]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf64-hppa.c
(__RUNTIME_PSEUDO_RELOC_LIST__, __RUNTIME_PSEUDO_RELOC_LIST_END__): Add
[thirdparty/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf 1/* Support for HPPA 64-bit ELF
e92d460e 2 Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
15bda425
JL
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
3ef20aaa 20#include "alloca-conf.h"
15bda425
JL
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
fe8bc63d 33
15bda425
JL
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
edd21aca 59 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
dc810e39 65 long sym_indx;
15bda425
JL
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
fe8bc63d 172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
173 PTR info));
174
175static const char *get_dyn_name
0ba2a60e
AM
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
15bda425 178
15bda425
JL
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
15bda425
JL
183static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186static boolean elf64_hppa_section_from_shdr
90937f86 187 PARAMS ((bfd *, Elf64_Internal_Shdr *, const char *));
15bda425
JL
188
189static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
47b7c2db
AM
198static boolean elf64_hppa_mark_milli_and_exported_functions
199 PARAMS ((struct elf_link_hash_entry *, PTR));
200
15bda425
JL
201static boolean elf64_hppa_size_dynamic_sections
202 PARAMS ((bfd *, struct bfd_link_info *));
203
99c79b2e
AJ
204static boolean elf64_hppa_link_output_symbol_hook
205PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
206 Elf_Internal_Sym *, asection *input_sec));
207
15bda425
JL
208static boolean elf64_hppa_finish_dynamic_symbol
209 PARAMS ((bfd *, struct bfd_link_info *,
210 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 211
99c79b2e
AJ
212static int elf64_hppa_additional_program_headers PARAMS ((bfd *));
213
214static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *));
215
5ac81c74
JL
216static enum elf_reloc_type_class elf64_hppa_reloc_type_class
217 PARAMS ((const Elf_Internal_Rela *));
218
15bda425
JL
219static boolean elf64_hppa_finish_dynamic_sections
220 PARAMS ((bfd *, struct bfd_link_info *));
221
222static boolean elf64_hppa_check_relocs
223 PARAMS ((bfd *, struct bfd_link_info *,
224 asection *, const Elf_Internal_Rela *));
225
226static boolean elf64_hppa_dynamic_symbol_p
227 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
228
229static boolean elf64_hppa_mark_exported_functions
230 PARAMS ((struct elf_link_hash_entry *, PTR));
231
232static boolean elf64_hppa_finalize_opd
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235static boolean elf64_hppa_finalize_dlt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238static boolean allocate_global_data_dlt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241static boolean allocate_global_data_plt
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244static boolean allocate_global_data_stub
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
247static boolean allocate_global_data_opd
248 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
249
250static boolean get_reloc_section
251 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
252
253static boolean count_dyn_reloc
254 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
255 int, asection *, int, bfd_vma, bfd_vma));
256
257static boolean allocate_dynrel_entries
258 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
259
260static boolean elf64_hppa_finalize_dynreloc
261 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
262
263static boolean get_opd
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266static boolean get_plt
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
269static boolean get_dlt
270 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
271
272static boolean get_stub
273 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
274
3fab46d0
AM
275static int elf64_hppa_elf_get_symbol_type
276 PARAMS ((Elf_Internal_Sym *, int));
277
15bda425
JL
278static boolean
279elf64_hppa_dyn_hash_table_init (ht, abfd, new)
280 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 281 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
282 new_hash_entry_func new;
283{
fe8bc63d 284 memset (ht, 0, sizeof (*ht));
15bda425
JL
285 return bfd_hash_table_init (&ht->root, new);
286}
287
288static struct bfd_hash_entry*
289elf64_hppa_new_dyn_hash_entry (entry, table, string)
290 struct bfd_hash_entry *entry;
291 struct bfd_hash_table *table;
292 const char *string;
293{
294 struct elf64_hppa_dyn_hash_entry *ret;
295 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
296
297 /* Allocate the structure if it has not already been allocated by a
298 subclass. */
299 if (!ret)
300 ret = bfd_hash_allocate (table, sizeof (*ret));
301
302 if (!ret)
303 return 0;
304
305 /* Initialize our local data. All zeros, and definitely easier
306 than setting 8 bit fields. */
fe8bc63d 307 memset (ret, 0, sizeof (*ret));
15bda425
JL
308
309 /* Call the allocation method of the superclass. */
310 ret = ((struct elf64_hppa_dyn_hash_entry *)
311 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
312
313 return &ret->root;
314}
315
316/* Create the derived linker hash table. The PA64 ELF port uses this
317 derived hash table to keep information specific to the PA ElF
318 linker (without using static variables). */
319
320static struct bfd_link_hash_table*
321elf64_hppa_hash_table_create (abfd)
322 bfd *abfd;
323{
324 struct elf64_hppa_link_hash_table *ret;
325
dc810e39 326 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
15bda425
JL
327 if (!ret)
328 return 0;
329 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
330 _bfd_elf_link_hash_newfunc))
331 {
332 bfd_release (abfd, ret);
333 return 0;
334 }
335
336 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
337 elf64_hppa_new_dyn_hash_entry))
338 return 0;
339 return &ret->root.root;
340}
341
342/* Look up an entry in a PA64 ELF linker hash table. */
343
344static struct elf64_hppa_dyn_hash_entry *
345elf64_hppa_dyn_hash_lookup(table, string, create, copy)
346 struct elf64_hppa_dyn_hash_table *table;
347 const char *string;
348 boolean create, copy;
349{
350 return ((struct elf64_hppa_dyn_hash_entry *)
351 bfd_hash_lookup (&table->root, string, create, copy));
352}
353
354/* Traverse a PA64 ELF linker hash table. */
355
356static void
357elf64_hppa_dyn_hash_traverse (table, func, info)
358 struct elf64_hppa_dyn_hash_table *table;
359 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
360 PTR info;
361{
362 (bfd_hash_traverse
363 (&table->root,
364 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
365 info));
366}
367\f
368/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
369
370 Additionally we set the default architecture and machine. */
371static boolean
372elf64_hppa_object_p (abfd)
373 bfd *abfd;
374{
24a5e751
L
375 Elf_Internal_Ehdr * i_ehdrp;
376 unsigned int flags;
d9634ba1 377
24a5e751
L
378 i_ehdrp = elf_elfheader (abfd);
379 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
380 {
381 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
382 return false;
383 }
384 else
385 {
386 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
387 return false;
388 }
389
390 flags = i_ehdrp->e_flags;
d9634ba1
AM
391 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
392 {
393 case EFA_PARISC_1_0:
394 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
395 case EFA_PARISC_1_1:
396 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
397 case EFA_PARISC_2_0:
398 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
399 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
400 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
401 }
402 /* Don't be fussy. */
403 return true;
15bda425
JL
404}
405
406/* Given section type (hdr->sh_type), return a boolean indicating
407 whether or not the section is an elf64-hppa specific section. */
408static boolean
409elf64_hppa_section_from_shdr (abfd, hdr, name)
410 bfd *abfd;
411 Elf64_Internal_Shdr *hdr;
90937f86 412 const char *name;
15bda425
JL
413{
414 asection *newsect;
415
416 switch (hdr->sh_type)
417 {
418 case SHT_PARISC_EXT:
419 if (strcmp (name, ".PARISC.archext") != 0)
420 return false;
421 break;
422 case SHT_PARISC_UNWIND:
423 if (strcmp (name, ".PARISC.unwind") != 0)
424 return false;
425 break;
426 case SHT_PARISC_DOC:
427 case SHT_PARISC_ANNOT:
428 default:
429 return false;
430 }
431
432 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
433 return false;
434 newsect = hdr->bfd_section;
435
436 return true;
437}
438
15bda425 439/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 440 name describes what was once potentially anonymous memory. We
15bda425
JL
441 allocate memory as necessary, possibly reusing PBUF/PLEN. */
442
443static const char *
0ba2a60e
AM
444get_dyn_name (sec, h, rel, pbuf, plen)
445 asection *sec;
15bda425
JL
446 struct elf_link_hash_entry *h;
447 const Elf_Internal_Rela *rel;
448 char **pbuf;
449 size_t *plen;
450{
451 size_t nlen, tlen;
452 char *buf;
453 size_t len;
454
455 if (h && rel->r_addend == 0)
456 return h->root.root.string;
457
458 if (h)
459 nlen = strlen (h->root.root.string);
460 else
0ba2a60e
AM
461 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
462 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
463
464 len = *plen;
465 buf = *pbuf;
466 if (len < tlen)
467 {
468 if (buf)
469 free (buf);
470 *pbuf = buf = malloc (tlen);
471 *plen = len = tlen;
472 if (!buf)
473 return NULL;
474 }
475
476 if (h)
477 {
478 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 479 buf[nlen++] = '+';
15bda425
JL
480 sprintf_vma (buf + nlen, rel->r_addend);
481 }
482 else
483 {
0ba2a60e
AM
484 nlen = sprintf (buf, "%x:%lx",
485 sec->id & 0xffffffff,
486 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
487 if (rel->r_addend)
488 {
489 buf[nlen++] = '+';
490 sprintf_vma (buf + nlen, rel->r_addend);
491 }
492 }
493
494 return buf;
495}
496
497/* SEC is a section containing relocs for an input BFD when linking; return
498 a suitable section for holding relocs in the output BFD for a link. */
499
500static boolean
501get_reloc_section (abfd, hppa_info, sec)
502 bfd *abfd;
503 struct elf64_hppa_link_hash_table *hppa_info;
504 asection *sec;
505{
506 const char *srel_name;
507 asection *srel;
508 bfd *dynobj;
509
510 srel_name = (bfd_elf_string_from_elf_section
511 (abfd, elf_elfheader(abfd)->e_shstrndx,
512 elf_section_data(sec)->rel_hdr.sh_name));
513 if (srel_name == NULL)
514 return false;
515
516 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
517 && strcmp (bfd_get_section_name (abfd, sec),
518 srel_name+5) == 0)
519 || (strncmp (srel_name, ".rel", 4) == 0
520 && strcmp (bfd_get_section_name (abfd, sec),
521 srel_name+4) == 0));
522
523 dynobj = hppa_info->root.dynobj;
524 if (!dynobj)
525 hppa_info->root.dynobj = dynobj = abfd;
526
527 srel = bfd_get_section_by_name (dynobj, srel_name);
528 if (srel == NULL)
529 {
530 srel = bfd_make_section (dynobj, srel_name);
531 if (srel == NULL
532 || !bfd_set_section_flags (dynobj, srel,
533 (SEC_ALLOC
534 | SEC_LOAD
535 | SEC_HAS_CONTENTS
536 | SEC_IN_MEMORY
537 | SEC_LINKER_CREATED
538 | SEC_READONLY))
539 || !bfd_set_section_alignment (dynobj, srel, 3))
540 return false;
541 }
542
543 hppa_info->other_rel_sec = srel;
544 return true;
545}
546
fe8bc63d 547/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
548
549 We use this to keep a record of all the FPTR relocations against a
550 particular symbol so that we can create FPTR relocations in the
551 output file. */
552
553static boolean
554count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
555 bfd *abfd;
556 struct elf64_hppa_dyn_hash_entry *dyn_h;
557 int type;
558 asection *sec;
559 int sec_symndx;
560 bfd_vma offset;
561 bfd_vma addend;
562{
563 struct elf64_hppa_dyn_reloc_entry *rent;
564
565 rent = (struct elf64_hppa_dyn_reloc_entry *)
dc810e39 566 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
15bda425
JL
567 if (!rent)
568 return false;
569
570 rent->next = dyn_h->reloc_entries;
571 rent->type = type;
572 rent->sec = sec;
573 rent->sec_symndx = sec_symndx;
574 rent->offset = offset;
575 rent->addend = addend;
576 dyn_h->reloc_entries = rent;
577
578 return true;
579}
580
581/* Scan the RELOCS and record the type of dynamic entries that each
582 referenced symbol needs. */
583
584static boolean
585elf64_hppa_check_relocs (abfd, info, sec, relocs)
586 bfd *abfd;
587 struct bfd_link_info *info;
588 asection *sec;
589 const Elf_Internal_Rela *relocs;
590{
591 struct elf64_hppa_link_hash_table *hppa_info;
592 const Elf_Internal_Rela *relend;
593 Elf_Internal_Shdr *symtab_hdr;
594 const Elf_Internal_Rela *rel;
595 asection *dlt, *plt, *stubs;
596 char *buf;
597 size_t buf_len;
598 int sec_symndx;
599
600 if (info->relocateable)
601 return true;
602
603 /* If this is the first dynamic object found in the link, create
604 the special sections required for dynamic linking. */
605 if (! elf_hash_table (info)->dynamic_sections_created)
606 {
607 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
608 return false;
609 }
610
611 hppa_info = elf64_hppa_hash_table (info);
612 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
613
614 /* If necessary, build a new table holding section symbols indices
6cdc0ccc 615 for this BFD. */
fe8bc63d 616
15bda425
JL
617 if (info->shared && hppa_info->section_syms_bfd != abfd)
618 {
832d951b 619 unsigned long i;
9ad5cbcf 620 unsigned int highest_shndx;
6cdc0ccc
AM
621 Elf_Internal_Sym *local_syms = NULL;
622 Elf_Internal_Sym *isym, *isymend;
dc810e39 623 bfd_size_type amt;
15bda425
JL
624
625 /* We're done with the old cache of section index to section symbol
626 index information. Free it.
