort it. */
2445 offset = 0;
2446 for (n = 0; n < num; n++)
2447 {
2448 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2449 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2450 offset += 8;
2451 }
2452 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2453
2454 for (n = 0; n < num; n++)
2455 {
2456 bfd_boolean remove = FALSE;
2457
2458 if (table[n].size == 0)
2459 remove = TRUE;
2460 else if (n > 0 &&
2461 (table[n-1].address + table[n-1].size == table[n].address))
2462 {
2463 table[n-1].size += table[n].size;
2464 remove = TRUE;
2465 }
2466
2467 if (remove)
2468 {
2469 for (m = n; m < num - 1; m++)
2470 {
2471 table[m].address = table[m+1].address;
2472 table[m].size = table[m+1].size;
2473 }
2474
2475 n--;
2476 num--;
2477 }
2478 }
2479
2480 /* Copy the data back to the raw contents. */
2481 offset = 0;
2482 for (n = 0; n < num; n++)
2483 {
2484 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2485 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2486 offset += 8;
2487 }
2488
2489 /* Clear the removed bytes. */
2490 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2491 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2492
e901de89
BW
2493 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2494 section_size))
e0001a05
NC
2495 return -1;
2496
e901de89
BW
2497 /* Copy the contents to ".got.loc". */
2498 memcpy (sgotloc->contents, contents, section_size);
2499
e0001a05 2500 free (contents);
b614a702 2501 free (table);
e0001a05
NC
2502 return num;
2503}
2504
2505
2506/* Finish up the dynamic sections. */
2507
2508static bfd_boolean
7fa3d080
BW
2509elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2510 struct bfd_link_info *info)
e0001a05
NC
2511{
2512 bfd *dynobj;
e901de89 2513 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05
NC
2514 Elf32_External_Dyn *dyncon, *dynconend;
2515 int num_xtlit_entries;
2516
2517 if (! elf_hash_table (info)->dynamic_sections_created)
2518 return TRUE;
2519
2520 dynobj = elf_hash_table (info)->dynobj;
2521 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2522 BFD_ASSERT (sdyn != NULL);
2523
2524 /* Set the first entry in the global offset table to the address of
2525 the dynamic section. */
2526 sgot = bfd_get_section_by_name (dynobj, ".got");
2527 if (sgot)
2528 {
eea6121a 2529 BFD_ASSERT (sgot->size == 4);
e0001a05 2530 if (sdyn == NULL)
7fa3d080 2531 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2532 else
2533 bfd_put_32 (output_bfd,
2534 sdyn->output_section->vma + sdyn->output_offset,
2535 sgot->contents);
2536 }
2537
2538 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
7fa3d080 2539 if (srelplt && srelplt->size != 0)
e0001a05
NC
2540 {
2541 asection *sgotplt, *srelgot, *spltlittbl;
2542 int chunk, plt_chunks, plt_entries;
2543 Elf_Internal_Rela irela;
2544 bfd_byte *loc;
2545 unsigned rtld_reloc;
2546
2547 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2548 BFD_ASSERT (srelgot != NULL);
2549
2550 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
2551 BFD_ASSERT (spltlittbl != NULL);
2552
2553 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2554 of them follow immediately after.... */
2555 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2556 {
2557 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2558 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2559 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2560 break;
2561 }
2562 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2563
eea6121a 2564 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2565 plt_chunks =
2566 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2567
2568 for (chunk = 0; chunk < plt_chunks; chunk++)
2569 {
2570 int chunk_entries = 0;
2571
2572 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
2573 BFD_ASSERT (sgotplt != NULL);
2574
2575 /* Emit special RTLD relocations for the first two entries in
2576 each chunk of the .got.plt section. */
2577
2578 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2579 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2580 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2581 irela.r_offset = (sgotplt->output_section->vma
2582 + sgotplt->output_offset);
2583 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2584 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2585 rtld_reloc += 1;
2586 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2587
2588 /* Next literal immediately follows the first. */
2589 loc += sizeof (Elf32_External_Rela);
2590 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2591 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2592 irela.r_offset = (sgotplt->output_section->vma
2593 + sgotplt->output_offset + 4);
2594 /* Tell rtld to set value to object's link map. */
2595 irela.r_addend = 2;
2596 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2597 rtld_reloc += 1;
2598 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2599
2600 /* Fill in the literal table. */
2601 if (chunk < plt_chunks - 1)
2602 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2603 else
2604 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2605
eea6121a 2606 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2607 bfd_put_32 (output_bfd,
2608 sgotplt->output_section->vma + sgotplt->output_offset,
2609 spltlittbl->contents + (chunk * 8) + 0);
2610 bfd_put_32 (output_bfd,
2611 8 + (chunk_entries * 4),
2612 spltlittbl->contents + (chunk * 8) + 4);
2613 }
2614
2615 /* All the dynamic relocations have been emitted at this point.
2616 Make sure the relocation sections are the correct size. */
eea6121a
AM
2617 if (srelgot->size != (sizeof (Elf32_External_Rela)
2618 * srelgot->reloc_count)
2619 || srelplt->size != (sizeof (Elf32_External_Rela)
2620 * srelplt->reloc_count))
e0001a05
NC
2621 abort ();
2622
2623 /* The .xt.lit.plt section has just been modified. This must
2624 happen before the code below which combines adjacent literal
2625 table entries, and the .xt.lit.plt contents have to be forced to
2626 the output here. */
2627 if (! bfd_set_section_contents (output_bfd,
2628 spltlittbl->output_section,
2629 spltlittbl->contents,
2630 spltlittbl->output_offset,
eea6121a 2631 spltlittbl->size))
e0001a05
NC
2632 return FALSE;
2633 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2634 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2635 }
2636
2637 /* Combine adjacent literal table entries. */
1049f94e 2638 BFD_ASSERT (! info->relocatable);
e901de89
BW
2639 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2640 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
b536dc1e 2641 BFD_ASSERT (sxtlit && sgotloc);
e901de89
BW
2642 num_xtlit_entries =
2643 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
e0001a05
NC
2644 if (num_xtlit_entries < 0)
2645 return FALSE;
2646
2647 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2648 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2649 for (; dyncon < dynconend; dyncon++)
2650 {
2651 Elf_Internal_Dyn dyn;
2652 const char *name;
2653 asection *s;
2654
2655 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2656
2657 switch (dyn.d_tag)
2658 {
2659 default:
2660 break;
2661
2662 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2663 dyn.d_un.d_val = num_xtlit_entries;
2664 break;
2665
2666 case DT_XTENSA_GOT_LOC_OFF:
e901de89 2667 name = ".got.loc";
e0001a05
NC
2668 goto get_vma;
2669 case DT_PLTGOT:
2670 name = ".got";
2671 goto get_vma;
2672 case DT_JMPREL:
2673 name = ".rela.plt";
2674 get_vma:
2675 s = bfd_get_section_by_name (output_bfd, name);
2676 BFD_ASSERT (s);
2677 dyn.d_un.d_ptr = s->vma;
2678 break;
2679
2680 case DT_PLTRELSZ:
2681 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2682 BFD_ASSERT (s);
eea6121a 2683 dyn.d_un.d_val = s->size;
e0001a05
NC
2684 break;
2685
2686 case DT_RELASZ:
2687 /* Adjust RELASZ to not include JMPREL. This matches what
2688 glibc expects and what is done for several other ELF
2689 targets (e.g., i386, alpha), but the "correct" behavior
2690 seems to be unresolved. Since the linker script arranges
2691 for .rela.plt to follow all other relocation sections, we
2692 don't have to worry about changing the DT_RELA entry. */
2693 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2694 if (s)
eea6121a 2695 dyn.d_un.d_val -= s->size;
e0001a05
NC
2696 break;
2697 }
2698
2699 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2700 }
2701
2702 return TRUE;
2703}
2704
2705\f
2706/* Functions for dealing with the e_flags field. */
2707
2708/* Merge backend specific data from an object file to the output
2709 object file when linking. */
2710
2711static bfd_boolean
7fa3d080 2712elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2713{
2714 unsigned out_mach, in_mach;
2715 flagword out_flag, in_flag;
2716
2717 /* Check if we have the same endianess. */
2718 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2719 return FALSE;
2720
2721 /* Don't even pretend to support mixed-format linking. */
2722 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2723 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2724 return FALSE;
2725
2726 out_flag = elf_elfheader (obfd)->e_flags;
2727 in_flag = elf_elfheader (ibfd)->e_flags;
2728
2729 out_mach = out_flag & EF_XTENSA_MACH;
2730 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2731 if (out_mach != in_mach)
e0001a05
NC
2732 {
2733 (*_bfd_error_handler)
43cd72b9 2734 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2735 ibfd, out_mach, in_mach);
e0001a05
NC
2736 bfd_set_error (bfd_error_wrong_format);
2737 return FALSE;
2738 }
2739
2740 if (! elf_flags_init (obfd))
2741 {
2742 elf_flags_init (obfd) = TRUE;
2743 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2744
e0001a05
NC
2745 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2746 && bfd_get_arch_info (obfd)->the_default)
2747 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2748 bfd_get_mach (ibfd));
43cd72b9 2749
e0001a05
NC
2750 return TRUE;
2751 }
2752
43cd72b9
BW
2753 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2754 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2755
43cd72b9
BW
2756 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2757 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2758
2759 return TRUE;
2760}
2761
2762
2763static bfd_boolean
7fa3d080 2764elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2765{
2766 BFD_ASSERT (!elf_flags_init (abfd)
2767 || elf_elfheader (abfd)->e_flags == flags);
2768
2769 elf_elfheader (abfd)->e_flags |= flags;
2770 elf_flags_init (abfd) = TRUE;
2771
2772 return TRUE;
2773}
2774
2775
e0001a05 2776static bfd_boolean
7fa3d080 2777elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2778{
2779 FILE *f = (FILE *) farg;
2780 flagword e_flags = elf_elfheader (abfd)->e_flags;
2781
2782 fprintf (f, "\nXtensa header:\n");
43cd72b9 2783 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2784 fprintf (f, "\nMachine = Base\n");
2785 else
2786 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2787
2788 fprintf (f, "Insn tables = %s\n",
2789 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2790
2791 fprintf (f, "Literal tables = %s\n",
2792 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2793
2794 return _bfd_elf_print_private_bfd_data (abfd, farg);
2795}
2796
2797
2798/* Set the right machine number for an Xtensa ELF file. */
2799
2800static bfd_boolean
7fa3d080 2801elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2802{
2803 int mach;
2804 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2805
2806 switch (arch)
2807 {
2808 case E_XTENSA_MACH:
2809 mach = bfd_mach_xtensa;
2810 break;
2811 default:
2812 return FALSE;
2813 }
2814
2815 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2816 return TRUE;
2817}
2818
2819
2820/* The final processing done just before writing out an Xtensa ELF object
2821 file. This gets the Xtensa architecture right based on the machine
2822 number. */
2823
2824static void
7fa3d080
BW
2825elf_xtensa_final_write_processing (bfd *abfd,
2826 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2827{
2828 int mach;
2829 unsigned long val;
2830
2831 switch (mach = bfd_get_mach (abfd))
2832 {
2833 case bfd_mach_xtensa:
2834 val = E_XTENSA_MACH;
2835 break;
2836 default:
2837 return;
2838 }
2839
2840 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2841 elf_elfheader (abfd)->e_flags |= val;
2842}
2843
2844
2845static enum elf_reloc_type_class
7fa3d080 2846elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2847{
2848 switch ((int) ELF32_R_TYPE (rela->r_info))
2849 {
2850 case R_XTENSA_RELATIVE:
2851 return reloc_class_relative;
2852 case R_XTENSA_JMP_SLOT:
2853 return reloc_class_plt;
2854 default:
2855 return reloc_class_normal;
2856 }
2857}
2858
2859\f
2860static bfd_boolean
7fa3d080
BW
2861elf_xtensa_discard_info_for_section (bfd *abfd,
2862 struct elf_reloc_cookie *cookie,
2863 struct bfd_link_info *info,
2864 asection *sec)
e0001a05
NC
2865{
2866 bfd_byte *contents;
2867 bfd_vma section_size;
2868 bfd_vma offset, actual_offset;
2869 size_t removed_bytes = 0;
2870
eea6121a 2871 section_size = sec->size;
e0001a05
NC
2872 if (section_size == 0 || section_size % 8 != 0)
2873 return FALSE;
2874
2875 if (sec->output_section
2876 && bfd_is_abs_section (sec->output_section))
2877 return FALSE;
2878
2879 contents = retrieve_contents (abfd, sec, info->keep_memory);
2880 if (!contents)
2881 return FALSE;
2882
2883 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2884 if (!cookie->rels)
2885 {
2886 release_contents (sec, contents);
2887 return FALSE;
2888 }
2889
2890 cookie->rel = cookie->rels;
2891 cookie->relend = cookie->rels + sec->reloc_count;
2892
2893 for (offset = 0; offset < section_size; offset += 8)
2894 {
2895 actual_offset = offset - removed_bytes;
2896
2897 /* The ...symbol_deleted_p function will skip over relocs but it
2898 won't adjust their offsets, so do that here. */
2899 while (cookie->rel < cookie->relend
2900 && cookie->rel->r_offset < offset)
2901 {
2902 cookie->rel->r_offset -= removed_bytes;
2903 cookie->rel++;
2904 }
2905
2906 while (cookie->rel < cookie->relend
2907 && cookie->rel->r_offset == offset)
2908 {
c152c796 2909 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2910 {
2911 /* Remove the table entry. (If the reloc type is NONE, then
2912 the entry has already been merged with another and deleted
2913 during relaxation.) */
2914 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2915 {
2916 /* Shift the contents up. */
2917 if (offset + 8 < section_size)
2918 memmove (&contents[actual_offset],
2919 &contents[actual_offset+8],
2920 section_size - offset - 8);
2921 removed_bytes += 8;
2922 }
2923
2924 /* Remove this relocation. */
2925 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2926 }
2927
2928 /* Adjust the relocation offset for previous removals. This
2929 should not be done before calling ...symbol_deleted_p
2930 because it might mess up the offset comparisons there.
2931 Make sure the offset doesn't underflow in the case where
2932 the first entry is removed. */
2933 if (cookie->rel->r_offset >= removed_bytes)
2934 cookie->rel->r_offset -= removed_bytes;
2935 else
2936 cookie->rel->r_offset = 0;
2937
2938 cookie->rel++;
2939 }
2940 }
2941
2942 if (removed_bytes != 0)
2943 {
2944 /* Adjust any remaining relocs (shouldn't be any). */
2945 for (; cookie->rel < cookie->relend; cookie->rel++)
2946 {
2947 if (cookie->rel->r_offset >= removed_bytes)
2948 cookie->rel->r_offset -= removed_bytes;
2949 else
2950 cookie->rel->r_offset = 0;
2951 }
2952
2953 /* Clear the removed bytes. */
2954 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2955
2956 pin_contents (sec, contents);
2957 pin_internal_relocs (sec, cookie->rels);
2958
eea6121a
AM
2959 /* Shrink size. */
2960 sec->size = section_size - removed_bytes;
b536dc1e
BW
2961
2962 if (xtensa_is_littable_section (sec))
2963 {
2964 bfd *dynobj = elf_hash_table (info)->dynobj;
2965 if (dynobj)
2966 {
2967 asection *sgotloc =
2968 bfd_get_section_by_name (dynobj, ".got.loc");
2969 if (sgotloc)
eea6121a 2970 sgotloc->size -= removed_bytes;
b536dc1e
BW
2971 }
2972 }
e0001a05
NC
2973 }
2974 else
2975 {
2976 release_contents (sec, contents);
2977 release_internal_relocs (sec, cookie->rels);
2978 }
2979
2980 return (removed_bytes != 0);
2981}
2982
2983
2984static bfd_boolean
7fa3d080
BW
2985elf_xtensa_discard_info (bfd *abfd,
2986 struct elf_reloc_cookie *cookie,
2987 struct bfd_link_info *info)
e0001a05
NC
2988{
2989 asection *sec;
2990 bfd_boolean changed = FALSE;
2991
2992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2993 {
2994 if (xtensa_is_property_section (sec))
2995 {
2996 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2997 changed = TRUE;
2998 }
2999 }
3000
3001 return changed;
3002}
3003
3004
3005static bfd_boolean
7fa3d080 3006elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3007{
3008 return xtensa_is_property_section (sec);
3009}
3010
3011\f
3012/* Support for core dump NOTE sections. */
3013
3014static bfd_boolean
7fa3d080 3015elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3016{
3017 int offset;
eea6121a 3018 unsigned int size;
e0001a05
NC
3019
3020 /* The size for Xtensa is variable, so don't try to recognize the format
3021 based on the size. Just assume this is GNU/Linux. */
3022
3023 /* pr_cursig */
3024 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3025
3026 /* pr_pid */
3027 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3028
3029 /* pr_reg */
3030 offset = 72;
eea6121a 3031 size = note->descsz - offset - 4;
e0001a05
NC
3032
3033 /* Make a ".reg/999" section. */
3034 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3035 size, note->descpos + offset);
e0001a05
NC
3036}
3037
3038
3039static bfd_boolean
7fa3d080 3040elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3041{
3042 switch (note->descsz)
3043 {
3044 default:
3045 return FALSE;
3046
3047 case 128: /* GNU/Linux elf_prpsinfo */
3048 elf_tdata (abfd)->core_program
3049 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3050 elf_tdata (abfd)->core_command
3051 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3052 }
3053
3054 /* Note that for some reason, a spurious space is tacked
3055 onto the end of the args in some (at least one anyway)
3056 implementations, so strip it off if it exists. */
3057
3058 {
3059 char *command = elf_tdata (abfd)->core_command;
3060 int n = strlen (command);
3061
3062 if (0 < n && command[n - 1] == ' ')
3063 command[n - 1] = '\0';
3064 }
3065
3066 return TRUE;
3067}
3068
3069\f
3070/* Generic Xtensa configurability stuff. */
3071
3072static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3073static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3074static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3075static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3076static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3077static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3078static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3079static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3080
3081static void
7fa3d080 3082init_call_opcodes (void)
e0001a05
NC
3083{
3084 if (callx0_op == XTENSA_UNDEFINED)
3085 {
3086 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3087 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3088 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3089 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3090 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3091 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3092 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3093 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3094 }
3095}
3096
3097
3098static bfd_boolean
7fa3d080 3099is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3100{
3101 init_call_opcodes ();
3102 return (opcode == callx0_op
3103 || opcode == callx4_op
3104 || opcode == callx8_op
3105 || opcode == callx12_op);
3106}
3107
3108
3109static bfd_boolean
7fa3d080 3110is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3111{
3112 init_call_opcodes ();
3113 return (opcode == call0_op
3114 || opcode == call4_op
3115 || opcode == call8_op
3116 || opcode == call12_op);
3117}
3118
3119
3120static bfd_boolean
7fa3d080 3121is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3122{
3123 init_call_opcodes ();
3124 return (opcode == call4_op
3125 || opcode == call8_op
3126 || opcode == call12_op
3127 || opcode == callx4_op
3128 || opcode == callx8_op
3129 || opcode == callx12_op);
3130}
3131
3132
43cd72b9
BW
3133static xtensa_opcode
3134get_const16_opcode (void)
3135{
3136 static bfd_boolean done_lookup = FALSE;
3137 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3138 if (!done_lookup)
3139 {
3140 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3141 done_lookup = TRUE;
3142 }
3143 return const16_opcode;
3144}
3145
3146
e0001a05
NC
3147static xtensa_opcode
3148get_l32r_opcode (void)
3149{
3150 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3151 static bfd_boolean done_lookup = FALSE;
3152
3153 if (!done_lookup)
e0001a05
NC
3154 {
3155 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3156 done_lookup = TRUE;
e0001a05
NC
3157 }
3158 return l32r_opcode;
3159}
3160
3161
3162static bfd_vma
7fa3d080 3163l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3164{
3165 bfd_vma offset;
3166
3167 offset = addr - ((pc+3) & -4);
3168 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3169 offset = (signed int) offset >> 2;
3170 BFD_ASSERT ((signed int) offset >> 16 == -1);
3171 return offset;
3172}
3173
3174
e0001a05 3175static int
7fa3d080 3176get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3177{
43cd72b9
BW
3178 xtensa_isa isa = xtensa_default_isa;
3179 int last_immed, last_opnd, opi;
3180
3181 if (opcode == XTENSA_UNDEFINED)
3182 return XTENSA_UNDEFINED;
3183
3184 /* Find the last visible PC-relative immediate operand for the opcode.
3185 If there are no PC-relative immediates, then choose the last visible
3186 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3187 last_immed = XTENSA_UNDEFINED;
3188 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3189 for (opi = last_opnd - 1; opi >= 0; opi--)
3190 {
3191 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3192 continue;
3193 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3194 {
3195 last_immed = opi;
3196 break;
3197 }
3198 if (last_immed == XTENSA_UNDEFINED
3199 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3200 last_immed = opi;
3201 }
3202 if (last_immed < 0)
3203 return XTENSA_UNDEFINED;
3204
3205 /* If the operand number was specified in an old-style relocation,
3206 check for consistency with the operand computed above. */
3207 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3208 {
3209 int reloc_opnd = r_type - R_XTENSA_OP0;
3210 if (reloc_opnd != last_immed)
3211 return XTENSA_UNDEFINED;
3212 }
3213
3214 return last_immed;
3215}
3216
3217
3218int
7fa3d080 3219get_relocation_slot (int r_type)
43cd72b9
BW
3220{
3221 switch (r_type)
3222 {
3223 case R_XTENSA_OP0:
3224 case R_XTENSA_OP1:
3225 case R_XTENSA_OP2:
3226 return 0;
3227
3228 default:
3229 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3230 return r_type - R_XTENSA_SLOT0_OP;
3231 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3232 return r_type - R_XTENSA_SLOT0_ALT;
3233 break;
3234 }
3235
3236 return XTENSA_UNDEFINED;
e0001a05
NC
3237}
3238
3239
3240/* Get the opcode for a relocation. */
3241
3242static xtensa_opcode
7fa3d080
BW
3243get_relocation_opcode (bfd *abfd,
3244 asection *sec,
3245 bfd_byte *contents,
3246 Elf_Internal_Rela *irel)
e0001a05
NC
3247{
3248 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3249 static xtensa_insnbuf sbuff = NULL;
e0001a05 3250 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3251 xtensa_format fmt;
3252 int slot;
e0001a05
NC
3253
3254 if (contents == NULL)
3255 return XTENSA_UNDEFINED;
3256
43cd72b9 3257 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3258 return XTENSA_UNDEFINED;
3259
3260 if (ibuff == NULL)
43cd72b9
BW
3261 {
3262 ibuff = xtensa_insnbuf_alloc (isa);
3263 sbuff = xtensa_insnbuf_alloc (isa);
3264 }
3265
e0001a05 3266 /* Decode the instruction. */
43cd72b9
BW
3267 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3268 sec->size - irel->r_offset);
3269 fmt = xtensa_format_decode (isa, ibuff);
3270 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3271 if (slot == XTENSA_UNDEFINED)
3272 return XTENSA_UNDEFINED;
3273 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3274 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3275}
3276
3277
3278bfd_boolean
7fa3d080
BW
3279is_l32r_relocation (bfd *abfd,
3280 asection *sec,
3281 bfd_byte *contents,
3282 Elf_Internal_Rela *irel)
e0001a05
NC
3283{
3284 xtensa_opcode opcode;
43cd72b9 3285 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3286 return FALSE;
43cd72b9 3287 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3288 return (opcode == get_l32r_opcode ());
3289}
3290
e0001a05 3291
43cd72b9 3292static bfd_size_type
7fa3d080
BW
3293get_asm_simplify_size (bfd_byte *contents,
3294 bfd_size_type content_len,
3295 bfd_size_type offset)
e0001a05 3296{
43cd72b9 3297 bfd_size_type insnlen, size = 0;
e0001a05 3298
43cd72b9
BW
3299 /* Decode the size of the next two instructions. */
3300 insnlen = insn_decode_len (contents, content_len, offset);
3301 if (insnlen == 0)
3302 return 0;
e0001a05 3303
43cd72b9 3304 size += insnlen;
e0001a05 3305
43cd72b9
BW
3306 insnlen = insn_decode_len (contents, content_len, offset + size);
3307 if (insnlen == 0)
3308 return 0;
e0001a05 3309
43cd72b9
BW
3310 size += insnlen;
3311 return size;
3312}
e0001a05 3313
43cd72b9
BW
3314
3315bfd_boolean
7fa3d080 3316is_alt_relocation (int r_type)
43cd72b9
BW
3317{
3318 return (r_type >= R_XTENSA_SLOT0_ALT
3319 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3320}
3321
3322
43cd72b9 3323bfd_boolean
7fa3d080 3324is_operand_relocation (int r_type)
e0001a05 3325{
43cd72b9
BW
3326 switch (r_type)
3327 {
3328 case R_XTENSA_OP0:
3329 case R_XTENSA_OP1:
3330 case R_XTENSA_OP2:
3331 return TRUE;
e0001a05 3332
43cd72b9
BW
3333 default:
3334 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3335 return TRUE;
3336 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3337 return TRUE;
3338 break;
3339 }
e0001a05 3340
43cd72b9 3341 return FALSE;
e0001a05
NC
3342}
3343
43cd72b9
BW
3344
3345#define MIN_INSN_LENGTH 2
e0001a05 3346
43cd72b9
BW
3347/* Return 0 if it fails to decode. */
3348
3349bfd_size_type
7fa3d080
BW
3350insn_decode_len (bfd_byte *contents,
3351 bfd_size_type content_len,
3352 bfd_size_type offset)
e0001a05 3353{
43cd72b9
BW
3354 int insn_len;
3355 xtensa_isa isa = xtensa_default_isa;
3356 xtensa_format fmt;
3357 static xtensa_insnbuf ibuff = NULL;
e0001a05 3358
43cd72b9
BW
3359 if (offset + MIN_INSN_LENGTH > content_len)
3360 return 0;
e0001a05 3361
43cd72b9
BW
3362 if (ibuff == NULL)
3363 ibuff = xtensa_insnbuf_alloc (isa);
3364 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3365 content_len - offset);
3366 fmt = xtensa_format_decode (isa, ibuff);
3367 if (fmt == XTENSA_UNDEFINED)
3368 return 0;
3369 insn_len = xtensa_format_length (isa, fmt);
3370 if (insn_len == XTENSA_UNDEFINED)
3371 return 0;
3372 return insn_len;
e0001a05
NC
3373}
3374
3375
43cd72b9
BW
3376/* Decode the opcode for a single slot instruction.
3377 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3378
43cd72b9 3379xtensa_opcode
7fa3d080
BW
3380insn_decode_opcode (bfd_byte *contents,
3381 bfd_size_type content_len,
3382 bfd_size_type offset,
3383 int slot)
e0001a05 3384{
e0001a05 3385 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3386 xtensa_format fmt;
3387 static xtensa_insnbuf insnbuf = NULL;
3388 static xtensa_insnbuf slotbuf = NULL;
3389
3390 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3391 return XTENSA_UNDEFINED;
3392
3393 if (insnbuf == NULL)
43cd72b9
BW
3394 {
3395 insnbuf = xtensa_insnbuf_alloc (isa);
3396 slotbuf = xtensa_insnbuf_alloc (isa);
3397 }
3398
3399 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3400 content_len - offset);
3401 fmt = xtensa_format_decode (isa, insnbuf);
3402 if (fmt == XTENSA_UNDEFINED)
e0001a05 3403 return XTENSA_UNDEFINED;
43cd72b9
BW
3404
3405 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3406 return XTENSA_UNDEFINED;
e0001a05 3407
43cd72b9
BW
3408 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3409 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3410}
e0001a05 3411
e0001a05 3412
43cd72b9
BW
3413/* The offset is the offset in the contents.
