]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf64-sparc.c
* aout-adobe.c: Don't compare against "true" or "false.
[thirdparty/binutils-gdb.git] / bfd / elf64-sparc.c
CommitLineData
252b5132 1/* SPARC-specific support for 64-bit ELF
e2d34d7d 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
37fb6db1 3 Free Software Foundation, Inc.
252b5132
RH
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
f7775d95 25#include "opcode/sparc.h"
252b5132
RH
26
27/* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30/*#define SPARC64_OLD_RELOCS*/
31
32#include "elf/sparc.h"
33
34/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35#define MINUS_ONE (~ (bfd_vma) 0)
36
587ff49e 37static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
99c79b2e
AJ
38 PARAMS ((bfd *));
39static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
252b5132
RH
42static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47static void sparc64_elf_build_plt
99c79b2e 48 PARAMS ((bfd *, unsigned char *, int));
252b5132 49static bfd_vma sparc64_elf_plt_entry_offset
dc810e39 50 PARAMS ((bfd_vma));
252b5132 51static bfd_vma sparc64_elf_plt_ptr_offset
dc810e39 52 PARAMS ((bfd_vma, bfd_vma));
252b5132
RH
53
54static boolean sparc64_elf_check_relocs
99c79b2e
AJ
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
252b5132 57static boolean sparc64_elf_adjust_dynamic_symbol
99c79b2e 58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
252b5132 59static boolean sparc64_elf_size_dynamic_sections
99c79b2e 60 PARAMS ((bfd *, struct bfd_link_info *));
587ff49e
RH
61static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
99c79b2e 65 const char **, flagword *, asection **, bfd_vma *));
5d964dfa
AM
66static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
587ff49e
RH
69static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
252b5132
RH
71
72static boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74
99c79b2e
AJ
75static const char *sparc64_elf_print_symbol_all
76 PARAMS ((bfd *, PTR, asymbol *));
f7775d95
JJ
77static boolean sparc64_elf_relax_section
78 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
252b5132
RH
79static boolean sparc64_elf_relocate_section
80 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
81 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
99c79b2e
AJ
82static boolean sparc64_elf_finish_dynamic_symbol
83 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
84 Elf_Internal_Sym *));
85static boolean sparc64_elf_finish_dynamic_sections
86 PARAMS ((bfd *, struct bfd_link_info *));
252b5132 87static boolean sparc64_elf_object_p PARAMS ((bfd *));
f65054f7
RH
88static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
89static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
90static boolean sparc64_elf_slurp_one_reloc_table
91 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
92static boolean sparc64_elf_slurp_reloc_table
93 PARAMS ((bfd *, asection *, asymbol **, boolean));
94static long sparc64_elf_canonicalize_dynamic_reloc
95 PARAMS ((bfd *, arelent **, asymbol **));
96static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
f51e552e
AM
97static enum elf_reloc_type_class sparc64_elf_reloc_type_class
98 PARAMS ((const Elf_Internal_Rela *));
252b5132
RH
99\f
100/* The relocation "howto" table. */
101
102static bfd_reloc_status_type sparc_elf_notsup_reloc
103 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
104static bfd_reloc_status_type sparc_elf_wdisp16_reloc
105 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
106static bfd_reloc_status_type sparc_elf_hix22_reloc
107 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
108static bfd_reloc_status_type sparc_elf_lox10_reloc
109 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
110
111static reloc_howto_type sparc64_elf_howto_table[] =
112{
113 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
114 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
115 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
116 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
117 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
118 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
bd5e6e7e 119 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0xffffffff,true),
252b5132
RH
120 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
121 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
122 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
123 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
124 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
125 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
126 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
127 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
128 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
129 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
130 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
131 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
132 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
133 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
134 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
135 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
9fc54e19 136 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
252b5132 137#ifndef SPARC64_OLD_RELOCS
bd5e6e7e 138 HOWTO(R_SPARC_PLT32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", false,0,0xffffffff,true),
252b5132 139 /* These aren't implemented yet. */
252b5132
RH
140 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
141 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
142 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
143 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
144 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
145#endif
146 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
147 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
148 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
149 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
150 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
151 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
152 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
153 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
154 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
155 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
156 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
157 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
158 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
159 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
160 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
161 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
162 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
bd5e6e7e 163 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, true),
252b5132
RH
164 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
165 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
166 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
167 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
168 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
169 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
170 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
171 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
172};
173
174struct elf_reloc_map {
175 bfd_reloc_code_real_type bfd_reloc_val;
176 unsigned char elf_reloc_val;
177};
178
dc810e39 179static const struct elf_reloc_map sparc_reloc_map[] =
252b5132
RH
180{
181 { BFD_RELOC_NONE, R_SPARC_NONE, },
182 { BFD_RELOC_16, R_SPARC_16, },
bd5e6e7e 183 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
252b5132
RH
184 { BFD_RELOC_8, R_SPARC_8 },
185 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
186 { BFD_RELOC_CTOR, R_SPARC_64 },
187 { BFD_RELOC_32, R_SPARC_32 },
188 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
189 { BFD_RELOC_HI22, R_SPARC_HI22 },
190 { BFD_RELOC_LO10, R_SPARC_LO10, },
191 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
bd5e6e7e 192 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
252b5132
RH
193 { BFD_RELOC_SPARC22, R_SPARC_22 },
194 { BFD_RELOC_SPARC13, R_SPARC_13 },
195 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
196 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
197 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
198 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
199 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
200 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
201 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
202 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
203 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
204 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
205 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
0f2712ed
NC
206 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
207 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
208 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
209 { BFD_RELOC_SPARC_10, R_SPARC_10 },
210 { BFD_RELOC_SPARC_11, R_SPARC_11 },
211 { BFD_RELOC_SPARC_64, R_SPARC_64 },
212 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
213 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
214 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
215 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
216 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
217 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
218 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
219 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
220 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
221 { BFD_RELOC_SPARC_7, R_SPARC_7 },
222 { BFD_RELOC_SPARC_5, R_SPARC_5 },
223 { BFD_RELOC_SPARC_6, R_SPARC_6 },
224 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
bd5e6e7e
JJ
225#ifndef SPARC64_OLD_RELOCS
226 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
227#endif
0f2712ed
NC
228 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
229 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
230 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
231 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
232 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
233 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
234 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
252b5132
RH
235};
236
237static reloc_howto_type *
238sparc64_elf_reloc_type_lookup (abfd, code)
6c08d697 239 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
240 bfd_reloc_code_real_type code;
241{
242 unsigned int i;
243 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
244 {
245 if (sparc_reloc_map[i].bfd_reloc_val == code)
246 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
247 }
248 return 0;
249}
250
251static void
252sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
6c08d697 253 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
254 arelent *cache_ptr;
255 Elf64_Internal_Rela *dst;
256{
f65054f7
RH
257 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
258 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
259}
260\f
261/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
262 section can represent up to two relocs, we must tell the user to allocate
263 more space. */
435b1e90 264
f65054f7
RH
265static long
266sparc64_elf_get_reloc_upper_bound (abfd, sec)
6c08d697 267 bfd *abfd ATTRIBUTE_UNUSED;
f65054f7
RH
268 asection *sec;
269{
270 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
271}
272
273static long
274sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
275 bfd *abfd;
276{
277 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
278}
279
435b1e90 280/* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
f65054f7
RH
281 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
282 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
283 for the same location, R_SPARC_LO10 and R_SPARC_13. */
284
285static boolean
286sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
287 bfd *abfd;
288 asection *asect;
289 Elf_Internal_Shdr *rel_hdr;
290 asymbol **symbols;
291 boolean dynamic;
292{
f65054f7
RH
293 PTR allocated = NULL;
294 bfd_byte *native_relocs;
295 arelent *relent;
296 unsigned int i;
297 int entsize;
298 bfd_size_type count;
299 arelent *relents;
300
dc810e39 301 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
f65054f7
RH
302 if (allocated == NULL)
303 goto error_return;
304
305 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
dc810e39 306 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
f65054f7
RH
307 goto error_return;
308
309 native_relocs = (bfd_byte *) allocated;
310
311 relents = asect->relocation + asect->reloc_count;
312
313 entsize = rel_hdr->sh_entsize;
314 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
435b1e90 315
f65054f7
RH
316 count = rel_hdr->sh_size / entsize;
317
318 for (i = 0, relent = relents; i < count;
319 i++, relent++, native_relocs += entsize)
320 {
321 Elf_Internal_Rela rela;
322
323 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
324
325 /* The address of an ELF reloc is section relative for an object
326 file, and absolute for an executable file or shared library.
327 The address of a normal BFD reloc is always section relative,
328 and the address of a dynamic reloc is absolute.. */
329 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
330 relent->address = rela.r_offset;
331 else
332 relent->address = rela.r_offset - asect->vma;
333
334 if (ELF64_R_SYM (rela.r_info) == 0)
335 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
336 else
337 {
338 asymbol **ps, *s;
339
340 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
341 s = *ps;
342
343 /* Canonicalize ELF section symbols. FIXME: Why? */
344 if ((s->flags & BSF_SECTION_SYM) == 0)
345 relent->sym_ptr_ptr = ps;
346 else
347 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
348 }
349
350 relent->addend = rela.r_addend;
351
352 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
353 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
354 {
355 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
356 relent[1].address = relent->address;
357 relent++;
358 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
359 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
360 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
361 }
362 else
363 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
364 }
365
366 asect->reloc_count += relent - relents;
367
368 if (allocated != NULL)
369 free (allocated);
370
371 return true;
372
373 error_return:
374 if (allocated != NULL)
375 free (allocated);
376 return false;
377}
378
379/* Read in and swap the external relocs. */
380
381static boolean
382sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
383 bfd *abfd;
384 asection *asect;
385 asymbol **symbols;
386 boolean dynamic;
387{
388 struct bfd_elf_section_data * const d = elf_section_data (asect);
389 Elf_Internal_Shdr *rel_hdr;
390 Elf_Internal_Shdr *rel_hdr2;
dc810e39 391 bfd_size_type amt;
f65054f7
RH
392
393 if (asect->relocation != NULL)
394 return true;
395
396 if (! dynamic)
397 {
398 if ((asect->flags & SEC_RELOC) == 0
399 || asect->reloc_count == 0)
400 return true;
401
402 rel_hdr = &d->rel_hdr;
403 rel_hdr2 = d->rel_hdr2;
404
405 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
406 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
407 }
408 else
409 {
410 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
411 case because relocations against this section may use the
412 dynamic symbol table, and in that case bfd_section_from_shdr
413 in elf.c does not update the RELOC_COUNT. */
414 if (asect->_raw_size == 0)
415 return true;
416
417 rel_hdr = &d->this_hdr;
d9bc7a44 418 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
f65054f7
RH
419 rel_hdr2 = NULL;
420 }
421
dc810e39
AM
422 amt = asect->reloc_count;
423 amt *= 2 * sizeof (arelent);
424 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
f65054f7
RH
425 if (asect->relocation == NULL)
426 return false;
427
428 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
429 asect->reloc_count = 0;
435b1e90 430
f65054f7
RH
431 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
432 dynamic))
433 return false;
435b1e90
KH
434
435 if (rel_hdr2
f65054f7
RH
436 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
437 dynamic))
438 return false;
439
440 return true;
441}
442
443/* Canonicalize the dynamic relocation entries. Note that we return
444 the dynamic relocations as a single block, although they are
445 actually associated with particular sections; the interface, which
446 was designed for SunOS style shared libraries, expects that there
447 is only one set of dynamic relocs. Any section that was actually
448 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
449 the dynamic symbol table, is considered to be a dynamic reloc
450 section. */
451
452static long
453sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
454 bfd *abfd;
455 arelent **storage;
456 asymbol **syms;
457{
458 asection *s;
459 long ret;
460
461 if (elf_dynsymtab (abfd) == 0)
462 {
463 bfd_set_error (bfd_error_invalid_operation);
464 return -1;
465 }
466
467 ret = 0;
468 for (s = abfd->sections; s != NULL; s = s->next)
469 {
470 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
471 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
472 {
473 arelent *p;
474 long count, i;
475
476 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
477 return -1;
478 count = s->reloc_count;
479 p = s->relocation;
480 for (i = 0; i < count; i++)
481 *storage++ = p++;
482 ret += count;
483 }
484 }
485
486 *storage = NULL;
487
488 return ret;
489}
490
491/* Write out the relocs. */
492
493static void
494sparc64_elf_write_relocs (abfd, sec, data)
495 bfd *abfd;
496 asection *sec;
497 PTR data;
498{
499 boolean *failedp = (boolean *) data;
500 Elf_Internal_Shdr *rela_hdr;
37fb6db1 501 Elf64_External_Rela *outbound_relocas, *src_rela;
f65054f7
RH
502 unsigned int idx, count;
503 asymbol *last_sym = 0;
504 int last_sym_idx = 0;
505
506 /* If we have already failed, don't do anything. */
507 if (*failedp)
508 return;
509
510 if ((sec->flags & SEC_RELOC) == 0)
511 return;
512
513 /* The linker backend writes the relocs out itself, and sets the
514 reloc_count field to zero to inhibit writing them here. Also,
515 sometimes the SEC_RELOC flag gets set even when there aren't any
516 relocs. */
517 if (sec->reloc_count == 0)
518 return;
519
520 /* We can combine two relocs that refer to the same address
521 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
522 latter is R_SPARC_13 with no associated symbol. */
523 count = 0;
524 for (idx = 0; idx < sec->reloc_count; idx++)
525 {
526 bfd_vma addr;
f65054f7
RH
527
528 ++count;
529
530 addr = sec->orelocation[idx]->address;
531 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
532 && idx < sec->reloc_count - 1)
533 {
534 arelent *r = sec->orelocation[idx + 1];
535
536 if (r->howto->type == R_SPARC_13
537 && r->address == addr
538 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
539 && (*r->sym_ptr_ptr)->value == 0)
540 ++idx;
541 }
542 }
543
544 rela_hdr = &elf_section_data (sec)->rel_hdr;
545
546 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
547 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
548 if (rela_hdr->contents == NULL)
549 {
550 *failedp = true;
551 return;
552 }
553
554 /* Figure out whether the relocations are RELA or REL relocations. */
555 if (rela_hdr->sh_type != SHT_RELA)
556 abort ();
557
435b1e90 558 /* orelocation has the data, reloc_count has the count... */
f65054f7 559 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
37fb6db1 560 src_rela = outbound_relocas;
f65054f7
RH
561
562 for (idx = 0; idx < sec->reloc_count; idx++)
563 {
564 Elf_Internal_Rela dst_rela;
f65054f7
RH
565 arelent *ptr;
566 asymbol *sym;
567 int n;
568
569 ptr = sec->orelocation[idx];
f65054f7
RH
570
571 /* The address of an ELF reloc is section relative for an object
572 file, and absolute for an executable file or shared library.
