]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf64-mmix.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elf64-mmix.c
CommitLineData
3c3bdf30 1/* MMIX-specific support for 64-bit ELF.
b2a8e766 2 Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3c3bdf30
NC
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21/* No specific ABI or "processor-specific supplement" defined. */
22
23/* TODO:
f60ebe14
HPN
24 - "Traditional" linker relaxation (shrinking whole sections).
25 - Merge reloc stubs jumping to same location.
26 - GETA stub relaxation (call a stub for out of range new
27 R_MMIX_GETA_STUBBABLE). */
3c3bdf30
NC
28
29#include "bfd.h"
30#include "sysdep.h"
31#include "libbfd.h"
32#include "elf-bfd.h"
33#include "elf/mmix.h"
34#include "opcode/mmix.h"
35
36#define MINUS_ONE (((bfd_vma) 0) - 1)
37
f60ebe14
HPN
38#define MAX_PUSHJ_STUB_SIZE (5 * 4)
39
3c3bdf30
NC
40/* Put these everywhere in new code. */
41#define FATAL_DEBUG \
42 _bfd_abort (__FILE__, __LINE__, \
43 "Internal: Non-debugged code (test-case missing)")
44
45#define BAD_CASE(x) \
46 _bfd_abort (__FILE__, __LINE__, \
47 "bad case for " #x)
48
f0abc2a1
AM
49struct _mmix_elf_section_data
50{
51 struct bfd_elf_section_data elf;
52 union
53 {
54 struct bpo_reloc_section_info *reloc;
55 struct bpo_greg_section_info *greg;
56 } bpo;
f60ebe14
HPN
57
58 struct pushj_stub_info
59 {
60 /* Maximum number of stubs needed for this section. */
61 bfd_size_type n_pushj_relocs;
62
63 /* Size of stubs after a mmix_elf_relax_section round. */
64 bfd_size_type stubs_size_sum;
65
66 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
67 of these. Allocated in mmix_elf_check_common_relocs. */
68 bfd_size_type *stub_size;
69
70 /* Offset of next stub during relocation. Somewhat redundant with the
71 above: error coverage is easier and we don't have to reset the
72 stubs_size_sum for relocation. */
73 bfd_size_type stub_offset;
74 } pjs;
f0abc2a1
AM
75};
76
77#define mmix_elf_section_data(sec) \
68bfbfcc 78 ((struct _mmix_elf_section_data *) elf_section_data (sec))
f0abc2a1 79
930b4cb2 80/* For each section containing a base-plus-offset (BPO) reloc, we attach
f0abc2a1 81 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
930b4cb2
HPN
82 NULL. */
83struct bpo_reloc_section_info
84 {
85 /* The base is 1; this is the first number in this section. */
86 size_t first_base_plus_offset_reloc;
87
88 /* Number of BPO-relocs in this section. */
89 size_t n_bpo_relocs_this_section;
90
91 /* Running index, used at relocation time. */
92 size_t bpo_index;
93
94 /* We don't have access to the bfd_link_info struct in
95 mmix_final_link_relocate. What we really want to get at is the
96 global single struct greg_relocation, so we stash it here. */
97 asection *bpo_greg_section;
98 };
99
100/* Helper struct (in global context) for the one below.
101 There's one of these created for every BPO reloc. */
102struct bpo_reloc_request
103 {
104 bfd_vma value;
105
106 /* Valid after relaxation. The base is 0; the first register number
107 must be added. The offset is in range 0..255. */
108 size_t regindex;
109 size_t offset;
110
111 /* The order number for this BPO reloc, corresponding to the order in
112 which BPO relocs were found. Used to create an index after reloc
113 requests are sorted. */
114 size_t bpo_reloc_no;
115
116 /* Set when the value is computed. Better than coding "guard values"
b34976b6 117 into the other members. Is FALSE only for BPO relocs in a GC:ed
930b4cb2 118 section. */
b34976b6 119 bfd_boolean valid;
930b4cb2
HPN
120 };
121
f0abc2a1 122/* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
930b4cb2
HPN
123 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
124 which is linked into the register contents section
125 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
126 linker; using the same hook as for usual with BPO relocs does not
127 collide. */
128struct bpo_greg_section_info
129 {
130 /* After GC, this reflects the number of remaining, non-excluded
131 BPO-relocs. */
132 size_t n_bpo_relocs;
133
134 /* This is the number of allocated bpo_reloc_requests; the size of
135 sorted_indexes. Valid after the check.*relocs functions are called
136 for all incoming sections. It includes the number of BPO relocs in
137 sections that were GC:ed. */
138 size_t n_max_bpo_relocs;
139
140 /* A counter used to find out when to fold the BPO gregs, since we
141 don't have a single "after-relaxation" hook. */
142 size_t n_remaining_bpo_relocs_this_relaxation_round;
143
144 /* The number of linker-allocated GREGs resulting from BPO relocs.
f60ebe14
HPN
145 This is an approximation after _bfd_mmix_before_linker_allocation
146 and supposedly accurate after mmix_elf_relax_section is called for
147 all incoming non-collected sections. */
930b4cb2
HPN
148 size_t n_allocated_bpo_gregs;
149
150 /* Index into reloc_request[], sorted on increasing "value", secondary
151 by increasing index for strict sorting order. */
152 size_t *bpo_reloc_indexes;
153
154 /* An array of all relocations, with the "value" member filled in by
155 the relaxation function. */
156 struct bpo_reloc_request *reloc_request;
157 };
158
b34976b6 159static bfd_boolean mmix_elf_link_output_symbol_hook
754021d0
AM
160 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
161 asection *, struct elf_link_hash_entry *));
3c3bdf30
NC
162
163static bfd_reloc_status_type mmix_elf_reloc
164 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
165
166static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
167 PARAMS ((bfd *, bfd_reloc_code_real_type));
168
169static void mmix_info_to_howto_rela
947216bf 170 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
3c3bdf30
NC
171
172static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
173
f0abc2a1
AM
174static bfd_boolean mmix_elf_new_section_hook
175 PARAMS ((bfd *, asection *));
176
b34976b6 177static bfd_boolean mmix_elf_check_relocs
3c3bdf30
NC
178 PARAMS ((bfd *, struct bfd_link_info *, asection *,
179 const Elf_Internal_Rela *));
180
b34976b6 181static bfd_boolean mmix_elf_check_common_relocs
930b4cb2
HPN
182 PARAMS ((bfd *, struct bfd_link_info *, asection *,
183 const Elf_Internal_Rela *));
184
b34976b6 185static bfd_boolean mmix_elf_relocate_section
3c3bdf30
NC
186 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
187 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
188
189static asection * mmix_elf_gc_mark_hook
1e2f5b6e 190 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
3c3bdf30
NC
191 struct elf_link_hash_entry *, Elf_Internal_Sym *));
192
b34976b6 193static bfd_boolean mmix_elf_gc_sweep_hook
930b4cb2
HPN
194 PARAMS ((bfd *, struct bfd_link_info *, asection *,
195 const Elf_Internal_Rela *));
196
3c3bdf30
NC
197static bfd_reloc_status_type mmix_final_link_relocate
198 PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
199 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
200
201static bfd_reloc_status_type mmix_elf_perform_relocation
202 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
203
b34976b6 204static bfd_boolean mmix_elf_section_from_bfd_section
af746e92 205 PARAMS ((bfd *, asection *, int *));
3c3bdf30 206
b34976b6 207static bfd_boolean mmix_elf_add_symbol_hook
555cd476 208 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
3c3bdf30
NC
209 const char **, flagword *, asection **, bfd_vma *));
210
b34976b6 211static bfd_boolean mmix_elf_is_local_label_name
3c3bdf30
NC
212 PARAMS ((bfd *, const char *));
213
930b4cb2
HPN
214static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
215
b34976b6 216static bfd_boolean mmix_elf_relax_section
930b4cb2 217 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
b34976b6 218 bfd_boolean *again));
930b4cb2 219
b34976b6 220extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
3c3bdf30
NC
221
222extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
223
4fa5c2a8
HPN
224/* Only intended to be called from a debugger. */
225extern void mmix_dump_bpo_gregs
226 PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
227
f60ebe14
HPN
228static void
229mmix_set_relaxable_size
230 PARAMS ((bfd *, asection *, void *));
231
f60ebe14 232
3c3bdf30
NC
233/* Watch out: this currently needs to have elements with the same index as
234 their R_MMIX_ number. */
235static reloc_howto_type elf_mmix_howto_table[] =
236 {
237 /* This reloc does nothing. */
238 HOWTO (R_MMIX_NONE, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 32, /* bitsize */
b34976b6 242 FALSE, /* pc_relative */
3c3bdf30
NC
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_NONE", /* name */
b34976b6 247 FALSE, /* partial_inplace */
3c3bdf30
NC
248 0, /* src_mask */
249 0, /* dst_mask */
b34976b6 250 FALSE), /* pcrel_offset */
3c3bdf30
NC
251
252 /* An 8 bit absolute relocation. */
253 HOWTO (R_MMIX_8, /* type */
254 0, /* rightshift */
255 0, /* size (0 = byte, 1 = short, 2 = long) */
256 8, /* bitsize */
b34976b6 257 FALSE, /* pc_relative */
3c3bdf30
NC
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_8", /* name */
b34976b6 262 FALSE, /* partial_inplace */
930b4cb2 263 0, /* src_mask */
3c3bdf30 264 0xff, /* dst_mask */
b34976b6 265 FALSE), /* pcrel_offset */
3c3bdf30
NC
266
267 /* An 16 bit absolute relocation. */
268 HOWTO (R_MMIX_16, /* type */
269 0, /* rightshift */
270 1, /* size (0 = byte, 1 = short, 2 = long) */
271 16, /* bitsize */
b34976b6 272 FALSE, /* pc_relative */
3c3bdf30
NC
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_16", /* name */
b34976b6 277 FALSE, /* partial_inplace */
930b4cb2 278 0, /* src_mask */
3c3bdf30 279 0xffff, /* dst_mask */
b34976b6 280 FALSE), /* pcrel_offset */
3c3bdf30
NC
281
282 /* An 24 bit absolute relocation. */
283 HOWTO (R_MMIX_24, /* type */
284 0, /* rightshift */
285 2, /* size (0 = byte, 1 = short, 2 = long) */
286 24, /* bitsize */
b34976b6 287 FALSE, /* pc_relative */
3c3bdf30
NC
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_24", /* name */
b34976b6 292 FALSE, /* partial_inplace */
930b4cb2 293 ~0xffffff, /* src_mask */
3c3bdf30 294 0xffffff, /* dst_mask */
b34976b6 295 FALSE), /* pcrel_offset */
3c3bdf30
NC
296
297 /* A 32 bit absolute relocation. */
298 HOWTO (R_MMIX_32, /* type */
299 0, /* rightshift */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
301 32, /* bitsize */
b34976b6 302 FALSE, /* pc_relative */
3c3bdf30
NC
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_32", /* name */
b34976b6 307 FALSE, /* partial_inplace */
930b4cb2 308 0, /* src_mask */
3c3bdf30 309 0xffffffff, /* dst_mask */
b34976b6 310 FALSE), /* pcrel_offset */
3c3bdf30
NC
311
312 /* 64 bit relocation. */
313 HOWTO (R_MMIX_64, /* type */
314 0, /* rightshift */
315 4, /* size (0 = byte, 1 = short, 2 = long) */
316 64, /* bitsize */
b34976b6 317 FALSE, /* pc_relative */
3c3bdf30
NC
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_64", /* name */
b34976b6 322 FALSE, /* partial_inplace */
930b4cb2 323 0, /* src_mask */
3c3bdf30 324 MINUS_ONE, /* dst_mask */
b34976b6 325 FALSE), /* pcrel_offset */
3c3bdf30
NC
326
327 /* An 8 bit PC-relative relocation. */
328 HOWTO (R_MMIX_PC_8, /* type */
329 0, /* rightshift */
330 0, /* size (0 = byte, 1 = short, 2 = long) */
