]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf64-hppa.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf 1/* Support for HPPA 64-bit ELF
4dfe6ac6
NC
2 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
15bda425 4
ae9a127f 5 This file is part of BFD, the Binary File Descriptor library.
15bda425 6
ae9a127f
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
ae9a127f 10 (at your option) any later version.
15bda425 11
ae9a127f
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
15bda425 16
ae9a127f
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
cd123cb7
NC
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
15bda425 21
8d25cc3d 22#include "alloca-conf.h"
15bda425 23#include "sysdep.h"
3db64b00 24#include "bfd.h"
15bda425
JL
25#include "libbfd.h"
26#include "elf-bfd.h"
27#include "elf/hppa.h"
28#include "libhppa.h"
29#include "elf64-hppa.h"
8bc9c892 30
8bc9c892 31
15bda425
JL
32#define ARCH_SIZE 64
33
34#define PLT_ENTRY_SIZE 0x10
35#define DLT_ENTRY_SIZE 0x8
36#define OPD_ENTRY_SIZE 0x20
fe8bc63d 37
15bda425
JL
38#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
39
40/* The stub is supposed to load the target address and target's DP
41 value out of the PLT, then do an external branch to the target
42 address.
43
44 LDD PLTOFF(%r27),%r1
45 BVE (%r1)
46 LDD PLTOFF+8(%r27),%r27
47
48 Note that we must use the LDD with a 14 bit displacement, not the one
49 with a 5 bit displacement. */
50static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
51 0x53, 0x7b, 0x00, 0x00 };
52
a03bd320 53struct elf64_hppa_link_hash_entry
15bda425 54{
a03bd320 55 struct elf_link_hash_entry eh;
15bda425
JL
56
57 /* Offsets for this symbol in various linker sections. */
58 bfd_vma dlt_offset;
59 bfd_vma plt_offset;
60 bfd_vma opd_offset;
61 bfd_vma stub_offset;
62
15bda425
JL
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
dc810e39 66 long sym_indx;
15bda425
JL
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
a03bd320
DA
91 /* Number of relocs copied in this section. */
92 bfd_size_type count;
93
15bda425
JL
94 /* The index of the section symbol for the input section of
95 the relocation. Only needed when building shared libraries. */
96 int sec_symndx;
97
98 /* The offset within the input section of the relocation. */
99 bfd_vma offset;
100
101 /* The addend for the relocation. */
102 bfd_vma addend;
103
104 } *reloc_entries;
105
106 /* Nonzero if this symbol needs an entry in one of the linker
107 sections. */
108 unsigned want_dlt;
109 unsigned want_plt;
110 unsigned want_opd;
111 unsigned want_stub;
112};
113
15bda425
JL
114struct elf64_hppa_link_hash_table
115{
116 struct elf_link_hash_table root;
117
118 /* Shortcuts to get to the various linker defined sections. */
119 asection *dlt_sec;
120 asection *dlt_rel_sec;
121 asection *plt_sec;
122 asection *plt_rel_sec;
123 asection *opd_sec;
124 asection *opd_rel_sec;
125 asection *other_rel_sec;
126
127 /* Offset of __gp within .plt section. When the PLT gets large we want
128 to slide __gp into the PLT section so that we can continue to use
129 single DP relative instructions to load values out of the PLT. */
130 bfd_vma gp_offset;
131
132 /* Note this is not strictly correct. We should create a stub section for
133 each input section with calls. The stub section should be placed before
134 the section with the call. */
135 asection *stub_sec;
136
137 bfd_vma text_segment_base;
138 bfd_vma data_segment_base;
139
15bda425
JL
140 /* We build tables to map from an input section back to its
141 symbol index. This is the BFD for which we currently have
142 a map. */
143 bfd *section_syms_bfd;
144
145 /* Array of symbol numbers for each input section attached to the
146 current BFD. */
147 int *section_syms;
148};
149
a03bd320 150#define hppa_link_hash_table(p) \
4dfe6ac6
NC
151 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
152 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
15bda425 153
a03bd320
DA
154#define hppa_elf_hash_entry(ent) \
155 ((struct elf64_hppa_link_hash_entry *)(ent))
156
157#define eh_name(eh) \
158 (eh ? eh->root.root.string : "<undef>")
159
15bda425 160typedef struct bfd_hash_entry *(*new_hash_entry_func)
813c8a3c 161 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
15bda425 162
15bda425 163static struct bfd_link_hash_table *elf64_hppa_hash_table_create
813c8a3c
DA
164 (bfd *abfd);
165
15bda425
JL
166/* This must follow the definitions of the various derived linker
167 hash tables and shared functions. */
168#include "elf-hppa.h"
169
b34976b6 170static bfd_boolean elf64_hppa_object_p
813c8a3c 171 (bfd *);
15bda425 172
15bda425 173static void elf64_hppa_post_process_headers
813c8a3c 174 (bfd *, struct bfd_link_info *);
15bda425 175
b34976b6 176static bfd_boolean elf64_hppa_create_dynamic_sections
813c8a3c 177 (bfd *, struct bfd_link_info *);
15bda425 178
b34976b6 179static bfd_boolean elf64_hppa_adjust_dynamic_symbol
813c8a3c 180 (struct bfd_link_info *, struct elf_link_hash_entry *);
15bda425 181
b34976b6 182static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
813c8a3c 183 (struct elf_link_hash_entry *, void *);
47b7c2db 184
b34976b6 185static bfd_boolean elf64_hppa_size_dynamic_sections
813c8a3c 186 (bfd *, struct bfd_link_info *);
15bda425 187
6e0b88f1 188static int elf64_hppa_link_output_symbol_hook
813c8a3c
DA
189 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
190 asection *, struct elf_link_hash_entry *);
99c79b2e 191
b34976b6 192static bfd_boolean elf64_hppa_finish_dynamic_symbol
813c8a3c
DA
193 (bfd *, struct bfd_link_info *,
194 struct elf_link_hash_entry *, Elf_Internal_Sym *);
fe8bc63d 195
5ac81c74 196static enum elf_reloc_type_class elf64_hppa_reloc_type_class
813c8a3c 197 (const Elf_Internal_Rela *);
5ac81c74 198
b34976b6 199static bfd_boolean elf64_hppa_finish_dynamic_sections
813c8a3c 200 (bfd *, struct bfd_link_info *);
15bda425 201
b34976b6 202static bfd_boolean elf64_hppa_check_relocs
813c8a3c
DA
203 (bfd *, struct bfd_link_info *,
204 asection *, const Elf_Internal_Rela *);
15bda425 205
b34976b6 206static bfd_boolean elf64_hppa_dynamic_symbol_p
813c8a3c 207 (struct elf_link_hash_entry *, struct bfd_link_info *);
15bda425 208
b34976b6 209static bfd_boolean elf64_hppa_mark_exported_functions
813c8a3c 210 (struct elf_link_hash_entry *, void *);
15bda425 211
b34976b6 212static bfd_boolean elf64_hppa_finalize_opd
a03bd320 213 (struct elf_link_hash_entry *, void *);
15bda425 214
b34976b6 215static bfd_boolean elf64_hppa_finalize_dlt
a03bd320 216 (struct elf_link_hash_entry *, void *);
15bda425 217
b34976b6 218static bfd_boolean allocate_global_data_dlt
a03bd320 219 (struct elf_link_hash_entry *, void *);
15bda425 220
b34976b6 221static bfd_boolean allocate_global_data_plt
a03bd320 222 (struct elf_link_hash_entry *, void *);
15bda425 223
b34976b6 224static bfd_boolean allocate_global_data_stub
a03bd320 225 (struct elf_link_hash_entry *, void *);
15bda425 226
b34976b6 227static bfd_boolean allocate_global_data_opd
a03bd320 228 (struct elf_link_hash_entry *, void *);
15bda425 229
b34976b6 230static bfd_boolean get_reloc_section
813c8a3c 231 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
15bda425 232
b34976b6 233static bfd_boolean count_dyn_reloc
a03bd320 234 (bfd *, struct elf64_hppa_link_hash_entry *,
813c8a3c 235 int, asection *, int, bfd_vma, bfd_vma);
15bda425 236
b34976b6 237static bfd_boolean allocate_dynrel_entries
a03bd320 238 (struct elf_link_hash_entry *, void *);
15bda425 239
b34976b6 240static bfd_boolean elf64_hppa_finalize_dynreloc
a03bd320 241 (struct elf_link_hash_entry *, void *);
15bda425 242
b34976b6 243static bfd_boolean get_opd
813c8a3c 244 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
15bda425 245
b34976b6 246static bfd_boolean get_plt
813c8a3c 247 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
15bda425 248
b34976b6 249static bfd_boolean get_dlt
813c8a3c 250 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
15bda425 251
b34976b6 252static bfd_boolean get_stub
813c8a3c 253 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
15bda425 254
3fab46d0 255static int elf64_hppa_elf_get_symbol_type
813c8a3c 256 (Elf_Internal_Sym *, int);
3fab46d0 257
a03bd320 258/* Initialize an entry in the link hash table. */
15bda425 259
a03bd320
DA
260static struct bfd_hash_entry *
261hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
262 struct bfd_hash_table *table,
263 const char *string)
15bda425 264{
15bda425
JL
265 /* Allocate the structure if it has not already been allocated by a
266 subclass. */
a03bd320
DA
267 if (entry == NULL)
268 {
269 entry = bfd_hash_allocate (table,
270 sizeof (struct elf64_hppa_link_hash_entry));
271 if (entry == NULL)
272 return entry;
273 }
15bda425 274
15bda425 275 /* Call the allocation method of the superclass. */
a03bd320
DA
276 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
277 if (entry != NULL)
278 {
279 struct elf64_hppa_link_hash_entry *hh;
15bda425 280
a03bd320
DA
281 /* Initialize our local data. All zeros. */
282 hh = hppa_elf_hash_entry (entry);
283 memset (&hh->dlt_offset, 0,
284 (sizeof (struct elf64_hppa_link_hash_entry)
285 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
286 }
336549c1 287
a03bd320 288 return entry;
15bda425
JL
289}
290
291/* Create the derived linker hash table. The PA64 ELF port uses this
292 derived hash table to keep information specific to the PA ElF
293 linker (without using static variables). */
294
295static struct bfd_link_hash_table*
813c8a3c 296elf64_hppa_hash_table_create (bfd *abfd)
15bda425 297{
a03bd320
DA
298 struct elf64_hppa_link_hash_table *htab;
299 bfd_size_type amt = sizeof (*htab);
15bda425 300
a03bd320
DA
301 htab = bfd_zalloc (abfd, amt);
302 if (htab == NULL)
303 return NULL;
15bda425 304
a03bd320
DA
305 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
306 hppa64_link_hash_newfunc,
4dfe6ac6
NC
307 sizeof (struct elf64_hppa_link_hash_entry),
308 HPPA64_ELF_DATA))
a03bd320
DA
309 {
310 bfd_release (abfd, htab);
311 return NULL;
312 }
15bda425 313
a03bd320
DA
314 htab->text_segment_base = (bfd_vma) -1;
315 htab->data_segment_base = (bfd_vma) -1;
15bda425 316
a03bd320 317 return &htab->root.root;
15bda425
JL
318}
319\f
320/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
321
322 Additionally we set the default architecture and machine. */
b34976b6 323static bfd_boolean
813c8a3c 324elf64_hppa_object_p (bfd *abfd)
15bda425 325{
24a5e751
L
326 Elf_Internal_Ehdr * i_ehdrp;
327 unsigned int flags;
d9634ba1 328
24a5e751
L
329 i_ehdrp = elf_elfheader (abfd);
330 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
331 {
6c21aa76
NC
332 /* GCC on hppa-linux produces binaries with OSABI=Linux,
333 but the kernel produces corefiles with OSABI=SysV. */
d97a8924
DA
334 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
335 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
b34976b6 336 return FALSE;
24a5e751
L
337 }
338 else
339 {
d97a8924
DA
340 /* HPUX produces binaries with OSABI=HPUX,
341 but the kernel produces corefiles with OSABI=SysV. */
342 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
343 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
b34976b6 344 return FALSE;
24a5e751
L
345 }
346
347 flags = i_ehdrp->e_flags;
d9634ba1
AM
348 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
349 {
350 case EFA_PARISC_1_0:
351 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
352 case EFA_PARISC_1_1:
353 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
354 case EFA_PARISC_2_0:
d97a8924
DA
355 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
356 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
357 else
358 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
d9634ba1
AM
359 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
360 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
361 }
362 /* Don't be fussy. */
b34976b6 363 return TRUE;
15bda425
JL
364}
365
366/* Given section type (hdr->sh_type), return a boolean indicating
367 whether or not the section is an elf64-hppa specific section. */
b34976b6 368static bfd_boolean
6dc132d9
L
369elf64_hppa_section_from_shdr (bfd *abfd,
370 Elf_Internal_Shdr *hdr,
371 const char *name,
372 int shindex)
15bda425 373{
15bda425
JL
374 switch (hdr->sh_type)
375 {
376 case SHT_PARISC_EXT:
377 if (strcmp (name, ".PARISC.archext") != 0)
b34976b6 378 return FALSE;
15bda425
JL
379 break;
380 case SHT_PARISC_UNWIND:
381 if (strcmp (name, ".PARISC.unwind") != 0)
b34976b6 382 return FALSE;
15bda425
JL
383 break;
384 case SHT_PARISC_DOC:
385 case SHT_PARISC_ANNOT:
386 default:
b34976b6 387 return FALSE;
15bda425
JL
388 }
389
6dc132d9 390 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 391 return FALSE;
15bda425 392
b34976b6 393 return TRUE;
15bda425
JL
394}
395
15bda425
JL
396/* SEC is a section containing relocs for an input BFD when linking; return
397 a suitable section for holding relocs in the output BFD for a link. */
398
b34976b6 399static bfd_boolean
813c8a3c
DA
400get_reloc_section (bfd *abfd,
401 struct elf64_hppa_link_hash_table *hppa_info,
402 asection *sec)
15bda425
JL
403{
404 const char *srel_name;
405 asection *srel;
406 bfd *dynobj;
407
408 srel_name = (bfd_elf_string_from_elf_section
409 (abfd, elf_elfheader(abfd)->e_shstrndx,
d4730f92 410 _bfd_elf_single_rel_hdr(sec)->sh_name));
15bda425 411 if (srel_name == NULL)
b34976b6 412 return FALSE;
15bda425 413
0112cd26 414 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
15bda425 415 && strcmp (bfd_get_section_name (abfd, sec),
0112cd26
NC
416 srel_name + 5) == 0)
417 || (CONST_STRNEQ (srel_name, ".rel")
15bda425 418 && strcmp (bfd_get_section_name (abfd, sec),
0112cd26 419 srel_name + 4) == 0));
15bda425
JL
420
421 dynobj = hppa_info->root.dynobj;
422 if (!dynobj)
423 hppa_info->root.dynobj = dynobj = abfd;
424
425 srel = bfd_get_section_by_name (dynobj, srel_name);
426 if (srel == NULL)
427 {
3496cb2a
L
428 srel = bfd_make_section_with_flags (dynobj, srel_name,
429 (SEC_ALLOC
430 | SEC_LOAD
431 | SEC_HAS_CONTENTS
432 | SEC_IN_MEMORY
433 | SEC_LINKER_CREATED
434 | SEC_READONLY));
15bda425 435 if (srel == NULL
15bda425 436 || !bfd_set_section_alignment (dynobj, srel, 3))
b34976b6 437 return FALSE;
15bda425
JL
438 }
439
440 hppa_info->other_rel_sec = srel;
b34976b6 441 return TRUE;
15bda425
JL
442}
443
fe8bc63d 444/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
445
446 We use this to keep a record of all the FPTR relocations against a
447 particular symbol so that we can create FPTR relocations in the
448 output file. */
449
b34976b6 450static bfd_boolean
813c8a3c 451count_dyn_reloc (bfd *abfd,
a03bd320 452 struct elf64_hppa_link_hash_entry *hh,
813c8a3c
DA
453 int type,
454 asection *sec,
455 int sec_symndx,
456 bfd_vma offset,
457 bfd_vma addend)
15bda425
JL
458{
459 struct elf64_hppa_dyn_reloc_entry *rent;
460
461 rent = (struct elf64_hppa_dyn_reloc_entry *)
dc810e39 462 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
15bda425 463 if (!rent)
b34976b6 464 return FALSE;
15bda425 465
a03bd320 466 rent->next = hh->reloc_entries;
15bda425
JL
467 rent->type = type;
468 rent->sec = sec;
469 rent->sec_symndx = sec_symndx;
470 rent->offset = offset;
471 rent->addend = addend;
a03bd320 472 hh->reloc_entries = rent;
15bda425 473
b34976b6 474 return TRUE;
15bda425
JL
475}
476
a03bd320
DA
477/* Return a pointer to the local DLT, PLT and OPD reference counts
478 for ABFD. Returns NULL if the storage allocation fails. */
479
480static bfd_signed_vma *
481hppa64_elf_local_refcounts (bfd *abfd)
482{
483 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
484 bfd_signed_vma *local_refcounts;
485
486 local_refcounts = elf_local_got_refcounts (abfd);
487 if (local_refcounts == NULL)
488 {
489 bfd_size_type size;
490
491 /* Allocate space for local DLT, PLT and OPD reference
492 counts. Done this way to save polluting elf_obj_tdata
493 with another target specific pointer. */
494 size = symtab_hdr->sh_info;
495 size *= 3 * sizeof (bfd_signed_vma);
496 local_refcounts = bfd_zalloc (abfd, size);
497 elf_local_got_refcounts (abfd) = local_refcounts;
498 }
499 return local_refcounts;
500}
501
15bda425
JL
502/* Scan the RELOCS and record the type of dynamic entries that each
503 referenced symbol needs. */
504
b34976b6 505static bfd_boolean
813c8a3c
DA
506elf64_hppa_check_relocs (bfd *abfd,
507 struct bfd_link_info *info,
508 asection *sec,
509 const Elf_Internal_Rela *relocs)
15bda425
JL
510{
511 struct elf64_hppa_link_hash_table *hppa_info;
512 const Elf_Internal_Rela *relend;
513 Elf_Internal_Shdr *symtab_hdr;
514 const Elf_Internal_Rela *rel;
4fbb74a6 515 unsigned int sec_symndx;
15bda425 516
1049f94e 517 if (info->relocatable)
b34976b6 518 return TRUE;
15bda425
JL
519
520 /* If this is the first dynamic object found in the link, create
521 the special sections required for dynamic linking. */
522 if (! elf_hash_table (info)->dynamic_sections_created)
523 {
45d6a902 524 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
b34976b6 525 return FALSE;
15bda425
JL
526 }
527
a03bd320 528 hppa_info = hppa_link_hash_table (info);
4dfe6ac6
NC
529 if (hppa_info == NULL)
530 return FALSE;
15bda425
JL
531 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
532
533 /* If necessary, build a new table holding section symbols indices
6cdc0ccc 534 for this BFD. */
fe8bc63d 535
15bda425
JL
536 if (info->shared && hppa_info->section_syms_bfd != abfd)
537 {
832d951b 538 unsigned long i;
9ad5cbcf 539 unsigned int highest_shndx;
6cdc0ccc
AM
540 Elf_Internal_Sym *local_syms = NULL;
541 Elf_Internal_Sym *isym, *isymend;
dc810e39 542 bfd_size_type amt;
15bda425
JL
543
544 /* We're done with the old cache of section index to section symbol
545 index information. Free it.