3414 The address is the address of that offset. */
e0001a05 3415
43cd72b9 3416static bfd_boolean
7fa3d080
BW
3417check_branch_target_aligned (bfd_byte *contents,
3418 bfd_size_type content_length,
3419 bfd_vma offset,
3420 bfd_vma address)
43cd72b9
BW
3421{
3422 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3423 if (insn_len == 0)
3424 return FALSE;
3425 return check_branch_target_aligned_address (address, insn_len);
3426}
e0001a05 3427
e0001a05 3428
43cd72b9 3429static bfd_boolean
7fa3d080
BW
3430check_loop_aligned (bfd_byte *contents,
3431 bfd_size_type content_length,
3432 bfd_vma offset,
3433 bfd_vma address)
e0001a05 3434{
43cd72b9
BW
3435 bfd_size_type loop_len, insn_len;
3436 xtensa_opcode opcode =
3437 insn_decode_opcode (contents, content_length, offset, 0);
3438 BFD_ASSERT (opcode != XTENSA_UNDEFINED);
3439 if (opcode != XTENSA_UNDEFINED)
3440 return FALSE;
3441 BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa, opcode));
3442 if (!xtensa_opcode_is_loop (xtensa_default_isa, opcode))
3443 return FALSE;
e0001a05 3444
43cd72b9
BW
3445 loop_len = insn_decode_len (contents, content_length, offset);
3446 BFD_ASSERT (loop_len != 0);
3447 if (loop_len == 0)
3448 return FALSE;
3449
3450 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3451 BFD_ASSERT (insn_len != 0);
3452 if (insn_len == 0)
3453 return FALSE;
e0001a05 3454
43cd72b9
BW
3455 return check_branch_target_aligned_address (address + loop_len, insn_len);
3456}
e0001a05 3457
e0001a05
NC
3458
3459static bfd_boolean
7fa3d080 3460check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3461{
43cd72b9
BW
3462 if (len == 8)
3463 return (addr % 8 == 0);
3464 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3465}
3466
43cd72b9
BW
3467\f
3468/* Instruction widening and narrowing. */
e0001a05 3469
7fa3d080
BW
3470/* When FLIX is available we need to access certain instructions only
3471 when they are 16-bit or 24-bit instructions. This table caches
3472 information about such instructions by walking through all the
3473 opcodes and finding the smallest single-slot format into which each
3474 can be encoded. */
3475
3476static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3477
3478
7fa3d080
BW
3479static void
3480init_op_single_format_table (void)
e0001a05 3481{
7fa3d080
BW
3482 xtensa_isa isa = xtensa_default_isa;
3483 xtensa_insnbuf ibuf;
3484 xtensa_opcode opcode;
3485 xtensa_format fmt;
3486 int num_opcodes;
3487
3488 if (op_single_fmt_table)
3489 return;
3490
3491 ibuf = xtensa_insnbuf_alloc (isa);
3492 num_opcodes = xtensa_isa_num_opcodes (isa);
3493
3494 op_single_fmt_table = (xtensa_format *)
3495 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3496 for (opcode = 0; opcode < num_opcodes; opcode++)
3497 {
3498 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3499 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3500 {
3501 if (xtensa_format_num_slots (isa, fmt) == 1
3502 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3503 {
3504 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3505 int fmt_length = xtensa_format_length (isa, fmt);
3506 if (old_fmt == XTENSA_UNDEFINED
3507 || fmt_length < xtensa_format_length (isa, old_fmt))
3508 op_single_fmt_table[opcode] = fmt;
3509 }
3510 }
3511 }
3512 xtensa_insnbuf_free (isa, ibuf);
3513}
3514
3515
3516static xtensa_format
3517get_single_format (xtensa_opcode opcode)
3518{
3519 init_op_single_format_table ();
3520 return op_single_fmt_table[opcode];
3521}
e0001a05 3522
e0001a05 3523
43cd72b9
BW
3524/* For the set of narrowable instructions we do NOT include the
3525 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3526 involved during linker relaxation that may require these to
3527 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3528 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3529
7fa3d080
BW
3530struct string_pair
3531{
3532 const char *wide;
3533 const char *narrow;
3534};
3535
43cd72b9 3536struct string_pair narrowable[] =
e0001a05 3537{
43cd72b9
BW
3538 { "add", "add.n" },
3539 { "addi", "addi.n" },
3540 { "addmi", "addi.n" },
3541 { "l32i", "l32i.n" },
3542 { "movi", "movi.n" },
3543 { "ret", "ret.n" },
3544 { "retw", "retw.n" },
3545 { "s32i", "s32i.n" },
3546 { "or", "mov.n" } /* special case only when op1 == op2 */
3547};
e0001a05 3548
43cd72b9 3549struct string_pair widenable[] =
e0001a05 3550{
43cd72b9
BW
3551 { "add", "add.n" },
3552 { "addi", "addi.n" },
3553 { "addmi", "addi.n" },
3554 { "beqz", "beqz.n" },
3555 { "bnez", "bnez.n" },
3556 { "l32i", "l32i.n" },
3557 { "movi", "movi.n" },
3558 { "ret", "ret.n" },
3559 { "retw", "retw.n" },
3560 { "s32i", "s32i.n" },
3561 { "or", "mov.n" } /* special case only when op1 == op2 */
3562};
e0001a05
NC
3563
3564
43cd72b9
BW
3565/* Attempt to narrow an instruction. Return true if the narrowing is
3566 valid. If the do_it parameter is non-zero, then perform the action
3567 in-place directly into the contents. Otherwise, do not modify the
3568 contents. The set of valid narrowing are specified by a string table
3569 but require some special case operand checks in some cases. */
3570
e0001a05 3571static bfd_boolean
7fa3d080
BW
3572narrow_instruction (bfd_byte *contents,
3573 bfd_size_type content_length,
3574 bfd_size_type offset,
3575 bfd_boolean do_it)
e0001a05 3576{
43cd72b9
BW
3577 xtensa_opcode opcode;
3578 bfd_size_type insn_len, opi;
3579 xtensa_isa isa = xtensa_default_isa;
3580 xtensa_format fmt, o_fmt;
e0001a05 3581
43cd72b9
BW
3582 static xtensa_insnbuf insnbuf = NULL;
3583 static xtensa_insnbuf slotbuf = NULL;
3584 static xtensa_insnbuf o_insnbuf = NULL;
3585 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3586
43cd72b9
BW
3587 if (insnbuf == NULL)
3588 {
3589 insnbuf = xtensa_insnbuf_alloc (isa);
3590 slotbuf = xtensa_insnbuf_alloc (isa);
3591 o_insnbuf = xtensa_insnbuf_alloc (isa);
3592 o_slotbuf = xtensa_insnbuf_alloc (isa);
3593 }
e0001a05 3594
43cd72b9 3595 BFD_ASSERT (offset < content_length);
e0001a05 3596
43cd72b9
BW
3597 if (content_length < 2)
3598 return FALSE;
e0001a05 3599
43cd72b9
BW
3600 /* We will hand-code a few of these for a little while.
3601 These have all been specified in the assembler aleady. */
3602 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3603 content_length - offset);
3604 fmt = xtensa_format_decode (isa, insnbuf);
3605 if (xtensa_format_num_slots (isa, fmt) != 1)
3606 return FALSE;
e0001a05 3607
43cd72b9
BW
3608 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3609 return FALSE;
e0001a05 3610
43cd72b9
BW
3611 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3612 if (opcode == XTENSA_UNDEFINED)
3613 return FALSE;
3614 insn_len = xtensa_format_length (isa, fmt);
3615 if (insn_len > content_length)
3616 return FALSE;
e0001a05 3617
43cd72b9
BW
3618 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); ++opi)
3619 {
3620 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3621
43cd72b9
BW
3622 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3623 {
3624 uint32 value, newval;
3625 int i, operand_count, o_operand_count;
3626 xtensa_opcode o_opcode;
e0001a05 3627
43cd72b9
BW
3628 /* Address does not matter in this case. We might need to
3629 fix it to handle branches/jumps. */
3630 bfd_vma self_address = 0;
e0001a05 3631
43cd72b9
BW
3632 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3633 if (o_opcode == XTENSA_UNDEFINED)
3634 return FALSE;
3635 o_fmt = get_single_format (o_opcode);
3636 if (o_fmt == XTENSA_UNDEFINED)
3637 return FALSE;
e0001a05 3638
43cd72b9
BW
3639 if (xtensa_format_length (isa, fmt) != 3
3640 || xtensa_format_length (isa, o_fmt) != 2)
3641 return FALSE;
e0001a05 3642
43cd72b9
BW
3643 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3644 operand_count = xtensa_opcode_num_operands (isa, opcode);
3645 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3646
43cd72b9
BW
3647 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3648 return FALSE;
e0001a05 3649
43cd72b9
BW
3650 if (!is_or)
3651 {
3652 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3653 return FALSE;
3654 }
3655 else
3656 {
3657 uint32 rawval0, rawval1, rawval2;
e0001a05 3658
43cd72b9
BW
3659 if (o_operand_count + 1 != operand_count)
3660 return FALSE;
3661 if (xtensa_operand_get_field (isa, opcode, 0,
3662 fmt, 0, slotbuf, &rawval0) != 0)
3663 return FALSE;
3664 if (xtensa_operand_get_field (isa, opcode, 1,
3665 fmt, 0, slotbuf, &rawval1) != 0)
3666 return FALSE;
3667 if (xtensa_operand_get_field (isa, opcode, 2,
3668 fmt, 0, slotbuf, &rawval2) != 0)
3669 return FALSE;
e0001a05 3670
43cd72b9
BW
3671 if (rawval1 != rawval2)
3672 return FALSE;
3673 if (rawval0 == rawval1) /* it is a nop */
3674 return FALSE;
3675 }
e0001a05 3676
43cd72b9
BW
3677 for (i = 0; i < o_operand_count; ++i)
3678 {
3679 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3680 slotbuf, &value)
3681 || xtensa_operand_decode (isa, opcode, i, &value))
3682 return FALSE;
e0001a05 3683
43cd72b9
BW
3684 /* PC-relative branches need adjustment, but
3685 the PC-rel operand will always have a relocation. */
3686 newval = value;
3687 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3688 self_address)
3689 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3690 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3691 o_slotbuf, newval))
3692 return FALSE;
3693 }
e0001a05 3694
43cd72b9
BW
3695 if (xtensa_format_set_slot (isa, o_fmt, 0,
3696 o_insnbuf, o_slotbuf) != 0)
3697 return FALSE;
e0001a05 3698
43cd72b9
BW
3699 if (do_it)
3700 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3701 content_length - offset);
3702 return TRUE;
3703 }
3704 }
3705 return FALSE;
3706}
e0001a05 3707
e0001a05 3708
43cd72b9
BW
3709/* Attempt to widen an instruction. Return true if the widening is
3710 valid. If the do_it parameter is non-zero, then the action should
3711 be performed inplace into the contents. Otherwise, do not modify
3712 the contents. The set of valid widenings are specified by a string
3713 table but require some special case operand checks in some
3714 cases. */
e0001a05 3715
43cd72b9 3716static bfd_boolean
7fa3d080
BW
3717widen_instruction (bfd_byte *contents,
3718 bfd_size_type content_length,
3719 bfd_size_type offset,
3720 bfd_boolean do_it)
e0001a05 3721{
43cd72b9
BW
3722 xtensa_opcode opcode;
3723 bfd_size_type insn_len, opi;
3724 xtensa_isa isa = xtensa_default_isa;
3725 xtensa_format fmt, o_fmt;
e0001a05 3726
43cd72b9
BW
3727 static xtensa_insnbuf insnbuf = NULL;
3728 static xtensa_insnbuf slotbuf = NULL;
3729 static xtensa_insnbuf o_insnbuf = NULL;
3730 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3731
43cd72b9
BW
3732 if (insnbuf == NULL)
3733 {
3734 insnbuf = xtensa_insnbuf_alloc (isa);
3735 slotbuf = xtensa_insnbuf_alloc (isa);
3736 o_insnbuf = xtensa_insnbuf_alloc (isa);
3737 o_slotbuf = xtensa_insnbuf_alloc (isa);
3738 }
e0001a05 3739
43cd72b9 3740 BFD_ASSERT (offset < content_length);
2c8c90bc 3741
43cd72b9 3742 if (content_length < 2)
e0001a05
NC
3743 return FALSE;
3744
43cd72b9
BW
3745 /* We will hand code a few of these for a little while.
3746 These have all been specified in the assembler aleady. */
3747 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3748 content_length - offset);
3749 fmt = xtensa_format_decode (isa, insnbuf);
3750 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3751 return FALSE;
3752
43cd72b9 3753 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3754 return FALSE;
3755
43cd72b9
BW
3756 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3757 if (opcode == XTENSA_UNDEFINED)
e0001a05 3758 return FALSE;
43cd72b9
BW
3759 insn_len = xtensa_format_length (isa, fmt);
3760 if (insn_len > content_length)
3761 return FALSE;
3762
3763 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); ++opi)
e0001a05 3764 {
43cd72b9
BW
3765 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3766 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3767 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3768
43cd72b9
BW
3769 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3770 {
3771 uint32 value, newval;
3772 int i, operand_count, o_operand_count, check_operand_count;
3773 xtensa_opcode o_opcode;
e0001a05 3774
43cd72b9
BW
3775 /* Address does not matter in this case. We might need to fix it
3776 to handle branches/jumps. */
3777 bfd_vma self_address = 0;
e0001a05 3778
43cd72b9
BW
3779 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3780 if (o_opcode == XTENSA_UNDEFINED)
3781 return FALSE;
3782 o_fmt = get_single_format (o_opcode);
3783 if (o_fmt == XTENSA_UNDEFINED)
3784 return FALSE;
e0001a05 3785
43cd72b9
BW
3786 if (xtensa_format_length (isa, fmt) != 2
3787 || xtensa_format_length (isa, o_fmt) != 3)
3788 return FALSE;
e0001a05 3789
43cd72b9
BW
3790 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3791 operand_count = xtensa_opcode_num_operands (isa, opcode);
3792 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3793 check_operand_count = o_operand_count;
e0001a05 3794
43cd72b9
BW
3795 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3796 return FALSE;
e0001a05 3797
43cd72b9
BW
3798 if (!is_or)
3799 {
3800 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3801 return FALSE;
3802 }
3803 else
3804 {
3805 uint32 rawval0, rawval1;
3806
3807 if (o_operand_count != operand_count + 1)
3808 return FALSE;
3809 if (xtensa_operand_get_field (isa, opcode, 0,
3810 fmt, 0, slotbuf, &rawval0) != 0)
3811 return FALSE;
3812 if (xtensa_operand_get_field (isa, opcode, 1,
3813 fmt, 0, slotbuf, &rawval1) != 0)
3814 return FALSE;
3815 if (rawval0 == rawval1) /* it is a nop */
3816 return FALSE;
3817 }
3818 if (is_branch)
3819 check_operand_count--;
3820
3821 for (i = 0; i < check_operand_count; ++i)
3822 {
3823 int new_i = i;
3824 if (is_or && i == o_operand_count - 1)
3825 new_i = i - 1;
3826 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3827 slotbuf, &value)
3828 || xtensa_operand_decode (isa, opcode, new_i, &value))
3829 return FALSE;
3830
3831 /* PC-relative branches need adjustment, but
3832 the PC-rel operand will always have a relocation. */
3833 newval = value;
3834 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3835 self_address)
3836 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3837 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3838 o_slotbuf, newval))
3839 return FALSE;
3840 }
3841
3842 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3843 return FALSE;
3844
3845 if (do_it)
3846 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3847 content_length - offset);
3848 return TRUE;
3849 }
3850 }
3851 return FALSE;
e0001a05
NC
3852}
3853
43cd72b9
BW
3854\f
3855/* Code for transforming CALLs at link-time. */
e0001a05 3856
43cd72b9 3857static bfd_reloc_status_type
7fa3d080
BW
3858elf_xtensa_do_asm_simplify (bfd_byte *contents,
3859 bfd_vma address,
3860 bfd_vma content_length,
3861 char **error_message)
e0001a05 3862{
43cd72b9
BW
3863 static xtensa_insnbuf insnbuf = NULL;
3864 static xtensa_insnbuf slotbuf = NULL;
3865 xtensa_format core_format = XTENSA_UNDEFINED;
3866 xtensa_opcode opcode;
3867 xtensa_opcode direct_call_opcode;
3868 xtensa_isa isa = xtensa_default_isa;
3869 bfd_byte *chbuf = contents + address;
3870 int opn;
e0001a05 3871
43cd72b9 3872 if (insnbuf == NULL)
e0001a05 3873 {
43cd72b9
BW
3874 insnbuf = xtensa_insnbuf_alloc (isa);
3875 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3876 }
e0001a05 3877
43cd72b9
BW
3878 if (content_length < address)
3879 {
3880 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3881 return bfd_reloc_other;
3882 }
e0001a05 3883
43cd72b9
BW
3884 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3885 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3886 if (direct_call_opcode == XTENSA_UNDEFINED)
3887 {
3888 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3889 return bfd_reloc_other;
3890 }
3891
3892 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3893 core_format = xtensa_format_lookup (isa, "x24");
3894 opcode = xtensa_opcode_lookup (isa, "or");
3895 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3896 for (opn = 0; opn < 3; opn++)
3897 {
3898 uint32 regno = 1;
3899 xtensa_operand_encode (isa, opcode, opn, &regno);
3900 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3901 slotbuf, regno);
3902 }
3903 xtensa_format_encode (isa, core_format, insnbuf);
3904 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3905 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3906
43cd72b9
BW
3907 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3908 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3909 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3910
43cd72b9
BW
3911 xtensa_format_encode (isa, core_format, insnbuf);
3912 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3913 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3914 content_length - address - 3);
e0001a05 3915
43cd72b9
BW
3916 return bfd_reloc_ok;
3917}
e0001a05 3918
e0001a05 3919
43cd72b9 3920static bfd_reloc_status_type
7fa3d080
BW
3921contract_asm_expansion (bfd_byte *contents,
3922 bfd_vma content_length,
3923 Elf_Internal_Rela *irel,
3924 char **error_message)
43cd72b9
BW
3925{
3926 bfd_reloc_status_type retval =
3927 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3928 error_message);
e0001a05 3929
43cd72b9
BW
3930 if (retval != bfd_reloc_ok)
3931 return bfd_reloc_dangerous;
e0001a05 3932
43cd72b9
BW
3933 /* Update the irel->r_offset field so that the right immediate and
3934 the right instruction are modified during the relocation. */
3935 irel->r_offset += 3;
3936 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3937 return bfd_reloc_ok;
3938}
e0001a05 3939
e0001a05 3940
43cd72b9 3941static xtensa_opcode
7fa3d080 3942swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3943{
43cd72b9 3944 init_call_opcodes ();
e0001a05 3945
43cd72b9
BW
3946 if (opcode == callx0_op) return call0_op;
3947 if (opcode == callx4_op) return call4_op;
3948 if (opcode == callx8_op) return call8_op;
3949 if (opcode == callx12_op) return call12_op;
e0001a05 3950
43cd72b9
BW
3951 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3952 return XTENSA_UNDEFINED;
3953}
e0001a05 3954
e0001a05 3955
43cd72b9
BW
3956/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3957 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3958 If not, return XTENSA_UNDEFINED. */
e0001a05 3959
43cd72b9
BW
3960#define L32R_TARGET_REG_OPERAND 0
3961#define CONST16_TARGET_REG_OPERAND 0
3962#define CALLN_SOURCE_OPERAND 0
e0001a05 3963
43cd72b9 3964static xtensa_opcode
7fa3d080 3965get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3966{
43cd72b9
BW
3967 static xtensa_insnbuf insnbuf = NULL;
3968 static xtensa_insnbuf slotbuf = NULL;
3969 xtensa_format fmt;
3970 xtensa_opcode opcode;
3971 xtensa_isa isa = xtensa_default_isa;
3972 uint32 regno, const16_regno, call_regno;
3973 int offset = 0;
e0001a05 3974
43cd72b9 3975 if (insnbuf == NULL)
e0001a05 3976 {
43cd72b9
BW
3977 insnbuf = xtensa_insnbuf_alloc (isa);
3978 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3979 }
43cd72b9
BW
3980
3981 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3982 fmt = xtensa_format_decode (isa, insnbuf);
3983 if (fmt == XTENSA_UNDEFINED
3984 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3985 return XTENSA_UNDEFINED;
3986
3987 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3988 if (opcode == XTENSA_UNDEFINED)
3989 return XTENSA_UNDEFINED;
3990
3991 if (opcode == get_l32r_opcode ())
e0001a05 3992 {
43cd72b9
BW
3993 if (p_uses_l32r)
3994 *p_uses_l32r = TRUE;
3995 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
3996 fmt, 0, slotbuf, &regno)
3997 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
3998 &regno))
3999 return XTENSA_UNDEFINED;
e0001a05 4000 }
43cd72b9 4001 else if (opcode == get_const16_opcode ())
e0001a05 4002 {
43cd72b9
BW
4003 if (p_uses_l32r)
4004 *p_uses_l32r = FALSE;
4005 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4006 fmt, 0, slotbuf, &regno)
4007 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4008 &regno))
4009 return XTENSA_UNDEFINED;
4010
4011 /* Check that the next instruction is also CONST16. */
4012 offset += xtensa_format_length (isa, fmt);
4013 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4014 fmt = xtensa_format_decode (isa, insnbuf);
4015 if (fmt == XTENSA_UNDEFINED
4016 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4017 return XTENSA_UNDEFINED;
4018 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4019 if (opcode != get_const16_opcode ())
4020 return XTENSA_UNDEFINED;
4021
4022 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4023 fmt, 0, slotbuf, &const16_regno)
4024 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4025 &const16_regno)
4026 || const16_regno != regno)
4027 return XTENSA_UNDEFINED;
e0001a05 4028 }
43cd72b9
BW
4029 else
4030 return XTENSA_UNDEFINED;
e0001a05 4031
43cd72b9
BW
4032 /* Next instruction should be an CALLXn with operand 0 == regno. */
4033 offset += xtensa_format_length (isa, fmt);
4034 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4035 fmt = xtensa_format_decode (isa, insnbuf);
4036 if (fmt == XTENSA_UNDEFINED
4037 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4038 return XTENSA_UNDEFINED;
4039 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4040 if (opcode == XTENSA_UNDEFINED
4041 || !is_indirect_call_opcode (opcode))
4042 return XTENSA_UNDEFINED;
e0001a05 4043
43cd72b9
BW
4044 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4045 fmt, 0, slotbuf, &call_regno)
4046 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4047 &call_regno))
4048 return XTENSA_UNDEFINED;
e0001a05 4049
43cd72b9
BW
4050 if (call_regno != regno)
4051 return XTENSA_UNDEFINED;
e0001a05 4052
43cd72b9
BW
4053 return opcode;
4054}
e0001a05 4055
43cd72b9
BW
4056\f
4057/* Data structures used during relaxation. */
e0001a05 4058
43cd72b9 4059/* r_reloc: relocation values. */
e0001a05 4060
43cd72b9
BW
4061/* Through the relaxation process, we need to keep track of the values
4062 that will result from evaluating relocations. The standard ELF
4063 relocation structure is not sufficient for this purpose because we're
4064 operating on multiple input files at once, so we need to know which
4065 input file a relocation refers to. The r_reloc structure thus
4066 records both the input file (bfd) and ELF relocation.
e0001a05 4067
43cd72b9
BW
4068 For efficiency, an r_reloc also contains a "target_offset" field to
4069 cache the target-section-relative offset value that is represented by
4070 the relocation.
4071
4072 The r_reloc also contains a virtual offset that allows multiple
4073 inserted literals to be placed at the same "address" with
4074 different offsets. */
e0001a05 4075
43cd72b9 4076typedef struct r_reloc_struct r_reloc;
e0001a05 4077
43cd72b9 4078struct r_reloc_struct
e0001a05 4079{
43cd72b9
BW
4080 bfd *abfd;
4081 Elf_Internal_Rela rela;
e0001a05 4082 bfd_vma target_offset;
43cd72b9 4083 bfd_vma virtual_offset;
e0001a05
NC
4084};
4085
e0001a05 4086
43cd72b9
BW
4087/* The r_reloc structure is included by value in literal_value, but not
4088 every literal_value has an associated relocation -- some are simple
4089 constants. In such cases, we set all the fields in the r_reloc
4090 struct to zero. The r_reloc_is_const function should be used to
4091 detect this case. */
e0001a05 4092
43cd72b9 4093static bfd_boolean
7fa3d080 4094r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4095{
43cd72b9 4096 return (r_rel->abfd == NULL);
e0001a05
NC
4097}
4098
4099
43cd72b9 4100static bfd_vma
7fa3d080 4101r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4102{
43cd72b9
BW
4103 bfd_vma target_offset;
4104 unsigned long r_symndx;
e0001a05 4105
43cd72b9
BW
4106 BFD_ASSERT (!r_reloc_is_const (r_rel));
4107 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4108 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4109 return (target_offset + r_rel->rela.r_addend);
4110}
e0001a05 4111
e0001a05 4112
43cd72b9 4113static struct elf_link_hash_entry *
7fa3d080 4114r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4115{
43cd72b9
BW
4116 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4117 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4118}
e0001a05 4119
43cd72b9
BW
4120
4121static asection *
7fa3d080 4122r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4123{
4124 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4125 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4126}
e0001a05
NC
4127
4128
4129static bfd_boolean
7fa3d080 4130r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4131{
43cd72b9
BW
4132 asection *sec;
4133 if (r_rel == NULL)
e0001a05 4134 return FALSE;
e0001a05 4135
43cd72b9
BW
4136 sec = r_reloc_get_section (r_rel);
4137 if (sec == bfd_abs_section_ptr
4138 || sec == bfd_com_section_ptr
4139 || sec == bfd_und_section_ptr)
4140 return FALSE;
4141 return TRUE;
e0001a05
NC
4142}
4143
4144
7fa3d080
BW
4145static void
4146r_reloc_init (r_reloc *r_rel,
4147 bfd *abfd,
4148 Elf_Internal_Rela *irel,
4149 bfd_byte *contents,
4150 bfd_size_type content_length)
4151{
4152 int r_type;
4153 reloc_howto_type *howto;
4154
4155 if (irel)
4156 {
4157 r_rel->rela = *irel;
4158 r_rel->abfd = abfd;
4159 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4160 r_rel->virtual_offset = 0;
4161 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4162 howto = &elf_howto_table[r_type];
4163 if (howto->partial_inplace)
4164 {
4165 bfd_vma inplace_val;
4166 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4167
4168 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4169 r_rel->target_offset += inplace_val;
4170 }
4171 }
4172 else
4173 memset (r_rel, 0, sizeof (r_reloc));
4174}
4175
4176
43cd72b9
BW
4177#if DEBUG
4178
e0001a05 4179static void
7fa3d080 4180print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4181{
43cd72b9
BW
4182 if (r_reloc_is_defined (r_rel))
4183 {
4184 asection *sec = r_reloc_get_section (r_rel);
4185 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4186 }
4187 else if (r_reloc_get_hash_entry (r_rel))
4188 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4189 else
4190 fprintf (fp, " ?? + ");
e0001a05 4191
43cd72b9
BW
4192 fprintf_vma (fp, r_rel->target_offset);
4193 if (r_rel->virtual_offset)
4194 {
4195 fprintf (fp, " + ");
4196 fprintf_vma (fp, r_rel->virtual_offset);
4197 }
4198
4199 fprintf (fp, ")");
4200}
e0001a05 4201
43cd72b9 4202#endif /* DEBUG */
e0001a05 4203
43cd72b9
BW
4204\f
4205/* source_reloc: relocations that reference literals. */
e0001a05 4206
43cd72b9
BW
4207/* To determine whether literals can be coalesced, we need to first
4208 record all the relocations that reference the literals. The
4209 source_reloc structure below is used for this purpose. The
4210 source_reloc entries are kept in a per-literal-section array, sorted
4211 by offset within the literal section (i.e., target offset).
e0001a05 4212
43cd72b9
BW
4213 The source_sec and r_rel.rela.r_offset fields identify the source of
4214 the relocation. The r_rel field records the relocation value, i.e.,
4215 the offset of the literal being referenced. The opnd field is needed
4216 to determine the range of the immediate field to which the relocation
4217 applies, so we can determine whether another literal with the same
4218 value is within range. The is_null field is true when the relocation
4219 is being removed (e.g., when an L32R is being removed due to a CALLX
4220 that is converted to a direct CALL). */
e0001a05 4221
43cd72b9
BW
4222typedef struct source_reloc_struct source_reloc;
4223
4224struct source_reloc_struct
e0001a05 4225{
43cd72b9
BW
4226 asection *source_sec;
4227 r_reloc r_rel;
4228 xtensa_opcode opcode;
4229 int opnd;
4230 bfd_boolean is_null;
4231 bfd_boolean is_abs_literal;
4232};
e0001a05 4233
e0001a05 4234
e0001a05 4235static void
7fa3d080
BW
4236init_source_reloc (source_reloc *reloc,
4237 asection *source_sec,
4238 const r_reloc *r_rel,
4239 xtensa_opcode opcode,
4240 int opnd,
4241 bfd_boolean is_abs_literal)
e0001a05 4242{
43cd72b9
BW
4243 reloc->source_sec = source_sec;
4244 reloc->r_rel = *r_rel;
4245 reloc->opcode = opcode;
4246 reloc->opnd = opnd;
4247 reloc->is_null = FALSE;
4248 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4249}
4250
e0001a05 4251
43cd72b9
BW
4252/* Find the source_reloc for a particular source offset and relocation
4253 type. Note that the array is sorted by _target_ offset, so this is
4254 just a linear search. */
e0001a05 4255
43cd72b9 4256static source_reloc *
7fa3d080
BW
4257find_source_reloc (source_reloc *src_relocs,
4258 int src_count,
4259 asection *sec,
4260 Elf_Internal_Rela *irel)
e0001a05 4261{
43cd72b9 4262 int i;
e0001a05 4263
43cd72b9
BW
4264 for (i = 0; i < src_count; i++)
4265 {
4266 if (src_relocs[i].source_sec == sec
4267 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4268 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4269 == ELF32_R_TYPE (irel->r_info)))
4270 return &src_relocs[i];
4271 }
e0001a05 4272
43cd72b9 4273 return NULL;
e0001a05
NC
4274}
4275
4276
43cd72b9 4277static int
7fa3d080 4278source_reloc_compare (const void *ap, const void *bp)
e0001a05 4279{
43cd72b9
BW
4280 const source_reloc *a = (const source_reloc *) ap;
4281 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4282
43cd72b9
BW
4283 if (a->r_rel.target_offset != b->r_rel.target_offset)
4284 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4285
43cd72b9
BW
4286 /* We don't need to sort on these criteria for correctness,
4287 but enforcing a more strict ordering prevents unstable qsort
4288 from behaving differently with different implementations.
