]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf64-hppa.c
Fix a null-pointer dereference and some range checks.
[thirdparty/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf
AM
1/* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
15bda425
JL
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
3ef20aaa 20#include "alloca-conf.h"
15bda425
JL
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
fe8bc63d 33
15bda425
JL
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
edd21aca 59 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 unsigned long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
fe8bc63d 172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
173 PTR info));
174
175static const char *get_dyn_name
0ba2a60e
AM
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
15bda425 178
15bda425
JL
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
15bda425
JL
183static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
188
189static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd *, struct bfd_link_info *));
200
201static boolean elf64_hppa_finish_dynamic_symbol
202 PARAMS ((bfd *, struct bfd_link_info *,
203 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 204
15bda425
JL
205static boolean elf64_hppa_finish_dynamic_sections
206 PARAMS ((bfd *, struct bfd_link_info *));
207
208static boolean elf64_hppa_check_relocs
209 PARAMS ((bfd *, struct bfd_link_info *,
210 asection *, const Elf_Internal_Rela *));
211
212static boolean elf64_hppa_dynamic_symbol_p
213 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
214
215static boolean elf64_hppa_mark_exported_functions
216 PARAMS ((struct elf_link_hash_entry *, PTR));
217
218static boolean elf64_hppa_finalize_opd
219 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
220
221static boolean elf64_hppa_finalize_dlt
222 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
223
224static boolean allocate_global_data_dlt
225 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
226
227static boolean allocate_global_data_plt
228 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
229
230static boolean allocate_global_data_stub
231 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
232
233static boolean allocate_global_data_opd
234 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
235
236static boolean get_reloc_section
237 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
238
239static boolean count_dyn_reloc
240 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
241 int, asection *, int, bfd_vma, bfd_vma));
242
243static boolean allocate_dynrel_entries
244 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
245
246static boolean elf64_hppa_finalize_dynreloc
247 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
248
249static boolean get_opd
250 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
251
252static boolean get_plt
253 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
254
255static boolean get_dlt
256 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
257
258static boolean get_stub
259 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
260
261static boolean
262elf64_hppa_dyn_hash_table_init (ht, abfd, new)
263 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 264 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
265 new_hash_entry_func new;
266{
fe8bc63d 267 memset (ht, 0, sizeof (*ht));
15bda425
JL
268 return bfd_hash_table_init (&ht->root, new);
269}
270
271static struct bfd_hash_entry*
272elf64_hppa_new_dyn_hash_entry (entry, table, string)
273 struct bfd_hash_entry *entry;
274 struct bfd_hash_table *table;
275 const char *string;
276{
277 struct elf64_hppa_dyn_hash_entry *ret;
278 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
279
280 /* Allocate the structure if it has not already been allocated by a
281 subclass. */
282 if (!ret)
283 ret = bfd_hash_allocate (table, sizeof (*ret));
284
285 if (!ret)
286 return 0;
287
288 /* Initialize our local data. All zeros, and definitely easier
289 than setting 8 bit fields. */
fe8bc63d 290 memset (ret, 0, sizeof (*ret));
15bda425
JL
291
292 /* Call the allocation method of the superclass. */
293 ret = ((struct elf64_hppa_dyn_hash_entry *)
294 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
295
296 return &ret->root;
297}
298
299/* Create the derived linker hash table. The PA64 ELF port uses this
300 derived hash table to keep information specific to the PA ElF
301 linker (without using static variables). */
302
303static struct bfd_link_hash_table*
304elf64_hppa_hash_table_create (abfd)
305 bfd *abfd;
306{
307 struct elf64_hppa_link_hash_table *ret;
308
309 ret = bfd_zalloc (abfd, sizeof (*ret));
310 if (!ret)
311 return 0;
312 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
313 _bfd_elf_link_hash_newfunc))
314 {
315 bfd_release (abfd, ret);
316 return 0;
317 }
318
319 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
320 elf64_hppa_new_dyn_hash_entry))
321 return 0;
322 return &ret->root.root;
323}
324
325/* Look up an entry in a PA64 ELF linker hash table. */
326
327static struct elf64_hppa_dyn_hash_entry *
328elf64_hppa_dyn_hash_lookup(table, string, create, copy)
329 struct elf64_hppa_dyn_hash_table *table;
330 const char *string;
331 boolean create, copy;
332{
333 return ((struct elf64_hppa_dyn_hash_entry *)
334 bfd_hash_lookup (&table->root, string, create, copy));
335}
336
337/* Traverse a PA64 ELF linker hash table. */
338
339static void
340elf64_hppa_dyn_hash_traverse (table, func, info)
341 struct elf64_hppa_dyn_hash_table *table;
342 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
343 PTR info;
344{
345 (bfd_hash_traverse
346 (&table->root,
347 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
348 info));
349}
350\f
351/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
352
353 Additionally we set the default architecture and machine. */
354static boolean
355elf64_hppa_object_p (abfd)
356 bfd *abfd;
357{
358 /* Set the right machine number for an HPPA ELF file. */
359 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
360}
361
362/* Given section type (hdr->sh_type), return a boolean indicating
363 whether or not the section is an elf64-hppa specific section. */
364static boolean
365elf64_hppa_section_from_shdr (abfd, hdr, name)
366 bfd *abfd;
367 Elf64_Internal_Shdr *hdr;
368 char *name;
369{
370 asection *newsect;
371
372 switch (hdr->sh_type)
373 {
374 case SHT_PARISC_EXT:
375 if (strcmp (name, ".PARISC.archext") != 0)
376 return false;
377 break;
378 case SHT_PARISC_UNWIND:
379 if (strcmp (name, ".PARISC.unwind") != 0)
380 return false;
381 break;
382 case SHT_PARISC_DOC:
383 case SHT_PARISC_ANNOT:
384 default:
385 return false;
386 }
387
388 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
389 return false;
390 newsect = hdr->bfd_section;
391
392 return true;
393}
394
15bda425 395/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 396 name describes what was once potentially anonymous memory. We
15bda425
JL
397 allocate memory as necessary, possibly reusing PBUF/PLEN. */
398
399static const char *
0ba2a60e
AM
400get_dyn_name (sec, h, rel, pbuf, plen)
401 asection *sec;
15bda425
JL
402 struct elf_link_hash_entry *h;
403 const Elf_Internal_Rela *rel;
404 char **pbuf;
405 size_t *plen;
406{
407 size_t nlen, tlen;
408 char *buf;
409 size_t len;
410
411 if (h && rel->r_addend == 0)
412 return h->root.root.string;
413
414 if (h)
415 nlen = strlen (h->root.root.string);
416 else
0ba2a60e
AM
417 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
418 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
419
420 len = *plen;
421 buf = *pbuf;
422 if (len < tlen)
423 {
424 if (buf)
425 free (buf);
426 *pbuf = buf = malloc (tlen);
427 *plen = len = tlen;
428 if (!buf)
429 return NULL;
430 }
431
432 if (h)
433 {
434 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 435 buf[nlen++] = '+';
15bda425
JL
436 sprintf_vma (buf + nlen, rel->r_addend);
437 }
438 else
439 {
0ba2a60e
AM
440 nlen = sprintf (buf, "%x:%lx",
441 sec->id & 0xffffffff,
442 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
443 if (rel->r_addend)
444 {
445 buf[nlen++] = '+';
446 sprintf_vma (buf + nlen, rel->r_addend);
447 }
448 }
449
450 return buf;
451}
452
453/* SEC is a section containing relocs for an input BFD when linking; return
454 a suitable section for holding relocs in the output BFD for a link. */
455
456static boolean
457get_reloc_section (abfd, hppa_info, sec)
458 bfd *abfd;
459 struct elf64_hppa_link_hash_table *hppa_info;
460 asection *sec;
461{
462 const char *srel_name;
463 asection *srel;
464 bfd *dynobj;
465
466 srel_name = (bfd_elf_string_from_elf_section
467 (abfd, elf_elfheader(abfd)->e_shstrndx,
468 elf_section_data(sec)->rel_hdr.sh_name));
469 if (srel_name == NULL)
470 return false;
471
472 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
473 && strcmp (bfd_get_section_name (abfd, sec),
474 srel_name+5) == 0)
475 || (strncmp (srel_name, ".rel", 4) == 0
476 && strcmp (bfd_get_section_name (abfd, sec),
477 srel_name+4) == 0));
478
479 dynobj = hppa_info->root.dynobj;
480 if (!dynobj)
481 hppa_info->root.dynobj = dynobj = abfd;
482
483 srel = bfd_get_section_by_name (dynobj, srel_name);
484 if (srel == NULL)
485 {
486 srel = bfd_make_section (dynobj, srel_name);
487 if (srel == NULL
488 || !bfd_set_section_flags (dynobj, srel,
489 (SEC_ALLOC
490 | SEC_LOAD
491 | SEC_HAS_CONTENTS
492 | SEC_IN_MEMORY
493 | SEC_LINKER_CREATED
494 | SEC_READONLY))
495 || !bfd_set_section_alignment (dynobj, srel, 3))
496 return false;
497 }
498
499 hppa_info->other_rel_sec = srel;
500 return true;
501}
502
fe8bc63d 503/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
504
505 We use this to keep a record of all the FPTR relocations against a
506 particular symbol so that we can create FPTR relocations in the
507 output file. */
508
509static boolean
510count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
511 bfd *abfd;
512 struct elf64_hppa_dyn_hash_entry *dyn_h;
513 int type;
514 asection *sec;
515 int sec_symndx;
516 bfd_vma offset;
517 bfd_vma addend;
518{
519 struct elf64_hppa_dyn_reloc_entry *rent;
520
521 rent = (struct elf64_hppa_dyn_reloc_entry *)
522 bfd_alloc (abfd, sizeof (*rent));
523 if (!rent)
524 return false;
525
526 rent->next = dyn_h->reloc_entries;
527 rent->type = type;
528 rent->sec = sec;
529 rent->sec_symndx = sec_symndx;
530 rent->offset = offset;
531 rent->addend = addend;
532 dyn_h->reloc_entries = rent;
533
534 return true;
535}
536
537/* Scan the RELOCS and record the type of dynamic entries that each
538 referenced symbol needs. */
539
540static boolean
541elf64_hppa_check_relocs (abfd, info, sec, relocs)
542 bfd *abfd;
543 struct bfd_link_info *info;
544 asection *sec;
545 const Elf_Internal_Rela *relocs;
546{
547 struct elf64_hppa_link_hash_table *hppa_info;
548 const Elf_Internal_Rela *relend;
549 Elf_Internal_Shdr *symtab_hdr;
550 const Elf_Internal_Rela *rel;
551 asection *dlt, *plt, *stubs;
552 char *buf;
553 size_t buf_len;
554 int sec_symndx;
555
556 if (info->relocateable)
557 return true;
558
559 /* If this is the first dynamic object found in the link, create
560 the special sections required for dynamic linking. */
561 if (! elf_hash_table (info)->dynamic_sections_created)
562 {
563 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
564 return false;
565 }
566
567 hppa_info = elf64_hppa_hash_table (info);
568 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
569
570 /* If necessary, build a new table holding section symbols indices
571 for this BFD. This is disgusting. */
fe8bc63d 572
15bda425
JL
573 if (info->shared && hppa_info->section_syms_bfd != abfd)
574 {
832d951b 575 unsigned long i;
0ba2a60e 576 int highest_shndx;
15bda425
JL
577 Elf_Internal_Sym *local_syms, *isym;
578 Elf64_External_Sym *ext_syms, *esym;
579
580 /* We're done with the old cache of section index to section symbol
581 index information. Free it.