573 The address of a BFD reloc is always section relative. */
574 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
575 dst_rela.r_offset = ptr->address;
576 else
577 dst_rela.r_offset = ptr->address + sec->vma;
578
579 sym = *ptr->sym_ptr_ptr;
580 if (sym == last_sym)
581 n = last_sym_idx;
582 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
583 n = STN_UNDEF;
584 else
585 {
586 last_sym = sym;
587 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
588 if (n < 0)
589 {
590 *failedp = true;
591 return;
592 }
593 last_sym_idx = n;
594 }
595
596 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
597 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
598 && ! _bfd_elf_validate_reloc (abfd, ptr))
599 {
600 *failedp = true;
601 return;
602 }
603
604 if (ptr->howto->type == R_SPARC_LO10
605 && idx < sec->reloc_count - 1)
606 {
607 arelent *r = sec->orelocation[idx + 1];
608
609 if (r->howto->type == R_SPARC_13
610 && r->address == ptr->address
611 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
612 && (*r->sym_ptr_ptr)->value == 0)
613 {
614 idx++;
615 dst_rela.r_info
616 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
617 R_SPARC_OLO10));
618 }
619 else
620 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
621 }
622 else
623 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
624
625 dst_rela.r_addend = ptr->addend;
626 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
37fb6db1 627 ++src_rela;
f65054f7 628 }
252b5132 629}
587ff49e
RH
630\f
631/* Sparc64 ELF linker hash table. */
632
633struct sparc64_elf_app_reg
634{
635 unsigned char bind;
636 unsigned short shndx;
637 bfd *abfd;
638 char *name;
639};
640
641struct sparc64_elf_link_hash_table
642{
643 struct elf_link_hash_table root;
644
645 struct sparc64_elf_app_reg app_regs [4];
646};
647
648/* Get the Sparc64 ELF linker hash table from a link_info structure. */
649
650#define sparc64_elf_hash_table(p) \
651 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
435b1e90 652
587ff49e
RH
653/* Create a Sparc64 ELF linker hash table. */
654
655static struct bfd_link_hash_table *
656sparc64_elf_bfd_link_hash_table_create (abfd)
657 bfd *abfd;
658{
659 struct sparc64_elf_link_hash_table *ret;
dc810e39 660 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
587ff49e 661
e2d34d7d 662 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
587ff49e
RH
663 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
664 return NULL;
665
666 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
667 _bfd_elf_link_hash_newfunc))
668 {
e2d34d7d 669 free (ret);
587ff49e
RH
670 return NULL;
671 }
672
673 return &ret->root.root;
674}
252b5132
RH
675\f
676/* Utility for performing the standard initial work of an instruction
677 relocation.
678 *PRELOCATION will contain the relocated item.
679 *PINSN will contain the instruction from the input stream.
680 If the result is `bfd_reloc_other' the caller can continue with
681 performing the relocation. Otherwise it must stop and return the
682 value to its caller. */
683
684static bfd_reloc_status_type
685init_insn_reloc (abfd,
686 reloc_entry,
687 symbol,
688 data,
689 input_section,
690 output_bfd,
691 prelocation,
692 pinsn)
693 bfd *abfd;
694 arelent *reloc_entry;
695 asymbol *symbol;
696 PTR data;
697 asection *input_section;
698 bfd *output_bfd;
699 bfd_vma *prelocation;
700 bfd_vma *pinsn;
701{
702 bfd_vma relocation;
703 reloc_howto_type *howto = reloc_entry->howto;
704
705 if (output_bfd != (bfd *) NULL
706 && (symbol->flags & BSF_SECTION_SYM) == 0
707 && (! howto->partial_inplace
708 || reloc_entry->addend == 0))
709 {
710 reloc_entry->address += input_section->output_offset;
711 return bfd_reloc_ok;
712 }
713
82e51918 714 /* This works because partial_inplace is false. */
252b5132
RH
715 if (output_bfd != NULL)
716 return bfd_reloc_continue;
717
718 if (reloc_entry->address > input_section->_cooked_size)
719 return bfd_reloc_outofrange;
720
721 relocation = (symbol->value
722 + symbol->section->output_section->vma
723 + symbol->section->output_offset);
724 relocation += reloc_entry->addend;
725 if (howto->pc_relative)
726 {
727 relocation -= (input_section->output_section->vma
728 + input_section->output_offset);
729 relocation -= reloc_entry->address;
730 }
731
732 *prelocation = relocation;
733 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
734 return bfd_reloc_other;
735}
736
737/* For unsupported relocs. */
738
739static bfd_reloc_status_type
740sparc_elf_notsup_reloc (abfd,
741 reloc_entry,
742 symbol,
743 data,
744 input_section,
745 output_bfd,
746 error_message)
6c08d697
JJ
747 bfd *abfd ATTRIBUTE_UNUSED;
748 arelent *reloc_entry ATTRIBUTE_UNUSED;
749 asymbol *symbol ATTRIBUTE_UNUSED;
750 PTR data ATTRIBUTE_UNUSED;
751 asection *input_section ATTRIBUTE_UNUSED;
752 bfd *output_bfd ATTRIBUTE_UNUSED;
753 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
754{
755 return bfd_reloc_notsupported;
756}
757
758/* Handle the WDISP16 reloc. */
759
760static bfd_reloc_status_type
761sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
762 output_bfd, error_message)
763 bfd *abfd;
764 arelent *reloc_entry;
765 asymbol *symbol;
766 PTR data;
767 asection *input_section;
768 bfd *output_bfd;
6c08d697 769 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
770{
771 bfd_vma relocation;
772 bfd_vma insn;
773 bfd_reloc_status_type status;
774
775 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
776 input_section, output_bfd, &relocation, &insn);
777 if (status != bfd_reloc_other)
778 return status;
779
dc810e39
AM
780 insn &= ~ (bfd_vma) 0x303fff;
781 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
252b5132
RH
782 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
783
784 if ((bfd_signed_vma) relocation < - 0x40000
785 || (bfd_signed_vma) relocation > 0x3ffff)
786 return bfd_reloc_overflow;
787 else
788 return bfd_reloc_ok;
789}
790
791/* Handle the HIX22 reloc. */
792
793static bfd_reloc_status_type
794sparc_elf_hix22_reloc (abfd,
795 reloc_entry,
796 symbol,
797 data,
798 input_section,
799 output_bfd,
800 error_message)
801 bfd *abfd;
802 arelent *reloc_entry;
803 asymbol *symbol;
804 PTR data;
805 asection *input_section;
806 bfd *output_bfd;
6c08d697 807 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
808{
809 bfd_vma relocation;
810 bfd_vma insn;
811 bfd_reloc_status_type status;
812
813 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
814 input_section, output_bfd, &relocation, &insn);
815 if (status != bfd_reloc_other)
816 return status;
817
818 relocation ^= MINUS_ONE;
dc810e39 819 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
252b5132
RH
820 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
821
822 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
823 return bfd_reloc_overflow;
824 else
825 return bfd_reloc_ok;
826}
827
828/* Handle the LOX10 reloc. */
829
830static bfd_reloc_status_type
831sparc_elf_lox10_reloc (abfd,
832 reloc_entry,
833 symbol,
834 data,
835 input_section,
836 output_bfd,
837 error_message)
838 bfd *abfd;
839 arelent *reloc_entry;
840 asymbol *symbol;
841 PTR data;
842 asection *input_section;
843 bfd *output_bfd;
6c08d697 844 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
845{
846 bfd_vma relocation;
847 bfd_vma insn;
848 bfd_reloc_status_type status;
849
850 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
851 input_section, output_bfd, &relocation, &insn);
852 if (status != bfd_reloc_other)
853 return status;
854
dc810e39 855 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
252b5132
RH
856 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
857
858 return bfd_reloc_ok;
859}
860\f
861/* PLT/GOT stuff */
862
863/* Both the headers and the entries are icache aligned. */
864#define PLT_ENTRY_SIZE 32
865#define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
866#define LARGE_PLT_THRESHOLD 32768
867#define GOT_RESERVED_ENTRIES 1
868
869#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
870
252b5132
RH
871/* Fill in the .plt section. */
872
873static void
874sparc64_elf_build_plt (output_bfd, contents, nentries)
875 bfd *output_bfd;
876 unsigned char *contents;
877 int nentries;
878{
879 const unsigned int nop = 0x01000000;
880 int i, j;
435b1e90 881
252b5132
RH
882 /* The first four entries are reserved, and are initially undefined.
