]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf64-hppa.c
Fix typo
[thirdparty/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf
AM
1/* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
15bda425
JL
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
3ef20aaa 20#include "alloca-conf.h"
15bda425
JL
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
fe8bc63d 33
15bda425
JL
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
edd21aca 59 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 unsigned long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
fe8bc63d 172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
173 PTR info));
174
175static const char *get_dyn_name
0ba2a60e
AM
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
15bda425 178
15bda425
JL
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
15bda425
JL
183static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
188
189static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd *, struct bfd_link_info *));
200
99c79b2e
AJ
201static boolean elf64_hppa_link_output_symbol_hook
202PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
203 Elf_Internal_Sym *, asection *input_sec));
204
15bda425
JL
205static boolean elf64_hppa_finish_dynamic_symbol
206 PARAMS ((bfd *, struct bfd_link_info *,
207 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 208
99c79b2e
AJ
209static int elf64_hppa_additional_program_headers PARAMS ((bfd *));
210
211static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *));
212
15bda425
JL
213static boolean elf64_hppa_finish_dynamic_sections
214 PARAMS ((bfd *, struct bfd_link_info *));
215
216static boolean elf64_hppa_check_relocs
217 PARAMS ((bfd *, struct bfd_link_info *,
218 asection *, const Elf_Internal_Rela *));
219
220static boolean elf64_hppa_dynamic_symbol_p
221 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
222
223static boolean elf64_hppa_mark_exported_functions
224 PARAMS ((struct elf_link_hash_entry *, PTR));
225
226static boolean elf64_hppa_finalize_opd
227 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
228
229static boolean elf64_hppa_finalize_dlt
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232static boolean allocate_global_data_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235static boolean allocate_global_data_plt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238static boolean allocate_global_data_stub
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241static boolean allocate_global_data_opd
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244static boolean get_reloc_section
245 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
246
247static boolean count_dyn_reloc
248 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
249 int, asection *, int, bfd_vma, bfd_vma));
250
251static boolean allocate_dynrel_entries
252 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
253
254static boolean elf64_hppa_finalize_dynreloc
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
257static boolean get_opd
258 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
259
260static boolean get_plt
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263static boolean get_dlt
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266static boolean get_stub
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
3fab46d0
AM
269static int elf64_hppa_elf_get_symbol_type
270 PARAMS ((Elf_Internal_Sym *, int));
271
15bda425
JL
272static boolean
273elf64_hppa_dyn_hash_table_init (ht, abfd, new)
274 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 275 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
276 new_hash_entry_func new;
277{
fe8bc63d 278 memset (ht, 0, sizeof (*ht));
15bda425
JL
279 return bfd_hash_table_init (&ht->root, new);
280}
281
282static struct bfd_hash_entry*
283elf64_hppa_new_dyn_hash_entry (entry, table, string)
284 struct bfd_hash_entry *entry;
285 struct bfd_hash_table *table;
286 const char *string;
287{
288 struct elf64_hppa_dyn_hash_entry *ret;
289 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
290
291 /* Allocate the structure if it has not already been allocated by a
292 subclass. */
293 if (!ret)
294 ret = bfd_hash_allocate (table, sizeof (*ret));
295
296 if (!ret)
297 return 0;
298
299 /* Initialize our local data. All zeros, and definitely easier
300 than setting 8 bit fields. */
fe8bc63d 301 memset (ret, 0, sizeof (*ret));
15bda425
JL
302
303 /* Call the allocation method of the superclass. */
304 ret = ((struct elf64_hppa_dyn_hash_entry *)
305 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
306
307 return &ret->root;
308}
309
310/* Create the derived linker hash table. The PA64 ELF port uses this
311 derived hash table to keep information specific to the PA ElF
312 linker (without using static variables). */
313
314static struct bfd_link_hash_table*
315elf64_hppa_hash_table_create (abfd)
316 bfd *abfd;
317{
318 struct elf64_hppa_link_hash_table *ret;
319
320 ret = bfd_zalloc (abfd, sizeof (*ret));
321 if (!ret)
322 return 0;
323 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
324 _bfd_elf_link_hash_newfunc))
325 {
326 bfd_release (abfd, ret);
327 return 0;
328 }
329
330 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
331 elf64_hppa_new_dyn_hash_entry))
332 return 0;
333 return &ret->root.root;
334}
335
336/* Look up an entry in a PA64 ELF linker hash table. */
337
338static struct elf64_hppa_dyn_hash_entry *
339elf64_hppa_dyn_hash_lookup(table, string, create, copy)
340 struct elf64_hppa_dyn_hash_table *table;
341 const char *string;
342 boolean create, copy;
343{
344 return ((struct elf64_hppa_dyn_hash_entry *)
345 bfd_hash_lookup (&table->root, string, create, copy));
346}
347
348/* Traverse a PA64 ELF linker hash table. */
349
350static void
351elf64_hppa_dyn_hash_traverse (table, func, info)
352 struct elf64_hppa_dyn_hash_table *table;
353 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
354 PTR info;
355{
356 (bfd_hash_traverse
357 (&table->root,
358 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
359 info));
360}
361\f
362/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
363
364 Additionally we set the default architecture and machine. */
365static boolean
366elf64_hppa_object_p (abfd)
367 bfd *abfd;
368{
24a5e751
L
369 Elf_Internal_Ehdr * i_ehdrp;
370 unsigned int flags;
d9634ba1 371
24a5e751
L
372 i_ehdrp = elf_elfheader (abfd);
373 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
374 {
375 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
376 return false;
377 }
378 else
379 {
380 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
381 return false;
382 }
383
384 flags = i_ehdrp->e_flags;
d9634ba1
AM
385 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
386 {
387 case EFA_PARISC_1_0:
388 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
389 case EFA_PARISC_1_1:
390 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
391 case EFA_PARISC_2_0:
392 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
393 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
394 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
395 }
396 /* Don't be fussy. */
397 return true;
15bda425
JL
398}
399
400/* Given section type (hdr->sh_type), return a boolean indicating
401 whether or not the section is an elf64-hppa specific section. */
402static boolean
403elf64_hppa_section_from_shdr (abfd, hdr, name)
404 bfd *abfd;
405 Elf64_Internal_Shdr *hdr;
406 char *name;
407{
408 asection *newsect;
409
410 switch (hdr->sh_type)
411 {
412 case SHT_PARISC_EXT:
413 if (strcmp (name, ".PARISC.archext") != 0)
414 return false;
415 break;
416 case SHT_PARISC_UNWIND:
417 if (strcmp (name, ".PARISC.unwind") != 0)
418 return false;
419 break;
420 case SHT_PARISC_DOC:
421 case SHT_PARISC_ANNOT:
422 default:
423 return false;
424 }
425
426 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
427 return false;
428 newsect = hdr->bfd_section;
429
430 return true;
431}
432
15bda425 433/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 434 name describes what was once potentially anonymous memory. We
15bda425
JL
435 allocate memory as necessary, possibly reusing PBUF/PLEN. */
436
437static const char *
0ba2a60e
AM
438get_dyn_name (sec, h, rel, pbuf, plen)
439 asection *sec;
15bda425
JL
440 struct elf_link_hash_entry *h;
441 const Elf_Internal_Rela *rel;
442 char **pbuf;
443 size_t *plen;
444{
445 size_t nlen, tlen;
446 char *buf;
447 size_t len;
448
449 if (h && rel->r_addend == 0)
450 return h->root.root.string;
451
452 if (h)
453 nlen = strlen (h->root.root.string);
454 else
0ba2a60e
AM
455 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
456 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
457
458 len = *plen;
459 buf = *pbuf;
460 if (len < tlen)
461 {
462 if (buf)
463 free (buf);
464 *pbuf = buf = malloc (tlen);
465 *plen = len = tlen;
466 if (!buf)
467 return NULL;
468 }
469
470 if (h)
471 {
472 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 473 buf[nlen++] = '+';
15bda425
JL
474 sprintf_vma (buf + nlen, rel->r_addend);
475 }
476 else
477 {
0ba2a60e
AM
478 nlen = sprintf (buf, "%x:%lx",
479 sec->id & 0xffffffff,
480 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
481 if (rel->r_addend)
482 {
483 buf[nlen++] = '+';
484 sprintf_vma (buf + nlen, rel->r_addend);
485 }
486 }
487
488 return buf;
489}
490
491/* SEC is a section containing relocs for an input BFD when linking; return
492 a suitable section for holding relocs in the output BFD for a link. */
493
494static boolean
495get_reloc_section (abfd, hppa_info, sec)
496 bfd *abfd;
497 struct elf64_hppa_link_hash_table *hppa_info;
498 asection *sec;
499{
500 const char *srel_name;
501 asection *srel;
502 bfd *dynobj;
503
504 srel_name = (bfd_elf_string_from_elf_section
505 (abfd, elf_elfheader(abfd)->e_shstrndx,
506 elf_section_data(sec)->rel_hdr.sh_name));
507 if (srel_name == NULL)
508 return false;
509
510 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
511 && strcmp (bfd_get_section_name (abfd, sec),
512 srel_name+5) == 0)
513 || (strncmp (srel_name, ".rel", 4) == 0
514 && strcmp (bfd_get_section_name (abfd, sec),
515 srel_name+4) == 0));
516
517 dynobj = hppa_info->root.dynobj;
518 if (!dynobj)
519 hppa_info->root.dynobj = dynobj = abfd;
520
521 srel = bfd_get_section_by_name (dynobj, srel_name);
522 if (srel == NULL)
523 {
524 srel = bfd_make_section (dynobj, srel_name);
525 if (srel == NULL
526 || !bfd_set_section_flags (dynobj, srel,
527 (SEC_ALLOC
528 | SEC_LOAD
529 | SEC_HAS_CONTENTS
530 | SEC_IN_MEMORY
531 | SEC_LINKER_CREATED
532 | SEC_READONLY))
533 || !bfd_set_section_alignment (dynobj, srel, 3))
534 return false;
535 }
536
537 hppa_info->other_rel_sec = srel;
538 return true;
539}
540
fe8bc63d 541/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
542
543 We use this to keep a record of all the FPTR relocations against a
544 particular symbol so that we can create FPTR relocations in the
545 output file. */
546
547static boolean
548count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
549 bfd *abfd;
550 struct elf64_hppa_dyn_hash_entry *dyn_h;
551 int type;
552 asection *sec;
553 int sec_symndx;
554 bfd_vma offset;
555 bfd_vma addend;
556{
557 struct elf64_hppa_dyn_reloc_entry *rent;
558
559 rent = (struct elf64_hppa_dyn_reloc_entry *)
560 bfd_alloc (abfd, sizeof (*rent));
561 if (!rent)
562 return false;
563
564 rent->next = dyn_h->reloc_entries;
565 rent->type = type;
566 rent->sec = sec;
567 rent->sec_symndx = sec_symndx;
568 rent->offset = offset;
569 rent->addend = addend;
570 dyn_h->reloc_entries = rent;
571
572 return true;
573}
574
575/* Scan the RELOCS and record the type of dynamic entries that each
576 referenced symbol needs. */
577
578static boolean
579elf64_hppa_check_relocs (abfd, info, sec, relocs)
580 bfd *abfd;
581 struct bfd_link_info *info;
582 asection *sec;
583 const Elf_Internal_Rela *relocs;
584{
585 struct elf64_hppa_link_hash_table *hppa_info;
586 const Elf_Internal_Rela *relend;
587 Elf_Internal_Shdr *symtab_hdr;
588 const Elf_Internal_Rela *rel;
589 asection *dlt, *plt, *stubs;
590 char *buf;
591 size_t buf_len;
592 int sec_symndx;
593
594 if (info->relocateable)
595 return true;
596
597 /* If this is the first dynamic object found in the link, create
598 the special sections required for dynamic linking. */
599 if (! elf_hash_table (info)->dynamic_sections_created)
600 {
601 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
602 return false;
603 }
604
605 hppa_info = elf64_hppa_hash_table (info);
606 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
607
608 /* If necessary, build a new table holding section symbols indices
609 for this BFD. This is disgusting. */
fe8bc63d 610
15bda425
JL
611 if (info->shared && hppa_info->section_syms_bfd != abfd)
612 {
832d951b 613 unsigned long i;
0ba2a60e 614 int highest_shndx;
15bda425
JL
615 Elf_Internal_Sym *local_syms, *isym;
616 Elf64_External_Sym *ext_syms, *esym;
617
618 /* We're done with the old cache of section index to section symbol
619 index information. Free it.
