]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elflink.c
(is_arm_mapping_symbol_name): New function - return true when a symbol name
[thirdparty/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
051d5130 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
7898deda 3 Free Software Foundation, Inc.
252b5132
RH
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#define ARCH_SIZE 0
26#include "elf-bfd.h"
4ad4eba5 27#include "safe-ctype.h"
ccf2f652 28#include "libiberty.h"
252b5132 29
b34976b6 30bfd_boolean
268b6b39 31_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
32{
33 flagword flags;
aad5d350 34 asection *s;
252b5132 35 struct elf_link_hash_entry *h;
14a793b2 36 struct bfd_link_hash_entry *bh;
9c5bfbb7 37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
38 int ptralign;
39
40 /* This function may be called more than once. */
aad5d350
AM
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 43 return TRUE;
252b5132
RH
44
45 switch (bed->s->arch_size)
46 {
bb0deeff
AO
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
b34976b6 57 return FALSE;
252b5132
RH
58 }
59
60 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
61 | SEC_LINKER_CREATED);
62
63 s = bfd_make_section (abfd, ".got");
64 if (s == NULL
65 || !bfd_set_section_flags (abfd, s, flags)
66 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 67 return FALSE;
252b5132
RH
68
69 if (bed->want_got_plt)
70 {
71 s = bfd_make_section (abfd, ".got.plt");
72 if (s == NULL
73 || !bfd_set_section_flags (abfd, s, flags)
74 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 75 return FALSE;
252b5132
RH
76 }
77
2517a57f
AM
78 if (bed->want_got_sym)
79 {
80 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
81 (or .got.plt) section. We don't do this in the linker script
82 because we don't want to define the symbol if we are not creating
83 a global offset table. */
14a793b2 84 bh = NULL;
2517a57f
AM
85 if (!(_bfd_generic_link_add_one_symbol
86 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
268b6b39 87 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
b34976b6 88 return FALSE;
14a793b2 89 h = (struct elf_link_hash_entry *) bh;
2517a57f
AM
90 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
91 h->type = STT_OBJECT;
252b5132 92
36af4a4e 93 if (! info->executable
c152c796 94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 95 return FALSE;
252b5132 96
2517a57f
AM
97 elf_hash_table (info)->hgot = h;
98 }
252b5132
RH
99
100 /* The first bit of the global offset table is the header. */
eea6121a 101 s->size += bed->got_header_size + bed->got_symbol_offset;
252b5132 102
b34976b6 103 return TRUE;
252b5132
RH
104}
105\f
45d6a902
AM
106/* Create some sections which will be filled in with dynamic linking
107 information. ABFD is an input file which requires dynamic sections
108 to be created. The dynamic sections take up virtual memory space
109 when the final executable is run, so we need to create them before
110 addresses are assigned to the output sections. We work out the
111 actual contents and size of these sections later. */
252b5132 112
b34976b6 113bfd_boolean
268b6b39 114_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 115{
45d6a902
AM
116 flagword flags;
117 register asection *s;
118 struct elf_link_hash_entry *h;
119 struct bfd_link_hash_entry *bh;
9c5bfbb7 120 const struct elf_backend_data *bed;
252b5132 121
0eddce27 122 if (! is_elf_hash_table (info->hash))
45d6a902
AM
123 return FALSE;
124
125 if (elf_hash_table (info)->dynamic_sections_created)
126 return TRUE;
127
128 /* Make sure that all dynamic sections use the same input BFD. */
129 if (elf_hash_table (info)->dynobj == NULL)
130 elf_hash_table (info)->dynobj = abfd;
131 else
132 abfd = elf_hash_table (info)->dynobj;
133
134 /* Note that we set the SEC_IN_MEMORY flag for all of these
135 sections. */
136 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
137 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
138
139 /* A dynamically linked executable has a .interp section, but a
140 shared library does not. */
36af4a4e 141 if (info->executable)
252b5132 142 {
45d6a902
AM
143 s = bfd_make_section (abfd, ".interp");
144 if (s == NULL
145 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
146 return FALSE;
147 }
bb0deeff 148
0eddce27 149 if (! info->traditional_format)
45d6a902
AM
150 {
151 s = bfd_make_section (abfd, ".eh_frame_hdr");
152 if (s == NULL
153 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
154 || ! bfd_set_section_alignment (abfd, s, 2))
155 return FALSE;
156 elf_hash_table (info)->eh_info.hdr_sec = s;
157 }
bb0deeff 158
45d6a902
AM
159 bed = get_elf_backend_data (abfd);
160
161 /* Create sections to hold version informations. These are removed