883 We fill them with `illtrap 0' to force ld.so to do something. */
884
885 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
dc810e39 886 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
252b5132
RH
887
888 /* The first 32768 entries are close enough to plt1 to get there via
889 a straight branch. */
890
891 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
892 {
893 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
894 unsigned int sethi, ba;
895
896 /* sethi (. - plt0), %g1 */
897 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
898
a11c78e7
RH
899 /* ba,a,pt %xcc, plt1 */
900 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
252b5132 901
dc810e39
AM
902 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
903 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
904 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
905 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
906 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
907 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
908 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
909 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
252b5132
RH
910 }
911
912 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
913 160: 160 entries and 160 pointers. This is to separate code from data,
914 which is much friendlier on the cache. */
435b1e90 915
252b5132
RH
916 for (; i < nentries; i += 160)
917 {
918 int block = (i + 160 <= nentries ? 160 : nentries - i);
919 for (j = 0; j < block; ++j)
920 {
921 unsigned char *entry, *ptr;
922 unsigned int ldx;
923
924 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
925 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
926
e62de969
JJ
927 /* ldx [%o7 + ptr - (entry+4)], %g1 */
928 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
252b5132 929
dc810e39
AM
930 /* mov %o7,%g5
931 call .+8
932 nop
933 ldx [%o7+P],%g1
934 jmpl %o7+%g1,%g1
935 mov %g5,%o7 */
936 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
937 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
938 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
939 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
940 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
941 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
942
943 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
252b5132
RH
944 }
945 }
946}
947
948/* Return the offset of a particular plt entry within the .plt section. */
949
950static bfd_vma
951sparc64_elf_plt_entry_offset (index)
dc810e39 952 bfd_vma index;
252b5132 953{
dc810e39 954 bfd_vma block, ofs;
252b5132
RH
955
956 if (index < LARGE_PLT_THRESHOLD)
957 return index * PLT_ENTRY_SIZE;
958
959 /* See above for details. */
960
961 block = (index - LARGE_PLT_THRESHOLD) / 160;
962 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
963
dc810e39 964 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
252b5132
RH
965}
966
967static bfd_vma
968sparc64_elf_plt_ptr_offset (index, max)
dc810e39
AM
969 bfd_vma index;
970 bfd_vma max;
252b5132 971{
dc810e39 972 bfd_vma block, ofs, last;
252b5132
RH
973
974 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
975
976 /* See above for details. */
977
dc810e39 978 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
a11c78e7
RH
979 ofs = index - block;
980 if (block + 160 > max)
981 last = (max - LARGE_PLT_THRESHOLD) % 160;
982 else
983 last = 160;
252b5132 984
a11c78e7 985 return (block * PLT_ENTRY_SIZE
252b5132
RH
986 + last * 6*4
987 + ofs * 8);
988}
252b5132
RH
989\f
990/* Look through the relocs for a section during the first phase, and
991 allocate space in the global offset table or procedure linkage
992 table. */
993
994static boolean
995sparc64_elf_check_relocs (abfd, info, sec, relocs)
996 bfd *abfd;
997 struct bfd_link_info *info;
998 asection *sec;
999 const Elf_Internal_Rela *relocs;
1000{
1001 bfd *dynobj;
1002 Elf_Internal_Shdr *symtab_hdr;
1003 struct elf_link_hash_entry **sym_hashes;
1004 bfd_vma *local_got_offsets;
1005 const Elf_Internal_Rela *rel;
1006 const Elf_Internal_Rela *rel_end;
1007 asection *sgot;
1008 asection *srelgot;
1009 asection *sreloc;
1010
1011 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1012 return true;
1013
1014 dynobj = elf_hash_table (info)->dynobj;
1015 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1016 sym_hashes = elf_sym_hashes (abfd);
1017 local_got_offsets = elf_local_got_offsets (abfd);
1018
1019 sgot = NULL;
1020 srelgot = NULL;
1021 sreloc = NULL;
1022
d9bc7a44 1023 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
252b5132
RH
1024 for (rel = relocs; rel < rel_end; rel++)
1025 {
1026 unsigned long r_symndx;
1027 struct elf_link_hash_entry *h;
1028
1029 r_symndx = ELF64_R_SYM (rel->r_info);
1030 if (r_symndx < symtab_hdr->sh_info)
1031 h = NULL;
1032 else
1033 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1034
f65054f7 1035 switch (ELF64_R_TYPE_ID (rel->r_info))
252b5132
RH
1036 {
1037 case R_SPARC_GOT10:
1038 case R_SPARC_GOT13:
1039 case R_SPARC_GOT22:
1040 /* This symbol requires a global offset table entry. */
1041
1042 if (dynobj == NULL)
1043 {
1044 /* Create the .got section. */
1045 elf_hash_table (info)->dynobj = dynobj = abfd;
1046 if (! _bfd_elf_create_got_section (dynobj, info))
1047 return false;
1048 }
1049
1050 if (sgot == NULL)
1051 {
1052 sgot = bfd_get_section_by_name (dynobj, ".got");
1053 BFD_ASSERT (sgot != NULL);
1054 }
1055
1056 if (srelgot == NULL && (h != NULL || info->shared))
1057 {
1058 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1059 if (srelgot == NULL)
1060 {
1061 srelgot = bfd_make_section (dynobj, ".rela.got");
1062 if (srelgot == NULL
1063 || ! bfd_set_section_flags (dynobj, srelgot,
1064 (SEC_ALLOC
1065 | SEC_LOAD
1066 | SEC_HAS_CONTENTS
1067 | SEC_IN_MEMORY
1068 | SEC_LINKER_CREATED
1069 | SEC_READONLY))
1070 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1071 return false;
1072 }
1073 }
1074
1075 if (h != NULL)
1076 {
1077 if (h->got.offset != (bfd_vma) -1)
1078 {
1079 /* We have already allocated space in the .got. */
1080 break;
1081 }
1082 h->got.offset = sgot->_raw_size;
1083
1084 /* Make sure this symbol is output as a dynamic symbol. */
1085 if (h->dynindx == -1)
1086 {
1087 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1088 return false;
1089 }
1090
1091 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1092 }
1093 else
1094 {
1095 /* This is a global offset table entry for a local
1096 symbol. */
1097 if (local_got_offsets == NULL)
1098 {
dc810e39 1099 bfd_size_type size;
252b5132
RH
1100 register unsigned int i;
1101
dc810e39
AM
1102 size = symtab_hdr->sh_info;
1103 size *= sizeof (bfd_vma);
252b5132
RH
1104 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1105 if (local_got_offsets == NULL)
1106 return false;
1107 elf_local_got_offsets (abfd) = local_got_offsets;
1108 for (i = 0; i < symtab_hdr->sh_info; i++)
1109 local_got_offsets[i] = (bfd_vma) -1;
1110 }
1111 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1112 {
1113 /* We have already allocated space in the .got. */
1114 break;
1115 }
1116 local_got_offsets[r_symndx] = sgot->_raw_size;
1117
1118 if (info->shared)
1119 {
1120 /* If we are generating a shared object, we need to
1121 output a R_SPARC_RELATIVE reloc so that the
1122 dynamic linker can adjust this GOT entry. */
1123 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1124 }
1125 }
1126
1127 sgot->_raw_size += 8;
1128
1129#if 0
1130 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1131 unsigned numbers. If we permit ourselves to modify
1132 code so we get sethi/xor, this could work.
1133 Question: do we consider conditionally re-enabling
1134 this for -fpic, once we know about object code models? */
1135 /* If the .got section is more than 0x1000 bytes, we add
1136 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1137 bit relocations have a greater chance of working. */
1138 if (sgot->_raw_size >= 0x1000
1139 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1140 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1141#endif
1142
1143 break;
1144
1145 case R_SPARC_WPLT30:
1146 case R_SPARC_PLT32:
1147 case R_SPARC_HIPLT22:
1148 case R_SPARC_LOPLT10:
1149 case R_SPARC_PCPLT32:
1150 case R_SPARC_PCPLT22:
1151 case R_SPARC_PCPLT10:
1152 case R_SPARC_PLT64:
1153 /* This symbol requires a procedure linkage table entry. We
1154 actually build the entry in adjust_dynamic_symbol,
1155 because this might be a case of linking PIC code without
1156 linking in any dynamic objects, in which case we don't
1157 need to generate a procedure linkage table after all. */
1158
1159 if (h == NULL)
1160 {
1161 /* It does not make sense to have a procedure linkage
1162 table entry for a local symbol. */
1163 bfd_set_error (bfd_error_bad_value);
1164 return false;
1165 }
1166
1167 /* Make sure this symbol is output as a dynamic symbol. */
1168 if (h->dynindx == -1)
1169 {
1170 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1171 return false;
1172 }
1173
1174 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
bd5e6e7e
JJ
1175 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1176 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1177 break;
1178 /* Fall through. */
252b5132
RH
1179 case R_SPARC_PC10:
1180 case R_SPARC_PC22:
1181 case R_SPARC_PC_HH22:
1182 case R_SPARC_PC_HM10:
1183 case R_SPARC_PC_LM22:
1184 if (h != NULL
1185 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1186 break;
1187 /* Fall through. */
1188 case R_SPARC_DISP8:
1189 case R_SPARC_DISP16:
1190 case R_SPARC_DISP32:
1191 case R_SPARC_DISP64:
1192 case R_SPARC_WDISP30:
1193 case R_SPARC_WDISP22:
1194 case R_SPARC_WDISP19:
1195 case R_SPARC_WDISP16:
1196 if (h == NULL)
1197 break;
1198 /* Fall through. */
1199 case R_SPARC_8:
1200 case R_SPARC_16:
1201 case R_SPARC_32:
1202 case R_SPARC_HI22:
1203 case R_SPARC_22:
1204 case R_SPARC_13:
1205 case R_SPARC_LO10:
1206 case R_SPARC_UA32:
1207 case R_SPARC_10:
1208 case R_SPARC_11:
1209 case R_SPARC_64:
1210 case R_SPARC_OLO10:
1211 case R_SPARC_HH22:
1212 case R_SPARC_HM10:
1213 case R_SPARC_LM22:
1214 case R_SPARC_7:
1215 case R_SPARC_5:
1216 case R_SPARC_6:
1217 case R_SPARC_HIX22:
1218 case R_SPARC_LOX10:
1219 case R_SPARC_H44:
1220 case R_SPARC_M44:
1221 case R_SPARC_L44:
1222 case R_SPARC_UA64:
1223 case R_SPARC_UA16:
1224 /* When creating a shared object, we must copy these relocs
1225 into the output file. We create a reloc section in
435b1e90 1226 dynobj and make room for the reloc.
252b5132
RH
1227
1228 But don't do this for debugging sections -- this shows up
1229 with DWARF2 -- first because they are not loaded, and
1230 second because DWARF sez the debug info is not to be
1231 biased by the load address. */
1232 if (info->shared && (sec->flags & SEC_ALLOC))
1233 {
1234 if (sreloc == NULL)
1235 {
1236 const char *name;
1237
1238 name = (bfd_elf_string_from_elf_section
1239 (abfd,
1240 elf_elfheader (abfd)->e_shstrndx,
1241 elf_section_data (sec)->rel_hdr.sh_name));
1242 if (name == NULL)
1243 return false;
1244
1245 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1246 && strcmp (bfd_get_section_name (abfd, sec),
1247 name + 5) == 0);
1248
1249 sreloc = bfd_get_section_by_name (dynobj, name);
1250 if (sreloc == NULL)
1251 {
1252 flagword flags;
1253
1254 sreloc = bfd_make_section (dynobj, name);
1255 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1256 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1257 if ((sec->flags & SEC_ALLOC) != 0)
1258 flags |= SEC_ALLOC | SEC_LOAD;
1259 if (sreloc == NULL
1260 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1261 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1262 return false;
1263 }
db6751f2
JJ
1264 if (sec->flags & SEC_READONLY)
1265 info->flags |= DF_TEXTREL;
252b5132
RH
1266 }
1267
1268 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1269 }
1270 break;
1271
1272 case R_SPARC_REGISTER:
1273 /* Nothing to do. */
1274 break;
1275
1276 default:
435b1e90 1277 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
8f615d07 1278 bfd_archive_filename (abfd),
f65054f7 1279 ELF64_R_TYPE_ID (rel->r_info));
252b5132
RH
1280 return false;
1281 }
1282 }
1283
1284 return true;
1285}
1286
587ff49e
RH
1287/* Hook called by the linker routine which adds symbols from an object
1288 file. We use it for STT_REGISTER symbols. */
1289
1290static boolean
1291sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1292 bfd *abfd;
1293 struct bfd_link_info *info;
1294 const Elf_Internal_Sym *sym;
1295 const char **namep;
6c08d697
JJ
1296 flagword *flagsp ATTRIBUTE_UNUSED;
1297 asection **secp ATTRIBUTE_UNUSED;
1298 bfd_vma *valp ATTRIBUTE_UNUSED;
587ff49e 1299{
8f615d07 1300 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
587ff49e
RH
1301
1302 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1303 {
1304 int reg;
1305 struct sparc64_elf_app_reg *p;
435b1e90 1306
587ff49e
RH
1307 reg = (int)sym->st_value;
1308 switch (reg & ~1)
1309 {
1310 case 2: reg -= 2; break;
1311 case 6: reg -= 4; break;
1312 default:
1313 (*_bfd_error_handler)
1314 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
8f615d07 1315 bfd_archive_filename (abfd));
587ff49e
RH
1316 return false;
1317 }
1318
1319 if (info->hash->creator != abfd->xvec
1320 || (abfd->flags & DYNAMIC) != 0)
1321 {
1322 /* STT_REGISTER only works when linking an elf64_sparc object.