620
621 ?!? Note we leak the last section_syms array. Presumably we
622 could free it in one of the later routines in this file. */
623 if (hppa_info->section_syms)
624 free (hppa_info->section_syms);
625
626 /* Allocate memory for the internal and external symbols. */
627 local_syms
628 = (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info
629 * sizeof (Elf_Internal_Sym));
630 if (local_syms == NULL)
631 return false;
632
633 ext_syms
634 = (Elf64_External_Sym *) bfd_malloc (symtab_hdr->sh_info
635 * sizeof (Elf64_External_Sym));
636 if (ext_syms == NULL)
637 {
638 free (local_syms);
639 return false;
640 }
641
642 /* Read in the local symbols. */
643 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
644 || bfd_read (ext_syms, 1,
645 (symtab_hdr->sh_info
646 * sizeof (Elf64_External_Sym)), abfd)
647 != (symtab_hdr->sh_info * sizeof (Elf64_External_Sym)))
648 {
649 free (local_syms);
650 free (ext_syms);
651 return false;
652 }
653
654 /* Swap in the local symbols, also record the highest section index
655 referenced by the local symbols. */
656 isym = local_syms;
657 esym = ext_syms;
658 highest_shndx = 0;
659 for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
660 {
661 bfd_elf64_swap_symbol_in (abfd, esym, isym);
662 if (isym->st_shndx > highest_shndx)
663 highest_shndx = isym->st_shndx;
664 }
665
666 /* Now we can free the external symbols. */
667 free (ext_syms);
668
669 /* Allocate an array to hold the section index to section symbol index
670 mapping. Bump by one since we start counting at zero. */
671 highest_shndx++;
672 hppa_info->section_syms = (int *) bfd_malloc (highest_shndx
673 * sizeof (int));
674
675 /* Now walk the local symbols again. If we find a section symbol,
676 record the index of the symbol into the section_syms array. */
677 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
678 {
679 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
680 hppa_info->section_syms[isym->st_shndx] = i;
681 }
682
683 /* We are finished with the local symbols. Get rid of them. */
684 free (local_syms);
685
686 /* Record which BFD we built the section_syms mapping for. */
687 hppa_info->section_syms_bfd = abfd;
688 }
689
690 /* Record the symbol index for this input section. We may need it for
691 relocations when building shared libraries. When not building shared
692 libraries this value is never really used, but assign it to zero to
693 prevent out of bounds memory accesses in other routines. */
694 if (info->shared)
695 {
696 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
697
698 /* If we did not find a section symbol for this section, then
699 something went terribly wrong above. */
700 if (sec_symndx == -1)
701 return false;
702
703 sec_symndx = hppa_info->section_syms[sec_symndx];
704 }
705 else
706 sec_symndx = 0;
fe8bc63d 707
15bda425
JL
708 dlt = plt = stubs = NULL;
709 buf = NULL;
710 buf_len = 0;
711
712 relend = relocs + sec->reloc_count;
713 for (rel = relocs; rel < relend; ++rel)
714 {
715 enum {
716 NEED_DLT = 1,
717 NEED_PLT = 2,
718 NEED_STUB = 4,
719 NEED_OPD = 8,
720 NEED_DYNREL = 16,
721 };
722
723 struct elf_link_hash_entry *h = NULL;
724 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
725 struct elf64_hppa_dyn_hash_entry *dyn_h;
726 int need_entry;
727 const char *addr_name;
728 boolean maybe_dynamic;
729 int dynrel_type = R_PARISC_NONE;
730 static reloc_howto_type *howto;
731
732 if (r_symndx >= symtab_hdr->sh_info)
733 {
734 /* We're dealing with a global symbol -- find its hash entry
735 and mark it as being referenced. */
736 long indx = r_symndx - symtab_hdr->sh_info;
737 h = elf_sym_hashes (abfd)[indx];
738 while (h->root.type == bfd_link_hash_indirect
739 || h->root.type == bfd_link_hash_warning)
740 h = (struct elf_link_hash_entry *) h->root.u.i.link;
741
742 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
743 }
744
745 /* We can only get preliminary data on whether a symbol is
746 locally or externally defined, as not all of the input files
747 have yet been processed. Do something with what we know, as
748 this may help reduce memory usage and processing time later. */
749 maybe_dynamic = false;
750 if (h && ((info->shared && ! info->symbolic)
751 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
752 || h->root.type == bfd_link_hash_defweak))
753 maybe_dynamic = true;
754
755 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
756 need_entry = 0;
757 switch (howto->type)
758 {
759 /* These are simple indirect references to symbols through the
760 DLT. We need to create a DLT entry for any symbols which
761 appears in a DLTIND relocation. */
762 case R_PARISC_DLTIND21L:
763 case R_PARISC_DLTIND14R:
764 case R_PARISC_DLTIND14F:
765 case R_PARISC_DLTIND14WR:
766 case R_PARISC_DLTIND14DR:
767 need_entry = NEED_DLT;
768 break;
769
770 /* ?!? These need a DLT entry. But I have no idea what to do with
771 the "link time TP value. */
772 case R_PARISC_LTOFF_TP21L:
773 case R_PARISC_LTOFF_TP14R:
774 case R_PARISC_LTOFF_TP14F:
775 case R_PARISC_LTOFF_TP64:
776 case R_PARISC_LTOFF_TP14WR:
777 case R_PARISC_LTOFF_TP14DR:
778 case R_PARISC_LTOFF_TP16F:
779 case R_PARISC_LTOFF_TP16WF:
780 case R_PARISC_LTOFF_TP16DF:
781 need_entry = NEED_DLT;
782 break;
783
784 /* These are function calls. Depending on their precise target we
785 may need to make a stub for them. The stub uses the PLT, so we
786 need to create PLT entries for these symbols too. */
832d951b 787 case R_PARISC_PCREL12F:
15bda425
JL
788 case R_PARISC_PCREL17F:
789 case R_PARISC_PCREL22F:
790 case R_PARISC_PCREL32:
791 case R_PARISC_PCREL64:
792 case R_PARISC_PCREL21L:
793 case R_PARISC_PCREL17R:
794 case R_PARISC_PCREL17C:
795 case R_PARISC_PCREL14R:
796 case R_PARISC_PCREL14F:
797 case R_PARISC_PCREL22C:
798 case R_PARISC_PCREL14WR:
799 case R_PARISC_PCREL14DR:
800 case R_PARISC_PCREL16F:
801 case R_PARISC_PCREL16WF:
802 case R_PARISC_PCREL16DF:
803 need_entry = (NEED_PLT | NEED_STUB);
804 break;
805
806 case R_PARISC_PLTOFF21L:
807 case R_PARISC_PLTOFF14R:
808 case R_PARISC_PLTOFF14F:
809 case R_PARISC_PLTOFF14WR:
810 case R_PARISC_PLTOFF14DR:
811 case R_PARISC_PLTOFF16F:
812 case R_PARISC_PLTOFF16WF:
813 case R_PARISC_PLTOFF16DF:
814 need_entry = (NEED_PLT);
815 break;
816
817 case R_PARISC_DIR64:
818 if (info->shared || maybe_dynamic)
819 need_entry = (NEED_DYNREL);
820 dynrel_type = R_PARISC_DIR64;
821 break;
822
823 /* This is an indirect reference through the DLT to get the address
824 of a OPD descriptor. Thus we need to make a DLT entry that points
825 to an OPD entry. */
826 case R_PARISC_LTOFF_FPTR21L:
827 case R_PARISC_LTOFF_FPTR14R:
828 case R_PARISC_LTOFF_FPTR14WR:
829 case R_PARISC_LTOFF_FPTR14DR:
830 case R_PARISC_LTOFF_FPTR32:
831 case R_PARISC_LTOFF_FPTR64:
832 case R_PARISC_LTOFF_FPTR16F:
833 case R_PARISC_LTOFF_FPTR16WF:
834 case R_PARISC_LTOFF_FPTR16DF:
835 if (info->shared || maybe_dynamic)
836 need_entry = (NEED_DLT | NEED_OPD);
837 else
838 need_entry = (NEED_DLT | NEED_OPD);
839 dynrel_type = R_PARISC_FPTR64;
840 break;
841
842 /* This is a simple OPD entry. */
843 case R_PARISC_FPTR64:
844 if (info->shared || maybe_dynamic)
845 need_entry = (NEED_OPD | NEED_DYNREL);
846 else
847 need_entry = (NEED_OPD);
848 dynrel_type = R_PARISC_FPTR64;
849 break;
850
851 /* Add more cases as needed. */
852 }
853
854 if (!need_entry)
855 continue;
856
857 /* Collect a canonical name for this address. */