546
547 ?!? Note we leak the last section_syms array. Presumably we
548 could free it in one of the later routines in this file. */
549 if (hppa_info->section_syms)
550 free (hppa_info->section_syms);
551
6cdc0ccc
AM
552 /* Read this BFD's local symbols. */
553 if (symtab_hdr->sh_info != 0)
47b7c2db 554 {
6cdc0ccc
AM
555 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
556 if (local_syms == NULL)
557 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
558 symtab_hdr->sh_info, 0,
559 NULL, NULL, NULL);
560 if (local_syms == NULL)
b34976b6 561 return FALSE;
9ad5cbcf
AM
562 }
563
6cdc0ccc 564 /* Record the highest section index referenced by the local symbols. */
15bda425 565 highest_shndx = 0;
6cdc0ccc
AM
566 isymend = local_syms + symtab_hdr->sh_info;
567 for (isym = local_syms; isym < isymend; isym++)
15bda425 568 {
4fbb74a6
AM
569 if (isym->st_shndx > highest_shndx
570 && isym->st_shndx < SHN_LORESERVE)
15bda425
JL
571 highest_shndx = isym->st_shndx;
572 }
573
15bda425
JL
574 /* Allocate an array to hold the section index to section symbol index
575 mapping. Bump by one since we start counting at zero. */
576 highest_shndx++;
dc810e39
AM
577 amt = highest_shndx;
578 amt *= sizeof (int);
579 hppa_info->section_syms = (int *) bfd_malloc (amt);
15bda425
JL
580
581 /* Now walk the local symbols again. If we find a section symbol,
582 record the index of the symbol into the section_syms array. */
6cdc0ccc 583 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
15bda425
JL
584 {
585 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
586 hppa_info->section_syms[isym->st_shndx] = i;
587 }
588
6cdc0ccc
AM
589 /* We are finished with the local symbols. */
590 if (local_syms != NULL
591 && symtab_hdr->contents != (unsigned char *) local_syms)
592 {
593 if (! info->keep_memory)
594 free (local_syms);
595 else
596 {
597 /* Cache the symbols for elf_link_input_bfd. */
598 symtab_hdr->contents = (unsigned char *) local_syms;
599 }
600 }
15bda425
JL
601
602 /* Record which BFD we built the section_syms mapping for. */
603 hppa_info->section_syms_bfd = abfd;
604 }
605
606 /* Record the symbol index for this input section. We may need it for
607 relocations when building shared libraries. When not building shared
608 libraries this value is never really used, but assign it to zero to
609 prevent out of bounds memory accesses in other routines. */
610 if (info->shared)
611 {
612 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
613
614 /* If we did not find a section symbol for this section, then
615 something went terribly wrong above. */
4fbb74a6 616 if (sec_symndx == SHN_BAD)
b34976b6 617 return FALSE;
15bda425 618
4fbb74a6
AM
619 if (sec_symndx < SHN_LORESERVE)
620 sec_symndx = hppa_info->section_syms[sec_symndx];
621 else
622 sec_symndx = 0;
15bda425
JL
623 }
624 else
625 sec_symndx = 0;
fe8bc63d 626
15bda425
JL
627 relend = relocs + sec->reloc_count;
628 for (rel = relocs; rel < relend; ++rel)
629 {
560e09e9
NC
630 enum
631 {
632 NEED_DLT = 1,
633 NEED_PLT = 2,
634 NEED_STUB = 4,
635 NEED_OPD = 8,
636 NEED_DYNREL = 16,
637 };
15bda425 638
15bda425 639 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
a03bd320 640 struct elf64_hppa_link_hash_entry *hh;
15bda425 641 int need_entry;
b34976b6 642 bfd_boolean maybe_dynamic;
15bda425
JL
643 int dynrel_type = R_PARISC_NONE;
644 static reloc_howto_type *howto;
645
646 if (r_symndx >= symtab_hdr->sh_info)
647 {
648 /* We're dealing with a global symbol -- find its hash entry
649 and mark it as being referenced. */
650 long indx = r_symndx - symtab_hdr->sh_info;
a03bd320
DA
651 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
652 while (hh->eh.root.type == bfd_link_hash_indirect
653 || hh->eh.root.type == bfd_link_hash_warning)
654 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
15bda425 655
a03bd320 656 hh->eh.ref_regular = 1;
15bda425 657 }
a03bd320
DA
658 else
659 hh = NULL;
15bda425
JL
660
661 /* We can only get preliminary data on whether a symbol is
662 locally or externally defined, as not all of the input files
663 have yet been processed. Do something with what we know, as
664 this may help reduce memory usage and processing time later. */
b34976b6 665 maybe_dynamic = FALSE;
a03bd320 666 if (hh && ((info->shared
f5385ebf
AM
667 && (!info->symbolic
668 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
a03bd320
DA
669 || !hh->eh.def_regular
670 || hh->eh.root.type == bfd_link_hash_defweak))
b34976b6 671 maybe_dynamic = TRUE;
15bda425
JL
672
673 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
674 need_entry = 0;
675 switch (howto->type)
676 {
677 /* These are simple indirect references to symbols through the
678 DLT. We need to create a DLT entry for any symbols which
679 appears in a DLTIND relocation. */
680 case R_PARISC_DLTIND21L:
681 case R_PARISC_DLTIND14R:
682 case R_PARISC_DLTIND14F:
683 case R_PARISC_DLTIND14WR:
684 case R_PARISC_DLTIND14DR:
685 need_entry = NEED_DLT;
686 break;
687
688 /* ?!? These need a DLT entry. But I have no idea what to do with
689 the "link time TP value. */
690 case R_PARISC_LTOFF_TP21L:
691 case R_PARISC_LTOFF_TP14R:
692 case R_PARISC_LTOFF_TP14F:
693 case R_PARISC_LTOFF_TP64:
694 case R_PARISC_LTOFF_TP14WR:
695 case R_PARISC_LTOFF_TP14DR:
696 case R_PARISC_LTOFF_TP16F:
697 case R_PARISC_LTOFF_TP16WF:
698 case R_PARISC_LTOFF_TP16DF:
699 need_entry = NEED_DLT;
700 break;
701
702 /* These are function calls. Depending on their precise target we
703 may need to make a stub for them. The stub uses the PLT, so we
704 need to create PLT entries for these symbols too. */
832d951b 705 case R_PARISC_PCREL12F:
15bda425
JL
706 case R_PARISC_PCREL17F:
707 case R_PARISC_PCREL22F:
708 case R_PARISC_PCREL32:
709 case R_PARISC_PCREL64:
710 case R_PARISC_PCREL21L:
711 case R_PARISC_PCREL17R:
712 case R_PARISC_PCREL17C:
713 case R_PARISC_PCREL14R:
714 case R_PARISC_PCREL14F:
715 case R_PARISC_PCREL22C:
716 case R_PARISC_PCREL14WR:
717 case R_PARISC_PCREL14DR:
718 case R_PARISC_PCREL16F:
719 case R_PARISC_PCREL16WF:
720 case R_PARISC_PCREL16DF:
a03bd320
DA
721 /* Function calls might need to go through the .plt, and
722 might need a long branch stub. */
723 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
724 need_entry = (NEED_PLT | NEED_STUB);
725 else
726 need_entry = 0;
15bda425
JL
727 break;
728
729 case R_PARISC_PLTOFF21L:
730 case R_PARISC_PLTOFF14R:
731 case R_PARISC_PLTOFF14F:
732 case R_PARISC_PLTOFF14WR:
733 case R_PARISC_PLTOFF14DR:
734 case R_PARISC_PLTOFF16F:
735 case R_PARISC_PLTOFF16WF:
736 case R_PARISC_PLTOFF16DF:
737 need_entry = (NEED_PLT);
738 break;
739
740 case R_PARISC_DIR64:
741 if (info->shared || maybe_dynamic)
742 need_entry = (NEED_DYNREL);
743 dynrel_type = R_PARISC_DIR64;
744 break;
745
746 /* This is an indirect reference through the DLT to get the address
747 of a OPD descriptor. Thus we need to make a DLT entry that points
748 to an OPD entry. */
749 case R_PARISC_LTOFF_FPTR21L:
750 case R_PARISC_LTOFF_FPTR14R:
751 case R_PARISC_LTOFF_FPTR14WR:
752 case R_PARISC_LTOFF_FPTR14DR:
753 case R_PARISC_LTOFF_FPTR32:
754 case R_PARISC_LTOFF_FPTR64:
755 case R_PARISC_LTOFF_FPTR16F:
756 case R_PARISC_LTOFF_FPTR16WF:
757 case R_PARISC_LTOFF_FPTR16DF:
758 if (info->shared || maybe_dynamic)
a03bd320 759 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
15bda425 760 else
a03bd320 761 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
15bda425
JL
762 dynrel_type = R_PARISC_FPTR64;
763 break;
764
765 /* This is a simple OPD entry. */
766 case R_PARISC_FPTR64:
767 if (info->shared || maybe_dynamic)
a03bd320 768 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
15bda425 769 else
a03bd320 770 need_entry = (NEED_OPD | NEED_PLT);
15bda425
JL
771 dynrel_type = R_PARISC_FPTR64;
772 break;
773
774 /* Add more cases as needed. */
775 }
776
777 if (!need_entry)
778 continue;
779
a03bd320
DA
780 if (hh)
781 {
782 /* Stash away enough information to be able to find this symbol
783 regardless of whether or not it is local or global. */
784 hh->owner = abfd;
785 hh->sym_indx = r_symndx;
786 }
15bda425 787
15bda425
JL
788 /* Create what's needed. */
789 if (need_entry & NEED_DLT)
790 {
a03bd320
DA
791 /* Allocate space for a DLT entry, as well as a dynamic
792 relocation for this entry. */
15bda425
JL
793 if (! hppa_info->dlt_sec
794 && ! get_dlt (abfd, info, hppa_info))
795 goto err_out;
a03bd320
DA
796
797 if (hh != NULL)
798 {
799 hh->want_dlt = 1;
800 hh->eh.got.refcount += 1;
801 }
802 else
803 {
804 bfd_signed_vma *local_dlt_refcounts;
805
806 /* This is a DLT entry for a local symbol. */
807 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
808 if (local_dlt_refcounts == NULL)
809 return FALSE;
810 local_dlt_refcounts[r_symndx] += 1;
811 }
15bda425
JL
812 }
813
814 if (need_entry & NEED_PLT)
815 {
816 if (! hppa_info->plt_sec
817 && ! get_plt (abfd, info, hppa_info))
818 goto err_out;
a03bd320
DA
819
820 if (hh != NULL)
821 {
822 hh->want_plt = 1;
823 hh->eh.needs_plt = 1;
824 hh->eh.plt.refcount += 1;
825 }
826 else
827 {
828 bfd_signed_vma *local_dlt_refcounts;
829 bfd_signed_vma *local_plt_refcounts;
830
831 /* This is a PLT entry for a local symbol. */
832 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
833 if (local_dlt_refcounts == NULL)
834 return FALSE;
835 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
836 local_plt_refcounts[r_symndx] += 1;
837 }
15bda425
JL
838 }
839
840 if (need_entry & NEED_STUB)
841 {
842 if (! hppa_info->stub_sec
843 && ! get_stub (abfd, info, hppa_info))
844 goto err_out;
a03bd320
DA
845 if (hh)
846 hh->want_stub = 1;
15bda425
JL
847 }
848
849 if (need_entry & NEED_OPD)
850 {
851 if (! hppa_info->opd_sec
852 && ! get_opd (abfd, info, hppa_info))
853 goto err_out;
854
a03bd320
DA
855 /* FPTRs are not allocated by the dynamic linker for PA64,
856 though it is possible that will change in the future. */
fe8bc63d 857
a03bd320
DA
858 if (hh != NULL)
859 hh->want_opd = 1;
860 else
861 {
862 bfd_signed_vma *local_dlt_refcounts;
863 bfd_signed_vma *local_opd_refcounts;
864
865 /* This is a OPD for a local symbol. */
866 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
867 if (local_dlt_refcounts == NULL)
868 return FALSE;
869 local_opd_refcounts = (local_dlt_refcounts
870 + 2 * symtab_hdr->sh_info);
871 local_opd_refcounts[r_symndx] += 1;
872 }
15bda425
JL
873 }
874
875 /* Add a new dynamic relocation to the chain of dynamic
876 relocations for this symbol. */
877 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
878 {
879 if (! hppa_info->other_rel_sec
880 && ! get_reloc_section (abfd, hppa_info, sec))
881 goto err_out;
882
a03bd320
DA
883 /* Count dynamic relocations against global symbols. */
884 if (hh != NULL
885 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
886 sec_symndx, rel->r_offset, rel->r_addend))
15bda425
JL
887 goto err_out;
888
889 /* If we are building a shared library and we just recorded
890 a dynamic R_PARISC_FPTR64 relocation, then make sure the
891 section symbol for this section ends up in the dynamic
892 symbol table. */
893 if (info->shared && dynrel_type == R_PARISC_FPTR64
c152c796 894 && ! (bfd_elf_link_record_local_dynamic_symbol
15bda425 895 (info, abfd, sec_symndx)))
b34976b6 896 return FALSE;
15bda425
JL
897 }
898 }
899
b34976b6 900 return TRUE;
15bda425
JL
901
902 err_out:
b34976b6 903 return FALSE;
15bda425
JL
904}
905
906struct elf64_hppa_allocate_data
907{
908 struct bfd_link_info *info;
909 bfd_size_type ofs;
910};
911
912/* Should we do dynamic things to this symbol? */
913
b34976b6 914static bfd_boolean
a03bd320 915elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
813c8a3c 916 struct bfd_link_info *info)
15bda425 917{
986a241f
RH
918 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
919 and relocations that retrieve a function descriptor? Assume the
920 worst for now. */
a03bd320 921 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
986a241f
RH
922 {
923 /* ??? Why is this here and not elsewhere is_local_label_name. */
a03bd320 924 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
986a241f 925 return FALSE;
15bda425 926
986a241f
RH
927 return TRUE;
928 }
929 else
b34976b6 930 return FALSE;
15bda425
JL
931}
932
4cc11e76 933/* Mark all functions exported by this file so that we can later allocate
15bda425
JL
934 entries in .opd for them. */
935
b34976b6 936static bfd_boolean
a03bd320 937elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
15bda425 938{
a03bd320 939 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
15bda425
JL
940 struct bfd_link_info *info = (struct bfd_link_info *)data;
941 struct elf64_hppa_link_hash_table *hppa_info;
942
a03bd320 943 hppa_info = hppa_link_hash_table (info);
4dfe6ac6
NC
944 if (hppa_info == NULL)
945 return FALSE;
15bda425 946
a03bd320
DA
947 if (eh->root.type == bfd_link_hash_warning)
948 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
e92d460e 949
a03bd320
DA
950 if (eh
951 && (eh->root.type == bfd_link_hash_defined
952 || eh->root.type == bfd_link_hash_defweak)
953 && eh->root.u.def.section->output_section != NULL
954 && eh->type == STT_FUNC)
15bda425 955 {
15bda425
JL
956 if (! hppa_info->opd_sec
957 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
b34976b6 958 return FALSE;
15bda425 959
a03bd320
DA
960 hh->want_opd = 1;
961
832d951b 962 /* Put a flag here for output_symbol_hook. */
a03bd320
DA
963 hh->st_shndx = -1;
964 eh->needs_plt = 1;
15bda425
JL
965 }
966
b34976b6 967 return TRUE;
15bda425
JL
968}
969
970/* Allocate space for a DLT entry. */
971
b34976b6 972static bfd_boolean
a03bd320 973allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
15bda425 974{
a03bd320 975 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
15bda425
JL
976 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
977
a03bd320 978 if (hh->want_dlt)
15bda425 979 {
15bda425
JL
980 if (x->info->shared)
981 {
982 /* Possibly add the symbol to the local dynamic symbol
983 table since we might need to create a dynamic relocation
984 against it. */
a03bd320 985 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
15bda425 986 {
a03bd320 987 bfd *owner = eh->root.u.def.section->owner;
15bda425 988
c152c796 989 if (! (bfd_elf_link_record_local_dynamic_symbol
a03bd320 990 (x->info, owner, hh->sym_indx)))
b34976b6 991 return FALSE;
15bda425
JL
992 }
993 }
994
a03bd320 995 hh->dlt_offset = x->ofs;
15bda425
JL
996 x->ofs += DLT_ENTRY_SIZE;
997 }
b34976b6 998 return TRUE;
15bda425
JL
999}
1000
1001/* Allocate space for a DLT.PLT entry. */
1002
b34976b6 1003static bfd_boolean
a03bd320 1004allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
15bda425 1005{
a03bd320 1006 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
4dfe6ac6 1007 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
15bda425 1008
a03bd320
DA
1009 if (hh->want_plt
1010 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1011 && !((eh->root.type == bfd_link_hash_defined
1012 || eh->root.type == bfd_link_hash_defweak)
1013 && eh->root.u.def.section->output_section != NULL))
15bda425 1014 {
a03bd320 1015 hh->plt_offset = x->ofs;
15bda425 1016 x->ofs += PLT_ENTRY_SIZE;
a03bd320 1017 if (hh->plt_offset < 0x2000)
4dfe6ac6
NC
1018 {
1019 struct elf64_hppa_link_hash_table *hppa_info;
1020
1021 hppa_info = hppa_link_hash_table (x->info);
1022 if (hppa_info == NULL)
1023 return FALSE;
1024
1025 hppa_info->gp_offset = hh->plt_offset;
1026 }
15bda425
JL
1027 }
1028 else
a03bd320 1029 hh->want_plt = 0;
15bda425 1030
b34976b6 1031 return TRUE;
15bda425
JL
1032}
1033
1034/* Allocate space for a STUB entry. */
1035
b34976b6 1036static bfd_boolean
a03bd320 1037allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
15bda425 1038{
a03bd320 1039 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
15bda425
JL
1040 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1041
a03bd320
DA
1042 if (hh->want_stub
1043 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1044 && !((eh->root.type == bfd_link_hash_defined
1045 || eh->root.type == bfd_link_hash_defweak)
1046 && eh->root.u.def.section->output_section != NULL))
15bda425 1047 {
a03bd320 1048 hh->stub_offset = x->ofs;
15bda425
JL
1049 x->ofs += sizeof (plt_stub);
1050 }
1051 else
a03bd320 1052 hh->want_stub = 0;
b34976b6 1053 return TRUE;
15bda425
JL
1054}
1055
1056/* Allocate space for a FPTR entry. */
1057
b34976b6 1058static bfd_boolean
a03bd320 1059allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
15bda425 1060{
a03bd320 1061 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
15bda425
JL
1062 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1063
a03bd320 1064 if (hh && hh->want_opd)
15bda425 1065 {
a03bd320
DA
1066 while (hh->eh.root.type == bfd_link_hash_indirect