627
628 ?!? Note we leak the last section_syms array. Presumably we
629 could free it in one of the later routines in this file. */
630 if (hppa_info->section_syms)
631 free (hppa_info->section_syms);
632
6cdc0ccc
AM
633 /* Read this BFD's local symbols. */
634 if (symtab_hdr->sh_info != 0)
47b7c2db 635 {
6cdc0ccc
AM
636 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
637 if (local_syms == NULL)
638 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
639 symtab_hdr->sh_info, 0,
640 NULL, NULL, NULL);
641 if (local_syms == NULL)
642 return false;
9ad5cbcf
AM
643 }
644
6cdc0ccc 645 /* Record the highest section index referenced by the local symbols. */
15bda425 646 highest_shndx = 0;
6cdc0ccc
AM
647 isymend = local_syms + symtab_hdr->sh_info;
648 for (isym = local_syms; isym < isymend; isym++)
15bda425 649 {
15bda425
JL
650 if (isym->st_shndx > highest_shndx)
651 highest_shndx = isym->st_shndx;
652 }
653
15bda425
JL
654 /* Allocate an array to hold the section index to section symbol index
655 mapping. Bump by one since we start counting at zero. */
656 highest_shndx++;
dc810e39
AM
657 amt = highest_shndx;
658 amt *= sizeof (int);
659 hppa_info->section_syms = (int *) bfd_malloc (amt);
15bda425
JL
660
661 /* Now walk the local symbols again. If we find a section symbol,
662 record the index of the symbol into the section_syms array. */
6cdc0ccc 663 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
15bda425
JL
664 {
665 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
666 hppa_info->section_syms[isym->st_shndx] = i;
667 }
668
6cdc0ccc
AM
669 /* We are finished with the local symbols. */
670 if (local_syms != NULL
671 && symtab_hdr->contents != (unsigned char *) local_syms)
672 {
673 if (! info->keep_memory)
674 free (local_syms);
675 else
676 {
677 /* Cache the symbols for elf_link_input_bfd. */
678 symtab_hdr->contents = (unsigned char *) local_syms;
679 }
680 }
15bda425
JL
681
682 /* Record which BFD we built the section_syms mapping for. */
683 hppa_info->section_syms_bfd = abfd;
684 }
685
686 /* Record the symbol index for this input section. We may need it for
687 relocations when building shared libraries. When not building shared
688 libraries this value is never really used, but assign it to zero to
689 prevent out of bounds memory accesses in other routines. */
690 if (info->shared)
691 {
692 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
693
694 /* If we did not find a section symbol for this section, then
695 something went terribly wrong above. */
696 if (sec_symndx == -1)
697 return false;
698
699 sec_symndx = hppa_info->section_syms[sec_symndx];
700 }
701 else
702 sec_symndx = 0;
fe8bc63d 703
15bda425
JL
704 dlt = plt = stubs = NULL;
705 buf = NULL;
706 buf_len = 0;
707
708 relend = relocs + sec->reloc_count;
709 for (rel = relocs; rel < relend; ++rel)
710 {
711 enum {
712 NEED_DLT = 1,
713 NEED_PLT = 2,
714 NEED_STUB = 4,
715 NEED_OPD = 8,
716 NEED_DYNREL = 16,
717 };
718
719 struct elf_link_hash_entry *h = NULL;
720 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
721 struct elf64_hppa_dyn_hash_entry *dyn_h;
722 int need_entry;
723 const char *addr_name;
724 boolean maybe_dynamic;
725 int dynrel_type = R_PARISC_NONE;
726 static reloc_howto_type *howto;
727
728 if (r_symndx >= symtab_hdr->sh_info)
729 {
730 /* We're dealing with a global symbol -- find its hash entry
731 and mark it as being referenced. */
732 long indx = r_symndx - symtab_hdr->sh_info;
733 h = elf_sym_hashes (abfd)[indx];
734 while (h->root.type == bfd_link_hash_indirect
735 || h->root.type == bfd_link_hash_warning)
736 h = (struct elf_link_hash_entry *) h->root.u.i.link;
737
738 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
739 }
740
741 /* We can only get preliminary data on whether a symbol is
742 locally or externally defined, as not all of the input files
743 have yet been processed. Do something with what we know, as
744 this may help reduce memory usage and processing time later. */
745 maybe_dynamic = false;
671bae9c
NC
746 if (h && ((info->shared
747 && (!info->symbolic || info->allow_shlib_undefined) )
15bda425
JL
748 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
749 || h->root.type == bfd_link_hash_defweak))
750 maybe_dynamic = true;
751
752 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
753 need_entry = 0;
754 switch (howto->type)
755 {
756 /* These are simple indirect references to symbols through the
757 DLT. We need to create a DLT entry for any symbols which
758 appears in a DLTIND relocation. */
759 case R_PARISC_DLTIND21L:
760 case R_PARISC_DLTIND14R:
761 case R_PARISC_DLTIND14F:
762 case R_PARISC_DLTIND14WR:
763 case R_PARISC_DLTIND14DR:
764 need_entry = NEED_DLT;
765 break;
766
767 /* ?!? These need a DLT entry. But I have no idea what to do with
768 the "link time TP value. */
769 case R_PARISC_LTOFF_TP21L:
770 case R_PARISC_LTOFF_TP14R:
771 case R_PARISC_LTOFF_TP14F:
772 case R_PARISC_LTOFF_TP64:
773 case R_PARISC_LTOFF_TP14WR:
774 case R_PARISC_LTOFF_TP14DR:
775 case R_PARISC_LTOFF_TP16F:
776 case R_PARISC_LTOFF_TP16WF:
777 case R_PARISC_LTOFF_TP16DF:
778 need_entry = NEED_DLT;
779 break;
780
781 /* These are function calls. Depending on their precise target we
782 may need to make a stub for them. The stub uses the PLT, so we
783 need to create PLT entries for these symbols too. */
832d951b 784 case R_PARISC_PCREL12F:
15bda425
JL
785 case R_PARISC_PCREL17F:
786 case R_PARISC_PCREL22F:
787 case R_PARISC_PCREL32:
788 case R_PARISC_PCREL64:
789 case R_PARISC_PCREL21L:
790 case R_PARISC_PCREL17R:
791 case R_PARISC_PCREL17C:
792 case R_PARISC_PCREL14R:
793 case R_PARISC_PCREL14F:
794 case R_PARISC_PCREL22C:
795 case R_PARISC_PCREL14WR:
796 case R_PARISC_PCREL14DR:
797 case R_PARISC_PCREL16F:
798 case R_PARISC_PCREL16WF:
799 case R_PARISC_PCREL16DF:
800 need_entry = (NEED_PLT | NEED_STUB);
801 break;
802
803 case R_PARISC_PLTOFF21L:
804 case R_PARISC_PLTOFF14R:
805 case R_PARISC_PLTOFF14F:
806 case R_PARISC_PLTOFF14WR:
807 case R_PARISC_PLTOFF14DR:
808 case R_PARISC_PLTOFF16F:
809 case R_PARISC_PLTOFF16WF:
810 case R_PARISC_PLTOFF16DF:
811 need_entry = (NEED_PLT);
812 break;
813
814 case R_PARISC_DIR64:
815 if (info->shared || maybe_dynamic)
816 need_entry = (NEED_DYNREL);
817 dynrel_type = R_PARISC_DIR64;
818 break;
819
820 /* This is an indirect reference through the DLT to get the address
821 of a OPD descriptor. Thus we need to make a DLT entry that points
822 to an OPD entry. */
823 case R_PARISC_LTOFF_FPTR21L:
824 case R_PARISC_LTOFF_FPTR14R:
825 case R_PARISC_LTOFF_FPTR14WR:
826 case R_PARISC_LTOFF_FPTR14DR:
827 case R_PARISC_LTOFF_FPTR32:
828 case R_PARISC_LTOFF_FPTR64:
829 case R_PARISC_LTOFF_FPTR16F:
830 case R_PARISC_LTOFF_FPTR16WF:
831 case R_PARISC_LTOFF_FPTR16DF:
832 if (info->shared || maybe_dynamic)
833 need_entry = (NEED_DLT | NEED_OPD);
834 else
835 need_entry = (NEED_DLT | NEED_OPD);
836 dynrel_type = R_PARISC_FPTR64;
837 break;
838
839 /* This is a simple OPD entry. */
840 case R_PARISC_FPTR64:
841 if (info->shared || maybe_dynamic)
842 need_entry = (NEED_OPD | NEED_DYNREL);
843 else
844 need_entry = (NEED_OPD);
845 dynrel_type = R_PARISC_FPTR64;
846 break;
847
848 /* Add more cases as needed. */
849 }
850
851 if (!need_entry)
852 continue;
853
854 /* Collect a canonical name for this address. */
0ba2a60e 855 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
856
857 /* Collect the canonical entry data for this address. */
858 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
859 addr_name, true, true);
860 BFD_ASSERT (dyn_h);
861
862 /* Stash away enough information to be able to find this symbol
863 regardless of whether or not it is local or global. */
864 dyn_h->h = h;
865 dyn_h->owner = abfd;
866 dyn_h->sym_indx = r_symndx;
867
868 /* ?!? We may need to do some error checking in here. */
869 /* Create what's needed. */
870 if (need_entry & NEED_DLT)
871 {
872 if (! hppa_info->dlt_sec
873 && ! get_dlt (abfd, info, hppa_info))
874 goto err_out;
875 dyn_h->want_dlt = 1;
876 }
877
878 if (need_entry & NEED_PLT)
879 {
880 if (! hppa_info->plt_sec
881 && ! get_plt (abfd, info, hppa_info))
882 goto err_out;
883 dyn_h->want_plt = 1;
884 }
885
886 if (need_entry & NEED_STUB)
887 {
888 if (! hppa_info->stub_sec
889 && ! get_stub (abfd, info, hppa_info))
890 goto err_out;
891 dyn_h->want_stub = 1;
892 }
893
894 if (need_entry & NEED_OPD)
895 {
896 if (! hppa_info->opd_sec
897 && ! get_opd (abfd, info, hppa_info))
898 goto err_out;
899
900 dyn_h->want_opd = 1;
901
902 /* FPTRs are not allocated by the dynamic linker for PA64, though
903 it is possible that will change in the future. */
fe8bc63d 904
15bda425
JL
905 /* This could be a local function that had its address taken, in
906 which case H will be NULL. */
907 if (h)
908 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
909 }
910
911 /* Add a new dynamic relocation to the chain of dynamic
912 relocations for this symbol. */
913 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
914 {
915 if (! hppa_info->other_rel_sec
916 && ! get_reloc_section (abfd, hppa_info, sec))
917 goto err_out;
918
919 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
920 sec_symndx, rel->r_offset, rel->r_addend))
921 goto err_out;
922
923 /* If we are building a shared library and we just recorded
924 a dynamic R_PARISC_FPTR64 relocation, then make sure the