1323 If STT_REGISTER comes from a dynamic object, don't put it into
1324 the output bfd. The dynamic linker will recheck it. */
1325 *namep = NULL;
1326 return true;
1327 }
1328
1329 p = sparc64_elf_hash_table(info)->app_regs + reg;
1330
1331 if (p->name != NULL && strcmp (p->name, *namep))
1332 {
1333 (*_bfd_error_handler)
ca09e32b 1334 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
8f615d07 1335 (int) sym->st_value,
ca09e32b 1336 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
8f615d07 1337 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
587ff49e
RH
1338 return false;
1339 }
1340
1341 if (p->name == NULL)
1342 {
1343 if (**namep)
1344 {
1345 struct elf_link_hash_entry *h;
435b1e90 1346
587ff49e
RH
1347 h = (struct elf_link_hash_entry *)
1348 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1349
1350 if (h != NULL)
1351 {
1352 unsigned char type = h->type;
1353
8f615d07
AM
1354 if (type > STT_FUNC)
1355 type = 0;
1356 (*_bfd_error_handler)
ca09e32b
NC
1357 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1358 *namep, bfd_archive_filename (abfd),
8f615d07 1359 stt_types[type], bfd_archive_filename (p->abfd));
587ff49e
RH
1360 return false;
1361 }
1362
1363 p->name = bfd_hash_allocate (&info->hash->table,
1364 strlen (*namep) + 1);
1365 if (!p->name)
1366 return false;
1367
1368 strcpy (p->name, *namep);
1369 }
1370 else
1371 p->name = "";
1372 p->bind = ELF_ST_BIND (sym->st_info);
1373 p->abfd = abfd;
1374 p->shndx = sym->st_shndx;
1375 }
1376 else
1377 {
1378 if (p->bind == STB_WEAK
1379 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1380 {
1381 p->bind = STB_GLOBAL;
1382 p->abfd = abfd;
1383 }
1384 }
1385 *namep = NULL;
1386 return true;
1387 }
4ab82700 1388 else if (*namep && **namep
986b7daa 1389 && info->hash->creator == abfd->xvec)
587ff49e
RH
1390 {
1391 int i;
1392 struct sparc64_elf_app_reg *p;
1393
1394 p = sparc64_elf_hash_table(info)->app_regs;
1395 for (i = 0; i < 4; i++, p++)
1396 if (p->name != NULL && ! strcmp (p->name, *namep))
1397 {
1398 unsigned char type = ELF_ST_TYPE (sym->st_info);
1399
8f615d07
AM
1400 if (type > STT_FUNC)
1401 type = 0;
1402 (*_bfd_error_handler)
ca09e32b
NC
1403 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1404 *namep, stt_types[type], bfd_archive_filename (abfd),
1405 bfd_archive_filename (p->abfd));
587ff49e
RH
1406 return false;
1407 }
1408 }
1409 return true;
1410}
1411
1412/* This function takes care of emiting STT_REGISTER symbols
1413 which we cannot easily keep in the symbol hash table. */
1414
1415static boolean
1416sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
6c08d697 1417 bfd *output_bfd ATTRIBUTE_UNUSED;
587ff49e
RH
1418 struct bfd_link_info *info;
1419 PTR finfo;
1420 boolean (*func) PARAMS ((PTR, const char *,
1421 Elf_Internal_Sym *, asection *));
1422{
1423 int reg;
1424 struct sparc64_elf_app_reg *app_regs =
1425 sparc64_elf_hash_table(info)->app_regs;
1426 Elf_Internal_Sym sym;
1427
1428 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1429 at the end of the dynlocal list, so they came at the end of the local
1430 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1431 to back up symtab->sh_info. */
1432 if (elf_hash_table (info)->dynlocal)
1433 {
1fa0ddb3
RH
1434 bfd * dynobj = elf_hash_table (info)->dynobj;
1435 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
587ff49e
RH
1436 struct elf_link_local_dynamic_entry *e;
1437
1438 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1439 if (e->input_indx == -1)
1440 break;
1441 if (e)
1442 {
1443 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1444 = e->dynindx;
1445 }
1446 }
1447
1448 if (info->strip == strip_all)
1449 return true;
1450
1451 for (reg = 0; reg < 4; reg++)
1452 if (app_regs [reg].name != NULL)
1453 {
1454 if (info->strip == strip_some
1455 && bfd_hash_lookup (info->keep_hash,
1456 app_regs [reg].name,
1457 false, false) == NULL)
1458 continue;
1459
1460 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1461 sym.st_size = 0;
1462 sym.st_other = 0;
1463 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1464 sym.st_shndx = app_regs [reg].shndx;
1465 if (! (*func) (finfo, app_regs [reg].name, &sym,
1466 sym.st_shndx == SHN_ABS
1467 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1468 return false;
1469 }
1470
1471 return true;
1472}
1473
1474static int
1475sparc64_elf_get_symbol_type (elf_sym, type)
1476 Elf_Internal_Sym * elf_sym;
1477 int type;
1478{
1479 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1480 return STT_REGISTER;
1481 else
1482 return type;
1483}
1484
1485/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1486 even in SHN_UNDEF section. */
1487
1488static void
1489sparc64_elf_symbol_processing (abfd, asym)
6c08d697 1490 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
1491 asymbol *asym;
1492{
1493 elf_symbol_type *elfsym;
1494
1495 elfsym = (elf_symbol_type *) asym;
1496 if (elfsym->internal_elf_sym.st_info
1497 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1498 {
1499 asym->flags |= BSF_GLOBAL;
1500 }
1501}
1502
252b5132
RH
1503/* Adjust a symbol defined by a dynamic object and referenced by a
1504 regular object. The current definition is in some section of the
1505 dynamic object, but we're not including those sections. We have to
1506 change the definition to something the rest of the link can
1507 understand. */
1508
1509static boolean
1510sparc64_elf_adjust_dynamic_symbol (info, h)
1511 struct bfd_link_info *info;
1512 struct elf_link_hash_entry *h;
1513{
1514 bfd *dynobj;
1515 asection *s;
1516 unsigned int power_of_two;
1517
1518 dynobj = elf_hash_table (info)->dynobj;
1519
1520 /* Make sure we know what is going on here. */
1521 BFD_ASSERT (dynobj != NULL
1522 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1523 || h->weakdef != NULL
1524 || ((h->elf_link_hash_flags
1525 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1526 && (h->elf_link_hash_flags
1527 & ELF_LINK_HASH_REF_REGULAR) != 0
1528 && (h->elf_link_hash_flags
1529 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1530
1531 /* If this is a function, put it in the procedure linkage table. We
1532 will fill in the contents of the procedure linkage table later
1533 (although we could actually do it here). The STT_NOTYPE
1534 condition is a hack specifically for the Oracle libraries
1535 delivered for Solaris; for some inexplicable reason, they define
1536 some of their functions as STT_NOTYPE when they really should be
1537 STT_FUNC. */
1538 if (h->type == STT_FUNC
1539 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1540 || (h->type == STT_NOTYPE
1541 && (h->root.type == bfd_link_hash_defined
1542 || h->root.type == bfd_link_hash_defweak)
1543 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1544 {
1545 if (! elf_hash_table (info)->dynamic_sections_created)
1546 {
1547 /* This case can occur if we saw a WPLT30 reloc in an input
1548 file, but none of the input files were dynamic objects.
1549 In such a case, we don't actually need to build a
1550 procedure linkage table, and we can just do a WDISP30
1551 reloc instead. */
1552 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1553 return true;
1554 }
1555
1556 s = bfd_get_section_by_name (dynobj, ".plt");
1557 BFD_ASSERT (s != NULL);
1558
1559 /* The first four bit in .plt is reserved. */
1560 if (s->_raw_size == 0)
1561 s->_raw_size = PLT_HEADER_SIZE;
1562
1563 /* If this symbol is not defined in a regular file, and we are
1564 not generating a shared library, then set the symbol to this
1565 location in the .plt. This is required to make function
1566 pointers compare as equal between the normal executable and
1567 the shared library. */
1568 if (! info->shared
1569 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1570 {
1571 h->root.u.def.section = s;
1572 h->root.u.def.value = s->_raw_size;
1573 }
1574
1575 /* To simplify matters later, just store the plt index here. */
1576 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1577
1578 /* Make room for this entry. */
1579 s->_raw_size += PLT_ENTRY_SIZE;
1580
1581 /* We also need to make an entry in the .rela.plt section. */
1582
1583 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1584 BFD_ASSERT (s != NULL);
1585
252b5132
RH
1586 s->_raw_size += sizeof (Elf64_External_Rela);
1587
1588 /* The procedure linkage table size is bounded by the magnitude
1589 of the offset we can describe in the entry. */
1590 if (s->_raw_size >= (bfd_vma)1 << 32)
1591 {
1592 bfd_set_error (bfd_error_bad_value);
1593 return false;
1594 }
1595
1596 return true;
1597 }
1598
1599 /* If this is a weak symbol, and there is a real definition, the
1600 processor independent code will have arranged for us to see the
1601 real definition first, and we can just use the same value. */
1602 if (h->weakdef != NULL)
1603 {
1604 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1605 || h->weakdef->root.type == bfd_link_hash_defweak);
1606 h->root.u.def.section = h->weakdef->root.u.def.section;
1607 h->root.u.def.value = h->weakdef->root.u.def.value;
1608 return true;
1609 }
1610
1611 /* This is a reference to a symbol defined by a dynamic object which
1612 is not a function. */
1613
1614 /* If we are creating a shared library, we must presume that the
1615 only references to the symbol are via the global offset table.
1616 For such cases we need not do anything here; the relocations will
1617 be handled correctly by relocate_section. */
1618 if (info->shared)
1619 return true;
1620
1621 /* We must allocate the symbol in our .dynbss section, which will
1622 become part of the .bss section of the executable. There will be
1623 an entry for this symbol in the .dynsym section. The dynamic
1624 object will contain position independent code, so all references
1625 from the dynamic object to this symbol will go through the global
1626 offset table. The dynamic linker will use the .dynsym entry to
1627 determine the address it must put in the global offset table, so
1628 both the dynamic object and the regular object will refer to the
1629 same memory location for the variable. */
1630
1631 s = bfd_get_section_by_name (dynobj, ".dynbss");
1632 BFD_ASSERT (s != NULL);
1633
1634 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1635 to copy the initial value out of the dynamic object and into the
1636 runtime process image. We need to remember the offset into the
1637 .rel.bss section we are going to use. */
1638 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1639 {
1640 asection *srel;
1641
1642 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1643 BFD_ASSERT (srel != NULL);
1644 srel->_raw_size += sizeof (Elf64_External_Rela);
1645 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1646 }
1647
1648 /* We need to figure out the alignment required for this symbol. I
1649 have no idea how ELF linkers handle this. 16-bytes is the size
1650 of the largest type that requires hard alignment -- long double. */
1651 power_of_two = bfd_log2 (h->size);
1652 if (power_of_two > 4)
1653 power_of_two = 4;
1654
1655 /* Apply the required alignment. */
1656 s->_raw_size = BFD_ALIGN (s->_raw_size,
1657 (bfd_size_type) (1 << power_of_two));
1658 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1659 {
1660 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1661 return false;
1662 }
1663
1664 /* Define the symbol as being at this point in the section. */
1665 h->root.u.def.section = s;
1666 h->root.u.def.value = s->_raw_size;
1667
1668 /* Increment the section size to make room for the symbol. */
1669 s->_raw_size += h->size;
1670
1671 return true;
1672}
1673
1674/* Set the sizes of the dynamic sections. */
1675
1676static boolean
1677sparc64_elf_size_dynamic_sections (output_bfd, info)
1678 bfd *output_bfd;
1679 struct bfd_link_info *info;
1680{
1681 bfd *dynobj;
1682 asection *s;
252b5132
RH
1683 boolean relplt;
1684
1685 dynobj = elf_hash_table (info)->dynobj;
1686 BFD_ASSERT (dynobj != NULL);
1687
1688 if (elf_hash_table (info)->dynamic_sections_created)
1689 {
1690 /* Set the contents of the .interp section to the interpreter. */
1691 if (! info->shared)
1692 {
1693 s = bfd_get_section_by_name (dynobj, ".interp");
1694 BFD_ASSERT (s != NULL);
1695 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1696 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1697 }
1698 }
1699 else
1700 {
1701 /* We may have created entries in the .rela.got section.