331 8, /* bitsize */
b34976b6 332 TRUE, /* pc_relative */
3c3bdf30
NC
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_8", /* name */
b34976b6 337 FALSE, /* partial_inplace */
930b4cb2 338 0, /* src_mask */
3c3bdf30 339 0xff, /* dst_mask */
b34976b6 340 TRUE), /* pcrel_offset */
3c3bdf30
NC
341
342 /* An 16 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_16, /* type */
344 0, /* rightshift */
345 1, /* size (0 = byte, 1 = short, 2 = long) */
346 16, /* bitsize */
b34976b6 347 TRUE, /* pc_relative */
3c3bdf30
NC
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_16", /* name */
b34976b6 352 FALSE, /* partial_inplace */
930b4cb2 353 0, /* src_mask */
3c3bdf30 354 0xffff, /* dst_mask */
b34976b6 355 TRUE), /* pcrel_offset */
3c3bdf30
NC
356
357 /* An 24 bit PC-relative relocation. */
358 HOWTO (R_MMIX_PC_24, /* type */
359 0, /* rightshift */
360 2, /* size (0 = byte, 1 = short, 2 = long) */
361 24, /* bitsize */
b34976b6 362 TRUE, /* pc_relative */
3c3bdf30
NC
363 0, /* bitpos */
364 complain_overflow_bitfield, /* complain_on_overflow */
365 bfd_elf_generic_reloc, /* special_function */
366 "R_MMIX_PC_24", /* name */
b34976b6 367 FALSE, /* partial_inplace */
930b4cb2 368 ~0xffffff, /* src_mask */
3c3bdf30 369 0xffffff, /* dst_mask */
b34976b6 370 TRUE), /* pcrel_offset */
3c3bdf30
NC
371
372 /* A 32 bit absolute PC-relative relocation. */
373 HOWTO (R_MMIX_PC_32, /* type */
374 0, /* rightshift */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
376 32, /* bitsize */
b34976b6 377 TRUE, /* pc_relative */
3c3bdf30
NC
378 0, /* bitpos */
379 complain_overflow_bitfield, /* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_MMIX_PC_32", /* name */
b34976b6 382 FALSE, /* partial_inplace */
930b4cb2 383 0, /* src_mask */
3c3bdf30 384 0xffffffff, /* dst_mask */
b34976b6 385 TRUE), /* pcrel_offset */
3c3bdf30
NC
386
387 /* 64 bit PC-relative relocation. */
388 HOWTO (R_MMIX_PC_64, /* type */
389 0, /* rightshift */
390 4, /* size (0 = byte, 1 = short, 2 = long) */
391 64, /* bitsize */
b34976b6 392 TRUE, /* pc_relative */
3c3bdf30
NC
393 0, /* bitpos */
394 complain_overflow_bitfield, /* complain_on_overflow */
395 bfd_elf_generic_reloc, /* special_function */
396 "R_MMIX_PC_64", /* name */
b34976b6 397 FALSE, /* partial_inplace */
930b4cb2 398 0, /* src_mask */
3c3bdf30 399 MINUS_ONE, /* dst_mask */
b34976b6 400 TRUE), /* pcrel_offset */
3c3bdf30
NC
401
402 /* GNU extension to record C++ vtable hierarchy. */
403 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
404 0, /* rightshift */
405 0, /* size (0 = byte, 1 = short, 2 = long) */
406 0, /* bitsize */
b34976b6 407 FALSE, /* pc_relative */
3c3bdf30
NC
408 0, /* bitpos */
409 complain_overflow_dont, /* complain_on_overflow */
410 NULL, /* special_function */
411 "R_MMIX_GNU_VTINHERIT", /* name */
b34976b6 412 FALSE, /* partial_inplace */
3c3bdf30
NC
413 0, /* src_mask */
414 0, /* dst_mask */
b34976b6 415 TRUE), /* pcrel_offset */
3c3bdf30
NC
416
417 /* GNU extension to record C++ vtable member usage. */
418 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
419 0, /* rightshift */
420 0, /* size (0 = byte, 1 = short, 2 = long) */
421 0, /* bitsize */
b34976b6 422 FALSE, /* pc_relative */
3c3bdf30
NC
423 0, /* bitpos */
424 complain_overflow_dont, /* complain_on_overflow */
425 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
426 "R_MMIX_GNU_VTENTRY", /* name */
b34976b6 427 FALSE, /* partial_inplace */
3c3bdf30
NC
428 0, /* src_mask */
429 0, /* dst_mask */
b34976b6 430 FALSE), /* pcrel_offset */
3c3bdf30
NC
431
432 /* The GETA relocation is supposed to get any address that could
433 possibly be reached by the GETA instruction. It can silently expand
434 to get a 64-bit operand, but will complain if any of the two least
435 significant bits are set. The howto members reflect a simple GETA. */
436 HOWTO (R_MMIX_GETA, /* type */
437 2, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 19, /* bitsize */
b34976b6 440 TRUE, /* pc_relative */
3c3bdf30
NC
441 0, /* bitpos */
442 complain_overflow_signed, /* complain_on_overflow */
443 mmix_elf_reloc, /* special_function */
444 "R_MMIX_GETA", /* name */
b34976b6 445 FALSE, /* partial_inplace */
930b4cb2 446 ~0x0100ffff, /* src_mask */
3c3bdf30 447 0x0100ffff, /* dst_mask */
b34976b6 448 TRUE), /* pcrel_offset */
3c3bdf30
NC
449
450 HOWTO (R_MMIX_GETA_1, /* type */
451 2, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 19, /* bitsize */
b34976b6 454 TRUE, /* pc_relative */
3c3bdf30
NC
455 0, /* bitpos */
456 complain_overflow_signed, /* complain_on_overflow */
457 mmix_elf_reloc, /* special_function */
458 "R_MMIX_GETA_1", /* name */
b34976b6 459 FALSE, /* partial_inplace */
930b4cb2 460 ~0x0100ffff, /* src_mask */
3c3bdf30 461 0x0100ffff, /* dst_mask */
b34976b6 462 TRUE), /* pcrel_offset */
3c3bdf30
NC
463
464 HOWTO (R_MMIX_GETA_2, /* type */
465 2, /* rightshift */
466 2, /* size (0 = byte, 1 = short, 2 = long) */
467 19, /* bitsize */
b34976b6 468 TRUE, /* pc_relative */
3c3bdf30
NC
469 0, /* bitpos */
470 complain_overflow_signed, /* complain_on_overflow */
471 mmix_elf_reloc, /* special_function */
472 "R_MMIX_GETA_2", /* name */
b34976b6 473 FALSE, /* partial_inplace */
930b4cb2 474 ~0x0100ffff, /* src_mask */
3c3bdf30 475 0x0100ffff, /* dst_mask */
b34976b6 476 TRUE), /* pcrel_offset */
3c3bdf30
NC
477
478 HOWTO (R_MMIX_GETA_3, /* type */
479 2, /* rightshift */
480 2, /* size (0 = byte, 1 = short, 2 = long) */
481 19, /* bitsize */
b34976b6 482 TRUE, /* pc_relative */
3c3bdf30
NC
483 0, /* bitpos */
484 complain_overflow_signed, /* complain_on_overflow */
485 mmix_elf_reloc, /* special_function */
486 "R_MMIX_GETA_3", /* name */
b34976b6 487 FALSE, /* partial_inplace */
930b4cb2 488 ~0x0100ffff, /* src_mask */
3c3bdf30 489 0x0100ffff, /* dst_mask */
b34976b6 490 TRUE), /* pcrel_offset */
3c3bdf30
NC
491
492 /* The conditional branches are supposed to reach any (code) address.
493 It can silently expand to a 64-bit operand, but will emit an error if
494 any of the two least significant bits are set. The howto members
495 reflect a simple branch. */
496 HOWTO (R_MMIX_CBRANCH, /* type */
497 2, /* rightshift */
498 2, /* size (0 = byte, 1 = short, 2 = long) */
499 19, /* bitsize */
b34976b6 500 TRUE, /* pc_relative */
3c3bdf30
NC
501 0, /* bitpos */
502 complain_overflow_signed, /* complain_on_overflow */
503 mmix_elf_reloc, /* special_function */
504 "R_MMIX_CBRANCH", /* name */
b34976b6 505 FALSE, /* partial_inplace */
930b4cb2 506 ~0x0100ffff, /* src_mask */
3c3bdf30 507 0x0100ffff, /* dst_mask */
b34976b6 508 TRUE), /* pcrel_offset */
3c3bdf30
NC
509
510 HOWTO (R_MMIX_CBRANCH_J, /* type */
511 2, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 19, /* bitsize */
b34976b6 514 TRUE, /* pc_relative */
3c3bdf30
NC
515 0, /* bitpos */
516 complain_overflow_signed, /* complain_on_overflow */
517 mmix_elf_reloc, /* special_function */
518 "R_MMIX_CBRANCH_J", /* name */
b34976b6 519 FALSE, /* partial_inplace */
930b4cb2 520 ~0x0100ffff, /* src_mask */
3c3bdf30 521 0x0100ffff, /* dst_mask */
b34976b6 522 TRUE), /* pcrel_offset */
3c3bdf30
NC
523
524 HOWTO (R_MMIX_CBRANCH_1, /* type */
525 2, /* rightshift */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
527 19, /* bitsize */
b34976b6 528 TRUE, /* pc_relative */
3c3bdf30
NC
529 0, /* bitpos */
530 complain_overflow_signed, /* complain_on_overflow */
531 mmix_elf_reloc, /* special_function */
532 "R_MMIX_CBRANCH_1", /* name */
b34976b6 533 FALSE, /* partial_inplace */
930b4cb2 534 ~0x0100ffff, /* src_mask */
3c3bdf30 535 0x0100ffff, /* dst_mask */
b34976b6 536 TRUE), /* pcrel_offset */
3c3bdf30
NC
537
538 HOWTO (R_MMIX_CBRANCH_2, /* type */
539 2, /* rightshift */
540 2, /* size (0 = byte, 1 = short, 2 = long) */
541 19, /* bitsize */
b34976b6 542 TRUE, /* pc_relative */
3c3bdf30
NC
543 0, /* bitpos */
544 complain_overflow_signed, /* complain_on_overflow */
545 mmix_elf_reloc, /* special_function */
546 "R_MMIX_CBRANCH_2", /* name */
b34976b6 547 FALSE, /* partial_inplace */
930b4cb2 548 ~0x0100ffff, /* src_mask */
3c3bdf30 549 0x0100ffff, /* dst_mask */
b34976b6 550 TRUE), /* pcrel_offset */
3c3bdf30
NC
551
552 HOWTO (R_MMIX_CBRANCH_3, /* type */
553 2, /* rightshift */
554 2, /* size (0 = byte, 1 = short, 2 = long) */
555 19, /* bitsize */
b34976b6 556 TRUE, /* pc_relative */
3c3bdf30
NC
557 0, /* bitpos */
558 complain_overflow_signed, /* complain_on_overflow */
559 mmix_elf_reloc, /* special_function */
560 "R_MMIX_CBRANCH_3", /* name */
b34976b6 561 FALSE, /* partial_inplace */
930b4cb2 562 ~0x0100ffff, /* src_mask */
3c3bdf30 563 0x0100ffff, /* dst_mask */
b34976b6 564 TRUE), /* pcrel_offset */
3c3bdf30
NC
565
566 /* The PUSHJ instruction can reach any (code) address, as long as it's
567 the beginning of a function (no usable restriction). It can silently
568 expand to a 64-bit operand, but will emit an error if any of the two
f60ebe14
HPN
569 least significant bits are set. It can also expand into a call to a
570 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
3c3bdf30
NC
571 PUSHJ. */
572 HOWTO (R_MMIX_PUSHJ, /* type */
573 2, /* rightshift */
574 2, /* size (0 = byte, 1 = short, 2 = long) */
575 19, /* bitsize */
b34976b6 576 TRUE, /* pc_relative */
3c3bdf30
NC
577 0, /* bitpos */
578 complain_overflow_signed, /* complain_on_overflow */
579 mmix_elf_reloc, /* special_function */
580 "R_MMIX_PUSHJ", /* name */
b34976b6 581 FALSE, /* partial_inplace */
930b4cb2 582 ~0x0100ffff, /* src_mask */
3c3bdf30 583 0x0100ffff, /* dst_mask */
b34976b6 584 TRUE), /* pcrel_offset */
3c3bdf30
NC
585
586 HOWTO (R_MMIX_PUSHJ_1, /* type */
587 2, /* rightshift */
588 2, /* size (0 = byte, 1 = short, 2 = long) */
589 19, /* bitsize */
b34976b6 590 TRUE, /* pc_relative */
3c3bdf30
NC
591 0, /* bitpos */
592 complain_overflow_signed, /* complain_on_overflow */
593 mmix_elf_reloc, /* special_function */
594 "R_MMIX_PUSHJ_1", /* name */
b34976b6 595 FALSE, /* partial_inplace */
930b4cb2 596 ~0x0100ffff, /* src_mask */
3c3bdf30 597 0x0100ffff, /* dst_mask */
b34976b6 598 TRUE), /* pcrel_offset */
3c3bdf30
NC
599
600 HOWTO (R_MMIX_PUSHJ_2, /* type */
601 2, /* rightshift */
602 2, /* size (0 = byte, 1 = short, 2 = long) */
603 19, /* bitsize */
b34976b6 604 TRUE, /* pc_relative */
3c3bdf30
NC
605 0, /* bitpos */
606 complain_overflow_signed, /* complain_on_overflow */
607 mmix_elf_reloc, /* special_function */
608 "R_MMIX_PUSHJ_2", /* name */
b34976b6 609 FALSE, /* partial_inplace */
930b4cb2 610 ~0x0100ffff, /* src_mask */
3c3bdf30 611 0x0100ffff, /* dst_mask */
b34976b6 612 TRUE), /* pcrel_offset */
3c3bdf30
NC
613
614 HOWTO (R_MMIX_PUSHJ_3, /* type */
615 2, /* rightshift */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
617 19, /* bitsize */
b34976b6 618 TRUE, /* pc_relative */
3c3bdf30
NC
619 0, /* bitpos */
620 complain_overflow_signed, /* complain_on_overflow */
621 mmix_elf_reloc, /* special_function */
622 "R_MMIX_PUSHJ_3", /* name */
b34976b6 623 FALSE, /* partial_inplace */
930b4cb2 624 ~0x0100ffff, /* src_mask */
3c3bdf30 625 0x0100ffff, /* dst_mask */
b34976b6 626 TRUE), /* pcrel_offset */
3c3bdf30