582
583 ?!? Note we leak the last section_syms array. Presumably we
584 could free it in one of the later routines in this file. */
585 if (hppa_info->section_syms)
586 free (hppa_info->section_syms);
587
588 /* Allocate memory for the internal and external symbols. */
589 local_syms
590 = (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info
591 * sizeof (Elf_Internal_Sym));
592 if (local_syms == NULL)
593 return false;
594
595 ext_syms
596 = (Elf64_External_Sym *) bfd_malloc (symtab_hdr->sh_info
597 * sizeof (Elf64_External_Sym));
598 if (ext_syms == NULL)
599 {
600 free (local_syms);
601 return false;
602 }
603
604 /* Read in the local symbols. */
605 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
606 || bfd_read (ext_syms, 1,
607 (symtab_hdr->sh_info
608 * sizeof (Elf64_External_Sym)), abfd)
609 != (symtab_hdr->sh_info * sizeof (Elf64_External_Sym)))
610 {
611 free (local_syms);
612 free (ext_syms);
613 return false;
614 }
615
616 /* Swap in the local symbols, also record the highest section index
617 referenced by the local symbols. */
618 isym = local_syms;
619 esym = ext_syms;
620 highest_shndx = 0;
621 for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
622 {
623 bfd_elf64_swap_symbol_in (abfd, esym, isym);
624 if (isym->st_shndx > highest_shndx)
625 highest_shndx = isym->st_shndx;
626 }
627
628 /* Now we can free the external symbols. */
629 free (ext_syms);
630
631 /* Allocate an array to hold the section index to section symbol index
632 mapping. Bump by one since we start counting at zero. */
633 highest_shndx++;
634 hppa_info->section_syms = (int *) bfd_malloc (highest_shndx
635 * sizeof (int));
636
637 /* Now walk the local symbols again. If we find a section symbol,
638 record the index of the symbol into the section_syms array. */
639 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
640 {
641 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
642 hppa_info->section_syms[isym->st_shndx] = i;
643 }
644
645 /* We are finished with the local symbols. Get rid of them. */
646 free (local_syms);
647
648 /* Record which BFD we built the section_syms mapping for. */
649 hppa_info->section_syms_bfd = abfd;
650 }
651
652 /* Record the symbol index for this input section. We may need it for
653 relocations when building shared libraries. When not building shared
654 libraries this value is never really used, but assign it to zero to
655 prevent out of bounds memory accesses in other routines. */
656 if (info->shared)
657 {
658 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
659
660 /* If we did not find a section symbol for this section, then
661 something went terribly wrong above. */
662 if (sec_symndx == -1)
663 return false;
664
665 sec_symndx = hppa_info->section_syms[sec_symndx];
666 }
667 else
668 sec_symndx = 0;
fe8bc63d 669
15bda425
JL
670 dlt = plt = stubs = NULL;
671 buf = NULL;
672 buf_len = 0;
673
674 relend = relocs + sec->reloc_count;
675 for (rel = relocs; rel < relend; ++rel)
676 {
677 enum {
678 NEED_DLT = 1,
679 NEED_PLT = 2,
680 NEED_STUB = 4,
681 NEED_OPD = 8,
682 NEED_DYNREL = 16,
683 };
684
685 struct elf_link_hash_entry *h = NULL;
686 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
687 struct elf64_hppa_dyn_hash_entry *dyn_h;
688 int need_entry;
689 const char *addr_name;
690 boolean maybe_dynamic;
691 int dynrel_type = R_PARISC_NONE;
692 static reloc_howto_type *howto;
693
694 if (r_symndx >= symtab_hdr->sh_info)
695 {
696 /* We're dealing with a global symbol -- find its hash entry
697 and mark it as being referenced. */
698 long indx = r_symndx - symtab_hdr->sh_info;
699 h = elf_sym_hashes (abfd)[indx];
700 while (h->root.type == bfd_link_hash_indirect
701 || h->root.type == bfd_link_hash_warning)
702 h = (struct elf_link_hash_entry *) h->root.u.i.link;
703
704 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
705 }
706
707 /* We can only get preliminary data on whether a symbol is
708 locally or externally defined, as not all of the input files
709 have yet been processed. Do something with what we know, as
710 this may help reduce memory usage and processing time later. */
711 maybe_dynamic = false;
712 if (h && ((info->shared && ! info->symbolic)
713 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
714 || h->root.type == bfd_link_hash_defweak))
715 maybe_dynamic = true;
716
717 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
718 need_entry = 0;
719 switch (howto->type)
720 {
721 /* These are simple indirect references to symbols through the
722 DLT. We need to create a DLT entry for any symbols which
723 appears in a DLTIND relocation. */
724 case R_PARISC_DLTIND21L:
725 case R_PARISC_DLTIND14R:
726 case R_PARISC_DLTIND14F:
727 case R_PARISC_DLTIND14WR:
728 case R_PARISC_DLTIND14DR:
729 need_entry = NEED_DLT;
730 break;
731
732 /* ?!? These need a DLT entry. But I have no idea what to do with
733 the "link time TP value. */
734 case R_PARISC_LTOFF_TP21L:
735 case R_PARISC_LTOFF_TP14R:
736 case R_PARISC_LTOFF_TP14F:
737 case R_PARISC_LTOFF_TP64:
738 case R_PARISC_LTOFF_TP14WR:
739 case R_PARISC_LTOFF_TP14DR:
740 case R_PARISC_LTOFF_TP16F:
741 case R_PARISC_LTOFF_TP16WF:
742 case R_PARISC_LTOFF_TP16DF:
743 need_entry = NEED_DLT;
744 break;
745
746 /* These are function calls. Depending on their precise target we
747 may need to make a stub for them. The stub uses the PLT, so we
748 need to create PLT entries for these symbols too. */
832d951b 749 case R_PARISC_PCREL12F:
15bda425
JL
750 case R_PARISC_PCREL17F:
751 case R_PARISC_PCREL22F:
752 case R_PARISC_PCREL32:
753 case R_PARISC_PCREL64:
754 case R_PARISC_PCREL21L:
755 case R_PARISC_PCREL17R:
756 case R_PARISC_PCREL17C:
757 case R_PARISC_PCREL14R:
758 case R_PARISC_PCREL14F:
759 case R_PARISC_PCREL22C:
760 case R_PARISC_PCREL14WR:
761 case R_PARISC_PCREL14DR:
762 case R_PARISC_PCREL16F:
763 case R_PARISC_PCREL16WF:
764 case R_PARISC_PCREL16DF:
765 need_entry = (NEED_PLT | NEED_STUB);
766 break;
767
768 case R_PARISC_PLTOFF21L:
769 case R_PARISC_PLTOFF14R:
770 case R_PARISC_PLTOFF14F:
771 case R_PARISC_PLTOFF14WR:
772 case R_PARISC_PLTOFF14DR:
773 case R_PARISC_PLTOFF16F:
774 case R_PARISC_PLTOFF16WF:
775 case R_PARISC_PLTOFF16DF:
776 need_entry = (NEED_PLT);
777 break;
778
779 case R_PARISC_DIR64:
780 if (info->shared || maybe_dynamic)
781 need_entry = (NEED_DYNREL);
782 dynrel_type = R_PARISC_DIR64;
783 break;
784
785 /* This is an indirect reference through the DLT to get the address
786 of a OPD descriptor. Thus we need to make a DLT entry that points
787 to an OPD entry. */
788 case R_PARISC_LTOFF_FPTR21L:
789 case R_PARISC_LTOFF_FPTR14R:
790 case R_PARISC_LTOFF_FPTR14WR:
791 case R_PARISC_LTOFF_FPTR14DR:
792 case R_PARISC_LTOFF_FPTR32:
793 case R_PARISC_LTOFF_FPTR64:
794 case R_PARISC_LTOFF_FPTR16F:
795 case R_PARISC_LTOFF_FPTR16WF:
796 case R_PARISC_LTOFF_FPTR16DF:
797 if (info->shared || maybe_dynamic)
798 need_entry = (NEED_DLT | NEED_OPD);
799 else
800 need_entry = (NEED_DLT | NEED_OPD);
801 dynrel_type = R_PARISC_FPTR64;
802 break;
803
804 /* This is a simple OPD entry. */
805 case R_PARISC_FPTR64:
806 if (info->shared || maybe_dynamic)
807 need_entry = (NEED_OPD | NEED_DYNREL);
808 else
809 need_entry = (NEED_OPD);
810 dynrel_type = R_PARISC_FPTR64;
811 break;
812
813 /* Add more cases as needed. */
814 }
815
816 if (!need_entry)
817 continue;
818
819 /* Collect a canonical name for this address. */
0ba2a60e 820 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
821
822 /* Collect the canonical entry data for this address. */
823 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
824 addr_name, true, true);
825 BFD_ASSERT (dyn_h);
826
827 /* Stash away enough information to be able to find this symbol
828 regardless of whether or not it is local or global. */
829 dyn_h->h = h;
830 dyn_h->owner = abfd;
831 dyn_h->sym_indx = r_symndx;
832
833 /* ?!? We may need to do some error checking in here. */
834 /* Create what's needed. */
835 if (need_entry & NEED_DLT)
836 {
837 if (! hppa_info->dlt_sec
838 && ! get_dlt (abfd, info, hppa_info))
839 goto err_out;
840 dyn_h->want_dlt = 1;
841 }
842
843 if (need_entry & NEED_PLT)
844 {
845 if (! hppa_info->plt_sec
846 && ! get_plt (abfd, info, hppa_info))
847 goto err_out;
848 dyn_h->want_plt = 1;
849 }
850
851 if (need_entry & NEED_STUB)
852 {
853 if (! hppa_info->stub_sec
854 && ! get_stub (abfd, info, hppa_info))
855 goto err_out;
856 dyn_h->want_stub = 1;
857 }
858
859 if (need_entry & NEED_OPD)
860 {
861 if (! hppa_info->opd_sec
862 && ! get_opd (abfd, info, hppa_info))
863 goto err_out;
864
865 dyn_h->want_opd = 1;
866
867 /* FPTRs are not allocated by the dynamic linker for PA64, though
868 it is possible that will change in the future. */
fe8bc63d 869
15bda425
JL
870 /* This could be a local function that had its address taken, in
871 which case H will be NULL. */
872 if (h)
873 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
874 }
875
876 /* Add a new dynamic relocation to the chain of dynamic
877 relocations for this symbol. */
878 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
879 {
880 if (! hppa_info->other_rel_sec
881 && ! get_reloc_section (abfd, hppa_info, sec))
882 goto err_out;
883
884 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
885 sec_symndx, rel->r_offset, rel->r_addend))
886 goto err_out;