4289 Without the code below we get correct but different results
4290 on Solaris 2.7 and 2.8. We would like to always produce the
4291 same results no matter the host. */
4292
4293 if ((!a->is_null) - (!b->is_null))
4294 return ((!a->is_null) - (!b->is_null));
4295 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4296}
4297
43cd72b9
BW
4298\f
4299/* Literal values and value hash tables. */
e0001a05 4300
43cd72b9
BW
4301/* Literals with the same value can be coalesced. The literal_value
4302 structure records the value of a literal: the "r_rel" field holds the
4303 information from the relocation on the literal (if there is one) and
4304 the "value" field holds the contents of the literal word itself.
e0001a05 4305
43cd72b9
BW
4306 The value_map structure records a literal value along with the
4307 location of a literal holding that value. The value_map hash table
4308 is indexed by the literal value, so that we can quickly check if a
4309 particular literal value has been seen before and is thus a candidate
4310 for coalescing. */
e0001a05 4311
43cd72b9
BW
4312typedef struct literal_value_struct literal_value;
4313typedef struct value_map_struct value_map;
4314typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4315
43cd72b9 4316struct literal_value_struct
e0001a05 4317{
43cd72b9
BW
4318 r_reloc r_rel;
4319 unsigned long value;
4320 bfd_boolean is_abs_literal;
4321};
4322
4323struct value_map_struct
4324{
4325 literal_value val; /* The literal value. */
4326 r_reloc loc; /* Location of the literal. */
4327 value_map *next;
4328};
4329
4330struct value_map_hash_table_struct
4331{
4332 unsigned bucket_count;
4333 value_map **buckets;
4334 unsigned count;
4335 bfd_boolean has_last_loc;
4336 r_reloc last_loc;
4337};
4338
4339
e0001a05 4340static void
7fa3d080
BW
4341init_literal_value (literal_value *lit,
4342 const r_reloc *r_rel,
4343 unsigned long value,
4344 bfd_boolean is_abs_literal)
e0001a05 4345{
43cd72b9
BW
4346 lit->r_rel = *r_rel;
4347 lit->value = value;
4348 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4349}
4350
4351
43cd72b9 4352static bfd_boolean
7fa3d080
BW
4353literal_value_equal (const literal_value *src1,
4354 const literal_value *src2,
4355 bfd_boolean final_static_link)
e0001a05 4356{
43cd72b9 4357 struct elf_link_hash_entry *h1, *h2;
e0001a05 4358
43cd72b9
BW
4359 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4360 return FALSE;
e0001a05 4361
43cd72b9
BW
4362 if (r_reloc_is_const (&src1->r_rel))
4363 return (src1->value == src2->value);
e0001a05 4364
43cd72b9
BW
4365 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4366 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4367 return FALSE;
e0001a05 4368
43cd72b9
BW
4369 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4370 return FALSE;
4371
4372 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4373 return FALSE;
4374
4375 if (src1->value != src2->value)
4376 return FALSE;
4377
4378 /* Now check for the same section (if defined) or the same elf_hash
4379 (if undefined or weak). */
4380 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4381 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4382 if (r_reloc_is_defined (&src1->r_rel)
4383 && (final_static_link
4384 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4385 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4386 {
4387 if (r_reloc_get_section (&src1->r_rel)
4388 != r_reloc_get_section (&src2->r_rel))
4389 return FALSE;
4390 }
4391 else
4392 {
4393 /* Require that the hash entries (i.e., symbols) be identical. */
4394 if (h1 != h2 || h1 == 0)
4395 return FALSE;
4396 }
4397
4398 if (src1->is_abs_literal != src2->is_abs_literal)
4399 return FALSE;
4400
4401 return TRUE;
e0001a05
NC
4402}
4403
e0001a05 4404
43cd72b9
BW
4405/* Must be power of 2. */
4406#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4407
43cd72b9 4408static value_map_hash_table *
7fa3d080 4409value_map_hash_table_init (void)
43cd72b9
BW
4410{
4411 value_map_hash_table *values;
e0001a05 4412
43cd72b9
BW
4413 values = (value_map_hash_table *)
4414 bfd_zmalloc (sizeof (value_map_hash_table));
4415 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4416 values->count = 0;
4417 values->buckets = (value_map **)
4418 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4419 if (values->buckets == NULL)
4420 {
4421 free (values);
4422 return NULL;
4423 }
4424 values->has_last_loc = FALSE;
4425
4426 return values;
4427}
4428
4429
4430static void
7fa3d080 4431value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4432{
43cd72b9
BW
4433 free (table->buckets);
4434 free (table);
4435}
4436
4437
4438static unsigned
7fa3d080 4439hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4440{
4441 return (val >> 2) + (val >> 10);
4442}
4443
4444
4445static unsigned
7fa3d080 4446literal_value_hash (const literal_value *src)
43cd72b9
BW
4447{
4448 unsigned hash_val;
e0001a05 4449
43cd72b9
BW
4450 hash_val = hash_bfd_vma (src->value);
4451 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4452 {
43cd72b9
BW
4453 void *sec_or_hash;
4454
4455 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4456 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4457 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4458
4459 /* Now check for the same section and the same elf_hash. */
4460 if (r_reloc_is_defined (&src->r_rel))
4461 sec_or_hash = r_reloc_get_section (&src->r_rel);
4462 else
4463 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4464 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4465 }
43cd72b9
BW
4466 return hash_val;
4467}
e0001a05 4468
e0001a05 4469
43cd72b9 4470/* Check if the specified literal_value has been seen before. */
e0001a05 4471
43cd72b9 4472static value_map *
7fa3d080
BW
4473value_map_get_cached_value (value_map_hash_table *map,
4474 const literal_value *val,
4475 bfd_boolean final_static_link)
43cd72b9
BW
4476{
4477 value_map *map_e;
4478 value_map *bucket;
4479 unsigned idx;
4480
4481 idx = literal_value_hash (val);
4482 idx = idx & (map->bucket_count - 1);
4483 bucket = map->buckets[idx];
4484 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4485 {
43cd72b9
BW
4486 if (literal_value_equal (&map_e->val, val, final_static_link))
4487 return map_e;
4488 }
4489 return NULL;
4490}
e0001a05 4491
e0001a05 4492
43cd72b9
BW
4493/* Record a new literal value. It is illegal to call this if VALUE
4494 already has an entry here. */
4495
4496static value_map *
7fa3d080
BW
4497add_value_map (value_map_hash_table *map,
4498 const literal_value *val,
4499 const r_reloc *loc,
4500 bfd_boolean final_static_link)
43cd72b9
BW
4501{
4502 value_map **bucket_p;
4503 unsigned idx;
4504
4505 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4506 if (val_e == NULL)
4507 {
4508 bfd_set_error (bfd_error_no_memory);
4509 return NULL;
e0001a05
NC
4510 }
4511
43cd72b9
BW
4512 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4513 val_e->val = *val;
4514 val_e->loc = *loc;
4515
4516 idx = literal_value_hash (val);
4517 idx = idx & (map->bucket_count - 1);
4518 bucket_p = &map->buckets[idx];
4519
4520 val_e->next = *bucket_p;
4521 *bucket_p = val_e;
4522 map->count++;
4523 /* FIXME: Consider resizing the hash table if we get too many entries. */
4524
4525 return val_e;
e0001a05
NC
4526}
4527
43cd72b9
BW
4528\f
4529/* Lists of text actions (ta_) for narrowing, widening, longcall
4530 conversion, space fill, code & literal removal, etc. */
4531
4532/* The following text actions are generated:
4533
4534 "ta_remove_insn" remove an instruction or instructions
4535 "ta_remove_longcall" convert longcall to call
4536 "ta_convert_longcall" convert longcall to nop/call
4537 "ta_narrow_insn" narrow a wide instruction
4538 "ta_widen" widen a narrow instruction
4539 "ta_fill" add fill or remove fill
4540 removed < 0 is a fill; branches to the fill address will be
4541 changed to address + fill size (e.g., address - removed)
4542 removed >= 0 branches to the fill address will stay unchanged
4543 "ta_remove_literal" remove a literal; this action is
4544 indicated when a literal is removed
4545 or replaced.
4546 "ta_add_literal" insert a new literal; this action is
4547 indicated when a literal has been moved.
4548 It may use a virtual_offset because
4549 multiple literals can be placed at the
4550 same location.
4551
4552 For each of these text actions, we also record the number of bytes
4553 removed by performing the text action. In the case of a "ta_widen"
4554 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4555
4556typedef struct text_action_struct text_action;
4557typedef struct text_action_list_struct text_action_list;
4558typedef enum text_action_enum_t text_action_t;
4559
4560enum text_action_enum_t
4561{
4562 ta_none,
4563 ta_remove_insn, /* removed = -size */
4564 ta_remove_longcall, /* removed = -size */
4565 ta_convert_longcall, /* removed = 0 */
4566 ta_narrow_insn, /* removed = -1 */
4567 ta_widen_insn, /* removed = +1 */
4568 ta_fill, /* removed = +size */
4569 ta_remove_literal,
4570 ta_add_literal
4571};
e0001a05 4572
e0001a05 4573
43cd72b9
BW
4574/* Structure for a text action record. */
4575struct text_action_struct
e0001a05 4576{
43cd72b9
BW
4577 text_action_t action;
4578 asection *sec; /* Optional */
4579 bfd_vma offset;
4580 bfd_vma virtual_offset; /* Zero except for adding literals. */
4581 int removed_bytes;
4582 literal_value value; /* Only valid when adding literals. */
e0001a05 4583
43cd72b9
BW
4584 text_action *next;
4585};
e0001a05 4586
e0001a05 4587
43cd72b9
BW
4588/* List of all of the actions taken on a text section. */
4589struct text_action_list_struct
4590{
4591 text_action *head;
4592};
e0001a05 4593
e0001a05 4594
7fa3d080
BW
4595static text_action *
4596find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4597{
4598 text_action **m_p;
4599
4600 /* It is not necessary to fill at the end of a section. */
4601 if (sec->size == offset)
4602 return NULL;
4603
7fa3d080 4604 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4605 {
4606 text_action *t = *m_p;
4607 /* When the action is another fill at the same address,
4608 just increase the size. */
4609 if (t->offset == offset && t->action == ta_fill)
4610 return t;
4611 }
4612 return NULL;
4613}
4614
4615
4616static int
7fa3d080
BW
4617compute_removed_action_diff (const text_action *ta,
4618 asection *sec,
4619 bfd_vma offset,
4620 int removed,
4621 int removable_space)
43cd72b9
BW
4622{
4623 int new_removed;
4624 int current_removed = 0;
4625
7fa3d080 4626 if (ta)
43cd72b9
BW
4627 current_removed = ta->removed_bytes;
4628
4629 BFD_ASSERT (ta == NULL || ta->offset == offset);
4630 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4631
4632 /* It is not necessary to fill at the end of a section. Clean this up. */
4633 if (sec->size == offset)
4634 new_removed = removable_space - 0;
4635 else
4636 {
4637 int space;
4638 int added = -removed - current_removed;
4639 /* Ignore multiples of the section alignment. */
4640 added = ((1 << sec->alignment_power) - 1) & added;
4641 new_removed = (-added);
4642
4643 /* Modify for removable. */
4644 space = removable_space - new_removed;
4645 new_removed = (removable_space
4646 - (((1 << sec->alignment_power) - 1) & space));
4647 }
4648 return (new_removed - current_removed);
4649}
4650
4651
7fa3d080
BW
4652static void
4653adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4654{
4655 ta->removed_bytes += fill_diff;
4656}
4657
4658
4659/* Add a modification action to the text. For the case of adding or
4660 removing space, modify any current fill and assume that
4661 "unreachable_space" bytes can be freely contracted. Note that a
4662 negative removed value is a fill. */
4663
4664static void
7fa3d080
BW
4665text_action_add (text_action_list *l,
4666 text_action_t action,
4667 asection *sec,
4668 bfd_vma offset,
4669 int removed)
43cd72b9
BW
4670{
4671 text_action **m_p;
4672 text_action *ta;
4673
4674 /* It is not necessary to fill at the end of a section. */
4675 if (action == ta_fill && sec->size == offset)
4676 return;
4677
4678 /* It is not necessary to fill 0 bytes. */
4679 if (action == ta_fill && removed == 0)
4680 return;
4681
7fa3d080 4682 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4683 {
4684 text_action *t = *m_p;
4685 /* When the action is another fill at the same address,
4686 just increase the size. */
4687 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4688 {
4689 t->removed_bytes += removed;
4690 return;
4691 }
4692 }
4693
4694 /* Create a new record and fill it up. */
4695 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4696 ta->action = action;
4697 ta->sec = sec;
4698 ta->offset = offset;
4699 ta->removed_bytes = removed;
4700 ta->next = (*m_p);
4701 *m_p = ta;
4702}
4703
4704
4705static void
7fa3d080
BW
4706text_action_add_literal (text_action_list *l,
4707 text_action_t action,
4708 const r_reloc *loc,
4709 const literal_value *value,
4710 int removed)
43cd72b9
BW
4711{
4712 text_action **m_p;
4713 text_action *ta;
4714 asection *sec = r_reloc_get_section (loc);
4715 bfd_vma offset = loc->target_offset;
4716 bfd_vma virtual_offset = loc->virtual_offset;
4717
4718 BFD_ASSERT (action == ta_add_literal);
4719
4720 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4721 {
4722 if ((*m_p)->offset > offset
4723 && ((*m_p)->offset != offset
4724 || (*m_p)->virtual_offset > virtual_offset))
4725 break;
4726 }
4727
4728 /* Create a new record and fill it up. */
4729 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4730 ta->action = action;
4731 ta->sec = sec;
4732 ta->offset = offset;
4733 ta->virtual_offset = virtual_offset;
4734 ta->value = *value;
4735 ta->removed_bytes = removed;
4736 ta->next = (*m_p);
4737 *m_p = ta;
4738}
4739
4740
7fa3d080
BW
4741static bfd_vma
4742offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4743{
4744 text_action *r;
4745 int removed = 0;
4746
4747 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4748 {
4749 if (r->offset < offset
4750 || (r->action == ta_fill && r->removed_bytes < 0))
4751 removed += r->removed_bytes;
4752 }
4753
4754 return (offset - removed);
4755}
4756
4757
03e94c08
BW
4758static unsigned
4759action_list_count (text_action_list *action_list)
4760{
4761 text_action *r = action_list->head;
4762 unsigned count = 0;
4763 for (r = action_list->head; r != NULL; r = r->next)
4764 {
4765 count++;
4766 }
4767 return count;
4768}
4769
4770
7fa3d080
BW
4771static bfd_vma
4772offset_with_removed_text_before_fill (text_action_list *action_list,
4773 bfd_vma offset)
43cd72b9
BW
4774{
4775 text_action *r;
4776 int removed = 0;
4777
4778 for (r = action_list->head; r && r->offset < offset; r = r->next)
4779 removed += r->removed_bytes;
4780
4781 return (offset - removed);
4782}
4783
4784
4785/* The find_insn_action routine will only find non-fill actions. */
4786
7fa3d080
BW
4787static text_action *
4788find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4789{
4790 text_action *t;
4791 for (t = action_list->head; t; t = t->next)
4792 {
4793 if (t->offset == offset)
4794 {
4795 switch (t->action)
4796 {
4797 case ta_none:
4798 case ta_fill:
4799 break;
4800 case ta_remove_insn:
4801 case ta_remove_longcall:
4802 case ta_convert_longcall:
4803 case ta_narrow_insn:
4804 case ta_widen_insn:
4805 return t;
4806 case ta_remove_literal:
4807 case ta_add_literal:
4808 BFD_ASSERT (0);
4809 break;
4810 }
4811 }
4812 }
4813 return NULL;
4814}
4815
4816
4817#if DEBUG
4818
4819static void
7fa3d080 4820print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4821{
4822 text_action *r;
4823
4824 fprintf (fp, "Text Action\n");
4825 for (r = action_list->head; r != NULL; r = r->next)
4826 {
4827 const char *t = "unknown";
4828 switch (r->action)
4829 {
4830 case ta_remove_insn:
4831 t = "remove_insn"; break;
4832 case ta_remove_longcall:
4833 t = "remove_longcall"; break;
4834 case ta_convert_longcall:
4835 t = "remove_longcall"; break;
4836 case ta_narrow_insn:
4837 t = "narrow_insn"; break;
4838 case ta_widen_insn:
4839 t = "widen_insn"; break;
4840 case ta_fill:
4841 t = "fill"; break;
4842 case ta_none:
4843 t = "none"; break;
4844 case ta_remove_literal:
4845 t = "remove_literal"; break;
4846 case ta_add_literal:
4847 t = "add_literal"; break;
4848 }
4849
4850 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4851 r->sec->owner->filename,
4852 r->sec->name, r->offset, t, r->removed_bytes);
4853 }
4854}
4855
4856#endif /* DEBUG */
4857
4858\f
4859/* Lists of literals being coalesced or removed. */
4860
4861/* In the usual case, the literal identified by "from" is being
4862 coalesced with another literal identified by "to". If the literal is
4863 unused and is being removed altogether, "to.abfd" will be NULL.
4864 The removed_literal entries are kept on a per-section list, sorted
4865 by the "from" offset field. */
4866
4867typedef struct removed_literal_struct removed_literal;
4868typedef struct removed_literal_list_struct removed_literal_list;
4869
4870struct removed_literal_struct
4871{
4872 r_reloc from;
4873 r_reloc to;
4874 removed_literal *next;
4875};
4876
4877struct removed_literal_list_struct
4878{
4879 removed_literal *head;
4880 removed_literal *tail;
4881};
4882
4883
43cd72b9
BW
4884/* Record that the literal at "from" is being removed. If "to" is not
4885 NULL, the "from" literal is being coalesced with the "to" literal. */
4886
4887static void
7fa3d080
BW
4888add_removed_literal (removed_literal_list *removed_list,
4889 const r_reloc *from,
4890 const r_reloc *to)
43cd72b9
BW
4891{
4892 removed_literal *r, *new_r, *next_r;
4893
4894 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4895
4896 new_r->from = *from;
4897 if (to)
4898 new_r->to = *to;
4899 else
4900 new_r->to.abfd = NULL;
4901 new_r->next = NULL;
4902
4903 r = removed_list->head;
4904 if (r == NULL)
4905 {
4906 removed_list->head = new_r;
4907 removed_list->tail = new_r;
4908 }
4909 /* Special check for common case of append. */
4910 else if (removed_list->tail->from.target_offset < from->target_offset)
4911 {
4912 removed_list->tail->next = new_r;
4913 removed_list->tail = new_r;
4914 }
4915 else
4916 {
7fa3d080 4917 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4918 {
4919 r = r->next;
4920 }
4921 next_r = r->next;
4922 r->next = new_r;
4923 new_r->next = next_r;
4924 if (next_r == NULL)
4925 removed_list->tail = new_r;
4926 }
4927}
4928
4929
4930/* Check if the list of removed literals contains an entry for the
4931 given address. Return the entry if found. */
4932
4933static removed_literal *
7fa3d080 4934find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4935{
4936 removed_literal *r = removed_list->head;
4937 while (r && r->from.target_offset < addr)
4938 r = r->next;
4939 if (r && r->from.target_offset == addr)
4940 return r;
4941 return NULL;
4942}
4943
4944
4945#if DEBUG
4946
4947static void
7fa3d080 4948print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4949{
4950 removed_literal *r;
4951 r = removed_list->head;
4952 if (r)
4953 fprintf (fp, "Removed Literals\n");
4954 for (; r != NULL; r = r->next)
4955 {
4956 print_r_reloc (fp, &r->from);
4957 fprintf (fp, " => ");
4958 if (r->to.abfd == NULL)
4959 fprintf (fp, "REMOVED");
4960 else
4961 print_r_reloc (fp, &r->to);
4962 fprintf (fp, "\n");
4963 }
4964}
4965
4966#endif /* DEBUG */
4967
4968\f
4969/* Per-section data for relaxation. */
4970
4971typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4972
4973struct xtensa_relax_info_struct
4974{
4975 bfd_boolean is_relaxable_literal_section;
4976 bfd_boolean is_relaxable_asm_section;
4977 int visited; /* Number of times visited. */
4978
4979 source_reloc *src_relocs; /* Array[src_count]. */
4980 int src_count;
4981 int src_next; /* Next src_relocs entry to assign. */
4982
4983 removed_literal_list removed_list;
4984 text_action_list action_list;
4985
4986 reloc_bfd_fix *fix_list;
4987 reloc_bfd_fix *fix_array;
4988 unsigned fix_array_count;
4989
4990 /* Support for expanding the reloc array that is stored
4991 in the section structure. If the relocations have been
4992 reallocated, the newly allocated relocations will be referenced
4993 here along with the actual size allocated. The relocation
4994 count will always be found in the section structure. */
4995 Elf_Internal_Rela *allocated_relocs;
4996 unsigned relocs_count;
4997 unsigned allocated_relocs_count;
4998};
4999
5000struct elf_xtensa_section_data
5001{
5002 struct bfd_elf_section_data elf;
5003 xtensa_relax_info relax_info;
5004};
5005
43cd72b9
BW
5006
5007static bfd_boolean
7fa3d080 5008elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9
BW
5009{
5010 struct elf_xtensa_section_data *sdata;
5011 bfd_size_type amt = sizeof (*sdata);
5012
5013 sdata = (struct elf_xtensa_section_data *) bfd_zalloc (abfd, amt);
5014 if (sdata == NULL)
5015 return FALSE;
7fa3d080 5016 sec->used_by_bfd = (void *) sdata;
43cd72b9
BW
5017
5018 return _bfd_elf_new_section_hook (abfd, sec);
5019}
5020
5021
7fa3d080
BW
5022static xtensa_relax_info *
5023get_xtensa_relax_info (asection *sec)
5024{
5025 struct elf_xtensa_section_data *section_data;
5026
5027 /* No info available if no section or if it is an output section. */
5028 if (!sec || sec == sec->output_section)
5029 return NULL;
5030
5031 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5032 return &section_data->relax_info;
5033}
5034
5035
43cd72b9 5036static void
7fa3d080 5037init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5038{
5039 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5040
5041 relax_info->is_relaxable_literal_section = FALSE;
5042 relax_info->is_relaxable_asm_section = FALSE;
5043 relax_info->visited = 0;
5044
5045 relax_info->src_relocs = NULL;
5046 relax_info->src_count = 0;
5047 relax_info->src_next = 0;
5048
5049 relax_info->removed_list.head = NULL;
5050 relax_info->removed_list.tail = NULL;
5051
5052 relax_info->action_list.head = NULL;
5053
5054 relax_info->fix_list = NULL;
5055 relax_info->fix_array = NULL;
5056 relax_info->fix_array_count = 0;
5057
5058 relax_info->allocated_relocs = NULL;
5059 relax_info->relocs_count = 0;
5060 relax_info->allocated_relocs_count = 0;
5061}
5062
43cd72b9
BW
5063\f
5064/* Coalescing literals may require a relocation to refer to a section in
5065 a different input file, but the standard relocation information
5066 cannot express that. Instead, the reloc_bfd_fix structures are used
5067 to "fix" the relocations that refer to sections in other input files.