925 section symbol for this section ends up in the dynamic
926 symbol table. */
927 if (info->shared && dynrel_type == R_PARISC_FPTR64
928 && ! (_bfd_elf64_link_record_local_dynamic_symbol
929 (info, abfd, sec_symndx)))
930 return false;
931 }
932 }
933
934 if (buf)
935 free (buf);
936 return true;
937
938 err_out:
939 if (buf)
940 free (buf);
941 return false;
942}
943
944struct elf64_hppa_allocate_data
945{
946 struct bfd_link_info *info;
947 bfd_size_type ofs;
948};
949
950/* Should we do dynamic things to this symbol? */
951
952static boolean
953elf64_hppa_dynamic_symbol_p (h, info)
954 struct elf_link_hash_entry *h;
955 struct bfd_link_info *info;
956{
957 if (h == NULL)
958 return false;
959
960 while (h->root.type == bfd_link_hash_indirect
961 || h->root.type == bfd_link_hash_warning)
962 h = (struct elf_link_hash_entry *) h->root.u.i.link;
963
964 if (h->dynindx == -1)
965 return false;
966
967 if (h->root.type == bfd_link_hash_undefweak
968 || h->root.type == bfd_link_hash_defweak)
969 return true;
970
971 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
972 return false;
973
671bae9c 974 if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
15bda425
JL
975 || ((h->elf_link_hash_flags
976 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
977 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
978 return true;
979
980 return false;
981}
982
983/* Mark all funtions exported by this file so that we can later allocate
984 entries in .opd for them. */
985
986static boolean
987elf64_hppa_mark_exported_functions (h, data)
988 struct elf_link_hash_entry *h;
989 PTR data;
990{
991 struct bfd_link_info *info = (struct bfd_link_info *)data;
992 struct elf64_hppa_link_hash_table *hppa_info;
993
994 hppa_info = elf64_hppa_hash_table (info);
995
e92d460e
AM
996 if (h->root.type == bfd_link_hash_warning)
997 h = (struct elf_link_hash_entry *) h->root.u.i.link;
998
15bda425
JL
999 if (h
1000 && (h->root.type == bfd_link_hash_defined
1001 || h->root.type == bfd_link_hash_defweak)
1002 && h->root.u.def.section->output_section != NULL
1003 && h->type == STT_FUNC)
1004 {
1005 struct elf64_hppa_dyn_hash_entry *dyn_h;
1006
1007 /* Add this symbol to the PA64 linker hash table. */
1008 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1009 h->root.root.string, true, true);
1010 BFD_ASSERT (dyn_h);
1011 dyn_h->h = h;
1012
1013 if (! hppa_info->opd_sec
1014 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1015 return false;
1016
1017 dyn_h->want_opd = 1;
832d951b
AM
1018 /* Put a flag here for output_symbol_hook. */
1019 dyn_h->st_shndx = -1;
15bda425
JL
1020 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1021 }
1022
1023 return true;
1024}
1025
1026/* Allocate space for a DLT entry. */
1027
1028static boolean
1029allocate_global_data_dlt (dyn_h, data)
1030 struct elf64_hppa_dyn_hash_entry *dyn_h;
1031 PTR data;
1032{
1033 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1034
1035 if (dyn_h->want_dlt)
1036 {
1037 struct elf_link_hash_entry *h = dyn_h->h;
1038
1039 if (x->info->shared)
1040 {
1041 /* Possibly add the symbol to the local dynamic symbol
1042 table since we might need to create a dynamic relocation
1043 against it. */
1044 if (! h
47b7c2db 1045 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
15bda425
JL
1046 {
1047 bfd *owner;
1048 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1049
dc810e39
AM
1050 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1051 (x->info, owner, dyn_h->sym_indx)))
15bda425
JL
1052 return false;
1053 }
1054 }
1055
1056 dyn_h->dlt_offset = x->ofs;
1057 x->ofs += DLT_ENTRY_SIZE;
1058 }
1059 return true;
1060}
1061
1062/* Allocate space for a DLT.PLT entry. */
1063
1064static boolean
1065allocate_global_data_plt (dyn_h, data)
1066 struct elf64_hppa_dyn_hash_entry *dyn_h;
1067 PTR data;
1068{
1069 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1070
1071 if (dyn_h->want_plt
1072 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1073 && !((dyn_h->h->root.type == bfd_link_hash_defined
1074 || dyn_h->h->root.type == bfd_link_hash_defweak)
1075 && dyn_h->h->root.u.def.section->output_section != NULL))
1076 {
1077 dyn_h->plt_offset = x->ofs;
1078 x->ofs += PLT_ENTRY_SIZE;
1079 if (dyn_h->plt_offset < 0x2000)
1080 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1081 }
1082 else
1083 dyn_h->want_plt = 0;
1084
1085 return true;
1086}
1087
1088/* Allocate space for a STUB entry. */
1089
1090static boolean
1091allocate_global_data_stub (dyn_h, data)
1092 struct elf64_hppa_dyn_hash_entry *dyn_h;
1093 PTR data;
1094{
1095 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1096
1097 if (dyn_h->want_stub
1098 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1099 && !((dyn_h->h->root.type == bfd_link_hash_defined
1100 || dyn_h->h->root.type == bfd_link_hash_defweak)
1101 && dyn_h->h->root.u.def.section->output_section != NULL))
1102 {
1103 dyn_h->stub_offset = x->ofs;
1104 x->ofs += sizeof (plt_stub);
1105 }
1106 else
1107 dyn_h->want_stub = 0;
1108 return true;
1109}
1110
1111/* Allocate space for a FPTR entry. */
1112
1113static boolean
1114allocate_global_data_opd (dyn_h, data)
1115 struct elf64_hppa_dyn_hash_entry *dyn_h;
1116 PTR data;
1117{
1118 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1119
1120 if (dyn_h->want_opd)
1121 {
1122 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1123
15bda425
JL
1124 if (h)
1125 while (h->root.type == bfd_link_hash_indirect
1126 || h->root.type == bfd_link_hash_warning)
1127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1128
1129 /* We never need an opd entry for a symbol which is not
1130 defined by this output file. */
3db4b612
JL
1131 if (h && (h->root.type == bfd_link_hash_undefined
1132 || h->root.u.def.section->output_section == NULL))
15bda425
JL
1133 dyn_h->want_opd = 0;
1134
1135 /* If we are creating a shared library, took the address of a local
1136 function or might export this function from this object file, then
1137 we have to create an opd descriptor. */
1138 else if (x->info->shared
1139 || h == NULL
47b7c2db 1140 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
3db4b612
JL
1141 || (h->root.type == bfd_link_hash_defined
1142 || h->root.type == bfd_link_hash_defweak))
15bda425
JL
1143 {
1144 /* If we are creating a shared library, then we will have to
1145 create a runtime relocation for the symbol to properly
1146 initialize the .opd entry. Make sure the symbol gets
1147 added to the dynamic symbol table. */
1148 if (x->info->shared
1149 && (h == NULL || (h->dynindx == -1)))
1150 {
1151 bfd *owner;
1152 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1153
1154 if (!_bfd_elf64_link_record_local_dynamic_symbol
1155 (x->info, owner, dyn_h->sym_indx))
1156 return false;
1157 }
1158
1159 /* This may not be necessary or desirable anymore now that
1160 we have some support for dealing with section symbols
1161 in dynamic relocs. But name munging does make the result
1162 much easier to debug. ie, the EPLT reloc will reference
1163 a symbol like .foobar, instead of .text + offset. */
1164 if (x->info->shared && h)
1165 {
1166 char *new_name;
1167 struct elf_link_hash_entry *nh;
1168
1169 new_name = alloca (strlen (h->root.root.string) + 2);
1170 new_name[0] = '.';
1171 strcpy (new_name + 1, h->root.root.string);
1172
1173 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1174 new_name, true, true, true);
1175
1176 nh->root.type = h->root.type;
1177 nh->root.u.def.value = h->root.u.def.value;
1178 nh->root.u.def.section = h->root.u.def.section;
1179
1180 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1181 return false;
1182
1183 }
1184 dyn_h->opd_offset = x->ofs;
1185 x->ofs += OPD_ENTRY_SIZE;
1186 }
1187
1188 /* Otherwise we do not need an opd entry. */
1189 else
1190 dyn_h->want_opd = 0;
1191 }
1192 return true;
1193}
1194
1195/* HP requires the EI_OSABI field to be filled in. The assignment to
1196 EI_ABIVERSION may not be strictly necessary. */
1197
1198static void
1199elf64_hppa_post_process_headers (abfd, link_info)
1200 bfd * abfd;
1201 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1202{
1203 Elf_Internal_Ehdr * i_ehdrp;
1204
1205 i_ehdrp = elf_elfheader (abfd);
1206
d952f17a
AM
1207 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1208 {
1209 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1210 }
1211 else
1212 {
1213 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1214 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1215 }
15bda425
JL
1216}
1217
1218/* Create function descriptor section (.opd). This section is called .opd
1219 because it contains "official prodecure descriptors". The "official"
1220 refers to the fact that these descriptors are used when taking the address
1221 of a procedure, thus ensuring a unique address for each procedure. */
1222
1223static boolean
1224get_opd (abfd, info, hppa_info)
1225 bfd *abfd;
edd21aca 1226 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1227 struct elf64_hppa_link_hash_table *hppa_info;
1228{
1229 asection *opd;
1230 bfd *dynobj;
1231
1232 opd = hppa_info->opd_sec;
1233 if (!opd)
1234 {
1235 dynobj = hppa_info->root.dynobj;
1236 if (!dynobj)
1237 hppa_info->root.dynobj = dynobj = abfd;
1238
1239 opd = bfd_make_section (dynobj, ".opd");
1240 if (!opd
1241 || !bfd_set_section_flags (dynobj, opd,
1242 (SEC_ALLOC
1243 | SEC_LOAD
1244 | SEC_HAS_CONTENTS
1245 | SEC_IN_MEMORY
1246 | SEC_LINKER_CREATED))