887
888 /* If we are building a shared library and we just recorded
889 a dynamic R_PARISC_FPTR64 relocation, then make sure the
890 section symbol for this section ends up in the dynamic
891 symbol table. */
892 if (info->shared && dynrel_type == R_PARISC_FPTR64
893 && ! (_bfd_elf64_link_record_local_dynamic_symbol
894 (info, abfd, sec_symndx)))
895 return false;
896 }
897 }
898
899 if (buf)
900 free (buf);
901 return true;
902
903 err_out:
904 if (buf)
905 free (buf);
906 return false;
907}
908
909struct elf64_hppa_allocate_data
910{
911 struct bfd_link_info *info;
912 bfd_size_type ofs;
913};
914
915/* Should we do dynamic things to this symbol? */
916
917static boolean
918elf64_hppa_dynamic_symbol_p (h, info)
919 struct elf_link_hash_entry *h;
920 struct bfd_link_info *info;
921{
922 if (h == NULL)
923 return false;
924
925 while (h->root.type == bfd_link_hash_indirect
926 || h->root.type == bfd_link_hash_warning)
927 h = (struct elf_link_hash_entry *) h->root.u.i.link;
928
929 if (h->dynindx == -1)
930 return false;
931
932 if (h->root.type == bfd_link_hash_undefweak
933 || h->root.type == bfd_link_hash_defweak)
934 return true;
935
936 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
937 return false;
938
939 if ((info->shared && !info->symbolic)
940 || ((h->elf_link_hash_flags
941 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
942 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
943 return true;
944
945 return false;
946}
947
948/* Mark all funtions exported by this file so that we can later allocate
949 entries in .opd for them. */
950
951static boolean
952elf64_hppa_mark_exported_functions (h, data)
953 struct elf_link_hash_entry *h;
954 PTR data;
955{
956 struct bfd_link_info *info = (struct bfd_link_info *)data;
957 struct elf64_hppa_link_hash_table *hppa_info;
958
959 hppa_info = elf64_hppa_hash_table (info);
960
961 if (h
962 && (h->root.type == bfd_link_hash_defined
963 || h->root.type == bfd_link_hash_defweak)
964 && h->root.u.def.section->output_section != NULL
965 && h->type == STT_FUNC)
966 {
967 struct elf64_hppa_dyn_hash_entry *dyn_h;
968
969 /* Add this symbol to the PA64 linker hash table. */
970 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
971 h->root.root.string, true, true);
972 BFD_ASSERT (dyn_h);
973 dyn_h->h = h;
974
975 if (! hppa_info->opd_sec
976 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
977 return false;
978
979 dyn_h->want_opd = 1;
832d951b
AM
980 /* Put a flag here for output_symbol_hook. */
981 dyn_h->st_shndx = -1;
15bda425
JL
982 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
983 }
984
985 return true;
986}
987
988/* Allocate space for a DLT entry. */
989
990static boolean
991allocate_global_data_dlt (dyn_h, data)
992 struct elf64_hppa_dyn_hash_entry *dyn_h;
993 PTR data;
994{
995 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
996
997 if (dyn_h->want_dlt)
998 {
999 struct elf_link_hash_entry *h = dyn_h->h;
1000
1001 if (x->info->shared)
1002 {
1003 /* Possibly add the symbol to the local dynamic symbol
1004 table since we might need to create a dynamic relocation
1005 against it. */
1006 if (! h
1007 || (h && h->dynindx == -1))
1008 {
1009 bfd *owner;
1010 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1011
1012 if (!_bfd_elf64_link_record_local_dynamic_symbol
1013 (x->info, owner, dyn_h->sym_indx))
1014 return false;
1015 }
1016 }
1017
1018 dyn_h->dlt_offset = x->ofs;
1019 x->ofs += DLT_ENTRY_SIZE;
1020 }
1021 return true;
1022}
1023
1024/* Allocate space for a DLT.PLT entry. */
1025
1026static boolean
1027allocate_global_data_plt (dyn_h, data)
1028 struct elf64_hppa_dyn_hash_entry *dyn_h;
1029 PTR data;
1030{
1031 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1032
1033 if (dyn_h->want_plt
1034 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1035 && !((dyn_h->h->root.type == bfd_link_hash_defined
1036 || dyn_h->h->root.type == bfd_link_hash_defweak)
1037 && dyn_h->h->root.u.def.section->output_section != NULL))
1038 {
1039 dyn_h->plt_offset = x->ofs;
1040 x->ofs += PLT_ENTRY_SIZE;
1041 if (dyn_h->plt_offset < 0x2000)
1042 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1043 }
1044 else
1045 dyn_h->want_plt = 0;
1046
1047 return true;
1048}
1049
1050/* Allocate space for a STUB entry. */
1051
1052static boolean
1053allocate_global_data_stub (dyn_h, data)
1054 struct elf64_hppa_dyn_hash_entry *dyn_h;
1055 PTR data;
1056{
1057 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1058
1059 if (dyn_h->want_stub
1060 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1061 && !((dyn_h->h->root.type == bfd_link_hash_defined
1062 || dyn_h->h->root.type == bfd_link_hash_defweak)
1063 && dyn_h->h->root.u.def.section->output_section != NULL))
1064 {
1065 dyn_h->stub_offset = x->ofs;
1066 x->ofs += sizeof (plt_stub);
1067 }
1068 else
1069 dyn_h->want_stub = 0;
1070 return true;
1071}
1072
1073/* Allocate space for a FPTR entry. */
1074
1075static boolean
1076allocate_global_data_opd (dyn_h, data)
1077 struct elf64_hppa_dyn_hash_entry *dyn_h;
1078 PTR data;
1079{
1080 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1081
1082 if (dyn_h->want_opd)
1083 {
1084 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1085
15bda425
JL
1086 if (h)
1087 while (h->root.type == bfd_link_hash_indirect
1088 || h->root.type == bfd_link_hash_warning)
1089 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1090
1091 /* We never need an opd entry for a symbol which is not
1092 defined by this output file. */
1093 if (h && h->root.type == bfd_link_hash_undefined)
1094 dyn_h->want_opd = 0;
1095
1096 /* If we are creating a shared library, took the address of a local
1097 function or might export this function from this object file, then
1098 we have to create an opd descriptor. */
1099 else if (x->info->shared
1100 || h == NULL
1101 || h->dynindx == -1
1102 || ((h->root.type == bfd_link_hash_defined
1103 || h->root.type == bfd_link_hash_defweak)
1104 && h->root.u.def.section->output_section != NULL))
1105 {
1106 /* If we are creating a shared library, then we will have to
1107 create a runtime relocation for the symbol to properly
1108 initialize the .opd entry. Make sure the symbol gets
1109 added to the dynamic symbol table. */
1110 if (x->info->shared
1111 && (h == NULL || (h->dynindx == -1)))
1112 {
1113 bfd *owner;
1114 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1115
1116 if (!_bfd_elf64_link_record_local_dynamic_symbol
1117 (x->info, owner, dyn_h->sym_indx))
1118 return false;
1119 }
1120
1121 /* This may not be necessary or desirable anymore now that
1122 we have some support for dealing with section symbols
1123 in dynamic relocs. But name munging does make the result
1124 much easier to debug. ie, the EPLT reloc will reference
1125 a symbol like .foobar, instead of .text + offset. */
1126 if (x->info->shared && h)
1127 {
1128 char *new_name;
1129 struct elf_link_hash_entry *nh;
1130
1131 new_name = alloca (strlen (h->root.root.string) + 2);
1132 new_name[0] = '.';
1133 strcpy (new_name + 1, h->root.root.string);
1134
1135 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1136 new_name, true, true, true);
1137
1138 nh->root.type = h->root.type;
1139 nh->root.u.def.value = h->root.u.def.value;
1140 nh->root.u.def.section = h->root.u.def.section;
1141
1142 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1143 return false;
1144
1145 }
1146 dyn_h->opd_offset = x->ofs;
1147 x->ofs += OPD_ENTRY_SIZE;
1148 }
1149
1150 /* Otherwise we do not need an opd entry. */
1151 else
1152 dyn_h->want_opd = 0;
1153 }
1154 return true;
1155}
1156
1157/* HP requires the EI_OSABI field to be filled in. The assignment to
1158 EI_ABIVERSION may not be strictly necessary. */
1159
1160static void
1161elf64_hppa_post_process_headers (abfd, link_info)
1162 bfd * abfd;
1163 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1164{
1165 Elf_Internal_Ehdr * i_ehdrp;
1166
1167 i_ehdrp = elf_elfheader (abfd);
1168
d952f17a
AM
1169 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1170 {
1171 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1172 }
1173 else
1174 {
1175 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1176 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1177 }
15bda425
JL
1178}
1179
1180/* Create function descriptor section (.opd). This section is called .opd
1181 because it contains "official prodecure descriptors". The "official"
1182 refers to the fact that these descriptors are used when taking the address
1183 of a procedure, thus ensuring a unique address for each procedure. */
1184
1185static boolean
1186get_opd (abfd, info, hppa_info)
1187 bfd *abfd;
edd21aca 1188 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1189 struct elf64_hppa_link_hash_table *hppa_info;
1190{
1191 asection *opd;
1192 bfd *dynobj;
1193
1194 opd = hppa_info->opd_sec;
1195 if (!opd)
1196 {
1197 dynobj = hppa_info->root.dynobj;
1198 if (!dynobj)
1199 hppa_info->root.dynobj = dynobj = abfd;
1200
1201 opd = bfd_make_section (dynobj, ".opd");
1202 if (!opd
1203 || !bfd_set_section_flags (dynobj, opd,
1204 (SEC_ALLOC
1205 | SEC_LOAD
1206 | SEC_HAS_CONTENTS
1207 | SEC_IN_MEMORY
1208 | SEC_LINKER_CREATED))
1209 || !bfd_set_section_alignment (abfd, opd, 3))
1210 {
1211 BFD_ASSERT (0);
1212 return false;
1213 }
1214