5068 These structures are kept on per-section lists. The "src_type" field
5069 records the relocation type in case there are multiple relocations on
5070 the same location. FIXME: This is ugly; an alternative might be to
5071 add new symbols with the "owner" field to some other input file. */
5072
5073struct reloc_bfd_fix_struct
5074{
5075 asection *src_sec;
5076 bfd_vma src_offset;
5077 unsigned src_type; /* Relocation type. */
5078
5079 bfd *target_abfd;
5080 asection *target_sec;
5081 bfd_vma target_offset;
5082 bfd_boolean translated;
5083
5084 reloc_bfd_fix *next;
5085};
5086
5087
43cd72b9 5088static reloc_bfd_fix *
7fa3d080
BW
5089reloc_bfd_fix_init (asection *src_sec,
5090 bfd_vma src_offset,
5091 unsigned src_type,
5092 bfd *target_abfd,
5093 asection *target_sec,
5094 bfd_vma target_offset,
5095 bfd_boolean translated)
43cd72b9
BW
5096{
5097 reloc_bfd_fix *fix;
5098
5099 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5100 fix->src_sec = src_sec;
5101 fix->src_offset = src_offset;
5102 fix->src_type = src_type;
5103 fix->target_abfd = target_abfd;
5104 fix->target_sec = target_sec;
5105 fix->target_offset = target_offset;
5106 fix->translated = translated;
5107
5108 return fix;
5109}
5110
5111
5112static void
7fa3d080 5113add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5114{
5115 xtensa_relax_info *relax_info;
5116
5117 relax_info = get_xtensa_relax_info (src_sec);
5118 fix->next = relax_info->fix_list;
5119 relax_info->fix_list = fix;
5120}
5121
5122
5123static int
7fa3d080 5124fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5125{
5126 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5127 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5128
5129 if (a->src_offset != b->src_offset)
5130 return (a->src_offset - b->src_offset);
5131 return (a->src_type - b->src_type);
5132}
5133
5134
5135static void
7fa3d080 5136cache_fix_array (asection *sec)
43cd72b9
BW
5137{
5138 unsigned i, count = 0;
5139 reloc_bfd_fix *r;
5140 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5141
5142 if (relax_info == NULL)
5143 return;
5144 if (relax_info->fix_list == NULL)
5145 return;
5146
5147 for (r = relax_info->fix_list; r != NULL; r = r->next)
5148 count++;
5149
5150 relax_info->fix_array =
5151 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5152 relax_info->fix_array_count = count;
5153
5154 r = relax_info->fix_list;
5155 for (i = 0; i < count; i++, r = r->next)
5156 {
5157 relax_info->fix_array[count - 1 - i] = *r;
5158 relax_info->fix_array[count - 1 - i].next = NULL;
5159 }
5160
5161 qsort (relax_info->fix_array, relax_info->fix_array_count,
5162 sizeof (reloc_bfd_fix), fix_compare);
5163}
5164
5165
5166static reloc_bfd_fix *
7fa3d080 5167get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5168{
5169 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5170 reloc_bfd_fix *rv;
5171 reloc_bfd_fix key;
5172
5173 if (relax_info == NULL)
5174 return NULL;
5175 if (relax_info->fix_list == NULL)
5176 return NULL;
5177
5178 if (relax_info->fix_array == NULL)
5179 cache_fix_array (sec);
5180
5181 key.src_offset = offset;
5182 key.src_type = type;
5183 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5184 sizeof (reloc_bfd_fix), fix_compare);
5185 return rv;
5186}
5187
5188\f
5189/* Section caching. */
5190
5191typedef struct section_cache_struct section_cache_t;
5192
5193struct section_cache_struct
5194{
5195 asection *sec;
5196
5197 bfd_byte *contents; /* Cache of the section contents. */
5198 bfd_size_type content_length;
5199
5200 property_table_entry *ptbl; /* Cache of the section property table. */
5201 unsigned pte_count;
5202
5203 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5204 unsigned reloc_count;
5205};
5206
5207
7fa3d080
BW
5208static void
5209init_section_cache (section_cache_t *sec_cache)
5210{
5211 memset (sec_cache, 0, sizeof (*sec_cache));
5212}
43cd72b9
BW
5213
5214
5215static void
7fa3d080 5216clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5217{
7fa3d080
BW
5218 if (sec_cache->sec)
5219 {
5220 release_contents (sec_cache->sec, sec_cache->contents);
5221 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5222 if (sec_cache->ptbl)
5223 free (sec_cache->ptbl);
5224 memset (sec_cache, 0, sizeof (sec_cache));
5225 }
43cd72b9
BW
5226}
5227
5228
5229static bfd_boolean
7fa3d080
BW
5230section_cache_section (section_cache_t *sec_cache,
5231 asection *sec,
5232 struct bfd_link_info *link_info)
43cd72b9
BW
5233{
5234 bfd *abfd;
5235 property_table_entry *prop_table = NULL;
5236 int ptblsize = 0;
5237 bfd_byte *contents = NULL;
5238 Elf_Internal_Rela *internal_relocs = NULL;
5239 bfd_size_type sec_size;
5240
5241 if (sec == NULL)
5242 return FALSE;
5243 if (sec == sec_cache->sec)
5244 return TRUE;
5245
5246 abfd = sec->owner;
5247 sec_size = bfd_get_section_limit (abfd, sec);
5248
5249 /* Get the contents. */
5250 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5251 if (contents == NULL && sec_size != 0)
5252 goto err;
5253
5254 /* Get the relocations. */
5255 internal_relocs = retrieve_internal_relocs (abfd, sec,
5256 link_info->keep_memory);
5257
5258 /* Get the entry table. */
5259 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5260 XTENSA_PROP_SEC_NAME, FALSE);
5261 if (ptblsize < 0)
5262 goto err;
5263
5264 /* Fill in the new section cache. */
5265 clear_section_cache (sec_cache);
5266 memset (sec_cache, 0, sizeof (sec_cache));
5267
5268 sec_cache->sec = sec;
5269 sec_cache->contents = contents;
5270 sec_cache->content_length = sec_size;
5271 sec_cache->relocs = internal_relocs;
5272 sec_cache->reloc_count = sec->reloc_count;
5273 sec_cache->pte_count = ptblsize;
5274 sec_cache->ptbl = prop_table;
5275
5276 return TRUE;
5277
5278 err:
5279 release_contents (sec, contents);
5280 release_internal_relocs (sec, internal_relocs);
5281 if (prop_table)
5282 free (prop_table);
5283 return FALSE;
5284}
5285
43cd72b9
BW
5286\f
5287/* Extended basic blocks. */
5288
5289/* An ebb_struct represents an Extended Basic Block. Within this
5290 range, we guarantee that all instructions are decodable, the
5291 property table entries are contiguous, and no property table
5292 specifies a segment that cannot have instructions moved. This
5293 structure contains caches of the contents, property table and
5294 relocations for the specified section for easy use. The range is
5295 specified by ranges of indices for the byte offset, property table
5296 offsets and relocation offsets. These must be consistent. */
5297
5298typedef struct ebb_struct ebb_t;
5299
5300struct ebb_struct
5301{
5302 asection *sec;
5303
5304 bfd_byte *contents; /* Cache of the section contents. */
5305 bfd_size_type content_length;
5306
5307 property_table_entry *ptbl; /* Cache of the section property table. */
5308 unsigned pte_count;
5309
5310 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5311 unsigned reloc_count;
5312
5313 bfd_vma start_offset; /* Offset in section. */
5314 unsigned start_ptbl_idx; /* Offset in the property table. */
5315 unsigned start_reloc_idx; /* Offset in the relocations. */
5316
5317 bfd_vma end_offset;
5318 unsigned end_ptbl_idx;
5319 unsigned end_reloc_idx;
5320
5321 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5322
5323 /* The unreachable property table at the end of this set of blocks;
5324 NULL if the end is not an unreachable block. */
5325 property_table_entry *ends_unreachable;
5326};
5327
5328
5329enum ebb_target_enum
5330{
5331 EBB_NO_ALIGN = 0,
5332 EBB_DESIRE_TGT_ALIGN,
5333 EBB_REQUIRE_TGT_ALIGN,
5334 EBB_REQUIRE_LOOP_ALIGN,
5335 EBB_REQUIRE_ALIGN
5336};
5337
5338
5339/* proposed_action_struct is similar to the text_action_struct except
5340 that is represents a potential transformation, not one that will
5341 occur. We build a list of these for an extended basic block
5342 and use them to compute the actual actions desired. We must be
5343 careful that the entire set of actual actions we perform do not
5344 break any relocations that would fit if the actions were not
5345 performed. */
5346
5347typedef struct proposed_action_struct proposed_action;
5348
5349struct proposed_action_struct
5350{
5351 enum ebb_target_enum align_type; /* for the target alignment */
5352 bfd_vma alignment_pow;
5353 text_action_t action;
5354 bfd_vma offset;
5355 int removed_bytes;
5356 bfd_boolean do_action; /* If false, then we will not perform the action. */
5357};
5358
5359
5360/* The ebb_constraint_struct keeps a set of proposed actions for an
5361 extended basic block. */
5362
5363typedef struct ebb_constraint_struct ebb_constraint;
5364
5365struct ebb_constraint_struct
5366{
5367 ebb_t ebb;
5368 bfd_boolean start_movable;
5369
5370 /* Bytes of extra space at the beginning if movable. */
5371 int start_extra_space;
5372
5373 enum ebb_target_enum start_align;
5374
5375 bfd_boolean end_movable;
5376
5377 /* Bytes of extra space at the end if movable. */
5378 int end_extra_space;
5379
5380 unsigned action_count;
5381 unsigned action_allocated;
5382
5383 /* Array of proposed actions. */
5384 proposed_action *actions;
5385
5386 /* Action alignments -- one for each proposed action. */
5387 enum ebb_target_enum *action_aligns;
5388};
5389
5390
43cd72b9 5391static void
7fa3d080 5392init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5393{
5394 memset (c, 0, sizeof (ebb_constraint));
5395}
5396
5397
5398static void
7fa3d080 5399free_ebb_constraint (ebb_constraint *c)
43cd72b9 5400{
7fa3d080 5401 if (c->actions)
43cd72b9
BW
5402 free (c->actions);
5403}
5404
5405
5406static void
7fa3d080
BW
5407init_ebb (ebb_t *ebb,
5408 asection *sec,
5409 bfd_byte *contents,
5410 bfd_size_type content_length,
5411 property_table_entry *prop_table,
5412 unsigned ptblsize,
5413 Elf_Internal_Rela *internal_relocs,
5414 unsigned reloc_count)
43cd72b9
BW
5415{
5416 memset (ebb, 0, sizeof (ebb_t));
5417 ebb->sec = sec;
5418 ebb->contents = contents;
5419 ebb->content_length = content_length;
5420 ebb->ptbl = prop_table;
5421 ebb->pte_count = ptblsize;
5422 ebb->relocs = internal_relocs;
5423 ebb->reloc_count = reloc_count;
5424 ebb->start_offset = 0;
5425 ebb->end_offset = ebb->content_length - 1;
5426 ebb->start_ptbl_idx = 0;
5427 ebb->end_ptbl_idx = ptblsize;
5428 ebb->start_reloc_idx = 0;
5429 ebb->end_reloc_idx = reloc_count;
5430}
5431
5432
5433/* Extend the ebb to all decodable contiguous sections. The algorithm
5434 for building a basic block around an instruction is to push it
5435 forward until we hit the end of a section, an unreachable block or
5436 a block that cannot be transformed. Then we push it backwards
5437 searching for similar conditions. */
5438
7fa3d080
BW
5439static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5440static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5441static bfd_size_type insn_block_decodable_len
5442 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5443
43cd72b9 5444static bfd_boolean
7fa3d080 5445extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5446{
5447 if (!extend_ebb_bounds_forward (ebb))
5448 return FALSE;
5449 if (!extend_ebb_bounds_backward (ebb))
5450 return FALSE;
5451 return TRUE;
5452}
5453
5454
5455static bfd_boolean
7fa3d080 5456extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5457{
5458 property_table_entry *the_entry, *new_entry;
5459
5460 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5461
5462 /* Stop when (1) we cannot decode an instruction, (2) we are at
5463 the end of the property tables, (3) we hit a non-contiguous property
5464 table entry, (4) we hit a NO_TRANSFORM region. */
5465
5466 while (1)
5467 {
5468 bfd_vma entry_end;
5469 bfd_size_type insn_block_len;
5470
5471 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5472 insn_block_len =
5473 insn_block_decodable_len (ebb->contents, ebb->content_length,
5474 ebb->end_offset,
5475 entry_end - ebb->end_offset);
5476 if (insn_block_len != (entry_end - ebb->end_offset))
5477 {
5478 (*_bfd_error_handler)
5479 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5480 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5481 return FALSE;
5482 }
5483 ebb->end_offset += insn_block_len;
5484
5485 if (ebb->end_offset == ebb->sec->size)
5486 ebb->ends_section = TRUE;
5487
5488 /* Update the reloc counter. */
5489 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5490 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5491 < ebb->end_offset))
5492 {
5493 ebb->end_reloc_idx++;
5494 }
5495
5496 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5497 return TRUE;
5498
5499 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5500 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5501 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5502 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5503 break;
5504
5505 if (the_entry->address + the_entry->size != new_entry->address)
5506 break;
5507
5508 the_entry = new_entry;
5509 ebb->end_ptbl_idx++;
5510 }
5511
5512 /* Quick check for an unreachable or end of file just at the end. */
5513 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5514 {
5515 if (ebb->end_offset == ebb->content_length)
5516 ebb->ends_section = TRUE;
5517 }
5518 else
5519 {
5520 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5521 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5522 && the_entry->address + the_entry->size == new_entry->address)
5523 ebb->ends_unreachable = new_entry;
5524 }
5525
5526 /* Any other ending requires exact alignment. */
5527 return TRUE;
5528}
5529
5530
5531static bfd_boolean
7fa3d080 5532extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5533{
5534 property_table_entry *the_entry, *new_entry;
5535
5536 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5537
5538 /* Stop when (1) we cannot decode the instructions in the current entry.
5539 (2) we are at the beginning of the property tables, (3) we hit a
5540 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5541
5542 while (1)
5543 {
5544 bfd_vma block_begin;
5545 bfd_size_type insn_block_len;
5546
5547 block_begin = the_entry->address - ebb->sec->vma;
5548 insn_block_len =
5549 insn_block_decodable_len (ebb->contents, ebb->content_length,
5550 block_begin,
5551 ebb->start_offset - block_begin);
5552 if (insn_block_len != ebb->start_offset - block_begin)
5553 {
5554 (*_bfd_error_handler)
5555 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5556 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5557 return FALSE;
5558 }
5559 ebb->start_offset -= insn_block_len;
5560
5561 /* Update the reloc counter. */
5562 while (ebb->start_reloc_idx > 0
5563 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5564 >= ebb->start_offset))
5565 {
5566 ebb->start_reloc_idx--;
5567 }
5568
5569 if (ebb->start_ptbl_idx == 0)
5570 return TRUE;
5571
5572 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5573 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5574 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5575 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5576 return TRUE;
5577 if (new_entry->address + new_entry->size != the_entry->address)
5578 return TRUE;
5579
5580 the_entry = new_entry;
5581 ebb->start_ptbl_idx--;
5582 }
5583 return TRUE;
5584}
5585
5586
5587static bfd_size_type
7fa3d080
BW
5588insn_block_decodable_len (bfd_byte *contents,
5589 bfd_size_type content_len,
5590 bfd_vma block_offset,
5591 bfd_size_type block_len)
43cd72b9
BW
5592{
5593 bfd_vma offset = block_offset;
5594
5595 while (offset < block_offset + block_len)
5596 {
5597 bfd_size_type insn_len = 0;
5598
5599 insn_len = insn_decode_len (contents, content_len, offset);
5600 if (insn_len == 0)
5601 return (offset - block_offset);
5602 offset += insn_len;
5603 }
5604 return (offset - block_offset);
5605}
5606
5607
5608static void
7fa3d080 5609ebb_propose_action (ebb_constraint *c,
7fa3d080 5610 enum ebb_target_enum align_type,
288f74fa 5611 bfd_vma alignment_pow,
7fa3d080
BW
5612 text_action_t action,
5613 bfd_vma offset,
5614 int removed_bytes,
5615 bfd_boolean do_action)
43cd72b9 5616{
b08b5071 5617 proposed_action *act;
43cd72b9 5618
43cd72b9
BW
5619 if (c->action_allocated <= c->action_count)
5620 {
b08b5071 5621 unsigned new_allocated, i;
823fc61f 5622 proposed_action *new_actions;
b08b5071
BW
5623
5624 new_allocated = (c->action_count + 2) * 2;
823fc61f 5625 new_actions = (proposed_action *)
43cd72b9
BW
5626 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5627
5628 for (i = 0; i < c->action_count; i++)
5629 new_actions[i] = c->actions[i];
7fa3d080 5630 if (c->actions)
43cd72b9
BW
5631 free (c->actions);
5632 c->actions = new_actions;
5633 c->action_allocated = new_allocated;
5634 }
b08b5071
BW
5635
5636 act = &c->actions[c->action_count];
5637 act->align_type = align_type;
5638 act->alignment_pow = alignment_pow;
5639 act->action = action;
5640 act->offset = offset;
5641 act->removed_bytes = removed_bytes;
5642 act->do_action = do_action;
5643
43cd72b9
BW
5644 c->action_count++;
5645}
5646
5647\f
5648/* Access to internal relocations, section contents and symbols. */
5649
5650/* During relaxation, we need to modify relocations, section contents,
5651 and symbol definitions, and we need to keep the original values from
5652 being reloaded from the input files, i.e., we need to "pin" the
5653 modified values in memory. We also want to continue to observe the
5654 setting of the "keep-memory" flag. The following functions wrap the
5655 standard BFD functions to take care of this for us. */
5656
5657static Elf_Internal_Rela *
7fa3d080 5658retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5659{
5660 Elf_Internal_Rela *internal_relocs;
5661
5662 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5663 return NULL;
5664
5665 internal_relocs = elf_section_data (sec)->relocs;
5666 if (internal_relocs == NULL)
5667 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5668 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5669 return internal_relocs;
5670}
5671
5672
5673static void
7fa3d080 5674pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5675{
5676 elf_section_data (sec)->relocs = internal_relocs;
5677}
5678
5679
5680static void
7fa3d080 5681release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5682{
5683 if (internal_relocs
5684 && elf_section_data (sec)->relocs != internal_relocs)
5685 free (internal_relocs);
5686}
5687
5688
5689static bfd_byte *
7fa3d080 5690retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5691{
5692 bfd_byte *contents;
5693 bfd_size_type sec_size;
5694
5695 sec_size = bfd_get_section_limit (abfd, sec);
5696 contents = elf_section_data (sec)->this_hdr.contents;
5697
5698 if (contents == NULL && sec_size != 0)
5699 {
5700 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5701 {
7fa3d080 5702 if (contents)
43cd72b9
BW
5703 free (contents);
5704 return NULL;
5705 }
5706 if (keep_memory)
5707 elf_section_data (sec)->this_hdr.contents = contents;
5708 }
5709 return contents;
5710}
5711
5712
5713static void
7fa3d080 5714pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5715{
5716 elf_section_data (sec)->this_hdr.contents = contents;
5717}
5718
5719
5720static void
7fa3d080 5721release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5722{
5723 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5724 free (contents);
5725}
5726
5727
5728static Elf_Internal_Sym *
7fa3d080 5729retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5730{
5731 Elf_Internal_Shdr *symtab_hdr;
5732 Elf_Internal_Sym *isymbuf;
5733 size_t locsymcount;
5734
5735 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5736 locsymcount = symtab_hdr->sh_info;
5737
5738 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5739 if (isymbuf == NULL && locsymcount != 0)
5740 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5741 NULL, NULL, NULL);
5742
5743 /* Save the symbols for this input file so they won't be read again. */
5744 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5745 symtab_hdr->contents = (unsigned char *) isymbuf;
5746
5747 return isymbuf;
5748}
5749
5750\f
5751/* Code for link-time relaxation. */
5752
5753/* Initialization for relaxation: */
7fa3d080 5754static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5755static bfd_boolean find_relaxable_sections
7fa3d080 5756 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5757static bfd_boolean collect_source_relocs
7fa3d080 5758 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5759static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5760 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5761 bfd_boolean *);
43cd72b9 5762static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5763 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5764static bfd_boolean compute_text_actions
7fa3d080
BW
5765 (bfd *, asection *, struct bfd_link_info *);
5766static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5767static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5768static bfd_boolean check_section_ebb_pcrels_fit
7fa3d080
BW
5769 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *);
5770static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5771static void text_action_add_proposed
7fa3d080
BW
5772 (text_action_list *, const ebb_constraint *, asection *);
5773static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5774
5775/* First pass: */
5776static bfd_boolean compute_removed_literals
7fa3d080 5777 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5778static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5779 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5780static bfd_boolean is_removable_literal
7fa3d080 5781 (const source_reloc *, int, const source_reloc *, int);
43cd72b9 5782static bfd_boolean remove_dead_literal
7fa3d080
BW
5783 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5784 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5785static bfd_boolean identify_literal_placement
5786 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5787 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5788 source_reloc *, property_table_entry *, int, section_cache_t *,
5789 bfd_boolean);
5790static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5791static bfd_boolean coalesce_shared_literal
7fa3d080 5792 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5793static bfd_boolean move_shared_literal
7fa3d080
BW
5794 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5795 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5796
5797/* Second pass: */
7fa3d080
BW
5798static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5799static bfd_boolean translate_section_fixes (asection *);
5800static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5801static void translate_reloc (const r_reloc *, r_reloc *);
43cd72b9 5802static void shrink_dynamic_reloc_sections
7fa3d080 5803 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5804static bfd_boolean move_literal
7fa3d080
BW
5805 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5806 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5807static bfd_boolean relax_property_section
7fa3d080 5808 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5809
5810/* Third pass: */
7fa3d080 5811static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5812
5813
5814static bfd_boolean
7fa3d080
BW
5815elf_xtensa_relax_section (bfd *abfd,
5816 asection *sec,
5817 struct bfd_link_info *link_info,
5818 bfd_boolean *again)
43cd72b9
BW
5819{
5820 static value_map_hash_table *values = NULL;
5821 static bfd_boolean relocations_analyzed = FALSE;
5822 xtensa_relax_info *relax_info;
5823
5824 if (!relocations_analyzed)
5825 {
5826 /* Do some overall initialization for relaxation. */
5827 values = value_map_hash_table_init ();
5828 if (values == NULL)
5829 return FALSE;
5830 relaxing_section = TRUE;
5831 if (!analyze_relocations (link_info))
5832 return FALSE;
5833 relocations_analyzed = TRUE;
5834 }
5835 *again = FALSE;
5836
5837 /* Don't mess with linker-created sections. */
5838 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5839 return TRUE;
5840
5841 relax_info = get_xtensa_relax_info (sec);
5842 BFD_ASSERT (relax_info != NULL);
5843
5844 switch (relax_info->visited)
5845 {
5846 case 0:
5847 /* Note: It would be nice to fold this pass into
5848 analyze_relocations, but it is important for this step that the
5849 sections be examined in link order. */
5850 if (!compute_removed_literals (abfd, sec, link_info, values))
5851 return FALSE;
5852 *again = TRUE;
5853 break;
5854
5855 case 1:
5856 if (values)
5857 value_map_hash_table_delete (values);
5858 values = NULL;
5859 if (!relax_section (abfd, sec, link_info))
5860 return FALSE;
5861 *again = TRUE;
5862 break;
5863
5864 case 2:
5865 if (!relax_section_symbols (abfd, sec))
5866 return FALSE;
5867 break;
5868 }
5869
5870 relax_info->visited++;
5871 return TRUE;
5872}
5873
5874\f
5875/* Initialization for relaxation. */
5876
5877/* This function is called once at the start of relaxation. It scans
5878 all the input sections and marks the ones that are relaxable (i.e.,
5879 literal sections with L32R relocations against them), and then
5880 collects source_reloc information for all the relocations against
5881 those relaxable sections. During this process, it also detects
5882 longcalls, i.e., calls relaxed by the assembler into indirect
5883 calls, that can be optimized back into direct calls. Within each
5884 extended basic block (ebb) containing an optimized longcall, it
5885 computes a set of "text actions" that can be performed to remove
5886 the L32R associated with the longcall while optionally preserving
5887 branch target alignments. */
5888
5889static bfd_boolean
7fa3d080 5890analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5891{
5892 bfd *abfd;
5893 asection *sec;
5894 bfd_boolean is_relaxable = FALSE;
5895
5896 /* Initialize the per-section relaxation info. */
5897 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5898 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5899 {
5900 init_xtensa_relax_info (sec);
5901 }
5902
5903 /* Mark relaxable sections (and count relocations against each one). */
5904 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5905 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5906 {
5907 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5908 return FALSE;
5909 }
5910
5911 /* Bail out if there are no relaxable sections. */
5912 if (!is_relaxable)
5913 return TRUE;
5914
5915 /* Allocate space for source_relocs. */
5916 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5917 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5918 {
5919 xtensa_relax_info *relax_info;
5920
5921 relax_info = get_xtensa_relax_info (sec);
5922 if (relax_info->is_relaxable_literal_section
5923 || relax_info->is_relaxable_asm_section)
5924 {
5925 relax_info->src_relocs = (source_reloc *)
5926 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5927 }
5928 }
5929
5930 /* Collect info on relocations against each relaxable section. */
5931 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5932 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5933 {
5934 if (!collect_source_relocs (abfd, sec, link_info))
5935 return FALSE;
5936 }
5937
5938 /* Compute the text actions. */
5939 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5940 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5941 {
5942 if (!compute_text_actions (abfd, sec, link_info))
5943 return FALSE;
5944 }
5945
5946 return TRUE;
5947}
5948
5949
5950/* Find all the sections that might be relaxed. The motivation for
5951 this pass is that collect_source_relocs() needs to record _all_ the
5952 relocations that target each relaxable section. That is expensive
5953 and unnecessary unless the target section is actually going to be
5954 relaxed. This pass identifies all such sections by checking if
5955 they have L32Rs pointing to them. In the process, the total number
5956 of relocations targeting each section is also counted so that we
5957 know how much space to allocate for source_relocs against each
5958 relaxable literal section. */
5959
5960static bfd_boolean
7fa3d080
BW
5961find_relaxable_sections (bfd *abfd,
5962 asection *sec,
5963 struct bfd_link_info *link_info,
5964 bfd_boolean *is_relaxable_p)
43cd72b9
BW
5965{
5966 Elf_Internal_Rela *internal_relocs;
5967 bfd_byte *contents;
5968 bfd_boolean ok = TRUE;
5969 unsigned i;
5970 xtensa_relax_info *source_relax_info;
5971
5972 internal_relocs = retrieve_internal_relocs (abfd, sec,
5973 link_info->keep_memory);
5974 if (internal_relocs == NULL)
5975 return ok;
5976
5977 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5978 if (contents == NULL && sec->size != 0)
5979 {
5980 ok = FALSE;
5981 goto error_return;
5982 }
5983
5984 source_relax_info = get_xtensa_relax_info (sec);
5985 for (i = 0; i < sec->reloc_count; i++)
5986 {
5987 Elf_Internal_Rela *irel = &internal_relocs[i];
5988 r_reloc r_rel;
5989 asection *target_sec;
5990 xtensa_relax_info *target_relax_info;
5991
5992 /* If this section has not already been marked as "relaxable", and
5993 if it contains any ASM_EXPAND relocations (marking expanded
5994 longcalls) that can be optimized into direct calls, then mark
5995 the section as "relaxable". */
5996 if (source_relax_info
5997 && !source_relax_info->is_relaxable_asm_section
5998 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
5999 {
6000 bfd_boolean is_reachable = FALSE;
6001 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6002 link_info, &is_reachable)
6003 && is_reachable)
6004 {
6005 source_relax_info->is_relaxable_asm_section = TRUE;
6006 *is_relaxable_p = TRUE;
6007 }
6008 }
6009
6010 r_reloc_init (&r_rel, abfd, irel, contents,
6011 bfd_get_section_limit (abfd, sec));
6012
6013 target_sec = r_reloc_get_section (&r_rel);
6014 target_relax_info = get_xtensa_relax_info (target_sec);
6015 if (!target_relax_info)
6016 continue;
6017
6018 /* Count PC-relative operand relocations against the target section.
6019 Note: The conditions tested here must match the conditions under
6020 which init_source_reloc is called in collect_source_relocs(). */
6021 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6022 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6023 || is_l32r_relocation (abfd, sec, contents, irel)))
6024 target_relax_info->src_count++;
6025
6026 if (is_l32r_relocation (abfd, sec, contents, irel)
6027 && r_reloc_is_defined (&r_rel))
6028 {
6029 /* Mark the target section as relaxable. */
6030 target_relax_info->is_relaxable_literal_section = TRUE;
6031 *is_relaxable_p = TRUE;
6032 }
6033 }
6034
6035 error_return:
6036 release_contents (sec, contents);
6037 release_internal_relocs (sec, internal_relocs);
6038 return ok;
6039}
6040
6041
6042/* Record _all_ the relocations that point to relaxable sections, and
6043 get rid of ASM_EXPAND relocs by either converting them to
6044 ASM_SIMPLIFY or by removing them. */
6045
6046static bfd_boolean
7fa3d080
BW
6047collect_source_relocs (bfd *abfd,
6048 asection *sec,
6049 struct bfd_link_info *link_info)
43cd72b9
BW
6050{
6051 Elf_Internal_Rela *internal_relocs;
6052 bfd_byte *contents;
6053 bfd_boolean ok = TRUE;
6054 unsigned i;
6055 bfd_size_type sec_size;
6056
6057 internal_relocs = retrieve_internal_relocs (abfd, sec,
6058 link_info->keep_memory);
6059 if (internal_relocs == NULL)
6060 return ok;
6061
6062 sec_size = bfd_get_section_limit (abfd, sec);
6063 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6064 if (contents == NULL && sec_size != 0)
6065 {
6066 ok = FALSE;
6067 goto error_return;
6068 }
6069
6070 /* Record relocations against relaxable literal sections. */
6071 for (i = 0; i < sec->reloc_count; i++)
6072 {
6073 Elf_Internal_Rela *irel = &internal_relocs[i];
6074 r_reloc r_rel;
6075 asection *target_sec;
6076 xtensa_relax_info *target_relax_info;
6077
6078 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6079
6080 target_sec = r_reloc_get_section (&r_rel);
6081 target_relax_info = get_xtensa_relax_info (target_sec);
6082
6083 if (target_relax_info
6084 && (target_relax_info->is_relaxable_literal_section
6085 || target_relax_info->is_relaxable_asm_section))
6086 {
6087 xtensa_opcode opcode = XTENSA_UNDEFINED;
6088 int opnd = -1;
6089 bfd_boolean is_abs_literal = FALSE;
6090
6091 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6092 {
6093 /* None of the current alternate relocs are PC-relative,
6094 and only PC-relative relocs matter here. However, we
6095 still need to record the opcode for literal
6096 coalescing. */
6097 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6098 if (opcode == get_l32r_opcode ())
6099 {
6100 is_abs_literal = TRUE;
6101 opnd = 1;
6102 }
6103 else
6104 opcode = XTENSA_UNDEFINED;
6105 }
6106 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6107 {
6108 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6109 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6110 }
6111
6112 if (opcode != XTENSA_UNDEFINED)
6113 {
6114 int src_next = target_relax_info->src_next++;
6115 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6116
6117 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6118 is_abs_literal);
6119 }
6120 }
6121 }
6122
6123 /* Now get rid of ASM_EXPAND relocations. At this point, the
6124 src_relocs array for the target literal section may still be
6125 incomplete, but it must at least contain the entries for the L32R
6126 relocations associated with ASM_EXPANDs because they were just
6127 added in the preceding loop over the relocations. */
6128
6129 for (i = 0; i < sec->reloc_count; i++)
6130 {
6131 Elf_Internal_Rela *irel = &internal_relocs[i];
6132 bfd_boolean is_reachable;
6133
6134 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6135 &is_reachable))
6136 continue;
6137
6138 if (is_reachable)
6139 {
6140 Elf_Internal_Rela *l32r_irel;
6141 r_reloc r_rel;
6142 asection *target_sec;
6143 xtensa_relax_info *target_relax_info;
6144
6145 /* Mark the source_reloc for the L32R so that it will be
6146 removed in compute_removed_literals(), along with the
6147 associated literal. */
6148 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6149 irel, internal_relocs);
6150 if (l32r_irel == NULL)
6151 continue;
6152
6153 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6154
6155 target_sec = r_reloc_get_section (&r_rel);
6156 target_relax_info = get_xtensa_relax_info (target_sec);
6157
6158 if (target_relax_info
6159 && (target_relax_info->is_relaxable_literal_section
6160 || target_relax_info->is_relaxable_asm_section))
6161 {
6162 source_reloc *s_reloc;
6163
6164 /* Search the source_relocs for the entry corresponding to
6165 the l32r_irel. Note: The src_relocs array is not yet
6166 sorted, but it wouldn't matter anyway because we're
6167 searching by source offset instead of target offset. */
6168 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6169 target_relax_info->src_next,
6170 sec, l32r_irel);
6171 BFD_ASSERT (s_reloc);
6172 s_reloc->is_null = TRUE;
6173 }
6174
6175 /* Convert this reloc to ASM_SIMPLIFY. */
6176 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6177 R_XTENSA_ASM_SIMPLIFY);
6178 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6179
6180 pin_internal_relocs (sec, internal_relocs);
6181 }
6182 else
6183 {
6184 /* It is resolvable but doesn't reach. We resolve now
6185 by eliminating the relocation -- the call will remain
6186 expanded into L32R/CALLX. */
6187 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6188 pin_internal_relocs (sec, internal_relocs);
6189 }
6190 }
6191
6192 error_return:
6193 release_contents (sec, contents);
6194 release_internal_relocs (sec, internal_relocs);
6195 return ok;
6196}
6197
6198
6199/* Return TRUE if the asm expansion can be resolved. Generally it can
6200 be resolved on a final link or when a partial link locates it in the
6201 same section as the target. Set "is_reachable" flag if the target of
6202 the call is within the range of a direct call, given the current VMA
6203 for this section and the target section. */
6204
6205bfd_boolean
7fa3d080
BW
6206is_resolvable_asm_expansion (bfd *abfd,
6207 asection *sec,
6208 bfd_byte *contents,
6209 Elf_Internal_Rela *irel,
6210 struct bfd_link_info *link_info,
6211 bfd_boolean *is_reachable_p)
43cd72b9
BW
6212{
6213 asection *target_sec;
6214 bfd_vma target_offset;
6215 r_reloc r_rel;
6216 xtensa_opcode opcode, direct_call_opcode;
6217 bfd_vma self_address;
6218 bfd_vma dest_address;
6219 bfd_boolean uses_l32r;
6220 bfd_size_type sec_size;
6221
6222 *is_reachable_p = FALSE;
6223
6224 if (contents == NULL)
6225 return FALSE;
6226
6227 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6228 return FALSE;
6229
6230 sec_size = bfd_get_section_limit (abfd, sec);
6231 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6232 sec_size - irel->r_offset, &uses_l32r);
6233 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6234 if (!uses_l32r)
6235 return FALSE;
6236
6237 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6238 if (direct_call_opcode == XTENSA_UNDEFINED)
6239 return FALSE;
6240
6241 /* Check and see that the target resolves. */
6242 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6243 if (!r_reloc_is_defined (&r_rel))
6244 return FALSE;
6245
6246 target_sec = r_reloc_get_section (&r_rel);
6247 target_offset = r_rel.target_offset;
6248
6249 /* If the target is in a shared library, then it doesn't reach. This
6250 isn't supposed to come up because the compiler should never generate
6251 non-PIC calls on systems that use shared libraries, but the linker
6252 shouldn't crash regardless. */
6253 if (!target_sec->output_section)
6254 return FALSE;
6255
6256 /* For relocatable sections, we can only simplify when the output
6257 section of the target is the same as the output section of the
6258 source. */
6259 if (link_info->relocatable
6260 && (target_sec->output_section != sec->output_section
6261 || is_reloc_sym_weak (abfd, irel)))
6262 return FALSE;
6263
6264 self_address = (sec->output_section->vma
6265 + sec->output_offset + irel->r_offset + 3);
6266 dest_address = (target_sec->output_section->vma
6267 + target_sec->output_offset + target_offset);
6268
6269 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6270 self_address, dest_address);
6271
6272 if ((self_address >> CALL_SEGMENT_BITS) !=
6273 (dest_address >> CALL_SEGMENT_BITS))
6274 return FALSE;
6275
6276 return TRUE;
6277}
6278
6279
6280static Elf_Internal_Rela *
7fa3d080
BW
6281find_associated_l32r_irel (bfd *abfd,
6282 asection *sec,
6283 bfd_byte *contents,
6284 Elf_Internal_Rela *other_irel,
6285 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6286{
6287 unsigned i;
e0001a05 6288
43cd72b9
BW
6289 for (i = 0; i < sec->reloc_count; i++)
6290 {
6291 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6292
43cd72b9
BW
6293 if (irel == other_irel)
6294 continue;
6295 if (irel->r_offset != other_irel->r_offset)
6296 continue;
6297 if (is_l32r_relocation (abfd, sec, contents, irel))
6298 return irel;
6299 }
6300
6301 return NULL;
e0001a05
NC
6302}
6303
6304
43cd72b9
BW
6305/* The compute_text_actions function will build a list of potential
6306 transformation actions for code in the extended basic block of each
6307 longcall that is optimized to a direct call. From this list we
6308 generate a set of actions to actually perform that optimizes for
6309 space and, if not using size_opt, maintains branch target
6310 alignments.