162 if they are not needed. */
163 s = bfd_make_section (abfd, ".gnu.version_d");
164 if (s == NULL
165 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168
169 s = bfd_make_section (abfd, ".gnu.version");
170 if (s == NULL
171 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
172 || ! bfd_set_section_alignment (abfd, s, 1))
173 return FALSE;
174
175 s = bfd_make_section (abfd, ".gnu.version_r");
176 if (s == NULL
177 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
179 return FALSE;
180
181 s = bfd_make_section (abfd, ".dynsym");
182 if (s == NULL
183 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
184 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
185 return FALSE;
186
187 s = bfd_make_section (abfd, ".dynstr");
188 if (s == NULL
189 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
190 return FALSE;
191
192 /* Create a strtab to hold the dynamic symbol names. */
193 if (elf_hash_table (info)->dynstr == NULL)
194 {
195 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
196 if (elf_hash_table (info)->dynstr == NULL)
197 return FALSE;
252b5132
RH
198 }
199
45d6a902
AM
200 s = bfd_make_section (abfd, ".dynamic");
201 if (s == NULL
202 || ! bfd_set_section_flags (abfd, s, flags)
203 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
204 return FALSE;
205
206 /* The special symbol _DYNAMIC is always set to the start of the
207 .dynamic section. This call occurs before we have processed the
208 symbols for any dynamic object, so we don't have to worry about
209 overriding a dynamic definition. We could set _DYNAMIC in a
210 linker script, but we only want to define it if we are, in fact,
211 creating a .dynamic section. We don't want to define it if there
212 is no .dynamic section, since on some ELF platforms the start up
213 code examines it to decide how to initialize the process. */
214 bh = NULL;
215 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
216 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
217 get_elf_backend_data (abfd)->collect, &bh)))
45d6a902
AM
218 return FALSE;
219 h = (struct elf_link_hash_entry *) bh;
220 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
221 h->type = STT_OBJECT;
222
36af4a4e 223 if (! info->executable
c152c796 224 && ! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
225 return FALSE;
226
227 s = bfd_make_section (abfd, ".hash");
228 if (s == NULL
229 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
230 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
231 return FALSE;
232 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
233
234 /* Let the backend create the rest of the sections. This lets the
235 backend set the right flags. The backend will normally create
236 the .got and .plt sections. */
237 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
238 return FALSE;
239
240 elf_hash_table (info)->dynamic_sections_created = TRUE;
241
242 return TRUE;
243}
244
245/* Create dynamic sections when linking against a dynamic object. */
246
247bfd_boolean
268b6b39 248_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
249{
250 flagword flags, pltflags;
251 asection *s;
9c5bfbb7 252 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 253
252b5132
RH
254 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
255 .rel[a].bss sections. */
256
257 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
258 | SEC_LINKER_CREATED);
259
260 pltflags = flags;
261 pltflags |= SEC_CODE;
262 if (bed->plt_not_loaded)
5d1634d7 263 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
252b5132
RH
264 if (bed->plt_readonly)
265 pltflags |= SEC_READONLY;
266
267 s = bfd_make_section (abfd, ".plt");
268 if (s == NULL
269 || ! bfd_set_section_flags (abfd, s, pltflags)
270 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 271 return FALSE;
252b5132
RH
272
273 if (bed->want_plt_sym)
274 {
275 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
276 .plt section. */
14a793b2
AM
277 struct elf_link_hash_entry *h;
278 struct bfd_link_hash_entry *bh = NULL;
279
252b5132 280 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
281 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
282 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 283 return FALSE;
14a793b2 284 h = (struct elf_link_hash_entry *) bh;
252b5132
RH
285 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
286 h->type = STT_OBJECT;
287
36af4a4e 288 if (! info->executable
c152c796 289 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 290 return FALSE;
252b5132
RH
291 }
292
3e932841 293 s = bfd_make_section (abfd,
bf572ba0 294 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
252b5132
RH
295 if (s == NULL
296 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