1247 || !bfd_set_section_alignment (abfd, opd, 3))
1248 {
1249 BFD_ASSERT (0);
1250 return false;
1251 }
1252
1253 hppa_info->opd_sec = opd;
1254 }
1255
1256 return true;
1257}
1258
1259/* Create the PLT section. */
1260
1261static boolean
1262get_plt (abfd, info, hppa_info)
1263 bfd *abfd;
edd21aca 1264 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1265 struct elf64_hppa_link_hash_table *hppa_info;
1266{
1267 asection *plt;
1268 bfd *dynobj;
1269
1270 plt = hppa_info->plt_sec;
1271 if (!plt)
1272 {
1273 dynobj = hppa_info->root.dynobj;
1274 if (!dynobj)
1275 hppa_info->root.dynobj = dynobj = abfd;
1276
1277 plt = bfd_make_section (dynobj, ".plt");
1278 if (!plt
1279 || !bfd_set_section_flags (dynobj, plt,
1280 (SEC_ALLOC
1281 | SEC_LOAD
1282 | SEC_HAS_CONTENTS
1283 | SEC_IN_MEMORY
1284 | SEC_LINKER_CREATED))
1285 || !bfd_set_section_alignment (abfd, plt, 3))
1286 {
1287 BFD_ASSERT (0);
1288 return false;
1289 }
1290
1291 hppa_info->plt_sec = plt;
1292 }
1293
1294 return true;
1295}
1296
1297/* Create the DLT section. */
1298
1299static boolean
1300get_dlt (abfd, info, hppa_info)
1301 bfd *abfd;
edd21aca 1302 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1303 struct elf64_hppa_link_hash_table *hppa_info;
1304{
1305 asection *dlt;
1306 bfd *dynobj;
1307
1308 dlt = hppa_info->dlt_sec;
1309 if (!dlt)
1310 {
1311 dynobj = hppa_info->root.dynobj;
1312 if (!dynobj)
1313 hppa_info->root.dynobj = dynobj = abfd;
1314
1315 dlt = bfd_make_section (dynobj, ".dlt");
1316 if (!dlt
1317 || !bfd_set_section_flags (dynobj, dlt,
1318 (SEC_ALLOC
1319 | SEC_LOAD
1320 | SEC_HAS_CONTENTS
1321 | SEC_IN_MEMORY
1322 | SEC_LINKER_CREATED))
1323 || !bfd_set_section_alignment (abfd, dlt, 3))
1324 {
1325 BFD_ASSERT (0);
1326 return false;
1327 }
1328
1329 hppa_info->dlt_sec = dlt;
1330 }
1331
1332 return true;
1333}
1334
1335/* Create the stubs section. */
1336
1337static boolean
1338get_stub (abfd, info, hppa_info)
1339 bfd *abfd;
edd21aca 1340 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1341 struct elf64_hppa_link_hash_table *hppa_info;
1342{
1343 asection *stub;
1344 bfd *dynobj;
1345
1346 stub = hppa_info->stub_sec;
1347 if (!stub)
1348 {
1349 dynobj = hppa_info->root.dynobj;
1350 if (!dynobj)
1351 hppa_info->root.dynobj = dynobj = abfd;
1352
1353 stub = bfd_make_section (dynobj, ".stub");
1354 if (!stub
1355 || !bfd_set_section_flags (dynobj, stub,
1356 (SEC_ALLOC
1357 | SEC_LOAD
1358 | SEC_HAS_CONTENTS
1359 | SEC_IN_MEMORY
1360 | SEC_READONLY
1361 | SEC_LINKER_CREATED))
1362 || !bfd_set_section_alignment (abfd, stub, 3))
1363 {
1364 BFD_ASSERT (0);
1365 return false;
1366 }
1367
1368 hppa_info->stub_sec = stub;
1369 }
1370
1371 return true;
1372}
1373
1374/* Create sections necessary for dynamic linking. This is only a rough
1375 cut and will likely change as we learn more about the somewhat
1376 unusual dynamic linking scheme HP uses.
1377
1378 .stub:
1379 Contains code to implement cross-space calls. The first time one
1380 of the stubs is used it will call into the dynamic linker, later
1381 calls will go straight to the target.
1382
1383 The only stub we support right now looks like
1384
1385 ldd OFFSET(%dp),%r1
1386 bve %r0(%r1)
1387 ldd OFFSET+8(%dp),%dp
1388
1389 Other stubs may be needed in the future. We may want the remove
1390 the break/nop instruction. It is only used right now to keep the
1391 offset of a .plt entry and a .stub entry in sync.
1392
1393 .dlt:
1394 This is what most people call the .got. HP used a different name.
1395 Losers.
1396
1397 .rela.dlt:
1398 Relocations for the DLT.
1399
1400 .plt:
1401 Function pointers as address,gp pairs.
1402
1403 .rela.plt:
1404 Should contain dynamic IPLT (and EPLT?) relocations.
1405
1406 .opd:
fe8bc63d 1407 FPTRS
15bda425
JL
1408
1409 .rela.opd:
1410 EPLT relocations for symbols exported from shared libraries. */
1411
1412static boolean
1413elf64_hppa_create_dynamic_sections (abfd, info)
1414 bfd *abfd;
1415 struct bfd_link_info *info;
1416{
1417 asection *s;
1418
1419 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1420 return false;
1421
1422 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1423 return false;
1424
1425 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1426 return false;
1427
1428 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1429 return false;
1430
1431 s = bfd_make_section(abfd, ".rela.dlt");
1432 if (s == NULL
1433 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1434 | SEC_HAS_CONTENTS
1435 | SEC_IN_MEMORY
1436 | SEC_READONLY
1437 | SEC_LINKER_CREATED))
1438 || !bfd_set_section_alignment (abfd, s, 3))
1439 return false;
1440 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1441
1442 s = bfd_make_section(abfd, ".rela.plt");
1443 if (s == NULL
1444 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1445 | SEC_HAS_CONTENTS
1446 | SEC_IN_MEMORY
1447 | SEC_READONLY
1448 | SEC_LINKER_CREATED))
1449 || !bfd_set_section_alignment (abfd, s, 3))
1450 return false;
1451 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1452
1453 s = bfd_make_section(abfd, ".rela.data");
1454 if (s == NULL
1455 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1456 | SEC_HAS_CONTENTS
1457 | SEC_IN_MEMORY
1458 | SEC_READONLY
1459 | SEC_LINKER_CREATED))
1460 || !bfd_set_section_alignment (abfd, s, 3))
1461 return false;
1462 elf64_hppa_hash_table (info)->other_rel_sec = s;
1463
1464 s = bfd_make_section(abfd, ".rela.opd");
1465 if (s == NULL
1466 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1467 | SEC_HAS_CONTENTS
1468 | SEC_IN_MEMORY
1469 | SEC_READONLY
1470 | SEC_LINKER_CREATED))
1471 || !bfd_set_section_alignment (abfd, s, 3))
1472 return false;
1473 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1474
1475 return true;
1476}
1477
1478/* Allocate dynamic relocations for those symbols that turned out
1479 to be dynamic. */
1480
1481static boolean
1482allocate_dynrel_entries (dyn_h, data)
1483 struct elf64_hppa_dyn_hash_entry *dyn_h;
1484 PTR data;
1485{
1486 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1487 struct elf64_hppa_link_hash_table *hppa_info;
1488 struct elf64_hppa_dyn_reloc_entry *rent;
1489 boolean dynamic_symbol, shared;
1490
1491 hppa_info = elf64_hppa_hash_table (x->info);
1492 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1493 shared = x->info->shared;
1494
1495 /* We may need to allocate relocations for a non-dynamic symbol
1496 when creating a shared library. */
1497 if (!dynamic_symbol && !shared)
1498 return true;
1499
1500 /* Take care of the normal data relocations. */
1501
1502 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1503 {
d663e1cd
JL
1504 /* Allocate one iff we are building a shared library, the relocation
1505 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1506 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1507 continue;
1508
15bda425
JL
1509 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1510
1511 /* Make sure this symbol gets into the dynamic symbol table if it is
1512 not already recorded. ?!? This should not be in the loop since
1513 the symbol need only be added once. */
47b7c2db
AM
1514 if (dyn_h->h == 0
1515 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
15bda425
JL
1516 if (!_bfd_elf64_link_record_local_dynamic_symbol
1517 (x->info, rent->sec->owner, dyn_h->sym_indx))
1518 return false;
1519 }
1520
1521 /* Take care of the GOT and PLT relocations. */
1522
1523 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1524 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1525
1526 /* If we are building a shared library, then every symbol that has an
1527 opd entry will need an EPLT relocation to relocate the symbol's address
1528 and __gp value based on the runtime load address. */
1529 if (shared && dyn_h->want_opd)
1530 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1531
1532 if (dyn_h->want_plt && dynamic_symbol)
1533 {
1534 bfd_size_type t = 0;
1535
1536 /* Dynamic symbols get one IPLT relocation. Local symbols in
1537 shared libraries get two REL relocations. Local symbols in
1538 main applications get nothing. */
1539 if (dynamic_symbol)
1540 t = sizeof (Elf64_External_Rela);
1541 else if (shared)
1542 t = 2 * sizeof (Elf64_External_Rela);
1543
1544 hppa_info->plt_rel_sec->_raw_size += t;
1545 }
1546
1547 return true;
1548}
1549
1550/* Adjust a symbol defined by a dynamic object and referenced by a
1551 regular object. */
1552
1553static boolean
1554elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1555 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1556 struct elf_link_hash_entry *h;
1557{
1558 /* ??? Undefined symbols with PLT entries should be re-defined
1559 to be the PLT entry. */
1560
1561 /* If this is a weak symbol, and there is a real definition, the
1562 processor independent code will have arranged for us to see the
1563 real definition first, and we can just use the same value. */
1564 if (h->weakdef != NULL)
1565 {
1566 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1567 || h->weakdef->root.type == bfd_link_hash_defweak);
1568 h->root.u.def.section = h->weakdef->root.u.def.section;
1569 h->root.u.def.value = h->weakdef->root.u.def.value;
1570 return true;
1571 }
1572
1573 /* If this is a reference to a symbol defined by a dynamic object which
1574 is not a function, we might allocate the symbol in our .dynbss section
1575 and allocate a COPY dynamic relocation.