1702 However, if we are not creating the dynamic sections, we will
1703 not actually use these entries. Reset the size of .rela.got,
1704 which will cause it to get stripped from the output file
1705 below. */
1706 s = bfd_get_section_by_name (dynobj, ".rela.got");
1707 if (s != NULL)
1708 s->_raw_size = 0;
1709 }
1710
1711 /* The check_relocs and adjust_dynamic_symbol entry points have
1712 determined the sizes of the various dynamic sections. Allocate
1713 memory for them. */
252b5132
RH
1714 relplt = false;
1715 for (s = dynobj->sections; s != NULL; s = s->next)
1716 {
1717 const char *name;
1718 boolean strip;
1719
1720 if ((s->flags & SEC_LINKER_CREATED) == 0)
1721 continue;
1722
1723 /* It's OK to base decisions on the section name, because none
1724 of the dynobj section names depend upon the input files. */
1725 name = bfd_get_section_name (dynobj, s);
1726
1727 strip = false;
1728
1729 if (strncmp (name, ".rela", 5) == 0)
1730 {
1731 if (s->_raw_size == 0)
1732 {
1733 /* If we don't need this section, strip it from the
1734 output file. This is to handle .rela.bss and
1735 .rel.plt. We must create it in
1736 create_dynamic_sections, because it must be created
1737 before the linker maps input sections to output
1738 sections. The linker does that before
1739 adjust_dynamic_symbol is called, and it is that
1740 function which decides whether anything needs to go
1741 into these sections. */
1742 strip = true;
1743 }
1744 else
1745 {
252b5132
RH
1746 if (strcmp (name, ".rela.plt") == 0)
1747 relplt = true;
1748
1749 /* We use the reloc_count field as a counter if we need
1750 to copy relocs into the output file. */
1751 s->reloc_count = 0;
1752 }
1753 }
1754 else if (strcmp (name, ".plt") != 0
1755 && strncmp (name, ".got", 4) != 0)
1756 {
1757 /* It's not one of our sections, so don't allocate space. */
1758 continue;
1759 }
1760
1761 if (strip)
1762 {
7f8d5fc9 1763 _bfd_strip_section_from_output (info, s);
252b5132
RH
1764 continue;
1765 }
1766
1767 /* Allocate memory for the section contents. Zero the memory
1768 for the benefit of .rela.plt, which has 4 unused entries
1769 at the beginning, and we don't want garbage. */
1770 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1771 if (s->contents == NULL && s->_raw_size != 0)
1772 return false;
1773 }
1774
1775 if (elf_hash_table (info)->dynamic_sections_created)
1776 {
1777 /* Add some entries to the .dynamic section. We fill in the
1778 values later, in sparc64_elf_finish_dynamic_sections, but we
1779 must add the entries now so that we get the correct size for
1780 the .dynamic section. The DT_DEBUG entry is filled in by the
1781 dynamic linker and used by the debugger. */
dc810e39
AM
1782#define add_dynamic_entry(TAG, VAL) \
1783 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1784
587ff49e
RH
1785 int reg;
1786 struct sparc64_elf_app_reg * app_regs;
350836e3 1787 struct elf_strtab_hash *dynstr;
587ff49e
RH
1788 struct elf_link_hash_table *eht = elf_hash_table (info);
1789
dc810e39 1790 if (!info->shared)
252b5132 1791 {
dc810e39 1792 if (!add_dynamic_entry (DT_DEBUG, 0))
252b5132
RH
1793 return false;
1794 }
1795
1796 if (relplt)
1797 {
dc810e39
AM
1798 if (!add_dynamic_entry (DT_PLTGOT, 0)
1799 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1800 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1801 || !add_dynamic_entry (DT_JMPREL, 0))
252b5132
RH
1802 return false;
1803 }
1804
dc810e39
AM
1805 if (!add_dynamic_entry (DT_RELA, 0)
1806 || !add_dynamic_entry (DT_RELASZ, 0)
1807 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
252b5132
RH
1808 return false;
1809
db6751f2 1810 if (info->flags & DF_TEXTREL)
252b5132 1811 {
dc810e39 1812 if (!add_dynamic_entry (DT_TEXTREL, 0))
252b5132
RH
1813 return false;
1814 }
587ff49e
RH
1815
1816 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1817 entries if needed. */
1818 app_regs = sparc64_elf_hash_table (info)->app_regs;
1819 dynstr = eht->dynstr;
1820
1821 for (reg = 0; reg < 4; reg++)
1822 if (app_regs [reg].name != NULL)
1823 {
1824 struct elf_link_local_dynamic_entry *entry, *e;
435b1e90 1825
dc810e39 1826 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
587ff49e
RH
1827 return false;
1828
1829 entry = (struct elf_link_local_dynamic_entry *)
1830 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1831 if (entry == NULL)
1832 return false;
1833
1834 /* We cheat here a little bit: the symbol will not be local, so we
1835 put it at the end of the dynlocal linked list. We will fix it
1836 later on, as we have to fix other fields anyway. */
1837 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1838 entry->isym.st_size = 0;
1839 if (*app_regs [reg].name != '\0')
1840 entry->isym.st_name
2b0f7ef9 1841 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
587ff49e
RH
1842 else
1843 entry->isym.st_name = 0;
1844 entry->isym.st_other = 0;
1845 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1846 STT_REGISTER);
1847 entry->isym.st_shndx = app_regs [reg].shndx;
1848 entry->next = NULL;
1849 entry->input_bfd = output_bfd;
1850 entry->input_indx = -1;
1851
1852 if (eht->dynlocal == NULL)
1853 eht->dynlocal = entry;
1854 else
1855 {
1856 for (e = eht->dynlocal; e->next; e = e->next)
1857 ;
1858 e->next = entry;
1859 }
1860 eht->dynsymcount++;
1861 }
252b5132 1862 }
dc810e39 1863#undef add_dynamic_entry
252b5132 1864
252b5132
RH
1865 return true;
1866}
252b5132 1867\f
f7775d95
JJ
1868#define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1869#define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1870
f7775d95
JJ
1871static boolean
1872sparc64_elf_relax_section (abfd, section, link_info, again)
1873 bfd *abfd ATTRIBUTE_UNUSED;
1874 asection *section ATTRIBUTE_UNUSED;
1875 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1876 boolean *again;
1877{
1878 *again = false;
1879 SET_SEC_DO_RELAX (section);
1880 return true;
1881}
1882\f
e36f7d53
RH
1883/* This is the condition under which finish_dynamic_symbol will be called
1884 from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol
1885 routine, we'll need to do something about initializing any .plt and
1886 .got entries in relocate_section. */
1887#define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1888 ((DYN) \
1889 && ((INFO)->shared \
1890 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1891 && ((H)->dynindx != -1 \
1892 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1893
252b5132
RH
1894/* Relocate a SPARC64 ELF section. */
1895
1896static boolean
1897sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1898 contents, relocs, local_syms, local_sections)
1899 bfd *output_bfd;
1900 struct bfd_link_info *info;
1901 bfd *input_bfd;
1902 asection *input_section;
1903 bfd_byte *contents;
1904 Elf_Internal_Rela *relocs;
1905 Elf_Internal_Sym *local_syms;
1906 asection **local_sections;
1907{
1908 bfd *dynobj;
1909 Elf_Internal_Shdr *symtab_hdr;
1910 struct elf_link_hash_entry **sym_hashes;
1911 bfd_vma *local_got_offsets;
1912 bfd_vma got_base;
1913 asection *sgot;
1914 asection *splt;
1915 asection *sreloc;
1916 Elf_Internal_Rela *rel;
1917 Elf_Internal_Rela *relend;
1918
1919 dynobj = elf_hash_table (info)->dynobj;
1920 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1921 sym_hashes = elf_sym_hashes (input_bfd);
1922 local_got_offsets = elf_local_got_offsets (input_bfd);
1923
1924 if (elf_hash_table(info)->hgot == NULL)
1925 got_base = 0;
1926 else
1927 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1928
1929 sgot = splt = sreloc = NULL;
1930
1931 rel = relocs;
e90fdc1a 1932 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
252b5132
RH
1933 for (; rel < relend; rel++)
1934 {
1935 int r_type;
1936 reloc_howto_type *howto;
6c08d697 1937 unsigned long r_symndx;
252b5132
RH
1938 struct elf_link_hash_entry *h;
1939 Elf_Internal_Sym *sym;
1940 asection *sec;
e36f7d53 1941 bfd_vma relocation, off;
252b5132 1942 bfd_reloc_status_type r;
bd5e6e7e 1943 boolean is_plt = false;
e36f7d53 1944 boolean unresolved_reloc;
252b5132 1945
f65054f7 1946 r_type = ELF64_R_TYPE_ID (rel->r_info);
60dac299 1947 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
252b5132
RH
1948 {
1949 bfd_set_error (bfd_error_bad_value);
1950 return false;
1951 }
1952 howto = sparc64_elf_howto_table + r_type;
1953
1954 r_symndx = ELF64_R_SYM (rel->r_info);
1955
1956 if (info->relocateable)
1957 {
1958 /* This is a relocateable link. We don't have to change
1959 anything, unless the reloc is against a section symbol,
1960 in which case we have to adjust according to where the
1961 section symbol winds up in the output section. */
1962 if (r_symndx < symtab_hdr->sh_info)
1963 {
1964 sym = local_syms + r_symndx;
1965 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1966 {
1967 sec = local_sections[r_symndx];
1968 rel->r_addend += sec->output_offset + sym->st_value;
1969 }
1970 }
1971
1972 continue;
1973 }
1974
1975 /* This is a final link. */
1976 h = NULL;
1977 sym = NULL;
1978 sec = NULL;
e36f7d53 1979 unresolved_reloc = false;
252b5132
RH
1980 if (r_symndx < symtab_hdr->sh_info)
1981 {
1982 sym = local_syms + r_symndx;
1983 sec = local_sections[r_symndx];
f8df10f4 1984 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
252b5132
RH
1985 }
1986 else
1987 {
1988 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1989 while (h->root.type == bfd_link_hash_indirect
1990 || h->root.type == bfd_link_hash_warning)
1991 h = (struct elf_link_hash_entry *) h->root.u.i.link;
e36f7d53
RH
1992
1993 relocation = 0;
252b5132
RH
1994 if (h->root.type == bfd_link_hash_defined
1995 || h->root.type == bfd_link_hash_defweak)
1996 {
252b5132 1997 sec = h->root.u.def.section;
e36f7d53
RH
1998 if (sec->output_section == NULL)
1999 /* Set a flag that will be cleared later if we find a
2000 relocation value for this symbol. output_section
2001 is typically NULL for symbols satisfied by a shared
2002 library. */
2003 unresolved_reloc = true;
252b5132 2004 else
e36f7d53
RH
2005 relocation = (h->root.u.def.value
2006 + sec->output_section->vma
2007 + sec->output_offset);
252b5132
RH
2008 }
2009 else if (h->root.type == bfd_link_hash_undefweak)
e36f7d53 2010 ;
671bae9c
NC
2011 else if (info->shared
2012 && (!info->symbolic || info->allow_shlib_undefined)
3a27a730
L
2013 && !info->no_undefined
2014 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
e36f7d53 2015 ;
252b5132
RH
2016 else
2017 {
2018 if (! ((*info->callbacks->undefined_symbol)
2019 (info, h->root.root.string, input_bfd,
5cc7c785 2020 input_section, rel->r_offset,
3a27a730
L
2021 (!info->shared || info->no_undefined
2022 || ELF_ST_VISIBILITY (h->other)))))
252b5132 2023 return false;
be040dbb
JJ
2024
2025 /* To avoid generating warning messages about truncated
2026 relocations, set the relocation's address to be the same as
2027 the start of this section. */
2028
2029 if (input_section->output_section != NULL)
2030 relocation = input_section->output_section->vma;
2031 else
2032 relocation = 0;
252b5132
RH
2033 }
2034 }
2035
e36f7d53 2036 do_dynreloc:
252b5132
RH
2037 /* When generating a shared object, these relocations are copied
2038 into the output file to be resolved at run time. */
ec338859 2039 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
252b5132
RH
2040 {
2041 switch (r_type)
2042 {
2043 case R_SPARC_PC10:
2044 case R_SPARC_PC22:
2045 case R_SPARC_PC_HH22:
2046 case R_SPARC_PC_HM10:
2047 case R_SPARC_PC_LM22:
2048 if (h != NULL
2049 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2050 break;
2051 /* Fall through. */
2052 case R_SPARC_DISP8:
2053 case R_SPARC_DISP16:
2054 case R_SPARC_DISP32:
b88a866a 2055 case R_SPARC_DISP64:
252b5132
RH
2056 case R_SPARC_WDISP30:
2057 case R_SPARC_WDISP22:
2058 case R_SPARC_WDISP19:
2059 case R_SPARC_WDISP16:
252b5132
RH
2060 if (h == NULL)
2061 break;
2062 /* Fall through. */
2063 case R_SPARC_8:
2064 case R_SPARC_16:
2065 case R_SPARC_32:
2066 case R_SPARC_HI22:
2067 case R_SPARC_22:
2068 case R_SPARC_13:
2069 case R_SPARC_LO10:
2070 case R_SPARC_UA32:
2071 case R_SPARC_10:
2072 case R_SPARC_11:
2073 case R_SPARC_64:
2074 case R_SPARC_OLO10:
2075 case R_SPARC_HH22:
2076 case R_SPARC_HM10:
2077 case R_SPARC_LM22:
2078 case R_SPARC_7:
2079 case R_SPARC_5:
2080 case R_SPARC_6:
2081 case R_SPARC_HIX22:
2082 case R_SPARC_LOX10:
2083 case R_SPARC_H44:
2084 case R_SPARC_M44:
2085 case R_SPARC_L44:
2086 case R_SPARC_UA64:
2087 case R_SPARC_UA16:
2088 {
2089 Elf_Internal_Rela outrel;
0bb2d96a 2090 boolean skip, relocate;
252b5132
RH
2091
2092 if (sreloc == NULL)
2093 {
2094 const char *name =
2095 (bfd_elf_string_from_elf_section
2096 (input_bfd,
2097 elf_elfheader (input_bfd)->e_shstrndx,
2098 elf_section_data (input_section)->rel_hdr.sh_name));
2099
2100 if (name == NULL)
2101 return false;
2102
2103 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2104 && strcmp (bfd_get_section_name(input_bfd,
2105 input_section),
2106 name + 5) == 0);
2107
2108 sreloc = bfd_get_section_by_name (dynobj, name);
2109 BFD_ASSERT (sreloc != NULL);
2110 }
2111
2112 skip = false;
0bb2d96a 2113 relocate = false;
252b5132 2114
c629eae0
JJ
2115 outrel.r_offset =
2116 _bfd_elf_section_offset (output_bfd, info, input_section,
2117 rel->r_offset);
2118 if (outrel.r_offset == (bfd_vma) -1)
2119 skip = true;
0bb2d96a
JJ
2120 else if (outrel.r_offset == (bfd_vma) -2)
2121 skip = true, relocate = true;
252b5132
RH
2122
2123 outrel.r_offset += (input_section->output_section->vma
2124 + input_section->output_offset);
2125
2126 /* Optimize unaligned reloc usage now that we know where
2127 it finally resides. */
2128 switch (r_type)
2129 {
2130 case R_SPARC_16:
2131 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2132 break;
2133 case R_SPARC_UA16:
2134 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2135 break;
2136 case R_SPARC_32:
2137 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2138 break;
2139 case R_SPARC_UA32:
2140 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2141 break;
2142 case R_SPARC_64:
2143 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2144 break;
2145 case R_SPARC_UA64:
2146 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2147 break;
b88a866a
JJ
2148 case R_SPARC_DISP8:
2149 case R_SPARC_DISP16:
2150 case R_SPARC_DISP32:
2151 case R_SPARC_DISP64:
2152 /* If the symbol is not dynamic, we should not keep
2153 a dynamic relocation. But an .rela.* slot has been
2154 allocated for it, output R_SPARC_NONE.