0ba2a60e 858 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
859
860 /* Collect the canonical entry data for this address. */
861 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
862 addr_name, true, true);
863 BFD_ASSERT (dyn_h);
864
865 /* Stash away enough information to be able to find this symbol
866 regardless of whether or not it is local or global. */
867 dyn_h->h = h;
868 dyn_h->owner = abfd;
869 dyn_h->sym_indx = r_symndx;
870
871 /* ?!? We may need to do some error checking in here. */
872 /* Create what's needed. */
873 if (need_entry & NEED_DLT)
874 {
875 if (! hppa_info->dlt_sec
876 && ! get_dlt (abfd, info, hppa_info))
877 goto err_out;
878 dyn_h->want_dlt = 1;
879 }
880
881 if (need_entry & NEED_PLT)
882 {
883 if (! hppa_info->plt_sec
884 && ! get_plt (abfd, info, hppa_info))
885 goto err_out;
886 dyn_h->want_plt = 1;
887 }
888
889 if (need_entry & NEED_STUB)
890 {
891 if (! hppa_info->stub_sec
892 && ! get_stub (abfd, info, hppa_info))
893 goto err_out;
894 dyn_h->want_stub = 1;
895 }
896
897 if (need_entry & NEED_OPD)
898 {
899 if (! hppa_info->opd_sec
900 && ! get_opd (abfd, info, hppa_info))
901 goto err_out;
902
903 dyn_h->want_opd = 1;
904
905 /* FPTRs are not allocated by the dynamic linker for PA64, though
906 it is possible that will change in the future. */
fe8bc63d 907
15bda425
JL
908 /* This could be a local function that had its address taken, in
909 which case H will be NULL. */
910 if (h)
911 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
912 }
913
914 /* Add a new dynamic relocation to the chain of dynamic
915 relocations for this symbol. */
916 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
917 {
918 if (! hppa_info->other_rel_sec
919 && ! get_reloc_section (abfd, hppa_info, sec))
920 goto err_out;
921
922 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
923 sec_symndx, rel->r_offset, rel->r_addend))
924 goto err_out;
925
926 /* If we are building a shared library and we just recorded
927 a dynamic R_PARISC_FPTR64 relocation, then make sure the
928 section symbol for this section ends up in the dynamic
929 symbol table. */
930 if (info->shared && dynrel_type == R_PARISC_FPTR64
931 && ! (_bfd_elf64_link_record_local_dynamic_symbol
932 (info, abfd, sec_symndx)))
933 return false;
934 }
935 }
936
937 if (buf)
938 free (buf);
939 return true;
940
941 err_out:
942 if (buf)
943 free (buf);
944 return false;
945}
946
947struct elf64_hppa_allocate_data
948{
949 struct bfd_link_info *info;
950 bfd_size_type ofs;
951};
952
953/* Should we do dynamic things to this symbol? */
954
955static boolean
956elf64_hppa_dynamic_symbol_p (h, info)
957 struct elf_link_hash_entry *h;
958 struct bfd_link_info *info;
959{
960 if (h == NULL)
961 return false;
962
963 while (h->root.type == bfd_link_hash_indirect
964 || h->root.type == bfd_link_hash_warning)
965 h = (struct elf_link_hash_entry *) h->root.u.i.link;
966
967 if (h->dynindx == -1)
968 return false;
969
970 if (h->root.type == bfd_link_hash_undefweak
971 || h->root.type == bfd_link_hash_defweak)
972 return true;
973
974 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
975 return false;
976
977 if ((info->shared && !info->symbolic)
978 || ((h->elf_link_hash_flags
979 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
980 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
981 return true;
982
983 return false;
984}
985
986/* Mark all funtions exported by this file so that we can later allocate
987 entries in .opd for them. */
988
989static boolean
990elf64_hppa_mark_exported_functions (h, data)
991 struct elf_link_hash_entry *h;
992 PTR data;
993{
994 struct bfd_link_info *info = (struct bfd_link_info *)data;
995 struct elf64_hppa_link_hash_table *hppa_info;
996
997 hppa_info = elf64_hppa_hash_table (info);
998
999 if (h
1000 && (h->root.type == bfd_link_hash_defined
1001 || h->root.type == bfd_link_hash_defweak)
1002 && h->root.u.def.section->output_section != NULL
1003 && h->type == STT_FUNC)
1004 {
1005 struct elf64_hppa_dyn_hash_entry *dyn_h;
1006
1007 /* Add this symbol to the PA64 linker hash table. */
1008 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1009 h->root.root.string, true, true);
1010 BFD_ASSERT (dyn_h);
1011 dyn_h->h = h;
1012
1013 if (! hppa_info->opd_sec
1014 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1015 return false;
1016
1017 dyn_h->want_opd = 1;
832d951b
AM
1018 /* Put a flag here for output_symbol_hook. */
1019 dyn_h->st_shndx = -1;
15bda425
JL
1020 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1021 }
1022
1023 return true;
1024}
1025
1026/* Allocate space for a DLT entry. */
1027
1028static boolean
1029allocate_global_data_dlt (dyn_h, data)
1030 struct elf64_hppa_dyn_hash_entry *dyn_h;
1031 PTR data;
1032{
1033 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1034
1035 if (dyn_h->want_dlt)
1036 {
1037 struct elf_link_hash_entry *h = dyn_h->h;
1038
1039 if (x->info->shared)
1040 {
1041 /* Possibly add the symbol to the local dynamic symbol
1042 table since we might need to create a dynamic relocation
1043 against it. */
1044 if (! h
1045 || (h && h->dynindx == -1))
1046 {
1047 bfd *owner;
1048 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1049
1050 if (!_bfd_elf64_link_record_local_dynamic_symbol
1051 (x->info, owner, dyn_h->sym_indx))
1052 return false;
1053 }
1054 }
1055
1056 dyn_h->dlt_offset = x->ofs;
1057 x->ofs += DLT_ENTRY_SIZE;
1058 }
1059 return true;
1060}
1061
1062/* Allocate space for a DLT.PLT entry. */
1063
1064static boolean
1065allocate_global_data_plt (dyn_h, data)
1066 struct elf64_hppa_dyn_hash_entry *dyn_h;
1067 PTR data;
1068{
1069 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1070
1071 if (dyn_h->want_plt
1072 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1073 && !((dyn_h->h->root.type == bfd_link_hash_defined
1074 || dyn_h->h->root.type == bfd_link_hash_defweak)
1075 && dyn_h->h->root.u.def.section->output_section != NULL))
1076 {
1077 dyn_h->plt_offset = x->ofs;
1078 x->ofs += PLT_ENTRY_SIZE;
1079 if (dyn_h->plt_offset < 0x2000)
1080 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1081 }
1082 else
1083 dyn_h->want_plt = 0;
1084
1085 return true;
1086}
1087
1088/* Allocate space for a STUB entry. */
1089
1090static boolean
1091allocate_global_data_stub (dyn_h, data)
1092 struct elf64_hppa_dyn_hash_entry *dyn_h;
1093 PTR data;
1094{
1095 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1096
1097 if (dyn_h->want_stub
1098 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1099 && !((dyn_h->h->root.type == bfd_link_hash_defined
1100 || dyn_h->h->root.type == bfd_link_hash_defweak)
1101 && dyn_h->h->root.u.def.section->output_section != NULL))
1102 {
1103 dyn_h->stub_offset = x->ofs;
1104 x->ofs += sizeof (plt_stub);
1105 }
1106 else
1107 dyn_h->want_stub = 0;
1108 return true;
1109}
1110
1111/* Allocate space for a FPTR entry. */
1112
1113static boolean
1114allocate_global_data_opd (dyn_h, data)
1115 struct elf64_hppa_dyn_hash_entry *dyn_h;
1116 PTR data;
1117{
1118 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1119
1120 if (dyn_h->want_opd)
1121 {
1122 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1123
15bda425
JL
1124 if (h)
1125 while (h->root.type == bfd_link_hash_indirect
1126 || h->root.type == bfd_link_hash_warning)
1127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1128
1129 /* We never need an opd entry for a symbol which is not