1067 || hh->eh.root.type == bfd_link_hash_warning)
1068 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
15bda425
JL
1069
1070 /* We never need an opd entry for a symbol which is not
1071 defined by this output file. */
a03bd320
DA
1072 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1073 || hh->eh.root.type == bfd_link_hash_undefweak
1074 || hh->eh.root.u.def.section->output_section == NULL))
1075 hh->want_opd = 0;
15bda425
JL
1076
1077 /* If we are creating a shared library, took the address of a local
1078 function or might export this function from this object file, then
1079 we have to create an opd descriptor. */
1080 else if (x->info->shared
a03bd320
DA
1081 || hh == NULL
1082 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1083 || (hh->eh.root.type == bfd_link_hash_defined
1084 || hh->eh.root.type == bfd_link_hash_defweak))
15bda425
JL
1085 {
1086 /* If we are creating a shared library, then we will have to
1087 create a runtime relocation for the symbol to properly
1088 initialize the .opd entry. Make sure the symbol gets
1089 added to the dynamic symbol table. */
1090 if (x->info->shared
a03bd320 1091 && (hh == NULL || (hh->eh.dynindx == -1)))
15bda425
JL
1092 {
1093 bfd *owner;
adfef0bd 1094 /* PR 6511: Default to using the dynamic symbol table. */
a03bd320 1095 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
15bda425 1096
c152c796 1097 if (!bfd_elf_link_record_local_dynamic_symbol
a03bd320 1098 (x->info, owner, hh->sym_indx))
b34976b6 1099 return FALSE;
15bda425
JL
1100 }
1101
1102 /* This may not be necessary or desirable anymore now that
1103 we have some support for dealing with section symbols
1104 in dynamic relocs. But name munging does make the result
1105 much easier to debug. ie, the EPLT reloc will reference
1106 a symbol like .foobar, instead of .text + offset. */
a03bd320 1107 if (x->info->shared && eh)
15bda425
JL
1108 {
1109 char *new_name;
1110 struct elf_link_hash_entry *nh;
1111
a03bd320 1112 new_name = alloca (strlen (eh->root.root.string) + 2);
15bda425 1113 new_name[0] = '.';
a03bd320 1114 strcpy (new_name + 1, eh->root.root.string);
15bda425
JL
1115
1116 nh = elf_link_hash_lookup (elf_hash_table (x->info),
b34976b6 1117 new_name, TRUE, TRUE, TRUE);
15bda425 1118
a03bd320
DA
1119 nh->root.type = eh->root.type;
1120 nh->root.u.def.value = eh->root.u.def.value;
1121 nh->root.u.def.section = eh->root.u.def.section;
15bda425 1122
c152c796 1123 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
b34976b6 1124 return FALSE;
15bda425
JL
1125
1126 }
a03bd320 1127 hh->opd_offset = x->ofs;
15bda425
JL
1128 x->ofs += OPD_ENTRY_SIZE;
1129 }
1130
1131 /* Otherwise we do not need an opd entry. */
1132 else
a03bd320 1133 hh->want_opd = 0;
15bda425 1134 }
b34976b6 1135 return TRUE;
15bda425
JL
1136}
1137
1138/* HP requires the EI_OSABI field to be filled in. The assignment to
1139 EI_ABIVERSION may not be strictly necessary. */
1140
1141static void
813c8a3c
DA
1142elf64_hppa_post_process_headers (bfd *abfd,
1143 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
15bda425
JL
1144{
1145 Elf_Internal_Ehdr * i_ehdrp;
1146
1147 i_ehdrp = elf_elfheader (abfd);
d1036acb
L
1148
1149 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1150 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
15bda425
JL
1151}
1152
1153/* Create function descriptor section (.opd). This section is called .opd
4cc11e76 1154 because it contains "official procedure descriptors". The "official"
15bda425
JL
1155 refers to the fact that these descriptors are used when taking the address
1156 of a procedure, thus ensuring a unique address for each procedure. */
1157
b34976b6 1158static bfd_boolean
813c8a3c
DA
1159get_opd (bfd *abfd,
1160 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1161 struct elf64_hppa_link_hash_table *hppa_info)
15bda425
JL
1162{
1163 asection *opd;
1164 bfd *dynobj;
1165
1166 opd = hppa_info->opd_sec;
1167 if (!opd)
1168 {
1169 dynobj = hppa_info->root.dynobj;
1170 if (!dynobj)
1171 hppa_info->root.dynobj = dynobj = abfd;
1172
3496cb2a
L
1173 opd = bfd_make_section_with_flags (dynobj, ".opd",
1174 (SEC_ALLOC
1175 | SEC_LOAD
1176 | SEC_HAS_CONTENTS
1177 | SEC_IN_MEMORY
1178 | SEC_LINKER_CREATED));
15bda425 1179 if (!opd
15bda425
JL
1180 || !bfd_set_section_alignment (abfd, opd, 3))
1181 {
1182 BFD_ASSERT (0);
b34976b6 1183 return FALSE;
15bda425
JL
1184 }
1185
1186 hppa_info->opd_sec = opd;
1187 }
1188
b34976b6 1189 return TRUE;
15bda425
JL
1190}
1191
1192/* Create the PLT section. */
1193
b34976b6 1194static bfd_boolean
813c8a3c
DA
1195get_plt (bfd *abfd,
1196 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1197 struct elf64_hppa_link_hash_table *hppa_info)
15bda425
JL
1198{
1199 asection *plt;
1200 bfd *dynobj;
1201
1202 plt = hppa_info->plt_sec;
1203 if (!plt)
1204 {
1205 dynobj = hppa_info->root.dynobj;
1206 if (!dynobj)
1207 hppa_info->root.dynobj = dynobj = abfd;
1208
3496cb2a
L
1209 plt = bfd_make_section_with_flags (dynobj, ".plt",
1210 (SEC_ALLOC
1211 | SEC_LOAD
1212 | SEC_HAS_CONTENTS
1213 | SEC_IN_MEMORY
1214 | SEC_LINKER_CREATED));
15bda425 1215 if (!plt
15bda425
JL
1216 || !bfd_set_section_alignment (abfd, plt, 3))
1217 {
1218 BFD_ASSERT (0);
b34976b6 1219 return FALSE;
15bda425
JL
1220 }
1221
1222 hppa_info->plt_sec = plt;
1223 }
1224
b34976b6 1225 return TRUE;
15bda425
JL
1226}
1227
1228/* Create the DLT section. */
1229
b34976b6 1230static bfd_boolean
813c8a3c
DA
1231get_dlt (bfd *abfd,
1232 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1233 struct elf64_hppa_link_hash_table *hppa_info)
15bda425
JL
1234{
1235 asection *dlt;
1236 bfd *dynobj;
1237
1238 dlt = hppa_info->dlt_sec;
1239 if (!dlt)
1240 {
1241 dynobj = hppa_info->root.dynobj;
1242 if (!dynobj)
1243 hppa_info->root.dynobj = dynobj = abfd;
1244
3496cb2a
L
1245 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1246 (SEC_ALLOC
1247 | SEC_LOAD
1248 | SEC_HAS_CONTENTS
1249 | SEC_IN_MEMORY
1250 | SEC_LINKER_CREATED));
15bda425 1251 if (!dlt
15bda425
JL
1252 || !bfd_set_section_alignment (abfd, dlt, 3))
1253 {
1254 BFD_ASSERT (0);
b34976b6 1255 return FALSE;
15bda425
JL
1256 }
1257
1258 hppa_info->dlt_sec = dlt;
1259 }
1260
b34976b6 1261 return TRUE;
15bda425
JL
1262}
1263
1264/* Create the stubs section. */
1265
b34976b6 1266static bfd_boolean
813c8a3c
DA
1267get_stub (bfd *abfd,
1268 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1269 struct elf64_hppa_link_hash_table *hppa_info)
15bda425
JL
1270{
1271 asection *stub;
1272 bfd *dynobj;
1273
1274 stub = hppa_info->stub_sec;
1275 if (!stub)
1276 {
1277 dynobj = hppa_info->root.dynobj;
1278 if (!dynobj)
1279 hppa_info->root.dynobj = dynobj = abfd;
1280
3496cb2a
L
1281 stub = bfd_make_section_with_flags (dynobj, ".stub",
1282 (SEC_ALLOC | SEC_LOAD
1283 | SEC_HAS_CONTENTS
1284 | SEC_IN_MEMORY
1285 | SEC_READONLY
1286 | SEC_LINKER_CREATED));
15bda425 1287 if (!stub
15bda425
JL
1288 || !bfd_set_section_alignment (abfd, stub, 3))
1289 {
1290 BFD_ASSERT (0);
b34976b6 1291 return FALSE;
15bda425
JL
1292 }
1293
1294 hppa_info->stub_sec = stub;
1295 }
1296
b34976b6 1297 return TRUE;
15bda425
JL
1298}
1299
1300/* Create sections necessary for dynamic linking. This is only a rough
1301 cut and will likely change as we learn more about the somewhat
1302 unusual dynamic linking scheme HP uses.
1303
1304 .stub:
1305 Contains code to implement cross-space calls. The first time one
1306 of the stubs is used it will call into the dynamic linker, later
1307 calls will go straight to the target.
1308
1309 The only stub we support right now looks like
1310
1311 ldd OFFSET(%dp),%r1
1312 bve %r0(%r1)
1313 ldd OFFSET+8(%dp),%dp
1314
1315 Other stubs may be needed in the future. We may want the remove
1316 the break/nop instruction. It is only used right now to keep the
1317 offset of a .plt entry and a .stub entry in sync.
1318
1319 .dlt:
1320 This is what most people call the .got. HP used a different name.
1321 Losers.
1322
1323 .rela.dlt:
1324 Relocations for the DLT.
1325
1326 .plt:
1327 Function pointers as address,gp pairs.
1328
1329 .rela.plt:
1330 Should contain dynamic IPLT (and EPLT?) relocations.
1331
1332 .opd:
fe8bc63d 1333 FPTRS
15bda425
JL
1334
1335 .rela.opd:
1336 EPLT relocations for symbols exported from shared libraries. */
1337
b34976b6 1338static bfd_boolean
813c8a3c
DA
1339elf64_hppa_create_dynamic_sections (bfd *abfd,
1340 struct bfd_link_info *info)
15bda425
JL
1341{
1342 asection *s;
4dfe6ac6
NC
1343 struct elf64_hppa_link_hash_table *hppa_info;
1344
1345 hppa_info = hppa_link_hash_table (info);
1346 if (hppa_info == NULL)
1347 return FALSE;
15bda425 1348
4dfe6ac6 1349 if (! get_stub (abfd, info, hppa_info))
b34976b6 1350 return FALSE;
15bda425 1351
4dfe6ac6 1352 if (! get_dlt (abfd, info, hppa_info))
b34976b6 1353 return FALSE;
15bda425 1354
4dfe6ac6 1355 if (! get_plt (abfd, info, hppa_info))
b34976b6 1356 return FALSE;
15bda425 1357
4dfe6ac6 1358 if (! get_opd (abfd, info, hppa_info))
b34976b6 1359 return FALSE;
15bda425 1360
3496cb2a
L
1361 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1362 (SEC_ALLOC | SEC_LOAD
1363 | SEC_HAS_CONTENTS
1364 | SEC_IN_MEMORY
1365 | SEC_READONLY
1366 | SEC_LINKER_CREATED));
15bda425 1367 if (s == NULL
15bda425 1368 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1369 return FALSE;
4dfe6ac6 1370 hppa_info->dlt_rel_sec = s;
15bda425 1371
3496cb2a
L
1372 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1373 (SEC_ALLOC | SEC_LOAD
1374 | SEC_HAS_CONTENTS
1375 | SEC_IN_MEMORY
1376 | SEC_READONLY
1377 | SEC_LINKER_CREATED));
15bda425 1378 if (s == NULL
15bda425 1379 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1380 return FALSE;
4dfe6ac6 1381 hppa_info->plt_rel_sec = s;
15bda425 1382
3496cb2a
L
1383 s = bfd_make_section_with_flags (abfd, ".rela.data",
1384 (SEC_ALLOC | SEC_LOAD
1385 | SEC_HAS_CONTENTS
1386 | SEC_IN_MEMORY
1387 | SEC_READONLY
1388 | SEC_LINKER_CREATED));
15bda425 1389 if (s == NULL
15bda425 1390 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1391 return FALSE;
4dfe6ac6 1392 hppa_info->other_rel_sec = s;
15bda425 1393
3496cb2a
L
1394 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1395 (SEC_ALLOC | SEC_LOAD
1396 | SEC_HAS_CONTENTS
1397 | SEC_IN_MEMORY
1398 | SEC_READONLY
1399 | SEC_LINKER_CREATED));
15bda425 1400 if (s == NULL
15bda425 1401 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1402 return FALSE;
4dfe6ac6 1403 hppa_info->opd_rel_sec = s;
15bda425 1404
b34976b6 1405 return TRUE;
15bda425
JL
1406}
1407
1408/* Allocate dynamic relocations for those symbols that turned out
1409 to be dynamic. */
1410
b34976b6 1411static bfd_boolean
a03bd320 1412allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
15bda425 1413{
a03bd320 1414 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
15bda425
JL
1415 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1416 struct elf64_hppa_link_hash_table *hppa_info;
1417 struct elf64_hppa_dyn_reloc_entry *rent;
b34976b6 1418 bfd_boolean dynamic_symbol, shared;
15bda425 1419
a03bd320 1420 hppa_info = hppa_link_hash_table (x->info);
4dfe6ac6
NC
1421 if (hppa_info == NULL)
1422 return FALSE;
1423
a03bd320 1424 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
15bda425
JL
1425 shared = x->info->shared;
1426
1427 /* We may need to allocate relocations for a non-dynamic symbol
1428 when creating a shared library. */
1429 if (!dynamic_symbol && !shared)
b34976b6 1430 return TRUE;
15bda425
JL
1431
1432 /* Take care of the normal data relocations. */
1433
a03bd320 1434 for (rent = hh->reloc_entries; rent; rent = rent->next)
15bda425 1435 {
d663e1cd
JL
1436 /* Allocate one iff we are building a shared library, the relocation
1437 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
a03bd320 1438 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
d663e1cd
JL
1439 continue;
1440
eea6121a 1441 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
15bda425
JL
1442
1443 /* Make sure this symbol gets into the dynamic symbol table if it is
1444 not already recorded. ?!? This should not be in the loop since
1445 the symbol need only be added once. */
a03bd320 1446 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
c152c796 1447 if (!bfd_elf_link_record_local_dynamic_symbol
a03bd320 1448 (x->info, rent->sec->owner, hh->sym_indx))
b34976b6 1449 return FALSE;
15bda425
JL
1450 }
1451
1452 /* Take care of the GOT and PLT relocations. */
1453
a03bd320 1454 if ((dynamic_symbol || shared) && hh->want_dlt)
eea6121a 1455 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
15bda425
JL
1456
1457 /* If we are building a shared library, then every symbol that has an
1458 opd entry will need an EPLT relocation to relocate the symbol's address
1459 and __gp value based on the runtime load address. */
a03bd320 1460 if (shared && hh->want_opd)
eea6121a 1461 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
15bda425 1462
a03bd320 1463 if (hh->want_plt && dynamic_symbol)
15bda425
JL
1464 {
1465 bfd_size_type t = 0;
1466
1467 /* Dynamic symbols get one IPLT relocation. Local symbols in
1468 shared libraries get two REL relocations. Local symbols in
1469 main applications get nothing. */
1470 if (dynamic_symbol)
1471 t = sizeof (Elf64_External_Rela);
1472 else if (shared)
1473 t = 2 * sizeof (Elf64_External_Rela);
1474
eea6121a 1475 hppa_info->plt_rel_sec->size += t;
15bda425
JL
1476 }
1477
b34976b6 1478 return TRUE;
15bda425
JL
1479}
1480
1481/* Adjust a symbol defined by a dynamic object and referenced by a
1482 regular object. */
1483
b34976b6 1484static bfd_boolean
813c8a3c 1485elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
a03bd320 1486 struct elf_link_hash_entry *eh)
15bda425
JL
1487{
1488 /* ??? Undefined symbols with PLT entries should be re-defined
1489 to be the PLT entry. */
1490
1491 /* If this is a weak symbol, and there is a real definition, the
1492 processor independent code will have arranged for us to see the
1493 real definition first, and we can just use the same value. */
a03bd320 1494 if (eh->u.weakdef != NULL)
15bda425 1495 {
a03bd320
DA
1496 BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1497 || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1498 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1499 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
b34976b6 1500 return TRUE;
15bda425
JL
1501 }
1502
1503 /* If this is a reference to a symbol defined by a dynamic object which
1504 is not a function, we might allocate the symbol in our .dynbss section
1505 and allocate a COPY dynamic relocation.
1506
1507 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1508 of hackery. */
1509
b34976b6 1510 return TRUE;
15bda425
JL
1511}
1512
47b7c2db
AM
1513/* This function is called via elf_link_hash_traverse to mark millicode
1514 symbols with a dynindx of -1 and to remove the string table reference
1515 from the dynamic symbol table. If the symbol is not a millicode symbol,
1516 elf64_hppa_mark_exported_functions is called. */
1517
b34976b6 1518static bfd_boolean
a03bd320 1519elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
813c8a3c 1520 void *data)
47b7c2db 1521{
a03bd320 1522 struct elf_link_hash_entry *elf = eh;
47b7c2db 1523 struct bfd_link_info *info = (struct bfd_link_info *)data;
47b7c2db
AM
1524
1525 if (elf->root.type == bfd_link_hash_warning)
1526 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1527
1528 if (elf->type == STT_PARISC_MILLI)
1529 {
1530 if (elf->dynindx != -1)
1531 {
1532 elf->dynindx = -1;
1533 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1534 elf->dynstr_index);
1535 }
b34976b6 1536 return TRUE;
47b7c2db
AM
1537 }
1538
a03bd320 1539 return elf64_hppa_mark_exported_functions (eh, data);
47b7c2db
AM
1540}
1541
15bda425
JL
1542/* Set the final sizes of the dynamic sections and allocate memory for
1543 the contents of our special sections. */
1544
b34976b6 1545static bfd_boolean
a03bd320 1546elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
15bda425 1547{
a03bd320
DA
1548 struct elf64_hppa_link_hash_table *hppa_info;
1549 struct elf64_hppa_allocate_data data;
15bda425 1550 bfd *dynobj;
a03bd320
DA
1551 bfd *ibfd;
1552 asection *sec;
b34976b6
AM
1553 bfd_boolean plt;
1554 bfd_boolean relocs;
1555 bfd_boolean reltext;
15bda425 1556
a03bd320 1557 hppa_info = hppa_link_hash_table (info);
4dfe6ac6
NC
1558 if (hppa_info == NULL)
1559 return FALSE;
15bda425
JL
1560
1561 dynobj = elf_hash_table (info)->dynobj;
1562 BFD_ASSERT (dynobj != NULL);
1563
47b7c2db
AM
1564 /* Mark each function this program exports so that we will allocate
1565 space in the .opd section for each function's FPTR. If we are
1566 creating dynamic sections, change the dynamic index of millicode
1567 symbols to -1 and remove them from the string table for .dynstr.