1215 hppa_info->opd_sec = opd;
1216 }
1217
1218 return true;
1219}
1220
1221/* Create the PLT section. */
1222
1223static boolean
1224get_plt (abfd, info, hppa_info)
1225 bfd *abfd;
edd21aca 1226 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1227 struct elf64_hppa_link_hash_table *hppa_info;
1228{
1229 asection *plt;
1230 bfd *dynobj;
1231
1232 plt = hppa_info->plt_sec;
1233 if (!plt)
1234 {
1235 dynobj = hppa_info->root.dynobj;
1236 if (!dynobj)
1237 hppa_info->root.dynobj = dynobj = abfd;
1238
1239 plt = bfd_make_section (dynobj, ".plt");
1240 if (!plt
1241 || !bfd_set_section_flags (dynobj, plt,
1242 (SEC_ALLOC
1243 | SEC_LOAD
1244 | SEC_HAS_CONTENTS
1245 | SEC_IN_MEMORY
1246 | SEC_LINKER_CREATED))
1247 || !bfd_set_section_alignment (abfd, plt, 3))
1248 {
1249 BFD_ASSERT (0);
1250 return false;
1251 }
1252
1253 hppa_info->plt_sec = plt;
1254 }
1255
1256 return true;
1257}
1258
1259/* Create the DLT section. */
1260
1261static boolean
1262get_dlt (abfd, info, hppa_info)
1263 bfd *abfd;
edd21aca 1264 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1265 struct elf64_hppa_link_hash_table *hppa_info;
1266{
1267 asection *dlt;
1268 bfd *dynobj;
1269
1270 dlt = hppa_info->dlt_sec;
1271 if (!dlt)
1272 {
1273 dynobj = hppa_info->root.dynobj;
1274 if (!dynobj)
1275 hppa_info->root.dynobj = dynobj = abfd;
1276
1277 dlt = bfd_make_section (dynobj, ".dlt");
1278 if (!dlt
1279 || !bfd_set_section_flags (dynobj, dlt,
1280 (SEC_ALLOC
1281 | SEC_LOAD
1282 | SEC_HAS_CONTENTS
1283 | SEC_IN_MEMORY
1284 | SEC_LINKER_CREATED))
1285 || !bfd_set_section_alignment (abfd, dlt, 3))
1286 {
1287 BFD_ASSERT (0);
1288 return false;
1289 }
1290
1291 hppa_info->dlt_sec = dlt;
1292 }
1293
1294 return true;
1295}
1296
1297/* Create the stubs section. */
1298
1299static boolean
1300get_stub (abfd, info, hppa_info)
1301 bfd *abfd;
edd21aca 1302 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1303 struct elf64_hppa_link_hash_table *hppa_info;
1304{
1305 asection *stub;
1306 bfd *dynobj;
1307
1308 stub = hppa_info->stub_sec;
1309 if (!stub)
1310 {
1311 dynobj = hppa_info->root.dynobj;
1312 if (!dynobj)
1313 hppa_info->root.dynobj = dynobj = abfd;
1314
1315 stub = bfd_make_section (dynobj, ".stub");
1316 if (!stub
1317 || !bfd_set_section_flags (dynobj, stub,
1318 (SEC_ALLOC
1319 | SEC_LOAD
1320 | SEC_HAS_CONTENTS
1321 | SEC_IN_MEMORY
1322 | SEC_READONLY
1323 | SEC_LINKER_CREATED))
1324 || !bfd_set_section_alignment (abfd, stub, 3))
1325 {
1326 BFD_ASSERT (0);
1327 return false;
1328 }
1329
1330 hppa_info->stub_sec = stub;
1331 }
1332
1333 return true;
1334}
1335
1336/* Create sections necessary for dynamic linking. This is only a rough
1337 cut and will likely change as we learn more about the somewhat
1338 unusual dynamic linking scheme HP uses.
1339
1340 .stub:
1341 Contains code to implement cross-space calls. The first time one
1342 of the stubs is used it will call into the dynamic linker, later
1343 calls will go straight to the target.
1344
1345 The only stub we support right now looks like
1346
1347 ldd OFFSET(%dp),%r1
1348 bve %r0(%r1)
1349 ldd OFFSET+8(%dp),%dp
1350
1351 Other stubs may be needed in the future. We may want the remove
1352 the break/nop instruction. It is only used right now to keep the
1353 offset of a .plt entry and a .stub entry in sync.
1354
1355 .dlt:
1356 This is what most people call the .got. HP used a different name.
1357 Losers.
1358
1359 .rela.dlt:
1360 Relocations for the DLT.
1361
1362 .plt:
1363 Function pointers as address,gp pairs.
1364
1365 .rela.plt:
1366 Should contain dynamic IPLT (and EPLT?) relocations.
1367
1368 .opd:
fe8bc63d 1369 FPTRS
15bda425
JL
1370
1371 .rela.opd:
1372 EPLT relocations for symbols exported from shared libraries. */
1373
1374static boolean
1375elf64_hppa_create_dynamic_sections (abfd, info)
1376 bfd *abfd;
1377 struct bfd_link_info *info;
1378{
1379 asection *s;
1380
1381 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1382 return false;
1383
1384 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1385 return false;
1386
1387 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1388 return false;
1389
1390 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1391 return false;
1392
1393 s = bfd_make_section(abfd, ".rela.dlt");
1394 if (s == NULL
1395 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1396 | SEC_HAS_CONTENTS
1397 | SEC_IN_MEMORY
1398 | SEC_READONLY
1399 | SEC_LINKER_CREATED))
1400 || !bfd_set_section_alignment (abfd, s, 3))
1401 return false;
1402 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1403
1404 s = bfd_make_section(abfd, ".rela.plt");
1405 if (s == NULL
1406 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1407 | SEC_HAS_CONTENTS
1408 | SEC_IN_MEMORY
1409 | SEC_READONLY
1410 | SEC_LINKER_CREATED))
1411 || !bfd_set_section_alignment (abfd, s, 3))
1412 return false;
1413 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1414
1415 s = bfd_make_section(abfd, ".rela.data");
1416 if (s == NULL
1417 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1418 | SEC_HAS_CONTENTS
1419 | SEC_IN_MEMORY
1420 | SEC_READONLY
1421 | SEC_LINKER_CREATED))
1422 || !bfd_set_section_alignment (abfd, s, 3))
1423 return false;
1424 elf64_hppa_hash_table (info)->other_rel_sec = s;
1425
1426 s = bfd_make_section(abfd, ".rela.opd");
1427 if (s == NULL
1428 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1429 | SEC_HAS_CONTENTS
1430 | SEC_IN_MEMORY
1431 | SEC_READONLY
1432 | SEC_LINKER_CREATED))
1433 || !bfd_set_section_alignment (abfd, s, 3))
1434 return false;
1435 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1436
1437 return true;
1438}
1439
1440/* Allocate dynamic relocations for those symbols that turned out
1441 to be dynamic. */
1442
1443static boolean
1444allocate_dynrel_entries (dyn_h, data)
1445 struct elf64_hppa_dyn_hash_entry *dyn_h;
1446 PTR data;
1447{
1448 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1449 struct elf64_hppa_link_hash_table *hppa_info;
1450 struct elf64_hppa_dyn_reloc_entry *rent;
1451 boolean dynamic_symbol, shared;
1452
1453 hppa_info = elf64_hppa_hash_table (x->info);
1454 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1455 shared = x->info->shared;
1456
1457 /* We may need to allocate relocations for a non-dynamic symbol
1458 when creating a shared library. */
1459 if (!dynamic_symbol && !shared)
1460 return true;
1461
1462 /* Take care of the normal data relocations. */
1463
1464 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1465 {
1466 switch (rent->type)
1467 {
1468 case R_PARISC_FPTR64:
1469 /* Allocate one iff we are not building a shared library and
1470 !want_opd, which by this point will be true only if we're
1471 actually allocating one statically in the main executable. */
1472 if (!x->info->shared && dyn_h->want_opd)
1473 continue;
1474 break;
1475 }
1476 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1477
1478 /* Make sure this symbol gets into the dynamic symbol table if it is
1479 not already recorded. ?!? This should not be in the loop since
1480 the symbol need only be added once. */
1481 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1482 if (!_bfd_elf64_link_record_local_dynamic_symbol
1483 (x->info, rent->sec->owner, dyn_h->sym_indx))
1484 return false;
1485 }
1486
1487 /* Take care of the GOT and PLT relocations. */
1488
1489 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1490 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1491
1492 /* If we are building a shared library, then every symbol that has an
1493 opd entry will need an EPLT relocation to relocate the symbol's address
1494 and __gp value based on the runtime load address. */
1495 if (shared && dyn_h->want_opd)
1496 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1497
1498 if (dyn_h->want_plt && dynamic_symbol)
1499 {
1500 bfd_size_type t = 0;
1501
1502 /* Dynamic symbols get one IPLT relocation. Local symbols in
1503 shared libraries get two REL relocations. Local symbols in
1504 main applications get nothing. */
1505 if (dynamic_symbol)
1506 t = sizeof (Elf64_External_Rela);
1507 else if (shared)
1508 t = 2 * sizeof (Elf64_External_Rela);
1509
1510 hppa_info->plt_rel_sec->_raw_size += t;
1511 }
1512
1513 return true;
1514}
1515
1516/* Adjust a symbol defined by a dynamic object and referenced by a
1517 regular object. */
1518
1519static boolean
1520elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1521 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1522 struct elf_link_hash_entry *h;
1523{
1524 /* ??? Undefined symbols with PLT entries should be re-defined
1525 to be the PLT entry. */
1526
1527 /* If this is a weak symbol, and there is a real definition, the
1528 processor independent code will have arranged for us to see the
1529 real definition first, and we can just use the same value. */
1530 if (h->weakdef != NULL)
1531 {
1532 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1533 || h->weakdef->root.type == bfd_link_hash_defweak);
1534 h->root.u.def.section = h->weakdef->root.u.def.section;
1535 h->root.u.def.value = h->weakdef->root.u.def.value;
1536 return true;
1537 }
1538
1539 /* If this is a reference to a symbol defined by a dynamic object which
1540 is not a function, we might allocate the symbol in our .dynbss section
1541 and allocate a COPY dynamic relocation.