NC
627
628 /* A JMP is supposed to reach any (code) address. By itself, it can
629 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
630 limit is soon reached if you link the program in wildly different
631 memory segments. The howto members reflect a trivial JMP. */
632 HOWTO (R_MMIX_JMP, /* type */
633 2, /* rightshift */
634 2, /* size (0 = byte, 1 = short, 2 = long) */
635 27, /* bitsize */
b34976b6 636 TRUE, /* pc_relative */
3c3bdf30
NC
637 0, /* bitpos */
638 complain_overflow_signed, /* complain_on_overflow */
639 mmix_elf_reloc, /* special_function */
640 "R_MMIX_JMP", /* name */
b34976b6 641 FALSE, /* partial_inplace */
930b4cb2 642 ~0x1ffffff, /* src_mask */
3c3bdf30 643 0x1ffffff, /* dst_mask */
b34976b6 644 TRUE), /* pcrel_offset */
3c3bdf30
NC
645
646 HOWTO (R_MMIX_JMP_1, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 27, /* bitsize */
b34976b6 650 TRUE, /* pc_relative */
3c3bdf30
NC
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_JMP_1", /* name */
b34976b6 655 FALSE, /* partial_inplace */
930b4cb2 656 ~0x1ffffff, /* src_mask */
3c3bdf30 657 0x1ffffff, /* dst_mask */
b34976b6 658 TRUE), /* pcrel_offset */
3c3bdf30
NC
659
660 HOWTO (R_MMIX_JMP_2, /* type */
661 2, /* rightshift */
662 2, /* size (0 = byte, 1 = short, 2 = long) */
663 27, /* bitsize */
b34976b6 664 TRUE, /* pc_relative */
3c3bdf30
NC
665 0, /* bitpos */
666 complain_overflow_signed, /* complain_on_overflow */
667 mmix_elf_reloc, /* special_function */
668 "R_MMIX_JMP_2", /* name */
b34976b6 669 FALSE, /* partial_inplace */
930b4cb2 670 ~0x1ffffff, /* src_mask */
3c3bdf30 671 0x1ffffff, /* dst_mask */
b34976b6 672 TRUE), /* pcrel_offset */
3c3bdf30
NC
673
674 HOWTO (R_MMIX_JMP_3, /* type */
675 2, /* rightshift */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
677 27, /* bitsize */
b34976b6 678 TRUE, /* pc_relative */
3c3bdf30
NC
679 0, /* bitpos */
680 complain_overflow_signed, /* complain_on_overflow */
681 mmix_elf_reloc, /* special_function */
682 "R_MMIX_JMP_3", /* name */
b34976b6 683 FALSE, /* partial_inplace */
930b4cb2 684 ~0x1ffffff, /* src_mask */
3c3bdf30 685 0x1ffffff, /* dst_mask */
b34976b6 686 TRUE), /* pcrel_offset */
3c3bdf30
NC
687
688 /* When we don't emit link-time-relaxable code from the assembler, or
689 when relaxation has done all it can do, these relocs are used. For
690 GETA/PUSHJ/branches. */
691 HOWTO (R_MMIX_ADDR19, /* type */
692 2, /* rightshift */
693 2, /* size (0 = byte, 1 = short, 2 = long) */
694 19, /* bitsize */
b34976b6 695 TRUE, /* pc_relative */
3c3bdf30
NC
696 0, /* bitpos */
697 complain_overflow_signed, /* complain_on_overflow */
698 mmix_elf_reloc, /* special_function */
699 "R_MMIX_ADDR19", /* name */
b34976b6 700 FALSE, /* partial_inplace */
930b4cb2 701 ~0x0100ffff, /* src_mask */
3c3bdf30 702 0x0100ffff, /* dst_mask */
b34976b6 703 TRUE), /* pcrel_offset */
3c3bdf30
NC
704
705 /* For JMP. */
706 HOWTO (R_MMIX_ADDR27, /* type */
707 2, /* rightshift */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
709 27, /* bitsize */
b34976b6 710 TRUE, /* pc_relative */
3c3bdf30
NC
711 0, /* bitpos */
712 complain_overflow_signed, /* complain_on_overflow */
713 mmix_elf_reloc, /* special_function */
714 "R_MMIX_ADDR27", /* name */
b34976b6 715 FALSE, /* partial_inplace */
930b4cb2 716 ~0x1ffffff, /* src_mask */
3c3bdf30 717 0x1ffffff, /* dst_mask */
b34976b6 718 TRUE), /* pcrel_offset */
3c3bdf30
NC
719
720 /* A general register or the value 0..255. If a value, then the
721 instruction (offset -3) needs adjusting. */
722 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
723 0, /* rightshift */
724 1, /* size (0 = byte, 1 = short, 2 = long) */
725 8, /* bitsize */
b34976b6 726 FALSE, /* pc_relative */
3c3bdf30
NC
727 0, /* bitpos */
728 complain_overflow_bitfield, /* complain_on_overflow */
729 mmix_elf_reloc, /* special_function */
730 "R_MMIX_REG_OR_BYTE", /* name */
b34976b6 731 FALSE, /* partial_inplace */
930b4cb2 732 0, /* src_mask */
3c3bdf30 733 0xff, /* dst_mask */
b34976b6 734 FALSE), /* pcrel_offset */
3c3bdf30
NC
735
736 /* A general register. */
737 HOWTO (R_MMIX_REG, /* type */
738 0, /* rightshift */
739 1, /* size (0 = byte, 1 = short, 2 = long) */
740 8, /* bitsize */
b34976b6 741 FALSE, /* pc_relative */
3c3bdf30
NC
742 0, /* bitpos */
743 complain_overflow_bitfield, /* complain_on_overflow */
744 mmix_elf_reloc, /* special_function */
745 "R_MMIX_REG", /* name */
b34976b6 746 FALSE, /* partial_inplace */
930b4cb2 747 0, /* src_mask */
3c3bdf30 748 0xff, /* dst_mask */
b34976b6 749 FALSE), /* pcrel_offset */
3c3bdf30
NC
750
751 /* A register plus an index, corresponding to the relocation expression.
752 The sizes must correspond to the valid range of the expression, while
753 the bitmasks correspond to what we store in the image. */
754 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
755 0, /* rightshift */
756 4, /* size (0 = byte, 1 = short, 2 = long) */
757 64, /* bitsize */
b34976b6 758 FALSE, /* pc_relative */
3c3bdf30
NC
759 0, /* bitpos */
760 complain_overflow_bitfield, /* complain_on_overflow */
761 mmix_elf_reloc, /* special_function */
762 "R_MMIX_BASE_PLUS_OFFSET", /* name */
b34976b6 763 FALSE, /* partial_inplace */
930b4cb2 764 0, /* src_mask */
3c3bdf30 765 0xffff, /* dst_mask */
b34976b6 766 FALSE), /* pcrel_offset */
3c3bdf30
NC
767
768 /* A "magic" relocation for a LOCAL expression, asserting that the
769 expression is less than the number of global registers. No actual
770 modification of the contents is done. Implementing this as a
771 relocation was less intrusive than e.g. putting such expressions in a
772 section to discard *after* relocation. */
773 HOWTO (R_MMIX_LOCAL, /* type */
774 0, /* rightshift */
775 0, /* size (0 = byte, 1 = short, 2 = long) */
776 0, /* bitsize */
b34976b6 777 FALSE, /* pc_relative */
3c3bdf30
NC
778 0, /* bitpos */
779 complain_overflow_dont, /* complain_on_overflow */
780 mmix_elf_reloc, /* special_function */
781 "R_MMIX_LOCAL", /* name */
b34976b6 782 FALSE, /* partial_inplace */
3c3bdf30
NC
783 0, /* src_mask */
784 0, /* dst_mask */
b34976b6 785 FALSE), /* pcrel_offset */
f60ebe14
HPN
786
787 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
788 2, /* rightshift */
789 2, /* size (0 = byte, 1 = short, 2 = long) */
790 19, /* bitsize */
791 TRUE, /* pc_relative */
792 0, /* bitpos */
793 complain_overflow_signed, /* complain_on_overflow */
794 mmix_elf_reloc, /* special_function */
795 "R_MMIX_PUSHJ_STUBBABLE", /* name */
796 FALSE, /* partial_inplace */
797 ~0x0100ffff, /* src_mask */
798 0x0100ffff, /* dst_mask */
799 TRUE) /* pcrel_offset */
3c3bdf30
NC
800 };
801
802
803/* Map BFD reloc types to MMIX ELF reloc types. */
804
805struct mmix_reloc_map
806 {
807 bfd_reloc_code_real_type bfd_reloc_val;
808 enum elf_mmix_reloc_type elf_reloc_val;
809 };
810
811
812static const struct mmix_reloc_map mmix_reloc_map[] =
813 {
814 {BFD_RELOC_NONE, R_MMIX_NONE},
815 {BFD_RELOC_8, R_MMIX_8},
816 {BFD_RELOC_16, R_MMIX_16},
817 {BFD_RELOC_24, R_MMIX_24},
818 {BFD_RELOC_32, R_MMIX_32},
819 {BFD_RELOC_64, R_MMIX_64},
820 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
821 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
822 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
823 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
824 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
825 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
826 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
827 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
828 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
829 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
830 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
831 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
832 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
833 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
834 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
835 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
f60ebe14
HPN
836 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
837 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
3c3bdf30
NC
838 };
839
840static reloc_howto_type *
841bfd_elf64_bfd_reloc_type_lookup (abfd, code)
842 bfd *abfd ATTRIBUTE_UNUSED;
843 bfd_reloc_code_real_type code;
844{
845 unsigned int i;
846
847 for (i = 0;
848 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
849 i++)
850 {
851 if (mmix_reloc_map[i].bfd_reloc_val == code)
852 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
853 }
854
855 return NULL;
856}
857
f0abc2a1
AM
858static bfd_boolean
859mmix_elf_new_section_hook (abfd, sec)
860 bfd *abfd;
861 asection *sec;
862{
863 struct _mmix_elf_section_data *sdata;
864 bfd_size_type amt = sizeof (*sdata);
865
866 sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt);
867 if (sdata == NULL)
868 return FALSE;
869 sec->used_by_bfd = (PTR) sdata;
870
871 return _bfd_elf_new_section_hook (abfd, sec);
872}
873
3c3bdf30
NC
874
875/* This function performs the actual bitfiddling and sanity check for a
876 final relocation. Each relocation gets its *worst*-case expansion
877 in size when it arrives here; any reduction in size should have been
878 caught in linker relaxation earlier. When we get here, the relocation
879 looks like the smallest instruction with SWYM:s (nop:s) appended to the
880 max size. We fill in those nop:s.
881
882 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
883 GETA $N,foo
884 ->
885 SETL $N,foo & 0xffff
886 INCML $N,(foo >> 16) & 0xffff
887 INCMH $N,(foo >> 32) & 0xffff
888 INCH $N,(foo >> 48) & 0xffff
889
890 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
891 condbranches needing relaxation might be rare enough to not be
892 worthwhile.)
893 [P]Bcc $N,foo
894 ->
895 [~P]B~cc $N,.+20
896 SETL $255,foo & ...
897 INCML ...
898 INCMH ...
899 INCH ...
900 GO $255,$255,0
901
902 R_MMIX_PUSHJ: (FIXME: Relaxation...)
903 PUSHJ $N,foo
904 ->
905 SETL $255,foo & ...
906 INCML ...
907 INCMH ...
908 INCH ...
909 PUSHGO $N,$255,0
910
911 R_MMIX_JMP: (FIXME: Relaxation...)
912 JMP foo
913 ->
914 SETL $255,foo & ...
915 INCML ...
916 INCMH ...
917 INCH ...
918 GO $255,$255,0
919
920 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
921
922static bfd_reloc_status_type
923mmix_elf_perform_relocation (isec, howto, datap, addr, value)
924 asection *isec;
925 reloc_howto_type *howto;
926 PTR datap;
f60ebe14 927 bfd_vma addr;
3c3bdf30
NC
928 bfd_vma value;
929{
930 bfd *abfd = isec->owner;
931 bfd_reloc_status_type flag = bfd_reloc_ok;
932 bfd_reloc_status_type r;
933 int offs = 0;
934 int reg = 255;
935
936 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
937 We handle the differences here and the common sequence later. */
938 switch (howto->type)
939 {
940 case R_MMIX_GETA:
941 offs = 0;
942 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
943
944 /* We change to an absolute value. */
945 value += addr;
946 break;
947
948 case R_MMIX_CBRANCH:
949 {
950 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
951
952 /* Invert the condition and prediction bit, and set the offset
953 to five instructions ahead.