1568
1569 We have to traverse the main linker hash table since we have to
1570 find functions which may not have been mentioned in any relocs. */
1571 elf_link_hash_traverse (elf_hash_table (info),
1572 (elf_hash_table (info)->dynamic_sections_created
1573 ? elf64_hppa_mark_milli_and_exported_functions
1574 : elf64_hppa_mark_exported_functions),
1575 info);
1576
15bda425
JL
1577 if (elf_hash_table (info)->dynamic_sections_created)
1578 {
1579 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1580 if (info->executable)
15bda425 1581 {
a03bd320
DA
1582 sec = bfd_get_section_by_name (dynobj, ".interp");
1583 BFD_ASSERT (sec != NULL);
1584 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1585 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15bda425
JL
1586 }
1587 }
1588 else
1589 {
1590 /* We may have created entries in the .rela.got section.
1591 However, if we are not creating the dynamic sections, we will
1592 not actually use these entries. Reset the size of .rela.dlt,
1593 which will cause it to get stripped from the output file
1594 below. */
a03bd320
DA
1595 sec = bfd_get_section_by_name (dynobj, ".rela.dlt");
1596 if (sec != NULL)
1597 sec->size = 0;
1598 }
1599
1600 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1601 dynamic relocs. */
1602 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1603 {
1604 bfd_signed_vma *local_dlt;
1605 bfd_signed_vma *end_local_dlt;
1606 bfd_signed_vma *local_plt;
1607 bfd_signed_vma *end_local_plt;
1608 bfd_signed_vma *local_opd;
1609 bfd_signed_vma *end_local_opd;
1610 bfd_size_type locsymcount;
1611 Elf_Internal_Shdr *symtab_hdr;
1612 asection *srel;
1613
1614 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1615 continue;
1616
1617 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1618 {
1619 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1620
1621 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1622 elf_section_data (sec)->local_dynrel);
1623 hdh_p != NULL;
1624 hdh_p = hdh_p->next)
1625 {
1626 if (!bfd_is_abs_section (hdh_p->sec)
1627 && bfd_is_abs_section (hdh_p->sec->output_section))
1628 {
1629 /* Input section has been discarded, either because
1630 it is a copy of a linkonce section or due to
1631 linker script /DISCARD/, so we'll be discarding
1632 the relocs too. */
1633 }
1634 else if (hdh_p->count != 0)
1635 {
1636 srel = elf_section_data (hdh_p->sec)->sreloc;
1637 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1638 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1639 info->flags |= DF_TEXTREL;
1640 }
1641 }
1642 }
1643
1644 local_dlt = elf_local_got_refcounts (ibfd);
1645 if (!local_dlt)
1646 continue;
1647
1648 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1649 locsymcount = symtab_hdr->sh_info;
1650 end_local_dlt = local_dlt + locsymcount;
1651 sec = hppa_info->dlt_sec;
1652 srel = hppa_info->dlt_rel_sec;
1653 for (; local_dlt < end_local_dlt; ++local_dlt)
1654 {
1655 if (*local_dlt > 0)
1656 {
1657 *local_dlt = sec->size;
1658 sec->size += DLT_ENTRY_SIZE;
1659 if (info->shared)
1660 {
1661 srel->size += sizeof (Elf64_External_Rela);
1662 }
1663 }
1664 else
1665 *local_dlt = (bfd_vma) -1;
1666 }
1667
1668 local_plt = end_local_dlt;
1669 end_local_plt = local_plt + locsymcount;
1670 if (! hppa_info->root.dynamic_sections_created)
1671 {
1672 /* Won't be used, but be safe. */
1673 for (; local_plt < end_local_plt; ++local_plt)
1674 *local_plt = (bfd_vma) -1;
1675 }
1676 else
1677 {
1678 sec = hppa_info->plt_sec;
1679 srel = hppa_info->plt_rel_sec;
1680 for (; local_plt < end_local_plt; ++local_plt)
1681 {
1682 if (*local_plt > 0)
1683 {
1684 *local_plt = sec->size;
1685 sec->size += PLT_ENTRY_SIZE;
1686 if (info->shared)
1687 srel->size += sizeof (Elf64_External_Rela);
1688 }
1689 else
1690 *local_plt = (bfd_vma) -1;
1691 }
1692 }
1693
1694 local_opd = end_local_plt;
1695 end_local_opd = local_opd + locsymcount;
1696 if (! hppa_info->root.dynamic_sections_created)
1697 {
1698 /* Won't be used, but be safe. */
1699 for (; local_opd < end_local_opd; ++local_opd)
1700 *local_opd = (bfd_vma) -1;
1701 }
1702 else
1703 {
1704 sec = hppa_info->opd_sec;
1705 srel = hppa_info->opd_rel_sec;
1706 for (; local_opd < end_local_opd; ++local_opd)
1707 {
1708 if (*local_opd > 0)
1709 {
1710 *local_opd = sec->size;
1711 sec->size += OPD_ENTRY_SIZE;
1712 if (info->shared)
1713 srel->size += sizeof (Elf64_External_Rela);
1714 }
1715 else
1716 *local_opd = (bfd_vma) -1;
1717 }
1718 }
15bda425
JL
1719 }
1720
1721 /* Allocate the GOT entries. */
1722
1723 data.info = info;
a03bd320 1724 if (hppa_info->dlt_sec)
15bda425 1725 {
a03bd320
DA
1726 data.ofs = hppa_info->dlt_sec->size;
1727 elf_link_hash_traverse (elf_hash_table (info),
1728 allocate_global_data_dlt, &data);
eea6121a 1729 hppa_info->dlt_sec->size = data.ofs;
a03bd320 1730 }
15bda425 1731
a03bd320
DA
1732 if (hppa_info->plt_sec)
1733 {
1734 data.ofs = hppa_info->plt_sec->size;
1735 elf_link_hash_traverse (elf_hash_table (info),
1736 allocate_global_data_plt, &data);
eea6121a 1737 hppa_info->plt_sec->size = data.ofs;
a03bd320 1738 }
15bda425 1739
a03bd320
DA
1740 if (hppa_info->stub_sec)
1741 {
15bda425 1742 data.ofs = 0x0;
a03bd320
DA
1743 elf_link_hash_traverse (elf_hash_table (info),
1744 allocate_global_data_stub, &data);
eea6121a 1745 hppa_info->stub_sec->size = data.ofs;
15bda425
JL
1746 }
1747
15bda425 1748 /* Allocate space for entries in the .opd section. */
a03bd320 1749 if (hppa_info->opd_sec)
15bda425 1750 {
a03bd320
DA
1751 data.ofs = hppa_info->opd_sec->size;
1752 elf_link_hash_traverse (elf_hash_table (info),
1753 allocate_global_data_opd, &data);
eea6121a 1754 hppa_info->opd_sec->size = data.ofs;
15bda425
JL
1755 }
1756
1757 /* Now allocate space for dynamic relocations, if necessary. */
1758 if (hppa_info->root.dynamic_sections_created)
a03bd320
DA
1759 elf_link_hash_traverse (elf_hash_table (info),
1760 allocate_dynrel_entries, &data);
15bda425
JL
1761
1762 /* The sizes of all the sections are set. Allocate memory for them. */
b34976b6
AM
1763 plt = FALSE;
1764 relocs = FALSE;
1765 reltext = FALSE;
a03bd320 1766 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
15bda425
JL
1767 {
1768 const char *name;
15bda425 1769
a03bd320 1770 if ((sec->flags & SEC_LINKER_CREATED) == 0)
15bda425
JL
1771 continue;
1772
1773 /* It's OK to base decisions on the section name, because none
1774 of the dynobj section names depend upon the input files. */
a03bd320 1775 name = bfd_get_section_name (dynobj, sec);
15bda425 1776
15bda425
JL
1777 if (strcmp (name, ".plt") == 0)
1778 {
c456f082 1779 /* Remember whether there is a PLT. */
a03bd320 1780 plt = sec->size != 0;
15bda425 1781 }
c456f082 1782 else if (strcmp (name, ".opd") == 0
0112cd26 1783 || CONST_STRNEQ (name, ".dlt")
c456f082
AM
1784 || strcmp (name, ".stub") == 0
1785 || strcmp (name, ".got") == 0)
15bda425 1786 {
d663e1cd 1787 /* Strip this section if we don't need it; see the comment below. */
15bda425 1788 }
0112cd26 1789 else if (CONST_STRNEQ (name, ".rela"))
15bda425 1790 {
a03bd320 1791 if (sec->size != 0)
15bda425
JL
1792 {
1793 asection *target;
1794
1795 /* Remember whether there are any reloc sections other
1796 than .rela.plt. */
1797 if (strcmp (name, ".rela.plt") != 0)
1798 {
1799 const char *outname;
1800
b34976b6 1801 relocs = TRUE;
15bda425
JL
1802
1803 /* If this relocation section applies to a read only
1804 section, then we probably need a DT_TEXTREL
1805 entry. The entries in the .rela.plt section
1806 really apply to the .got section, which we
1807 created ourselves and so know is not readonly. */
1808 outname = bfd_get_section_name (output_bfd,
a03bd320 1809 sec->output_section);
15bda425
JL
1810 target = bfd_get_section_by_name (output_bfd, outname + 4);
1811 if (target != NULL
1812 && (target->flags & SEC_READONLY) != 0
1813 && (target->flags & SEC_ALLOC) != 0)
b34976b6 1814 reltext = TRUE;
15bda425
JL
1815 }
1816
1817 /* We use the reloc_count field as a counter if we need
1818 to copy relocs into the output file. */
a03bd320 1819 sec->reloc_count = 0;
15bda425
JL
1820 }
1821 }
c456f082 1822 else
15bda425
JL
1823 {
1824 /* It's not one of our sections, so don't allocate space. */
1825 continue;
1826 }
1827
a03bd320 1828 if (sec->size == 0)
15bda425 1829 {
c456f082
AM
1830 /* If we don't need this section, strip it from the
1831 output file. This is mostly to handle .rela.bss and
1832 .rela.plt. We must create both sections in
1833 create_dynamic_sections, because they must be created
1834 before the linker maps input sections to output
1835 sections. The linker does that before
1836 adjust_dynamic_symbol is called, and it is that
1837 function which decides whether anything needs to go
1838 into these sections. */
a03bd320 1839 sec->flags |= SEC_EXCLUDE;
15bda425
JL
1840 continue;
1841 }
1842
a03bd320 1843 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
c456f082
AM
1844 continue;
1845
15bda425 1846 /* Allocate memory for the section contents if it has not
832d951b
AM
1847 been allocated already. We use bfd_zalloc here in case
1848 unused entries are not reclaimed before the section's
1849 contents are written out. This should not happen, but this
1850 way if it does, we get a R_PARISC_NONE reloc instead of
1851 garbage. */
a03bd320 1852 if (sec->contents == NULL)
15bda425 1853 {
a03bd320
DA
1854 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1855 if (sec->contents == NULL)
b34976b6 1856 return FALSE;
15bda425
JL
1857 }
1858 }
1859
1860 if (elf_hash_table (info)->dynamic_sections_created)
1861 {
1862 /* Always create a DT_PLTGOT. It actually has nothing to do with
1863 the PLT, it is how we communicate the __gp value of a load
1864 module to the dynamic linker. */
dc810e39 1865#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1866 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39
AM
1867
1868 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1869 || !add_dynamic_entry (DT_PLTGOT, 0))
b34976b6 1870 return FALSE;
15bda425
JL
1871
1872 /* Add some entries to the .dynamic section. We fill in the
1873 values later, in elf64_hppa_finish_dynamic_sections, but we
1874 must add the entries now so that we get the correct size for
1875 the .dynamic section. The DT_DEBUG entry is filled in by the
1876 dynamic linker and used by the debugger. */
1877 if (! info->shared)
1878 {
dc810e39
AM
1879 if (!add_dynamic_entry (DT_DEBUG, 0)
1880 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1881 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
b34976b6 1882 return FALSE;
15bda425
JL
1883 }
1884
f2482cb2
NC
1885 /* Force DT_FLAGS to always be set.
1886 Required by HPUX 11.00 patch PHSS_26559. */
1887 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
b34976b6 1888 return FALSE;
f2482cb2 1889
15bda425
JL
1890 if (plt)
1891 {
dc810e39
AM
1892 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1893 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1894 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 1895 return FALSE;
15bda425
JL
1896 }
1897
1898 if (relocs)
1899 {
dc810e39
AM
1900 if (!add_dynamic_entry (DT_RELA, 0)
1901 || !add_dynamic_entry (DT_RELASZ, 0)
1902 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
b34976b6 1903 return FALSE;
15bda425
JL
1904 }
1905
1906 if (reltext)
1907 {
dc810e39 1908 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 1909 return FALSE;
d6cf2879 1910 info->flags |= DF_TEXTREL;
15bda425
JL
1911 }
1912 }
dc810e39 1913#undef add_dynamic_entry
15bda425 1914
b34976b6 1915 return TRUE;
15bda425
JL
1916}
1917
1918/* Called after we have output the symbol into the dynamic symbol
1919 table, but before we output the symbol into the normal symbol
1920 table.
1921
1922 For some symbols we had to change their address when outputting
1923 the dynamic symbol table. We undo that change here so that
1924 the symbols have their expected value in the normal symbol
1925 table. Ick. */
1926
6e0b88f1 1927static int
a03bd320 1928elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
813c8a3c
DA
1929 const char *name,
1930 Elf_Internal_Sym *sym,
1931 asection *input_sec ATTRIBUTE_UNUSED,
a03bd320 1932 struct elf_link_hash_entry *eh)
15bda425 1933{
a03bd320 1934 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
15bda425
JL
1935
1936 /* We may be called with the file symbol or section symbols.
1937 They never need munging, so it is safe to ignore them. */
a03bd320 1938 if (!name || !eh)
6e0b88f1 1939 return 1;
15bda425 1940
832d951b
AM
1941 /* Function symbols for which we created .opd entries *may* have been
1942 munged by finish_dynamic_symbol and have to be un-munged here.
1943
1944 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1945 into non-dynamic ones, so we initialize st_shndx to -1 in
1946 mark_exported_functions and check to see if it was overwritten
a03bd320
DA
1947 here instead of just checking eh->dynindx. */
1948 if (hh->want_opd && hh->st_shndx != -1)
15bda425
JL
1949 {
1950 /* Restore the saved value and section index. */
a03bd320
DA
1951 sym->st_value = hh->st_value;
1952 sym->st_shndx = hh->st_shndx;
15bda425
JL
1953 }
1954
6e0b88f1 1955 return 1;
15bda425
JL
1956}
1957
1958/* Finish up dynamic symbol handling. We set the contents of various
1959 dynamic sections here. */
1960
b34976b6 1961static bfd_boolean
813c8a3c
DA
1962elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1963 struct bfd_link_info *info,
a03bd320 1964 struct elf_link_hash_entry *eh,
813c8a3c 1965 Elf_Internal_Sym *sym)
15bda425 1966{
a03bd320 1967 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
c7e2358a 1968 asection *stub, *splt, *sopd, *spltrel;
15bda425 1969 struct elf64_hppa_link_hash_table *hppa_info;
15bda425 1970
a03bd320 1971 hppa_info = hppa_link_hash_table (info);
4dfe6ac6
NC
1972 if (hppa_info == NULL)
1973 return FALSE;
15bda425
JL
1974
1975 stub = hppa_info->stub_sec;
1976 splt = hppa_info->plt_sec;
15bda425
JL
1977 sopd = hppa_info->opd_sec;
1978 spltrel = hppa_info->plt_rel_sec;
15bda425 1979
15bda425
JL
1980 /* Incredible. It is actually necessary to NOT use the symbol's real
1981 value when building the dynamic symbol table for a shared library.
1982 At least for symbols that refer to functions.
1983
1984 We will store a new value and section index into the symbol long
1985 enough to output it into the dynamic symbol table, then we restore
1986 the original values (in elf64_hppa_link_output_symbol_hook). */
a03bd320 1987 if (hh->want_opd)
15bda425 1988 {
f12123c0 1989 BFD_ASSERT (sopd != NULL);
d663e1cd 1990
15bda425
JL
1991 /* Save away the original value and section index so that we
1992 can restore them later. */
a03bd320
DA
1993 hh->st_value = sym->st_value;
1994 hh->st_shndx = sym->st_shndx;
15bda425
JL
1995
1996 /* For the dynamic symbol table entry, we want the value to be
1997 address of this symbol's entry within the .opd section. */
a03bd320 1998 sym->st_value = (hh->opd_offset
15bda425
JL
1999 + sopd->output_offset
2000 + sopd->output_section->vma);
2001 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
2002 sopd->output_section);
2003 }
2004
2005 /* Initialize a .plt entry if requested. */
a03bd320
DA
2006 if (hh->want_plt
2007 && elf64_hppa_dynamic_symbol_p (eh, info))
15bda425
JL
2008 {
2009 bfd_vma value;
2010 Elf_Internal_Rela rel;
947216bf 2011 bfd_byte *loc;
15bda425 2012
f12123c0 2013 BFD_ASSERT (splt != NULL && spltrel != NULL);
d663e1cd 2014
15bda425
JL
2015 /* We do not actually care about the value in the PLT entry
2016 if we are creating a shared library and the symbol is
2017 still undefined, we create a dynamic relocation to fill
2018 in the correct value. */
a03bd320 2019 if (info->shared && eh->root.type == bfd_link_hash_undefined)
15bda425
JL
2020 value = 0;
2021 else
a03bd320 2022 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
15bda425 2023
fe8bc63d 2024 /* Fill in the entry in the procedure linkage table.
15bda425
JL
2025
2026 The format of a plt entry is
fe8bc63d 2027 <funcaddr> <__gp>.
15bda425
JL
2028
2029 plt_offset is the offset within the PLT section at which to
fe8bc63d 2030 install the PLT entry.
15bda425
JL
2031
2032 We are modifying the in-memory PLT contents here, so we do not add
2033 in the output_offset of the PLT section. */
2034
a03bd320 2035 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
15bda425 2036 value = _bfd_get_gp_value (splt->output_section->owner);
a03bd320 2037 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
15bda425
JL
2038
2039 /* Create a dynamic IPLT relocation for this entry.