1542
1543 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1544 of hackery. */
1545
1546 return true;
1547}
1548
1549/* Set the final sizes of the dynamic sections and allocate memory for
1550 the contents of our special sections. */
1551
1552static boolean
1553elf64_hppa_size_dynamic_sections (output_bfd, info)
1554 bfd *output_bfd;
1555 struct bfd_link_info *info;
1556{
1557 bfd *dynobj;
1558 asection *s;
1559 boolean plt;
1560 boolean relocs;
1561 boolean reltext;
15bda425
JL
1562 struct elf64_hppa_allocate_data data;
1563 struct elf64_hppa_link_hash_table *hppa_info;
1564
1565 hppa_info = elf64_hppa_hash_table (info);
1566
1567 dynobj = elf_hash_table (info)->dynobj;
1568 BFD_ASSERT (dynobj != NULL);
1569
1570 if (elf_hash_table (info)->dynamic_sections_created)
1571 {
1572 /* Set the contents of the .interp section to the interpreter. */
1573 if (! info->shared)
1574 {
1575 s = bfd_get_section_by_name (dynobj, ".interp");
1576 BFD_ASSERT (s != NULL);
1577 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1578 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1579 }
1580 }
1581 else
1582 {
1583 /* We may have created entries in the .rela.got section.
1584 However, if we are not creating the dynamic sections, we will
1585 not actually use these entries. Reset the size of .rela.dlt,
1586 which will cause it to get stripped from the output file
1587 below. */
1588 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1589 if (s != NULL)
1590 s->_raw_size = 0;
1591 }
1592
1593 /* Allocate the GOT entries. */
1594
1595 data.info = info;
1596 if (elf64_hppa_hash_table (info)->dlt_sec)
1597 {
1598 data.ofs = 0x0;
1599 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1600 allocate_global_data_dlt, &data);
1601 hppa_info->dlt_sec->_raw_size = data.ofs;
1602
1603 data.ofs = 0x0;
1604 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1605 allocate_global_data_plt, &data);
1606 hppa_info->plt_sec->_raw_size = data.ofs;
1607
1608 data.ofs = 0x0;
1609 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1610 allocate_global_data_stub, &data);
1611 hppa_info->stub_sec->_raw_size = data.ofs;
1612 }
1613
1614 /* Mark each function this program exports so that we will allocate
1615 space in the .opd section for each function's FPTR.
1616
1617 We have to traverse the main linker hash table since we have to
1618 find functions which may not have been mentioned in any relocs. */
1619 elf_link_hash_traverse (elf_hash_table (info),
1620 elf64_hppa_mark_exported_functions,
1621 info);
1622
1623 /* Allocate space for entries in the .opd section. */
1624 if (elf64_hppa_hash_table (info)->opd_sec)
1625 {
1626 data.ofs = 0;
1627 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1628 allocate_global_data_opd, &data);
1629 hppa_info->opd_sec->_raw_size = data.ofs;
1630 }
1631
1632 /* Now allocate space for dynamic relocations, if necessary. */
1633 if (hppa_info->root.dynamic_sections_created)
1634 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1635 allocate_dynrel_entries, &data);
1636
1637 /* The sizes of all the sections are set. Allocate memory for them. */
1638 plt = false;
1639 relocs = false;
1640 reltext = false;
1641 for (s = dynobj->sections; s != NULL; s = s->next)
1642 {
1643 const char *name;
1644 boolean strip;
1645
1646 if ((s->flags & SEC_LINKER_CREATED) == 0)
1647 continue;
1648
1649 /* It's OK to base decisions on the section name, because none
1650 of the dynobj section names depend upon the input files. */
1651 name = bfd_get_section_name (dynobj, s);
1652
1653 strip = 0;
1654
1655 if (strcmp (name, ".plt") == 0)
1656 {
1657 if (s->_raw_size == 0)
1658 {
1659 /* Strip this section if we don't need it; see the
1660 comment below. */
1661 strip = true;
1662 }
1663 else
1664 {
1665 /* Remember whether there is a PLT. */
1666 plt = true;
1667 }
1668 }
1669 else if (strcmp (name, ".dlt") == 0)
1670 {
1671 if (s->_raw_size == 0)
1672 {
1673 /* Strip this section if we don't need it; see the
1674 comment below. */
1675 strip = true;
1676 }
1677 }
1678 else if (strcmp (name, ".opd") == 0)
1679 {
1680 if (s->_raw_size == 0)
1681 {
1682 /* Strip this section if we don't need it; see the
1683 comment below. */
1684 strip = true;
1685 }
1686 }
1687 else if (strncmp (name, ".rela", 4) == 0)
1688 {
1689 if (s->_raw_size == 0)
1690 {
1691 /* If we don't need this section, strip it from the
1692 output file. This is mostly to handle .rela.bss and
1693 .rela.plt. We must create both sections in
1694 create_dynamic_sections, because they must be created
1695 before the linker maps input sections to output
1696 sections. The linker does that before
1697 adjust_dynamic_symbol is called, and it is that
1698 function which decides whether anything needs to go
1699 into these sections. */
1700 strip = true;
1701 }
1702 else
1703 {
1704 asection *target;
1705
1706 /* Remember whether there are any reloc sections other
1707 than .rela.plt. */
1708 if (strcmp (name, ".rela.plt") != 0)
1709 {
1710 const char *outname;
1711
1712 relocs = true;
1713
1714 /* If this relocation section applies to a read only
1715 section, then we probably need a DT_TEXTREL
1716 entry. The entries in the .rela.plt section
1717 really apply to the .got section, which we
1718 created ourselves and so know is not readonly. */
1719 outname = bfd_get_section_name (output_bfd,
1720 s->output_section);
1721 target = bfd_get_section_by_name (output_bfd, outname + 4);
1722 if (target != NULL
1723 && (target->flags & SEC_READONLY) != 0
1724 && (target->flags & SEC_ALLOC) != 0)
1725 reltext = true;
1726 }
1727
1728 /* We use the reloc_count field as a counter if we need
1729 to copy relocs into the output file. */
1730 s->reloc_count = 0;
1731 }
1732 }
1733 else if (strncmp (name, ".dlt", 4) != 0
1734 && strcmp (name, ".stub") != 0
1735 && strcmp (name, ".got") != 0)
1736 {
1737 /* It's not one of our sections, so don't allocate space. */
1738 continue;
1739 }
1740
1741 if (strip)
1742 {
1743 _bfd_strip_section_from_output (info, s);
1744 continue;
1745 }
1746
1747 /* Allocate memory for the section contents if it has not
832d951b
AM
1748 been allocated already. We use bfd_zalloc here in case
1749 unused entries are not reclaimed before the section's
1750 contents are written out. This should not happen, but this
1751 way if it does, we get a R_PARISC_NONE reloc instead of
1752 garbage. */
15bda425
JL
1753 if (s->contents == NULL)
1754 {
7a9af8c4 1755 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
15bda425
JL
1756 if (s->contents == NULL && s->_raw_size != 0)
1757 return false;
1758 }
1759 }
1760
1761 if (elf_hash_table (info)->dynamic_sections_created)
1762 {
1763 /* Always create a DT_PLTGOT. It actually has nothing to do with
1764 the PLT, it is how we communicate the __gp value of a load
1765 module to the dynamic linker. */
1766 if (! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_FLAGS, 0)
1767 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0))
1768 return false;
1769
1770 /* Add some entries to the .dynamic section. We fill in the
1771 values later, in elf64_hppa_finish_dynamic_sections, but we
1772 must add the entries now so that we get the correct size for
1773 the .dynamic section. The DT_DEBUG entry is filled in by the
1774 dynamic linker and used by the debugger. */
1775 if (! info->shared)
1776 {
1777 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)
1778 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_HOOK, 0)
1779 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_LOAD_MAP, 0))
1780 return false;
1781 }
1782
1783 if (plt)
1784 {
1785 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1786 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1787 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1788 return false;
1789 }
1790
1791 if (relocs)
1792 {
1793 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1794 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1795 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1796 sizeof (Elf64_External_Rela)))
1797 return false;
1798 }
1799
1800 if (reltext)
1801 {
1802 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1803 return false;
d6cf2879 1804 info->flags |= DF_TEXTREL;
15bda425
JL
1805 }
1806 }
1807
1808 return true;
1809}
1810
1811/* Called after we have output the symbol into the dynamic symbol
1812 table, but before we output the symbol into the normal symbol
1813 table.