1576
1577 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1578 of hackery. */
1579
1580 return true;
1581}
1582
47b7c2db
AM
1583/* This function is called via elf_link_hash_traverse to mark millicode
1584 symbols with a dynindx of -1 and to remove the string table reference
1585 from the dynamic symbol table. If the symbol is not a millicode symbol,
1586 elf64_hppa_mark_exported_functions is called. */
1587
1588static boolean
1589elf64_hppa_mark_milli_and_exported_functions (h, data)
1590 struct elf_link_hash_entry *h;
1591 PTR data;
1592{
1593 struct bfd_link_info *info = (struct bfd_link_info *)data;
1594 struct elf_link_hash_entry *elf = h;
1595
1596 if (elf->root.type == bfd_link_hash_warning)
1597 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1598
1599 if (elf->type == STT_PARISC_MILLI)
1600 {
1601 if (elf->dynindx != -1)
1602 {
1603 elf->dynindx = -1;
1604 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1605 elf->dynstr_index);
1606 }
1607 return true;
1608 }
1609
1610 return elf64_hppa_mark_exported_functions (h, data);
1611}
1612
15bda425
JL
1613/* Set the final sizes of the dynamic sections and allocate memory for
1614 the contents of our special sections. */
1615
1616static boolean
1617elf64_hppa_size_dynamic_sections (output_bfd, info)
1618 bfd *output_bfd;
1619 struct bfd_link_info *info;
1620{
1621 bfd *dynobj;
1622 asection *s;
1623 boolean plt;
1624 boolean relocs;
1625 boolean reltext;
15bda425
JL
1626 struct elf64_hppa_allocate_data data;
1627 struct elf64_hppa_link_hash_table *hppa_info;
1628
1629 hppa_info = elf64_hppa_hash_table (info);
1630
1631 dynobj = elf_hash_table (info)->dynobj;
1632 BFD_ASSERT (dynobj != NULL);
1633
47b7c2db
AM
1634 /* Mark each function this program exports so that we will allocate
1635 space in the .opd section for each function's FPTR. If we are
1636 creating dynamic sections, change the dynamic index of millicode
1637 symbols to -1 and remove them from the string table for .dynstr.
1638
1639 We have to traverse the main linker hash table since we have to
1640 find functions which may not have been mentioned in any relocs. */
1641 elf_link_hash_traverse (elf_hash_table (info),
1642 (elf_hash_table (info)->dynamic_sections_created
1643 ? elf64_hppa_mark_milli_and_exported_functions
1644 : elf64_hppa_mark_exported_functions),
1645 info);
1646
15bda425
JL
1647 if (elf_hash_table (info)->dynamic_sections_created)
1648 {
1649 /* Set the contents of the .interp section to the interpreter. */
1650 if (! info->shared)
1651 {
1652 s = bfd_get_section_by_name (dynobj, ".interp");
1653 BFD_ASSERT (s != NULL);
1654 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1655 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1656 }
1657 }
1658 else
1659 {
1660 /* We may have created entries in the .rela.got section.
1661 However, if we are not creating the dynamic sections, we will
1662 not actually use these entries. Reset the size of .rela.dlt,
1663 which will cause it to get stripped from the output file
1664 below. */
1665 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1666 if (s != NULL)
1667 s->_raw_size = 0;
1668 }
1669
1670 /* Allocate the GOT entries. */
1671
1672 data.info = info;
1673 if (elf64_hppa_hash_table (info)->dlt_sec)
1674 {
1675 data.ofs = 0x0;
1676 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1677 allocate_global_data_dlt, &data);
1678 hppa_info->dlt_sec->_raw_size = data.ofs;
1679
1680 data.ofs = 0x0;
1681 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1682 allocate_global_data_plt, &data);
1683 hppa_info->plt_sec->_raw_size = data.ofs;
1684
1685 data.ofs = 0x0;
1686 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1687 allocate_global_data_stub, &data);
1688 hppa_info->stub_sec->_raw_size = data.ofs;
1689 }
1690
15bda425
JL
1691 /* Allocate space for entries in the .opd section. */
1692 if (elf64_hppa_hash_table (info)->opd_sec)
1693 {
1694 data.ofs = 0;
1695 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1696 allocate_global_data_opd, &data);
1697 hppa_info->opd_sec->_raw_size = data.ofs;
1698 }
1699
1700 /* Now allocate space for dynamic relocations, if necessary. */
1701 if (hppa_info->root.dynamic_sections_created)
1702 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1703 allocate_dynrel_entries, &data);
1704
1705 /* The sizes of all the sections are set. Allocate memory for them. */
1706 plt = false;
1707 relocs = false;
1708 reltext = false;
1709 for (s = dynobj->sections; s != NULL; s = s->next)
1710 {
1711 const char *name;
1712 boolean strip;
1713
1714 if ((s->flags & SEC_LINKER_CREATED) == 0)
1715 continue;
1716
1717 /* It's OK to base decisions on the section name, because none
1718 of the dynobj section names depend upon the input files. */
1719 name = bfd_get_section_name (dynobj, s);
1720
1721 strip = 0;
1722
1723 if (strcmp (name, ".plt") == 0)
1724 {
d663e1cd 1725 /* Strip this section if we don't need it; see the comment below. */
15bda425
JL
1726 if (s->_raw_size == 0)
1727 {
15bda425
JL
1728 strip = true;
1729 }
1730 else
1731 {
1732 /* Remember whether there is a PLT. */
1733 plt = true;
1734 }
1735 }
1736 else if (strcmp (name, ".dlt") == 0)
1737 {
d663e1cd 1738 /* Strip this section if we don't need it; see the comment below. */
15bda425
JL
1739 if (s->_raw_size == 0)
1740 {
15bda425
JL
1741 strip = true;
1742 }
1743 }
1744 else if (strcmp (name, ".opd") == 0)
1745 {
d663e1cd 1746 /* Strip this section if we don't need it; see the comment below. */
15bda425
JL
1747 if (s->_raw_size == 0)
1748 {
15bda425
JL
1749 strip = true;
1750 }
1751 }
d663e1cd 1752 else if (strncmp (name, ".rela", 5) == 0)
15bda425 1753 {
d663e1cd
JL
1754 /* If we don't need this section, strip it from the output file.
1755 This is mostly to handle .rela.bss and .rela.plt. We must
1756 create both sections in create_dynamic_sections, because they
1757 must be created before the linker maps input sections to output
1758 sections. The linker does that before adjust_dynamic_symbol
1759 is called, and it is that function which decides whether
1760 anything needs to go into these sections. */
15bda425
JL
1761 if (s->_raw_size == 0)
1762 {
1763 /* If we don't need this section, strip it from the
1764 output file. This is mostly to handle .rela.bss and
1765 .rela.plt. We must create both sections in
1766 create_dynamic_sections, because they must be created
1767 before the linker maps input sections to output
1768 sections. The linker does that before
1769 adjust_dynamic_symbol is called, and it is that
1770 function which decides whether anything needs to go
1771 into these sections. */
1772 strip = true;
1773 }
1774 else
1775 {
1776 asection *target;
1777
1778 /* Remember whether there are any reloc sections other
1779 than .rela.plt. */
1780 if (strcmp (name, ".rela.plt") != 0)
1781 {
1782 const char *outname;
1783
1784 relocs = true;
1785
1786 /* If this relocation section applies to a read only
1787 section, then we probably need a DT_TEXTREL
1788 entry. The entries in the .rela.plt section
1789 really apply to the .got section, which we
1790 created ourselves and so know is not readonly. */
1791 outname = bfd_get_section_name (output_bfd,
1792 s->output_section);
1793 target = bfd_get_section_by_name (output_bfd, outname + 4);
1794 if (target != NULL
1795 && (target->flags & SEC_READONLY) != 0
1796 && (target->flags & SEC_ALLOC) != 0)
1797 reltext = true;
1798 }
1799
1800 /* We use the reloc_count field as a counter if we need
1801 to copy relocs into the output file. */
1802 s->reloc_count = 0;
1803 }
1804 }
1805 else if (strncmp (name, ".dlt", 4) != 0
1806 && strcmp (name, ".stub") != 0
1807 && strcmp (name, ".got") != 0)
1808 {
1809 /* It's not one of our sections, so don't allocate space. */
1810 continue;
1811 }
1812
1813 if (strip)
1814 {
1815 _bfd_strip_section_from_output (info, s);
1816 continue;
1817 }
1818
1819 /* Allocate memory for the section contents if it has not
832d951b
AM
1820 been allocated already. We use bfd_zalloc here in case
1821 unused entries are not reclaimed before the section's
1822 contents are written out. This should not happen, but this
1823 way if it does, we get a R_PARISC_NONE reloc instead of
1824 garbage. */
15bda425
JL
1825 if (s->contents == NULL)
1826 {
7a9af8c4 1827 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
15bda425
JL
1828 if (s->contents == NULL && s->_raw_size != 0)
1829 return false;
1830 }
1831 }
1832
1833 if (elf_hash_table (info)->dynamic_sections_created)
1834 {
1835 /* Always create a DT_PLTGOT. It actually has nothing to do with
1836 the PLT, it is how we communicate the __gp value of a load
1837 module to the dynamic linker. */
dc810e39
AM
1838#define add_dynamic_entry(TAG, VAL) \
1839 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1840
1841 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1842 || !add_dynamic_entry (DT_PLTGOT, 0))
15bda425
JL
1843 return false;
1844
1845 /* Add some entries to the .dynamic section. We fill in the
1846 values later, in elf64_hppa_finish_dynamic_sections, but we
1847 must add the entries now so that we get the correct size for
1848 the .dynamic section. The DT_DEBUG entry is filled in by the
1849 dynamic linker and used by the debugger. */
1850 if (! info->shared)
1851 {
dc810e39
AM
1852 if (!add_dynamic_entry (DT_DEBUG, 0)
1853 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1854 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
15bda425
JL
1855 return false;
1856 }
1857
1858 if (plt)
1859 {
dc810e39
AM
1860 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1861 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1862 || !add_dynamic_entry (DT_JMPREL, 0))
15bda425
JL
1863 return false;
1864 }
1865
1866 if (relocs)
1867 {
dc810e39
AM
1868 if (!add_dynamic_entry (DT_RELA, 0)
1869 || !add_dynamic_entry (DT_RELASZ, 0)
1870 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
15bda425
JL
1871 return false;
1872 }
1873
1874 if (reltext)
1875 {
dc810e39 1876 if (!add_dynamic_entry (DT_TEXTREL, 0))
15bda425 1877 return false;
d6cf2879 1878 info->flags |= DF_TEXTREL;
15bda425
JL
1879 }
1880 }
dc810e39 1881#undef add_dynamic_entry
15bda425
JL
1882
1883 return true;
1884}
1885
1886/* Called after we have output the symbol into the dynamic symbol
1887 table, but before we output the symbol into the normal symbol
1888 table.