2155 FIXME: Add code tracking needed dynamic relocs as
2156 e.g. i386 has. */
2157 if (h->dynindx == -1)
2158 skip = true, relocate = true;
2159 break;
252b5132
RH
2160 }
2161
2162 if (skip)
2163 memset (&outrel, 0, sizeof outrel);
2164 /* h->dynindx may be -1 if the symbol was marked to
2165 become local. */
bd5e6e7e 2166 else if (h != NULL && ! is_plt
252b5132
RH
2167 && ((! info->symbolic && h->dynindx != -1)
2168 || (h->elf_link_hash_flags
2169 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2170 {
2171 BFD_ASSERT (h->dynindx != -1);
f65054f7
RH
2172 outrel.r_info
2173 = ELF64_R_INFO (h->dynindx,
2174 ELF64_R_TYPE_INFO (
2175 ELF64_R_TYPE_DATA (rel->r_info),
2176 r_type));
252b5132
RH
2177 outrel.r_addend = rel->r_addend;
2178 }
2179 else
2180 {
2181 if (r_type == R_SPARC_64)
2182 {
2183 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2184 outrel.r_addend = relocation + rel->r_addend;
2185 }
2186 else
2187 {
2188 long indx;
2189
bd5e6e7e
JJ
2190 if (is_plt)
2191 sec = splt;
2192 else if (h == NULL)
252b5132
RH
2193 sec = local_sections[r_symndx];
2194 else
2195 {
2196 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2197 || (h->root.type
2198 == bfd_link_hash_defweak));
2199 sec = h->root.u.def.section;
2200 }
2201 if (sec != NULL && bfd_is_abs_section (sec))
2202 indx = 0;
2203 else if (sec == NULL || sec->owner == NULL)
2204 {
2205 bfd_set_error (bfd_error_bad_value);
2206 return false;
2207 }
2208 else
2209 {
2210 asection *osec;
2211
2212 osec = sec->output_section;
2213 indx = elf_section_data (osec)->dynindx;
2214
2215 /* FIXME: we really should be able to link non-pic
2216 shared libraries. */
2217 if (indx == 0)
2218 {
2219 BFD_FAIL ();
2220 (*_bfd_error_handler)
2221 (_("%s: probably compiled without -fPIC?"),
8f615d07 2222 bfd_archive_filename (input_bfd));
252b5132
RH
2223 bfd_set_error (bfd_error_bad_value);
2224 return false;
2225 }
2226 }
2227
f65054f7
RH
2228 outrel.r_info
2229 = ELF64_R_INFO (indx,
2230 ELF64_R_TYPE_INFO (
2231 ELF64_R_TYPE_DATA (rel->r_info),
2232 r_type));
840a9995 2233 outrel.r_addend = relocation + rel->r_addend;
252b5132
RH
2234 }
2235 }
2236
2237 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2238 (((Elf64_External_Rela *)
2239 sreloc->contents)
2240 + sreloc->reloc_count));
2241 ++sreloc->reloc_count;
2242
2243 /* This reloc will be computed at runtime, so there's no
20278fa3 2244 need to do anything now. */
0bb2d96a
JJ
2245 if (! relocate)
2246 continue;
252b5132
RH
2247 }
2248 break;
2249 }
2250 }
2251
2252 switch (r_type)
2253 {
2254 case R_SPARC_GOT10:
2255 case R_SPARC_GOT13:
2256 case R_SPARC_GOT22:
2257 /* Relocation is to the entry for this symbol in the global
2258 offset table. */
2259 if (sgot == NULL)
2260 {
2261 sgot = bfd_get_section_by_name (dynobj, ".got");
2262 BFD_ASSERT (sgot != NULL);
2263 }
2264
2265 if (h != NULL)
2266 {
e36f7d53
RH
2267 boolean dyn;
2268
2269 off = h->got.offset;
252b5132 2270 BFD_ASSERT (off != (bfd_vma) -1);
e36f7d53 2271 dyn = elf_hash_table (info)->dynamic_sections_created;
252b5132 2272
e36f7d53 2273 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
252b5132 2274 || (info->shared
e36f7d53
RH
2275 && (info->symbolic
2276 || h->dynindx == -1
2277 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2278 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
252b5132
RH
2279 {
2280 /* This is actually a static link, or it is a -Bsymbolic
2281 link and the symbol is defined locally, or the symbol
2282 was forced to be local because of a version file. We
2283 must initialize this entry in the global offset table.
2284 Since the offset must always be a multiple of 8, we
2285 use the least significant bit to record whether we
2286 have initialized it already.
2287
2288 When doing a dynamic link, we create a .rela.got
2289 relocation entry to initialize the value. This is
2290 done in the finish_dynamic_symbol routine. */
2291
2292 if ((off & 1) != 0)
2293 off &= ~1;
2294 else
2295 {
2296 bfd_put_64 (output_bfd, relocation,
2297 sgot->contents + off);
2298 h->got.offset |= 1;
2299 }
2300 }
e36f7d53
RH
2301 else
2302 unresolved_reloc = false;
252b5132
RH
2303 }
2304 else
2305 {
252b5132
RH
2306 BFD_ASSERT (local_got_offsets != NULL);
2307 off = local_got_offsets[r_symndx];
2308 BFD_ASSERT (off != (bfd_vma) -1);
2309
2310 /* The offset must always be a multiple of 8. We use
2311 the least significant bit to record whether we have
2312 already processed this entry. */
2313 if ((off & 1) != 0)
2314 off &= ~1;
2315 else
2316 {
252b5132
RH
2317 local_got_offsets[r_symndx] |= 1;
2318
2319 if (info->shared)
2320 {
2321 asection *srelgot;
2322 Elf_Internal_Rela outrel;
2323
ea5fbc67
GK
2324 /* The Solaris 2.7 64-bit linker adds the contents
2325 of the location to the value of the reloc.