954
955 We *can* do better if we want to. If the branch is found to be
956 within limits, we could leave the branch as is; there'll just
957 be a bunch of NOP:s after it. But we shouldn't see this
958 sequence often enough that it's worth doing it. */
959
960 bfd_put_32 (abfd,
961 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
962 | (24/4)),
963 (bfd_byte *) datap);
964
965 /* Put a "GO $255,$255,0" after the common sequence. */
966 bfd_put_32 (abfd,
967 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
968 (bfd_byte *) datap + 20);
969
970 /* Common sequence starts at offset 4. */
971 offs = 4;
972
973 /* We change to an absolute value. */
974 value += addr;
975 }
976 break;
977
f60ebe14
HPN
978 case R_MMIX_PUSHJ_STUBBABLE:
979 /* If the address fits, we're fine. */
980 if ((value & 3) == 0
981 /* Note rightshift 0; see R_MMIX_JMP case below. */
982 && (r = bfd_check_overflow (complain_overflow_signed,
983 howto->bitsize,
984 0,
985 bfd_arch_bits_per_address (abfd),
986 value)) == bfd_reloc_ok)
987 goto pcrel_mmix_reloc_fits;
988 else
989 {
1a23a9e6 990 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
f60ebe14
HPN
991
992 /* We have the bytes at the PUSHJ insn and need to get the
993 position for the stub. There's supposed to be room allocated
994 for the stub. */
995 bfd_byte *stubcontents
996 = ((char *) datap
997 - (addr - (isec->output_section->vma + isec->output_offset))
eea6121a 998 + size
f60ebe14
HPN
999 + mmix_elf_section_data (isec)->pjs.stub_offset);
1000 bfd_vma stubaddr;
1001
1002 /* The address doesn't fit, so redirect the PUSHJ to the
1003 location of the stub. */
1004 r = mmix_elf_perform_relocation (isec,
1005 &elf_mmix_howto_table
1006 [R_MMIX_ADDR19],
1007 datap,
1008 addr,
1009 isec->output_section->vma
1010 + isec->output_offset
eea6121a 1011 + size
f60ebe14
HPN
1012 + (mmix_elf_section_data (isec)
1013 ->pjs.stub_offset)
1014 - addr);
1015 if (r != bfd_reloc_ok)
1016 return r;
1017
1018 stubaddr
1019 = (isec->output_section->vma
1020 + isec->output_offset
eea6121a 1021 + size
f60ebe14
HPN
1022 + mmix_elf_section_data (isec)->pjs.stub_offset);
1023
1024 /* We generate a simple JMP if that suffices, else the whole 5
1025 insn stub. */
1026 if (bfd_check_overflow (complain_overflow_signed,
1027 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1028 0,
1029 bfd_arch_bits_per_address (abfd),
1030 addr + value - stubaddr) == bfd_reloc_ok)
1031 {
1032 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1033 r = mmix_elf_perform_relocation (isec,
1034 &elf_mmix_howto_table
1035 [R_MMIX_ADDR27],
1036 stubcontents,
1037 stubaddr,
1038 value + addr - stubaddr);
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
eea6121a
AM
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
f60ebe14
HPN
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
3c3bdf30
NC
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
cedb70c5 1108 /* FALLTHROUGH. */
3c3bdf30
NC
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
f60ebe14 1111 pcrel_mmix_reloc_fits:
3c3bdf30
NC
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
f60ebe14 1127 highbit = 1 << 24;
3c3bdf30
NC
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
930b4cb2 1136 (in1 & howto->src_mask)
3c3bdf30
NC
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
930b4cb2
HPN
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
f0abc2a1 1149 = mmix_elf_section_data (isec)->bpo.reloc;
930b4cb2
HPN
1150 asection *bpo_greg_section
1151 = bpodata->bpo_greg_section;
1152 struct bpo_greg_section_info *gregdata
f0abc2a1 1153 = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
930b4cb2
HPN
1154 size_t bpo_index
1155 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1156
1157 /* A consistency check: The value we now have in "relocation" must
1158 be the same as the value we stored for that relocation. It
1159 doesn't cost much, so can be left in at all times. */
1160 if (value != gregdata->reloc_request[bpo_index].value)
1161 {
1162 (*_bfd_error_handler)
1163 (_("%s: Internal inconsistency error for value for\n\
1164 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1165 bfd_get_filename (isec->owner),
1166 (unsigned long) (value >> 32), (unsigned long) value,
1167 (unsigned long) (gregdata->reloc_request[bpo_index].value
1168 >> 32),
1169 (unsigned long) gregdata->reloc_request[bpo_index].value);
1170 bfd_set_error (bfd_error_bad_value);
1171 return bfd_reloc_overflow;
1172 }
1173
1174 /* Then store the register number and offset for that register
1175 into datap and datap + 1 respectively. */
1176 bfd_put_8 (abfd,
1177 gregdata->reloc_request[bpo_index].regindex
1178 + bpo_greg_section->output_section->vma / 8,
1179 datap);
1180 bfd_put_8 (abfd,
1181 gregdata->reloc_request[bpo_index].offset,
1182 ((unsigned char *) datap) + 1);
1183 return bfd_reloc_ok;
1184 }
1185
3c3bdf30
NC
1186 case R_MMIX_REG_OR_BYTE:
1187 case R_MMIX_REG:
1188 if (value > 255)
1189 return bfd_reloc_overflow;
1190 bfd_put_8 (abfd, value, datap);
1191 return bfd_reloc_ok;
1192
1193 default:
1194 BAD_CASE (howto->type);
1195 }
1196
1197 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1198 sequence. */
1199
1200 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1201 everything that looks strange. */
1202 if (value & 3)
1203 flag = bfd_reloc_overflow;
1204
1205 bfd_put_32 (abfd,
1206 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1207 (bfd_byte *) datap + offs);
1208 bfd_put_32 (abfd,
1209 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1210 (bfd_byte *) datap + offs + 4);
1211 bfd_put_32 (abfd,
1212 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1213 (bfd_byte *) datap + offs + 8);
1214 bfd_put_32 (abfd,
1215 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1216 (bfd_byte *) datap + offs + 12);
1217
1218 return flag;
1219}
1220
1221/* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1222
1223static void
1224mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1225 bfd *abfd ATTRIBUTE_UNUSED;
1226 arelent *cache_ptr;
947216bf 1227 Elf_Internal_Rela *dst;
3c3bdf30
NC
1228{
1229 unsigned int r_type;
1230
1231 r_type = ELF64_R_TYPE (dst->r_info);
1232 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1233 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1234}
1235
1236/* Any MMIX-specific relocation gets here at assembly time or when linking
1237 to other formats (such as mmo); this is the relocation function from
1238 the reloc_table. We don't get here for final pure ELF linking. */
1239
1240static bfd_reloc_status_type
1241mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1242 output_bfd, error_message)
1243 bfd *abfd;
1244 arelent *reloc_entry;
1245 asymbol *symbol;
1246 PTR data;
1247 asection *input_section;
1248 bfd *output_bfd;
1249 char **error_message ATTRIBUTE_UNUSED;
1250{
1251 bfd_vma relocation;
1252 bfd_reloc_status_type r;
1253 asection *reloc_target_output_section;
1254 bfd_reloc_status_type flag = bfd_reloc_ok;
1255 bfd_vma output_base = 0;
1256 bfd_vma addr;
1257
1258 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1259 input_section, output_bfd, error_message);
1260
1261 /* If that was all that was needed (i.e. this isn't a final link, only
1262 some segment adjustments), we're done. */
1263 if (r != bfd_reloc_continue)
1264 return r;
1265
1266 if (bfd_is_und_section (symbol->section)
1267 && (symbol->flags & BSF_WEAK) == 0
1268 && output_bfd == (bfd *) NULL)
1269 return bfd_reloc_undefined;
1270
1271 /* Is the address of the relocation really within the section? */
07515404 1272 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
3c3bdf30
NC
1273 return bfd_reloc_outofrange;
1274
4cc11e76 1275 /* Work out which section the relocation is targeted at and the
3c3bdf30
NC
1276 initial relocation command value. */
1277
1278 /* Get symbol value. (Common symbols are special.) */
1279 if (bfd_is_com_section (symbol->section))
1280 relocation = 0;
1281 else
1282 relocation = symbol->value;
1283
1284 reloc_target_output_section = bfd_get_output_section (symbol);
1285
1286 /* Here the variable relocation holds the final address of the symbol we
1287 are relocating against, plus any addend. */
1288 if (output_bfd)
1289 output_base = 0;
1290 else
1291 output_base = reloc_target_output_section->vma;
1292
1293 relocation += output_base + symbol->section->output_offset;
1294
1295 /* Get position of relocation. */
1296 addr = (reloc_entry->address + input_section->output_section->vma
1297 + input_section->output_offset);
1298 if (output_bfd != (bfd *) NULL)
1299 {
1300 /* Add in supplied addend. */
1301 relocation += reloc_entry->addend;
1302
1303 /* This is a partial relocation, and we want to apply the
1304 relocation to the reloc entry rather than the raw data.
1305 Modify the reloc inplace to reflect what we now know. */
1306 reloc_entry->addend = relocation;
1307 reloc_entry->address += input_section->output_offset;
1308 return flag;
1309 }
1310
1311 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1312 data, reloc_entry->address,
1313 reloc_entry->addend, relocation,
1314 bfd_asymbol_name (symbol),
1315 reloc_target_output_section);
1316}
e06fcc86 1317\f
3c3bdf30
NC
1318/* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1319 for guidance if you're thinking of copying this. */
1320
b34976b6 1321static bfd_boolean
3c3bdf30
NC
1322mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1323 contents, relocs, local_syms, local_sections)
1324 bfd *output_bfd ATTRIBUTE_UNUSED;
1325 struct bfd_link_info *info;
1326 bfd *input_bfd;
1327 asection *input_section;
1328 bfd_byte *contents;
1329 Elf_Internal_Rela *relocs;
1330 Elf_Internal_Sym *local_syms;
1331 asection **local_sections;
1332{
1333 Elf_Internal_Shdr *symtab_hdr;
1334 struct elf_link_hash_entry **sym_hashes;
1335 Elf_Internal_Rela *rel;
1336 Elf_Internal_Rela *relend;
1a23a9e6 1337 bfd_size_type size;
f60ebe14 1338 size_t pjsno = 0;
3c3bdf30 1339
1a23a9e6 1340 size = input_section->rawsize ? input_section->rawsize : input_section->size;
3c3bdf30
NC
1341 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1342 sym_hashes = elf_sym_hashes (input_bfd);
1343 relend = relocs + input_section->reloc_count;
1344
1a23a9e6
AM
1345 /* Zero the stub area before we start. */
1346 if (input_section->rawsize != 0
1347 && input_section->size > input_section->rawsize)
1348 memset (contents + input_section->rawsize, 0,
1349 input_section->size - input_section->rawsize);
1350
3c3bdf30
NC
1351 for (rel = relocs; rel < relend; rel ++)
1352 {
1353 reloc_howto_type *howto;
1354 unsigned long r_symndx;
1355 Elf_Internal_Sym *sym;
1356 asection *sec;
1357 struct elf_link_hash_entry *h;
1358 bfd_vma relocation;
1359 bfd_reloc_status_type r;
1360 const char *name = NULL;
1361 int r_type;
b34976b6 1362 bfd_boolean undefined_signalled = FALSE;
3c3bdf30
NC
1363
1364 r_type = ELF64_R_TYPE (rel->r_info);
1365
1366 if (r_type == R_MMIX_GNU_VTINHERIT
1367 || r_type == R_MMIX_GNU_VTENTRY)
1368 continue;
1369
1370 r_symndx = ELF64_R_SYM (rel->r_info);
1371
1049f94e 1372 if (info->relocatable)
3c3bdf30 1373 {
f60ebe14
HPN
1374 /* This is a relocatable link. For most relocs we don't have to
1375 change anything, unless the reloc is against a section
1376 symbol, in which case we have to adjust according to where
1377 the section symbol winds up in the output section. */
3c3bdf30
NC
1378 if (r_symndx < symtab_hdr->sh_info)
1379 {
1380 sym = local_syms + r_symndx;
1381
1382 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1383 {
1384 sec = local_sections [r_symndx];
1385 rel->r_addend += sec->output_offset + sym->st_value;
1386 }
1387 }
1388
f60ebe14
HPN
1389 /* For PUSHJ stub relocs however, we may need to change the
1390 reloc and the section contents, if the reloc doesn't reach
1391 beyond the end of the output section and previous stubs.