e0001a05 6311
43cd72b9
BW
6312 These actions to be performed are placed on a per-section list.
6313 The actual changes are performed by relax_section() in the second
6314 pass. */
6315
6316bfd_boolean
7fa3d080
BW
6317compute_text_actions (bfd *abfd,
6318 asection *sec,
6319 struct bfd_link_info *link_info)
e0001a05 6320{
43cd72b9 6321 xtensa_relax_info *relax_info;
e0001a05 6322 bfd_byte *contents;
43cd72b9 6323 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6324 bfd_boolean ok = TRUE;
6325 unsigned i;
43cd72b9
BW
6326 property_table_entry *prop_table = 0;
6327 int ptblsize = 0;
6328 bfd_size_type sec_size;
6329 static bfd_boolean no_insn_move = FALSE;
6330
6331 if (no_insn_move)
6332 return ok;
6333
6334 /* Do nothing if the section contains no optimized longcalls. */
6335 relax_info = get_xtensa_relax_info (sec);
6336 BFD_ASSERT (relax_info);
6337 if (!relax_info->is_relaxable_asm_section)
6338 return ok;
e0001a05
NC
6339
6340 internal_relocs = retrieve_internal_relocs (abfd, sec,
6341 link_info->keep_memory);
e0001a05 6342
43cd72b9
BW
6343 if (internal_relocs)
6344 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6345 internal_reloc_compare);
6346
6347 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6348 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6349 if (contents == NULL && sec_size != 0)
e0001a05
NC
6350 {
6351 ok = FALSE;
6352 goto error_return;
6353 }
6354
43cd72b9
BW
6355 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6356 XTENSA_PROP_SEC_NAME, FALSE);
6357 if (ptblsize < 0)
6358 {
6359 ok = FALSE;
6360 goto error_return;
6361 }
6362
6363 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6364 {
6365 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6366 bfd_vma r_offset;
6367 property_table_entry *the_entry;
6368 int ptbl_idx;
6369 ebb_t *ebb;
6370 ebb_constraint ebb_table;
6371 bfd_size_type simplify_size;
6372
6373 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6374 continue;
6375 r_offset = irel->r_offset;
e0001a05 6376
43cd72b9
BW
6377 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6378 if (simplify_size == 0)
6379 {
6380 (*_bfd_error_handler)
6381 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6382 sec->owner, sec, r_offset);
6383 continue;
6384 }
e0001a05 6385
43cd72b9
BW
6386 /* If the instruction table is not around, then don't do this
6387 relaxation. */
6388 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6389 sec->vma + irel->r_offset);
6390 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6391 {
6392 text_action_add (&relax_info->action_list,
6393 ta_convert_longcall, sec, r_offset,
6394 0);
6395 continue;
6396 }
6397
6398 /* If the next longcall happens to be at the same address as an
6399 unreachable section of size 0, then skip forward. */
6400 ptbl_idx = the_entry - prop_table;
6401 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6402 && the_entry->size == 0
6403 && ptbl_idx + 1 < ptblsize
6404 && (prop_table[ptbl_idx + 1].address
6405 == prop_table[ptbl_idx].address))
6406 {
6407 ptbl_idx++;
6408 the_entry++;
6409 }
e0001a05 6410
43cd72b9
BW
6411 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6412 /* NO_REORDER is OK */
6413 continue;
e0001a05 6414
43cd72b9
BW
6415 init_ebb_constraint (&ebb_table);
6416 ebb = &ebb_table.ebb;
6417 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6418 internal_relocs, sec->reloc_count);
6419 ebb->start_offset = r_offset + simplify_size;
6420 ebb->end_offset = r_offset + simplify_size;
6421 ebb->start_ptbl_idx = ptbl_idx;
6422 ebb->end_ptbl_idx = ptbl_idx;
6423 ebb->start_reloc_idx = i;
6424 ebb->end_reloc_idx = i;
6425
6426 if (!extend_ebb_bounds (ebb)
6427 || !compute_ebb_proposed_actions (&ebb_table)
6428 || !compute_ebb_actions (&ebb_table)
6429 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6430 internal_relocs, &ebb_table)
6431 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6432 {
43cd72b9
BW
6433 /* If anything goes wrong or we get unlucky and something does
6434 not fit, with our plan because of expansion between
6435 critical branches, just convert to a NOP. */
6436
6437 text_action_add (&relax_info->action_list,
6438 ta_convert_longcall, sec, r_offset, 0);
6439 i = ebb_table.ebb.end_reloc_idx;
6440 free_ebb_constraint (&ebb_table);
6441 continue;
e0001a05 6442 }
43cd72b9
BW
6443
6444 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6445
6446 /* Update the index so we do not go looking at the relocations
6447 we have already processed. */
6448 i = ebb_table.ebb.end_reloc_idx;
6449 free_ebb_constraint (&ebb_table);
e0001a05
NC
6450 }
6451
43cd72b9 6452#if DEBUG
7fa3d080 6453 if (relax_info->action_list.head)
43cd72b9
BW
6454 print_action_list (stderr, &relax_info->action_list);
6455#endif
6456
6457error_return:
e0001a05
NC
6458 release_contents (sec, contents);
6459 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6460 if (prop_table)
6461 free (prop_table);
6462
e0001a05
NC
6463 return ok;
6464}
6465
6466
43cd72b9 6467/* Find all of the possible actions for an extended basic block. */
e0001a05 6468
43cd72b9 6469bfd_boolean
7fa3d080 6470compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6471{
43cd72b9
BW
6472 const ebb_t *ebb = &ebb_table->ebb;
6473 unsigned rel_idx = ebb->start_reloc_idx;
6474 property_table_entry *entry, *start_entry, *end_entry;
e0001a05 6475
43cd72b9
BW
6476 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6477 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6478
43cd72b9 6479 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6480 {
43cd72b9
BW
6481 bfd_vma offset, start_offset, end_offset;
6482 bfd_size_type insn_len;
e0001a05 6483
43cd72b9
BW
6484 start_offset = entry->address - ebb->sec->vma;
6485 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6486
43cd72b9
BW
6487 if (entry == start_entry)
6488 start_offset = ebb->start_offset;
6489 if (entry == end_entry)
6490 end_offset = ebb->end_offset;
6491 offset = start_offset;
e0001a05 6492
43cd72b9
BW
6493 if (offset == entry->address - ebb->sec->vma
6494 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6495 {
6496 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6497 BFD_ASSERT (offset != end_offset);
6498 if (offset == end_offset)
6499 return FALSE;
e0001a05 6500
43cd72b9
BW
6501 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6502 offset);
6503
6504 /* Propose no actions for a section with an undecodable offset. */
6505 if (insn_len == 0)
6506 {
6507 (*_bfd_error_handler)
6508 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6509 ebb->sec->owner, ebb->sec, offset);
6510 return FALSE;
6511 }
6512 if (check_branch_target_aligned_address (offset, insn_len))
6513 align_type = EBB_REQUIRE_TGT_ALIGN;
6514
6515 ebb_propose_action (ebb_table, align_type, 0,
6516 ta_none, offset, 0, TRUE);
6517 }
6518
6519 while (offset != end_offset)
e0001a05 6520 {
43cd72b9 6521 Elf_Internal_Rela *irel;
e0001a05 6522 xtensa_opcode opcode;
e0001a05 6523
43cd72b9
BW
6524 while (rel_idx < ebb->end_reloc_idx
6525 && (ebb->relocs[rel_idx].r_offset < offset
6526 || (ebb->relocs[rel_idx].r_offset == offset
6527 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6528 != R_XTENSA_ASM_SIMPLIFY))))
6529 rel_idx++;
6530
6531 /* Check for longcall. */
6532 irel = &ebb->relocs[rel_idx];
6533 if (irel->r_offset == offset
6534 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6535 {
6536 bfd_size_type simplify_size;
e0001a05 6537
43cd72b9
BW
6538 simplify_size = get_asm_simplify_size (ebb->contents,
6539 ebb->content_length,
6540 irel->r_offset);
6541 if (simplify_size == 0)
6542 {
6543 (*_bfd_error_handler)
6544 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6545 ebb->sec->owner, ebb->sec, offset);
6546 return FALSE;
6547 }
6548
6549 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6550 ta_convert_longcall, offset, 0, TRUE);
6551
6552 offset += simplify_size;
6553 continue;
6554 }
e0001a05 6555
43cd72b9
BW
6556 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6557 offset);
6558 /* If the instruction is undecodable, then report an error. */
6559 if (insn_len == 0)
6560 {
6561 (*_bfd_error_handler)
6562 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6563 ebb->sec->owner, ebb->sec, offset);
6564 return FALSE;
6565 }
6566
6567 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6568 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6569 && narrow_instruction (ebb->contents, ebb->content_length,
6570 offset, FALSE))
6571 {
6572 /* Add an instruction narrow action. */
6573 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6574 ta_narrow_insn, offset, 0, FALSE);
6575 offset += insn_len;
6576 continue;
6577 }
6578 if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6579 && widen_instruction (ebb->contents, ebb->content_length,
6580 offset, FALSE))
6581 {
6582 /* Add an instruction widen action. */
6583 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6584 ta_widen_insn, offset, 0, FALSE);
6585 offset += insn_len;
6586 continue;
6587 }
6588 opcode = insn_decode_opcode (ebb->contents, ebb->content_length,
6589 offset, 0);
6590 if (xtensa_opcode_is_loop (xtensa_default_isa, opcode))
6591 {
6592 /* Check for branch targets. */
6593 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6594 ta_none, offset, 0, TRUE);
6595 offset += insn_len;
6596 continue;
6597 }
6598
6599 offset += insn_len;
e0001a05
NC
6600 }
6601 }
6602
43cd72b9
BW
6603 if (ebb->ends_unreachable)
6604 {
6605 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6606 ta_fill, ebb->end_offset, 0, TRUE);
6607 }
e0001a05 6608
43cd72b9
BW
6609 return TRUE;
6610}
6611
6612
6613/* After all of the information has collected about the
6614 transformations possible in an EBB, compute the appropriate actions
6615 here in compute_ebb_actions. We still must check later to make
6616 sure that the actions do not break any relocations. The algorithm
6617 used here is pretty greedy. Basically, it removes as many no-ops
6618 as possible so that the end of the EBB has the same alignment
6619 characteristics as the original. First, it uses narrowing, then
6620 fill space at the end of the EBB, and finally widenings. If that
6621 does not work, it tries again with one fewer no-op removed. The
6622 optimization will only be performed if all of the branch targets
6623 that were aligned before transformation are also aligned after the
6624 transformation.
6625
6626 When the size_opt flag is set, ignore the branch target alignments,
6627 narrow all wide instructions, and remove all no-ops unless the end
6628 of the EBB prevents it. */
6629
6630bfd_boolean
7fa3d080 6631compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6632{
6633 unsigned i = 0;
6634 unsigned j;
6635 int removed_bytes = 0;
6636 ebb_t *ebb = &ebb_table->ebb;
6637 unsigned seg_idx_start = 0;
6638 unsigned seg_idx_end = 0;
6639
6640 /* We perform this like the assembler relaxation algorithm: Start by
6641 assuming all instructions are narrow and all no-ops removed; then
6642 walk through.... */
6643
6644 /* For each segment of this that has a solid constraint, check to
6645 see if there are any combinations that will keep the constraint.
6646 If so, use it. */
6647 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6648 {
43cd72b9
BW
6649 bfd_boolean requires_text_end_align = FALSE;
6650 unsigned longcall_count = 0;
6651 unsigned longcall_convert_count = 0;
6652 unsigned narrowable_count = 0;
6653 unsigned narrowable_convert_count = 0;
6654 unsigned widenable_count = 0;
6655 unsigned widenable_convert_count = 0;
e0001a05 6656
43cd72b9
BW
6657 proposed_action *action = NULL;
6658 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6659
43cd72b9 6660 seg_idx_start = seg_idx_end;
e0001a05 6661
43cd72b9
BW
6662 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6663 {
6664 action = &ebb_table->actions[i];
6665 if (action->action == ta_convert_longcall)
6666 longcall_count++;
6667 if (action->action == ta_narrow_insn)
6668 narrowable_count++;
6669 if (action->action == ta_widen_insn)
6670 widenable_count++;
6671 if (action->action == ta_fill)
6672 break;
6673 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6674 break;
6675 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6676 && !elf32xtensa_size_opt)
6677 break;
6678 }
6679 seg_idx_end = i;
e0001a05 6680
43cd72b9
BW
6681 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6682 requires_text_end_align = TRUE;
e0001a05 6683
43cd72b9
BW
6684 if (elf32xtensa_size_opt && !requires_text_end_align
6685 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6686 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6687 {
6688 longcall_convert_count = longcall_count;
6689 narrowable_convert_count = narrowable_count;
6690 widenable_convert_count = 0;
6691 }
6692 else
6693 {
6694 /* There is a constraint. Convert the max number of longcalls. */
6695 narrowable_convert_count = 0;
6696 longcall_convert_count = 0;
6697 widenable_convert_count = 0;
e0001a05 6698
43cd72b9 6699 for (j = 0; j < longcall_count; j++)
e0001a05 6700 {
43cd72b9
BW
6701 int removed = (longcall_count - j) * 3 & (align - 1);
6702 unsigned desire_narrow = (align - removed) & (align - 1);
6703 unsigned desire_widen = removed;
6704 if (desire_narrow <= narrowable_count)
6705 {
6706 narrowable_convert_count = desire_narrow;
6707 narrowable_convert_count +=
6708 (align * ((narrowable_count - narrowable_convert_count)
6709 / align));
6710 longcall_convert_count = (longcall_count - j);
6711 widenable_convert_count = 0;
6712 break;
6713 }
6714 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6715 {
6716 narrowable_convert_count = 0;
6717 longcall_convert_count = longcall_count - j;
6718 widenable_convert_count = desire_widen;
6719 break;
6720 }
6721 }
6722 }
e0001a05 6723
43cd72b9
BW
6724 /* Now the number of conversions are saved. Do them. */
6725 for (i = seg_idx_start; i < seg_idx_end; i++)
6726 {
6727 action = &ebb_table->actions[i];
6728 switch (action->action)
6729 {
6730 case ta_convert_longcall:
6731 if (longcall_convert_count != 0)
6732 {
6733 action->action = ta_remove_longcall;
6734 action->do_action = TRUE;
6735 action->removed_bytes += 3;
6736 longcall_convert_count--;
6737 }
6738 break;
6739 case ta_narrow_insn:
6740 if (narrowable_convert_count != 0)
6741 {
6742 action->do_action = TRUE;
6743 action->removed_bytes += 1;
6744 narrowable_convert_count--;
6745 }
6746 break;
6747 case ta_widen_insn:
6748 if (widenable_convert_count != 0)
6749 {
6750 action->do_action = TRUE;
6751 action->removed_bytes -= 1;
6752 widenable_convert_count--;
6753 }
6754 break;
6755 default:
6756 break;
e0001a05 6757 }
43cd72b9
BW
6758 }
6759 }
e0001a05 6760
43cd72b9
BW
6761 /* Now we move on to some local opts. Try to remove each of the
6762 remaining longcalls. */
e0001a05 6763
43cd72b9
BW
6764 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6765 {
6766 removed_bytes = 0;
6767 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6768 {
43cd72b9
BW
6769 int old_removed_bytes = removed_bytes;
6770 proposed_action *action = &ebb_table->actions[i];
6771
6772 if (action->do_action && action->action == ta_convert_longcall)
6773 {
6774 bfd_boolean bad_alignment = FALSE;
6775 removed_bytes += 3;
6776 for (j = i + 1; j < ebb_table->action_count; j++)
6777 {
6778 proposed_action *new_action = &ebb_table->actions[j];
6779 bfd_vma offset = new_action->offset;
6780 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6781 {
6782 if (!check_branch_target_aligned
6783 (ebb_table->ebb.contents,
6784 ebb_table->ebb.content_length,
6785 offset, offset - removed_bytes))
6786 {
6787 bad_alignment = TRUE;
6788 break;
6789 }
6790 }
6791 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6792 {
6793 if (!check_loop_aligned (ebb_table->ebb.contents,
6794 ebb_table->ebb.content_length,
6795 offset,
6796 offset - removed_bytes))
6797 {
6798 bad_alignment = TRUE;
6799 break;
6800 }
6801 }
6802 if (new_action->action == ta_narrow_insn
6803 && !new_action->do_action
6804 && ebb_table->ebb.sec->alignment_power == 2)
6805 {
6806 /* Narrow an instruction and we are done. */
6807 new_action->do_action = TRUE;
6808 new_action->removed_bytes += 1;
6809 bad_alignment = FALSE;
6810 break;
6811 }
6812 if (new_action->action == ta_widen_insn
6813 && new_action->do_action
6814 && ebb_table->ebb.sec->alignment_power == 2)
6815 {
6816 /* Narrow an instruction and we are done. */
6817 new_action->do_action = FALSE;
6818 new_action->removed_bytes += 1;
6819 bad_alignment = FALSE;
6820 break;
6821 }
6822 }
6823 if (!bad_alignment)
6824 {
6825 action->removed_bytes += 3;
6826 action->action = ta_remove_longcall;
6827 action->do_action = TRUE;
6828 }
6829 }
6830 removed_bytes = old_removed_bytes;
6831 if (action->do_action)
6832 removed_bytes += action->removed_bytes;
e0001a05
NC
6833 }
6834 }
6835
43cd72b9
BW
6836 removed_bytes = 0;
6837 for (i = 0; i < ebb_table->action_count; ++i)
6838 {
6839 proposed_action *action = &ebb_table->actions[i];
6840 if (action->do_action)
6841 removed_bytes += action->removed_bytes;
6842 }
6843
6844 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6845 && ebb->ends_unreachable)
6846 {
6847 proposed_action *action;
6848 int br;
6849 int extra_space;
6850
6851 BFD_ASSERT (ebb_table->action_count != 0);
6852 action = &ebb_table->actions[ebb_table->action_count - 1];
6853 BFD_ASSERT (action->action == ta_fill);
6854 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6855
6856 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6857 br = action->removed_bytes + removed_bytes + extra_space;
6858 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6859
6860 action->removed_bytes = extra_space - br;
6861 }
6862 return TRUE;
e0001a05
NC
6863}
6864
6865
03e94c08
BW
6866/* The xlate_map is a sorted array of address mappings designed to
6867 answer the offset_with_removed_text() query with a binary search instead
6868 of a linear search through the section's action_list. */
6869
6870typedef struct xlate_map_entry xlate_map_entry_t;
6871typedef struct xlate_map xlate_map_t;
6872
6873struct xlate_map_entry
6874{
6875 unsigned orig_address;
6876 unsigned new_address;
6877 unsigned size;
6878};
6879
6880struct xlate_map
6881{
6882 unsigned entry_count;
6883 xlate_map_entry_t *entry;
6884};
6885
6886
6887static int
6888xlate_compare (const void *a_v, const void *b_v)
6889{
6890 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6891 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6892 if (a->orig_address < b->orig_address)
6893 return -1;
6894 if (a->orig_address > (b->orig_address + b->size - 1))
6895 return 1;
6896 return 0;
6897}
6898
6899
6900static bfd_vma
6901xlate_offset_with_removed_text (const xlate_map_t *map,
6902 text_action_list *action_list,
6903 bfd_vma offset)
6904{
6905 xlate_map_entry_t tmp;
6906 void *r;
6907 xlate_map_entry_t *e;
6908
6909 if (map == NULL)
6910 return offset_with_removed_text (action_list, offset);
6911
6912 if (map->entry_count == 0)
6913 return offset;
6914
6915 tmp.orig_address = offset;
6916 tmp.new_address = offset;
6917 tmp.size = 1;
6918
6919 r = bsearch (&offset, map->entry, map->entry_count,
6920 sizeof (xlate_map_entry_t), &xlate_compare);
6921 e = (xlate_map_entry_t *) r;
6922
6923 BFD_ASSERT (e != NULL);
6924 if (e == NULL)
6925 return offset;
6926 return e->new_address - e->orig_address + offset;
6927}
6928
6929
6930/* Build a binary searchable offset translation map from a section's
6931 action list. */
6932
6933static xlate_map_t *
6934build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
6935{
6936 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
6937 text_action_list *action_list = &relax_info->action_list;
6938 unsigned num_actions = 0;
6939 text_action *r;
6940 int removed;
6941 xlate_map_entry_t *current_entry;
6942
6943 if (map == NULL)
6944 return NULL;
6945
6946 num_actions = action_list_count (action_list);
6947 map->entry = (xlate_map_entry_t *)
6948 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
6949 if (map->entry == NULL)
6950 {
6951 free (map);
6952 return NULL;
6953 }
6954 map->entry_count = 0;
6955
6956 removed = 0;
6957 current_entry = &map->entry[0];
6958
6959 current_entry->orig_address = 0;
6960 current_entry->new_address = 0;
6961 current_entry->size = 0;
6962
6963 for (r = action_list->head; r != NULL; r = r->next)
6964 {
6965 unsigned orig_size = 0;
6966 switch (r->action)
6967 {
6968 case ta_none:
6969 case ta_remove_insn:
6970 case ta_convert_longcall:
6971 case ta_remove_literal:
6972 case ta_add_literal:
6973 break;
6974 case ta_remove_longcall:
6975 orig_size = 6;
6976 break;
6977 case ta_narrow_insn:
6978 orig_size = 3;
6979 break;
6980 case ta_widen_insn:
6981 orig_size = 2;
6982 break;
6983 case ta_fill:
6984 break;
6985 }
6986 current_entry->size =
6987 r->offset + orig_size - current_entry->orig_address;
6988 if (current_entry->size != 0)
6989 {
6990 current_entry++;
6991 map->entry_count++;
6992 }
6993 current_entry->orig_address = r->offset + orig_size;
6994 removed += r->removed_bytes;
6995 current_entry->new_address = r->offset + orig_size - removed;
6996 current_entry->size = 0;
6997 }
6998
6999 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7000 - current_entry->orig_address);
7001 if (current_entry->size != 0)
7002 map->entry_count++;
7003
7004 return map;
7005}
7006
7007
7008/* Free an offset translation map. */
7009
7010static void
7011free_xlate_map (xlate_map_t *map)
7012{
7013 if (map && map->entry)
7014 free (map->entry);
7015 if (map)
7016 free (map);
7017}
7018
7019
43cd72b9
BW
7020/* Use check_section_ebb_pcrels_fit to make sure that all of the
7021 relocations in a section will fit if a proposed set of actions
7022 are performed. */
e0001a05 7023
43cd72b9 7024static bfd_boolean
7fa3d080
BW
7025check_section_ebb_pcrels_fit (bfd *abfd,
7026 asection *sec,
7027 bfd_byte *contents,
7028 Elf_Internal_Rela *internal_relocs,
7029 const ebb_constraint *constraint)
e0001a05 7030{
43cd72b9
BW
7031 unsigned i, j;
7032 Elf_Internal_Rela *irel;
03e94c08
BW
7033 xlate_map_t *xmap = NULL;
7034 bfd_boolean ok = TRUE;
43cd72b9 7035 xtensa_relax_info *relax_info;
e0001a05 7036
43cd72b9 7037 relax_info = get_xtensa_relax_info (sec);
e0001a05 7038
03e94c08
BW
7039 if (relax_info && sec->reloc_count > 100)
7040 {
7041 xmap = build_xlate_map (sec, relax_info);
7042 /* NULL indicates out of memory, but the slow version
7043 can still be used. */
7044 }
7045
43cd72b9
BW
7046 for (i = 0; i < sec->reloc_count; i++)
7047 {
7048 r_reloc r_rel;
7049 bfd_vma orig_self_offset, orig_target_offset;
7050 bfd_vma self_offset, target_offset;
7051 int r_type;
7052 reloc_howto_type *howto;
7053 int self_removed_bytes, target_removed_bytes;
e0001a05 7054
43cd72b9
BW
7055 irel = &internal_relocs[i];
7056 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7057
43cd72b9
BW
7058 howto = &elf_howto_table[r_type];
7059 /* We maintain the required invariant: PC-relative relocations
7060 that fit before linking must fit after linking. Thus we only
7061 need to deal with relocations to the same section that are
7062 PC-relative. */
7063 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7064 || !howto->pc_relative)
7065 continue;
e0001a05 7066
43cd72b9
BW
7067 r_reloc_init (&r_rel, abfd, irel, contents,
7068 bfd_get_section_limit (abfd, sec));
e0001a05 7069
43cd72b9
BW
7070 if (r_reloc_get_section (&r_rel) != sec)
7071 continue;
e0001a05 7072
43cd72b9
BW
7073 orig_self_offset = irel->r_offset;
7074 orig_target_offset = r_rel.target_offset;
e0001a05 7075
43cd72b9
BW
7076 self_offset = orig_self_offset;
7077 target_offset = orig_target_offset;
7078
7079 if (relax_info)
7080 {
03e94c08
BW
7081 self_offset =
7082 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7083 orig_self_offset);
7084 target_offset =
7085 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7086 orig_target_offset);
43cd72b9
BW
7087 }
7088
7089 self_removed_bytes = 0;
7090 target_removed_bytes = 0;
7091
7092 for (j = 0; j < constraint->action_count; ++j)
7093 {
7094 proposed_action *action = &constraint->actions[j];
7095 bfd_vma offset = action->offset;
7096 int removed_bytes = action->removed_bytes;
7097 if (offset < orig_self_offset
7098 || (offset == orig_self_offset && action->action == ta_fill
7099 && action->removed_bytes < 0))
7100 self_removed_bytes += removed_bytes;
7101 if (offset < orig_target_offset
7102 || (offset == orig_target_offset && action->action == ta_fill
7103 && action->removed_bytes < 0))
7104 target_removed_bytes += removed_bytes;
7105 }
7106 self_offset -= self_removed_bytes;
7107 target_offset -= target_removed_bytes;
7108
7109 /* Try to encode it. Get the operand and check. */
7110 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7111 {
7112 /* None of the current alternate relocs are PC-relative,
7113 and only PC-relative relocs matter here. */
7114 }
7115 else
7116 {
7117 xtensa_opcode opcode;
7118 int opnum;
7119
7120 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7121 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
7122 {
7123 ok = FALSE;
7124 break;
7125 }
43cd72b9
BW
7126
7127 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7128 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
7129 {
7130 ok = FALSE;
7131 break;
7132 }
43cd72b9
BW
7133
7134 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
7135 {
7136 ok = FALSE;
7137 break;
7138 }
43cd72b9
BW
7139 }
7140 }
7141
03e94c08
BW
7142 if (xmap)
7143 free_xlate_map (xmap);
7144
7145 return ok;
43cd72b9
BW
7146}
7147
7148
7149static bfd_boolean
7fa3d080 7150check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