1814
1815 For some symbols we had to change their address when outputting
1816 the dynamic symbol table. We undo that change here so that
1817 the symbols have their expected value in the normal symbol
1818 table. Ick. */
1819
1820static boolean
1821elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1822 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1823 struct bfd_link_info *info;
1824 const char *name;
1825 Elf_Internal_Sym *sym;
edd21aca 1826 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1827{
1828 struct elf64_hppa_link_hash_table *hppa_info;
1829 struct elf64_hppa_dyn_hash_entry *dyn_h;
1830
1831 /* We may be called with the file symbol or section symbols.
1832 They never need munging, so it is safe to ignore them. */
1833 if (!name)
1834 return true;
1835
1836 /* Get the PA dyn_symbol (if any) associated with NAME. */
1837 hppa_info = elf64_hppa_hash_table (info);
1838 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1839 name, false, false);
1840
832d951b
AM
1841 /* Function symbols for which we created .opd entries *may* have been
1842 munged by finish_dynamic_symbol and have to be un-munged here.
1843
1844 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1845 into non-dynamic ones, so we initialize st_shndx to -1 in
1846 mark_exported_functions and check to see if it was overwritten
1847 here instead of just checking dyn_h->h->dynindx. */
1848 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1849 {
1850 /* Restore the saved value and section index. */
1851 sym->st_value = dyn_h->st_value;
fe8bc63d 1852 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1853 }
1854
1855 return true;
1856}
1857
1858/* Finish up dynamic symbol handling. We set the contents of various
1859 dynamic sections here. */
1860
1861static boolean
1862elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1863 bfd *output_bfd;
1864 struct bfd_link_info *info;
1865 struct elf_link_hash_entry *h;
1866 Elf_Internal_Sym *sym;
1867{
1868 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1869 struct elf64_hppa_link_hash_table *hppa_info;
1870 struct elf64_hppa_dyn_hash_entry *dyn_h;
1871
1872 hppa_info = elf64_hppa_hash_table (info);
1873 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1874 h->root.root.string, false, false);
1875
1876 stub = hppa_info->stub_sec;
1877 splt = hppa_info->plt_sec;
1878 sdlt = hppa_info->dlt_sec;
1879 sopd = hppa_info->opd_sec;
1880 spltrel = hppa_info->plt_rel_sec;
1881 sdltrel = hppa_info->dlt_rel_sec;
1882
1883 BFD_ASSERT (stub != NULL && splt != NULL
1884 && sopd != NULL && sdlt != NULL)
1885
1886 /* Incredible. It is actually necessary to NOT use the symbol's real
1887 value when building the dynamic symbol table for a shared library.
1888 At least for symbols that refer to functions.
1889
1890 We will store a new value and section index into the symbol long
1891 enough to output it into the dynamic symbol table, then we restore
1892 the original values (in elf64_hppa_link_output_symbol_hook). */
1893 if (dyn_h && dyn_h->want_opd)
1894 {
1895 /* Save away the original value and section index so that we
1896 can restore them later. */
1897 dyn_h->st_value = sym->st_value;
1898 dyn_h->st_shndx = sym->st_shndx;
1899
1900 /* For the dynamic symbol table entry, we want the value to be
1901 address of this symbol's entry within the .opd section. */
1902 sym->st_value = (dyn_h->opd_offset
1903 + sopd->output_offset
1904 + sopd->output_section->vma);
1905 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1906 sopd->output_section);
1907 }
1908
1909 /* Initialize a .plt entry if requested. */
1910 if (dyn_h && dyn_h->want_plt
1911 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1912 {
1913 bfd_vma value;
1914 Elf_Internal_Rela rel;
1915
1916 /* We do not actually care about the value in the PLT entry
1917 if we are creating a shared library and the symbol is
1918 still undefined, we create a dynamic relocation to fill
1919 in the correct value. */
1920 if (info->shared && h->root.type == bfd_link_hash_undefined)
1921 value = 0;
1922 else
1923 value = (h->root.u.def.value + h->root.u.def.section->vma);
1924
fe8bc63d 1925 /* Fill in the entry in the procedure linkage table.
15bda425
JL
1926
1927 The format of a plt entry is
fe8bc63d 1928 <funcaddr> <__gp>.
15bda425
JL
1929
1930 plt_offset is the offset within the PLT section at which to
fe8bc63d 1931 install the PLT entry.
15bda425
JL
1932
1933 We are modifying the in-memory PLT contents here, so we do not add
1934 in the output_offset of the PLT section. */
1935
1936 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1937 value = _bfd_get_gp_value (splt->output_section->owner);
1938 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1939
1940 /* Create a dynamic IPLT relocation for this entry.
1941
1942 We are creating a relocation in the output file's PLT section,
1943 which is included within the DLT secton. So we do need to include
1944 the PLT's output_offset in the computation of the relocation's
1945 address. */
1946 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1947 + splt->output_section->vma);
1948 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1949 rel.r_addend = 0;
1950
1951 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
1952 (((Elf64_External_Rela *)
1953 spltrel->contents)
1954 + spltrel->reloc_count));
1955 spltrel->reloc_count++;
1956 }
1957
1958 /* Initialize an external call stub entry if requested. */
1959 if (dyn_h && dyn_h->want_stub
1960 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1961 {
1962 bfd_vma value;
1963 int insn;
b352eebf 1964 unsigned int max_offset;
15bda425
JL
1965
1966 /* Install the generic stub template.
1967
1968 We are modifying the contents of the stub section, so we do not
1969 need to include the stub section's output_offset here. */
1970 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
1971
1972 /* Fix up the first ldd instruction.
1973
1974 We are modifying the contents of the STUB section in memory,
fe8bc63d 1975 so we do not need to include its output offset in this computation.
15bda425
JL
1976
1977 Note the plt_offset value is the value of the PLT entry relative to
1978 the start of the PLT section. These instructions will reference
1979 data relative to the value of __gp, which may not necessarily have
1980 the same address as the start of the PLT section.
1981
1982 gp_offset contains the offset of __gp within the PLT section. */
1983 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 1984
15bda425 1985 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
1986 if (output_bfd->arch_info->mach >= 25)
1987 {
1988 /* Wide mode allows 16 bit offsets. */
1989 max_offset = 32768;
1990 insn &= ~ 0xfff1;
1991 insn |= re_assemble_16 (value);
1992 }
1993 else
1994 {
1995 max_offset = 8192;
1996 insn &= ~ 0x3ff1;
1997 insn |= re_assemble_14 (value);
1998 }
1999
2000 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2001 {
2002 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2003 dyn_h->root.string,
2004 (long) value);
2005 return false;
2006 }
2007
2008 bfd_put_32 (stub->owner, insn,
15bda425
JL
2009 stub->contents + dyn_h->stub_offset);
2010
2011 /* Fix up the second ldd instruction. */
b352eebf 2012 value += 8;
15bda425 2013 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2014 if (output_bfd->arch_info->mach >= 25)
2015 {
2016 insn &= ~ 0xfff1;
2017 insn |= re_assemble_16 (value);
2018 }
2019 else
2020 {
2021 insn &= ~ 0x3ff1;
2022 insn |= re_assemble_14 (value);
2023 }
2024 bfd_put_32 (stub->owner, insn,
15bda425
JL
2025 stub->contents + dyn_h->stub_offset + 8);
2026 }
2027
2028 /* Millicode symbols should not be put in the dynamic
2029 symbol table under any circumstances. */
2030 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2031 h->dynindx = -1;
2032
2033 return true;
2034}
2035
2036/* The .opd section contains FPTRs for each function this file
2037 exports. Initialize the FPTR entries. */
2038
2039static boolean
2040elf64_hppa_finalize_opd (dyn_h, data)
2041 struct elf64_hppa_dyn_hash_entry *dyn_h;
2042 PTR data;
2043{
2044 struct bfd_link_info *info = (struct bfd_link_info *)data;
2045 struct elf64_hppa_link_hash_table *hppa_info;
2046 struct elf_link_hash_entry *h = dyn_h->h;
2047 asection *sopd;
2048 asection *sopdrel;
2049
2050 hppa_info = elf64_hppa_hash_table (info);
2051 sopd = hppa_info->opd_sec;
2052 sopdrel = hppa_info->opd_rel_sec;
2053
2054 if (h && dyn_h && dyn_h->want_opd)
2055 {
2056 bfd_vma value;
2057
fe8bc63d 2058 /* The first two words of an .opd entry are zero.