1889
1890 For some symbols we had to change their address when outputting
1891 the dynamic symbol table. We undo that change here so that
1892 the symbols have their expected value in the normal symbol
1893 table. Ick. */
1894
1895static boolean
1896elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1897 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1898 struct bfd_link_info *info;
1899 const char *name;
1900 Elf_Internal_Sym *sym;
edd21aca 1901 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1902{
1903 struct elf64_hppa_link_hash_table *hppa_info;
1904 struct elf64_hppa_dyn_hash_entry *dyn_h;
1905
1906 /* We may be called with the file symbol or section symbols.
1907 They never need munging, so it is safe to ignore them. */
1908 if (!name)
1909 return true;
1910
1911 /* Get the PA dyn_symbol (if any) associated with NAME. */
1912 hppa_info = elf64_hppa_hash_table (info);
1913 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1914 name, false, false);
1915
832d951b
AM
1916 /* Function symbols for which we created .opd entries *may* have been
1917 munged by finish_dynamic_symbol and have to be un-munged here.
1918
1919 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1920 into non-dynamic ones, so we initialize st_shndx to -1 in
1921 mark_exported_functions and check to see if it was overwritten
1922 here instead of just checking dyn_h->h->dynindx. */
1923 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1924 {
1925 /* Restore the saved value and section index. */
1926 sym->st_value = dyn_h->st_value;
fe8bc63d 1927 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1928 }
1929
1930 return true;
1931}
1932
1933/* Finish up dynamic symbol handling. We set the contents of various
1934 dynamic sections here. */
1935
1936static boolean
1937elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1938 bfd *output_bfd;
1939 struct bfd_link_info *info;
1940 struct elf_link_hash_entry *h;
1941 Elf_Internal_Sym *sym;
1942{
1943 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1944 struct elf64_hppa_link_hash_table *hppa_info;
1945 struct elf64_hppa_dyn_hash_entry *dyn_h;
1946
1947 hppa_info = elf64_hppa_hash_table (info);
1948 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1949 h->root.root.string, false, false);
1950
1951 stub = hppa_info->stub_sec;
1952 splt = hppa_info->plt_sec;
1953 sdlt = hppa_info->dlt_sec;
1954 sopd = hppa_info->opd_sec;
1955 spltrel = hppa_info->plt_rel_sec;
1956 sdltrel = hppa_info->dlt_rel_sec;
1957
15bda425
JL
1958 /* Incredible. It is actually necessary to NOT use the symbol's real
1959 value when building the dynamic symbol table for a shared library.
1960 At least for symbols that refer to functions.
1961
1962 We will store a new value and section index into the symbol long
1963 enough to output it into the dynamic symbol table, then we restore
1964 the original values (in elf64_hppa_link_output_symbol_hook). */
1965 if (dyn_h && dyn_h->want_opd)
1966 {
d663e1cd
JL
1967 BFD_ASSERT (sopd != NULL)
1968
15bda425
JL
1969 /* Save away the original value and section index so that we
1970 can restore them later. */
1971 dyn_h->st_value = sym->st_value;
1972 dyn_h->st_shndx = sym->st_shndx;
1973
1974 /* For the dynamic symbol table entry, we want the value to be
1975 address of this symbol's entry within the .opd section. */
1976 sym->st_value = (dyn_h->opd_offset
1977 + sopd->output_offset
1978 + sopd->output_section->vma);
1979 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1980 sopd->output_section);
1981 }
1982
1983 /* Initialize a .plt entry if requested. */
1984 if (dyn_h && dyn_h->want_plt
1985 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1986 {
1987 bfd_vma value;
1988 Elf_Internal_Rela rel;
1989
d663e1cd
JL
1990 BFD_ASSERT (splt != NULL && spltrel != NULL)
1991
15bda425
JL
1992 /* We do not actually care about the value in the PLT entry
1993 if we are creating a shared library and the symbol is
1994 still undefined, we create a dynamic relocation to fill
1995 in the correct value. */
1996 if (info->shared && h->root.type == bfd_link_hash_undefined)
1997 value = 0;
1998 else
1999 value = (h->root.u.def.value + h->root.u.def.section->vma);
2000
fe8bc63d 2001 /* Fill in the entry in the procedure linkage table.
15bda425
JL
2002
2003 The format of a plt entry is
fe8bc63d 2004 <funcaddr> <__gp>.
15bda425
JL
2005
2006 plt_offset is the offset within the PLT section at which to
fe8bc63d 2007 install the PLT entry.
15bda425
JL
2008
2009 We are modifying the in-memory PLT contents here, so we do not add
2010 in the output_offset of the PLT section. */
2011
2012 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2013 value = _bfd_get_gp_value (splt->output_section->owner);
2014 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2015
2016 /* Create a dynamic IPLT relocation for this entry.
2017
2018 We are creating a relocation in the output file's PLT section,
2019 which is included within the DLT secton. So we do need to include
2020 the PLT's output_offset in the computation of the relocation's
2021 address. */
2022 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2023 + splt->output_section->vma);
2024 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2025 rel.r_addend = 0;
2026
2027 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
2028 (((Elf64_External_Rela *)
2029 spltrel->contents)
2030 + spltrel->reloc_count));
2031 spltrel->reloc_count++;
2032 }
2033
2034 /* Initialize an external call stub entry if requested. */
2035 if (dyn_h && dyn_h->want_stub
2036 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2037 {
2038 bfd_vma value;
2039 int insn;
b352eebf 2040 unsigned int max_offset;
15bda425 2041
d663e1cd
JL
2042 BFD_ASSERT (stub != NULL)
2043
15bda425
JL
2044 /* Install the generic stub template.
2045
2046 We are modifying the contents of the stub section, so we do not
2047 need to include the stub section's output_offset here. */
2048 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2049
2050 /* Fix up the first ldd instruction.
2051
2052 We are modifying the contents of the STUB section in memory,
fe8bc63d 2053 so we do not need to include its output offset in this computation.
15bda425
JL
2054
2055 Note the plt_offset value is the value of the PLT entry relative to
2056 the start of the PLT section. These instructions will reference
2057 data relative to the value of __gp, which may not necessarily have
2058 the same address as the start of the PLT section.
2059
2060 gp_offset contains the offset of __gp within the PLT section. */
2061 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 2062
15bda425 2063 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
2064 if (output_bfd->arch_info->mach >= 25)
2065 {
2066 /* Wide mode allows 16 bit offsets. */
2067 max_offset = 32768;
2068 insn &= ~ 0xfff1;
dc810e39 2069 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2070 }
2071 else
2072 {
2073 max_offset = 8192;
2074 insn &= ~ 0x3ff1;
dc810e39 2075 insn |= re_assemble_14 ((int) value);
b352eebf
AM
2076 }
2077
2078 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2079 {
2080 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2081 dyn_h->root.string,
2082 (long) value);
2083 return false;
2084 }
2085
dc810e39 2086 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2087 stub->contents + dyn_h->stub_offset);
2088
2089 /* Fix up the second ldd instruction. */
b352eebf 2090 value += 8;
15bda425 2091 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2092 if (output_bfd->arch_info->mach >= 25)
2093 {
2094 insn &= ~ 0xfff1;
dc810e39 2095 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2096 }
2097 else
2098 {
2099 insn &= ~ 0x3ff1;
dc810e39 2100 insn |= re_assemble_14 ((int) value);
b352eebf 2101 }
dc810e39 2102 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2103 stub->contents + dyn_h->stub_offset + 8);
2104 }
2105
15bda425
JL
2106 return true;
2107}
2108
2109/* The .opd section contains FPTRs for each function this file
2110 exports. Initialize the FPTR entries. */
2111
2112static boolean
2113elf64_hppa_finalize_opd (dyn_h, data)
2114 struct elf64_hppa_dyn_hash_entry *dyn_h;
2115 PTR data;
2116{
2117 struct bfd_link_info *info = (struct bfd_link_info *)data;
2118 struct elf64_hppa_link_hash_table *hppa_info;
3db4b612 2119 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2120 asection *sopd;
2121 asection *sopdrel;
2122
2123 hppa_info = elf64_hppa_hash_table (info);
2124 sopd = hppa_info->opd_sec;
2125 sopdrel = hppa_info->opd_rel_sec;
2126
3db4b612 2127 if (h && dyn_h->want_opd)
15bda425
JL
2128 {
2129 bfd_vma value;
2130
fe8bc63d 2131 /* The first two words of an .opd entry are zero.