2040
2041 We are creating a relocation in the output file's PLT section,
2042 which is included within the DLT secton. So we do need to include
2043 the PLT's output_offset in the computation of the relocation's
2044 address. */
a03bd320 2045 rel.r_offset = (hh->plt_offset + splt->output_offset
15bda425 2046 + splt->output_section->vma);
a03bd320 2047 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
15bda425
JL
2048 rel.r_addend = 0;
2049
947216bf
AM
2050 loc = spltrel->contents;
2051 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2052 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
15bda425
JL
2053 }
2054
2055 /* Initialize an external call stub entry if requested. */
a03bd320
DA
2056 if (hh->want_stub
2057 && elf64_hppa_dynamic_symbol_p (eh, info))
15bda425
JL
2058 {
2059 bfd_vma value;
2060 int insn;
b352eebf 2061 unsigned int max_offset;
15bda425 2062
f12123c0 2063 BFD_ASSERT (stub != NULL);
d663e1cd 2064
15bda425
JL
2065 /* Install the generic stub template.
2066
2067 We are modifying the contents of the stub section, so we do not
2068 need to include the stub section's output_offset here. */
a03bd320 2069 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
15bda425
JL
2070
2071 /* Fix up the first ldd instruction.
2072
2073 We are modifying the contents of the STUB section in memory,
fe8bc63d 2074 so we do not need to include its output offset in this computation.
15bda425
JL
2075
2076 Note the plt_offset value is the value of the PLT entry relative to
2077 the start of the PLT section. These instructions will reference
2078 data relative to the value of __gp, which may not necessarily have
2079 the same address as the start of the PLT section.
2080
2081 gp_offset contains the offset of __gp within the PLT section. */
a03bd320 2082 value = hh->plt_offset - hppa_info->gp_offset;
fe8bc63d 2083
a03bd320 2084 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
b352eebf
AM
2085 if (output_bfd->arch_info->mach >= 25)
2086 {
2087 /* Wide mode allows 16 bit offsets. */
2088 max_offset = 32768;
2089 insn &= ~ 0xfff1;
dc810e39 2090 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2091 }
2092 else
2093 {
2094 max_offset = 8192;
2095 insn &= ~ 0x3ff1;
dc810e39 2096 insn |= re_assemble_14 ((int) value);
b352eebf
AM
2097 }
2098
2099 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2100 {
2101 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
a03bd320 2102 hh->eh.root.root.string,
b352eebf 2103 (long) value);
b34976b6 2104 return FALSE;
b352eebf
AM
2105 }
2106
dc810e39 2107 bfd_put_32 (stub->owner, (bfd_vma) insn,
a03bd320 2108 stub->contents + hh->stub_offset);
15bda425
JL
2109
2110 /* Fix up the second ldd instruction. */
b352eebf 2111 value += 8;
a03bd320 2112 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
b352eebf
AM
2113 if (output_bfd->arch_info->mach >= 25)
2114 {
2115 insn &= ~ 0xfff1;
dc810e39 2116 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2117 }
2118 else
2119 {
2120 insn &= ~ 0x3ff1;
dc810e39 2121 insn |= re_assemble_14 ((int) value);
b352eebf 2122 }
dc810e39 2123 bfd_put_32 (stub->owner, (bfd_vma) insn,
a03bd320 2124 stub->contents + hh->stub_offset + 8);
15bda425
JL
2125 }
2126
b34976b6 2127 return TRUE;
15bda425
JL
2128}
2129
2130/* The .opd section contains FPTRs for each function this file
2131 exports. Initialize the FPTR entries. */
2132
b34976b6 2133static bfd_boolean
a03bd320 2134elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
15bda425 2135{
a03bd320 2136 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
15bda425
JL
2137 struct bfd_link_info *info = (struct bfd_link_info *)data;
2138 struct elf64_hppa_link_hash_table *hppa_info;
15bda425
JL
2139 asection *sopd;
2140 asection *sopdrel;
2141
a03bd320 2142 hppa_info = hppa_link_hash_table (info);
4dfe6ac6
NC
2143 if (hppa_info == NULL)
2144 return FALSE;
2145
15bda425
JL
2146 sopd = hppa_info->opd_sec;
2147 sopdrel = hppa_info->opd_rel_sec;
2148
a03bd320 2149 if (hh->want_opd)
15bda425
JL
2150 {
2151 bfd_vma value;
2152
fe8bc63d 2153 /* The first two words of an .opd entry are zero.
15bda425
JL
2154
2155 We are modifying the contents of the OPD section in memory, so we
2156 do not need to include its output offset in this computation. */
a03bd320 2157 memset (sopd->contents + hh->opd_offset, 0, 16);
15bda425 2158
a03bd320
DA
2159 value = (eh->root.u.def.value
2160 + eh->root.u.def.section->output_section->vma
2161 + eh->root.u.def.section->output_offset);
15bda425
JL
2162
2163 /* The next word is the address of the function. */
a03bd320 2164 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
15bda425
JL
2165
2166 /* The last word is our local __gp value. */
2167 value = _bfd_get_gp_value (sopd->output_section->owner);
a03bd320 2168 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
15bda425
JL
2169 }
2170
2171 /* If we are generating a shared library, we must generate EPLT relocations
2172 for each entry in the .opd, even for static functions (they may have
2173 had their address taken). */
a03bd320 2174 if (info->shared && hh->want_opd)
15bda425 2175 {
947216bf
AM
2176 Elf_Internal_Rela rel;
2177 bfd_byte *loc;
15bda425
JL
2178 int dynindx;
2179
2180 /* We may need to do a relocation against a local symbol, in
2181 which case we have to look up it's dynamic symbol index off
2182 the local symbol hash table. */
a03bd320
DA
2183 if (eh->dynindx != -1)
2184 dynindx = eh->dynindx;
15bda425
JL
2185 else
2186 dynindx
a03bd320
DA
2187 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2188 hh->sym_indx);
15bda425
JL
2189
2190 /* The offset of this relocation is the absolute address of the
2191 .opd entry for this symbol. */
a03bd320 2192 rel.r_offset = (hh->opd_offset + sopd->output_offset
15bda425
JL
2193 + sopd->output_section->vma);
2194
2195 /* If H is non-null, then we have an external symbol.
2196
2197 It is imperative that we use a different dynamic symbol for the
2198 EPLT relocation if the symbol has global scope.
2199
2200 In the dynamic symbol table, the function symbol will have a value
2201 which is address of the function's .opd entry.
2202
2203 Thus, we can not use that dynamic symbol for the EPLT relocation
2204 (if we did, the data in the .opd would reference itself rather
2205 than the actual address of the function). Instead we have to use
2206 a new dynamic symbol which has the same value as the original global
fe8bc63d 2207 function symbol.
15bda425
JL
2208
2209 We prefix the original symbol with a "." and use the new symbol in
2210 the EPLT relocation. This new symbol has already been recorded in
2211 the symbol table, we just have to look it up and use it.
2212
2213 We do not have such problems with static functions because we do
2214 not make their addresses in the dynamic symbol table point to
2215 the .opd entry. Ultimately this should be safe since a static
2216 function can not be directly referenced outside of its shared
2217 library.
2218
2219 We do have to play similar games for FPTR relocations in shared
2220 libraries, including those for static symbols. See the FPTR
2221 handling in elf64_hppa_finalize_dynreloc. */
a03bd320 2222 if (eh)
15bda425
JL
2223 {
2224 char *new_name;
2225 struct elf_link_hash_entry *nh;
2226
a03bd320 2227 new_name = alloca (strlen (eh->root.root.string) + 2);
15bda425 2228 new_name[0] = '.';
a03bd320 2229 strcpy (new_name + 1, eh->root.root.string);
15bda425
JL
2230
2231 nh = elf_link_hash_lookup (elf_hash_table (info),
adfef0bd
NC
2232 new_name, TRUE, TRUE, FALSE);
2233
15bda425
JL
2234 /* All we really want from the new symbol is its dynamic
2235 symbol index. */
7fb9f789
NC
2236 if (nh)
2237 dynindx = nh->dynindx;
15bda425
JL
2238 }
2239
2240 rel.r_addend = 0;
2241 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2242
947216bf
AM
2243 loc = sopdrel->contents;
2244 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2245 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
15bda425 2246 }
b34976b6 2247 return TRUE;
15bda425
JL
2248}
2249
2250/* The .dlt section contains addresses for items referenced through the
2251 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2252 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2253
b34976b6 2254static bfd_boolean
a03bd320 2255elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
15bda425 2256{
a03bd320 2257 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
15bda425
JL
2258 struct bfd_link_info *info = (struct bfd_link_info *)data;
2259 struct elf64_hppa_link_hash_table *hppa_info;
2260 asection *sdlt, *sdltrel;
15bda425 2261
a03bd320 2262 hppa_info = hppa_link_hash_table (info);
4dfe6ac6
NC
2263 if (hppa_info == NULL)
2264 return FALSE;
15bda425
JL
2265
2266 sdlt = hppa_info->dlt_sec;
2267 sdltrel = hppa_info->dlt_rel_sec;
2268
2269 /* H/DYN_H may refer to a local variable and we know it's
2270 address, so there is no need to create a relocation. Just install
2271 the proper value into the DLT, note this shortcut can not be
2272 skipped when building a shared library. */
a03bd320 2273 if (! info->shared && hh && hh->want_dlt)
15bda425
JL
2274 {
2275 bfd_vma value;
2276
2277 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2278 to point to the FPTR entry in the .opd section.
15bda425
JL
2279
2280 We include the OPD's output offset in this computation as
2281 we are referring to an absolute address in the resulting
2282 object file. */
a03bd320 2283 if (hh->want_opd)
15bda425 2284 {
a03bd320 2285 value = (hh->opd_offset
15bda425
JL
2286 + hppa_info->opd_sec->output_offset
2287 + hppa_info->opd_sec->output_section->vma);
2288 }
a03bd320
DA
2289 else if ((eh->root.type == bfd_link_hash_defined
2290 || eh->root.type == bfd_link_hash_defweak)
2291 && eh->root.u.def.section)
15bda425 2292 {
a03bd320
DA
2293 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2294 if (eh->root.u.def.section->output_section)
2295 value += eh->root.u.def.section->output_section->vma;
15bda425 2296 else
a03bd320 2297 value += eh->root.u.def.section->vma;
15bda425 2298 }
3db4b612
JL
2299 else
2300 /* We have an undefined function reference. */
2301 value = 0;
15bda425
JL
2302
2303 /* We do not need to include the output offset of the DLT section
2304 here because we are modifying the in-memory contents. */
a03bd320 2305 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
15bda425
JL
2306 }
2307
4cc11e76 2308 /* Create a relocation for the DLT entry associated with this symbol.
15bda425 2309 When building a shared library the symbol does not have to be dynamic. */
a03bd320
DA
2310 if (hh->want_dlt
2311 && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
15bda425 2312 {
947216bf
AM
2313 Elf_Internal_Rela rel;
2314 bfd_byte *loc;
15bda425
JL
2315 int dynindx;
2316
2317 /* We may need to do a relocation against a local symbol, in
2318 which case we have to look up it's dynamic symbol index off
2319 the local symbol hash table. */
a03bd320
DA
2320 if (eh && eh->dynindx != -1)
2321 dynindx = eh->dynindx;
15bda425
JL
2322 else
2323 dynindx
a03bd320
DA
2324 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2325 hh->sym_indx);
15bda425 2326
15bda425
JL
2327 /* Create a dynamic relocation for this entry. Do include the output
2328 offset of the DLT entry since we need an absolute address in the
2329 resulting object file. */
a03bd320 2330 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
15bda425 2331 + sdlt->output_section->vma);
a03bd320 2332 if (eh && eh->type == STT_FUNC)
15bda425
JL
2333 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2334 else
2335 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2336 rel.r_addend = 0;
2337
947216bf
AM
2338 loc = sdltrel->contents;
2339 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2340 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
15bda425 2341 }
b34976b6 2342 return TRUE;
15bda425
JL
2343}
2344
2345/* Finalize the dynamic relocations. Specifically the FPTR relocations
2346 for dynamic functions used to initialize static data. */
2347
b34976b6 2348static bfd_boolean
a03bd320 2349elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
813c8a3c 2350 void *data)
15bda425 2351{
a03bd320 2352 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
15bda425
JL
2353 struct bfd_link_info *info = (struct bfd_link_info *)data;
2354 struct elf64_hppa_link_hash_table *hppa_info;
15bda425
JL
2355 int dynamic_symbol;
2356
a03bd320 2357 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
15bda425
JL
2358
2359 if (!dynamic_symbol && !info->shared)
b34976b6 2360 return TRUE;
15bda425 2361
a03bd320 2362 if (hh->reloc_entries)
15bda425
JL
2363 {
2364 struct elf64_hppa_dyn_reloc_entry *rent;
2365 int dynindx;
2366
a03bd320 2367 hppa_info = hppa_link_hash_table (info);
4dfe6ac6
NC
2368 if (hppa_info == NULL)
2369 return FALSE;
15bda425
JL
2370
2371 /* We may need to do a relocation against a local symbol, in
2372 which case we have to look up it's dynamic symbol index off
2373 the local symbol hash table. */
a03bd320
DA
2374 if (eh->dynindx != -1)
2375 dynindx = eh->dynindx;
15bda425
JL
2376 else
2377 dynindx
a03bd320
DA
2378 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2379 hh->sym_indx);
15bda425 2380
a03bd320 2381 for (rent = hh->reloc_entries; rent; rent = rent->next)
15bda425 2382 {
947216bf
AM
2383 Elf_Internal_Rela rel;
2384 bfd_byte *loc;
15bda425 2385
d663e1cd
JL
2386 /* Allocate one iff we are building a shared library, the relocation
2387 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
a03bd320 2388 if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
d663e1cd 2389 continue;
15bda425 2390
fe8bc63d 2391 /* Create a dynamic relocation for this entry.
15bda425
JL
2392
2393 We need the output offset for the reloc's section because
2394 we are creating an absolute address in the resulting object
2395 file. */
2396 rel.r_offset = (rent->offset + rent->sec->output_offset
2397 + rent->sec->output_section->vma);
2398
2399 /* An FPTR64 relocation implies that we took the address of
2400 a function and that the function has an entry in the .opd
2401 section. We want the FPTR64 relocation to reference the
2402 entry in .opd.
2403
2404 We could munge the symbol value in the dynamic symbol table
2405 (in fact we already do for functions with global scope) to point
2406 to the .opd entry. Then we could use that dynamic symbol in
2407 this relocation.
2408
2409 Or we could do something sensible, not munge the symbol's
2410 address and instead just use a different symbol to reference
2411 the .opd entry. At least that seems sensible until you
2412 realize there's no local dynamic symbols we can use for that
2413 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2414
15bda425
JL
2415 We use a section symbol recorded by check_relocs as the
2416 base symbol for the relocation. The addend is the difference
2417 between the section symbol and the address of the .opd entry. */
a03bd320 2418 if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
15bda425
JL
2419 {
2420 bfd_vma value, value2;
15bda425
JL
2421
2422 /* First compute the address of the opd entry for this symbol. */
a03bd320 2423 value = (hh->opd_offset
15bda425
JL
2424 + hppa_info->opd_sec->output_section->vma
2425 + hppa_info->opd_sec->output_offset);
2426
2427 /* Compute the value of the start of the section with
2428 the relocation. */
2429 value2 = (rent->sec->output_section->vma
2430 + rent->sec->output_offset);
2431
2432 /* Compute the difference between the start of the section
2433 with the relocation and the opd entry. */
2434 value -= value2;
fe8bc63d 2435
15bda425
JL
2436 /* The result becomes the addend of the relocation. */
2437 rel.r_addend = value;
2438
2439 /* The section symbol becomes the symbol for the dynamic
2440 relocation. */
2441 dynindx
2442 = _bfd_elf_link_lookup_local_dynindx (info,
2443 rent->sec->owner,
2444 rent->sec_symndx);
2445 }
2446 else
2447 rel.r_addend = rent->addend;
2448
2449 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2450
947216bf
AM
2451 loc = hppa_info->other_rel_sec->contents;
2452 loc += (hppa_info->other_rel_sec->reloc_count++
2453 * sizeof (Elf64_External_Rela));
15bda425 2454 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
947216bf 2455 &rel, loc);
15bda425
JL
2456 }
2457 }
2458
b34976b6 2459 return TRUE;
15bda425
JL
2460}
2461
5ac81c74
JL
2462/* Used to decide how to sort relocs in an optimal manner for the
2463 dynamic linker, before writing them out. */
2464
2465static enum elf_reloc_type_class
813c8a3c 2466elf64_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
5ac81c74 2467{
cf35638d 2468 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
5ac81c74
JL
2469 return reloc_class_relative;
2470
2471 switch ((int) ELF64_R_TYPE (rela->r_info))
2472 {
2473 case R_PARISC_IPLT:
2474 return reloc_class_plt;
2475 case R_PARISC_COPY:
2476 return reloc_class_copy;
2477 default:
2478 return reloc_class_normal;
2479 }
2480}
2481
15bda425
JL
2482/* Finish up the dynamic sections. */
2483
b34976b6 2484static bfd_boolean
813c8a3c
DA
2485elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2486 struct bfd_link_info *info)
15bda425
JL
2487{
2488 bfd *dynobj;
2489 asection *sdyn;
2490 struct elf64_hppa_link_hash_table *hppa_info;
2491
a03bd320 2492 hppa_info = hppa_link_hash_table (info);
4dfe6ac6
NC
2493 if (hppa_info == NULL)
2494 return FALSE;
15bda425
JL
2495
2496 /* Finalize the contents of the .opd section. */
a03bd320
DA
2497 elf_link_hash_traverse (elf_hash_table (info),
2498 elf64_hppa_finalize_opd,
2499 info);
15bda425 2500
a03bd320
DA
2501 elf_link_hash_traverse (elf_hash_table (info),
2502 elf64_hppa_finalize_dynreloc,
2503 info);
15bda425
JL
2504
2505 /* Finalize the contents of the .dlt section. */
2506 dynobj = elf_hash_table (info)->dynobj;
2507 /* Finalize the contents of the .dlt section. */
a03bd320
DA
2508 elf_link_hash_traverse (elf_hash_table (info),
2509 elf64_hppa_finalize_dlt,
2510 info);
15bda425 2511
15bda425
JL
2512 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2513
2514 if (elf_hash_table (info)->dynamic_sections_created)
2515 {
2516 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2517
2518 BFD_ASSERT (sdyn != NULL);
2519
2520 dyncon = (Elf64_External_Dyn *) sdyn->contents;
eea6121a 2521 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15bda425
JL
2522 for (; dyncon < dynconend; dyncon++)
2523 {
2524 Elf_Internal_Dyn dyn;
2525 asection *s;
2526
2527 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2528
2529 switch (dyn.d_tag)
2530 {
2531 default:
2532 break;
2533
2534 case DT_HP_LOAD_MAP:
2535 /* Compute the absolute address of 16byte scratchpad area
2536 for the dynamic linker.