7151{
7152 int removed = 0;
7153 unsigned i;
7154
7155 for (i = 0; i < constraint->action_count; i++)
7156 {
7157 const proposed_action *action = &constraint->actions[i];
7158 if (action->do_action)
7159 removed += action->removed_bytes;
7160 }
7161 if (removed < 0)
e0001a05
NC
7162 return FALSE;
7163
7164 return TRUE;
7165}
7166
7167
43cd72b9 7168void
7fa3d080
BW
7169text_action_add_proposed (text_action_list *l,
7170 const ebb_constraint *ebb_table,
7171 asection *sec)
e0001a05
NC
7172{
7173 unsigned i;
7174
43cd72b9 7175 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7176 {
43cd72b9 7177 proposed_action *action = &ebb_table->actions[i];
e0001a05 7178
43cd72b9 7179 if (!action->do_action)
e0001a05 7180 continue;
43cd72b9
BW
7181 switch (action->action)
7182 {
7183 case ta_remove_insn:
7184 case ta_remove_longcall:
7185 case ta_convert_longcall:
7186 case ta_narrow_insn:
7187 case ta_widen_insn:
7188 case ta_fill:
7189 case ta_remove_literal:
7190 text_action_add (l, action->action, sec, action->offset,
7191 action->removed_bytes);
7192 break;
7193 case ta_none:
7194 break;
7195 default:
7196 BFD_ASSERT (0);
7197 break;
7198 }
e0001a05 7199 }
43cd72b9 7200}
e0001a05 7201
43cd72b9
BW
7202
7203int
7fa3d080 7204compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7205{
7206 int fill_extra_space;
7207
7208 if (!entry)
7209 return 0;
7210
7211 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7212 return 0;
7213
7214 fill_extra_space = entry->size;
7215 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7216 {
7217 /* Fill bytes for alignment:
7218 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7219 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7220 int nsm = (1 << pow) - 1;
7221 bfd_vma addr = entry->address + entry->size;
7222 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7223 fill_extra_space += align_fill;
7224 }
7225 return fill_extra_space;
e0001a05
NC
7226}
7227
43cd72b9 7228\f
e0001a05
NC
7229/* First relaxation pass. */
7230
43cd72b9
BW
7231/* If the section contains relaxable literals, check each literal to
7232 see if it has the same value as another literal that has already
7233 been seen, either in the current section or a previous one. If so,
7234 add an entry to the per-section list of removed literals. The
e0001a05
NC
7235 actual changes are deferred until the next pass. */
7236
7237static bfd_boolean
7fa3d080
BW
7238compute_removed_literals (bfd *abfd,
7239 asection *sec,
7240 struct bfd_link_info *link_info,
7241 value_map_hash_table *values)
e0001a05
NC
7242{
7243 xtensa_relax_info *relax_info;
7244 bfd_byte *contents;
7245 Elf_Internal_Rela *internal_relocs;
43cd72b9 7246 source_reloc *src_relocs, *rel;
e0001a05 7247 bfd_boolean ok = TRUE;
43cd72b9
BW
7248 property_table_entry *prop_table = NULL;
7249 int ptblsize;
7250 int i, prev_i;
7251 bfd_boolean last_loc_is_prev = FALSE;
7252 bfd_vma last_target_offset = 0;
7253 section_cache_t target_sec_cache;
7254 bfd_size_type sec_size;
7255
7256 init_section_cache (&target_sec_cache);
e0001a05
NC
7257
7258 /* Do nothing if it is not a relaxable literal section. */
7259 relax_info = get_xtensa_relax_info (sec);
7260 BFD_ASSERT (relax_info);
e0001a05
NC
7261 if (!relax_info->is_relaxable_literal_section)
7262 return ok;
7263
7264 internal_relocs = retrieve_internal_relocs (abfd, sec,
7265 link_info->keep_memory);
7266
43cd72b9 7267 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7268 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7269 if (contents == NULL && sec_size != 0)
e0001a05
NC
7270 {
7271 ok = FALSE;
7272 goto error_return;
7273 }
7274
7275 /* Sort the source_relocs by target offset. */
7276 src_relocs = relax_info->src_relocs;
7277 qsort (src_relocs, relax_info->src_count,
7278 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7279 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7280 internal_reloc_compare);
e0001a05 7281
43cd72b9
BW
7282 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7283 XTENSA_PROP_SEC_NAME, FALSE);
7284 if (ptblsize < 0)
7285 {
7286 ok = FALSE;
7287 goto error_return;
7288 }
7289
7290 prev_i = -1;
e0001a05
NC
7291 for (i = 0; i < relax_info->src_count; i++)
7292 {
e0001a05 7293 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7294
7295 rel = &src_relocs[i];
43cd72b9
BW
7296 if (get_l32r_opcode () != rel->opcode)
7297 continue;
e0001a05
NC
7298 irel = get_irel_at_offset (sec, internal_relocs,
7299 rel->r_rel.target_offset);
7300
43cd72b9
BW
7301 /* If the relocation on this is not a simple R_XTENSA_32 or
7302 R_XTENSA_PLT then do not consider it. This may happen when
7303 the difference of two symbols is used in a literal. */
7304 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7305 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7306 continue;
7307
e0001a05
NC
7308 /* If the target_offset for this relocation is the same as the
7309 previous relocation, then we've already considered whether the
7310 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7311 if (i != 0 && prev_i != -1
7312 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7313 continue;
43cd72b9
BW
7314 prev_i = i;
7315
7316 if (last_loc_is_prev &&
7317 last_target_offset + 4 != rel->r_rel.target_offset)
7318 last_loc_is_prev = FALSE;
e0001a05
NC
7319
7320 /* Check if the relocation was from an L32R that is being removed
7321 because a CALLX was converted to a direct CALL, and check if
7322 there are no other relocations to the literal. */
43cd72b9 7323 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
e0001a05 7324 {
43cd72b9
BW
7325 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7326 irel, rel, prop_table, ptblsize))
e0001a05 7327 {
43cd72b9
BW
7328 ok = FALSE;
7329 goto error_return;
e0001a05 7330 }
43cd72b9 7331 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7332 continue;
7333 }
7334
43cd72b9
BW
7335 if (!identify_literal_placement (abfd, sec, contents, link_info,
7336 values,
7337 &last_loc_is_prev, irel,
7338 relax_info->src_count - i, rel,
7339 prop_table, ptblsize,
7340 &target_sec_cache, rel->is_abs_literal))
e0001a05 7341 {
43cd72b9
BW
7342 ok = FALSE;
7343 goto error_return;
7344 }
7345 last_target_offset = rel->r_rel.target_offset;
7346 }
e0001a05 7347
43cd72b9
BW
7348#if DEBUG
7349 print_removed_literals (stderr, &relax_info->removed_list);
7350 print_action_list (stderr, &relax_info->action_list);
7351#endif /* DEBUG */
7352
7353error_return:
7354 if (prop_table) free (prop_table);
7355 clear_section_cache (&target_sec_cache);
7356
7357 release_contents (sec, contents);
7358 release_internal_relocs (sec, internal_relocs);
7359 return ok;
7360}
7361
7362
7363static Elf_Internal_Rela *
7fa3d080
BW
7364get_irel_at_offset (asection *sec,
7365 Elf_Internal_Rela *internal_relocs,
7366 bfd_vma offset)
43cd72b9
BW
7367{
7368 unsigned i;
7369 Elf_Internal_Rela *irel;
7370 unsigned r_type;
7371 Elf_Internal_Rela key;
7372
7373 if (!internal_relocs)
7374 return NULL;
7375
7376 key.r_offset = offset;
7377 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7378 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7379 if (!irel)
7380 return NULL;
7381
7382 /* bsearch does not guarantee which will be returned if there are
7383 multiple matches. We need the first that is not an alignment. */
7384 i = irel - internal_relocs;
7385 while (i > 0)
7386 {
7387 if (internal_relocs[i-1].r_offset != offset)
7388 break;
7389 i--;
7390 }
7391 for ( ; i < sec->reloc_count; i++)
7392 {
7393 irel = &internal_relocs[i];
7394 r_type = ELF32_R_TYPE (irel->r_info);
7395 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7396 return irel;
7397 }
7398
7399 return NULL;
7400}
7401
7402
7403bfd_boolean
7fa3d080
BW
7404is_removable_literal (const source_reloc *rel,
7405 int i,
7406 const source_reloc *src_relocs,
7407 int src_count)
43cd72b9
BW
7408{
7409 const source_reloc *curr_rel;
7410 if (!rel->is_null)
7411 return FALSE;
7412
7413 for (++i; i < src_count; ++i)
7414 {
7415 curr_rel = &src_relocs[i];
7416 /* If all others have the same target offset.... */
7417 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7418 return TRUE;
7419
7420 if (!curr_rel->is_null
7421 && !xtensa_is_property_section (curr_rel->source_sec)
7422 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7423 return FALSE;
7424 }
7425 return TRUE;
7426}
7427
7428
7429bfd_boolean
7fa3d080
BW
7430remove_dead_literal (bfd *abfd,
7431 asection *sec,
7432 struct bfd_link_info *link_info,
7433 Elf_Internal_Rela *internal_relocs,
7434 Elf_Internal_Rela *irel,
7435 source_reloc *rel,
7436 property_table_entry *prop_table,
7437 int ptblsize)
43cd72b9
BW
7438{
7439 property_table_entry *entry;
7440 xtensa_relax_info *relax_info;
7441
7442 relax_info = get_xtensa_relax_info (sec);
7443 if (!relax_info)
7444 return FALSE;
7445
7446 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7447 sec->vma + rel->r_rel.target_offset);
7448
7449 /* Mark the unused literal so that it will be removed. */
7450 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7451
7452 text_action_add (&relax_info->action_list,
7453 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7454
7455 /* If the section is 4-byte aligned, do not add fill. */
7456 if (sec->alignment_power > 2)
7457 {
7458 int fill_extra_space;
7459 bfd_vma entry_sec_offset;
7460 text_action *fa;
7461 property_table_entry *the_add_entry;
7462 int removed_diff;
7463
7464 if (entry)
7465 entry_sec_offset = entry->address - sec->vma + entry->size;
7466 else
7467 entry_sec_offset = rel->r_rel.target_offset + 4;
7468
7469 /* If the literal range is at the end of the section,
7470 do not add fill. */
7471 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7472 entry_sec_offset);
7473 fill_extra_space = compute_fill_extra_space (the_add_entry);
7474
7475 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7476 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7477 -4, fill_extra_space);
7478 if (fa)
7479 adjust_fill_action (fa, removed_diff);
7480 else
7481 text_action_add (&relax_info->action_list,
7482 ta_fill, sec, entry_sec_offset, removed_diff);
7483 }
7484
7485 /* Zero out the relocation on this literal location. */
7486 if (irel)
7487 {
7488 if (elf_hash_table (link_info)->dynamic_sections_created)
7489 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7490
7491 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7492 pin_internal_relocs (sec, internal_relocs);
7493 }
7494
7495 /* Do not modify "last_loc_is_prev". */
7496 return TRUE;
7497}
7498
7499
7500bfd_boolean
7fa3d080
BW
7501identify_literal_placement (bfd *abfd,
7502 asection *sec,
7503 bfd_byte *contents,
7504 struct bfd_link_info *link_info,
7505 value_map_hash_table *values,
7506 bfd_boolean *last_loc_is_prev_p,
7507 Elf_Internal_Rela *irel,
7508 int remaining_src_rels,
7509 source_reloc *rel,
7510 property_table_entry *prop_table,
7511 int ptblsize,
7512 section_cache_t *target_sec_cache,
7513 bfd_boolean is_abs_literal)
43cd72b9
BW
7514{
7515 literal_value val;
7516 value_map *val_map;
7517 xtensa_relax_info *relax_info;
7518 bfd_boolean literal_placed = FALSE;
7519 r_reloc r_rel;
7520 unsigned long value;
7521 bfd_boolean final_static_link;
7522 bfd_size_type sec_size;
7523
7524 relax_info = get_xtensa_relax_info (sec);
7525 if (!relax_info)
7526 return FALSE;
7527
7528 sec_size = bfd_get_section_limit (abfd, sec);
7529
7530 final_static_link =
7531 (!link_info->relocatable
7532 && !elf_hash_table (link_info)->dynamic_sections_created);
7533
7534 /* The placement algorithm first checks to see if the literal is
7535 already in the value map. If so and the value map is reachable
7536 from all uses, then the literal is moved to that location. If
7537 not, then we identify the last location where a fresh literal was
7538 placed. If the literal can be safely moved there, then we do so.
7539 If not, then we assume that the literal is not to move and leave
7540 the literal where it is, marking it as the last literal
7541 location. */
7542
7543 /* Find the literal value. */
7544 value = 0;
7545 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7546 if (!irel)
7547 {
7548 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7549 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7550 }
7551 init_literal_value (&val, &r_rel, value, is_abs_literal);
7552
7553 /* Check if we've seen another literal with the same value that
7554 is in the same output section. */
7555 val_map = value_map_get_cached_value (values, &val, final_static_link);
7556
7557 if (val_map
7558 && (r_reloc_get_section (&val_map->loc)->output_section
7559 == sec->output_section)
7560 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7561 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7562 {
7563 /* No change to last_loc_is_prev. */
7564 literal_placed = TRUE;
7565 }
7566
7567 /* For relocatable links, do not try to move literals. To do it
7568 correctly might increase the number of relocations in an input
7569 section making the default relocatable linking fail. */
7570 if (!link_info->relocatable && !literal_placed
7571 && values->has_last_loc && !(*last_loc_is_prev_p))
7572 {
7573 asection *target_sec = r_reloc_get_section (&values->last_loc);
7574 if (target_sec && target_sec->output_section == sec->output_section)
7575 {
7576 /* Increment the virtual offset. */
7577 r_reloc try_loc = values->last_loc;
7578 try_loc.virtual_offset += 4;
7579
7580 /* There is a last loc that was in the same output section. */
7581 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7582 && move_shared_literal (sec, link_info, rel,
7583 prop_table, ptblsize,
7584 &try_loc, &val, target_sec_cache))
e0001a05 7585 {
43cd72b9
BW
7586 values->last_loc.virtual_offset += 4;
7587 literal_placed = TRUE;
7588 if (!val_map)
7589 val_map = add_value_map (values, &val, &try_loc,
7590 final_static_link);
7591 else
7592 val_map->loc = try_loc;
e0001a05
NC
7593 }
7594 }
43cd72b9
BW
7595 }
7596
7597 if (!literal_placed)
7598 {
7599 /* Nothing worked, leave the literal alone but update the last loc. */
7600 values->has_last_loc = TRUE;
7601 values->last_loc = rel->r_rel;
7602 if (!val_map)
7603 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7604 else
43cd72b9
BW
7605 val_map->loc = rel->r_rel;
7606 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7607 }
7608
43cd72b9 7609 return TRUE;
e0001a05
NC
7610}
7611
7612
7613/* Check if the original relocations (presumably on L32R instructions)
7614 identified by reloc[0..N] can be changed to reference the literal
7615 identified by r_rel. If r_rel is out of range for any of the
7616 original relocations, then we don't want to coalesce the original
7617 literal with the one at r_rel. We only check reloc[0..N], where the
7618 offsets are all the same as for reloc[0] (i.e., they're all
7619 referencing the same literal) and where N is also bounded by the
7620 number of remaining entries in the "reloc" array. The "reloc" array
7621 is sorted by target offset so we know all the entries for the same
7622 literal will be contiguous. */
7623
7624static bfd_boolean
7fa3d080
BW
7625relocations_reach (source_reloc *reloc,
7626 int remaining_relocs,
7627 const r_reloc *r_rel)
e0001a05
NC
7628{
7629 bfd_vma from_offset, source_address, dest_address;
7630 asection *sec;
7631 int i;
7632
7633 if (!r_reloc_is_defined (r_rel))
7634 return FALSE;
7635
7636 sec = r_reloc_get_section (r_rel);
7637 from_offset = reloc[0].r_rel.target_offset;
7638
7639 for (i = 0; i < remaining_relocs; i++)
7640 {
7641 if (reloc[i].r_rel.target_offset != from_offset)
7642 break;
7643
7644 /* Ignore relocations that have been removed. */
7645 if (reloc[i].is_null)
7646 continue;
7647
7648 /* The original and new output section for these must be the same
7649 in order to coalesce. */
7650 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7651 != sec->output_section)
7652 return FALSE;
7653
d638e0ac
BW
7654 /* Absolute literals in the same output section can always be
7655 combined. */
7656 if (reloc[i].is_abs_literal)
7657 continue;
7658
43cd72b9
BW
7659 /* A literal with no PC-relative relocations can be moved anywhere. */
7660 if (reloc[i].opnd != -1)
e0001a05
NC
7661 {
7662 /* Otherwise, check to see that it fits. */
7663 source_address = (reloc[i].source_sec->output_section->vma
7664 + reloc[i].source_sec->output_offset
7665 + reloc[i].r_rel.rela.r_offset);
7666 dest_address = (sec->output_section->vma
7667 + sec->output_offset
7668 + r_rel->target_offset);
7669
43cd72b9
BW
7670 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7671 source_address, dest_address))
e0001a05
NC
7672 return FALSE;
7673 }
7674 }
7675
7676 return TRUE;
7677}
7678
7679
43cd72b9
BW
7680/* Move a literal to another literal location because it is
7681 the same as the other literal value. */
e0001a05 7682
43cd72b9 7683static bfd_boolean
7fa3d080
BW
7684coalesce_shared_literal (asection *sec,
7685 source_reloc *rel,
7686 property_table_entry *prop_table,
7687 int ptblsize,
7688 value_map *val_map)
e0001a05 7689{
43cd72b9
BW
7690 property_table_entry *entry;
7691 text_action *fa;
7692 property_table_entry *the_add_entry;
7693 int removed_diff;
7694 xtensa_relax_info *relax_info;
7695
7696 relax_info = get_xtensa_relax_info (sec);
7697 if (!relax_info)
7698 return FALSE;
7699
7700 entry = elf_xtensa_find_property_entry
7701 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7702 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7703 return TRUE;
7704
7705 /* Mark that the literal will be coalesced. */
7706 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7707
7708 text_action_add (&relax_info->action_list,
7709 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7710
7711 /* If the section is 4-byte aligned, do not add fill. */
7712 if (sec->alignment_power > 2)
e0001a05 7713 {
43cd72b9
BW
7714 int fill_extra_space;
7715 bfd_vma entry_sec_offset;
7716
7717 if (entry)
7718 entry_sec_offset = entry->address - sec->vma + entry->size;
7719 else
7720 entry_sec_offset = rel->r_rel.target_offset + 4;
7721
7722 /* If the literal range is at the end of the section,
7723 do not add fill. */
7724 fill_extra_space = 0;
7725 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7726 entry_sec_offset);
7727 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7728 fill_extra_space = the_add_entry->size;
7729
7730 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7731 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7732 -4, fill_extra_space);
7733 if (fa)
7734 adjust_fill_action (fa, removed_diff);
7735 else
7736 text_action_add (&relax_info->action_list,
7737 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7738 }
43cd72b9
BW
7739
7740 return TRUE;
7741}
7742
7743
7744/* Move a literal to another location. This may actually increase the
7745 total amount of space used because of alignments so we need to do
7746 this carefully. Also, it may make a branch go out of range. */
7747
7748static bfd_boolean
7fa3d080
BW
7749move_shared_literal (asection *sec,
7750 struct bfd_link_info *link_info,
7751 source_reloc *rel,
7752 property_table_entry *prop_table,
7753 int ptblsize,
7754 const r_reloc *target_loc,
7755 const literal_value *lit_value,
7756 section_cache_t *target_sec_cache)
43cd72b9
BW
7757{
7758 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7759 text_action *fa, *target_fa;
7760 int removed_diff;
7761 xtensa_relax_info *relax_info, *target_relax_info;
7762 asection *target_sec;
7763 ebb_t *ebb;
7764 ebb_constraint ebb_table;
7765 bfd_boolean relocs_fit;
7766
7767 /* If this routine always returns FALSE, the literals that cannot be
7768 coalesced will not be moved. */
7769 if (elf32xtensa_no_literal_movement)
7770 return FALSE;
7771
7772 relax_info = get_xtensa_relax_info (sec);
7773 if (!relax_info)
7774 return FALSE;
7775
7776 target_sec = r_reloc_get_section (target_loc);
7777 target_relax_info = get_xtensa_relax_info (target_sec);
7778
7779 /* Literals to undefined sections may not be moved because they
7780 must report an error. */
7781 if (bfd_is_und_section (target_sec))
7782 return FALSE;
7783
7784 src_entry = elf_xtensa_find_property_entry
7785 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7786
7787 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7788 return FALSE;
7789
7790 target_entry = elf_xtensa_find_property_entry
7791 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7792 target_sec->vma + target_loc->target_offset);
7793
7794 if (!target_entry)
7795 return FALSE;
7796
7797 /* Make sure that we have not broken any branches. */
7798 relocs_fit = FALSE;
7799
7800 init_ebb_constraint (&ebb_table);
7801 ebb = &ebb_table.ebb;
7802 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7803 target_sec_cache->content_length,
7804 target_sec_cache->ptbl, target_sec_cache->pte_count,
7805 target_sec_cache->relocs, target_sec_cache->reloc_count);
7806
7807 /* Propose to add 4 bytes + worst-case alignment size increase to
7808 destination. */
7809 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7810 ta_fill, target_loc->target_offset,
7811 -4 - (1 << target_sec->alignment_power), TRUE);
7812
7813 /* Check all of the PC-relative relocations to make sure they still fit. */
7814 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7815 target_sec_cache->contents,
7816 target_sec_cache->relocs,
7817 &ebb_table);
7818
7819 if (!relocs_fit)
7820 return FALSE;
7821
7822 text_action_add_literal (&target_relax_info->action_list,
7823 ta_add_literal, target_loc, lit_value, -4);
7824
7825 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7826 {
7827 /* May need to add or remove some fill to maintain alignment. */
7828 int fill_extra_space;
7829 bfd_vma entry_sec_offset;
7830
7831 entry_sec_offset =
7832 target_entry->address - target_sec->vma + target_entry->size;
7833
7834 /* If the literal range is at the end of the section,
7835 do not add fill. */
7836 fill_extra_space = 0;
7837 the_add_entry =
7838 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7839 target_sec_cache->pte_count,
7840 entry_sec_offset);
7841 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7842 fill_extra_space = the_add_entry->size;
7843
7844 target_fa = find_fill_action (&target_relax_info->action_list,
7845 target_sec, entry_sec_offset);
7846 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7847 entry_sec_offset, 4,
7848 fill_extra_space);
7849 if (target_fa)
7850 adjust_fill_action (target_fa, removed_diff);
7851 else
7852 text_action_add (&target_relax_info->action_list,
7853 ta_fill, target_sec, entry_sec_offset, removed_diff);
7854 }
7855
7856 /* Mark that the literal will be moved to the new location. */
7857 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7858
7859 /* Remove the literal. */
7860 text_action_add (&relax_info->action_list,
7861 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7862
7863 /* If the section is 4-byte aligned, do not add fill. */
7864 if (sec->alignment_power > 2 && target_entry != src_entry)
7865 {
7866 int fill_extra_space;
7867 bfd_vma entry_sec_offset;
7868
7869 if (src_entry)
7870 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7871 else
7872 entry_sec_offset = rel->r_rel.target_offset+4;
7873
7874 /* If the literal range is at the end of the section,
7875 do not add fill. */
7876 fill_extra_space = 0;
7877 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7878 entry_sec_offset);
7879 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7880 fill_extra_space = the_add_entry->size;
7881
7882 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7883 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7884 -4, fill_extra_space);
7885 if (fa)
7886 adjust_fill_action (fa, removed_diff);
7887 else
7888 text_action_add (&relax_info->action_list,
7889 ta_fill, sec, entry_sec_offset, removed_diff);
7890 }
7891
7892 return TRUE;
e0001a05
NC
7893}
7894
7895\f
7896/* Second relaxation pass. */
7897
7898/* Modify all of the relocations to point to the right spot, and if this
7899 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 7900 section size. */
e0001a05 7901
43cd72b9 7902bfd_boolean
7fa3d080 7903relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
7904{
7905 Elf_Internal_Rela *internal_relocs;
7906 xtensa_relax_info *relax_info;
7907 bfd_byte *contents;
7908 bfd_boolean ok = TRUE;
7909 unsigned i;
43cd72b9
BW
7910 bfd_boolean rv = FALSE;
7911 bfd_boolean virtual_action;
7912 bfd_size_type sec_size;
e0001a05 7913
43cd72b9 7914 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
7915 relax_info = get_xtensa_relax_info (sec);
7916 BFD_ASSERT (relax_info);
7917
43cd72b9
BW
7918 /* First translate any of the fixes that have been added already. */
7919 translate_section_fixes (sec);
7920
e0001a05
NC
7921 /* Handle property sections (e.g., literal tables) specially. */
7922 if (xtensa_is_property_section (sec))
7923 {
7924 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
7925 return relax_property_section (abfd, sec, link_info);
7926 }
7927
43cd72b9
BW
7928 internal_relocs = retrieve_internal_relocs (abfd, sec,
7929 link_info->keep_memory);
7930 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7931 if (contents == NULL && sec_size != 0)
7932 {
7933 ok = FALSE;
7934 goto error_return;
7935 }
7936
7937 if (internal_relocs)
7938 {
7939 for (i = 0; i < sec->reloc_count; i++)
7940 {
7941 Elf_Internal_Rela *irel;
7942 xtensa_relax_info *target_relax_info;
7943 bfd_vma source_offset, old_source_offset;
7944 r_reloc r_rel;
7945 unsigned r_type;
7946 asection *target_sec;
7947
7948 /* Locally change the source address.