1130 defined by this output file. */
1131 if (h && h->root.type == bfd_link_hash_undefined)
1132 dyn_h->want_opd = 0;
1133
1134 /* If we are creating a shared library, took the address of a local
1135 function or might export this function from this object file, then
1136 we have to create an opd descriptor. */
1137 else if (x->info->shared
1138 || h == NULL
1139 || h->dynindx == -1
1140 || ((h->root.type == bfd_link_hash_defined
1141 || h->root.type == bfd_link_hash_defweak)
1142 && h->root.u.def.section->output_section != NULL))
1143 {
1144 /* If we are creating a shared library, then we will have to
1145 create a runtime relocation for the symbol to properly
1146 initialize the .opd entry. Make sure the symbol gets
1147 added to the dynamic symbol table. */
1148 if (x->info->shared
1149 && (h == NULL || (h->dynindx == -1)))
1150 {
1151 bfd *owner;
1152 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1153
1154 if (!_bfd_elf64_link_record_local_dynamic_symbol
1155 (x->info, owner, dyn_h->sym_indx))
1156 return false;
1157 }
1158
1159 /* This may not be necessary or desirable anymore now that
1160 we have some support for dealing with section symbols
1161 in dynamic relocs. But name munging does make the result
1162 much easier to debug. ie, the EPLT reloc will reference
1163 a symbol like .foobar, instead of .text + offset. */
1164 if (x->info->shared && h)
1165 {
1166 char *new_name;
1167 struct elf_link_hash_entry *nh;
1168
1169 new_name = alloca (strlen (h->root.root.string) + 2);
1170 new_name[0] = '.';
1171 strcpy (new_name + 1, h->root.root.string);
1172
1173 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1174 new_name, true, true, true);
1175
1176 nh->root.type = h->root.type;
1177 nh->root.u.def.value = h->root.u.def.value;
1178 nh->root.u.def.section = h->root.u.def.section;
1179
1180 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1181 return false;
1182
1183 }
1184 dyn_h->opd_offset = x->ofs;
1185 x->ofs += OPD_ENTRY_SIZE;
1186 }
1187
1188 /* Otherwise we do not need an opd entry. */
1189 else
1190 dyn_h->want_opd = 0;
1191 }
1192 return true;
1193}
1194
1195/* HP requires the EI_OSABI field to be filled in. The assignment to
1196 EI_ABIVERSION may not be strictly necessary. */
1197
1198static void
1199elf64_hppa_post_process_headers (abfd, link_info)
1200 bfd * abfd;
1201 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1202{
1203 Elf_Internal_Ehdr * i_ehdrp;
1204
1205 i_ehdrp = elf_elfheader (abfd);
1206
d952f17a
AM
1207 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1208 {
1209 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1210 }
1211 else
1212 {
1213 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1214 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1215 }
15bda425
JL
1216}
1217
1218/* Create function descriptor section (.opd). This section is called .opd
1219 because it contains "official prodecure descriptors". The "official"
1220 refers to the fact that these descriptors are used when taking the address
1221 of a procedure, thus ensuring a unique address for each procedure. */
1222
1223static boolean
1224get_opd (abfd, info, hppa_info)
1225 bfd *abfd;
edd21aca 1226 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1227 struct elf64_hppa_link_hash_table *hppa_info;
1228{
1229 asection *opd;
1230 bfd *dynobj;
1231
1232 opd = hppa_info->opd_sec;
1233 if (!opd)
1234 {
1235 dynobj = hppa_info->root.dynobj;
1236 if (!dynobj)
1237 hppa_info->root.dynobj = dynobj = abfd;
1238
1239 opd = bfd_make_section (dynobj, ".opd");
1240 if (!opd
1241 || !bfd_set_section_flags (dynobj, opd,
1242 (SEC_ALLOC
1243 | SEC_LOAD
1244 | SEC_HAS_CONTENTS
1245 | SEC_IN_MEMORY
1246 | SEC_LINKER_CREATED))
1247 || !bfd_set_section_alignment (abfd, opd, 3))
1248 {
1249 BFD_ASSERT (0);
1250 return false;
1251 }
1252
1253 hppa_info->opd_sec = opd;
1254 }
1255
1256 return true;
1257}
1258
1259/* Create the PLT section. */
1260
1261static boolean
1262get_plt (abfd, info, hppa_info)
1263 bfd *abfd;
edd21aca 1264 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1265 struct elf64_hppa_link_hash_table *hppa_info;
1266{
1267 asection *plt;
1268 bfd *dynobj;
1269
1270 plt = hppa_info->plt_sec;
1271 if (!plt)
1272 {
1273 dynobj = hppa_info->root.dynobj;
1274 if (!dynobj)
1275 hppa_info->root.dynobj = dynobj = abfd;
1276
1277 plt = bfd_make_section (dynobj, ".plt");
1278 if (!plt
1279 || !bfd_set_section_flags (dynobj, plt,
1280 (SEC_ALLOC
1281 | SEC_LOAD
1282 | SEC_HAS_CONTENTS
1283 | SEC_IN_MEMORY
1284 | SEC_LINKER_CREATED))
1285 || !bfd_set_section_alignment (abfd, plt, 3))
1286 {
1287 BFD_ASSERT (0);
1288 return false;
1289 }
1290
1291 hppa_info->plt_sec = plt;
1292 }
1293
1294 return true;
1295}
1296
1297/* Create the DLT section. */
1298
1299static boolean
1300get_dlt (abfd, info, hppa_info)
1301 bfd *abfd;
edd21aca 1302 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1303 struct elf64_hppa_link_hash_table *hppa_info;
1304{
1305 asection *dlt;
1306 bfd *dynobj;
1307
1308 dlt = hppa_info->dlt_sec;
1309 if (!dlt)
1310 {
1311 dynobj = hppa_info->root.dynobj;
1312 if (!dynobj)
1313 hppa_info->root.dynobj = dynobj = abfd;
1314
1315 dlt = bfd_make_section (dynobj, ".dlt");
1316 if (!dlt
1317 || !bfd_set_section_flags (dynobj, dlt,
1318 (SEC_ALLOC
1319 | SEC_LOAD
1320 | SEC_HAS_CONTENTS
1321 | SEC_IN_MEMORY
1322 | SEC_LINKER_CREATED))
1323 || !bfd_set_section_alignment (abfd, dlt, 3))
1324 {
1325 BFD_ASSERT (0);
1326 return false;
1327 }
1328
1329 hppa_info->dlt_sec = dlt;
1330 }
1331
1332 return true;
1333}
1334
1335/* Create the stubs section. */
1336
1337static boolean
1338get_stub (abfd, info, hppa_info)
1339 bfd *abfd;
edd21aca 1340 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1341 struct elf64_hppa_link_hash_table *hppa_info;
1342{
1343 asection *stub;
1344 bfd *dynobj;
1345
1346 stub = hppa_info->stub_sec;
1347 if (!stub)
1348 {
1349 dynobj = hppa_info->root.dynobj;
1350 if (!dynobj)
1351 hppa_info->root.dynobj = dynobj = abfd;
1352
1353 stub = bfd_make_section (dynobj, ".stub");
1354 if (!stub
1355 || !bfd_set_section_flags (dynobj, stub,
1356 (SEC_ALLOC
1357 | SEC_LOAD
1358 | SEC_HAS_CONTENTS
1359 | SEC_IN_MEMORY
1360 | SEC_READONLY
1361 | SEC_LINKER_CREATED))
1362 || !bfd_set_section_alignment (abfd, stub, 3))
1363 {
1364 BFD_ASSERT (0);
1365 return false;
1366 }
1367
1368 hppa_info->stub_sec = stub;
1369 }
1370
1371 return true;
1372}
1373
1374/* Create sections necessary for dynamic linking. This is only a rough
1375 cut and will likely change as we learn more about the somewhat
1376 unusual dynamic linking scheme HP uses.
1377
1378 .stub:
1379 Contains code to implement cross-space calls. The first time one
1380 of the stubs is used it will call into the dynamic linker, later
1381 calls will go straight to the target.
1382
1383 The only stub we support right now looks like
1384
1385 ldd OFFSET(%dp),%r1
1386 bve %r0(%r1)
1387 ldd OFFSET+8(%dp),%dp
1388
1389 Other stubs may be needed in the future. We may want the remove
1390 the break/nop instruction. It is only used right now to keep the
1391 offset of a .plt entry and a .stub entry in sync.
1392
1393 .dlt:
1394 This is what most people call the .got. HP used a different name.
1395 Losers.
1396
1397 .rela.dlt:
1398 Relocations for the DLT.
1399
1400 .plt:
1401 Function pointers as address,gp pairs.
1402
1403 .rela.plt:
1404 Should contain dynamic IPLT (and EPLT?) relocations.
1405
1406 .opd:
fe8bc63d 1407 FPTRS
15bda425
JL
1408
1409 .rela.opd:
1410 EPLT relocations for symbols exported from shared libraries. */
1411
1412static boolean
1413elf64_hppa_create_dynamic_sections (abfd, info)
1414 bfd *abfd;
1415 struct bfd_link_info *info;
1416{
1417 asection *s;
1418
1419 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1420 return false;
1421
1422 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1423 return false;
1424
1425 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1426 return false;
1427
1428 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1429 return false;
1430
1431 s = bfd_make_section(abfd, ".rela.dlt");
1432 if (s == NULL
1433 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1434 | SEC_HAS_CONTENTS
1435 | SEC_IN_MEMORY
1436 | SEC_READONLY
1437 | SEC_LINKER_CREATED))
1438 || !bfd_set_section_alignment (abfd, s, 3))
1439 return false;
1440 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1441
1442 s = bfd_make_section(abfd, ".rela.plt");
1443 if (s == NULL
1444 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1445 | SEC_HAS_CONTENTS
1446 | SEC_IN_MEMORY
1447 | SEC_READONLY
1448 | SEC_LINKER_CREATED))
1449 || !bfd_set_section_alignment (abfd, s, 3))
1450 return false;
1451 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1452
1453 s = bfd_make_section(abfd, ".rela.data");
1454 if (s == NULL
1455 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1456 | SEC_HAS_CONTENTS
1457 | SEC_IN_MEMORY
1458 | SEC_READONLY
1459 | SEC_LINKER_CREATED))
1460 || !bfd_set_section_alignment (abfd, s, 3))
1461 return false;
1462 elf64_hppa_hash_table (info)->other_rel_sec = s;
1463
1464 s = bfd_make_section(abfd, ".rela.opd");
1465 if (s == NULL
1466 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1467 | SEC_HAS_CONTENTS
1468 | SEC_IN_MEMORY
1469 | SEC_READONLY
1470 | SEC_LINKER_CREATED))
1471 || !bfd_set_section_alignment (abfd, s, 3))
1472 return false;
1473 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1474
1475 return true;
1476}
1477
1478/* Allocate dynamic relocations for those symbols that turned out
1479 to be dynamic. */
1480
1481static boolean
1482allocate_dynrel_entries (dyn_h, data)
1483 struct elf64_hppa_dyn_hash_entry *dyn_h;
1484 PTR data;
1485{
1486 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1487 struct elf64_hppa_link_hash_table *hppa_info;
1488 struct elf64_hppa_dyn_reloc_entry *rent;
1489 boolean dynamic_symbol, shared;
1490
1491 hppa_info = elf64_hppa_hash_table (x->info);
1492 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1493 shared = x->info->shared;
1494
1495 /* We may need to allocate relocations for a non-dynamic symbol
1496 when creating a shared library. */
1497 if (!dynamic_symbol && !shared)
1498 return true;
1499
1500 /* Take care of the normal data relocations. */
1501
1502 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1503 {
1504 switch (rent->type)
1505 {
1506 case R_PARISC_FPTR64:
1507 /* Allocate one iff we are not building a shared library and
1508 !want_opd, which by this point will be true only if we're
1509 actually allocating one statically in the main executable. */
1510 if (!x->info->shared && dyn_h->want_opd)
1511 continue;
1512 break;
1513 }
1514 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1515
1516 /* Make sure this symbol gets into the dynamic symbol table if it is
1517 not already recorded. ?!? This should not be in the loop since
1518 the symbol need only be added once. */
1519 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1520 if (!_bfd_elf64_link_record_local_dynamic_symbol
1521 (x->info, rent->sec->owner, dyn_h->sym_indx))
1522 return false;
1523 }
1524
1525 /* Take care of the GOT and PLT relocations. */
1526
1527 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1528 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1529
1530 /* If we are building a shared library, then every symbol that has an
1531 opd entry will need an EPLT relocation to relocate the symbol's address
1532 and __gp value based on the runtime load address. */
1533 if (shared && dyn_h->want_opd)
1534 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1535
1536 if (dyn_h->want_plt && dynamic_symbol)
1537 {
1538 bfd_size_type t = 0;
1539
1540 /* Dynamic symbols get one IPLT relocation. Local symbols in
1541 shared libraries get two REL relocations. Local symbols in
1542 main applications get nothing. */
1543 if (dynamic_symbol)
1544 t = sizeof (Elf64_External_Rela);
1545 else if (shared)
1546 t = 2 * sizeof (Elf64_External_Rela);
1547
1548 hppa_info->plt_rel_sec->_raw_size += t;
1549 }
1550
1551 return true;
1552}
1553
1554/* Adjust a symbol defined by a dynamic object and referenced by a
1555 regular object. */
1556
1557static boolean
1558elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1559 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1560 struct elf_link_hash_entry *h;
1561{
1562 /* ??? Undefined symbols with PLT entries should be re-defined
1563 to be the PLT entry. */
1564
1565 /* If this is a weak symbol, and there is a real definition, the
1566 processor independent code will have arranged for us to see the
1567 real definition first, and we can just use the same value. */
1568 if (h->weakdef != NULL)
1569 {
1570 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1571 || h->weakdef->root.type == bfd_link_hash_defweak);
1572 h->root.u.def.section = h->weakdef->root.u.def.section;
1573 h->root.u.def.value = h->weakdef->root.u.def.value;
1574 return true;
1575 }
1576
1577 /* If this is a reference to a symbol defined by a dynamic object which
1578 is not a function, we might allocate the symbol in our .dynbss section
1579 and allocate a COPY dynamic relocation.
1580
1581 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1582 of hackery. */
1583
1584 return true;
1585}
1586
1587/* Set the final sizes of the dynamic sections and allocate memory for
1588 the contents of our special sections. */
1589
1590static boolean
1591elf64_hppa_size_dynamic_sections (output_bfd, info)
1592 bfd *output_bfd;
1593 struct bfd_link_info *info;
1594{
1595 bfd *dynobj;
1596 asection *s;
1597 boolean plt;
1598 boolean relocs;
1599 boolean reltext;
15bda425
JL
1600 struct elf64_hppa_allocate_data data;
1601 struct elf64_hppa_link_hash_table *hppa_info;
1602
1603 hppa_info = elf64_hppa_hash_table (info);
1604
1605 dynobj = elf_hash_table (info)->dynobj;
1606 BFD_ASSERT (dynobj != NULL);
1607
1608 if (elf_hash_table (info)->dynamic_sections_created)
1609 {
1610 /* Set the contents of the .interp section to the interpreter. */
1611 if (! info->shared)
1612 {
1613 s = bfd_get_section_by_name (dynobj, ".interp");
1614 BFD_ASSERT (s != NULL);
1615 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1616 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1617 }
1618 }
1619 else
1620 {
1621 /* We may have created entries in the .rela.got section.
1622 However, if we are not creating the dynamic sections, we will
1623 not actually use these entries. Reset the size of .rela.dlt,
1624 which will cause it to get stripped from the output file
1625 below. */
1626 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1627 if (s != NULL)
1628 s->_raw_size = 0;
1629 }
1630
1631 /* Allocate the GOT entries. */
1632
1633 data.info = info;
1634 if (elf64_hppa_hash_table (info)->dlt_sec)
1635 {
1636 data.ofs = 0x0;
1637 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1638 allocate_global_data_dlt, &data);
1639 hppa_info->dlt_sec->_raw_size = data.ofs;
1640
1641 data.ofs = 0x0;
1642 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1643 allocate_global_data_plt, &data);
1644 hppa_info->plt_sec->_raw_size = data.ofs;
1645
1646 data.ofs = 0x0;
1647 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1648 allocate_global_data_stub, &data);
1649 hppa_info->stub_sec->_raw_size = data.ofs;
1650 }
1651
1652 /* Mark each function this program exports so that we will allocate
1653 space in the .opd section for each function's FPTR.
1654
1655 We have to traverse the main linker hash table since we have to
1656 find functions which may not have been mentioned in any relocs. */
1657 elf_link_hash_traverse (elf_hash_table (info),
1658 elf64_hppa_mark_exported_functions,
1659 info);
1660
1661 /* Allocate space for entries in the .opd section. */
1662 if (elf64_hppa_hash_table (info)->opd_sec)
1663 {
1664 data.ofs = 0;
1665 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1666 allocate_global_data_opd, &data);
1667 hppa_info->opd_sec->_raw_size = data.ofs;
1668 }
1669
1670 /* Now allocate space for dynamic relocations, if necessary. */
1671 if (hppa_info->root.dynamic_sections_created)
1672 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1673 allocate_dynrel_entries, &data);
1674
1675 /* The sizes of all the sections are set. Allocate memory for them. */
1676 plt = false;
1677 relocs = false;
1678 reltext = false;
1679 for (s = dynobj->sections; s != NULL; s = s->next)
1680 {
1681 const char *name;
1682 boolean strip;
1683
1684 if ((s->flags & SEC_LINKER_CREATED) == 0)
1685 continue;
1686
1687 /* It's OK to base decisions on the section name, because none
1688 of the dynobj section names depend upon the input files. */
1689 name = bfd_get_section_name (dynobj, s);
1690
1691 strip = 0;
1692
1693 if (strcmp (name, ".plt") == 0)
1694 {
1695 if (s->_raw_size == 0)
1696 {
1697 /* Strip this section if we don't need it; see the
1698 comment below. */
1699 strip = true;
1700 }
1701 else
1702 {
1703 /* Remember whether there is a PLT. */
1704 plt = true;
1705 }
1706 }
1707 else if (strcmp (name, ".dlt") == 0)
1708 {
1709 if (s->_raw_size == 0)
1710 {
1711 /* Strip this section if we don't need it; see the
1712 comment below. */
1713 strip = true;
1714 }
1715 }
1716 else if (strcmp (name, ".opd") == 0)
1717 {
1718 if (s->_raw_size == 0)
1719 {
1720 /* Strip this section if we don't need it; see the
1721 comment below. */
1722 strip = true;
1723 }
1724 }
1725 else if (strncmp (name, ".rela", 4) == 0)
1726 {
1727 if (s->_raw_size == 0)
1728 {
1729 /* If we don't need this section, strip it from the
1730 output file. This is mostly to handle .rela.bss and
1731 .rela.plt. We must create both sections in
1732 create_dynamic_sections, because they must be created
1733 before the linker maps input sections to output
1734 sections. The linker does that before
1735 adjust_dynamic_symbol is called, and it is that
1736 function which decides whether anything needs to go
1737 into these sections. */
1738 strip = true;
1739 }
1740 else
1741 {
1742 asection *target;
1743
1744 /* Remember whether there are any reloc sections other
1745 than .rela.plt. */
1746 if (strcmp (name, ".rela.plt") != 0)
1747 {
1748 const char *outname;
1749
1750 relocs = true;
1751
1752 /* If this relocation section applies to a read only
1753 section, then we probably need a DT_TEXTREL
1754 entry. The entries in the .rela.plt section
1755 really apply to the .got section, which we
1756 created ourselves and so know is not readonly. */
1757 outname = bfd_get_section_name (output_bfd,
1758 s->output_section);
1759 target = bfd_get_section_by_name (output_bfd, outname + 4);
1760 if (target != NULL
1761 && (target->flags & SEC_READONLY) != 0
1762 && (target->flags & SEC_ALLOC) != 0)
1763 reltext = true;
1764 }
1765
1766 /* We use the reloc_count field as a counter if we need
1767 to copy relocs into the output file. */
1768 s->reloc_count = 0;
1769 }
1770 }
1771 else if (strncmp (name, ".dlt", 4) != 0
1772 && strcmp (name, ".stub") != 0
1773 && strcmp (name, ".got") != 0)
1774 {
1775 /* It's not one of our sections, so don't allocate space. */
1776 continue;
1777 }
1778
1779 if (strip)
1780 {
1781 _bfd_strip_section_from_output (info, s);
1782 continue;
1783 }
1784
1785 /* Allocate memory for the section contents if it has not
832d951b
AM
1786 been allocated already. We use bfd_zalloc here in case
1787 unused entries are not reclaimed before the section's
1788 contents are written out. This should not happen, but this
1789 way if it does, we get a R_PARISC_NONE reloc instead of
1790 garbage. */
15bda425
JL
1791 if (s->contents == NULL)
1792 {
7a9af8c4 1793 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
15bda425
JL
1794 if (s->contents == NULL && s->_raw_size != 0)
1795 return false;
1796 }
1797 }
1798
1799 if (elf_hash_table (info)->dynamic_sections_created)
1800 {
1801 /* Always create a DT_PLTGOT. It actually has nothing to do with
1802 the PLT, it is how we communicate the __gp value of a load
1803 module to the dynamic linker. */
1804 if (! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_FLAGS, 0)
1805 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0))
1806 return false;
1807
1808 /* Add some entries to the .dynamic section. We fill in the
1809 values later, in elf64_hppa_finish_dynamic_sections, but we
1810 must add the entries now so that we get the correct size for
1811 the .dynamic section. The DT_DEBUG entry is filled in by the
1812 dynamic linker and used by the debugger. */
1813 if (! info->shared)
1814 {
1815 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)
1816 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_HOOK, 0)
1817 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_LOAD_MAP, 0))
1818 return false;
1819 }
1820
1821 if (plt)
1822 {
1823 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1824 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1825 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1826 return false;
1827 }
1828
1829 if (relocs)
1830 {
1831 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1832 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1833 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1834 sizeof (Elf64_External_Rela)))
1835 return false;
1836 }
1837
1838 if (reltext)
1839 {
1840 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1841 return false;
d6cf2879 1842 info->flags |= DF_TEXTREL;
15bda425
JL
1843 }
1844 }
1845
1846 return true;
1847}
1848
1849/* Called after we have output the symbol into the dynamic symbol
1850 table, but before we output the symbol into the normal symbol
1851 table.