2537
2538 By convention the linker script will allocate the scratchpad
2539 area at the start of the .data section. So all we have to
2540 to is find the start of the .data section. */
2541 s = bfd_get_section_by_name (output_bfd, ".data");
2542 dyn.d_un.d_ptr = s->vma;
2543 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2544 break;
2545
2546 case DT_PLTGOT:
2547 /* HP's use PLTGOT to set the GOT register. */
2548 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2549 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2550 break;
2551
2552 case DT_JMPREL:
2553 s = hppa_info->plt_rel_sec;
2554 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2555 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2556 break;
2557
2558 case DT_PLTRELSZ:
2559 s = hppa_info->plt_rel_sec;
eea6121a 2560 dyn.d_un.d_val = s->size;
15bda425
JL
2561 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2562 break;
2563
2564 case DT_RELA:
2565 s = hppa_info->other_rel_sec;
eea6121a 2566 if (! s || ! s->size)
15bda425 2567 s = hppa_info->dlt_rel_sec;
eea6121a 2568 if (! s || ! s->size)
5ac81c74 2569 s = hppa_info->opd_rel_sec;
15bda425
JL
2570 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2571 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2572 break;
2573
2574 case DT_RELASZ:
2575 s = hppa_info->other_rel_sec;
eea6121a 2576 dyn.d_un.d_val = s->size;
15bda425 2577 s = hppa_info->dlt_rel_sec;
eea6121a 2578 dyn.d_un.d_val += s->size;
15bda425 2579 s = hppa_info->opd_rel_sec;
eea6121a 2580 dyn.d_un.d_val += s->size;
15bda425
JL
2581 /* There is some question about whether or not the size of
2582 the PLT relocs should be included here. HP's tools do
2583 it, so we'll emulate them. */
2584 s = hppa_info->plt_rel_sec;
eea6121a 2585 dyn.d_un.d_val += s->size;
15bda425
JL
2586 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2587 break;
2588
2589 }
2590 }
2591 }
2592
b34976b6 2593 return TRUE;
15bda425
JL
2594}
2595
235ecfbc
NC
2596/* Support for core dump NOTE sections. */
2597
2598static bfd_boolean
2599elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2600{
2601 int offset;
2602 size_t size;
2603
2604 switch (note->descsz)
2605 {
2606 default:
2607 return FALSE;
2608
2609 case 760: /* Linux/hppa */
2610 /* pr_cursig */
2611 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2612
2613 /* pr_pid */
261b8d08 2614 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 32);
235ecfbc
NC
2615
2616 /* pr_reg */
2617 offset = 112;
2618 size = 640;
2619
2620 break;
2621 }
2622
2623 /* Make a ".reg/999" section. */
2624 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2625 size, note->descpos + offset);
2626}
2627
2628static bfd_boolean
2629elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2630{
2631 char * command;
2632 int n;
2633
2634 switch (note->descsz)
2635 {
2636 default:
2637 return FALSE;
2638
2639 case 136: /* Linux/hppa elf_prpsinfo. */
2640 elf_tdata (abfd)->core_program
2641 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2642 elf_tdata (abfd)->core_command
2643 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2644 }
2645
2646 /* Note that for some reason, a spurious space is tacked
2647 onto the end of the args in some (at least one anyway)
2648 implementations, so strip it off if it exists. */
2649 command = elf_tdata (abfd)->core_command;
2650 n = strlen (command);
2651
2652 if (0 < n && command[n - 1] == ' ')
2653 command[n - 1] = '\0';
2654
2655 return TRUE;
2656}
2657
15bda425
JL
2658/* Return the number of additional phdrs we will need.
2659
2660 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2661 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2662
2663 This routine indicates that the backend needs one additional program
2664 header for that case.
2665
2666 Note we do not have access to the link info structure here, so we have
2667 to guess whether or not we are building a shared library based on the
2668 existence of a .interp section. */
2669
2670static int
a6b96beb 2671elf64_hppa_additional_program_headers (bfd *abfd,
813c8a3c 2672 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15bda425
JL
2673{
2674 asection *s;
2675
2676 /* If we are creating a shared library, then we have to create a
2677 PT_PHDR segment. HP's dynamic linker chokes without it. */
2678 s = bfd_get_section_by_name (abfd, ".interp");
2679 if (! s)
2680 return 1;
2681 return 0;
2682}
2683
2684/* Allocate and initialize any program headers required by this
2685 specific backend.
2686
2687 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2688 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2689
2690 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2691 for the HP linker.
15bda425
JL
2692
2693 Note we do not have access to the link info structure here, so we have
2694 to guess whether or not we are building a shared library based on the
2695 existence of a .interp section. */
2696
b34976b6 2697static bfd_boolean
8ded5a0f
AM
2698elf64_hppa_modify_segment_map (bfd *abfd,
2699 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15bda425 2700{
edd21aca 2701 struct elf_segment_map *m;
15bda425
JL
2702 asection *s;
2703
2704 s = bfd_get_section_by_name (abfd, ".interp");
2705 if (! s)
2706 {
2707 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2708 if (m->p_type == PT_PHDR)
2709 break;
2710 if (m == NULL)
2711 {
dc810e39
AM
2712 m = ((struct elf_segment_map *)
2713 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
15bda425 2714 if (m == NULL)
b34976b6 2715 return FALSE;
15bda425
JL
2716
2717 m->p_type = PT_PHDR;
2718 m->p_flags = PF_R | PF_X;
2719 m->p_flags_valid = 1;
2720 m->p_paddr_valid = 1;
2721 m->includes_phdrs = 1;
2722
2723 m->next = elf_tdata (abfd)->segment_map;
2724 elf_tdata (abfd)->segment_map = m;
2725 }
2726 }
2727
2728 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2729 if (m->p_type == PT_LOAD)
2730 {
0ba2a60e 2731 unsigned int i;
15bda425
JL
2732
2733 for (i = 0; i < m->count; i++)
2734 {
2735 /* The code "hint" is not really a hint. It is a requirement
2736 for certain versions of the HP dynamic linker. Worse yet,
2737 it must be set even if the shared library does not have
2738 any code in its "text" segment (thus the check for .hash
2739 to catch this situation). */
2740 if (m->sections[i]->flags & SEC_CODE
2741 || (strcmp (m->sections[i]->name, ".hash") == 0))
2742 m->p_flags |= (PF_X | PF_HP_CODE);
2743 }
2744 }
2745
b34976b6 2746 return TRUE;
15bda425
JL
2747}
2748
3fab46d0
AM
2749/* Called when writing out an object file to decide the type of a
2750 symbol. */
2751static int
813c8a3c
DA
2752elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2753 int type)
3fab46d0
AM
2754{
2755 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2756 return STT_PARISC_MILLI;
2757 else
2758 return type;
2759}
2760
d97a8924 2761/* Support HP specific sections for core files. */
91d6fa6a 2762
d97a8924 2763static bfd_boolean
91d6fa6a 2764elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
d97a8924
DA
2765 const char *typename)
2766{
927e625f
MK
2767 if (hdr->p_type == PT_HP_CORE_KERNEL)
2768 {
2769 asection *sect;
2770
91d6fa6a 2771 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
927e625f
MK
2772 return FALSE;
2773
2774 sect = bfd_make_section_anyway (abfd, ".kernel");
2775 if (sect == NULL)
2776 return FALSE;
2777 sect->size = hdr->p_filesz;
2778 sect->filepos = hdr->p_offset;
2779 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2780 return TRUE;
2781 }
2782
d97a8924
DA
2783 if (hdr->p_type == PT_HP_CORE_PROC)
2784 {
2785 int sig;
2786
2787 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2788 return FALSE;
2789 if (bfd_bread (&sig, 4, abfd) != 4)
2790 return FALSE;
2791
2792 elf_tdata (abfd)->core_signal = sig;
2793
91d6fa6a 2794 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
d97a8924 2795 return FALSE;
927e625f
MK
2796
2797 /* GDB uses the ".reg" section to read register contents. */
2798 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2799 hdr->p_offset);
d97a8924
DA
2800 }
2801
2802 if (hdr->p_type == PT_HP_CORE_LOADABLE
2803 || hdr->p_type == PT_HP_CORE_STACK
2804 || hdr->p_type == PT_HP_CORE_MMF)
2805 hdr->p_type = PT_LOAD;
2806
91d6fa6a 2807 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
d97a8924
DA
2808}
2809
5887528b
DA
2810/* Hook called by the linker routine which adds symbols from an object
2811 file. HP's libraries define symbols with HP specific section
2812 indices, which we have to handle. */
2813
2814static bfd_boolean
2815elf_hppa_add_symbol_hook (bfd *abfd,
2816 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2817 Elf_Internal_Sym *sym,
2818 const char **namep ATTRIBUTE_UNUSED,
2819 flagword *flagsp ATTRIBUTE_UNUSED,
2820 asection **secp,
2821 bfd_vma *valp)
2822{
91d6fa6a 2823 unsigned int sec_index = sym->st_shndx;
5887528b 2824
91d6fa6a 2825 switch (sec_index)
5887528b
DA
2826 {
2827 case SHN_PARISC_ANSI_COMMON:
2828 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2829 (*secp)->flags |= SEC_IS_COMMON;
2830 *valp = sym->st_size;
2831 break;
2832
2833 case SHN_PARISC_HUGE_COMMON:
2834 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2835 (*secp)->flags |= SEC_IS_COMMON;
2836 *valp = sym->st_size;
2837 break;
2838 }
2839
2840 return TRUE;
2841}
2842
2843static bfd_boolean
2844elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2845 void *data)
2846{
2847 struct bfd_link_info *info = data;
2848
2849 if (h->root.type == bfd_link_hash_warning)
2850 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2851
2852 /* If we are not creating a shared library, and this symbol is
2853 referenced by a shared library but is not defined anywhere, then
2854 the generic code will warn that it is undefined.
2855
2856 This behavior is undesirable on HPs since the standard shared
2857 libraries contain references to undefined symbols.
2858
2859 So we twiddle the flags associated with such symbols so that they
2860 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2861
2862 Ultimately we should have better controls over the generic ELF BFD
2863 linker code. */
2864 if (! info->relocatable
2865 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2866 && h->root.type == bfd_link_hash_undefined
2867 && h->ref_dynamic
2868 && !h->ref_regular)
2869 {
2870 h->ref_dynamic = 0;
2871 h->pointer_equality_needed = 1;
2872 }
2873
2874 return TRUE;
2875}
2876
2877static bfd_boolean
2878elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2879 void *data)
2880{
2881 struct bfd_link_info *info = data;
2882
2883 if (h->root.type == bfd_link_hash_warning)
2884 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2885
2886 /* If we are not creating a shared library, and this symbol is
2887 referenced by a shared library but is not defined anywhere, then
2888 the generic code will warn that it is undefined.
2889
2890 This behavior is undesirable on HPs since the standard shared
2891 libraries contain references to undefined symbols.
2892
2893 So we twiddle the flags associated with such symbols so that they
2894 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2895
2896 Ultimately we should have better controls over the generic ELF BFD
2897 linker code. */
2898 if (! info->relocatable
2899 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2900 && h->root.type == bfd_link_hash_undefined
2901 && !h->ref_dynamic
2902 && !h->ref_regular
2903 && h->pointer_equality_needed)
2904 {
2905 h->ref_dynamic = 1;
2906 h->pointer_equality_needed = 0;
2907 }
2908
2909 return TRUE;
2910}
2911
2912static bfd_boolean
2913elf_hppa_is_dynamic_loader_symbol (const char *name)
2914{
2915 return (! strcmp (name, "__CPU_REVISION")
2916 || ! strcmp (name, "__CPU_KEYBITS_1")
2917 || ! strcmp (name, "__SYSTEM_ID_D")
2918 || ! strcmp (name, "__FPU_MODEL")
2919 || ! strcmp (name, "__FPU_REVISION")
2920 || ! strcmp (name, "__ARGC")
2921 || ! strcmp (name, "__ARGV")
2922 || ! strcmp (name, "__ENVP")
2923 || ! strcmp (name, "__TLS_SIZE_D")
2924 || ! strcmp (name, "__LOAD_INFO")
2925 || ! strcmp (name, "__systab"));
2926}
2927
2928/* Record the lowest address for the data and text segments. */
2929static void
2930elf_hppa_record_segment_addrs (bfd *abfd,
2931 asection *section,
2932 void *data)
2933{
2934 struct elf64_hppa_link_hash_table *hppa_info = data;
2935
2936 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2937 {
2938 bfd_vma value;
2939 Elf_Internal_Phdr *p;
2940
2941 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2942 BFD_ASSERT (p != NULL);
2943 value = p->p_vaddr;
2944
2945 if (section->flags & SEC_READONLY)
2946 {
2947 if (value < hppa_info->text_segment_base)
2948 hppa_info->text_segment_base = value;
2949 }
2950 else
2951 {
2952 if (value < hppa_info->data_segment_base)
2953 hppa_info->data_segment_base = value;
2954 }
2955 }
2956}
2957
2958/* Called after we have seen all the input files/sections, but before
2959 final symbol resolution and section placement has been determined.
2960
2961 We use this hook to (possibly) provide a value for __gp, then we
2962 fall back to the generic ELF final link routine. */
2963
2964static bfd_boolean
2965elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2966{
2967 bfd_boolean retval;
2968 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2969
4dfe6ac6
NC
2970 if (hppa_info == NULL)
2971 return FALSE;
2972
5887528b
DA
2973 if (! info->relocatable)
2974 {
2975 struct elf_link_hash_entry *gp;
2976 bfd_vma gp_val;
2977
2978 /* The linker script defines a value for __gp iff it was referenced
2979 by one of the objects being linked. First try to find the symbol
2980 in the hash table. If that fails, just compute the value __gp
2981 should have had. */
2982 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2983 FALSE, FALSE);
2984
2985 if (gp)
2986 {
2987
2988 /* Adjust the value of __gp as we may want to slide it into the
2989 .plt section so that the stubs can access PLT entries without
2990 using an addil sequence. */
2991 gp->root.u.def.value += hppa_info->gp_offset;
2992
2993 gp_val = (gp->root.u.def.section->output_section->vma
2994 + gp->root.u.def.section->output_offset
2995 + gp->root.u.def.value);
2996 }
2997 else
2998 {
2999 asection *sec;
3000
3001 /* First look for a .plt section. If found, then __gp is the
3002 address of the .plt + gp_offset.
3003
3004 If no .plt is found, then look for .dlt, .opd and .data (in
3005 that order) and set __gp to the base address of whichever
3006 section is found first. */
3007
3008 sec = hppa_info->plt_sec;
3009 if (sec && ! (sec->flags & SEC_EXCLUDE))
3010 gp_val = (sec->output_offset
3011 + sec->output_section->vma
3012 + hppa_info->gp_offset);
3013 else
3014 {
3015 sec = hppa_info->dlt_sec;
3016 if (!sec || (sec->flags & SEC_EXCLUDE))
3017 sec = hppa_info->opd_sec;
3018 if (!sec || (sec->flags & SEC_EXCLUDE))
3019 sec = bfd_get_section_by_name (abfd, ".data");
3020 if (!sec || (sec->flags & SEC_EXCLUDE))
3021 gp_val = 0;
3022 else
3023 gp_val = sec->output_offset + sec->output_section->vma;
3024 }
3025 }
3026
3027 /* Install whatever value we found/computed for __gp. */
3028 _bfd_set_gp_value (abfd, gp_val);
3029 }
3030
3031 /* We need to know the base of the text and data segments so that we
3032 can perform SEGREL relocations. We will record the base addresses
3033 when we encounter the first SEGREL relocation. */
3034 hppa_info->text_segment_base = (bfd_vma)-1;
3035 hppa_info->data_segment_base = (bfd_vma)-1;
3036
3037 /* HP's shared libraries have references to symbols that are not
3038 defined anywhere. The generic ELF BFD linker code will complain
3039 about such symbols.
3040
3041 So we detect the losing case and arrange for the flags on the symbol
3042 to indicate that it was never referenced. This keeps the generic
3043 ELF BFD link code happy and appears to not create any secondary
3044 problems. Ultimately we need a way to control the behavior of the
3045 generic ELF BFD link code better. */
3046 elf_link_hash_traverse (elf_hash_table (info),
3047 elf_hppa_unmark_useless_dynamic_symbols,
3048 info);
3049
3050 /* Invoke the regular ELF backend linker to do all the work. */
3051 retval = bfd_elf_final_link (abfd, info);
3052
3053 elf_link_hash_traverse (elf_hash_table (info),
3054 elf_hppa_remark_useless_dynamic_symbols,
3055 info);
3056
3057 /* If we're producing a final executable, sort the contents of the
3058 unwind section. */
d9f40817 3059 if (retval && !info->relocatable)
5887528b
DA
3060 retval = elf_hppa_sort_unwind (abfd);
3061
3062 return retval;
3063}
3064
3065/* Relocate the given INSN. VALUE should be the actual value we want
3066 to insert into the instruction, ie by this point we should not be
3067 concerned with computing an offset relative to the DLT, PC, etc.