15bda425
JL
2059
2060 We are modifying the contents of the OPD section in memory, so we
2061 do not need to include its output offset in this computation. */
2062 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2063
2064 value = (h->root.u.def.value
2065 + h->root.u.def.section->output_section->vma
2066 + h->root.u.def.section->output_offset);
2067
2068 /* The next word is the address of the function. */
2069 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2070
2071 /* The last word is our local __gp value. */
2072 value = _bfd_get_gp_value (sopd->output_section->owner);
2073 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2074 }
2075
2076 /* If we are generating a shared library, we must generate EPLT relocations
2077 for each entry in the .opd, even for static functions (they may have
2078 had their address taken). */
2079 if (info->shared && dyn_h && dyn_h->want_opd)
2080 {
2081 Elf64_Internal_Rela rel;
15bda425
JL
2082 int dynindx;
2083
2084 /* We may need to do a relocation against a local symbol, in
2085 which case we have to look up it's dynamic symbol index off
2086 the local symbol hash table. */
2087 if (h && h->dynindx != -1)
2088 dynindx = h->dynindx;
2089 else
2090 dynindx
2091 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2092 dyn_h->sym_indx);
2093
2094 /* The offset of this relocation is the absolute address of the
2095 .opd entry for this symbol. */
2096 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2097 + sopd->output_section->vma);
2098
2099 /* If H is non-null, then we have an external symbol.
2100
2101 It is imperative that we use a different dynamic symbol for the
2102 EPLT relocation if the symbol has global scope.
2103
2104 In the dynamic symbol table, the function symbol will have a value
2105 which is address of the function's .opd entry.
2106
2107 Thus, we can not use that dynamic symbol for the EPLT relocation
2108 (if we did, the data in the .opd would reference itself rather
2109 than the actual address of the function). Instead we have to use
2110 a new dynamic symbol which has the same value as the original global
fe8bc63d 2111 function symbol.
15bda425
JL
2112
2113 We prefix the original symbol with a "." and use the new symbol in
2114 the EPLT relocation. This new symbol has already been recorded in
2115 the symbol table, we just have to look it up and use it.
2116
2117 We do not have such problems with static functions because we do
2118 not make their addresses in the dynamic symbol table point to
2119 the .opd entry. Ultimately this should be safe since a static
2120 function can not be directly referenced outside of its shared
2121 library.
2122
2123 We do have to play similar games for FPTR relocations in shared
2124 libraries, including those for static symbols. See the FPTR
2125 handling in elf64_hppa_finalize_dynreloc. */
2126 if (h)
2127 {
2128 char *new_name;
2129 struct elf_link_hash_entry *nh;
2130
2131 new_name = alloca (strlen (h->root.root.string) + 2);
2132 new_name[0] = '.';
2133 strcpy (new_name + 1, h->root.root.string);
2134
2135 nh = elf_link_hash_lookup (elf_hash_table (info),
2136 new_name, false, false, false);
2137
2138 /* All we really want from the new symbol is its dynamic
2139 symbol index. */
2140 dynindx = nh->dynindx;
2141 }
2142
2143 rel.r_addend = 0;
2144 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2145
2146 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2147 (((Elf64_External_Rela *)
2148 sopdrel->contents)
2149 + sopdrel->reloc_count));
2150 sopdrel->reloc_count++;
2151 }
2152 return true;
2153}
2154
2155/* The .dlt section contains addresses for items referenced through the
2156 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2157 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2158
2159static boolean
2160elf64_hppa_finalize_dlt (dyn_h, data)
2161 struct elf64_hppa_dyn_hash_entry *dyn_h;
2162 PTR data;
2163{
2164 struct bfd_link_info *info = (struct bfd_link_info *)data;
2165 struct elf64_hppa_link_hash_table *hppa_info;
2166 asection *sdlt, *sdltrel;
2167 struct elf_link_hash_entry *h = dyn_h->h;
2168
2169 hppa_info = elf64_hppa_hash_table (info);
2170
2171 sdlt = hppa_info->dlt_sec;
2172 sdltrel = hppa_info->dlt_rel_sec;
2173
2174 /* H/DYN_H may refer to a local variable and we know it's
2175 address, so there is no need to create a relocation. Just install
2176 the proper value into the DLT, note this shortcut can not be
2177 skipped when building a shared library. */
2178 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2179 {
2180 bfd_vma value;
2181
2182 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2183 to point to the FPTR entry in the .opd section.
15bda425
JL
2184
2185 We include the OPD's output offset in this computation as
2186 we are referring to an absolute address in the resulting
2187 object file. */
2188 if (dyn_h->want_opd)
2189 {
2190 value = (dyn_h->opd_offset
2191 + hppa_info->opd_sec->output_offset
2192 + hppa_info->opd_sec->output_section->vma);
2193 }
2194 else
2195 {
2196 value = (h->root.u.def.value
2197 + h->root.u.def.section->output_offset);
2198
2199 if (h->root.u.def.section->output_section)
2200 value += h->root.u.def.section->output_section->vma;
2201 else
2202 value += h->root.u.def.section->vma;
2203 }
2204
2205 /* We do not need to include the output offset of the DLT section
2206 here because we are modifying the in-memory contents. */
2207 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2208 }
2209
2210 /* Create a relocation for the DLT entry assocated with this symbol.
2211 When building a shared library the symbol does not have to be dynamic. */
2212 if (dyn_h->want_dlt
2213 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2214 {
2215 Elf64_Internal_Rela rel;
2216 int dynindx;
2217
2218 /* We may need to do a relocation against a local symbol, in
2219 which case we have to look up it's dynamic symbol index off
2220 the local symbol hash table. */
2221 if (h && h->dynindx != -1)
2222 dynindx = h->dynindx;
2223 else
2224 dynindx
2225 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2226 dyn_h->sym_indx);
2227
15bda425
JL
2228 /* Create a dynamic relocation for this entry. Do include the output
2229 offset of the DLT entry since we need an absolute address in the
2230 resulting object file. */
2231 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2232 + sdlt->output_section->vma);
2233 if (h && h->type == STT_FUNC)
2234 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2235 else
2236 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2237 rel.r_addend = 0;
2238
2239 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2240 (((Elf64_External_Rela *)
2241 sdltrel->contents)
2242 + sdltrel->reloc_count));
2243 sdltrel->reloc_count++;
2244 }
2245 return true;
2246}
2247
2248/* Finalize the dynamic relocations. Specifically the FPTR relocations
2249 for dynamic functions used to initialize static data. */
2250
2251static boolean
2252elf64_hppa_finalize_dynreloc (dyn_h, data)
2253 struct elf64_hppa_dyn_hash_entry *dyn_h;
2254 PTR data;
2255{
2256 struct bfd_link_info *info = (struct bfd_link_info *)data;
2257 struct elf64_hppa_link_hash_table *hppa_info;
2258 struct elf_link_hash_entry *h;
2259 int dynamic_symbol;
2260
2261 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2262
2263 if (!dynamic_symbol && !info->shared)
2264 return true;
2265
2266 if (dyn_h->reloc_entries)
2267 {
2268 struct elf64_hppa_dyn_reloc_entry *rent;
2269 int dynindx;
2270
2271 hppa_info = elf64_hppa_hash_table (info);
2272 h = dyn_h->h;
2273
2274 /* We may need to do a relocation against a local symbol, in
2275 which case we have to look up it's dynamic symbol index off
2276 the local symbol hash table. */
2277 if (h && h->dynindx != -1)
2278 dynindx = h->dynindx;
2279 else
2280 dynindx
2281 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2282 dyn_h->sym_indx);
2283
2284 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2285 {
2286 Elf64_Internal_Rela rel;
2287
2288 switch (rent->type)
2289 {
2290 case R_PARISC_FPTR64:
2291 /* Allocate one iff we are not building a shared library and
2292 !want_opd, which by this point will be true only if we're
2293 actually allocating one statically in the main executable. */
2294 if (!info->shared && dyn_h->want_opd)
2295 continue;
2296 break;
2297 }
2298
fe8bc63d 2299 /* Create a dynamic relocation for this entry.
15bda425
JL
2300
2301 We need the output offset for the reloc's section because
2302 we are creating an absolute address in the resulting object
2303 file. */
2304 rel.r_offset = (rent->offset + rent->sec->output_offset
2305 + rent->sec->output_section->vma);
2306
2307 /* An FPTR64 relocation implies that we took the address of
2308 a function and that the function has an entry in the .opd
2309 section. We want the FPTR64 relocation to reference the
2310 entry in .opd.
2311
2312 We could munge the symbol value in the dynamic symbol table
2313 (in fact we already do for functions with global scope) to point
2314 to the .opd entry. Then we could use that dynamic symbol in
2315 this relocation.
2316
2317 Or we could do something sensible, not munge the symbol's
2318 address and instead just use a different symbol to reference
2319 the .opd entry. At least that seems sensible until you
2320 realize there's no local dynamic symbols we can use for that
2321 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2322
15bda425
JL
2323 We use a section symbol recorded by check_relocs as the
2324 base symbol for the relocation. The addend is the difference
2325 between the section symbol and the address of the .opd entry. */
2326 if (info->shared && rent->type == R_PARISC_FPTR64)
2327 {
2328 bfd_vma value, value2;
15bda425
JL
2329
2330 /* First compute the address of the opd entry for this symbol. */
2331 value = (dyn_h->opd_offset
2332 + hppa_info->opd_sec->output_section->vma
2333 + hppa_info->opd_sec->output_offset);
2334
2335 /* Compute the value of the start of the section with
2336 the relocation. */
2337 value2 = (rent->sec->output_section->vma
2338 + rent->sec->output_offset);
2339
2340 /* Compute the difference between the start of the section
2341 with the relocation and the opd entry. */
2342 value -= value2;
fe8bc63d 2343
15bda425
JL
2344 /* The result becomes the addend of the relocation. */
2345 rel.r_addend = value;
2346
2347 /* The section symbol becomes the symbol for the dynamic
2348 relocation. */
2349 dynindx
2350 = _bfd_elf_link_lookup_local_dynindx (info,
2351 rent->sec->owner,
2352 rent->sec_symndx);
2353 }
2354 else
2355 rel.r_addend = rent->addend;
2356
2357 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2358
2359 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2360 &rel,
2361 (((Elf64_External_Rela *)
2362 hppa_info->other_rel_sec->contents)
2363 + hppa_info->other_rel_sec->reloc_count));
2364 hppa_info->other_rel_sec->reloc_count++;
2365 }
2366 }
2367
2368 return true;
2369}
2370
2371/* Finish up the dynamic sections. */
2372
2373static boolean
2374elf64_hppa_finish_dynamic_sections (output_bfd, info)
2375 bfd *output_bfd;
2376 struct bfd_link_info *info;
2377{
2378 bfd *dynobj;
2379 asection *sdyn;
2380 struct elf64_hppa_link_hash_table *hppa_info;
2381
2382 hppa_info = elf64_hppa_hash_table (info);
2383
2384 /* Finalize the contents of the .opd section. */
2385 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2386 elf64_hppa_finalize_opd,
2387 info);
2388
2389 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2390 elf64_hppa_finalize_dynreloc,
2391 info);
2392
2393 /* Finalize the contents of the .dlt section. */
2394 dynobj = elf_hash_table (info)->dynobj;
2395 /* Finalize the contents of the .dlt section. */
2396 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2397 elf64_hppa_finalize_dlt,
2398 info);
2399
15bda425
JL
2400 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2401
2402 if (elf_hash_table (info)->dynamic_sections_created)
2403 {
2404 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2405
2406 BFD_ASSERT (sdyn != NULL);
2407
2408 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2409 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2410 for (; dyncon < dynconend; dyncon++)
2411 {
2412 Elf_Internal_Dyn dyn;
2413 asection *s;
2414
2415 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2416
2417 switch (dyn.d_tag)
2418 {
2419 default:
2420 break;
2421
2422 case DT_HP_LOAD_MAP:
2423 /* Compute the absolute address of 16byte scratchpad area
2424 for the dynamic linker.