7949 Translate the target to the new target address.
7950 If it points to this section and has been removed,
7951 NULLify it.
7952 Write it back. */
7953
7954 irel = &internal_relocs[i];
7955 source_offset = irel->r_offset;
7956 old_source_offset = source_offset;
7957
7958 r_type = ELF32_R_TYPE (irel->r_info);
7959 r_reloc_init (&r_rel, abfd, irel, contents,
7960 bfd_get_section_limit (abfd, sec));
7961
7962 /* If this section could have changed then we may need to
7963 change the relocation's offset. */
7964
7965 if (relax_info->is_relaxable_literal_section
7966 || relax_info->is_relaxable_asm_section)
7967 {
7968 if (r_type != R_XTENSA_NONE
7969 && find_removed_literal (&relax_info->removed_list,
7970 irel->r_offset))
7971 {
7972 /* Remove this relocation. */
7973 if (elf_hash_table (link_info)->dynamic_sections_created)
7974 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7975 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7976 irel->r_offset = offset_with_removed_text
7977 (&relax_info->action_list, irel->r_offset);
7978 pin_internal_relocs (sec, internal_relocs);
7979 continue;
7980 }
7981
7982 if (r_type == R_XTENSA_ASM_SIMPLIFY)
7983 {
7984 text_action *action =
7985 find_insn_action (&relax_info->action_list,
7986 irel->r_offset);
7987 if (action && (action->action == ta_convert_longcall
7988 || action->action == ta_remove_longcall))
7989 {
7990 bfd_reloc_status_type retval;
7991 char *error_message = NULL;
7992
7993 retval = contract_asm_expansion (contents, sec_size,
7994 irel, &error_message);
7995 if (retval != bfd_reloc_ok)
7996 {
7997 (*link_info->callbacks->reloc_dangerous)
7998 (link_info, error_message, abfd, sec,
7999 irel->r_offset);
8000 goto error_return;
8001 }
8002 /* Update the action so that the code that moves
8003 the contents will do the right thing. */
8004 if (action->action == ta_remove_longcall)
8005 action->action = ta_remove_insn;
8006 else
8007 action->action = ta_none;
8008 /* Refresh the info in the r_rel. */
8009 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8010 r_type = ELF32_R_TYPE (irel->r_info);
8011 }
8012 }
8013
8014 source_offset = offset_with_removed_text
8015 (&relax_info->action_list, irel->r_offset);
8016 irel->r_offset = source_offset;
8017 }
8018
8019 /* If the target section could have changed then
8020 we may need to change the relocation's target offset. */
8021
8022 target_sec = r_reloc_get_section (&r_rel);
8023 target_relax_info = get_xtensa_relax_info (target_sec);
8024
8025 if (target_relax_info
8026 && (target_relax_info->is_relaxable_literal_section
8027 || target_relax_info->is_relaxable_asm_section))
8028 {
8029 r_reloc new_reloc;
8030 reloc_bfd_fix *fix;
8031 bfd_vma addend_displacement;
8032
8033 translate_reloc (&r_rel, &new_reloc);
8034
8035 if (r_type == R_XTENSA_DIFF8
8036 || r_type == R_XTENSA_DIFF16
8037 || r_type == R_XTENSA_DIFF32)
8038 {
8039 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8040
8041 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8042 {
8043 (*link_info->callbacks->reloc_dangerous)
8044 (link_info, _("invalid relocation address"),
8045 abfd, sec, old_source_offset);
8046 goto error_return;
8047 }
8048
8049 switch (r_type)
8050 {
8051 case R_XTENSA_DIFF8:
8052 diff_value =
8053 bfd_get_8 (abfd, &contents[old_source_offset]);
8054 break;
8055 case R_XTENSA_DIFF16:
8056 diff_value =
8057 bfd_get_16 (abfd, &contents[old_source_offset]);
8058 break;
8059 case R_XTENSA_DIFF32:
8060 diff_value =
8061 bfd_get_32 (abfd, &contents[old_source_offset]);
8062 break;
8063 }
8064
8065 new_end_offset = offset_with_removed_text
8066 (&target_relax_info->action_list,
8067 r_rel.target_offset + diff_value);
8068 diff_value = new_end_offset - new_reloc.target_offset;
8069
8070 switch (r_type)
8071 {
8072 case R_XTENSA_DIFF8:
8073 diff_mask = 0xff;
8074 bfd_put_8 (abfd, diff_value,
8075 &contents[old_source_offset]);
8076 break;
8077 case R_XTENSA_DIFF16:
8078 diff_mask = 0xffff;
8079 bfd_put_16 (abfd, diff_value,
8080 &contents[old_source_offset]);
8081 break;
8082 case R_XTENSA_DIFF32:
8083 diff_mask = 0xffffffff;
8084 bfd_put_32 (abfd, diff_value,
8085 &contents[old_source_offset]);
8086 break;
8087 }
8088
8089 /* Check for overflow. */
8090 if ((diff_value & ~diff_mask) != 0)
8091 {
8092 (*link_info->callbacks->reloc_dangerous)
8093 (link_info, _("overflow after relaxation"),
8094 abfd, sec, old_source_offset);
8095 goto error_return;
8096 }
8097
8098 pin_contents (sec, contents);
8099 }
8100
8101 /* FIXME: If the relocation still references a section in
8102 the same input file, the relocation should be modified
8103 directly instead of adding a "fix" record. */
8104
8105 addend_displacement =
8106 new_reloc.target_offset + new_reloc.virtual_offset;
8107
8108 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8109 r_reloc_get_section (&new_reloc),
8110 addend_displacement, TRUE);
8111 add_fix (sec, fix);
8112 }
8113
8114 pin_internal_relocs (sec, internal_relocs);
8115 }
8116 }
8117
8118 if ((relax_info->is_relaxable_literal_section
8119 || relax_info->is_relaxable_asm_section)
8120 && relax_info->action_list.head)
8121 {
8122 /* Walk through the planned actions and build up a table
8123 of move, copy and fill records. Use the move, copy and
8124 fill records to perform the actions once. */
8125
8126 bfd_size_type size = sec->size;
8127 int removed = 0;
8128 bfd_size_type final_size, copy_size, orig_insn_size;
8129 bfd_byte *scratch = NULL;
8130 bfd_byte *dup_contents = NULL;
8131 bfd_size_type orig_size = size;
8132 bfd_vma orig_dot = 0;
8133 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8134 orig dot in physical memory. */
8135 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8136 bfd_vma dup_dot = 0;
8137
8138 text_action *action = relax_info->action_list.head;
8139
8140 final_size = sec->size;
8141 for (action = relax_info->action_list.head; action;
8142 action = action->next)
8143 {
8144 final_size -= action->removed_bytes;
8145 }
8146
8147 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8148 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8149
8150 /* The dot is the current fill location. */
8151#if DEBUG
8152 print_action_list (stderr, &relax_info->action_list);
8153#endif
8154
8155 for (action = relax_info->action_list.head; action;
8156 action = action->next)
8157 {
8158 virtual_action = FALSE;
8159 if (action->offset > orig_dot)
8160 {
8161 orig_dot += orig_dot_copied;
8162 orig_dot_copied = 0;
8163 orig_dot_vo = 0;
8164 /* Out of the virtual world. */
8165 }
8166
8167 if (action->offset > orig_dot)
8168 {
8169 copy_size = action->offset - orig_dot;
8170 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8171 orig_dot += copy_size;
8172 dup_dot += copy_size;
8173 BFD_ASSERT (action->offset == orig_dot);
8174 }
8175 else if (action->offset < orig_dot)
8176 {
8177 if (action->action == ta_fill
8178 && action->offset - action->removed_bytes == orig_dot)
8179 {
8180 /* This is OK because the fill only effects the dup_dot. */
8181 }
8182 else if (action->action == ta_add_literal)
8183 {
8184 /* TBD. Might need to handle this. */
8185 }
8186 }
8187 if (action->offset == orig_dot)
8188 {
8189 if (action->virtual_offset > orig_dot_vo)
8190 {
8191 if (orig_dot_vo == 0)
8192 {
8193 /* Need to copy virtual_offset bytes. Probably four. */
8194 copy_size = action->virtual_offset - orig_dot_vo;
8195 memmove (&dup_contents[dup_dot],
8196 &contents[orig_dot], copy_size);
8197 orig_dot_copied = copy_size;
8198 dup_dot += copy_size;
8199 }
8200 virtual_action = TRUE;
8201 }
8202 else
8203 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8204 }
8205 switch (action->action)
8206 {
8207 case ta_remove_literal:
8208 case ta_remove_insn:
8209 BFD_ASSERT (action->removed_bytes >= 0);
8210 orig_dot += action->removed_bytes;
8211 break;
8212
8213 case ta_narrow_insn:
8214 orig_insn_size = 3;
8215 copy_size = 2;
8216 memmove (scratch, &contents[orig_dot], orig_insn_size);
8217 BFD_ASSERT (action->removed_bytes == 1);
8218 rv = narrow_instruction (scratch, final_size, 0, TRUE);
8219 BFD_ASSERT (rv);
8220 memmove (&dup_contents[dup_dot], scratch, copy_size);
8221 orig_dot += orig_insn_size;
8222 dup_dot += copy_size;
8223 break;
8224
8225 case ta_fill:
8226 if (action->removed_bytes >= 0)
8227 orig_dot += action->removed_bytes;
8228 else
8229 {
8230 /* Already zeroed in dup_contents. Just bump the
8231 counters. */
8232 dup_dot += (-action->removed_bytes);
8233 }
8234 break;
8235
8236 case ta_none:
8237 BFD_ASSERT (action->removed_bytes == 0);
8238 break;
8239
8240 case ta_convert_longcall:
8241 case ta_remove_longcall:
8242 /* These will be removed or converted before we get here. */
8243 BFD_ASSERT (0);
8244 break;
8245
8246 case ta_widen_insn:
8247 orig_insn_size = 2;
8248 copy_size = 3;
8249 memmove (scratch, &contents[orig_dot], orig_insn_size);
8250 BFD_ASSERT (action->removed_bytes == -1);
8251 rv = widen_instruction (scratch, final_size, 0, TRUE);
8252 BFD_ASSERT (rv);
8253 memmove (&dup_contents[dup_dot], scratch, copy_size);
8254 orig_dot += orig_insn_size;
8255 dup_dot += copy_size;
8256 break;
8257
8258 case ta_add_literal:
8259 orig_insn_size = 0;
8260 copy_size = 4;
8261 BFD_ASSERT (action->removed_bytes == -4);
8262 /* TBD -- place the literal value here and insert
8263 into the table. */
8264 memset (&dup_contents[dup_dot], 0, 4);
8265 pin_internal_relocs (sec, internal_relocs);
8266 pin_contents (sec, contents);
8267
8268 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8269 relax_info, &internal_relocs, &action->value))
8270 goto error_return;
8271
8272 if (virtual_action)
8273 orig_dot_vo += copy_size;
8274
8275 orig_dot += orig_insn_size;
8276 dup_dot += copy_size;
8277 break;
8278
8279 default:
8280 /* Not implemented yet. */
8281 BFD_ASSERT (0);
8282 break;
8283 }
8284
8285 size -= action->removed_bytes;
8286 removed += action->removed_bytes;
8287 BFD_ASSERT (dup_dot <= final_size);
8288 BFD_ASSERT (orig_dot <= orig_size);
8289 }
8290
8291 orig_dot += orig_dot_copied;
8292 orig_dot_copied = 0;
8293
8294 if (orig_dot != orig_size)
8295 {
8296 copy_size = orig_size - orig_dot;
8297 BFD_ASSERT (orig_size > orig_dot);
8298 BFD_ASSERT (dup_dot + copy_size == final_size);
8299 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8300 orig_dot += copy_size;
8301 dup_dot += copy_size;
8302 }
8303 BFD_ASSERT (orig_size == orig_dot);
8304 BFD_ASSERT (final_size == dup_dot);
8305
8306 /* Move the dup_contents back. */
8307 if (final_size > orig_size)
8308 {
8309 /* Contents need to be reallocated. Swap the dup_contents into
8310 contents. */
8311 sec->contents = dup_contents;
8312 free (contents);
8313 contents = dup_contents;
8314 pin_contents (sec, contents);
8315 }
8316 else
8317 {
8318 BFD_ASSERT (final_size <= orig_size);
8319 memset (contents, 0, orig_size);
8320 memcpy (contents, dup_contents, final_size);
8321 free (dup_contents);
8322 }
8323 free (scratch);
8324 pin_contents (sec, contents);
8325
8326 sec->size = final_size;
8327 }
8328
8329 error_return:
8330 release_internal_relocs (sec, internal_relocs);
8331 release_contents (sec, contents);
8332 return ok;
8333}
8334
8335
8336static bfd_boolean
7fa3d080 8337translate_section_fixes (asection *sec)
43cd72b9
BW
8338{
8339 xtensa_relax_info *relax_info;
8340 reloc_bfd_fix *r;
8341
8342 relax_info = get_xtensa_relax_info (sec);
8343 if (!relax_info)
8344 return TRUE;
8345
8346 for (r = relax_info->fix_list; r != NULL; r = r->next)
8347 if (!translate_reloc_bfd_fix (r))
8348 return FALSE;
e0001a05 8349
43cd72b9
BW
8350 return TRUE;
8351}
e0001a05 8352
e0001a05 8353
43cd72b9
BW
8354/* Translate a fix given the mapping in the relax info for the target
8355 section. If it has already been translated, no work is required. */
e0001a05 8356
43cd72b9 8357static bfd_boolean
7fa3d080 8358translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8359{
8360 reloc_bfd_fix new_fix;
8361 asection *sec;
8362 xtensa_relax_info *relax_info;
8363 removed_literal *removed;
8364 bfd_vma new_offset, target_offset;
e0001a05 8365
43cd72b9
BW
8366 if (fix->translated)
8367 return TRUE;
e0001a05 8368
43cd72b9
BW
8369 sec = fix->target_sec;
8370 target_offset = fix->target_offset;
e0001a05 8371
43cd72b9
BW
8372 relax_info = get_xtensa_relax_info (sec);
8373 if (!relax_info)
8374 {
8375 fix->translated = TRUE;
8376 return TRUE;
8377 }
e0001a05 8378
43cd72b9 8379 new_fix = *fix;
e0001a05 8380
43cd72b9
BW
8381 /* The fix does not need to be translated if the section cannot change. */
8382 if (!relax_info->is_relaxable_literal_section
8383 && !relax_info->is_relaxable_asm_section)
8384 {
8385 fix->translated = TRUE;
8386 return TRUE;
8387 }
e0001a05 8388
43cd72b9
BW
8389 /* If the literal has been moved and this relocation was on an
8390 opcode, then the relocation should move to the new literal
8391 location. Otherwise, the relocation should move within the
8392 section. */
8393
8394 removed = FALSE;
8395 if (is_operand_relocation (fix->src_type))
8396 {
8397 /* Check if the original relocation is against a literal being
8398 removed. */
8399 removed = find_removed_literal (&relax_info->removed_list,
8400 target_offset);
e0001a05
NC
8401 }
8402
43cd72b9 8403 if (removed)
e0001a05 8404 {
43cd72b9 8405 asection *new_sec;
e0001a05 8406
43cd72b9
BW
8407 /* The fact that there is still a relocation to this literal indicates
8408 that the literal is being coalesced, not simply removed. */
8409 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8410
43cd72b9
BW
8411 /* This was moved to some other address (possibly another section). */
8412 new_sec = r_reloc_get_section (&removed->to);
8413 if (new_sec != sec)
e0001a05 8414 {
43cd72b9
BW
8415 sec = new_sec;
8416 relax_info = get_xtensa_relax_info (sec);
8417 if (!relax_info ||
8418 (!relax_info->is_relaxable_literal_section
8419 && !relax_info->is_relaxable_asm_section))
e0001a05 8420 {
43cd72b9
BW
8421 target_offset = removed->to.target_offset;
8422 new_fix.target_sec = new_sec;
8423 new_fix.target_offset = target_offset;
8424 new_fix.translated = TRUE;
8425 *fix = new_fix;
8426 return TRUE;
e0001a05 8427 }
e0001a05 8428 }
43cd72b9
BW
8429 target_offset = removed->to.target_offset;
8430 new_fix.target_sec = new_sec;
e0001a05 8431 }
43cd72b9
BW
8432
8433 /* The target address may have been moved within its section. */
8434 new_offset = offset_with_removed_text (&relax_info->action_list,
8435 target_offset);
8436
8437 new_fix.target_offset = new_offset;
8438 new_fix.target_offset = new_offset;
8439 new_fix.translated = TRUE;
8440 *fix = new_fix;
8441 return TRUE;
e0001a05
NC
8442}
8443
8444
8445/* Fix up a relocation to take account of removed literals. */
8446
8447static void
7fa3d080 8448translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
e0001a05
NC
8449{
8450 asection *sec;
8451 xtensa_relax_info *relax_info;
8452 removed_literal *removed;
43cd72b9 8453 bfd_vma new_offset, target_offset, removed_bytes;
e0001a05
NC
8454
8455 *new_rel = *orig_rel;
8456
8457 if (!r_reloc_is_defined (orig_rel))
8458 return;
8459 sec = r_reloc_get_section (orig_rel);
8460
8461 relax_info = get_xtensa_relax_info (sec);
8462 BFD_ASSERT (relax_info);
8463
43cd72b9
BW
8464 if (!relax_info->is_relaxable_literal_section
8465 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8466 return;
8467
43cd72b9
BW
8468 target_offset = orig_rel->target_offset;
8469
8470 removed = FALSE;
8471 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8472 {
8473 /* Check if the original relocation is against a literal being
8474 removed. */
8475 removed = find_removed_literal (&relax_info->removed_list,
8476 target_offset);
8477 }
8478 if (removed && removed->to.abfd)
e0001a05
NC
8479 {
8480 asection *new_sec;
8481
8482 /* The fact that there is still a relocation to this literal indicates
8483 that the literal is being coalesced, not simply removed. */
8484 BFD_ASSERT (removed->to.abfd != NULL);
8485
43cd72b9
BW
8486 /* This was moved to some other address
8487 (possibly in another section). */
e0001a05
NC
8488 *new_rel = removed->to;
8489 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8490 if (new_sec != sec)
e0001a05
NC
8491 {
8492 sec = new_sec;
8493 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8494 if (!relax_info
8495 || (!relax_info->is_relaxable_literal_section
8496 && !relax_info->is_relaxable_asm_section))
e0001a05
NC
8497 return;
8498 }
43cd72b9 8499 target_offset = new_rel->target_offset;
e0001a05
NC
8500 }
8501
8502 /* ...and the target address may have been moved within its section. */
43cd72b9
BW
8503 new_offset = offset_with_removed_text (&relax_info->action_list,
8504 target_offset);
e0001a05
NC
8505
8506 /* Modify the offset and addend. */
43cd72b9 8507 removed_bytes = target_offset - new_offset;
e0001a05 8508 new_rel->target_offset = new_offset;
43cd72b9 8509 new_rel->rela.r_addend -= removed_bytes;
e0001a05
NC
8510}
8511
8512
8513/* For dynamic links, there may be a dynamic relocation for each
8514 literal. The number of dynamic relocations must be computed in
8515 size_dynamic_sections, which occurs before relaxation. When a
8516 literal is removed, this function checks if there is a corresponding
8517 dynamic relocation and shrinks the size of the appropriate dynamic
8518 relocation section accordingly. At this point, the contents of the
8519 dynamic relocation sections have not yet been filled in, so there's
8520 nothing else that needs to be done. */
8521
8522static void
7fa3d080
BW
8523shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8524 bfd *abfd,
8525 asection *input_section,
8526 Elf_Internal_Rela *rel)
e0001a05
NC
8527{
8528 Elf_Internal_Shdr *symtab_hdr;
8529 struct elf_link_hash_entry **sym_hashes;
8530 unsigned long r_symndx;
8531 int r_type;
8532 struct elf_link_hash_entry *h;
8533 bfd_boolean dynamic_symbol;
8534
8535 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8536 sym_hashes = elf_sym_hashes (abfd);
8537
8538 r_type = ELF32_R_TYPE (rel->r_info);
8539 r_symndx = ELF32_R_SYM (rel->r_info);
8540
8541 if (r_symndx < symtab_hdr->sh_info)
8542 h = NULL;
8543 else
8544 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8545
571b5725 8546 dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05
NC
8547
8548 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8549 && (input_section->flags & SEC_ALLOC) != 0
8550 && (dynamic_symbol || info->shared))
8551 {
8552 bfd *dynobj;
8553 const char *srel_name;
8554 asection *srel;
8555 bfd_boolean is_plt = FALSE;
8556
8557 dynobj = elf_hash_table (info)->dynobj;
8558 BFD_ASSERT (dynobj != NULL);
8559
8560 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8561 {
8562 srel_name = ".rela.plt";
8563 is_plt = TRUE;
8564 }
8565 else
8566 srel_name = ".rela.got";
8567
8568 /* Reduce size of the .rela.* section by one reloc. */
8569 srel = bfd_get_section_by_name (dynobj, srel_name);
8570 BFD_ASSERT (srel != NULL);
eea6121a
AM
8571 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8572 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8573
8574 if (is_plt)
8575 {
8576 asection *splt, *sgotplt, *srelgot;
8577 int reloc_index, chunk;
8578
8579 /* Find the PLT reloc index of the entry being removed. This
8580 is computed from the size of ".rela.plt". It is needed to
8581 figure out which PLT chunk to resize. Usually "last index
8582 = size - 1" since the index starts at zero, but in this
8583 context, the size has just been decremented so there's no
8584 need to subtract one. */
eea6121a 8585 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8586
8587 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8588 splt = elf_xtensa_get_plt_section (dynobj, chunk);
8589 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
8590 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8591
8592 /* Check if an entire PLT chunk has just been eliminated. */
8593 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8594 {
8595 /* The two magic GOT entries for that chunk can go away. */
8596 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
8597 BFD_ASSERT (srelgot != NULL);
8598 srelgot->reloc_count -= 2;
eea6121a
AM
8599 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8600 sgotplt->size -= 8;
e0001a05
NC
8601
8602 /* There should be only one entry left (and it will be
8603 removed below). */
eea6121a
AM
8604 BFD_ASSERT (sgotplt->size == 4);
8605 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8606 }
8607
eea6121a
AM
8608 BFD_ASSERT (sgotplt->size >= 4);
8609 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8610
eea6121a
AM
8611 sgotplt->size -= 4;
8612 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8613 }
8614 }
8615}
8616
8617
43cd72b9
BW
8618/* Take an r_rel and move it to another section. This usually
8619 requires extending the interal_relocation array and pinning it. If
8620 the original r_rel is from the same BFD, we can complete this here.
8621 Otherwise, we add a fix record to let the final link fix the
8622 appropriate address. Contents and internal relocations for the
8623 section must be pinned after calling this routine. */
8624
8625static bfd_boolean
7fa3d080
BW
8626move_literal (bfd *abfd,
8627 struct bfd_link_info *link_info,
8628 asection *sec,
8629 bfd_vma offset,
8630 bfd_byte *contents,
8631 xtensa_relax_info *relax_info,
8632 Elf_Internal_Rela **internal_relocs_p,
8633 const literal_value *lit)
43cd72b9
BW
8634{
8635 Elf_Internal_Rela *new_relocs = NULL;
8636 size_t new_relocs_count = 0;
8637 Elf_Internal_Rela this_rela;
8638 const r_reloc *r_rel;
8639
8640 r_rel = &lit->r_rel;
8641 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8642
8643 if (r_reloc_is_const (r_rel))
8644 bfd_put_32 (abfd, lit->value, contents + offset);
8645 else
8646 {
8647 int r_type;
8648 unsigned i;
8649 asection *target_sec;
8650 reloc_bfd_fix *fix;
8651 unsigned insert_at;
8652
8653 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8654 target_sec = r_reloc_get_section (r_rel);
8655
8656 /* This is the difficult case. We have to create a fix up. */
8657 this_rela.r_offset = offset;
8658 this_rela.r_info = ELF32_R_INFO (0, r_type);
8659 this_rela.r_addend =
8660 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8661 bfd_put_32 (abfd, lit->value, contents + offset);
8662
8663 /* Currently, we cannot move relocations during a relocatable link. */
8664 BFD_ASSERT (!link_info->relocatable);
8665 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8666 r_reloc_get_section (r_rel),
8667 r_rel->target_offset + r_rel->virtual_offset,
8668 FALSE);
8669 /* We also need to mark that relocations are needed here. */
8670 sec->flags |= SEC_RELOC;
8671
8672 translate_reloc_bfd_fix (fix);
8673 /* This fix has not yet been translated. */
8674 add_fix (sec, fix);
8675
8676 /* Add the relocation. If we have already allocated our own
8677 space for the relocations and we have room for more, then use
8678 it. Otherwise, allocate new space and move the literals. */
8679 insert_at = sec->reloc_count;
8680 for (i = 0; i < sec->reloc_count; ++i)
8681 {
8682 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8683 {
8684 insert_at = i;
8685 break;
8686 }
8687 }
8688
8689 if (*internal_relocs_p != relax_info->allocated_relocs
8690 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8691 {
8692 BFD_ASSERT (relax_info->allocated_relocs == NULL
8693 || sec->reloc_count == relax_info->relocs_count);
8694
8695 if (relax_info->allocated_relocs_count == 0)
8696 new_relocs_count = (sec->reloc_count + 2) * 2;
8697 else
8698 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8699
8700 new_relocs = (Elf_Internal_Rela *)
8701 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8702 if (!new_relocs)
8703 return FALSE;
8704
8705 /* We could handle this more quickly by finding the split point. */
8706 if (insert_at != 0)
8707 memcpy (new_relocs, *internal_relocs_p,
8708 insert_at * sizeof (Elf_Internal_Rela));
8709
8710 new_relocs[insert_at] = this_rela;
8711
8712 if (insert_at != sec->reloc_count)
8713 memcpy (new_relocs + insert_at + 1,
8714 (*internal_relocs_p) + insert_at,
8715 (sec->reloc_count - insert_at)
8716 * sizeof (Elf_Internal_Rela));
8717
8718 if (*internal_relocs_p != relax_info->allocated_relocs)
8719 {
8720 /* The first time we re-allocate, we can only free the
8721 old relocs if they were allocated with bfd_malloc.
8722 This is not true when keep_memory is in effect. */
8723 if (!link_info->keep_memory)
8724 free (*internal_relocs_p);
8725 }
8726 else
8727 free (*internal_relocs_p);
8728 relax_info->allocated_relocs = new_relocs;
8729 relax_info->allocated_relocs_count = new_relocs_count;
8730 elf_section_data (sec)->relocs = new_relocs;
8731 sec->reloc_count++;
8732 relax_info->relocs_count = sec->reloc_count;
8733 *internal_relocs_p = new_relocs;
8734 }
8735 else
8736 {
8737 if (insert_at != sec->reloc_count)
8738 {
8739 unsigned idx;
8740 for (idx = sec->reloc_count; idx > insert_at; idx--)
8741 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8742 }
8743 (*internal_relocs_p)[insert_at] = this_rela;
8744 sec->reloc_count++;
8745 if (relax_info->allocated_relocs)
8746 relax_info->relocs_count = sec->reloc_count;
8747 }
8748 }
8749 return TRUE;
8750}
8751
8752
e0001a05
NC
8753/* This is similar to relax_section except that when a target is moved,
8754 we shift addresses up. We also need to modify the size. This
8755 algorithm does NOT allow for relocations into the middle of the
8756 property sections. */
8757
43cd72b9 8758static bfd_boolean
7fa3d080
BW
8759relax_property_section (bfd *abfd,
8760 asection *sec,
8761 struct bfd_link_info *link_info)
e0001a05
NC
8762{
8763 Elf_Internal_Rela *internal_relocs;
8764 bfd_byte *contents;
8765 unsigned i, nexti;
8766 bfd_boolean ok = TRUE;
43cd72b9
BW
8767 bfd_boolean is_full_prop_section;
8768 size_t last_zfill_target_offset = 0;
8769 asection *last_zfill_target_sec = NULL;
8770 bfd_size_type sec_size;
e0001a05 8771
43cd72b9 8772 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8773 internal_relocs = retrieve_internal_relocs (abfd, sec,
8774 link_info->keep_memory);
8775 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8776 if (contents == NULL && sec_size != 0)
e0001a05
NC
8777 {
8778 ok = FALSE;
8779 goto error_return;
8780 }
8781
43cd72b9
BW
8782 is_full_prop_section =
8783 ((strcmp (sec->name, XTENSA_PROP_SEC_NAME) == 0)
8784 || (strncmp (sec->name, ".gnu.linkonce.prop.",
8785 sizeof ".gnu.linkonce.prop." - 1) == 0));
8786
8787 if (internal_relocs)
e0001a05 8788 {
43cd72b9 8789 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8790 {
8791 Elf_Internal_Rela *irel;
8792 xtensa_relax_info *target_relax_info;
e0001a05
NC
8793 unsigned r_type;
8794 asection *target_sec;
43cd72b9
BW
8795 literal_value val;
8796 bfd_byte *size_p, *flags_p;
e0001a05
NC
8797
8798 /* Locally change the source address.