1392 Then we change the section contents to be a PUSHJ to the end
1393 of the input section plus stubs (we can do that without using
1394 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1395 at the stub location. */
1396 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1397 {
1398 /* We've already checked whether we need a stub; use that
1399 knowledge. */
1400 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1401 != 0)
1402 {
1403 Elf_Internal_Rela relcpy;
1404
1405 if (mmix_elf_section_data (input_section)
1406 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1407 abort ();
1408
1409 /* There's already a PUSHJ insn there, so just fill in
1410 the offset bits to the stub. */
1411 if (mmix_final_link_relocate (elf_mmix_howto_table
1412 + R_MMIX_ADDR19,
1413 input_section,
1414 contents,
1415 rel->r_offset,
1416 0,
1417 input_section
1418 ->output_section->vma
1419 + input_section->output_offset
eea6121a 1420 + size
f60ebe14
HPN
1421 + mmix_elf_section_data (input_section)
1422 ->pjs.stub_offset,
1423 NULL, NULL) != bfd_reloc_ok)
1424 return FALSE;
1425
1426 /* Put a JMP insn at the stub; it goes with the
1427 R_MMIX_JMP reloc. */
1428 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1429 contents
eea6121a 1430 + size
f60ebe14
HPN
1431 + mmix_elf_section_data (input_section)
1432 ->pjs.stub_offset);
1433
1434 /* Change the reloc to be at the stub, and to a full
1435 R_MMIX_JMP reloc. */
1436 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1437 rel->r_offset
eea6121a 1438 = (size
f60ebe14
HPN
1439 + mmix_elf_section_data (input_section)
1440 ->pjs.stub_offset);
1441
1442 mmix_elf_section_data (input_section)->pjs.stub_offset
1443 += MAX_PUSHJ_STUB_SIZE;
1444
1445 /* Shift this reloc to the end of the relocs to maintain
1446 the r_offset sorted reloc order. */
1447 relcpy = *rel;
1448 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1449 relend[-1] = relcpy;
1450
1451 /* Back up one reloc, or else we'd skip the next reloc
1452 in turn. */
1453 rel--;
1454 }
1455
1456 pjsno++;
1457 }
3c3bdf30
NC
1458 continue;
1459 }
1460
1461 /* This is a final link. */
1462 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1463 h = NULL;
1464 sym = NULL;
1465 sec = NULL;
1466
1467 if (r_symndx < symtab_hdr->sh_info)
1468 {
1469 sym = local_syms + r_symndx;
1470 sec = local_sections [r_symndx];
8517fae7 1471 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3c3bdf30 1472
6a9cae7f
AM
1473 name = bfd_elf_string_from_elf_section (input_bfd,
1474 symtab_hdr->sh_link,
1475 sym->st_name);
1476 if (name == NULL)
1477 name = bfd_section_name (input_bfd, sec);
3c3bdf30
NC
1478 }
1479 else
1480 {
59c2e50f 1481 bfd_boolean unresolved_reloc;
3c3bdf30 1482
b2a8e766
AM
1483 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1484 r_symndx, symtab_hdr, sym_hashes,
1485 h, sec, relocation,
1486 unresolved_reloc, undefined_signalled);
6a9cae7f 1487 name = h->root.root.string;
3c3bdf30
NC
1488 }
1489
1490 r = mmix_final_link_relocate (howto, input_section,
1491 contents, rel->r_offset,
1492 rel->r_addend, relocation, name, sec);
1493
1494 if (r != bfd_reloc_ok)
1495 {
b34976b6 1496 bfd_boolean check_ok = TRUE;
3c3bdf30
NC
1497 const char * msg = (const char *) NULL;
1498
1499 switch (r)
1500 {
1501 case bfd_reloc_overflow:
1502 check_ok = info->callbacks->reloc_overflow
dfeffb9f
L
1503 (info, (h ? &h->root : NULL), name, howto->name,
1504 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3c3bdf30
NC
1505 break;
1506
1507 case bfd_reloc_undefined:
1508 /* We may have sent this message above. */
1509 if (! undefined_signalled)
1510 check_ok = info->callbacks->undefined_symbol
1511 (info, name, input_bfd, input_section, rel->r_offset,
b34976b6
AM
1512 TRUE);
1513 undefined_signalled = TRUE;
3c3bdf30
NC
1514 break;
1515
1516 case bfd_reloc_outofrange:
1517 msg = _("internal error: out of range error");
1518 break;
1519
1520 case bfd_reloc_notsupported:
1521 msg = _("internal error: unsupported relocation error");
1522 break;
1523
1524 case bfd_reloc_dangerous:
1525 msg = _("internal error: dangerous relocation");
1526 break;
1527
1528 default:
1529 msg = _("internal error: unknown error");
1530 break;
1531 }
1532
1533 if (msg)
1534 check_ok = info->callbacks->warning
1535 (info, msg, name, input_bfd, input_section, rel->r_offset);
1536
1537 if (! check_ok)
b34976b6 1538 return FALSE;
3c3bdf30
NC
1539 }
1540 }
1541
b34976b6 1542 return TRUE;
3c3bdf30 1543}
e06fcc86 1544\f
3c3bdf30
NC
1545/* Perform a single relocation. By default we use the standard BFD
1546 routines. A few relocs we have to do ourselves. */
1547
1548static bfd_reloc_status_type
1549mmix_final_link_relocate (howto, input_section, contents,
1550 r_offset, r_addend, relocation, symname, symsec)
1551 reloc_howto_type *howto;
1552 asection *input_section;
1553 bfd_byte *contents;
1554 bfd_vma r_offset;
1555 bfd_signed_vma r_addend;
1556 bfd_vma relocation;
1557 const char *symname;
1558 asection *symsec;
1559{
1560 bfd_reloc_status_type r = bfd_reloc_ok;
1561 bfd_vma addr
1562 = (input_section->output_section->vma
1563 + input_section->output_offset
1564 + r_offset);
1565 bfd_signed_vma srel
1566 = (bfd_signed_vma) relocation + r_addend;
1567
1568 switch (howto->type)
1569 {
1570 /* All these are PC-relative. */
f60ebe14 1571 case R_MMIX_PUSHJ_STUBBABLE:
3c3bdf30
NC
1572 case R_MMIX_PUSHJ:
1573 case R_MMIX_CBRANCH:
1574 case R_MMIX_ADDR19:
1575 case R_MMIX_GETA:
1576 case R_MMIX_ADDR27:
1577 case R_MMIX_JMP:
1578 contents += r_offset;
1579
1580 srel -= (input_section->output_section->vma
1581 + input_section->output_offset
1582 + r_offset);
1583
1584 r = mmix_elf_perform_relocation (input_section, howto, contents,
1585 addr, srel);
1586 break;
1587
930b4cb2
HPN
1588 case R_MMIX_BASE_PLUS_OFFSET:
1589 if (symsec == NULL)
1590 return bfd_reloc_undefined;
1591
1592 /* Check that we're not relocating against a register symbol. */
1593 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1594 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1595 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1596 MMIX_REG_SECTION_NAME) == 0)
1597 {
1598 /* Note: This is separated out into two messages in order
1599 to ease the translation into other languages. */
1600 if (symname == NULL || *symname == 0)
1601 (*_bfd_error_handler)
1602 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1603 bfd_get_filename (input_section->owner),
1604 bfd_get_section_name (symsec->owner, symsec));
1605 else
1606 (*_bfd_error_handler)
1607 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1608 bfd_get_filename (input_section->owner), symname,
1609 bfd_get_section_name (symsec->owner, symsec));
1610 return bfd_reloc_overflow;
1611 }
1612 goto do_mmix_reloc;
1613
3c3bdf30
NC
1614 case R_MMIX_REG_OR_BYTE:
1615 case R_MMIX_REG:
1616 /* For now, we handle these alike. They must refer to an register
1617 symbol, which is either relative to the register section and in
1618 the range 0..255, or is in the register contents section with vma
1619 regno * 8. */
1620
1621 /* FIXME: A better way to check for reg contents section?
1622 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1623 if (symsec == NULL)
1624 return bfd_reloc_undefined;
1625
1626 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1627 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1628 {
1629 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1630 {
1631 /* The bfd_reloc_outofrange return value, though intuitively
1632 a better value, will not get us an error. */
1633 return bfd_reloc_overflow;
1634 }
1635 srel /= 8;
1636 }
1637 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1638 MMIX_REG_SECTION_NAME) == 0)
1639 {
1640 if (srel < 0 || srel > 255)
1641 /* The bfd_reloc_outofrange return value, though intuitively a
1642 better value, will not get us an error. */
1643 return bfd_reloc_overflow;
1644 }
1645 else
1646 {
930b4cb2 1647 /* Note: This is separated out into two messages in order
ca09e32b
NC
1648 to ease the translation into other languages. */
1649 if (symname == NULL || *symname == 0)
1650 (*_bfd_error_handler)
1651 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1652 bfd_get_filename (input_section->owner),
1653 bfd_get_section_name (symsec->owner, symsec));
1654 else
1655 (*_bfd_error_handler)
1656 (_("%s: register relocation against non-register symbol: %s in %s"),
1657 bfd_get_filename (input_section->owner), symname,
1658 bfd_get_section_name (symsec->owner, symsec));
3c3bdf30
NC
1659
1660 /* The bfd_reloc_outofrange return value, though intuitively a
1661 better value, will not get us an error. */
1662 return bfd_reloc_overflow;
1663 }
930b4cb2 1664 do_mmix_reloc:
3c3bdf30
NC
1665 contents += r_offset;
1666 r = mmix_elf_perform_relocation (input_section, howto, contents,
1667 addr, srel);
1668 break;
1669
1670 case R_MMIX_LOCAL:
1671 /* This isn't a real relocation, it's just an assertion that the
1672 final relocation value corresponds to a local register. We
1673 ignore the actual relocation; nothing is changed. */
1674 {
1675 asection *regsec
1676 = bfd_get_section_by_name (input_section->output_section->owner,
1677 MMIX_REG_CONTENTS_SECTION_NAME);
1678 bfd_vma first_global;
1679
1680 /* Check that this is an absolute value, or a reference to the
1681 register contents section or the register (symbol) section.
1682 Absolute numbers can get here as undefined section. Undefined
1683 symbols are signalled elsewhere, so there's no conflict in us
1684 accidentally handling it. */
1685 if (!bfd_is_abs_section (symsec)
1686 && !bfd_is_und_section (symsec)
1687 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1688 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1689 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1690 MMIX_REG_SECTION_NAME) != 0)
1691 {
1692 (*_bfd_error_handler)
1693 (_("%s: directive LOCAL valid only with a register or absolute value"),
1694 bfd_get_filename (input_section->owner));
1695
1696 return bfd_reloc_overflow;
1697 }
1698
1699 /* If we don't have a register contents section, then $255 is the
1700 first global register. */
1701 if (regsec == NULL)
1702 first_global = 255;
1703 else
1704 {
1705 first_global = bfd_get_section_vma (abfd, regsec) / 8;
1706 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1707 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1708 {
1709 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1710 /* The bfd_reloc_outofrange return value, though
1711 intuitively a better value, will not get us an error. */
1712 return bfd_reloc_overflow;
1713 srel /= 8;
1714 }
1715 }
1716
1717 if ((bfd_vma) srel >= first_global)
1718 {
1719 /* FIXME: Better error message. */
1720 (*_bfd_error_handler)
1721 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1722 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1723
1724 return bfd_reloc_overflow;
1725 }
1726 }
1727 r = bfd_reloc_ok;
1728 break;
1729
1730 default:
1731 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1732 contents, r_offset,
1733 relocation, r_addend);
1734 }
1735
1736 return r;
1737}
e06fcc86 1738\f
3c3bdf30
NC
1739/* Return the section that should be marked against GC for a given
1740 relocation. */
1741
1742static asection *
1e2f5b6e
AM
1743mmix_elf_gc_mark_hook (sec, info, rel, h, sym)
1744 asection *sec;
3c3bdf30
NC
1745 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1746 Elf_Internal_Rela *rel;
1747 struct elf_link_hash_entry *h;
1748 Elf_Internal_Sym *sym;
1749{
1750 if (h != NULL)
1751 {
1752 switch (ELF64_R_TYPE (rel->r_info))
1753 {
1754 case R_MMIX_GNU_VTINHERIT:
1755 case R_MMIX_GNU_VTENTRY:
1756 break;
1757
1758 default:
1759 switch (h->root.type)
1760 {
1761 case bfd_link_hash_defined:
1762 case bfd_link_hash_defweak:
1763 return h->root.u.def.section;
1764
1765 case bfd_link_hash_common:
1766 return h->root.u.c.p->section;
1767
1768 default:
1769 break;
1770 }
1771 }
1772 }
1773 else
1e2f5b6e 1774 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
3c3bdf30
NC
1775
1776 return NULL;
1777}
930b4cb2
HPN
1778
1779/* Update relocation info for a GC-excluded section. We could supposedly
1780 perform the allocation after GC, but there's no suitable hook between
1781 GC (or section merge) and the point when all input sections must be
1782 present. Better to waste some memory and (perhaps) a little time. */
1783
b34976b6 1784static bfd_boolean
930b4cb2
HPN
1785mmix_elf_gc_sweep_hook (abfd, info, sec, relocs)
1786 bfd *abfd ATTRIBUTE_UNUSED;
1787 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1788 asection *sec ATTRIBUTE_UNUSED;
1789 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
1790{
1791 struct bpo_reloc_section_info *bpodata
f0abc2a1 1792 = mmix_elf_section_data (sec)->bpo.reloc;
930b4cb2
HPN
1793 asection *allocated_gregs_section;
1794
1795 /* If no bpodata here, we have nothing to do. */
1796 if (bpodata == NULL)
b34976b6 1797 return TRUE;
930b4cb2
HPN
1798
1799 allocated_gregs_section = bpodata->bpo_greg_section;
1800
f0abc2a1 1801 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
930b4cb2
HPN
1802 -= bpodata->n_bpo_relocs_this_section;
1803
b34976b6 1804 return TRUE;
930b4cb2 1805}
e06fcc86 1806\f
3c3bdf30
NC
1807/* Sort register relocs to come before expanding relocs. */
1808
1809static int
1810mmix_elf_sort_relocs (p1, p2)
1811 const PTR p1;
1812 const PTR p2;
1813{