1852
1853 For some symbols we had to change their address when outputting
1854 the dynamic symbol table. We undo that change here so that
1855 the symbols have their expected value in the normal symbol
1856 table. Ick. */
1857
1858static boolean
1859elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1860 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1861 struct bfd_link_info *info;
1862 const char *name;
1863 Elf_Internal_Sym *sym;
edd21aca 1864 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1865{
1866 struct elf64_hppa_link_hash_table *hppa_info;
1867 struct elf64_hppa_dyn_hash_entry *dyn_h;
1868
1869 /* We may be called with the file symbol or section symbols.
1870 They never need munging, so it is safe to ignore them. */
1871 if (!name)
1872 return true;
1873
1874 /* Get the PA dyn_symbol (if any) associated with NAME. */
1875 hppa_info = elf64_hppa_hash_table (info);
1876 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1877 name, false, false);
1878
832d951b
AM
1879 /* Function symbols for which we created .opd entries *may* have been
1880 munged by finish_dynamic_symbol and have to be un-munged here.
1881
1882 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1883 into non-dynamic ones, so we initialize st_shndx to -1 in
1884 mark_exported_functions and check to see if it was overwritten
1885 here instead of just checking dyn_h->h->dynindx. */
1886 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1887 {
1888 /* Restore the saved value and section index. */
1889 sym->st_value = dyn_h->st_value;
fe8bc63d 1890 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1891 }
1892
1893 return true;
1894}
1895
1896/* Finish up dynamic symbol handling. We set the contents of various
1897 dynamic sections here. */
1898
1899static boolean
1900elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1901 bfd *output_bfd;
1902 struct bfd_link_info *info;
1903 struct elf_link_hash_entry *h;
1904 Elf_Internal_Sym *sym;
1905{
1906 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1907 struct elf64_hppa_link_hash_table *hppa_info;
1908 struct elf64_hppa_dyn_hash_entry *dyn_h;
1909
1910 hppa_info = elf64_hppa_hash_table (info);
1911 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1912 h->root.root.string, false, false);
1913
1914 stub = hppa_info->stub_sec;
1915 splt = hppa_info->plt_sec;
1916 sdlt = hppa_info->dlt_sec;
1917 sopd = hppa_info->opd_sec;
1918 spltrel = hppa_info->plt_rel_sec;
1919 sdltrel = hppa_info->dlt_rel_sec;
1920
1921 BFD_ASSERT (stub != NULL && splt != NULL
1922 && sopd != NULL && sdlt != NULL)
1923
1924 /* Incredible. It is actually necessary to NOT use the symbol's real
1925 value when building the dynamic symbol table for a shared library.
1926 At least for symbols that refer to functions.
1927
1928 We will store a new value and section index into the symbol long
1929 enough to output it into the dynamic symbol table, then we restore
1930 the original values (in elf64_hppa_link_output_symbol_hook). */
1931 if (dyn_h && dyn_h->want_opd)
1932 {
1933 /* Save away the original value and section index so that we
1934 can restore them later. */
1935 dyn_h->st_value = sym->st_value;
1936 dyn_h->st_shndx = sym->st_shndx;
1937
1938 /* For the dynamic symbol table entry, we want the value to be
1939 address of this symbol's entry within the .opd section. */
1940 sym->st_value = (dyn_h->opd_offset
1941 + sopd->output_offset
1942 + sopd->output_section->vma);
1943 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1944 sopd->output_section);
1945 }
1946
1947 /* Initialize a .plt entry if requested. */
1948 if (dyn_h && dyn_h->want_plt
1949 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1950 {
1951 bfd_vma value;
1952 Elf_Internal_Rela rel;
1953
1954 /* We do not actually care about the value in the PLT entry
1955 if we are creating a shared library and the symbol is
1956 still undefined, we create a dynamic relocation to fill
1957 in the correct value. */
1958 if (info->shared && h->root.type == bfd_link_hash_undefined)
1959 value = 0;
1960 else
1961 value = (h->root.u.def.value + h->root.u.def.section->vma);
1962
fe8bc63d 1963 /* Fill in the entry in the procedure linkage table.
15bda425
JL
1964
1965 The format of a plt entry is
fe8bc63d 1966 <funcaddr> <__gp>.
15bda425
JL
1967
1968 plt_offset is the offset within the PLT section at which to
fe8bc63d 1969 install the PLT entry.
15bda425
JL
1970
1971 We are modifying the in-memory PLT contents here, so we do not add
1972 in the output_offset of the PLT section. */
1973
1974 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1975 value = _bfd_get_gp_value (splt->output_section->owner);
1976 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1977
1978 /* Create a dynamic IPLT relocation for this entry.
1979
1980 We are creating a relocation in the output file's PLT section,
1981 which is included within the DLT secton. So we do need to include
1982 the PLT's output_offset in the computation of the relocation's
1983 address. */
1984 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1985 + splt->output_section->vma);
1986 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1987 rel.r_addend = 0;
1988
1989 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
1990 (((Elf64_External_Rela *)
1991 spltrel->contents)
1992 + spltrel->reloc_count));
1993 spltrel->reloc_count++;
1994 }
1995
1996 /* Initialize an external call stub entry if requested. */
1997 if (dyn_h && dyn_h->want_stub
1998 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1999 {
2000 bfd_vma value;
2001 int insn;
b352eebf 2002 unsigned int max_offset;
15bda425
JL
2003
2004 /* Install the generic stub template.
2005
2006 We are modifying the contents of the stub section, so we do not
2007 need to include the stub section's output_offset here. */
2008 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2009
2010 /* Fix up the first ldd instruction.
2011
2012 We are modifying the contents of the STUB section in memory,
fe8bc63d 2013 so we do not need to include its output offset in this computation.
15bda425
JL
2014
2015 Note the plt_offset value is the value of the PLT entry relative to
2016 the start of the PLT section. These instructions will reference
2017 data relative to the value of __gp, which may not necessarily have
2018 the same address as the start of the PLT section.
2019
2020 gp_offset contains the offset of __gp within the PLT section. */
2021 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 2022
15bda425 2023 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
2024 if (output_bfd->arch_info->mach >= 25)
2025 {
2026 /* Wide mode allows 16 bit offsets. */
2027 max_offset = 32768;
2028 insn &= ~ 0xfff1;
2029 insn |= re_assemble_16 (value);
2030 }
2031 else
2032 {
2033 max_offset = 8192;
2034 insn &= ~ 0x3ff1;
2035 insn |= re_assemble_14 (value);
2036 }
2037
2038 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2039 {
2040 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2041 dyn_h->root.string,
2042 (long) value);
2043 return false;
2044 }
2045
2046 bfd_put_32 (stub->owner, insn,
15bda425
JL
2047 stub->contents + dyn_h->stub_offset);
2048
2049 /* Fix up the second ldd instruction. */
b352eebf 2050 value += 8;
15bda425 2051 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2052 if (output_bfd->arch_info->mach >= 25)
2053 {
2054 insn &= ~ 0xfff1;
2055 insn |= re_assemble_16 (value);
2056 }
2057 else
2058 {
2059 insn &= ~ 0x3ff1;
2060 insn |= re_assemble_14 (value);
2061 }
2062 bfd_put_32 (stub->owner, insn,
15bda425
JL
2063 stub->contents + dyn_h->stub_offset + 8);
2064 }
2065
2066 /* Millicode symbols should not be put in the dynamic
2067 symbol table under any circumstances. */
2068 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2069 h->dynindx = -1;
2070
2071 return true;
2072}
2073
2074/* The .opd section contains FPTRs for each function this file
2075 exports. Initialize the FPTR entries. */
2076
2077static boolean
2078elf64_hppa_finalize_opd (dyn_h, data)
2079 struct elf64_hppa_dyn_hash_entry *dyn_h;
2080 PTR data;
2081{
2082 struct bfd_link_info *info = (struct bfd_link_info *)data;
2083 struct elf64_hppa_link_hash_table *hppa_info;
2084 struct elf_link_hash_entry *h = dyn_h->h;
2085 asection *sopd;
2086 asection *sopdrel;
2087
2088 hppa_info = elf64_hppa_hash_table (info);
2089 sopd = hppa_info->opd_sec;
2090 sopdrel = hppa_info->opd_rel_sec;
2091
2092 if (h && dyn_h && dyn_h->want_opd)
2093 {
2094 bfd_vma value;
2095
fe8bc63d 2096 /* The first two words of an .opd entry are zero.