8799 Translate the target to the new target address.
8800 If it points to this section and has been removed, MOVE IT.
8801 Also, don't forget to modify the associated SIZE at
8802 (offset + 4). */
8803
8804 irel = &internal_relocs[i];
8805 r_type = ELF32_R_TYPE (irel->r_info);
8806 if (r_type == R_XTENSA_NONE)
8807 continue;
8808
43cd72b9
BW
8809 /* Find the literal value. */
8810 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8811 size_p = &contents[irel->r_offset + 4];
8812 flags_p = NULL;
8813 if (is_full_prop_section)
8814 {
8815 flags_p = &contents[irel->r_offset + 8];
8816 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8817 }
8818 else
8819 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
e0001a05 8820
43cd72b9 8821 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8822 target_relax_info = get_xtensa_relax_info (target_sec);
8823
8824 if (target_relax_info
43cd72b9
BW
8825 && (target_relax_info->is_relaxable_literal_section
8826 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
8827 {
8828 /* Translate the relocation's destination. */
43cd72b9 8829 bfd_vma new_offset, new_end_offset;
e0001a05
NC
8830 long old_size, new_size;
8831
43cd72b9
BW
8832 new_offset = offset_with_removed_text
8833 (&target_relax_info->action_list, val.r_rel.target_offset);
e0001a05
NC
8834
8835 /* Assert that we are not out of bounds. */
43cd72b9
BW
8836 old_size = bfd_get_32 (abfd, size_p);
8837
8838 if (old_size == 0)
8839 {
8840 /* Only the first zero-sized unreachable entry is
8841 allowed to expand. In this case the new offset
8842 should be the offset before the fill and the new
8843 size is the expansion size. For other zero-sized
8844 entries the resulting size should be zero with an
8845 offset before or after the fill address depending
8846 on whether the expanding unreachable entry
8847 preceeds it. */
8848 if (last_zfill_target_sec
8849 && last_zfill_target_sec == target_sec
8850 && last_zfill_target_offset == val.r_rel.target_offset)
8851 new_end_offset = new_offset;
8852 else
8853 {
8854 new_end_offset = new_offset;
8855 new_offset = offset_with_removed_text_before_fill
8856 (&target_relax_info->action_list,
8857 val.r_rel.target_offset);
8858
8859 /* If it is not unreachable and we have not yet
8860 seen an unreachable at this address, place it
8861 before the fill address. */
8862 if (!flags_p
8863 || (bfd_get_32 (abfd, flags_p)
8864 & XTENSA_PROP_UNREACHABLE) == 0)
8865 new_end_offset = new_offset;
8866 else
8867 {
8868 last_zfill_target_sec = target_sec;
8869 last_zfill_target_offset = val.r_rel.target_offset;
8870 }
8871 }
8872 }
8873 else
8874 {
8875 new_end_offset = offset_with_removed_text_before_fill
8876 (&target_relax_info->action_list,
8877 val.r_rel.target_offset + old_size);
8878 }
e0001a05 8879
e0001a05 8880 new_size = new_end_offset - new_offset;
43cd72b9 8881
e0001a05
NC
8882 if (new_size != old_size)
8883 {
8884 bfd_put_32 (abfd, new_size, size_p);
8885 pin_contents (sec, contents);
8886 }
43cd72b9
BW
8887
8888 if (new_offset != val.r_rel.target_offset)
e0001a05 8889 {
43cd72b9 8890 bfd_vma diff = new_offset - val.r_rel.target_offset;
e0001a05
NC
8891 irel->r_addend += diff;
8892 pin_internal_relocs (sec, internal_relocs);
8893 }
8894 }
8895 }
8896 }
8897
8898 /* Combine adjacent property table entries. This is also done in
8899 finish_dynamic_sections() but at that point it's too late to
8900 reclaim the space in the output section, so we do this twice. */
8901
43cd72b9
BW
8902 if (internal_relocs && (!link_info->relocatable
8903 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
e0001a05
NC
8904 {
8905 Elf_Internal_Rela *last_irel = NULL;
8906 int removed_bytes = 0;
8907 bfd_vma offset, last_irel_offset;
8908 bfd_vma section_size;
43cd72b9
BW
8909 bfd_size_type entry_size;
8910 flagword predef_flags;
8911
8912 if (is_full_prop_section)
8913 entry_size = 12;
8914 else
8915 entry_size = 8;
8916
8917 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05
NC
8918
8919 /* Walk over memory and irels at the same time.
8920 This REQUIRES that the internal_relocs be sorted by offset. */
8921 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8922 internal_reloc_compare);
8923 nexti = 0; /* Index into internal_relocs. */
8924
8925 pin_internal_relocs (sec, internal_relocs);
8926 pin_contents (sec, contents);
8927
8928 last_irel_offset = (bfd_vma) -1;
eea6121a 8929 section_size = sec->size;
43cd72b9 8930 BFD_ASSERT (section_size % entry_size == 0);
e0001a05 8931
43cd72b9 8932 for (offset = 0; offset < section_size; offset += entry_size)
e0001a05
NC
8933 {
8934 Elf_Internal_Rela *irel, *next_irel;
8935 bfd_vma bytes_to_remove, size, actual_offset;
8936 bfd_boolean remove_this_irel;
43cd72b9 8937 flagword flags;
e0001a05
NC
8938
8939 irel = NULL;
8940 next_irel = NULL;
8941
8942 /* Find the next two relocations (if there are that many left),
8943 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8944 the starting reloc index. After these two loops, "i"
8945 is the index of the first non-NONE reloc past that starting
8946 index, and "nexti" is the index for the next non-NONE reloc
8947 after "i". */
8948
8949 for (i = nexti; i < sec->reloc_count; i++)
8950 {
8951 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
8952 {
8953 irel = &internal_relocs[i];
8954 break;
8955 }
8956 internal_relocs[i].r_offset -= removed_bytes;
8957 }
8958
8959 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
8960 {
8961 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
8962 != R_XTENSA_NONE)
8963 {
8964 next_irel = &internal_relocs[nexti];
8965 break;
8966 }
8967 internal_relocs[nexti].r_offset -= removed_bytes;
8968 }
8969
8970 remove_this_irel = FALSE;
8971 bytes_to_remove = 0;
8972 actual_offset = offset - removed_bytes;
8973 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
8974
43cd72b9
BW
8975 if (is_full_prop_section)
8976 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
8977 else
8978 flags = predef_flags;
8979
e0001a05
NC
8980 /* Check that the irels are sorted by offset,
8981 with only one per address. */
8982 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
8983 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
8984
43cd72b9
BW
8985 /* Make sure there aren't relocs on the size or flag fields. */
8986 if ((irel && irel->r_offset == offset + 4)
8987 || (is_full_prop_section
8988 && irel && irel->r_offset == offset + 8))
e0001a05
NC
8989 {
8990 irel->r_offset -= removed_bytes;
8991 last_irel_offset = irel->r_offset;
8992 }
43cd72b9
BW
8993 else if (next_irel && (next_irel->r_offset == offset + 4
8994 || (is_full_prop_section
8995 && next_irel->r_offset == offset + 8)))
e0001a05
NC
8996 {
8997 nexti += 1;
8998 irel->r_offset -= removed_bytes;
8999 next_irel->r_offset -= removed_bytes;
9000 last_irel_offset = next_irel->r_offset;
9001 }
43cd72b9
BW
9002 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
9003 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9004 {
43cd72b9
BW
9005 /* Always remove entries with zero size and no alignment. */
9006 bytes_to_remove = entry_size;
e0001a05
NC
9007 if (irel && irel->r_offset == offset)
9008 {
9009 remove_this_irel = TRUE;
9010
9011 irel->r_offset -= removed_bytes;
9012 last_irel_offset = irel->r_offset;
9013 }
9014 }
9015 else if (irel && irel->r_offset == offset)
9016 {
9017 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
9018 {
9019 if (last_irel)
9020 {
43cd72b9
BW
9021 flagword old_flags;
9022 bfd_vma old_size =
e0001a05 9023 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
43cd72b9
BW
9024 bfd_vma old_address =
9025 (last_irel->r_addend
e0001a05 9026 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
43cd72b9
BW
9027 bfd_vma new_address =
9028 (irel->r_addend
e0001a05 9029 + bfd_get_32 (abfd, &contents[actual_offset]));
43cd72b9
BW
9030 if (is_full_prop_section)
9031 old_flags = bfd_get_32
9032 (abfd, &contents[last_irel->r_offset + 8]);
9033 else
9034 old_flags = predef_flags;
9035
9036 if ((ELF32_R_SYM (irel->r_info)
9037 == ELF32_R_SYM (last_irel->r_info))
9038 && old_address + old_size == new_address
9039 && old_flags == flags
9040 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9041 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9042 {
43cd72b9 9043 /* Fix the old size. */
e0001a05
NC
9044 bfd_put_32 (abfd, old_size + size,
9045 &contents[last_irel->r_offset + 4]);
43cd72b9 9046 bytes_to_remove = entry_size;
e0001a05
NC
9047 remove_this_irel = TRUE;
9048 }
9049 else
9050 last_irel = irel;
9051 }
9052 else
9053 last_irel = irel;
9054 }
9055
9056 irel->r_offset -= removed_bytes;
9057 last_irel_offset = irel->r_offset;
9058 }
9059
9060 if (remove_this_irel)
9061 {
9062 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9063 irel->r_offset -= bytes_to_remove;
9064 }
9065
9066 if (bytes_to_remove != 0)
9067 {
9068 removed_bytes += bytes_to_remove;
43cd72b9 9069 if (offset + bytes_to_remove < section_size)
e0001a05 9070 memmove (&contents[actual_offset],
43cd72b9
BW
9071 &contents[actual_offset + bytes_to_remove],
9072 section_size - offset - bytes_to_remove);
e0001a05
NC
9073 }
9074 }
9075
43cd72b9 9076 if (removed_bytes)
e0001a05
NC
9077 {
9078 /* Clear the removed bytes. */
9079 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9080
eea6121a 9081 sec->size = section_size - removed_bytes;
e901de89
BW
9082
9083 if (xtensa_is_littable_section (sec))
9084 {
9085 bfd *dynobj = elf_hash_table (link_info)->dynobj;
9086 if (dynobj)
9087 {
9088 asection *sgotloc =
9089 bfd_get_section_by_name (dynobj, ".got.loc");
9090 if (sgotloc)
eea6121a 9091 sgotloc->size -= removed_bytes;
e901de89
BW
9092 }
9093 }
e0001a05
NC
9094 }
9095 }
e901de89 9096
e0001a05
NC
9097 error_return:
9098 release_internal_relocs (sec, internal_relocs);
9099 release_contents (sec, contents);
9100 return ok;
9101}
9102
9103\f
9104/* Third relaxation pass. */
9105
9106/* Change symbol values to account for removed literals. */
9107
43cd72b9 9108bfd_boolean
7fa3d080 9109relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
9110{
9111 xtensa_relax_info *relax_info;
9112 unsigned int sec_shndx;
9113 Elf_Internal_Shdr *symtab_hdr;
9114 Elf_Internal_Sym *isymbuf;
9115 unsigned i, num_syms, num_locals;
9116
9117 relax_info = get_xtensa_relax_info (sec);
9118 BFD_ASSERT (relax_info);
9119
43cd72b9
BW
9120 if (!relax_info->is_relaxable_literal_section
9121 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
9122 return TRUE;
9123
9124 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9125
9126 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9127 isymbuf = retrieve_local_syms (abfd);
9128
9129 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9130 num_locals = symtab_hdr->sh_info;
9131
9132 /* Adjust the local symbols defined in this section. */
9133 for (i = 0; i < num_locals; i++)
9134 {
9135 Elf_Internal_Sym *isym = &isymbuf[i];
9136
9137 if (isym->st_shndx == sec_shndx)
9138 {
43cd72b9
BW
9139 bfd_vma new_address = offset_with_removed_text
9140 (&relax_info->action_list, isym->st_value);
9141 bfd_vma new_size = isym->st_size;
9142
9143 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9144 {
9145 bfd_vma new_end = offset_with_removed_text
9146 (&relax_info->action_list, isym->st_value + isym->st_size);
9147 new_size = new_end - new_address;
9148 }
9149
9150 isym->st_value = new_address;
9151 isym->st_size = new_size;
e0001a05
NC
9152 }
9153 }
9154
9155 /* Now adjust the global symbols defined in this section. */
9156 for (i = 0; i < (num_syms - num_locals); i++)
9157 {
9158 struct elf_link_hash_entry *sym_hash;
9159
9160 sym_hash = elf_sym_hashes (abfd)[i];
9161
9162 if (sym_hash->root.type == bfd_link_hash_warning)
9163 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9164
9165 if ((sym_hash->root.type == bfd_link_hash_defined
9166 || sym_hash->root.type == bfd_link_hash_defweak)
9167 && sym_hash->root.u.def.section == sec)
9168 {
43cd72b9
BW
9169 bfd_vma new_address = offset_with_removed_text
9170 (&relax_info->action_list, sym_hash->root.u.def.value);
9171 bfd_vma new_size = sym_hash->size;
9172
9173 if (sym_hash->type == STT_FUNC)
9174 {
9175 bfd_vma new_end = offset_with_removed_text
9176 (&relax_info->action_list,
9177 sym_hash->root.u.def.value + sym_hash->size);
9178 new_size = new_end - new_address;
9179 }
9180
9181 sym_hash->root.u.def.value = new_address;
9182 sym_hash->size = new_size;
e0001a05
NC
9183 }
9184 }
9185
9186 return TRUE;
9187}
9188
9189\f
9190/* "Fix" handling functions, called while performing relocations. */
9191
43cd72b9 9192static bfd_boolean
7fa3d080
BW
9193do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9194 bfd *input_bfd,
9195 asection *input_section,
9196 bfd_byte *contents)
e0001a05
NC
9197{
9198 r_reloc r_rel;
9199 asection *sec, *old_sec;
9200 bfd_vma old_offset;
9201 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9202 reloc_bfd_fix *fix;
9203
9204 if (r_type == R_XTENSA_NONE)
43cd72b9 9205 return TRUE;
e0001a05 9206
43cd72b9
BW
9207 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9208 if (!fix)
9209 return TRUE;
e0001a05 9210
43cd72b9
BW
9211 r_reloc_init (&r_rel, input_bfd, rel, contents,
9212 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9213 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9214 old_offset = r_rel.target_offset;
9215
9216 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9217 {
43cd72b9
BW
9218 if (r_type != R_XTENSA_ASM_EXPAND)
9219 {
9220 (*_bfd_error_handler)
9221 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9222 input_bfd, input_section, rel->r_offset,
9223 elf_howto_table[r_type].name);
9224 return FALSE;
9225 }
e0001a05
NC
9226 /* Leave it be. Resolution will happen in a later stage. */
9227 }
9228 else
9229 {
9230 sec = fix->target_sec;
9231 rel->r_addend += ((sec->output_offset + fix->target_offset)
9232 - (old_sec->output_offset + old_offset));
9233 }
43cd72b9 9234 return TRUE;
e0001a05
NC
9235}
9236
9237
9238static void
7fa3d080
BW
9239do_fix_for_final_link (Elf_Internal_Rela *rel,
9240 bfd *input_bfd,
9241 asection *input_section,
9242 bfd_byte *contents,
9243 bfd_vma *relocationp)
e0001a05
NC
9244{
9245 asection *sec;
9246 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9247 reloc_bfd_fix *fix;
43cd72b9 9248 bfd_vma fixup_diff;
e0001a05
NC
9249
9250 if (r_type == R_XTENSA_NONE)
9251 return;
9252
43cd72b9
BW
9253 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9254 if (!fix)
e0001a05
NC
9255 return;
9256
9257 sec = fix->target_sec;
43cd72b9
BW
9258
9259 fixup_diff = rel->r_addend;
9260 if (elf_howto_table[fix->src_type].partial_inplace)
9261 {
9262 bfd_vma inplace_val;
9263 BFD_ASSERT (fix->src_offset
9264 < bfd_get_section_limit (input_bfd, input_section));
9265 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9266 fixup_diff += inplace_val;
9267 }
9268
e0001a05
NC
9269 *relocationp = (sec->output_section->vma
9270 + sec->output_offset
43cd72b9 9271 + fix->target_offset - fixup_diff);
e0001a05
NC
9272}
9273
9274\f
9275/* Miscellaneous utility functions.... */
9276
9277static asection *
7fa3d080 9278elf_xtensa_get_plt_section (bfd *dynobj, int chunk)
e0001a05
NC
9279{
9280 char plt_name[10];
9281
9282 if (chunk == 0)
9283 return bfd_get_section_by_name (dynobj, ".plt");
9284
9285 sprintf (plt_name, ".plt.%u", chunk);
9286 return bfd_get_section_by_name (dynobj, plt_name);
9287}
9288
9289
9290static asection *
7fa3d080 9291elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk)
e0001a05
NC
9292{
9293 char got_name[14];
9294
9295 if (chunk == 0)
9296 return bfd_get_section_by_name (dynobj, ".got.plt");
9297
9298 sprintf (got_name, ".got.plt.%u", chunk);
9299 return bfd_get_section_by_name (dynobj, got_name);
9300}
9301
9302
9303/* Get the input section for a given symbol index.
9304 If the symbol is:
9305 . a section symbol, return the section;
9306 . a common symbol, return the common section;
9307 . an undefined symbol, return the undefined section;
9308 . an indirect symbol, follow the links;
9309 . an absolute value, return the absolute section. */
9310
9311static asection *
7fa3d080 9312get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9313{
9314 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9315 asection *target_sec = NULL;
43cd72b9 9316 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9317 {
9318 Elf_Internal_Sym *isymbuf;
9319 unsigned int section_index;
9320
9321 isymbuf = retrieve_local_syms (abfd);
9322 section_index = isymbuf[r_symndx].st_shndx;
9323
9324 if (section_index == SHN_UNDEF)
9325 target_sec = bfd_und_section_ptr;
9326 else if (section_index > 0 && section_index < SHN_LORESERVE)
9327 target_sec = bfd_section_from_elf_index (abfd, section_index);
9328 else if (section_index == SHN_ABS)
9329 target_sec = bfd_abs_section_ptr;
9330 else if (section_index == SHN_COMMON)
9331 target_sec = bfd_com_section_ptr;
43cd72b9 9332 else
e0001a05
NC
9333 /* Who knows? */
9334 target_sec = NULL;
9335 }
9336 else
9337 {
9338 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9339 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9340
9341 while (h->root.type == bfd_link_hash_indirect
9342 || h->root.type == bfd_link_hash_warning)
9343 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9344
9345 switch (h->root.type)
9346 {
9347 case bfd_link_hash_defined:
9348 case bfd_link_hash_defweak:
9349 target_sec = h->root.u.def.section;
9350 break;
9351 case bfd_link_hash_common:
9352 target_sec = bfd_com_section_ptr;
9353 break;
9354 case bfd_link_hash_undefined:
9355 case bfd_link_hash_undefweak:
9356 target_sec = bfd_und_section_ptr;
9357 break;
9358 default: /* New indirect warning. */
9359 target_sec = bfd_und_section_ptr;
9360 break;
9361 }
9362 }
9363 return target_sec;
9364}
9365
9366
9367static struct elf_link_hash_entry *
7fa3d080 9368get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9369{
9370 unsigned long indx;
9371 struct elf_link_hash_entry *h;
9372 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9373
9374 if (r_symndx < symtab_hdr->sh_info)
9375 return NULL;
43cd72b9 9376
e0001a05
NC
9377 indx = r_symndx - symtab_hdr->sh_info;
9378 h = elf_sym_hashes (abfd)[indx];
9379 while (h->root.type == bfd_link_hash_indirect
9380 || h->root.type == bfd_link_hash_warning)
9381 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9382 return h;
9383}
9384
9385
9386/* Get the section-relative offset for a symbol number. */
9387
9388static bfd_vma
7fa3d080 9389get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9390{
9391 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9392 bfd_vma offset = 0;
9393
43cd72b9 9394 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9395 {
9396 Elf_Internal_Sym *isymbuf;
9397 isymbuf = retrieve_local_syms (abfd);
9398 offset = isymbuf[r_symndx].st_value;
9399 }
9400 else
9401 {
9402 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9403 struct elf_link_hash_entry *h =
9404 elf_sym_hashes (abfd)[indx];
9405
9406 while (h->root.type == bfd_link_hash_indirect
9407 || h->root.type == bfd_link_hash_warning)
9408 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9409 if (h->root.type == bfd_link_hash_defined
9410 || h->root.type == bfd_link_hash_defweak)
9411 offset = h->root.u.def.value;
9412 }
9413 return offset;
9414}
9415
9416
9417static bfd_boolean
7fa3d080 9418is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9419{
9420 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9421 struct elf_link_hash_entry *h;
9422
9423 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9424 if (h && h->root.type == bfd_link_hash_defweak)
9425 return TRUE;
9426 return FALSE;
9427}
9428
9429
9430static bfd_boolean
7fa3d080
BW
9431pcrel_reloc_fits (xtensa_opcode opc,
9432 int opnd,
9433 bfd_vma self_address,
9434 bfd_vma dest_address)
e0001a05 9435{
43cd72b9
BW
9436 xtensa_isa isa = xtensa_default_isa;
9437 uint32 valp = dest_address;
9438 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9439 || xtensa_operand_encode (isa, opc, opnd, &valp))
9440 return FALSE;
9441 return TRUE;
e0001a05
NC
9442}
9443
9444
b614a702
BW
9445static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9446static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1;
9447static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1;
43cd72b9 9448static int prop_sec_len = sizeof (XTENSA_PROP_SEC_NAME) - 1;
b614a702
BW
9449
9450
e0001a05 9451static bfd_boolean
7fa3d080 9452xtensa_is_property_section (asection *sec)
e0001a05 9453{
b614a702 9454 if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0
43cd72b9
BW
9455 || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0
9456 || strncmp (XTENSA_PROP_SEC_NAME, sec->name, prop_sec_len) == 0)
b614a702 9457 return TRUE;
e901de89 9458
b614a702 9459 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
43cd72b9
BW
9460 && (strncmp (&sec->name[linkonce_len], "x.", 2) == 0
9461 || strncmp (&sec->name[linkonce_len], "p.", 2) == 0
9462 || strncmp (&sec->name[linkonce_len], "prop.", 5) == 0))
e901de89
BW
9463 return TRUE;
9464
e901de89
BW
9465 return FALSE;
9466}
9467
9468
9469static bfd_boolean
7fa3d080 9470xtensa_is_littable_section (asection *sec)
e901de89 9471{
b614a702
BW
9472 if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
9473 return TRUE;
e901de89 9474
b614a702
BW
9475 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9476 && sec->name[linkonce_len] == 'p'
9477 && sec->name[linkonce_len + 1] == '.')
e901de89 9478 return TRUE;
e0001a05 9479
e901de89 9480 return FALSE;
e0001a05
NC
9481}
9482
9483
43cd72b9 9484static int
7fa3d080 9485internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9486{
43cd72b9
BW
9487 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9488 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9489
9490 if (a->r_offset != b->r_offset)
9491 return (a->r_offset - b->r_offset);
9492
9493 /* We don't need to sort on these criteria for correctness,
9494 but enforcing a more strict ordering prevents unstable qsort
9495 from behaving differently with different implementations.
9496 Without the code below we get correct but different results
9497 on Solaris 2.7 and 2.8. We would like to always produce the
9498 same results no matter the host. */
9499
9500 if (a->r_info != b->r_info)
9501 return (a->r_info - b->r_info);
9502
9503 return (a->r_addend - b->r_addend);
e0001a05
NC
9504}
9505
9506
9507static int
7fa3d080 9508internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9509{
9510 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9511 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9512
43cd72b9
BW
9513 /* Check if one entry overlaps with the other; this shouldn't happen
9514 except when searching for a match. */
e0001a05
NC
9515 return (a->r_offset - b->r_offset);
9516}
9517
9518
e0001a05 9519char *
7fa3d080 9520xtensa_get_property_section_name (asection *sec, const char *base_name)
e0001a05 9521{
b614a702 9522 if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9523 {
b614a702
BW
9524 char *prop_sec_name;
9525 const char *suffix;
43cd72b9 9526 char *linkonce_kind = 0;
b614a702
BW
9527
9528 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9529 linkonce_kind = "x.";
b614a702 9530 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9531 linkonce_kind = "p.";
43cd72b9
BW
9532 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9533 linkonce_kind = "prop.";
e0001a05 9534 else
b614a702
BW
9535 abort ();
9536
43cd72b9
BW
9537 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9538 + strlen (linkonce_kind) + 1);
b614a702 9539 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9540 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9541
9542 suffix = sec->name + linkonce_len;
096c35a7 9543 /* For backward compatibility, replace "t." instead of inserting
43cd72b9
BW
9544 the new linkonce_kind (but not for "prop" sections). */
9545 if (strncmp (suffix, "t.", 2) == 0 && linkonce_kind[1] == '.')
9546 suffix += 2;
9547 strcat (prop_sec_name + linkonce_len, suffix);
b614a702
BW
9548
9549 return prop_sec_name;
e0001a05
NC
9550 }
9551
b614a702 9552 return strdup (base_name);
e0001a05
NC
9553}
9554
43cd72b9
BW
9555
9556flagword
7fa3d080 9557xtensa_get_property_predef_flags (asection *sec)
43cd72b9
BW
9558{
9559 if (strcmp (sec->name, XTENSA_INSN_SEC_NAME) == 0
9560 || strncmp (sec->name, ".gnu.linkonce.x.",
9561 sizeof ".gnu.linkonce.x." - 1) == 0)
9562 return (XTENSA_PROP_INSN
9563 | XTENSA_PROP_INSN_NO_TRANSFORM
9564 | XTENSA_PROP_INSN_NO_REORDER);
9565
9566 if (xtensa_is_littable_section (sec))
9567 return (XTENSA_PROP_LITERAL
9568 | XTENSA_PROP_INSN_NO_TRANSFORM
9569 | XTENSA_PROP_INSN_NO_REORDER);
9570
9571 return 0;
9572}
9573
e0001a05
NC
9574\f
9575/* Other functions called directly by the linker. */
9576
9577bfd_boolean
7fa3d080
BW
9578xtensa_callback_required_dependence (bfd *abfd,
9579 asection *sec,
9580 struct bfd_link_info *link_info,
9581 deps_callback_t callback,
9582 void *closure)
e0001a05
NC
9583{
9584 Elf_Internal_Rela *internal_relocs;
9585 bfd_byte *contents;
9586 unsigned i;
9587 bfd_boolean ok = TRUE;
43cd72b9
BW
9588 bfd_size_type sec_size;
9589
9590 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9591
9592 /* ".plt*" sections have no explicit relocations but they contain L32R
9593 instructions that reference the corresponding ".got.plt*" sections. */
9594 if ((sec->flags & SEC_LINKER_CREATED) != 0
9595 && strncmp (sec->name, ".plt", 4) == 0)
9596 {
9597 asection *sgotplt;
9598
9599 /* Find the corresponding ".got.plt*" section. */
9600 if (sec->name[4] == '\0')
9601 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9602 else
9603 {
9604 char got_name[14];
9605 int chunk = 0;
9606
9607 BFD_ASSERT (sec->name[4] == '.');
9608 chunk = strtol (&sec->name[5], NULL, 10);
9609
9610 sprintf (got_name, ".got.plt.%u", chunk);
9611 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9612 }
9613 BFD_ASSERT (sgotplt);
9614
9615 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9616 section referencing a literal at the very beginning of
9617 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9618 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9619 }
9620
9621 internal_relocs = retrieve_internal_relocs (abfd, sec,
9622 link_info->keep_memory);
9623 if (internal_relocs == NULL
43cd72b9 9624 || sec->reloc_count == 0)
e0001a05
NC
9625 return ok;
9626
9627 /* Cache the contents for the duration of this scan. */
9628 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9629 if (contents == NULL && sec_size != 0)
e0001a05
NC
9630 {
9631 ok = FALSE;
9632 goto error_return;
9633 }
9634
43cd72b9
BW
9635 if (!xtensa_default_isa)
9636 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9637
43cd72b9 9638 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9639 {
9640 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9641 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9642 {
9643 r_reloc l32r_rel;
9644 asection *target_sec;
9645 bfd_vma target_offset;
43cd72b9
BW
9646
9647 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9648 target_sec = NULL;
9649 target_offset = 0;
9650 /* L32Rs must be local to the input file. */
9651 if (r_reloc_is_defined (&l32r_rel))
9652 {
9653 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9654 target_offset = l32r_rel.target_offset;
e0001a05
NC
9655 }
9656 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9657 closure);
9658 }
9659 }
9660
9661 error_return:
9662 release_internal_relocs (sec, internal_relocs);
9663 release_contents (sec, contents);
9664 return ok;
9665}
9666
2f89ff8d
L
9667/* The default literal sections should always be marked as "code" (i.e.,
9668 SHF_EXECINSTR). This is particularly important for the Linux kernel
9669 module loader so that the literals are not placed after the text. */
b35d266b 9670static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9671{
7dcb9820 9672 { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958 9673 { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958
L
9674 { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9675 { NULL, 0, 0, 0, 0 }
9676};
e0001a05
NC
9677\f
9678#ifndef ELF_ARCH
9679#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9680#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9681#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9682#define TARGET_BIG_NAME "elf32-xtensa-be"
9683#define ELF_ARCH bfd_arch_xtensa
9684
4af0a1d8
BW
9685#define ELF_MACHINE_CODE EM_XTENSA
9686#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9687
9688#if XCHAL_HAVE_MMU
9689#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9690#else /* !XCHAL_HAVE_MMU */
9691#define ELF_MAXPAGESIZE 1
9692#endif /* !XCHAL_HAVE_MMU */
9693#endif /* ELF_ARCH */
9694
9695#define elf_backend_can_gc_sections 1
9696#define elf_backend_can_refcount 1
9697#define elf_backend_plt_readonly 1
9698#define elf_backend_got_header_size 4
9699#define elf_backend_want_dynbss 0
9700#define elf_backend_want_got_plt 1
9701
9702#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9703
e0001a05
NC
9704#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9705#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9706#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9707#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9708#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9709#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9710
9711#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9712#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9713#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9714#define elf_backend_discard_info elf_xtensa_discard_info
9715#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9716#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9717#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9718#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9719#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9720#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9721#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9722#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9723#define elf_backend_hide_symbol elf_xtensa_hide_symbol
9724#define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9725#define elf_backend_object_p elf_xtensa_object_p
9726#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9727#define elf_backend_relocate_section elf_xtensa_relocate_section
9728#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
29ef7005 9729#define elf_backend_special_sections elf_xtensa_special_sections
e0001a05
NC
9730
9731#include "elf32-target.h"