3068 Instead this routine is meant to handle the bit manipulations needed
3069 to insert the relocation into the given instruction. */
3070
3071static int
3072elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3073{
3074 switch (r_type)
3075 {
3076 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3077 the "B" instruction. */
3078 case R_PARISC_PCREL22F:
3079 case R_PARISC_PCREL22C:
3080 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3081
3082 /* This is any 12 bit branch. */
3083 case R_PARISC_PCREL12F:
3084 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3085
3086 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3087 to the "B" instruction as well as BE. */
3088 case R_PARISC_PCREL17F:
3089 case R_PARISC_DIR17F:
3090 case R_PARISC_DIR17R:
3091 case R_PARISC_PCREL17C:
3092 case R_PARISC_PCREL17R:
3093 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3094
3095 /* ADDIL or LDIL instructions. */
3096 case R_PARISC_DLTREL21L:
3097 case R_PARISC_DLTIND21L:
3098 case R_PARISC_LTOFF_FPTR21L:
3099 case R_PARISC_PCREL21L:
3100 case R_PARISC_LTOFF_TP21L:
3101 case R_PARISC_DPREL21L:
3102 case R_PARISC_PLTOFF21L:
3103 case R_PARISC_DIR21L:
3104 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3105
3106 /* LDO and integer loads/stores with 14 bit displacements. */
3107 case R_PARISC_DLTREL14R:
3108 case R_PARISC_DLTREL14F:
3109 case R_PARISC_DLTIND14R:
3110 case R_PARISC_DLTIND14F:
3111 case R_PARISC_LTOFF_FPTR14R:
3112 case R_PARISC_PCREL14R:
3113 case R_PARISC_PCREL14F:
3114 case R_PARISC_LTOFF_TP14R:
3115 case R_PARISC_LTOFF_TP14F:
3116 case R_PARISC_DPREL14R:
3117 case R_PARISC_DPREL14F:
3118 case R_PARISC_PLTOFF14R:
3119 case R_PARISC_PLTOFF14F:
3120 case R_PARISC_DIR14R:
3121 case R_PARISC_DIR14F:
3122 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3123
3124 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3125 case R_PARISC_LTOFF_FPTR16F:
3126 case R_PARISC_PCREL16F:
3127 case R_PARISC_LTOFF_TP16F:
3128 case R_PARISC_GPREL16F:
3129 case R_PARISC_PLTOFF16F:
3130 case R_PARISC_DIR16F:
3131 case R_PARISC_LTOFF16F:
3132 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3133
3134 /* Doubleword loads and stores with a 14 bit displacement. */
3135 case R_PARISC_DLTREL14DR:
3136 case R_PARISC_DLTIND14DR:
3137 case R_PARISC_LTOFF_FPTR14DR:
3138 case R_PARISC_LTOFF_FPTR16DF:
3139 case R_PARISC_PCREL14DR:
3140 case R_PARISC_PCREL16DF:
3141 case R_PARISC_LTOFF_TP14DR:
3142 case R_PARISC_LTOFF_TP16DF:
3143 case R_PARISC_DPREL14DR:
3144 case R_PARISC_GPREL16DF:
3145 case R_PARISC_PLTOFF14DR:
3146 case R_PARISC_PLTOFF16DF:
3147 case R_PARISC_DIR14DR:
3148 case R_PARISC_DIR16DF:
3149 case R_PARISC_LTOFF16DF:
3150 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3151 | ((sym_value & 0x1ff8) << 1));
3152
3153 /* Floating point single word load/store instructions. */
3154 case R_PARISC_DLTREL14WR:
3155 case R_PARISC_DLTIND14WR:
3156 case R_PARISC_LTOFF_FPTR14WR:
3157 case R_PARISC_LTOFF_FPTR16WF:
3158 case R_PARISC_PCREL14WR:
3159 case R_PARISC_PCREL16WF:
3160 case R_PARISC_LTOFF_TP14WR:
3161 case R_PARISC_LTOFF_TP16WF:
3162 case R_PARISC_DPREL14WR:
3163 case R_PARISC_GPREL16WF:
3164 case R_PARISC_PLTOFF14WR:
3165 case R_PARISC_PLTOFF16WF:
3166 case R_PARISC_DIR16WF:
3167 case R_PARISC_DIR14WR:
3168 case R_PARISC_LTOFF16WF:
3169 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3170 | ((sym_value & 0x1ffc) << 1));
3171
3172 default:
3173 return insn;
3174 }
3175}
3176
3177/* Compute the value for a relocation (REL) during a final link stage,
3178 then insert the value into the proper location in CONTENTS.
3179
3180 VALUE is a tentative value for the relocation and may be overridden
3181 and modified here based on the specific relocation to be performed.
3182
3183 For example we do conversions for PC-relative branches in this routine
3184 or redirection of calls to external routines to stubs.
3185
3186 The work of actually applying the relocation is left to a helper
3187 routine in an attempt to reduce the complexity and size of this
3188 function. */
3189
3190static bfd_reloc_status_type
3191elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3192 bfd *input_bfd,
3193 bfd *output_bfd,
3194 asection *input_section,
3195 bfd_byte *contents,
3196 bfd_vma value,
3197 struct bfd_link_info *info,
3198 asection *sym_sec,
3199 struct elf_link_hash_entry *eh)
3200{
3201 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3202 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3203 bfd_vma *local_offsets;
3204 Elf_Internal_Shdr *symtab_hdr;
3205 int insn;
3206 bfd_vma max_branch_offset = 0;
3207 bfd_vma offset = rel->r_offset;
3208 bfd_signed_vma addend = rel->r_addend;
3209 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3210 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3211 unsigned int r_type = howto->type;
3212 bfd_byte *hit_data = contents + offset;
3213
4dfe6ac6
NC
3214 if (hppa_info == NULL)
3215 return bfd_reloc_notsupported;
3216
5887528b
DA
3217 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3218 local_offsets = elf_local_got_offsets (input_bfd);
3219 insn = bfd_get_32 (input_bfd, hit_data);
3220
3221 switch (r_type)
3222 {
3223 case R_PARISC_NONE:
3224 break;
3225
3226 /* Basic function call support.
3227
3228 Note for a call to a function defined in another dynamic library
3229 we want to redirect the call to a stub. */
3230
3231 /* PC relative relocs without an implicit offset. */
3232 case R_PARISC_PCREL21L:
3233 case R_PARISC_PCREL14R:
3234 case R_PARISC_PCREL14F:
3235 case R_PARISC_PCREL14WR:
3236 case R_PARISC_PCREL14DR:
3237 case R_PARISC_PCREL16F:
3238 case R_PARISC_PCREL16WF:
3239 case R_PARISC_PCREL16DF:
3240 {
3241 /* If this is a call to a function defined in another dynamic
3242 library, then redirect the call to the local stub for this
3243 function. */
3244 if (sym_sec == NULL || sym_sec->output_section == NULL)
3245 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3246 + hppa_info->stub_sec->output_section->vma);
3247
3248 /* Turn VALUE into a proper PC relative address. */
3249 value -= (offset + input_section->output_offset
3250 + input_section->output_section->vma);
3251
3252 /* Adjust for any field selectors. */
3253 if (r_type == R_PARISC_PCREL21L)
3254 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3255 else if (r_type == R_PARISC_PCREL14F
3256 || r_type == R_PARISC_PCREL16F
3257 || r_type == R_PARISC_PCREL16WF
3258 || r_type == R_PARISC_PCREL16DF)
3259 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3260 else
3261 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3262
3263 /* Apply the relocation to the given instruction. */
3264 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3265 break;
3266 }
3267
3268 case R_PARISC_PCREL12F:
3269 case R_PARISC_PCREL22F:
3270 case R_PARISC_PCREL17F:
3271 case R_PARISC_PCREL22C:
3272 case R_PARISC_PCREL17C:
3273 case R_PARISC_PCREL17R:
3274 {
3275 /* If this is a call to a function defined in another dynamic
3276 library, then redirect the call to the local stub for this
3277 function. */
3278 if (sym_sec == NULL || sym_sec->output_section == NULL)
3279 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3280 + hppa_info->stub_sec->output_section->vma);
3281
3282 /* Turn VALUE into a proper PC relative address. */
3283 value -= (offset + input_section->output_offset
3284 + input_section->output_section->vma);
3285 addend -= 8;
3286
3287 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3288 max_branch_offset = (1 << (22-1)) << 2;
3289 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3290 max_branch_offset = (1 << (17-1)) << 2;
3291 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3292 max_branch_offset = (1 << (12-1)) << 2;
3293
3294 /* Make sure we can reach the branch target. */
3295 if (max_branch_offset != 0
3296 && value + addend + max_branch_offset >= 2*max_branch_offset)
3297 {
3298 (*_bfd_error_handler)
3299 (_("%B(%A+0x%lx): cannot reach %s"),
3300 input_bfd,
3301 input_section,
3302 offset,
3303 eh->root.root.string);
3304 bfd_set_error (bfd_error_bad_value);
3305 return bfd_reloc_notsupported;
3306 }
3307
3308 /* Adjust for any field selectors. */
3309 if (r_type == R_PARISC_PCREL17R)
3310 value = hppa_field_adjust (value, addend, e_rsel);
3311 else
3312 value = hppa_field_adjust (value, addend, e_fsel);
3313
3314 /* All branches are implicitly shifted by 2 places. */
3315 value >>= 2;
3316
3317 /* Apply the relocation to the given instruction. */
3318 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3319 break;
3320 }
3321
3322 /* Indirect references to data through the DLT. */
3323 case R_PARISC_DLTIND14R:
3324 case R_PARISC_DLTIND14F:
3325 case R_PARISC_DLTIND14DR:
3326 case R_PARISC_DLTIND14WR:
3327 case R_PARISC_DLTIND21L:
3328 case R_PARISC_LTOFF_FPTR14R:
3329 case R_PARISC_LTOFF_FPTR14DR:
3330 case R_PARISC_LTOFF_FPTR14WR:
3331 case R_PARISC_LTOFF_FPTR21L:
3332 case R_PARISC_LTOFF_FPTR16F:
3333 case R_PARISC_LTOFF_FPTR16WF:
3334 case R_PARISC_LTOFF_FPTR16DF:
3335 case R_PARISC_LTOFF_TP21L:
3336 case R_PARISC_LTOFF_TP14R:
3337 case R_PARISC_LTOFF_TP14F:
3338 case R_PARISC_LTOFF_TP14WR:
3339 case R_PARISC_LTOFF_TP14DR:
3340 case R_PARISC_LTOFF_TP16F:
3341 case R_PARISC_LTOFF_TP16WF:
3342 case R_PARISC_LTOFF_TP16DF:
3343 case R_PARISC_LTOFF16F:
3344 case R_PARISC_LTOFF16WF:
3345 case R_PARISC_LTOFF16DF:
3346 {
3347 bfd_vma off;
3348
3349 /* If this relocation was against a local symbol, then we still
3350 have not set up the DLT entry (it's not convenient to do so
3351 in the "finalize_dlt" routine because it is difficult to get
3352 to the local symbol's value).
3353
3354 So, if this is a local symbol (h == NULL), then we need to
3355 fill in its DLT entry.
3356
3357 Similarly we may still need to set up an entry in .opd for
3358 a local function which had its address taken. */
3359 if (hh == NULL)
3360 {
3361 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3362
3363 if (local_offsets == NULL)
3364 abort ();
3365
3366 /* Now do .opd creation if needed. */
3367 if (r_type == R_PARISC_LTOFF_FPTR14R
3368 || r_type == R_PARISC_LTOFF_FPTR14DR
3369 || r_type == R_PARISC_LTOFF_FPTR14WR
3370 || r_type == R_PARISC_LTOFF_FPTR21L
3371 || r_type == R_PARISC_LTOFF_FPTR16F
3372 || r_type == R_PARISC_LTOFF_FPTR16WF
3373 || r_type == R_PARISC_LTOFF_FPTR16DF)
3374 {
3375 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3376 off = local_opd_offsets[r_symndx];
3377
3378 /* The last bit records whether we've already initialised
3379 this local .opd entry. */
3380 if ((off & 1) != 0)
3381 {
3382 BFD_ASSERT (off != (bfd_vma) -1);
3383 off &= ~1;
3384 }
3385 else
3386 {
3387 local_opd_offsets[r_symndx] |= 1;
3388
3389 /* The first two words of an .opd entry are zero. */
3390 memset (hppa_info->opd_sec->contents + off, 0, 16);
3391
3392 /* The next word is the address of the function. */
3393 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3394 (hppa_info->opd_sec->contents + off + 16));
3395
3396 /* The last word is our local __gp value. */
3397 value = _bfd_get_gp_value
3398 (hppa_info->opd_sec->output_section->owner);
3399 bfd_put_64 (hppa_info->opd_sec->owner, value,
3400 (hppa_info->opd_sec->contents + off + 24));
3401 }
3402
3403 /* The DLT value is the address of the .opd entry. */
3404 value = (off
3405 + hppa_info->opd_sec->output_offset
3406 + hppa_info->opd_sec->output_section->vma);
3407 addend = 0;
3408 }
3409
3410 local_dlt_offsets = local_offsets;
3411 off = local_dlt_offsets[r_symndx];
3412
3413 if ((off & 1) != 0)
3414 {
3415 BFD_ASSERT (off != (bfd_vma) -1);
3416 off &= ~1;
3417 }
3418 else
3419 {
3420 local_dlt_offsets[r_symndx] |= 1;
3421 bfd_put_64 (hppa_info->dlt_sec->owner,
3422 value + addend,
3423 hppa_info->dlt_sec->contents + off);
3424 }
3425 }
3426 else
3427 off = hh->dlt_offset;
3428
3429 /* We want the value of the DLT offset for this symbol, not
3430 the symbol's actual address. Note that __gp may not point
3431 to the start of the DLT, so we have to compute the absolute
3432 address, then subtract out the value of __gp. */
3433 value = (off
3434 + hppa_info->dlt_sec->output_offset
3435 + hppa_info->dlt_sec->output_section->vma);
3436 value -= _bfd_get_gp_value (output_bfd);
3437
3438 /* All DLTIND relocations are basically the same at this point,
3439 except that we need different field selectors for the 21bit
3440 version vs the 14bit versions. */
3441 if (r_type == R_PARISC_DLTIND21L
3442 || r_type == R_PARISC_LTOFF_FPTR21L
3443 || r_type == R_PARISC_LTOFF_TP21L)
3444 value = hppa_field_adjust (value, 0, e_lsel);
3445 else if (r_type == R_PARISC_DLTIND14F
3446 || r_type == R_PARISC_LTOFF_FPTR16F
3447 || r_type == R_PARISC_LTOFF_FPTR16WF
3448 || r_type == R_PARISC_LTOFF_FPTR16DF
3449 || r_type == R_PARISC_LTOFF16F
3450 || r_type == R_PARISC_LTOFF16DF
3451 || r_type == R_PARISC_LTOFF16WF
3452 || r_type == R_PARISC_LTOFF_TP16F
3453 || r_type == R_PARISC_LTOFF_TP16WF
3454 || r_type == R_PARISC_LTOFF_TP16DF)
3455 value = hppa_field_adjust (value, 0, e_fsel);
3456 else
3457 value = hppa_field_adjust (value, 0, e_rsel);
3458
3459 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3460 break;
3461 }
3462
3463 case R_PARISC_DLTREL14R:
3464 case R_PARISC_DLTREL14F:
3465 case R_PARISC_DLTREL14DR:
3466 case R_PARISC_DLTREL14WR:
3467 case R_PARISC_DLTREL21L:
3468 case R_PARISC_DPREL21L:
3469 case R_PARISC_DPREL14WR:
3470 case R_PARISC_DPREL14DR:
3471 case R_PARISC_DPREL14R:
3472 case R_PARISC_DPREL14F:
3473 case R_PARISC_GPREL16F:
3474 case R_PARISC_GPREL16WF:
3475 case R_PARISC_GPREL16DF:
3476 {
3477 /* Subtract out the global pointer value to make value a DLT
3478 relative address. */
3479 value -= _bfd_get_gp_value (output_bfd);
3480
3481 /* All DLTREL relocations are basically the same at this point,
3482 except that we need different field selectors for the 21bit
3483 version vs the 14bit versions. */
3484 if (r_type == R_PARISC_DLTREL21L
3485 || r_type == R_PARISC_DPREL21L)
3486 value = hppa_field_adjust (value, addend, e_lrsel);
3487 else if (r_type == R_PARISC_DLTREL14F
3488 || r_type == R_PARISC_DPREL14F
3489 || r_type == R_PARISC_GPREL16F
3490 || r_type == R_PARISC_GPREL16WF
3491 || r_type == R_PARISC_GPREL16DF)
3492 value = hppa_field_adjust (value, addend, e_fsel);
3493 else
3494 value = hppa_field_adjust (value, addend, e_rrsel);
3495
3496 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3497 break;
3498 }
3499
3500 case R_PARISC_DIR21L:
3501 case R_PARISC_DIR17R:
3502 case R_PARISC_DIR17F:
3503 case R_PARISC_DIR14R:
3504 case R_PARISC_DIR14F:
3505 case R_PARISC_DIR14WR:
3506 case R_PARISC_DIR14DR:
3507 case R_PARISC_DIR16F:
3508 case R_PARISC_DIR16WF:
3509 case R_PARISC_DIR16DF:
3510 {
3511 /* All DIR relocations are basically the same at this point,
3512 except that branch offsets need to be divided by four, and
3513 we need different field selectors. Note that we don't
3514 redirect absolute calls to local stubs. */
3515
3516 if (r_type == R_PARISC_DIR21L)
3517 value = hppa_field_adjust (value, addend, e_lrsel);
3518 else if (r_type == R_PARISC_DIR17F
3519 || r_type == R_PARISC_DIR16F
3520 || r_type == R_PARISC_DIR16WF
3521 || r_type == R_PARISC_DIR16DF
3522 || r_type == R_PARISC_DIR14F)
3523 value = hppa_field_adjust (value, addend, e_fsel);
3524 else
3525 value = hppa_field_adjust (value, addend, e_rrsel);
3526
3527 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3528 /* All branches are implicitly shifted by 2 places. */
3529 value >>= 2;
3530
3531 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3532 break;
3533 }
3534
3535 case R_PARISC_PLTOFF21L:
3536 case R_PARISC_PLTOFF14R:
3537 case R_PARISC_PLTOFF14F:
3538 case R_PARISC_PLTOFF14WR:
3539 case R_PARISC_PLTOFF14DR:
3540 case R_PARISC_PLTOFF16F:
3541 case R_PARISC_PLTOFF16WF:
3542 case R_PARISC_PLTOFF16DF:
3543 {
3544 /* We want the value of the PLT offset for this symbol, not
3545 the symbol's actual address. Note that __gp may not point
3546 to the start of the DLT, so we have to compute the absolute
3547 address, then subtract out the value of __gp. */
3548 value = (hh->plt_offset
3549 + hppa_info->plt_sec->output_offset
3550 + hppa_info->plt_sec->output_section->vma);
3551 value -= _bfd_get_gp_value (output_bfd);
3552
3553 /* All PLTOFF relocations are basically the same at this point,
3554 except that we need different field selectors for the 21bit
3555 version vs the 14bit versions. */
3556 if (r_type == R_PARISC_PLTOFF21L)
3557 value = hppa_field_adjust (value, addend, e_lrsel);
3558 else if (r_type == R_PARISC_PLTOFF14F
3559 || r_type == R_PARISC_PLTOFF16F
3560 || r_type == R_PARISC_PLTOFF16WF
3561 || r_type == R_PARISC_PLTOFF16DF)
3562 value = hppa_field_adjust (value, addend, e_fsel);
3563 else
3564 value = hppa_field_adjust (value, addend, e_rrsel);
3565
3566 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3567 break;
3568 }
3569
3570 case R_PARISC_LTOFF_FPTR32:
3571 {
3572 /* We may still need to create the FPTR itself if it was for
3573 a local symbol. */
3574 if (hh == NULL)
3575 {
3576 /* The first two words of an .opd entry are zero. */
3577 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3578
3579 /* The next word is the address of the function. */
3580 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3581 (hppa_info->opd_sec->contents
3582 + hh->opd_offset + 16));
3583
3584 /* The last word is our local __gp value. */
3585 value = _bfd_get_gp_value
3586 (hppa_info->opd_sec->output_section->owner);
3587 bfd_put_64 (hppa_info->opd_sec->owner, value,
3588 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3589
3590 /* The DLT value is the address of the .opd entry. */
3591 value = (hh->opd_offset
3592 + hppa_info->opd_sec->output_offset
3593 + hppa_info->opd_sec->output_section->vma);
3594
3595 bfd_put_64 (hppa_info->dlt_sec->owner,
3596 value,
3597 hppa_info->dlt_sec->contents + hh->dlt_offset);