1814 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1815 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1816 int r1_is_reg, r2_is_reg;
1817
1818 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1819 insns. */
1820 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1821 return 1;
1822 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1823 return -1;
1824
1825 r1_is_reg
1826 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1827 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1828 r2_is_reg
1829 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1830 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1831 if (r1_is_reg != r2_is_reg)
1832 return r2_is_reg - r1_is_reg;
1833
1834 /* Neither or both are register relocs. Then sort on full offset. */
1835 if (r1->r_offset > r2->r_offset)
1836 return 1;
1837 else if (r1->r_offset < r2->r_offset)
1838 return -1;
1839 return 0;
1840}
1841
930b4cb2
HPN
1842/* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1843
b34976b6 1844static bfd_boolean
930b4cb2
HPN
1845mmix_elf_check_common_relocs (abfd, info, sec, relocs)
1846 bfd *abfd;
1847 struct bfd_link_info *info;
1848 asection *sec;
1849 const Elf_Internal_Rela *relocs;
1850{
1851 bfd *bpo_greg_owner = NULL;
1852 asection *allocated_gregs_section = NULL;
1853 struct bpo_greg_section_info *gregdata = NULL;
1854 struct bpo_reloc_section_info *bpodata = NULL;
1855 const Elf_Internal_Rela *rel;
1856 const Elf_Internal_Rela *rel_end;
1857
930b4cb2
HPN
1858 /* We currently have to abuse this COFF-specific member, since there's
1859 no target-machine-dedicated member. There's no alternative outside
1860 the bfd_link_info struct; we can't specialize a hash-table since
1861 they're different between ELF and mmo. */
1862 bpo_greg_owner = (bfd *) info->base_file;
1863
1864 rel_end = relocs + sec->reloc_count;
1865 for (rel = relocs; rel < rel_end; rel++)
1866 {
1867 switch (ELF64_R_TYPE (rel->r_info))
1868 {
1869 /* This relocation causes a GREG allocation. We need to count
1870 them, and we need to create a section for them, so we need an
1871 object to fake as the owner of that section. We can't use
1872 the ELF dynobj for this, since the ELF bits assume lots of
1873 DSO-related stuff if that member is non-NULL. */
1874 case R_MMIX_BASE_PLUS_OFFSET:
f60ebe14
HPN
1875 /* We don't do anything with this reloc for a relocatable link. */
1876 if (info->relocatable)
1877 break;
1878
930b4cb2
HPN
1879 if (bpo_greg_owner == NULL)
1880 {
1881 bpo_greg_owner = abfd;
1882 info->base_file = (PTR) bpo_greg_owner;
1883 }
1884
4fa5c2a8
HPN
1885 if (allocated_gregs_section == NULL)
1886 allocated_gregs_section
1887 = bfd_get_section_by_name (bpo_greg_owner,
1888 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1889
930b4cb2
HPN
1890 if (allocated_gregs_section == NULL)
1891 {
1892 allocated_gregs_section
1893 = bfd_make_section (bpo_greg_owner,
1894 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1895 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1896 treated like any other section, and we'd get errors for
1897 address overlap with the text section. Let's set none of
1898 those flags, as that is what currently happens for usual
1899 GREG allocations, and that works. */
1900 if (allocated_gregs_section == NULL
1901 || !bfd_set_section_flags (bpo_greg_owner,
1902 allocated_gregs_section,
1903 (SEC_HAS_CONTENTS
1904 | SEC_IN_MEMORY
1905 | SEC_LINKER_CREATED))
1906 || !bfd_set_section_alignment (bpo_greg_owner,
1907 allocated_gregs_section,
1908 3))
b34976b6 1909 return FALSE;
930b4cb2
HPN
1910
1911 gregdata = (struct bpo_greg_section_info *)
1912 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1913 if (gregdata == NULL)
b34976b6 1914 return FALSE;
f0abc2a1
AM
1915 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1916 = gregdata;
930b4cb2
HPN
1917 }
1918 else if (gregdata == NULL)
f0abc2a1
AM
1919 gregdata
1920 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
930b4cb2
HPN
1921
1922 /* Get ourselves some auxiliary info for the BPO-relocs. */
1923 if (bpodata == NULL)
1924 {
1925 /* No use doing a separate iteration pass to find the upper
1926 limit - just use the number of relocs. */
1927 bpodata = (struct bpo_reloc_section_info *)
1928 bfd_alloc (bpo_greg_owner,
1929 sizeof (struct bpo_reloc_section_info)
1930 * (sec->reloc_count + 1));
1931 if (bpodata == NULL)
b34976b6 1932 return FALSE;
f0abc2a1 1933 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
930b4cb2
HPN
1934 bpodata->first_base_plus_offset_reloc
1935 = bpodata->bpo_index
1936 = gregdata->n_max_bpo_relocs;
1937 bpodata->bpo_greg_section
1938 = allocated_gregs_section;
4fa5c2a8 1939 bpodata->n_bpo_relocs_this_section = 0;
930b4cb2
HPN
1940 }
1941
1942 bpodata->n_bpo_relocs_this_section++;
1943 gregdata->n_max_bpo_relocs++;
1944
1945 /* We don't get another chance to set this before GC; we've not
f60ebe14 1946 set up any hook that runs before GC. */
930b4cb2
HPN
1947 gregdata->n_bpo_relocs
1948 = gregdata->n_max_bpo_relocs;
1949 break;
f60ebe14
HPN
1950
1951 case R_MMIX_PUSHJ_STUBBABLE:
1952 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1953 break;
930b4cb2
HPN
1954 }
1955 }
1956
f60ebe14
HPN
1957 /* Allocate per-reloc stub storage and initialize it to the max stub
1958 size. */
1959 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1960 {
1961 size_t i;
1962
1963 mmix_elf_section_data (sec)->pjs.stub_size
1964 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1965 * sizeof (mmix_elf_section_data (sec)
1966 ->pjs.stub_size[0]));
1967 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1968 return FALSE;
1969
1970 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1971 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1972 }
1973
b34976b6 1974 return TRUE;
930b4cb2
HPN
1975}
1976
3c3bdf30
NC
1977/* Look through the relocs for a section during the first phase. */
1978
b34976b6 1979static bfd_boolean
3c3bdf30
NC
1980mmix_elf_check_relocs (abfd, info, sec, relocs)
1981 bfd *abfd;
1982 struct bfd_link_info *info;
1983 asection *sec;
1984 const Elf_Internal_Rela *relocs;
1985{
1986 Elf_Internal_Shdr *symtab_hdr;
1987 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
1988 const Elf_Internal_Rela *rel;
1989 const Elf_Internal_Rela *rel_end;
1990
3c3bdf30
NC
1991 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1992 sym_hashes = elf_sym_hashes (abfd);
1993 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
1994 if (!elf_bad_symtab (abfd))
1995 sym_hashes_end -= symtab_hdr->sh_info;
1996
1997 /* First we sort the relocs so that any register relocs come before
1998 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1999 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
2000 mmix_elf_sort_relocs);
2001
930b4cb2
HPN
2002 /* Do the common part. */
2003 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
b34976b6 2004 return FALSE;
930b4cb2 2005
f60ebe14
HPN
2006 if (info->relocatable)
2007 return TRUE;
2008
3c3bdf30
NC
2009 rel_end = relocs + sec->reloc_count;
2010 for (rel = relocs; rel < rel_end; rel++)
2011 {
2012 struct elf_link_hash_entry *h;
2013 unsigned long r_symndx;
2014
2015 r_symndx = ELF64_R_SYM (rel->r_info);
2016 if (r_symndx < symtab_hdr->sh_info)
2017 h = NULL;
2018 else
2019 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2020
2021 switch (ELF64_R_TYPE (rel->r_info))
930b4cb2 2022 {
3c3bdf30
NC
2023 /* This relocation describes the C++ object vtable hierarchy.
2024 Reconstruct it for later use during GC. */
2025 case R_MMIX_GNU_VTINHERIT:
c152c796 2026 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 2027 return FALSE;
3c3bdf30
NC
2028 break;
2029
2030 /* This relocation describes which C++ vtable entries are actually
2031 used. Record for later use during GC. */
2032 case R_MMIX_GNU_VTENTRY:
c152c796 2033 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
b34976b6 2034 return FALSE;
3c3bdf30 2035 break;
930b4cb2
HPN
2036 }
2037 }
2038
b34976b6 2039 return TRUE;
930b4cb2
HPN
2040}
2041
2042/* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2043 Copied from elf_link_add_object_symbols. */
2044
b34976b6 2045bfd_boolean
930b4cb2
HPN
2046_bfd_mmix_check_all_relocs (abfd, info)
2047 bfd *abfd;
2048 struct bfd_link_info *info;
2049{
2050 asection *o;
2051
2052 for (o = abfd->sections; o != NULL; o = o->next)
2053 {
2054 Elf_Internal_Rela *internal_relocs;
b34976b6 2055 bfd_boolean ok;
930b4cb2
HPN
2056
2057 if ((o->flags & SEC_RELOC) == 0
2058 || o->reloc_count == 0
2059 || ((info->strip == strip_all || info->strip == strip_debugger)
2060 && (o->flags & SEC_DEBUGGING) != 0)
2061 || bfd_is_abs_section (o->output_section))
2062 continue;
2063
2064 internal_relocs
45d6a902
AM
2065 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2066 (Elf_Internal_Rela *) NULL,
2067 info->keep_memory);
930b4cb2 2068 if (internal_relocs == NULL)
b34976b6 2069 return FALSE;
930b4cb2
HPN
2070
2071 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2072
2073 if (! info->keep_memory)
2074 free (internal_relocs);
2075
2076 if (! ok)
b34976b6 2077 return FALSE;
3c3bdf30
NC
2078 }
2079
b34976b6 2080 return TRUE;
3c3bdf30 2081}
e06fcc86 2082\f
3c3bdf30
NC
2083/* Change symbols relative to the reg contents section to instead be to
2084 the register section, and scale them down to correspond to the register
2085 number. */
2086
b34976b6 2087static bfd_boolean
754021d0 2088mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h)
3c3bdf30
NC
2089 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2090 const char *name ATTRIBUTE_UNUSED;
2091 Elf_Internal_Sym *sym;
2092 asection *input_sec;
754021d0 2093 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED;
3c3bdf30
NC
2094{
2095 if (input_sec != NULL
2096 && input_sec->name != NULL
2097 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2098 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2099 {
2100 sym->st_value /= 8;
2101 sym->st_shndx = SHN_REGISTER;
2102 }
2103
b34976b6 2104 return TRUE;
3c3bdf30
NC
2105}
2106
2107/* We fake a register section that holds values that are register numbers.
2108 Having a SHN_REGISTER and register section translates better to other
2109 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2110 This section faking is based on a construct in elf32-mips.c. */
2111static asection mmix_elf_reg_section;
2112static asymbol mmix_elf_reg_section_symbol;
2113static asymbol *mmix_elf_reg_section_symbol_ptr;
2114
f60ebe14 2115/* Handle the special section numbers that a symbol may use. */
3c3bdf30
NC
2116
2117void
2118mmix_elf_symbol_processing (abfd, asym)
2119 bfd *abfd ATTRIBUTE_UNUSED;
2120 asymbol *asym;
2121{
2122 elf_symbol_type *elfsym;
2123
2124 elfsym = (elf_symbol_type *) asym;
2125 switch (elfsym->internal_elf_sym.st_shndx)
2126 {
2127 case SHN_REGISTER:
2128 if (mmix_elf_reg_section.name == NULL)
2129 {
2130 /* Initialize the register section. */
2131 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2132 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2133 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2134 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2135 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2136 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2137 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2138 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2139 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2140 }
2141 asym->section = &mmix_elf_reg_section;
2142 break;
2143
2144 default:
2145 break;
2146 }
2147}
2148
2149/* Given a BFD section, try to locate the corresponding ELF section
2150 index. */
2151
b34976b6 2152static bfd_boolean
af746e92 2153mmix_elf_section_from_bfd_section (abfd, sec, retval)
3c3bdf30 2154 bfd * abfd ATTRIBUTE_UNUSED;
3c3bdf30
NC
2155 asection * sec;
2156 int * retval;
2157{
2158 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2159 *retval = SHN_REGISTER;
2160 else
b34976b6 2161 return FALSE;
3c3bdf30 2162
b34976b6 2163 return TRUE;
3c3bdf30
NC
2164}
2165
2166/* Hook called by the linker routine which adds symbols from an object
2167 file. We must handle the special SHN_REGISTER section number here.
2168
2169 We also check that we only have *one* each of the section-start
2170 symbols, since otherwise having two with the same value would cause
2171 them to be "merged", but with the contents serialized. */
2172
b34976b6 2173bfd_boolean
3c3bdf30
NC
2174mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2175 bfd *abfd;
2176 struct bfd_link_info *info ATTRIBUTE_UNUSED;
555cd476 2177 Elf_Internal_Sym *sym;
3c3bdf30
NC
2178 const char **namep ATTRIBUTE_UNUSED;
2179 flagword *flagsp ATTRIBUTE_UNUSED;
2180 asection **secp;
2181 bfd_vma *valp ATTRIBUTE_UNUSED;
2182{
2183 if (sym->st_shndx == SHN_REGISTER)
2184 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2185 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2186 && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX,
2187 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0)
2188 {
2189 /* See if we have another one. */
4ab82700
AM
2190 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2191 *namep,
b34976b6
AM
2192 FALSE,
2193 FALSE,
2194 FALSE);
3c3bdf30 2195
4ab82700 2196 if (h != NULL && h->type != bfd_link_hash_undefined)
3c3bdf30
NC
2197 {
2198 /* How do we get the asymbol (or really: the filename) from h?