15bda425
JL
2132
2133 We are modifying the contents of the OPD section in memory, so we
2134 do not need to include its output offset in this computation. */
2135 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2136
2137 value = (h->root.u.def.value
2138 + h->root.u.def.section->output_section->vma
2139 + h->root.u.def.section->output_offset);
2140
2141 /* The next word is the address of the function. */
2142 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2143
2144 /* The last word is our local __gp value. */
2145 value = _bfd_get_gp_value (sopd->output_section->owner);
2146 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2147 }
2148
2149 /* If we are generating a shared library, we must generate EPLT relocations
2150 for each entry in the .opd, even for static functions (they may have
2151 had their address taken). */
2152 if (info->shared && dyn_h && dyn_h->want_opd)
2153 {
2154 Elf64_Internal_Rela rel;
15bda425
JL
2155 int dynindx;
2156
2157 /* We may need to do a relocation against a local symbol, in
2158 which case we have to look up it's dynamic symbol index off
2159 the local symbol hash table. */
2160 if (h && h->dynindx != -1)
2161 dynindx = h->dynindx;
2162 else
2163 dynindx
2164 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2165 dyn_h->sym_indx);
2166
2167 /* The offset of this relocation is the absolute address of the
2168 .opd entry for this symbol. */
2169 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2170 + sopd->output_section->vma);
2171
2172 /* If H is non-null, then we have an external symbol.
2173
2174 It is imperative that we use a different dynamic symbol for the
2175 EPLT relocation if the symbol has global scope.
2176
2177 In the dynamic symbol table, the function symbol will have a value
2178 which is address of the function's .opd entry.
2179
2180 Thus, we can not use that dynamic symbol for the EPLT relocation
2181 (if we did, the data in the .opd would reference itself rather
2182 than the actual address of the function). Instead we have to use
2183 a new dynamic symbol which has the same value as the original global
fe8bc63d 2184 function symbol.
15bda425
JL
2185
2186 We prefix the original symbol with a "." and use the new symbol in
2187 the EPLT relocation. This new symbol has already been recorded in
2188 the symbol table, we just have to look it up and use it.
2189
2190 We do not have such problems with static functions because we do
2191 not make their addresses in the dynamic symbol table point to
2192 the .opd entry. Ultimately this should be safe since a static
2193 function can not be directly referenced outside of its shared
2194 library.
2195
2196 We do have to play similar games for FPTR relocations in shared
2197 libraries, including those for static symbols. See the FPTR
2198 handling in elf64_hppa_finalize_dynreloc. */
2199 if (h)
2200 {
2201 char *new_name;
2202 struct elf_link_hash_entry *nh;
2203
2204 new_name = alloca (strlen (h->root.root.string) + 2);
2205 new_name[0] = '.';
2206 strcpy (new_name + 1, h->root.root.string);
2207
2208 nh = elf_link_hash_lookup (elf_hash_table (info),
2209 new_name, false, false, false);
2210
2211 /* All we really want from the new symbol is its dynamic
2212 symbol index. */
2213 dynindx = nh->dynindx;
2214 }
2215
2216 rel.r_addend = 0;
2217 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2218
2219 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2220 (((Elf64_External_Rela *)
2221 sopdrel->contents)
2222 + sopdrel->reloc_count));
2223 sopdrel->reloc_count++;
2224 }
2225 return true;
2226}
2227
2228/* The .dlt section contains addresses for items referenced through the
2229 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2230 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2231
2232static boolean
2233elf64_hppa_finalize_dlt (dyn_h, data)
2234 struct elf64_hppa_dyn_hash_entry *dyn_h;
2235 PTR data;
2236{
2237 struct bfd_link_info *info = (struct bfd_link_info *)data;
2238 struct elf64_hppa_link_hash_table *hppa_info;
2239 asection *sdlt, *sdltrel;
3db4b612 2240 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2241
2242 hppa_info = elf64_hppa_hash_table (info);
2243
2244 sdlt = hppa_info->dlt_sec;
2245 sdltrel = hppa_info->dlt_rel_sec;
2246
2247 /* H/DYN_H may refer to a local variable and we know it's
2248 address, so there is no need to create a relocation. Just install
2249 the proper value into the DLT, note this shortcut can not be
2250 skipped when building a shared library. */
3db4b612 2251 if (! info->shared && h && dyn_h->want_dlt)
15bda425
JL
2252 {
2253 bfd_vma value;
2254
2255 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2256 to point to the FPTR entry in the .opd section.
15bda425
JL
2257
2258 We include the OPD's output offset in this computation as
2259 we are referring to an absolute address in the resulting
2260 object file. */
2261 if (dyn_h->want_opd)
2262 {
2263 value = (dyn_h->opd_offset
2264 + hppa_info->opd_sec->output_offset
2265 + hppa_info->opd_sec->output_section->vma);
2266 }
3db4b612 2267 else if (h->root.u.def.section)
15bda425 2268 {
3db4b612 2269 value = h->root.u.def.value + h->root.u.def.section->output_offset;
15bda425
JL
2270 if (h->root.u.def.section->output_section)
2271 value += h->root.u.def.section->output_section->vma;
2272 else
2273 value += h->root.u.def.section->vma;
2274 }
3db4b612
JL
2275 else
2276 /* We have an undefined function reference. */
2277 value = 0;
15bda425
JL
2278
2279 /* We do not need to include the output offset of the DLT section
2280 here because we are modifying the in-memory contents. */
2281 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2282 }
2283
2284 /* Create a relocation for the DLT entry assocated with this symbol.
2285 When building a shared library the symbol does not have to be dynamic. */
2286 if (dyn_h->want_dlt
2287 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2288 {
2289 Elf64_Internal_Rela rel;
2290 int dynindx;
2291
2292 /* We may need to do a relocation against a local symbol, in
2293 which case we have to look up it's dynamic symbol index off
2294 the local symbol hash table. */
2295 if (h && h->dynindx != -1)
2296 dynindx = h->dynindx;
2297 else
2298 dynindx
2299 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2300 dyn_h->sym_indx);
2301
15bda425
JL
2302 /* Create a dynamic relocation for this entry. Do include the output
2303 offset of the DLT entry since we need an absolute address in the
2304 resulting object file. */
2305 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2306 + sdlt->output_section->vma);
2307 if (h && h->type == STT_FUNC)
2308 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2309 else
2310 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2311 rel.r_addend = 0;
2312
2313 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2314 (((Elf64_External_Rela *)
2315 sdltrel->contents)
2316 + sdltrel->reloc_count));
2317 sdltrel->reloc_count++;
2318 }
2319 return true;
2320}
2321
2322/* Finalize the dynamic relocations. Specifically the FPTR relocations
2323 for dynamic functions used to initialize static data. */
2324
2325static boolean
2326elf64_hppa_finalize_dynreloc (dyn_h, data)
2327 struct elf64_hppa_dyn_hash_entry *dyn_h;
2328 PTR data;
2329{
2330 struct bfd_link_info *info = (struct bfd_link_info *)data;
2331 struct elf64_hppa_link_hash_table *hppa_info;
2332 struct elf_link_hash_entry *h;
2333 int dynamic_symbol;
2334
2335 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2336
2337 if (!dynamic_symbol && !info->shared)
2338 return true;
2339
2340 if (dyn_h->reloc_entries)
2341 {
2342 struct elf64_hppa_dyn_reloc_entry *rent;
2343 int dynindx;
2344
2345 hppa_info = elf64_hppa_hash_table (info);
2346 h = dyn_h->h;
2347
2348 /* We may need to do a relocation against a local symbol, in
2349 which case we have to look up it's dynamic symbol index off
2350 the local symbol hash table. */
2351 if (h && h->dynindx != -1)
2352 dynindx = h->dynindx;
2353 else
2354 dynindx
2355 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2356 dyn_h->sym_indx);
2357
2358 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2359 {
2360 Elf64_Internal_Rela rel;
2361
d663e1cd
JL
2362 /* Allocate one iff we are building a shared library, the relocation
2363 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2364 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2365 continue;
15bda425 2366
fe8bc63d 2367 /* Create a dynamic relocation for this entry.
15bda425
JL
2368
2369 We need the output offset for the reloc's section because
2370 we are creating an absolute address in the resulting object
2371 file. */
2372 rel.r_offset = (rent->offset + rent->sec->output_offset
2373 + rent->sec->output_section->vma);
2374
2375 /* An FPTR64 relocation implies that we took the address of
2376 a function and that the function has an entry in the .opd
2377 section. We want the FPTR64 relocation to reference the
2378 entry in .opd.
2379
2380 We could munge the symbol value in the dynamic symbol table
2381 (in fact we already do for functions with global scope) to point
2382 to the .opd entry. Then we could use that dynamic symbol in
2383 this relocation.
2384
2385 Or we could do something sensible, not munge the symbol's
2386 address and instead just use a different symbol to reference
2387 the .opd entry. At least that seems sensible until you
2388 realize there's no local dynamic symbols we can use for that
2389 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2390
15bda425
JL
2391 We use a section symbol recorded by check_relocs as the
2392 base symbol for the relocation. The addend is the difference
2393 between the section symbol and the address of the .opd entry. */
3db4b612 2394 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
15bda425
JL
2395 {
2396 bfd_vma value, value2;
15bda425
JL
2397
2398 /* First compute the address of the opd entry for this symbol. */
2399 value = (dyn_h->opd_offset
2400 + hppa_info->opd_sec->output_section->vma
2401 + hppa_info->opd_sec->output_offset);
2402
2403 /* Compute the value of the start of the section with
2404 the relocation. */
2405 value2 = (rent->sec->output_section->vma
2406 + rent->sec->output_offset);
2407
2408 /* Compute the difference between the start of the section
2409 with the relocation and the opd entry. */
2410 value -= value2;
fe8bc63d 2411
15bda425
JL
2412 /* The result becomes the addend of the relocation. */
2413 rel.r_addend = value;
2414
2415 /* The section symbol becomes the symbol for the dynamic
2416 relocation. */
2417 dynindx
2418 = _bfd_elf_link_lookup_local_dynindx (info,
2419 rent->sec->owner,
2420 rent->sec_symndx);
2421 }
2422 else
2423 rel.r_addend = rent->addend;
2424
2425 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2426
2427 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2428 &rel,
2429 (((Elf64_External_Rela *)
2430 hppa_info->other_rel_sec->contents)
2431 + hppa_info->other_rel_sec->reloc_count));
2432 hppa_info->other_rel_sec->reloc_count++;
2433 }
2434 }
2435
2436 return true;
2437}
2438
5ac81c74
JL
2439/* Used to decide how to sort relocs in an optimal manner for the
2440 dynamic linker, before writing them out. */
2441
2442static enum elf_reloc_type_class
2443elf64_hppa_reloc_type_class (rela)
2444 const Elf_Internal_Rela *rela;
2445{
2446 if (ELF64_R_SYM (rela->r_info) == 0)
2447 return reloc_class_relative;
2448
2449 switch ((int) ELF64_R_TYPE (rela->r_info))
2450 {
2451 case R_PARISC_IPLT:
2452 return reloc_class_plt;
2453 case R_PARISC_COPY:
2454 return reloc_class_copy;
2455 default:
2456 return reloc_class_normal;
2457 }
2458}
2459
15bda425
JL
2460/* Finish up the dynamic sections. */
2461
2462static boolean
2463elf64_hppa_finish_dynamic_sections (output_bfd, info)
2464 bfd *output_bfd;
2465 struct bfd_link_info *info;
2466{
2467 bfd *dynobj;
2468 asection *sdyn;
2469 struct elf64_hppa_link_hash_table *hppa_info;
2470
2471 hppa_info = elf64_hppa_hash_table (info);
2472
2473 /* Finalize the contents of the .opd section. */
2474 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2475 elf64_hppa_finalize_opd,
2476 info);
2477
2478 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2479 elf64_hppa_finalize_dynreloc,
2480 info);
2481
2482 /* Finalize the contents of the .dlt section. */
2483 dynobj = elf_hash_table (info)->dynobj;
2484 /* Finalize the contents of the .dlt section. */
2485 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2486 elf64_hppa_finalize_dlt,
2487 info);
2488
15bda425
JL
2489 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2490
2491 if (elf_hash_table (info)->dynamic_sections_created)
2492 {
2493 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2494
2495 BFD_ASSERT (sdyn != NULL);
2496
2497 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2498 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2499 for (; dyncon < dynconend; dyncon++)
2500 {
2501 Elf_Internal_Dyn dyn;
2502 asection *s;
2503
2504 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2505
2506 switch (dyn.d_tag)
2507 {
2508 default:
2509 break;
2510
2511 case DT_HP_LOAD_MAP:
2512 /* Compute the absolute address of 16byte scratchpad area
2513 for the dynamic linker.