2326 Note this is different behaviour to the
2327 32-bit linker, which both adds the contents
2328 and ignores the addend. So clear the location. */
dc810e39
AM
2329 bfd_put_64 (output_bfd, (bfd_vma) 0,
2330 sgot->contents + off);
435b1e90 2331
252b5132
RH
2332 /* We need to generate a R_SPARC_RELATIVE reloc
2333 for the dynamic linker. */
2334 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2335 BFD_ASSERT (srelgot != NULL);
2336
2337 outrel.r_offset = (sgot->output_section->vma
2338 + sgot->output_offset
2339 + off);
2340 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2341 outrel.r_addend = relocation;
2342 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2343 (((Elf64_External_Rela *)
2344 srelgot->contents)
2345 + srelgot->reloc_count));
2346 ++srelgot->reloc_count;
2347 }
ea5fbc67
GK
2348 else
2349 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
252b5132 2350 }
252b5132 2351 }
e36f7d53 2352 relocation = sgot->output_offset + off - got_base;
252b5132
RH
2353 goto do_default;
2354
2355 case R_SPARC_WPLT30:
2356 case R_SPARC_PLT32:
2357 case R_SPARC_HIPLT22:
2358 case R_SPARC_LOPLT10:
2359 case R_SPARC_PCPLT32:
2360 case R_SPARC_PCPLT22:
2361 case R_SPARC_PCPLT10:
2362 case R_SPARC_PLT64:
2363 /* Relocation is to the entry for this symbol in the
2364 procedure linkage table. */
2365 BFD_ASSERT (h != NULL);
2366
2367 if (h->plt.offset == (bfd_vma) -1)
2368 {
2369 /* We didn't make a PLT entry for this symbol. This
2370 happens when statically linking PIC code, or when
2371 using -Bsymbolic. */
2372 goto do_default;
2373 }
2374
2375 if (splt == NULL)
2376 {
2377 splt = bfd_get_section_by_name (dynobj, ".plt");
2378 BFD_ASSERT (splt != NULL);
2379 }
2380
2381 relocation = (splt->output_section->vma
2382 + splt->output_offset
2383 + sparc64_elf_plt_entry_offset (h->plt.offset));
e36f7d53 2384 unresolved_reloc = false;
f7775d95
JJ
2385 if (r_type == R_SPARC_WPLT30)
2386 goto do_wplt30;
bd5e6e7e
JJ
2387 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2388 {
2389 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2390 is_plt = true;
2391 goto do_dynreloc;
2392 }
252b5132
RH
2393 goto do_default;
2394
2395 case R_SPARC_OLO10:
2396 {
2397 bfd_vma x;
2398
2399 relocation += rel->r_addend;
2400 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2401
2402 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2403 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
252b5132
RH
2404 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2405
2406 r = bfd_check_overflow (howto->complain_on_overflow,
2407 howto->bitsize, howto->rightshift,
2408 bfd_arch_bits_per_address (input_bfd),
2409 relocation);
2410 }
2411 break;
2412
2413 case R_SPARC_WDISP16:
2414 {
2415 bfd_vma x;
2416
2417 relocation += rel->r_addend;
2418 /* Adjust for pc-relative-ness. */
2419 relocation -= (input_section->output_section->vma
2420 + input_section->output_offset);
2421 relocation -= rel->r_offset;
2422
2423 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39
AM
2424 x &= ~(bfd_vma) 0x303fff;
2425 x |= ((((relocation >> 2) & 0xc000) << 6)
2426 | ((relocation >> 2) & 0x3fff));
252b5132
RH
2427 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2428
2429 r = bfd_check_overflow (howto->complain_on_overflow,
2430 howto->bitsize, howto->rightshift,
2431 bfd_arch_bits_per_address (input_bfd),
2432 relocation);
2433 }
2434 break;
2435
2436 case R_SPARC_HIX22:
2437 {
2438 bfd_vma x;
2439
2440 relocation += rel->r_addend;
2441 relocation = relocation ^ MINUS_ONE;
2442
2443 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2444 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
252b5132
RH
2445 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2446
2447 r = bfd_check_overflow (howto->complain_on_overflow,
2448 howto->bitsize, howto->rightshift,
2449 bfd_arch_bits_per_address (input_bfd),
2450 relocation);
2451 }
2452 break;
2453
2454 case R_SPARC_LOX10:
2455 {
2456 bfd_vma x;
2457
2458 relocation += rel->r_addend;
2459 relocation = (relocation & 0x3ff) | 0x1c00;
2460
2461 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2462 x = (x & ~(bfd_vma) 0x1fff) | relocation;
252b5132
RH
2463 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2464
2465 r = bfd_reloc_ok;
2466 }
2467 break;
2468
f7775d95
JJ
2469 case R_SPARC_WDISP30:
2470 do_wplt30:
2471 if (SEC_DO_RELAX (input_section)
2472 && rel->r_offset + 4 < input_section->_raw_size)
2473 {
2474#define G0 0
2475#define O7 15
2476#define XCC (2 << 20)
2477#define COND(x) (((x)&0xf)<<25)
2478#define CONDA COND(0x8)
2479#define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2480#define INSN_BA (F2(0,2) | CONDA)
2481#define INSN_OR F3(2, 0x2, 0)
2482#define INSN_NOP F2(0,4)
2483
2484 bfd_vma x, y;
2485
2486 /* If the instruction is a call with either:
2487 restore
2488 arithmetic instruction with rd == %o7
2489 where rs1 != %o7 and rs2 if it is register != %o7
2490 then we can optimize if the call destination is near
2491 by changing the call into a branch always. */
2492 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2493 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2494 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2495 {
2496 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2497 || ((y & OP3(0x28)) == 0 /* arithmetic */
2498 && (y & RD(~0)) == RD(O7)))
2499 && (y & RS1(~0)) != RS1(O7)
2500 && ((y & F3I(~0))
2501 || (y & RS2(~0)) != RS2(O7)))
2502 {
2503 bfd_vma reloc;
2504
2505 reloc = relocation + rel->r_addend - rel->r_offset;
2506 reloc -= (input_section->output_section->vma
2507 + input_section->output_offset);
2508 if (reloc & 3)
2509 goto do_default;
2510
2511 /* Ensure the branch fits into simm22. */
2512 if ((reloc & ~(bfd_vma)0x7fffff)
2513 && ((reloc | 0x7fffff) != MINUS_ONE))
2514 goto do_default;
2515 reloc >>= 2;
2516
2517 /* Check whether it fits into simm19. */
2518 if ((reloc & 0x3c0000) == 0
2519 || (reloc & 0x3c0000) == 0x3c0000)
2520 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2521 else
2522 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2523 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2524 r = bfd_reloc_ok;
2525 if (rel->r_offset >= 4
2526 && (y & (0xffffffff ^ RS1(~0)))
2527 == (INSN_OR | RD(O7) | RS2(G0)))
2528 {
2529 bfd_vma z;
2530 unsigned int reg;
2531
2532 z = bfd_get_32 (input_bfd,
2533 contents + rel->r_offset - 4);
2534 if ((z & (0xffffffff ^ RD(~0)))
2535 != (INSN_OR | RS1(O7) | RS2(G0)))
2536 break;
2537
2538 /* The sequence was
2539 or %o7, %g0, %rN
2540 call foo
2541 or %rN, %g0, %o7
2542
2543 If call foo was replaced with ba, replace
2544 or %rN, %g0, %o7 with nop. */
2545
2546 reg = (y & RS1(~0)) >> 14;
2547 if (reg != ((z & RD(~0)) >> 25)
2548 || reg == G0 || reg == O7)
2549 break;
2550
dc810e39 2551 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
f7775d95
JJ
2552 contents + rel->r_offset + 4);
2553 }
2554 break;
2555 }
2556 }
2557 }
2558 /* FALLTHROUGH */
2559
252b5132
RH
2560 default:
2561 do_default:
2562 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2563 contents, rel->r_offset,
2564 relocation, rel->r_addend);
2565 break;
2566 }
2567
e36f7d53
RH
2568 if (unresolved_reloc
2569 && !(info->shared
2570 && (input_section->flags & SEC_DEBUGGING) != 0
2571 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2572 (*_bfd_error_handler)
2573 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2574 bfd_archive_filename (input_bfd),
2575 bfd_get_section_name (input_bfd, input_section),
2576 (long) rel->r_offset,
2577 h->root.root.string);
2578
252b5132
RH
2579 switch (r)
2580 {
2581 case bfd_reloc_ok:
2582 break;
2583
2584 default:
2585 case bfd_reloc_outofrange:
2586 abort ();
2587
2588 case bfd_reloc_overflow:
2589 {
2590 const char *name;
2591
6361c4c9
AO
2592 /* The Solaris native linker silently disregards
2593 overflows. We don't, but this breaks stabs debugging
2594 info, whose relocations are only 32-bits wide. Ignore
2595 overflows in this case. */
2596 if (r_type == R_SPARC_32
2597 && (input_section->flags & SEC_DEBUGGING) != 0
2598 && strcmp (bfd_section_name (input_bfd, input_section),
2599 ".stab") == 0)
2600 break;
2601
252b5132
RH
2602 if (h != NULL)
2603 {
2604 if (h->root.type == bfd_link_hash_undefweak
2605 && howto->pc_relative)
2606 {
2607 /* Assume this is a call protected by other code that
2608 detect the symbol is undefined. If this is the case,
435b1e90 2609 we can safely ignore the overflow. If not, the
252b5132
RH
2610 program is hosed anyway, and a little warning isn't
2611 going to help. */
2612 break;
2613 }
435b1e90 2614
252b5132
RH
2615 name = h->root.root.string;
2616 }
2617 else
2618 {
2619 name = (bfd_elf_string_from_elf_section
2620 (input_bfd,
2621 symtab_hdr->sh_link,
2622 sym->st_name));
2623 if (name == NULL)
2624 return false;
2625 if (*name == '\0')
2626 name = bfd_section_name (input_bfd, sec);
2627 }
2628 if (! ((*info->callbacks->reloc_overflow)
2629 (info, name, howto->name, (bfd_vma) 0,
2630 input_bfd, input_section, rel->r_offset)))
2631 return false;
2632 }
2633 break;
2634 }
2635 }
2636
2637 return true;
2638}
2639
2640/* Finish up dynamic symbol handling. We set the contents of various
2641 dynamic sections here. */
2642
2643static boolean
2644sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2645 bfd *output_bfd;
2646 struct bfd_link_info *info;
2647 struct elf_link_hash_entry *h;
2648 Elf_Internal_Sym *sym;
2649{
2650 bfd *dynobj;
2651
2652 dynobj = elf_hash_table (info)->dynobj;
2653
2654 if (h->plt.offset != (bfd_vma) -1)
2655 {
2656 asection *splt;
2657 asection *srela;
2658 Elf_Internal_Rela rela;
2659
435b1e90 2660 /* This symbol has an entry in the PLT. Set it up. */
252b5132
RH
2661
2662 BFD_ASSERT (h->dynindx != -1);
2663
2664 splt = bfd_get_section_by_name (dynobj, ".plt");
2665 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2666 BFD_ASSERT (splt != NULL && srela != NULL);
2667
2668 /* Fill in the entry in the .rela.plt section. */
2669
2670 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2671 {
2672 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2673 rela.r_addend = 0;
2674 }
2675 else
2676 {
dc810e39 2677 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
252b5132 2678 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
a11c78e7
RH
2679 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2680 -(splt->output_section->vma + splt->output_offset);
252b5132
RH
2681 }
2682 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2683 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2684
be040dbb
JJ
2685 /* Adjust for the first 4 reserved elements in the .plt section
2686 when setting the offset in the .rela.plt section.
2687 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2688 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2689
252b5132
RH
2690 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2691 ((Elf64_External_Rela *) srela->contents
be040dbb 2692 + (h->plt.offset - 4)));
252b5132
RH
2693
2694 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2695 {
2696 /* Mark the symbol as undefined, rather than as defined in
2697 the .plt section. Leave the value alone. */
2698 sym->st_shndx = SHN_UNDEF;
8701c1bc
JJ
2699 /* If the symbol is weak, we do need to clear the value.
2700 Otherwise, the PLT entry would provide a definition for
2701 the symbol even if the symbol wasn't defined anywhere,
2702 and so the symbol would never be NULL. */
2703 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2704 == 0)
2705 sym->st_value = 0;
252b5132
RH
2706 }
2707 }
2708
2709 if (h->got.offset != (bfd_vma) -1)
2710 {
2711 asection *sgot;
2712 asection *srela;
2713 Elf_Internal_Rela rela;
2714
2715 /* This symbol has an entry in the GOT. Set it up. */
2716
2717 sgot = bfd_get_section_by_name (dynobj, ".got");
2718 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2719 BFD_ASSERT (sgot != NULL && srela != NULL);
2720
2721 rela.r_offset = (sgot->output_section->vma
2722 + sgot->output_offset
dc810e39 2723 + (h->got.offset &~ (bfd_vma) 1));
252b5132
RH
2724
2725 /* If this is a -Bsymbolic link, and the symbol is defined
2726 locally, we just want to emit a RELATIVE reloc. Likewise if
2727 the symbol was forced to be local because of a version file.