4ab82700 2199 h->u.def.section->owner is NULL. */
3c3bdf30
NC
2200 ((*_bfd_error_handler)
2201 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2202 bfd_get_filename (abfd), *namep,
2203 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2204 bfd_set_error (bfd_error_bad_value);
b34976b6 2205 return FALSE;
3c3bdf30
NC
2206 }
2207 }
2208
b34976b6 2209 return TRUE;
3c3bdf30
NC
2210}
2211
2212/* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2213
b34976b6 2214bfd_boolean
3c3bdf30
NC
2215mmix_elf_is_local_label_name (abfd, name)
2216 bfd *abfd;
2217 const char *name;
2218{
2219 const char *colpos;
2220 int digits;
2221
2222 /* Also include the default local-label definition. */
2223 if (_bfd_elf_is_local_label_name (abfd, name))
b34976b6 2224 return TRUE;
3c3bdf30
NC
2225
2226 if (*name != 'L')
b34976b6 2227 return FALSE;
3c3bdf30
NC
2228
2229 /* If there's no ":", or more than one, it's not a local symbol. */
2230 colpos = strchr (name, ':');
2231 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
b34976b6 2232 return FALSE;
3c3bdf30
NC
2233
2234 /* Check that there are remaining characters and that they are digits. */
2235 if (colpos[1] == 0)
b34976b6 2236 return FALSE;
3c3bdf30
NC
2237
2238 digits = strspn (colpos + 1, "0123456789");
2239 return digits != 0 && colpos[1 + digits] == 0;
2240}
2241
2242/* We get rid of the register section here. */
2243
b34976b6 2244bfd_boolean
3c3bdf30
NC
2245mmix_elf_final_link (abfd, info)
2246 bfd *abfd;
2247 struct bfd_link_info *info;
2248{
2249 /* We never output a register section, though we create one for
2250 temporary measures. Check that nobody entered contents into it. */
2251 asection *reg_section;
2252 asection **secpp;
2253
2254 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2255
2256 if (reg_section != NULL)
2257 {
2258 /* FIXME: Pass error state gracefully. */
2259 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2260 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2261
3c3bdf30
NC
2262 /* Really remove the section. */
2263 for (secpp = &abfd->sections;
2264 *secpp != reg_section;
2265 secpp = &(*secpp)->next)
2266 ;
9e7b37b3 2267 bfd_section_list_remove (abfd, secpp);
3c3bdf30
NC
2268 --abfd->section_count;
2269 }
2270
c152c796 2271 if (! bfd_elf_final_link (abfd, info))
b34976b6 2272 return FALSE;
3c3bdf30 2273
930b4cb2
HPN
2274 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2275 the regular linker machinery. We do it here, like other targets with
2276 special sections. */
2277 if (info->base_file != NULL)
2278 {
2279 asection *greg_section
2280 = bfd_get_section_by_name ((bfd *) info->base_file,
2281 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2282 if (!bfd_set_section_contents (abfd,
2283 greg_section->output_section,
2284 greg_section->contents,
2285 (file_ptr) greg_section->output_offset,
eea6121a 2286 greg_section->size))
b34976b6 2287 return FALSE;
930b4cb2 2288 }
b34976b6 2289 return TRUE;
930b4cb2
HPN
2290}
2291
f60ebe14 2292/* We need to include the maximum size of PUSHJ-stubs in the initial
eea6121a 2293 section size. This is expected to shrink during linker relaxation. */
f60ebe14
HPN
2294
2295static void
2296mmix_set_relaxable_size (abfd, sec, ptr)
2297 bfd *abfd ATTRIBUTE_UNUSED;
2298 asection *sec;
2299 void *ptr;
2300{
2301 struct bfd_link_info *info = ptr;
2302
2303 /* Make sure we only do this for section where we know we want this,
2304 otherwise we might end up resetting the size of COMMONs. */
2305 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2306 return;
2307
1a23a9e6 2308 sec->rawsize = sec->size;
eea6121a
AM
2309 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2310 * MAX_PUSHJ_STUB_SIZE);
f60ebe14
HPN
2311
2312 /* For use in relocatable link, we start with a max stubs size. See
2313 mmix_elf_relax_section. */
2314 if (info->relocatable && sec->output_section)
2315 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2316 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2317 * MAX_PUSHJ_STUB_SIZE);
2318}
2319
930b4cb2
HPN
2320/* Initialize stuff for the linker-generated GREGs to match
2321 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2322
b34976b6 2323bfd_boolean
f60ebe14 2324_bfd_mmix_before_linker_allocation (abfd, info)
930b4cb2
HPN
2325 bfd *abfd ATTRIBUTE_UNUSED;
2326 struct bfd_link_info *info;
2327{
2328 asection *bpo_gregs_section;
2329 bfd *bpo_greg_owner;
2330 struct bpo_greg_section_info *gregdata;
2331 size_t n_gregs;
2332 bfd_vma gregs_size;
2333 size_t i;
2334 size_t *bpo_reloc_indexes;
f60ebe14
HPN
2335 bfd *ibfd;
2336
2337 /* Set the initial size of sections. */
2338 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2339 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
930b4cb2
HPN
2340
2341 /* The bpo_greg_owner bfd is supposed to have been set by
2342 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2343 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2344 bpo_greg_owner = (bfd *) info->base_file;
2345 if (bpo_greg_owner == NULL)
b34976b6 2346 return TRUE;
930b4cb2
HPN
2347
2348 bpo_gregs_section
2349 = bfd_get_section_by_name (bpo_greg_owner,
2350 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2351
930b4cb2 2352 if (bpo_gregs_section == NULL)
b34976b6 2353 return TRUE;
930b4cb2
HPN
2354
2355 /* We use the target-data handle in the ELF section data. */
f0abc2a1 2356 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2357 if (gregdata == NULL)
b34976b6 2358 return FALSE;
930b4cb2
HPN
2359
2360 n_gregs = gregdata->n_bpo_relocs;
2361 gregdata->n_allocated_bpo_gregs = n_gregs;
2362
2363 /* When this reaches zero during relaxation, all entries have been
2364 filled in and the size of the linker gregs can be calculated. */
2365 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2366
2367 /* Set the zeroth-order estimate for the GREGs size. */
2368 gregs_size = n_gregs * 8;
2369
2370 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
b34976b6 2371 return FALSE;
930b4cb2
HPN
2372
2373 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2374 time. Note that we must use the max number ever noted for the array,
2375 since the index numbers were created before GC. */
2376 gregdata->reloc_request
2377 = bfd_zalloc (bpo_greg_owner,
2378 sizeof (struct bpo_reloc_request)
2379 * gregdata->n_max_bpo_relocs);
2380
2381 gregdata->bpo_reloc_indexes
2382 = bpo_reloc_indexes
2383 = bfd_alloc (bpo_greg_owner,
2384 gregdata->n_max_bpo_relocs
2385 * sizeof (size_t));
2386 if (bpo_reloc_indexes == NULL)
b34976b6 2387 return FALSE;
930b4cb2
HPN
2388
2389 /* The default order is an identity mapping. */
2390 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2391 {
2392 bpo_reloc_indexes[i] = i;
2393 gregdata->reloc_request[i].bpo_reloc_no = i;
2394 }
2395
b34976b6 2396 return TRUE;
3c3bdf30 2397}
e06fcc86 2398\f
930b4cb2
HPN
2399/* Fill in contents in the linker allocated gregs. Everything is
2400 calculated at this point; we just move the contents into place here. */
2401
b34976b6 2402bfd_boolean
f60ebe14 2403_bfd_mmix_after_linker_allocation (abfd, link_info)
930b4cb2
HPN
2404 bfd *abfd ATTRIBUTE_UNUSED;
2405 struct bfd_link_info *link_info;
2406{
2407 asection *bpo_gregs_section;
2408 bfd *bpo_greg_owner;
2409 struct bpo_greg_section_info *gregdata;
2410 size_t n_gregs;
2411 size_t i, j;
2412 size_t lastreg;
2413 bfd_byte *contents;
2414
2415 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2416 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2417 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2418 bpo_greg_owner = (bfd *) link_info->base_file;
2419 if (bpo_greg_owner == NULL)
b34976b6 2420 return TRUE;
930b4cb2
HPN
2421
2422 bpo_gregs_section
2423 = bfd_get_section_by_name (bpo_greg_owner,
2424 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2425
2426 /* This can't happen without DSO handling. When DSOs are handled
2427 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2428 section. */
2429 if (bpo_gregs_section == NULL)
b34976b6 2430 return TRUE;
930b4cb2
HPN
2431
2432 /* We use the target-data handle in the ELF section data. */
2433
f0abc2a1 2434 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2435 if (gregdata == NULL)
b34976b6 2436 return FALSE;
930b4cb2
HPN
2437
2438 n_gregs = gregdata->n_allocated_bpo_gregs;
2439
2440 bpo_gregs_section->contents
eea6121a 2441 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
930b4cb2 2442 if (contents == NULL)
b34976b6 2443 return FALSE;
930b4cb2 2444
7e799044
HPN
2445 /* Sanity check: If these numbers mismatch, some relocation has not been
2446 accounted for and the rest of gregdata is probably inconsistent.
2447 It's a bug, but it's more helpful to identify it than segfaulting
2448 below. */
2449 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2450 != gregdata->n_bpo_relocs)
2451 {
2452 (*_bfd_error_handler)
2453 (_("Internal inconsistency: remaining %u != max %u.\n\
2454 Please report this bug."),
2455 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2456 gregdata->n_bpo_relocs);
b34976b6 2457 return FALSE;
7e799044
HPN
2458 }
2459
930b4cb2
HPN
2460 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2461 if (gregdata->reloc_request[i].regindex != lastreg)
2462 {
2463 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2464 contents + j * 8);
2465 lastreg = gregdata->reloc_request[i].regindex;
2466 j++;
2467 }
2468
b34976b6 2469 return TRUE;
930b4cb2
HPN
2470}
2471
2472/* Sort valid relocs to come before non-valid relocs, then on increasing
2473 value. */
2474
2475static int
2476bpo_reloc_request_sort_fn (p1, p2)
2477 const PTR p1;
2478 const PTR p2;
2479{
2480 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2481 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2482
2483 /* Primary function is validity; non-valid relocs sorted after valid
2484 ones. */
2485 if (r1->valid != r2->valid)
2486 return r2->valid - r1->valid;
2487
4fa5c2a8
HPN
2488 /* Then sort on value. Don't simplify and return just the difference of
2489 the values: the upper bits of the 64-bit value would be truncated on
2490 a host with 32-bit ints. */
930b4cb2 2491 if (r1->value != r2->value)
4fa5c2a8 2492 return r1->value > r2->value ? 1 : -1;
930b4cb2 2493
dfbbae4c
HPN
2494 /* As a last re-sort, use the relocation number, so we get a stable
2495 sort. The *addresses* aren't stable since items are swapped during
2496 sorting. It depends on the qsort implementation if this actually
2497 happens. */
2498 return r1->bpo_reloc_no > r2->bpo_reloc_no
2499 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
930b4cb2
HPN
2500}
2501
4fa5c2a8
HPN
2502/* For debug use only. Dumps the global register allocations resulting
2503 from base-plus-offset relocs. */
2504
2505void
2506mmix_dump_bpo_gregs (link_info, pf)
2507 struct bfd_link_info *link_info;
2508 bfd_error_handler_type pf;
2509{
2510 bfd *bpo_greg_owner;
2511 asection *bpo_gregs_section;
2512 struct bpo_greg_section_info *gregdata;
2513 unsigned int i;
2514
2515 if (link_info == NULL || link_info->base_file == NULL)
2516 return;
2517
2518 bpo_greg_owner = (bfd *) link_info->base_file;
2519
2520 bpo_gregs_section
2521 = bfd_get_section_by_name (bpo_greg_owner,
2522 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2523
2524 if (bpo_gregs_section == NULL)
2525 return;
2526
f0abc2a1 2527 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
4fa5c2a8
HPN
2528 if (gregdata == NULL)
2529 return;
2530
2531 if (pf == NULL)
2532 pf = _bfd_error_handler;
2533
2534 /* These format strings are not translated. They are for debug purposes
2535 only and never displayed to an end user. Should they escape, we
2536 surely want them in original. */
2537 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2538 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2539 gregdata->n_max_bpo_relocs,
2540 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2541 gregdata->n_allocated_bpo_gregs);
2542
2543 if (gregdata->reloc_request)
2544 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2545 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2546 i,
cf3d882d
AM
2547 (gregdata->bpo_reloc_indexes != NULL
2548 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
4fa5c2a8
HPN
2549 gregdata->reloc_request[i].bpo_reloc_no,
2550 gregdata->reloc_request[i].valid,
2551
2552 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2553 (unsigned long) gregdata->reloc_request[i].value,
2554 gregdata->reloc_request[i].regindex,
2555 gregdata->reloc_request[i].offset);
2556}
2557
930b4cb2
HPN
2558/* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2559 when the last such reloc is done, an index-array is sorted according to
2560 the values and iterated over to produce register numbers (indexed by 0
2561 from the first allocated register number) and offsets for use in real
2562 relocation.