2514
2515 By convention the linker script will allocate the scratchpad
2516 area at the start of the .data section. So all we have to
2517 to is find the start of the .data section. */
2518 s = bfd_get_section_by_name (output_bfd, ".data");
2519 dyn.d_un.d_ptr = s->vma;
2520 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2521 break;
2522
2523 case DT_PLTGOT:
2524 /* HP's use PLTGOT to set the GOT register. */
2525 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2526 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2527 break;
2528
2529 case DT_JMPREL:
2530 s = hppa_info->plt_rel_sec;
2531 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2532 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2533 break;
2534
2535 case DT_PLTRELSZ:
2536 s = hppa_info->plt_rel_sec;
2537 dyn.d_un.d_val = s->_raw_size;
2538 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2539 break;
2540
2541 case DT_RELA:
2542 s = hppa_info->other_rel_sec;
5ac81c74 2543 if (! s || ! s->_raw_size)
15bda425 2544 s = hppa_info->dlt_rel_sec;
5ac81c74
JL
2545 if (! s || ! s->_raw_size)
2546 s = hppa_info->opd_rel_sec;
15bda425
JL
2547 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2548 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2549 break;
2550
2551 case DT_RELASZ:
2552 s = hppa_info->other_rel_sec;
2553 dyn.d_un.d_val = s->_raw_size;
2554 s = hppa_info->dlt_rel_sec;
2555 dyn.d_un.d_val += s->_raw_size;
2556 s = hppa_info->opd_rel_sec;
2557 dyn.d_un.d_val += s->_raw_size;
2558 /* There is some question about whether or not the size of
2559 the PLT relocs should be included here. HP's tools do
2560 it, so we'll emulate them. */
2561 s = hppa_info->plt_rel_sec;
2562 dyn.d_un.d_val += s->_raw_size;
2563 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2564 break;
2565
2566 }
2567 }
2568 }
2569
2570 return true;
2571}
2572
15bda425
JL
2573/* Return the number of additional phdrs we will need.
2574
2575 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2576 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2577
2578 This routine indicates that the backend needs one additional program
2579 header for that case.
2580
2581 Note we do not have access to the link info structure here, so we have
2582 to guess whether or not we are building a shared library based on the
2583 existence of a .interp section. */
2584
2585static int
2586elf64_hppa_additional_program_headers (abfd)
2587 bfd *abfd;
2588{
2589 asection *s;
2590
2591 /* If we are creating a shared library, then we have to create a
2592 PT_PHDR segment. HP's dynamic linker chokes without it. */
2593 s = bfd_get_section_by_name (abfd, ".interp");
2594 if (! s)
2595 return 1;
2596 return 0;
2597}
2598
2599/* Allocate and initialize any program headers required by this
2600 specific backend.
2601
2602 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2603 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2604
2605 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2606 for the HP linker.
15bda425
JL
2607
2608 Note we do not have access to the link info structure here, so we have
2609 to guess whether or not we are building a shared library based on the
2610 existence of a .interp section. */
2611
2612static boolean
2613elf64_hppa_modify_segment_map (abfd)
2614 bfd *abfd;
2615{
edd21aca 2616 struct elf_segment_map *m;
15bda425
JL
2617 asection *s;
2618
2619 s = bfd_get_section_by_name (abfd, ".interp");
2620 if (! s)
2621 {
2622 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2623 if (m->p_type == PT_PHDR)
2624 break;
2625 if (m == NULL)
2626 {
dc810e39
AM
2627 m = ((struct elf_segment_map *)
2628 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
15bda425
JL
2629 if (m == NULL)
2630 return false;
2631
2632 m->p_type = PT_PHDR;
2633 m->p_flags = PF_R | PF_X;
2634 m->p_flags_valid = 1;
2635 m->p_paddr_valid = 1;
2636 m->includes_phdrs = 1;
2637
2638 m->next = elf_tdata (abfd)->segment_map;
2639 elf_tdata (abfd)->segment_map = m;
2640 }
2641 }
2642
2643 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2644 if (m->p_type == PT_LOAD)
2645 {
0ba2a60e 2646 unsigned int i;
15bda425
JL
2647
2648 for (i = 0; i < m->count; i++)
2649 {
2650 /* The code "hint" is not really a hint. It is a requirement
2651 for certain versions of the HP dynamic linker. Worse yet,
2652 it must be set even if the shared library does not have
2653 any code in its "text" segment (thus the check for .hash
2654 to catch this situation). */
2655 if (m->sections[i]->flags & SEC_CODE
2656 || (strcmp (m->sections[i]->name, ".hash") == 0))
2657 m->p_flags |= (PF_X | PF_HP_CODE);
2658 }
2659 }
2660
2661 return true;
2662}
2663
3fab46d0
AM
2664/* Called when writing out an object file to decide the type of a
2665 symbol. */
2666static int
2667elf64_hppa_elf_get_symbol_type (elf_sym, type)
2668 Elf_Internal_Sym *elf_sym;
2669 int type;
2670{
2671 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2672 return STT_PARISC_MILLI;
2673 else
2674 return type;
2675}
2676
15bda425
JL
2677/* The hash bucket size is the standard one, namely 4. */
2678
2679const struct elf_size_info hppa64_elf_size_info =
2680{
2681 sizeof (Elf64_External_Ehdr),
2682 sizeof (Elf64_External_Phdr),
2683 sizeof (Elf64_External_Shdr),
2684 sizeof (Elf64_External_Rel),
2685 sizeof (Elf64_External_Rela),
2686 sizeof (Elf64_External_Sym),
2687 sizeof (Elf64_External_Dyn),
2688 sizeof (Elf_External_Note),
2689 4,
2690 1,
2691 64, 8,
2692 ELFCLASS64, EV_CURRENT,
2693 bfd_elf64_write_out_phdrs,
2694 bfd_elf64_write_shdrs_and_ehdr,
2695 bfd_elf64_write_relocs,
73ff0d56 2696 bfd_elf64_swap_symbol_in,
15bda425
JL
2697 bfd_elf64_swap_symbol_out,
2698 bfd_elf64_slurp_reloc_table,
2699 bfd_elf64_slurp_symbol_table,
2700 bfd_elf64_swap_dyn_in,
2701 bfd_elf64_swap_dyn_out,
2702 NULL,
2703 NULL,
2704 NULL,
2705 NULL
2706};
2707
2708#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2709#define TARGET_BIG_NAME "elf64-hppa"
2710#define ELF_ARCH bfd_arch_hppa
2711#define ELF_MACHINE_CODE EM_PARISC
2712/* This is not strictly correct. The maximum page size for PA2.0 is
2713 64M. But everything still uses 4k. */
2714#define ELF_MAXPAGESIZE 0x1000
2715#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2716#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2717#define elf_info_to_howto elf_hppa_info_to_howto
2718#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2719
2720#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2721#define elf_backend_object_p elf64_hppa_object_p
2722#define elf_backend_final_write_processing \
2723 elf_hppa_final_write_processing
99c79b2e 2724#define elf_backend_fake_sections elf_hppa_fake_sections
15bda425
JL
2725#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2726
f0fe0e16 2727#define elf_backend_relocate_section elf_hppa_relocate_section
15bda425
JL
2728
2729#define bfd_elf64_bfd_final_link elf_hppa_final_link
2730
2731#define elf_backend_create_dynamic_sections \
2732 elf64_hppa_create_dynamic_sections
2733#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2734
2735#define elf_backend_adjust_dynamic_symbol \
2736 elf64_hppa_adjust_dynamic_symbol
2737
2738#define elf_backend_size_dynamic_sections \
2739 elf64_hppa_size_dynamic_sections
2740
2741#define elf_backend_finish_dynamic_symbol \
2742 elf64_hppa_finish_dynamic_symbol
2743#define elf_backend_finish_dynamic_sections \
2744 elf64_hppa_finish_dynamic_sections
2745
2746/* Stuff for the BFD linker: */
2747#define bfd_elf64_bfd_link_hash_table_create \
2748 elf64_hppa_hash_table_create
2749
2750#define elf_backend_check_relocs \
2751 elf64_hppa_check_relocs
2752
2753#define elf_backend_size_info \
2754 hppa64_elf_size_info
2755
2756#define elf_backend_additional_program_headers \
2757 elf64_hppa_additional_program_headers
2758
2759#define elf_backend_modify_segment_map \
2760 elf64_hppa_modify_segment_map
2761
2762#define elf_backend_link_output_symbol_hook \
2763 elf64_hppa_link_output_symbol_hook
2764
15bda425
JL
2765#define elf_backend_want_got_plt 0
2766#define elf_backend_plt_readonly 0
2767#define elf_backend_want_plt_sym 0
2768#define elf_backend_got_header_size 0
2769#define elf_backend_plt_header_size 0
2770#define elf_backend_type_change_ok true
3fab46d0 2771#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
5ac81c74 2772#define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
f0fe0e16 2773#define elf_backend_rela_normal 1
15bda425
JL
2774
2775#include "elf64-target.h"
d952f17a
AM
2776
2777#undef TARGET_BIG_SYM
2778#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2779#undef TARGET_BIG_NAME
2780#define TARGET_BIG_NAME "elf64-hppa-linux"
2781
2782#define INCLUDED_TARGET_FILE 1
2783#include "elf64-target.h"