2728 The entry in the global offset table will already have been
2729 initialized in the relocate_section function. */
2730 if (info->shared
2731 && (info->symbolic || h->dynindx == -1)
2732 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2733 {
2734 asection *sec = h->root.u.def.section;
2735 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2736 rela.r_addend = (h->root.u.def.value
2737 + sec->output_section->vma
2738 + sec->output_offset);
2739 }
2740 else
2741 {
2742 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2743 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2744 rela.r_addend = 0;
2745 }
2746
2747 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2748 ((Elf64_External_Rela *) srela->contents
2749 + srela->reloc_count));
2750 ++srela->reloc_count;
2751 }
2752
2753 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2754 {
2755 asection *s;
2756 Elf_Internal_Rela rela;
2757
2758 /* This symbols needs a copy reloc. Set it up. */
2759
2760 BFD_ASSERT (h->dynindx != -1);
2761
2762 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2763 ".rela.bss");
2764 BFD_ASSERT (s != NULL);
2765
2766 rela.r_offset = (h->root.u.def.value
2767 + h->root.u.def.section->output_section->vma
2768 + h->root.u.def.section->output_offset);
2769 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2770 rela.r_addend = 0;
2771 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2772 ((Elf64_External_Rela *) s->contents
2773 + s->reloc_count));
2774 ++s->reloc_count;
2775 }
2776
2777 /* Mark some specially defined symbols as absolute. */
2778 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2779 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2780 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2781 sym->st_shndx = SHN_ABS;
2782
2783 return true;
2784}
2785
2786/* Finish up the dynamic sections. */
2787
2788static boolean
2789sparc64_elf_finish_dynamic_sections (output_bfd, info)
2790 bfd *output_bfd;
2791 struct bfd_link_info *info;
2792{
2793 bfd *dynobj;
587ff49e 2794 int stt_regidx = -1;
252b5132
RH
2795 asection *sdyn;
2796 asection *sgot;
2797
2798 dynobj = elf_hash_table (info)->dynobj;
2799
2800 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2801
2802 if (elf_hash_table (info)->dynamic_sections_created)
2803 {
2804 asection *splt;
2805 Elf64_External_Dyn *dyncon, *dynconend;
2806
2807 splt = bfd_get_section_by_name (dynobj, ".plt");
2808 BFD_ASSERT (splt != NULL && sdyn != NULL);
2809
2810 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2811 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2812 for (; dyncon < dynconend; dyncon++)
2813 {
2814 Elf_Internal_Dyn dyn;
2815 const char *name;
2816 boolean size;
2817
2818 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2819
2820 switch (dyn.d_tag)
2821 {
2822 case DT_PLTGOT: name = ".plt"; size = false; break;
2823 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2824 case DT_JMPREL: name = ".rela.plt"; size = false; break;
587ff49e
RH
2825 case DT_SPARC_REGISTER:
2826 if (stt_regidx == -1)
2827 {
2828 stt_regidx =
2829 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2830 if (stt_regidx == -1)
2831 return false;
2832 }
2833 dyn.d_un.d_val = stt_regidx++;
2834 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2835 /* fallthrough */
252b5132
RH
2836 default: name = NULL; size = false; break;
2837 }
2838
2839 if (name != NULL)
2840 {
2841 asection *s;
2842
2843 s = bfd_get_section_by_name (output_bfd, name);
2844 if (s == NULL)
2845 dyn.d_un.d_val = 0;
2846 else
2847 {
2848 if (! size)
2849 dyn.d_un.d_ptr = s->vma;
2850 else
2851 {
2852 if (s->_cooked_size != 0)
2853 dyn.d_un.d_val = s->_cooked_size;
2854 else
2855 dyn.d_un.d_val = s->_raw_size;
2856 }
2857 }
2858 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2859 }
2860 }
2861
2862 /* Initialize the contents of the .plt section. */
2863 if (splt->_raw_size > 0)
2864 {
dc810e39
AM
2865 sparc64_elf_build_plt (output_bfd, splt->contents,
2866 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
252b5132
RH
2867 }
2868
2869 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2870 PLT_ENTRY_SIZE;
2871 }
2872
2873 /* Set the first entry in the global offset table to the address of
2874 the dynamic section. */
2875 sgot = bfd_get_section_by_name (dynobj, ".got");
2876 BFD_ASSERT (sgot != NULL);
2877 if (sgot->_raw_size > 0)
2878 {
2879 if (sdyn == NULL)
2880 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2881 else
2882 bfd_put_64 (output_bfd,
2883 sdyn->output_section->vma + sdyn->output_offset,
2884 sgot->contents);
2885 }
2886
2887 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2888
252b5132
RH
2889 return true;
2890}
db6751f2
JJ
2891
2892static enum elf_reloc_type_class
f51e552e
AM
2893sparc64_elf_reloc_type_class (rela)
2894 const Elf_Internal_Rela *rela;
db6751f2 2895{
f51e552e 2896 switch ((int) ELF64_R_TYPE (rela->r_info))
db6751f2
JJ
2897 {
2898 case R_SPARC_RELATIVE:
2899 return reloc_class_relative;
2900 case R_SPARC_JMP_SLOT:
2901 return reloc_class_plt;
2902 case R_SPARC_COPY:
2903 return reloc_class_copy;
2904 default:
2905 return reloc_class_normal;
2906 }
2907}
252b5132 2908\f
435b1e90 2909/* Functions for dealing with the e_flags field. */
252b5132
RH
2910
2911/* Merge backend specific data from an object file to the output
2912 object file when linking. */
2913
2914static boolean
2915sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2916 bfd *ibfd;
2917 bfd *obfd;
2918{
2919 boolean error;
2920 flagword new_flags, old_flags;
2921 int new_mm, old_mm;
2922
2923 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2924 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2925 return true;
2926
2927 new_flags = elf_elfheader (ibfd)->e_flags;
2928 old_flags = elf_elfheader (obfd)->e_flags;
2929
2930 if (!elf_flags_init (obfd)) /* First call, no flags set */
2931 {
2932 elf_flags_init (obfd) = true;
2933 elf_elfheader (obfd)->e_flags = new_flags;
2934 }
435b1e90 2935
252b5132
RH
2936 else if (new_flags == old_flags) /* Compatible flags are ok */
2937 ;
435b1e90 2938
252b5132
RH
2939 else /* Incompatible flags */
2940 {
2941 error = false;
19f7b010
JJ
2942
2943#define EF_SPARC_ISA_EXTENSIONS \
2944 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2945
37fb6db1
ILT
2946 if ((ibfd->flags & DYNAMIC) != 0)
2947 {
2948 /* We don't want dynamic objects memory ordering and
2949 architecture to have any role. That's what dynamic linker
2950 should do. */
19f7b010 2951 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
6c08d697 2952 new_flags |= (old_flags
19f7b010 2953 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
37fb6db1
ILT
2954 }
2955 else
2956 {
2957 /* Choose the highest architecture requirements. */
19f7b010
JJ
2958 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2959 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2960 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2961 && (old_flags & EF_SPARC_HAL_R1))
37fb6db1
ILT
2962 {
2963 error = true;
2964 (*_bfd_error_handler)
2965 (_("%s: linking UltraSPARC specific with HAL specific code"),
8f615d07 2966 bfd_archive_filename (ibfd));
37fb6db1
ILT
2967 }
2968 /* Choose the most restrictive memory ordering. */
2969 old_mm = (old_flags & EF_SPARCV9_MM);
2970 new_mm = (new_flags & EF_SPARCV9_MM);
2971 old_flags &= ~EF_SPARCV9_MM;
2972 new_flags &= ~EF_SPARCV9_MM;
2973 if (new_mm < old_mm)
2974 old_mm = new_mm;
2975 old_flags |= old_mm;
2976 new_flags |= old_mm;
2977 }
252b5132
RH
2978
2979 /* Warn about any other mismatches */
2980 if (new_flags != old_flags)
2981 {
2982 error = true;
2983 (*_bfd_error_handler)
2984 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
8f615d07 2985 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
252b5132
RH
2986 }
2987
2988 elf_elfheader (obfd)->e_flags = old_flags;
2989
2990 if (error)
2991 {
2992 bfd_set_error (bfd_error_bad_value);
2993 return false;
2994 }
2995 }
2996 return true;
2997}
587ff49e
RH
2998\f
2999/* Print a STT_REGISTER symbol to file FILE. */
252b5132 3000
587ff49e
RH
3001static const char *
3002sparc64_elf_print_symbol_all (abfd, filep, symbol)
6c08d697 3003 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
3004 PTR filep;
3005 asymbol *symbol;
3006{
3007 FILE *file = (FILE *) filep;
3008 int reg, type;
435b1e90 3009
587ff49e
RH
3010 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3011 != STT_REGISTER)
3012 return NULL;
3013
3014 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3015 type = symbol->flags;
3016 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3017 ((type & BSF_LOCAL)
3018 ? (type & BSF_GLOBAL) ? '!' : 'l'
99c79b2e
AJ
3019 : (type & BSF_GLOBAL) ? 'g' : ' '),
3020 (type & BSF_WEAK) ? 'w' : ' ');
587ff49e
RH
3021 if (symbol->name == NULL || symbol->name [0] == '\0')
3022 return "#scratch";
3023 else
3024 return symbol->name;
3025}
252b5132
RH
3026\f
3027/* Set the right machine number for a SPARC64 ELF file. */
3028
3029static boolean
3030sparc64_elf_object_p (abfd)
3031 bfd *abfd;
3032{
3033 unsigned long mach = bfd_mach_sparc_v9;
19f7b010
JJ
3034
3035 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3036 mach = bfd_mach_sparc_v9b;
3037 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
252b5132
RH
3038 mach = bfd_mach_sparc_v9a;
3039 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3040}
3041
f65054f7
RH
3042/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3043 standard ELF, because R_SPARC_OLO10 has secondary addend in
3044 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3045 relocation handling routines. */
3046
3047const struct elf_size_info sparc64_elf_size_info =
3048{
3049 sizeof (Elf64_External_Ehdr),
3050 sizeof (Elf64_External_Phdr),
3051 sizeof (Elf64_External_Shdr),
3052 sizeof (Elf64_External_Rel),
3053 sizeof (Elf64_External_Rela),
3054 sizeof (Elf64_External_Sym),
3055 sizeof (Elf64_External_Dyn),
3056 sizeof (Elf_External_Note),
a11c78e7 3057 4, /* hash-table entry size */
f65054f7
RH
3058 /* internal relocations per external relocations.
3059 For link purposes we use just 1 internal per
3060 1 external, for assembly and slurp symbol table
435b1e90 3061 we use 2. */
f65054f7
RH
3062 1,
3063 64, /* arch_size */
3064 8, /* file_align */
3065 ELFCLASS64,
3066 EV_CURRENT,
3067 bfd_elf64_write_out_phdrs,
3068 bfd_elf64_write_shdrs_and_ehdr,
3069 sparc64_elf_write_relocs,
73ff0d56 3070 bfd_elf64_swap_symbol_in,
f65054f7
RH
3071 bfd_elf64_swap_symbol_out,
3072 sparc64_elf_slurp_reloc_table,
3073 bfd_elf64_slurp_symbol_table,
3074 bfd_elf64_swap_dyn_in,
3075 bfd_elf64_swap_dyn_out,
3076 NULL,
3077 NULL,
3078 NULL,
3079 NULL
3080};
3081
252b5132
RH
3082#define TARGET_BIG_SYM bfd_elf64_sparc_vec
3083#define TARGET_BIG_NAME "elf64-sparc"
3084#define ELF_ARCH bfd_arch_sparc
3085#define ELF_MAXPAGESIZE 0x100000
3086
3087/* This is the official ABI value. */
3088#define ELF_MACHINE_CODE EM_SPARCV9
3089
3090/* This is the value that we used before the ABI was released. */
3091#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3092
587ff49e
RH
3093#define bfd_elf64_bfd_link_hash_table_create \
3094 sparc64_elf_bfd_link_hash_table_create
435b1e90 3095
252b5132
RH
3096#define elf_info_to_howto \
3097 sparc64_elf_info_to_howto
f65054f7
RH
3098#define bfd_elf64_get_reloc_upper_bound \
3099 sparc64_elf_get_reloc_upper_bound
3100#define bfd_elf64_get_dynamic_reloc_upper_bound \
3101 sparc64_elf_get_dynamic_reloc_upper_bound
3102#define bfd_elf64_canonicalize_dynamic_reloc \
3103 sparc64_elf_canonicalize_dynamic_reloc
252b5132
RH
3104#define bfd_elf64_bfd_reloc_type_lookup \
3105 sparc64_elf_reloc_type_lookup
f7775d95
JJ
3106#define bfd_elf64_bfd_relax_section \
3107 sparc64_elf_relax_section
252b5132
RH
3108
3109#define elf_backend_create_dynamic_sections \
3110 _bfd_elf_create_dynamic_sections
587ff49e
RH
3111#define elf_backend_add_symbol_hook \
3112 sparc64_elf_add_symbol_hook
3113#define elf_backend_get_symbol_type \
3114 sparc64_elf_get_symbol_type
3115#define elf_backend_symbol_processing \
3116 sparc64_elf_symbol_processing
252b5132
RH
3117#define elf_backend_check_relocs \
3118 sparc64_elf_check_relocs
3119#define elf_backend_adjust_dynamic_symbol \
3120 sparc64_elf_adjust_dynamic_symbol
3121#define elf_backend_size_dynamic_sections \
3122 sparc64_elf_size_dynamic_sections
3123#define elf_backend_relocate_section \
3124 sparc64_elf_relocate_section
3125#define elf_backend_finish_dynamic_symbol \
3126 sparc64_elf_finish_dynamic_symbol
3127#define elf_backend_finish_dynamic_sections \
3128 sparc64_elf_finish_dynamic_sections
587ff49e
RH
3129#define elf_backend_print_symbol_all \
3130 sparc64_elf_print_symbol_all
3131#define elf_backend_output_arch_syms \
3132 sparc64_elf_output_arch_syms
252b5132
RH
3133#define bfd_elf64_bfd_merge_private_bfd_data \
3134 sparc64_elf_merge_private_bfd_data
3135
f65054f7
RH
3136#define elf_backend_size_info \
3137 sparc64_elf_size_info
252b5132
RH
3138#define elf_backend_object_p \
3139 sparc64_elf_object_p
db6751f2
JJ
3140#define elf_backend_reloc_type_class \
3141 sparc64_elf_reloc_type_class
252b5132
RH
3142
3143#define elf_backend_want_got_plt 0
3144#define elf_backend_plt_readonly 0
3145#define elf_backend_want_plt_sym 1
3146
3147/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3148#define elf_backend_plt_alignment 8
3149
3150#define elf_backend_got_header_size 8
3151#define elf_backend_plt_header_size PLT_HEADER_SIZE
3152
3153#include "elf64-target.h"