2563
f60ebe14
HPN
2564 PUSHJ stub accounting is also done here.
2565
930b4cb2
HPN
2566 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2567
b34976b6 2568static bfd_boolean
930b4cb2
HPN
2569mmix_elf_relax_section (abfd, sec, link_info, again)
2570 bfd *abfd;
2571 asection *sec;
2572 struct bfd_link_info *link_info;
b34976b6 2573 bfd_boolean *again;
930b4cb2 2574{
930b4cb2 2575 Elf_Internal_Shdr *symtab_hdr;
930b4cb2 2576 Elf_Internal_Rela *internal_relocs;
930b4cb2
HPN
2577 Elf_Internal_Rela *irel, *irelend;
2578 asection *bpo_gregs_section = NULL;
2579 struct bpo_greg_section_info *gregdata;
2580 struct bpo_reloc_section_info *bpodata
f0abc2a1 2581 = mmix_elf_section_data (sec)->bpo.reloc;
f60ebe14
HPN
2582 /* The initialization is to quiet compiler warnings. The value is to
2583 spot a missing actual initialization. */
2584 size_t bpono = (size_t) -1;
2585 size_t pjsno = 0;
930b4cb2 2586 bfd *bpo_greg_owner;
6cdc0ccc 2587 Elf_Internal_Sym *isymbuf = NULL;
1a23a9e6 2588 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
f60ebe14
HPN
2589
2590 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
930b4cb2
HPN
2591
2592 /* Assume nothing changes. */
b34976b6 2593 *again = FALSE;
930b4cb2 2594
f60ebe14
HPN
2595 /* We don't have to do anything if this section does not have relocs, or
2596 if this is not a code section. */
2597 if ((sec->flags & SEC_RELOC) == 0
930b4cb2
HPN
2598 || sec->reloc_count == 0
2599 || (sec->flags & SEC_CODE) == 0
2600 || (sec->flags & SEC_LINKER_CREATED) != 0
f60ebe14
HPN
2601 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2602 then nothing to do. */
2603 || (bpodata == NULL
2604 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
b34976b6 2605 return TRUE;
930b4cb2
HPN
2606
2607 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
930b4cb2
HPN
2608
2609 bpo_greg_owner = (bfd *) link_info->base_file;
930b4cb2 2610
f60ebe14
HPN
2611 if (bpodata != NULL)
2612 {
2613 bpo_gregs_section = bpodata->bpo_greg_section;
2614 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2615 bpono = bpodata->first_base_plus_offset_reloc;
2616 }
2617 else
2618 gregdata = NULL;
930b4cb2
HPN
2619
2620 /* Get a copy of the native relocations. */
2621 internal_relocs
45d6a902
AM
2622 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2623 (Elf_Internal_Rela *) NULL,
2624 link_info->keep_memory);
930b4cb2
HPN
2625 if (internal_relocs == NULL)
2626 goto error_return;
930b4cb2
HPN
2627
2628 /* Walk through them looking for relaxing opportunities. */
2629 irelend = internal_relocs + sec->reloc_count;
2630 for (irel = internal_relocs; irel < irelend; irel++)
2631 {
2632 bfd_vma symval;
f60ebe14 2633 struct elf_link_hash_entry *h = NULL;
930b4cb2 2634
f60ebe14
HPN
2635 /* We only process two relocs. */
2636 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2637 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
930b4cb2
HPN
2638 continue;
2639
f60ebe14
HPN
2640 /* We process relocs in a distinctly different way when this is a
2641 relocatable link (for one, we don't look at symbols), so we avoid
2642 mixing its code with that for the "normal" relaxation. */
2643 if (link_info->relocatable)
2644 {
2645 /* The only transformation in a relocatable link is to generate
2646 a full stub at the location of the stub calculated for the
2647 input section, if the relocated stub location, the end of the
2648 output section plus earlier stubs, cannot be reached. Thus
2649 relocatable linking can only lead to worse code, but it still
2650 works. */
2651 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2652 {
2653 /* If we can reach the end of the output-section and beyond
2654 any current stubs, then we don't need a stub for this
2655 reloc. The relaxed order of output stub allocation may
2656 not exactly match the straightforward order, so we always
2657 assume presence of output stubs, which will allow
2658 relaxation only on relocations indifferent to the
2659 presence of output stub allocations for other relocations
2660 and thus the order of output stub allocation. */
2661 if (bfd_check_overflow (complain_overflow_signed,
2662 19,
2663 0,
2664 bfd_arch_bits_per_address (abfd),
2665 /* Output-stub location. */
1a23a9e6 2666 sec->output_section->rawsize
f60ebe14
HPN
2667 + (mmix_elf_section_data (sec
2668 ->output_section)
2669 ->pjs.stubs_size_sum)
2670 /* Location of this PUSHJ reloc. */
2671 - (sec->output_offset + irel->r_offset)
2672 /* Don't count *this* stub twice. */
2673 - (mmix_elf_section_data (sec)
2674 ->pjs.stub_size[pjsno]
2675 + MAX_PUSHJ_STUB_SIZE))
2676 == bfd_reloc_ok)
2677 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2678
2679 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2680 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2681
2682 pjsno++;
2683 }
2684
2685 continue;
2686 }
2687
930b4cb2
HPN
2688 /* Get the value of the symbol referred to by the reloc. */
2689 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2690 {
2691 /* A local symbol. */
6cdc0ccc 2692 Elf_Internal_Sym *isym;
930b4cb2
HPN
2693 asection *sym_sec;
2694
6cdc0ccc
AM
2695 /* Read this BFD's local symbols if we haven't already. */
2696 if (isymbuf == NULL)
2697 {
2698 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2699 if (isymbuf == NULL)
2700 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2701 symtab_hdr->sh_info, 0,
2702 NULL, NULL, NULL);
2703 if (isymbuf == 0)
2704 goto error_return;
2705 }
930b4cb2 2706
6cdc0ccc
AM
2707 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2708 if (isym->st_shndx == SHN_UNDEF)
930b4cb2 2709 sym_sec = bfd_und_section_ptr;
6cdc0ccc 2710 else if (isym->st_shndx == SHN_ABS)
930b4cb2 2711 sym_sec = bfd_abs_section_ptr;
6cdc0ccc 2712 else if (isym->st_shndx == SHN_COMMON)
930b4cb2
HPN
2713 sym_sec = bfd_com_section_ptr;
2714 else
6cdc0ccc
AM
2715 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2716 symval = (isym->st_value
930b4cb2
HPN
2717 + sym_sec->output_section->vma
2718 + sym_sec->output_offset);
2719 }
2720 else
2721 {
2722 unsigned long indx;
930b4cb2
HPN
2723
2724 /* An external symbol. */
2725 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2726 h = elf_sym_hashes (abfd)[indx];
2727 BFD_ASSERT (h != NULL);
2728 if (h->root.type != bfd_link_hash_defined
2729 && h->root.type != bfd_link_hash_defweak)
2730 {
f60ebe14
HPN
2731 /* This appears to be a reference to an undefined symbol. Just
2732 ignore it--it will be caught by the regular reloc processing.
2733 We need to keep BPO reloc accounting consistent, though
2734 else we'll abort instead of emitting an error message. */
2735 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2736 && gregdata != NULL)
2737 {
2738 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2739 bpono++;
2740 }
930b4cb2
HPN
2741 continue;
2742 }
2743
2744 symval = (h->root.u.def.value
2745 + h->root.u.def.section->output_section->vma
2746 + h->root.u.def.section->output_offset);
2747 }
2748
f60ebe14
HPN
2749 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2750 {
2751 bfd_vma value = symval + irel->r_addend;
2752 bfd_vma dot
2753 = (sec->output_section->vma
2754 + sec->output_offset
2755 + irel->r_offset);
2756 bfd_vma stubaddr
2757 = (sec->output_section->vma
2758 + sec->output_offset
eea6121a 2759 + size
f60ebe14
HPN
2760 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2761
2762 if ((value & 3) == 0
2763 && bfd_check_overflow (complain_overflow_signed,
2764 19,
2765 0,
2766 bfd_arch_bits_per_address (abfd),
2767 value - dot
2768 - (value > dot
2769 ? mmix_elf_section_data (sec)
2770 ->pjs.stub_size[pjsno]
2771 : 0))
2772 == bfd_reloc_ok)
2773 /* If the reloc fits, no stub is needed. */
2774 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2775 else
2776 /* Maybe we can get away with just a JMP insn? */
2777 if ((value & 3) == 0
2778 && bfd_check_overflow (complain_overflow_signed,
2779 27,
2780 0,
2781 bfd_arch_bits_per_address (abfd),
2782 value - stubaddr
2783 - (value > dot
2784 ? mmix_elf_section_data (sec)
2785 ->pjs.stub_size[pjsno] - 4
2786 : 0))
2787 == bfd_reloc_ok)
2788 /* Yep, account for a stub consisting of a single JMP insn. */
2789 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2790 else
2791 /* Nope, go for the full insn stub. It doesn't seem useful to
2792 emit the intermediate sizes; those will only be useful for
2793 a >64M program assuming contiguous code. */
2794 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2795 = MAX_PUSHJ_STUB_SIZE;
2796
2797 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2798 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2799 pjsno++;
2800 continue;
2801 }
2802
2803 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2804
930b4cb2
HPN
2805 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2806 = symval + irel->r_addend;
b34976b6 2807 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
930b4cb2
HPN
2808 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2809 }
2810
2811 /* Check if that was the last BPO-reloc. If so, sort the values and
2812 calculate how many registers we need to cover them. Set the size of
2813 the linker gregs, and if the number of registers changed, indicate
2814 that we need to relax some more because we have more work to do. */
f60ebe14
HPN
2815 if (gregdata != NULL
2816 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
930b4cb2
HPN
2817 {
2818 size_t i;
2819 bfd_vma prev_base;
2820 size_t regindex;
2821
2822 /* First, reset the remaining relocs for the next round. */
2823 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2824 = gregdata->n_bpo_relocs;
2825
2826 qsort ((PTR) gregdata->reloc_request,
2827 gregdata->n_max_bpo_relocs,
2828 sizeof (struct bpo_reloc_request),
2829 bpo_reloc_request_sort_fn);
2830
2831 /* Recalculate indexes. When we find a change (however unlikely
2832 after the initial iteration), we know we need to relax again,
2833 since items in the GREG-array are sorted by increasing value and
2834 stored in the relaxation phase. */
2835 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2836 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2837 != i)
2838 {
2839 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2840 = i;
b34976b6 2841 *again = TRUE;
930b4cb2
HPN
2842 }
2843
2844 /* Allocate register numbers (indexing from 0). Stop at the first
2845 non-valid reloc. */
2846 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2847 i < gregdata->n_bpo_relocs;
2848 i++)
2849 {
2850 if (gregdata->reloc_request[i].value > prev_base + 255)
2851 {
2852 regindex++;
2853 prev_base = gregdata->reloc_request[i].value;
2854 }
2855 gregdata->reloc_request[i].regindex = regindex;
2856 gregdata->reloc_request[i].offset
2857 = gregdata->reloc_request[i].value - prev_base;
2858 }
2859
2860 /* If it's not the same as the last time, we need to relax again,
2861 because the size of the section has changed. I'm not sure we
2862 actually need to do any adjustments since the shrinking happens
2863 at the start of this section, but better safe than sorry. */
2864 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2865 {
2866 gregdata->n_allocated_bpo_gregs = regindex + 1;
b34976b6 2867 *again = TRUE;
930b4cb2
HPN
2868 }
2869
eea6121a 2870 bpo_gregs_section->size = (regindex + 1) * 8;
930b4cb2
HPN
2871 }
2872
6cdc0ccc 2873 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
930b4cb2
HPN
2874 {
2875 if (! link_info->keep_memory)
6cdc0ccc
AM
2876 free (isymbuf);
2877 else
930b4cb2 2878 {
6cdc0ccc
AM
2879 /* Cache the symbols for elf_link_input_bfd. */
2880 symtab_hdr->contents = (unsigned char *) isymbuf;
930b4cb2
HPN
2881 }
2882 }
2883
6cdc0ccc
AM
2884 if (internal_relocs != NULL
2885 && elf_section_data (sec)->relocs != internal_relocs)
2886 free (internal_relocs);
2887
eea6121a 2888 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
f60ebe14
HPN
2889 abort ();
2890
eea6121a 2891 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
f60ebe14 2892 {
eea6121a 2893 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
f60ebe14
HPN
2894 *again = TRUE;
2895 }
2896
b34976b6 2897 return TRUE;
930b4cb2
HPN
2898
2899 error_return:
6cdc0ccc
AM
2900 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2901 free (isymbuf);
2902 if (internal_relocs != NULL
2903 && elf_section_data (sec)->relocs != internal_relocs)
2904 free (internal_relocs);
b34976b6 2905 return FALSE;
930b4cb2
HPN
2906}
2907\f
3c3bdf30
NC
2908#define ELF_ARCH bfd_arch_mmix
2909#define ELF_MACHINE_CODE EM_MMIX
2910
2911/* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2912 However, that's too much for something somewhere in the linker part of
2913 BFD; perhaps the start-address has to be a non-zero multiple of this
2914 number, or larger than this number. The symptom is that the linker
2915 complains: "warning: allocated section `.text' not in segment". We
2916 settle for 64k; the page-size used in examples is 8k.
2917 #define ELF_MAXPAGESIZE 0x10000
2918
2919 Unfortunately, this causes excessive padding in the supposedly small
2920 for-education programs that are the expected usage (where people would
2921 inspect output). We stick to 256 bytes just to have *some* default
2922 alignment. */
2923#define ELF_MAXPAGESIZE 0x100
2924
2925#define TARGET_BIG_SYM bfd_elf64_mmix_vec
2926#define TARGET_BIG_NAME "elf64-mmix"
2927
2928#define elf_info_to_howto_rel NULL
2929#define elf_info_to_howto mmix_info_to_howto_rela
2930#define elf_backend_relocate_section mmix_elf_relocate_section
2931#define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
930b4cb2
HPN
2932#define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2933
3c3bdf30
NC
2934#define elf_backend_link_output_symbol_hook \
2935 mmix_elf_link_output_symbol_hook
2936#define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2937
2938#define elf_backend_check_relocs mmix_elf_check_relocs
2939#define elf_backend_symbol_processing mmix_elf_symbol_processing
2940
2941#define bfd_elf64_bfd_is_local_label_name \
2942 mmix_elf_is_local_label_name
2943
2944#define elf_backend_may_use_rel_p 0
2945#define elf_backend_may_use_rela_p 1
2946#define elf_backend_default_use_rela_p 1
2947
2948#define elf_backend_can_gc_sections 1
2949#define elf_backend_section_from_bfd_section \
2950 mmix_elf_section_from_bfd_section
2951
f0abc2a1 2952#define bfd_elf64_new_section_hook mmix_elf_new_section_hook
3c3bdf30 2953#define bfd_elf64_bfd_final_link mmix_elf_final_link
930b4cb2 2954#define bfd_elf64_bfd_relax_section mmix_elf_relax_section
3c3bdf30
NC
2955
2956#include "elf64-target.h"