2425
2426 By convention the linker script will allocate the scratchpad
2427 area at the start of the .data section. So all we have to
2428 to is find the start of the .data section. */
2429 s = bfd_get_section_by_name (output_bfd, ".data");
2430 dyn.d_un.d_ptr = s->vma;
2431 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2432 break;
2433
2434 case DT_PLTGOT:
2435 /* HP's use PLTGOT to set the GOT register. */
2436 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2437 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2438 break;
2439
2440 case DT_JMPREL:
2441 s = hppa_info->plt_rel_sec;
2442 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2443 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2444 break;
2445
2446 case DT_PLTRELSZ:
2447 s = hppa_info->plt_rel_sec;
2448 dyn.d_un.d_val = s->_raw_size;
2449 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2450 break;
2451
2452 case DT_RELA:
2453 s = hppa_info->other_rel_sec;
2454 if (! s)
2455 s = hppa_info->dlt_rel_sec;
2456 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2457 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2458 break;
2459
2460 case DT_RELASZ:
2461 s = hppa_info->other_rel_sec;
2462 dyn.d_un.d_val = s->_raw_size;
2463 s = hppa_info->dlt_rel_sec;
2464 dyn.d_un.d_val += s->_raw_size;
2465 s = hppa_info->opd_rel_sec;
2466 dyn.d_un.d_val += s->_raw_size;
2467 /* There is some question about whether or not the size of
2468 the PLT relocs should be included here. HP's tools do
2469 it, so we'll emulate them. */
2470 s = hppa_info->plt_rel_sec;
2471 dyn.d_un.d_val += s->_raw_size;
2472 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2473 break;
2474
2475 }
2476 }
2477 }
2478
2479 return true;
2480}
2481
15bda425
JL
2482/* Return the number of additional phdrs we will need.
2483
2484 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2485 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2486
2487 This routine indicates that the backend needs one additional program
2488 header for that case.
2489
2490 Note we do not have access to the link info structure here, so we have
2491 to guess whether or not we are building a shared library based on the
2492 existence of a .interp section. */
2493
2494static int
2495elf64_hppa_additional_program_headers (abfd)
2496 bfd *abfd;
2497{
2498 asection *s;
2499
2500 /* If we are creating a shared library, then we have to create a
2501 PT_PHDR segment. HP's dynamic linker chokes without it. */
2502 s = bfd_get_section_by_name (abfd, ".interp");
2503 if (! s)
2504 return 1;
2505 return 0;
2506}
2507
2508/* Allocate and initialize any program headers required by this
2509 specific backend.
2510
2511 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2512 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2513
2514 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2515 for the HP linker.
15bda425
JL
2516
2517 Note we do not have access to the link info structure here, so we have
2518 to guess whether or not we are building a shared library based on the
2519 existence of a .interp section. */
2520
2521static boolean
2522elf64_hppa_modify_segment_map (abfd)
2523 bfd *abfd;
2524{
edd21aca 2525 struct elf_segment_map *m;
15bda425
JL
2526 asection *s;
2527
2528 s = bfd_get_section_by_name (abfd, ".interp");
2529 if (! s)
2530 {
2531 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2532 if (m->p_type == PT_PHDR)
2533 break;
2534 if (m == NULL)
2535 {
2536 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
2537 if (m == NULL)
2538 return false;
2539
2540 m->p_type = PT_PHDR;
2541 m->p_flags = PF_R | PF_X;
2542 m->p_flags_valid = 1;
2543 m->p_paddr_valid = 1;
2544 m->includes_phdrs = 1;
2545
2546 m->next = elf_tdata (abfd)->segment_map;
2547 elf_tdata (abfd)->segment_map = m;
2548 }
2549 }
2550
2551 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2552 if (m->p_type == PT_LOAD)
2553 {
0ba2a60e 2554 unsigned int i;
15bda425
JL
2555
2556 for (i = 0; i < m->count; i++)
2557 {
2558 /* The code "hint" is not really a hint. It is a requirement
2559 for certain versions of the HP dynamic linker. Worse yet,
2560 it must be set even if the shared library does not have
2561 any code in its "text" segment (thus the check for .hash
2562 to catch this situation). */
2563 if (m->sections[i]->flags & SEC_CODE
2564 || (strcmp (m->sections[i]->name, ".hash") == 0))
2565 m->p_flags |= (PF_X | PF_HP_CODE);
2566 }
2567 }
2568
2569 return true;
2570}
2571
2572/* The hash bucket size is the standard one, namely 4. */
2573
2574const struct elf_size_info hppa64_elf_size_info =
2575{
2576 sizeof (Elf64_External_Ehdr),
2577 sizeof (Elf64_External_Phdr),
2578 sizeof (Elf64_External_Shdr),
2579 sizeof (Elf64_External_Rel),
2580 sizeof (Elf64_External_Rela),
2581 sizeof (Elf64_External_Sym),
2582 sizeof (Elf64_External_Dyn),
2583 sizeof (Elf_External_Note),
2584 4,
2585 1,
2586 64, 8,
2587 ELFCLASS64, EV_CURRENT,
2588 bfd_elf64_write_out_phdrs,
2589 bfd_elf64_write_shdrs_and_ehdr,
2590 bfd_elf64_write_relocs,
2591 bfd_elf64_swap_symbol_out,
2592 bfd_elf64_slurp_reloc_table,
2593 bfd_elf64_slurp_symbol_table,
2594 bfd_elf64_swap_dyn_in,
2595 bfd_elf64_swap_dyn_out,
2596 NULL,
2597 NULL,
2598 NULL,
2599 NULL
2600};
2601
2602#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2603#define TARGET_BIG_NAME "elf64-hppa"
2604#define ELF_ARCH bfd_arch_hppa
2605#define ELF_MACHINE_CODE EM_PARISC
2606/* This is not strictly correct. The maximum page size for PA2.0 is
2607 64M. But everything still uses 4k. */
2608#define ELF_MAXPAGESIZE 0x1000
2609#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2610#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2611#define elf_info_to_howto elf_hppa_info_to_howto
2612#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2613
2614#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2615#define elf_backend_object_p elf64_hppa_object_p
2616#define elf_backend_final_write_processing \
2617 elf_hppa_final_write_processing
2618#define elf_backend_fake_sections elf_hppa_fake_sections
2619#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2620
2621#define elf_backend_relocate_section elf_hppa_relocate_section
2622
2623#define bfd_elf64_bfd_final_link elf_hppa_final_link
2624
2625#define elf_backend_create_dynamic_sections \
2626 elf64_hppa_create_dynamic_sections
2627#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2628
2629#define elf_backend_adjust_dynamic_symbol \
2630 elf64_hppa_adjust_dynamic_symbol
2631
2632#define elf_backend_size_dynamic_sections \
2633 elf64_hppa_size_dynamic_sections
2634
2635#define elf_backend_finish_dynamic_symbol \
2636 elf64_hppa_finish_dynamic_symbol
2637#define elf_backend_finish_dynamic_sections \
2638 elf64_hppa_finish_dynamic_sections
2639
2640/* Stuff for the BFD linker: */
2641#define bfd_elf64_bfd_link_hash_table_create \
2642 elf64_hppa_hash_table_create
2643
2644#define elf_backend_check_relocs \
2645 elf64_hppa_check_relocs
2646
2647#define elf_backend_size_info \
2648 hppa64_elf_size_info
2649
2650#define elf_backend_additional_program_headers \
2651 elf64_hppa_additional_program_headers
2652
2653#define elf_backend_modify_segment_map \
2654 elf64_hppa_modify_segment_map
2655
2656#define elf_backend_link_output_symbol_hook \
2657 elf64_hppa_link_output_symbol_hook
2658
15bda425
JL
2659#define elf_backend_want_got_plt 0
2660#define elf_backend_plt_readonly 0
2661#define elf_backend_want_plt_sym 0
2662#define elf_backend_got_header_size 0
2663#define elf_backend_plt_header_size 0
2664#define elf_backend_type_change_ok true
2665
2666#include "elf64-target.h"
d952f17a
AM
2667
2668#undef TARGET_BIG_SYM
2669#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2670#undef TARGET_BIG_NAME
2671#define TARGET_BIG_NAME "elf64-hppa-linux"
2672
2673#define INCLUDED_TARGET_FILE 1
2674#include "elf64-target.h"