3598 }
3599
3600 /* We want the value of the DLT offset for this symbol, not
3601 the symbol's actual address. Note that __gp may not point
3602 to the start of the DLT, so we have to compute the absolute
3603 address, then subtract out the value of __gp. */
3604 value = (hh->dlt_offset
3605 + hppa_info->dlt_sec->output_offset
3606 + hppa_info->dlt_sec->output_section->vma);
3607 value -= _bfd_get_gp_value (output_bfd);
3608 bfd_put_32 (input_bfd, value, hit_data);
3609 return bfd_reloc_ok;
3610 }
3611
3612 case R_PARISC_LTOFF_FPTR64:
3613 case R_PARISC_LTOFF_TP64:
3614 {
3615 /* We may still need to create the FPTR itself if it was for
3616 a local symbol. */
3617 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3618 {
3619 /* The first two words of an .opd entry are zero. */
3620 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3621
3622 /* The next word is the address of the function. */
3623 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3624 (hppa_info->opd_sec->contents
3625 + hh->opd_offset + 16));
3626
3627 /* The last word is our local __gp value. */
3628 value = _bfd_get_gp_value
3629 (hppa_info->opd_sec->output_section->owner);
3630 bfd_put_64 (hppa_info->opd_sec->owner, value,
3631 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3632
3633 /* The DLT value is the address of the .opd entry. */
3634 value = (hh->opd_offset
3635 + hppa_info->opd_sec->output_offset
3636 + hppa_info->opd_sec->output_section->vma);
3637
3638 bfd_put_64 (hppa_info->dlt_sec->owner,
3639 value,
3640 hppa_info->dlt_sec->contents + hh->dlt_offset);
3641 }
3642
3643 /* We want the value of the DLT offset for this symbol, not
3644 the symbol's actual address. Note that __gp may not point
3645 to the start of the DLT, so we have to compute the absolute
3646 address, then subtract out the value of __gp. */
3647 value = (hh->dlt_offset
3648 + hppa_info->dlt_sec->output_offset
3649 + hppa_info->dlt_sec->output_section->vma);
3650 value -= _bfd_get_gp_value (output_bfd);
3651 bfd_put_64 (input_bfd, value, hit_data);
3652 return bfd_reloc_ok;
3653 }
3654
3655 case R_PARISC_DIR32:
3656 bfd_put_32 (input_bfd, value + addend, hit_data);
3657 return bfd_reloc_ok;
3658
3659 case R_PARISC_DIR64:
3660 bfd_put_64 (input_bfd, value + addend, hit_data);
3661 return bfd_reloc_ok;
3662
3663 case R_PARISC_GPREL64:
3664 /* Subtract out the global pointer value to make value a DLT
3665 relative address. */
3666 value -= _bfd_get_gp_value (output_bfd);
3667
3668 bfd_put_64 (input_bfd, value + addend, hit_data);
3669 return bfd_reloc_ok;
3670
3671 case R_PARISC_LTOFF64:
3672 /* We want the value of the DLT offset for this symbol, not
3673 the symbol's actual address. Note that __gp may not point
3674 to the start of the DLT, so we have to compute the absolute
3675 address, then subtract out the value of __gp. */
3676 value = (hh->dlt_offset
3677 + hppa_info->dlt_sec->output_offset
3678 + hppa_info->dlt_sec->output_section->vma);
3679 value -= _bfd_get_gp_value (output_bfd);
3680
3681 bfd_put_64 (input_bfd, value + addend, hit_data);
3682 return bfd_reloc_ok;
3683
3684 case R_PARISC_PCREL32:
3685 {
3686 /* If this is a call to a function defined in another dynamic
3687 library, then redirect the call to the local stub for this
3688 function. */
3689 if (sym_sec == NULL || sym_sec->output_section == NULL)
3690 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3691 + hppa_info->stub_sec->output_section->vma);
3692
3693 /* Turn VALUE into a proper PC relative address. */
3694 value -= (offset + input_section->output_offset
3695 + input_section->output_section->vma);
3696
3697 value += addend;
3698 value -= 8;
3699 bfd_put_32 (input_bfd, value, hit_data);
3700 return bfd_reloc_ok;
3701 }
3702
3703 case R_PARISC_PCREL64:
3704 {
3705 /* If this is a call to a function defined in another dynamic
3706 library, then redirect the call to the local stub for this
3707 function. */
3708 if (sym_sec == NULL || sym_sec->output_section == NULL)
3709 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3710 + hppa_info->stub_sec->output_section->vma);
3711
3712 /* Turn VALUE into a proper PC relative address. */
3713 value -= (offset + input_section->output_offset
3714 + input_section->output_section->vma);
3715
3716 value += addend;
3717 value -= 8;
3718 bfd_put_64 (input_bfd, value, hit_data);
3719 return bfd_reloc_ok;
3720 }
3721
3722 case R_PARISC_FPTR64:
3723 {
3724 bfd_vma off;
3725
3726 /* We may still need to create the FPTR itself if it was for
3727 a local symbol. */
3728 if (hh == NULL)
3729 {
3730 bfd_vma *local_opd_offsets;
3731
3732 if (local_offsets == NULL)
3733 abort ();
3734
3735 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3736 off = local_opd_offsets[r_symndx];
3737
3738 /* The last bit records whether we've already initialised
3739 this local .opd entry. */
3740 if ((off & 1) != 0)
3741 {
3742 BFD_ASSERT (off != (bfd_vma) -1);
3743 off &= ~1;
3744 }
3745 else
3746 {
3747 /* The first two words of an .opd entry are zero. */
3748 memset (hppa_info->opd_sec->contents + off, 0, 16);
3749
3750 /* The next word is the address of the function. */
3751 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3752 (hppa_info->opd_sec->contents + off + 16));
3753
3754 /* The last word is our local __gp value. */
3755 value = _bfd_get_gp_value
3756 (hppa_info->opd_sec->output_section->owner);
3757 bfd_put_64 (hppa_info->opd_sec->owner, value,
3758 hppa_info->opd_sec->contents + off + 24);
3759 }
3760 }
3761 else
3762 off = hh->opd_offset;
3763
3764 if (hh == NULL || hh->want_opd)
3765 /* We want the value of the OPD offset for this symbol. */
3766 value = (off
3767 + hppa_info->opd_sec->output_offset
3768 + hppa_info->opd_sec->output_section->vma);
3769 else
3770 /* We want the address of the symbol. */
3771 value += addend;
3772
3773 bfd_put_64 (input_bfd, value, hit_data);
3774 return bfd_reloc_ok;
3775 }
3776
3777 case R_PARISC_SECREL32:
3778 if (sym_sec)
3779 value -= sym_sec->output_section->vma;
3780 bfd_put_32 (input_bfd, value + addend, hit_data);
3781 return bfd_reloc_ok;
3782
3783 case R_PARISC_SEGREL32:
3784 case R_PARISC_SEGREL64:
3785 {
3786 /* If this is the first SEGREL relocation, then initialize
3787 the segment base values. */
3788 if (hppa_info->text_segment_base == (bfd_vma) -1)
3789 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3790 hppa_info);
3791
3792 /* VALUE holds the absolute address. We want to include the
3793 addend, then turn it into a segment relative address.
3794
3795 The segment is derived from SYM_SEC. We assume that there are
3796 only two segments of note in the resulting executable/shlib.
3797 A readonly segment (.text) and a readwrite segment (.data). */
3798 value += addend;
3799
3800 if (sym_sec->flags & SEC_CODE)
3801 value -= hppa_info->text_segment_base;
3802 else
3803 value -= hppa_info->data_segment_base;
3804
3805 if (r_type == R_PARISC_SEGREL32)
3806 bfd_put_32 (input_bfd, value, hit_data);
3807 else
3808 bfd_put_64 (input_bfd, value, hit_data);
3809 return bfd_reloc_ok;
3810 }
3811
3812 /* Something we don't know how to handle. */
3813 default:
3814 return bfd_reloc_notsupported;
3815 }
3816
3817 /* Update the instruction word. */
3818 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3819 return bfd_reloc_ok;
3820}
3821
3822/* Relocate an HPPA ELF section. */
3823
3824static bfd_boolean
3825elf64_hppa_relocate_section (bfd *output_bfd,
3826 struct bfd_link_info *info,
3827 bfd *input_bfd,
3828 asection *input_section,
3829 bfd_byte *contents,
3830 Elf_Internal_Rela *relocs,
3831 Elf_Internal_Sym *local_syms,
3832 asection **local_sections)
3833{
3834 Elf_Internal_Shdr *symtab_hdr;
3835 Elf_Internal_Rela *rel;
3836 Elf_Internal_Rela *relend;
3837 struct elf64_hppa_link_hash_table *hppa_info;
3838
3839 hppa_info = hppa_link_hash_table (info);
4dfe6ac6
NC
3840 if (hppa_info == NULL)
3841 return FALSE;
3842
5887528b
DA
3843 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3844
3845 rel = relocs;
3846 relend = relocs + input_section->reloc_count;
3847 for (; rel < relend; rel++)
3848 {
3849 int r_type;
3850 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3851 unsigned long r_symndx;
3852 struct elf_link_hash_entry *eh;
3853 Elf_Internal_Sym *sym;
3854 asection *sym_sec;
3855 bfd_vma relocation;
3856 bfd_reloc_status_type r;
5887528b
DA
3857
3858 r_type = ELF_R_TYPE (rel->r_info);
3859 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3860 {
3861 bfd_set_error (bfd_error_bad_value);
3862 return FALSE;
3863 }
3864 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3865 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3866 continue;
3867
3868 /* This is a final link. */
3869 r_symndx = ELF_R_SYM (rel->r_info);
3870 eh = NULL;
3871 sym = NULL;
3872 sym_sec = NULL;
5887528b
DA
3873 if (r_symndx < symtab_hdr->sh_info)
3874 {
3875 /* This is a local symbol, hh defaults to NULL. */
3876 sym = local_syms + r_symndx;
3877 sym_sec = local_sections[r_symndx];
3878 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3879 }
3880 else
3881 {
3882 /* This is not a local symbol. */
5887528b
DA
3883 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3884
3885 /* It seems this can happen with erroneous or unsupported
3886 input (mixing a.out and elf in an archive, for example.) */
3887 if (sym_hashes == NULL)
3888 return FALSE;
3889
3890 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3891
3892 while (eh->root.type == bfd_link_hash_indirect
3893 || eh->root.type == bfd_link_hash_warning)
3894 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3895
5887528b
DA
3896 relocation = 0;
3897 if (eh->root.type == bfd_link_hash_defined
3898 || eh->root.type == bfd_link_hash_defweak)
3899 {
3900 sym_sec = eh->root.u.def.section;
c7e2358a
AM
3901 if (sym_sec != NULL
3902 && sym_sec->output_section != NULL)
5887528b
DA
3903 relocation = (eh->root.u.def.value
3904 + sym_sec->output_section->vma
3905 + sym_sec->output_offset);
3906 }
3907 else if (eh->root.type == bfd_link_hash_undefweak)
3908 ;
3909 else if (info->unresolved_syms_in_objects == RM_IGNORE
3910 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3911 ;
3912 else if (!info->relocatable
3913 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3914 continue;
3915 else if (!info->relocatable)
3916 {
3917 bfd_boolean err;
3918 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3919 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3920 if (!info->callbacks->undefined_symbol (info,
3921 eh->root.root.string,
3922 input_bfd,
3923 input_section,
3924 rel->r_offset, err))
3925 return FALSE;
5887528b
DA
3926 }
3927
3928 if (!info->relocatable
3929 && relocation == 0
3930 && eh->root.type != bfd_link_hash_defined
3931 && eh->root.type != bfd_link_hash_defweak
3932 && eh->root.type != bfd_link_hash_undefweak)
3933 {
3934 if (info->unresolved_syms_in_objects == RM_IGNORE
3935 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3936 && eh->type == STT_PARISC_MILLI)
3937 {
3938 if (! info->callbacks->undefined_symbol
3939 (info, eh_name (eh), input_bfd,
3940 input_section, rel->r_offset, FALSE))
3941 return FALSE;
5887528b
DA
3942 }
3943 }
3944 }
3945
3946 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3947 {
3948 /* For relocs against symbols from removed linkonce sections,
3949 or sections discarded by a linker script, we just want the
3950 section contents zeroed. Avoid any special processing. */
3951 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
3952 rel->r_info = 0;
3953 rel->r_addend = 0;
3954 continue;
3955 }
3956
3957 if (info->relocatable)
3958 continue;
3959
3960 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3961 input_section, contents,
3962 relocation, info, sym_sec,
3963 eh);
3964
3965 if (r != bfd_reloc_ok)
3966 {
3967 switch (r)
3968 {
3969 default:
3970 abort ();
3971 case bfd_reloc_overflow:
3972 {
3973 const char *sym_name;
3974
3975 if (eh != NULL)
3976 sym_name = NULL;
3977 else
3978 {
3979 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3980 symtab_hdr->sh_link,
3981 sym->st_name);
3982 if (sym_name == NULL)
3983 return FALSE;
3984 if (*sym_name == '\0')
3985 sym_name = bfd_section_name (input_bfd, sym_sec);
3986 }
3987
3988 if (!((*info->callbacks->reloc_overflow)
3989 (info, (eh ? &eh->root : NULL), sym_name,
3990 howto->name, (bfd_vma) 0, input_bfd,
3991 input_section, rel->r_offset)))
3992 return FALSE;
3993 }
3994 break;
3995 }
3996 }
3997 }
3998 return TRUE;
3999}
4000
b35d266b 4001static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2f89ff8d 4002{
0112cd26
NC
4003 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
4004 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
4005 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
4006 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
4007 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
4008 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
4009 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
4010 { NULL, 0, 0, 0, 0 }
2f89ff8d
L
4011};
4012
15bda425
JL
4013/* The hash bucket size is the standard one, namely 4. */
4014
4015const struct elf_size_info hppa64_elf_size_info =
4016{
4017 sizeof (Elf64_External_Ehdr),
4018 sizeof (Elf64_External_Phdr),
4019 sizeof (Elf64_External_Shdr),
4020 sizeof (Elf64_External_Rel),
4021 sizeof (Elf64_External_Rela),
4022 sizeof (Elf64_External_Sym),
4023 sizeof (Elf64_External_Dyn),
4024 sizeof (Elf_External_Note),
4025 4,
4026 1,
45d6a902 4027 64, 3,
15bda425
JL
4028 ELFCLASS64, EV_CURRENT,
4029 bfd_elf64_write_out_phdrs,
4030 bfd_elf64_write_shdrs_and_ehdr,
1489a3a0 4031 bfd_elf64_checksum_contents,
15bda425 4032 bfd_elf64_write_relocs,
73ff0d56 4033 bfd_elf64_swap_symbol_in,
15bda425
JL
4034 bfd_elf64_swap_symbol_out,
4035 bfd_elf64_slurp_reloc_table,
4036 bfd_elf64_slurp_symbol_table,
4037 bfd_elf64_swap_dyn_in,
4038 bfd_elf64_swap_dyn_out,
947216bf
AM
4039 bfd_elf64_swap_reloc_in,
4040 bfd_elf64_swap_reloc_out,
4041 bfd_elf64_swap_reloca_in,
4042 bfd_elf64_swap_reloca_out
15bda425
JL
4043};
4044
4045#define TARGET_BIG_SYM bfd_elf64_hppa_vec
4046#define TARGET_BIG_NAME "elf64-hppa"
4047#define ELF_ARCH bfd_arch_hppa
ae95ffa6 4048#define ELF_TARGET_ID HPPA64_ELF_DATA
15bda425
JL
4049#define ELF_MACHINE_CODE EM_PARISC
4050/* This is not strictly correct. The maximum page size for PA2.0 is
4051 64M. But everything still uses 4k. */
4052#define ELF_MAXPAGESIZE 0x1000
d1036acb
L
4053#define ELF_OSABI ELFOSABI_HPUX
4054
15bda425 4055#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
157090f7 4056#define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
15bda425
JL
4057#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4058#define elf_info_to_howto elf_hppa_info_to_howto
4059#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4060
4061#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4062#define elf_backend_object_p elf64_hppa_object_p
4063#define elf_backend_final_write_processing \
4064 elf_hppa_final_write_processing
99c79b2e 4065#define elf_backend_fake_sections elf_hppa_fake_sections
15bda425
JL
4066#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4067
f0fe0e16 4068#define elf_backend_relocate_section elf_hppa_relocate_section
15bda425
JL
4069
4070#define bfd_elf64_bfd_final_link elf_hppa_final_link
4071
4072#define elf_backend_create_dynamic_sections \
4073 elf64_hppa_create_dynamic_sections
4074#define elf_backend_post_process_headers elf64_hppa_post_process_headers
4075
74541ad4
AM
4076#define elf_backend_omit_section_dynsym \
4077 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
15bda425
JL
4078#define elf_backend_adjust_dynamic_symbol \
4079 elf64_hppa_adjust_dynamic_symbol
4080
4081#define elf_backend_size_dynamic_sections \
4082 elf64_hppa_size_dynamic_sections
4083
4084#define elf_backend_finish_dynamic_symbol \
4085 elf64_hppa_finish_dynamic_symbol
4086#define elf_backend_finish_dynamic_sections \
4087 elf64_hppa_finish_dynamic_sections
235ecfbc
NC
4088#define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4089#define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4090
15bda425
JL
4091/* Stuff for the BFD linker: */
4092#define bfd_elf64_bfd_link_hash_table_create \
4093 elf64_hppa_hash_table_create
4094
4095#define elf_backend_check_relocs \
4096 elf64_hppa_check_relocs
4097
4098#define elf_backend_size_info \
4099 hppa64_elf_size_info
4100
4101#define elf_backend_additional_program_headers \
4102 elf64_hppa_additional_program_headers
4103
4104#define elf_backend_modify_segment_map \
4105 elf64_hppa_modify_segment_map
4106
4107#define elf_backend_link_output_symbol_hook \
4108 elf64_hppa_link_output_symbol_hook
4109
15bda425
JL
4110#define elf_backend_want_got_plt 0
4111#define elf_backend_plt_readonly 0
4112#define elf_backend_want_plt_sym 0
4113#define elf_backend_got_header_size 0
b34976b6
AM
4114#define elf_backend_type_change_ok TRUE
4115#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4116#define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4117#define elf_backend_rela_normal 1
29ef7005 4118#define elf_backend_special_sections elf64_hppa_special_sections
8a696751 4119#define elf_backend_action_discarded elf_hppa_action_discarded
d97a8924 4120#define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
15bda425 4121
83d1651b
L
4122#define elf64_bed elf64_hppa_hpux_bed
4123
15bda425 4124#include "elf64-target.h"
d952f17a
AM
4125
4126#undef TARGET_BIG_SYM
4127#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
4128#undef TARGET_BIG_NAME
4129#define TARGET_BIG_NAME "elf64-hppa-linux"
d1036acb
L
4130#undef ELF_OSABI
4131#define ELF_OSABI ELFOSABI_LINUX
4132#undef elf_backend_post_process_headers
4133#define elf_backend_post_process_headers _bfd_elf_set_osabi
83d1651b
L
4134#undef elf64_bed
4135#define elf64_bed elf64_hppa_linux_bed
d952f17a 4136
d952f17a 4137#include "elf64-target.h"