15bda425
JL
2097
2098 We are modifying the contents of the OPD section in memory, so we
2099 do not need to include its output offset in this computation. */
2100 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2101
2102 value = (h->root.u.def.value
2103 + h->root.u.def.section->output_section->vma
2104 + h->root.u.def.section->output_offset);
2105
2106 /* The next word is the address of the function. */
2107 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2108
2109 /* The last word is our local __gp value. */
2110 value = _bfd_get_gp_value (sopd->output_section->owner);
2111 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2112 }
2113
2114 /* If we are generating a shared library, we must generate EPLT relocations
2115 for each entry in the .opd, even for static functions (they may have
2116 had their address taken). */
2117 if (info->shared && dyn_h && dyn_h->want_opd)
2118 {
2119 Elf64_Internal_Rela rel;
15bda425
JL
2120 int dynindx;
2121
2122 /* We may need to do a relocation against a local symbol, in
2123 which case we have to look up it's dynamic symbol index off
2124 the local symbol hash table. */
2125 if (h && h->dynindx != -1)
2126 dynindx = h->dynindx;
2127 else
2128 dynindx
2129 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2130 dyn_h->sym_indx);
2131
2132 /* The offset of this relocation is the absolute address of the
2133 .opd entry for this symbol. */
2134 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2135 + sopd->output_section->vma);
2136
2137 /* If H is non-null, then we have an external symbol.
2138
2139 It is imperative that we use a different dynamic symbol for the
2140 EPLT relocation if the symbol has global scope.
2141
2142 In the dynamic symbol table, the function symbol will have a value
2143 which is address of the function's .opd entry.
2144
2145 Thus, we can not use that dynamic symbol for the EPLT relocation
2146 (if we did, the data in the .opd would reference itself rather
2147 than the actual address of the function). Instead we have to use
2148 a new dynamic symbol which has the same value as the original global
fe8bc63d 2149 function symbol.
15bda425
JL
2150
2151 We prefix the original symbol with a "." and use the new symbol in
2152 the EPLT relocation. This new symbol has already been recorded in
2153 the symbol table, we just have to look it up and use it.
2154
2155 We do not have such problems with static functions because we do
2156 not make their addresses in the dynamic symbol table point to
2157 the .opd entry. Ultimately this should be safe since a static
2158 function can not be directly referenced outside of its shared
2159 library.
2160
2161 We do have to play similar games for FPTR relocations in shared
2162 libraries, including those for static symbols. See the FPTR
2163 handling in elf64_hppa_finalize_dynreloc. */
2164 if (h)
2165 {
2166 char *new_name;
2167 struct elf_link_hash_entry *nh;
2168
2169 new_name = alloca (strlen (h->root.root.string) + 2);
2170 new_name[0] = '.';
2171 strcpy (new_name + 1, h->root.root.string);
2172
2173 nh = elf_link_hash_lookup (elf_hash_table (info),
2174 new_name, false, false, false);
2175
2176 /* All we really want from the new symbol is its dynamic
2177 symbol index. */
2178 dynindx = nh->dynindx;
2179 }
2180
2181 rel.r_addend = 0;
2182 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2183
2184 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2185 (((Elf64_External_Rela *)
2186 sopdrel->contents)
2187 + sopdrel->reloc_count));
2188 sopdrel->reloc_count++;
2189 }
2190 return true;
2191}
2192
2193/* The .dlt section contains addresses for items referenced through the
2194 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2195 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2196
2197static boolean
2198elf64_hppa_finalize_dlt (dyn_h, data)
2199 struct elf64_hppa_dyn_hash_entry *dyn_h;
2200 PTR data;
2201{
2202 struct bfd_link_info *info = (struct bfd_link_info *)data;
2203 struct elf64_hppa_link_hash_table *hppa_info;
2204 asection *sdlt, *sdltrel;
2205 struct elf_link_hash_entry *h = dyn_h->h;
2206
2207 hppa_info = elf64_hppa_hash_table (info);
2208
2209 sdlt = hppa_info->dlt_sec;
2210 sdltrel = hppa_info->dlt_rel_sec;
2211
2212 /* H/DYN_H may refer to a local variable and we know it's
2213 address, so there is no need to create a relocation. Just install
2214 the proper value into the DLT, note this shortcut can not be
2215 skipped when building a shared library. */
2216 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2217 {
2218 bfd_vma value;
2219
2220 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2221 to point to the FPTR entry in the .opd section.
15bda425
JL
2222
2223 We include the OPD's output offset in this computation as
2224 we are referring to an absolute address in the resulting
2225 object file. */
2226 if (dyn_h->want_opd)
2227 {
2228 value = (dyn_h->opd_offset
2229 + hppa_info->opd_sec->output_offset
2230 + hppa_info->opd_sec->output_section->vma);
2231 }
2232 else
2233 {
2234 value = (h->root.u.def.value
2235 + h->root.u.def.section->output_offset);
2236
2237 if (h->root.u.def.section->output_section)
2238 value += h->root.u.def.section->output_section->vma;
2239 else
2240 value += h->root.u.def.section->vma;
2241 }
2242
2243 /* We do not need to include the output offset of the DLT section
2244 here because we are modifying the in-memory contents. */
2245 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2246 }
2247
2248 /* Create a relocation for the DLT entry assocated with this symbol.
2249 When building a shared library the symbol does not have to be dynamic. */
2250 if (dyn_h->want_dlt
2251 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2252 {
2253 Elf64_Internal_Rela rel;
2254 int dynindx;
2255
2256 /* We may need to do a relocation against a local symbol, in
2257 which case we have to look up it's dynamic symbol index off
2258 the local symbol hash table. */
2259 if (h && h->dynindx != -1)
2260 dynindx = h->dynindx;
2261 else
2262 dynindx
2263 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2264 dyn_h->sym_indx);
2265
15bda425
JL
2266 /* Create a dynamic relocation for this entry. Do include the output
2267 offset of the DLT entry since we need an absolute address in the
2268 resulting object file. */
2269 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2270 + sdlt->output_section->vma);
2271 if (h && h->type == STT_FUNC)
2272 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2273 else
2274 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2275 rel.r_addend = 0;
2276
2277 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2278 (((Elf64_External_Rela *)
2279 sdltrel->contents)
2280 + sdltrel->reloc_count));
2281 sdltrel->reloc_count++;
2282 }
2283 return true;
2284}
2285
2286/* Finalize the dynamic relocations. Specifically the FPTR relocations
2287 for dynamic functions used to initialize static data. */
2288
2289static boolean
2290elf64_hppa_finalize_dynreloc (dyn_h, data)
2291 struct elf64_hppa_dyn_hash_entry *dyn_h;
2292 PTR data;
2293{
2294 struct bfd_link_info *info = (struct bfd_link_info *)data;
2295 struct elf64_hppa_link_hash_table *hppa_info;
2296 struct elf_link_hash_entry *h;
2297 int dynamic_symbol;
2298
2299 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2300
2301 if (!dynamic_symbol && !info->shared)
2302 return true;
2303
2304 if (dyn_h->reloc_entries)
2305 {
2306 struct elf64_hppa_dyn_reloc_entry *rent;
2307 int dynindx;
2308
2309 hppa_info = elf64_hppa_hash_table (info);
2310 h = dyn_h->h;
2311
2312 /* We may need to do a relocation against a local symbol, in
2313 which case we have to look up it's dynamic symbol index off
2314 the local symbol hash table. */
2315 if (h && h->dynindx != -1)
2316 dynindx = h->dynindx;
2317 else
2318 dynindx
2319 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2320 dyn_h->sym_indx);
2321
2322 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2323 {
2324 Elf64_Internal_Rela rel;
2325
2326 switch (rent->type)
2327 {
2328 case R_PARISC_FPTR64:
2329 /* Allocate one iff we are not building a shared library and
2330 !want_opd, which by this point will be true only if we're
2331 actually allocating one statically in the main executable. */
2332 if (!info->shared && dyn_h->want_opd)
2333 continue;
2334 break;
2335 }
2336
fe8bc63d 2337 /* Create a dynamic relocation for this entry.
15bda425
JL
2338
2339 We need the output offset for the reloc's section because
2340 we are creating an absolute address in the resulting object
2341 file. */
2342 rel.r_offset = (rent->offset + rent->sec->output_offset
2343 + rent->sec->output_section->vma);
2344
2345 /* An FPTR64 relocation implies that we took the address of
2346 a function and that the function has an entry in the .opd
2347 section. We want the FPTR64 relocation to reference the
2348 entry in .opd.
2349
2350 We could munge the symbol value in the dynamic symbol table
2351 (in fact we already do for functions with global scope) to point
2352 to the .opd entry. Then we could use that dynamic symbol in
2353 this relocation.
2354
2355 Or we could do something sensible, not munge the symbol's
2356 address and instead just use a different symbol to reference
2357 the .opd entry. At least that seems sensible until you
2358 realize there's no local dynamic symbols we can use for that
2359 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2360
15bda425
JL
2361 We use a section symbol recorded by check_relocs as the
2362 base symbol for the relocation. The addend is the difference
2363 between the section symbol and the address of the .opd entry. */
2364 if (info->shared && rent->type == R_PARISC_FPTR64)
2365 {
2366 bfd_vma value, value2;
15bda425
JL
2367
2368 /* First compute the address of the opd entry for this symbol. */
2369 value = (dyn_h->opd_offset
2370 + hppa_info->opd_sec->output_section->vma
2371 + hppa_info->opd_sec->output_offset);
2372
2373 /* Compute the value of the start of the section with
2374 the relocation. */
2375 value2 = (rent->sec->output_section->vma
2376 + rent->sec->output_offset);
2377
2378 /* Compute the difference between the start of the section
2379 with the relocation and the opd entry. */
2380 value -= value2;
fe8bc63d 2381
15bda425
JL
2382 /* The result becomes the addend of the relocation. */
2383 rel.r_addend = value;
2384
2385 /* The section symbol becomes the symbol for the dynamic
2386 relocation. */
2387 dynindx
2388 = _bfd_elf_link_lookup_local_dynindx (info,
2389 rent->sec->owner,
2390 rent->sec_symndx);
2391 }
2392 else
2393 rel.r_addend = rent->addend;
2394
2395 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2396
2397 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2398 &rel,
2399 (((Elf64_External_Rela *)
2400 hppa_info->other_rel_sec->contents)
2401 + hppa_info->other_rel_sec->reloc_count));
2402 hppa_info->other_rel_sec->reloc_count++;
2403 }
2404 }
2405
2406 return true;
2407}
2408
2409/* Finish up the dynamic sections. */
2410
2411static boolean
2412elf64_hppa_finish_dynamic_sections (output_bfd, info)
2413 bfd *output_bfd;
2414 struct bfd_link_info *info;
2415{
2416 bfd *dynobj;
2417 asection *sdyn;
2418 struct elf64_hppa_link_hash_table *hppa_info;
2419
2420 hppa_info = elf64_hppa_hash_table (info);
2421
2422 /* Finalize the contents of the .opd section. */
2423 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2424 elf64_hppa_finalize_opd,
2425 info);
2426
2427 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2428 elf64_hppa_finalize_dynreloc,
2429 info);
2430
2431 /* Finalize the contents of the .dlt section. */
2432 dynobj = elf_hash_table (info)->dynobj;
2433 /* Finalize the contents of the .dlt section. */
2434 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2435 elf64_hppa_finalize_dlt,
2436 info);
2437
15bda425
JL
2438 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2439
2440 if (elf_hash_table (info)->dynamic_sections_created)
2441 {
2442 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2443
2444 BFD_ASSERT (sdyn != NULL);
2445
2446 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2447 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2448 for (; dyncon < dynconend; dyncon++)
2449 {
2450 Elf_Internal_Dyn dyn;
2451 asection *s;
2452
2453 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2454
2455 switch (dyn.d_tag)
2456 {
2457 default:
2458 break;
2459
2460 case DT_HP_LOAD_MAP:
2461 /* Compute the absolute address of 16byte scratchpad area
2462 for the dynamic linker.
2463
2464 By convention the linker script will allocate the scratchpad
2465 area at the start of the .data section. So all we have to
2466 to is find the start of the .data section. */
2467 s = bfd_get_section_by_name (output_bfd, ".data");
2468 dyn.d_un.d_ptr = s->vma;
2469 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2470 break;
2471
2472 case DT_PLTGOT:
2473 /* HP's use PLTGOT to set the GOT register. */
2474 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2475 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2476 break;
2477
2478 case DT_JMPREL:
2479 s = hppa_info->plt_rel_sec;
2480 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2481 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2482 break;
2483
2484 case DT_PLTRELSZ:
2485 s = hppa_info->plt_rel_sec;
2486 dyn.d_un.d_val = s->_raw_size;
2487 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2488 break;
2489
2490 case DT_RELA:
2491 s = hppa_info->other_rel_sec;
2492 if (! s)
2493 s = hppa_info->dlt_rel_sec;
2494 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2495 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2496 break;
2497
2498 case DT_RELASZ:
2499 s = hppa_info->other_rel_sec;
2500 dyn.d_un.d_val = s->_raw_size;
2501 s = hppa_info->dlt_rel_sec;
2502 dyn.d_un.d_val += s->_raw_size;
2503 s = hppa_info->opd_rel_sec;
2504 dyn.d_un.d_val += s->_raw_size;
2505 /* There is some question about whether or not the size of
2506 the PLT relocs should be included here. HP's tools do
2507 it, so we'll emulate them. */
2508 s = hppa_info->plt_rel_sec;
2509 dyn.d_un.d_val += s->_raw_size;
2510 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2511 break;
2512
2513 }
2514 }
2515 }
2516
2517 return true;
2518}
2519
15bda425
JL
2520/* Return the number of additional phdrs we will need.
2521
2522 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2523 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2524
2525 This routine indicates that the backend needs one additional program
2526 header for that case.
2527
2528 Note we do not have access to the link info structure here, so we have
2529 to guess whether or not we are building a shared library based on the
2530 existence of a .interp section. */
2531
2532static int
2533elf64_hppa_additional_program_headers (abfd)
2534 bfd *abfd;
2535{
2536 asection *s;
2537
2538 /* If we are creating a shared library, then we have to create a
2539 PT_PHDR segment. HP's dynamic linker chokes without it. */
2540 s = bfd_get_section_by_name (abfd, ".interp");
2541 if (! s)
2542 return 1;
2543 return 0;
2544}
2545
2546/* Allocate and initialize any program headers required by this
2547 specific backend.
2548
2549 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2550 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2551
2552 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2553 for the HP linker.
15bda425
JL
2554
2555 Note we do not have access to the link info structure here, so we have
2556 to guess whether or not we are building a shared library based on the
2557 existence of a .interp section. */
2558
2559static boolean
2560elf64_hppa_modify_segment_map (abfd)
2561 bfd *abfd;
2562{
edd21aca 2563 struct elf_segment_map *m;
15bda425
JL
2564 asection *s;
2565
2566 s = bfd_get_section_by_name (abfd, ".interp");
2567 if (! s)
2568 {
2569 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2570 if (m->p_type == PT_PHDR)
2571 break;
2572 if (m == NULL)
2573 {
2574 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
2575 if (m == NULL)
2576 return false;
2577
2578 m->p_type = PT_PHDR;
2579 m->p_flags = PF_R | PF_X;
2580 m->p_flags_valid = 1;
2581 m->p_paddr_valid = 1;
2582 m->includes_phdrs = 1;
2583
2584 m->next = elf_tdata (abfd)->segment_map;
2585 elf_tdata (abfd)->segment_map = m;
2586 }
2587 }
2588
2589 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2590 if (m->p_type == PT_LOAD)
2591 {
0ba2a60e 2592 unsigned int i;
15bda425
JL
2593
2594 for (i = 0; i < m->count; i++)
2595 {
2596 /* The code "hint" is not really a hint. It is a requirement
2597 for certain versions of the HP dynamic linker. Worse yet,
2598 it must be set even if the shared library does not have
2599 any code in its "text" segment (thus the check for .hash
2600 to catch this situation). */
2601 if (m->sections[i]->flags & SEC_CODE
2602 || (strcmp (m->sections[i]->name, ".hash") == 0))
2603 m->p_flags |= (PF_X | PF_HP_CODE);
2604 }
2605 }
2606
2607 return true;
2608}
2609
3fab46d0
AM
2610/* Called when writing out an object file to decide the type of a
2611 symbol. */
2612static int
2613elf64_hppa_elf_get_symbol_type (elf_sym, type)
2614 Elf_Internal_Sym *elf_sym;
2615 int type;
2616{
2617 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2618 return STT_PARISC_MILLI;
2619 else
2620 return type;
2621}
2622
15bda425
JL
2623/* The hash bucket size is the standard one, namely 4. */
2624
2625const struct elf_size_info hppa64_elf_size_info =
2626{
2627 sizeof (Elf64_External_Ehdr),
2628 sizeof (Elf64_External_Phdr),
2629 sizeof (Elf64_External_Shdr),
2630 sizeof (Elf64_External_Rel),
2631 sizeof (Elf64_External_Rela),
2632 sizeof (Elf64_External_Sym),
2633 sizeof (Elf64_External_Dyn),
2634 sizeof (Elf_External_Note),
2635 4,
2636 1,
2637 64, 8,
2638 ELFCLASS64, EV_CURRENT,
2639 bfd_elf64_write_out_phdrs,
2640 bfd_elf64_write_shdrs_and_ehdr,
2641 bfd_elf64_write_relocs,
2642 bfd_elf64_swap_symbol_out,
2643 bfd_elf64_slurp_reloc_table,
2644 bfd_elf64_slurp_symbol_table,
2645 bfd_elf64_swap_dyn_in,
2646 bfd_elf64_swap_dyn_out,
2647 NULL,
2648 NULL,
2649 NULL,
2650 NULL
2651};
2652
2653#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2654#define TARGET_BIG_NAME "elf64-hppa"
2655#define ELF_ARCH bfd_arch_hppa
2656#define ELF_MACHINE_CODE EM_PARISC
2657/* This is not strictly correct. The maximum page size for PA2.0 is
2658 64M. But everything still uses 4k. */
2659#define ELF_MAXPAGESIZE 0x1000
2660#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2661#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2662#define elf_info_to_howto elf_hppa_info_to_howto
2663#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2664
2665#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2666#define elf_backend_object_p elf64_hppa_object_p
2667#define elf_backend_final_write_processing \
2668 elf_hppa_final_write_processing
99c79b2e 2669#define elf_backend_fake_sections elf_hppa_fake_sections
15bda425
JL
2670#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2671
2672#define elf_backend_relocate_section elf_hppa_relocate_section
2673
2674#define bfd_elf64_bfd_final_link elf_hppa_final_link
2675
2676#define elf_backend_create_dynamic_sections \
2677 elf64_hppa_create_dynamic_sections
2678#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2679
2680#define elf_backend_adjust_dynamic_symbol \
2681 elf64_hppa_adjust_dynamic_symbol
2682
2683#define elf_backend_size_dynamic_sections \
2684 elf64_hppa_size_dynamic_sections
2685
2686#define elf_backend_finish_dynamic_symbol \
2687 elf64_hppa_finish_dynamic_symbol
2688#define elf_backend_finish_dynamic_sections \
2689 elf64_hppa_finish_dynamic_sections
2690
2691/* Stuff for the BFD linker: */
2692#define bfd_elf64_bfd_link_hash_table_create \
2693 elf64_hppa_hash_table_create
2694
2695#define elf_backend_check_relocs \
2696 elf64_hppa_check_relocs
2697
2698#define elf_backend_size_info \
2699 hppa64_elf_size_info
2700
2701#define elf_backend_additional_program_headers \
2702 elf64_hppa_additional_program_headers
2703
2704#define elf_backend_modify_segment_map \
2705 elf64_hppa_modify_segment_map
2706
2707#define elf_backend_link_output_symbol_hook \
2708 elf64_hppa_link_output_symbol_hook
2709
15bda425
JL
2710#define elf_backend_want_got_plt 0
2711#define elf_backend_plt_readonly 0
2712#define elf_backend_want_plt_sym 0
2713#define elf_backend_got_header_size 0
2714#define elf_backend_plt_header_size 0
2715#define elf_backend_type_change_ok true
3fab46d0 2716#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
15bda425
JL
2717
2718#include "elf64-target.h"
d952f17a
AM
2719
2720#undef TARGET_BIG_SYM
2721#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2722#undef TARGET_BIG_NAME
2723#define TARGET_BIG_NAME "elf64-hppa-linux"
2724
2725#define INCLUDED_TARGET_FILE 1
2726#include "elf64-target.h"