45d6a902 297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 298 return FALSE;
252b5132
RH
299
300 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 301 return FALSE;
252b5132 302
3018b441
RH
303 if (bed->want_dynbss)
304 {
305 /* The .dynbss section is a place to put symbols which are defined
306 by dynamic objects, are referenced by regular objects, and are
307 not functions. We must allocate space for them in the process
308 image and use a R_*_COPY reloc to tell the dynamic linker to
309 initialize them at run time. The linker script puts the .dynbss
310 section into the .bss section of the final image. */
311 s = bfd_make_section (abfd, ".dynbss");
312 if (s == NULL
77f3d027 313 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
b34976b6 314 return FALSE;
252b5132 315
3018b441 316 /* The .rel[a].bss section holds copy relocs. This section is not
252b5132
RH
317 normally needed. We need to create it here, though, so that the
318 linker will map it to an output section. We can't just create it
319 only if we need it, because we will not know whether we need it
320 until we have seen all the input files, and the first time the
321 main linker code calls BFD after examining all the input files
322 (size_dynamic_sections) the input sections have already been
323 mapped to the output sections. If the section turns out not to
324 be needed, we can discard it later. We will never need this
325 section when generating a shared object, since they do not use
326 copy relocs. */
3018b441
RH
327 if (! info->shared)
328 {
3e932841
KH
329 s = bfd_make_section (abfd,
330 (bed->default_use_rela_p
331 ? ".rela.bss" : ".rel.bss"));
3018b441
RH
332 if (s == NULL
333 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
45d6a902 334 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 335 return FALSE;
3018b441 336 }
252b5132
RH
337 }
338
b34976b6 339 return TRUE;
252b5132
RH
340}
341\f
252b5132
RH
342/* Record a new dynamic symbol. We record the dynamic symbols as we
343 read the input files, since we need to have a list of all of them
344 before we can determine the final sizes of the output sections.
345 Note that we may actually call this function even though we are not
346 going to output any dynamic symbols; in some cases we know that a
347 symbol should be in the dynamic symbol table, but only if there is
348 one. */
349
b34976b6 350bfd_boolean
c152c796
AM
351bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
352 struct elf_link_hash_entry *h)
252b5132
RH
353{
354 if (h->dynindx == -1)
355 {
2b0f7ef9 356 struct elf_strtab_hash *dynstr;
68b6ddd0 357 char *p;
252b5132 358 const char *name;
252b5132
RH
359 bfd_size_type indx;
360
7a13edea
NC
361 /* XXX: The ABI draft says the linker must turn hidden and
362 internal symbols into STB_LOCAL symbols when producing the
363 DSO. However, if ld.so honors st_other in the dynamic table,
364 this would not be necessary. */
365 switch (ELF_ST_VISIBILITY (h->other))
366 {
367 case STV_INTERNAL:
368 case STV_HIDDEN:
9d6eee78
L
369 if (h->root.type != bfd_link_hash_undefined
370 && h->root.type != bfd_link_hash_undefweak)
38048eb9
L
371 {
372 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
b34976b6 373 return TRUE;
7a13edea 374 }
0444bdd4 375
7a13edea
NC
376 default:
377 break;
378 }
379
252b5132
RH
380 h->dynindx = elf_hash_table (info)->dynsymcount;
381 ++elf_hash_table (info)->dynsymcount;
382
383 dynstr = elf_hash_table (info)->dynstr;
384 if (dynstr == NULL)
385 {
386 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 387 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 388 if (dynstr == NULL)
b34976b6 389 return FALSE;
252b5132
RH
390 }
391
392 /* We don't put any version information in the dynamic string
aad5d350 393 table. */
252b5132
RH
394 name = h->root.root.string;
395 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
396 if (p != NULL)
397 /* We know that the p points into writable memory. In fact,
398 there are only a few symbols that have read-only names, being
399 those like _GLOBAL_OFFSET_TABLE_ that are created specially
400 by the backends. Most symbols will have names pointing into
401 an ELF string table read from a file, or to objalloc memory. */
402 *p = 0;
403
404 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
405
406 if (p != NULL)
407 *p = ELF_VER_CHR;
252b5132
RH
408
409 if (indx == (bfd_size_type) -1)
b34976b6 410 return FALSE;
252b5132
RH
411 h->dynstr_index = indx;
412 }
413
b34976b6 414 return TRUE;
252b5132 415}
45d6a902
AM
416\f
417/* Record an assignment to a symbol made by a linker script. We need
418 this in case some dynamic object refers to this symbol. */
419
420bfd_boolean
268b6b39
AM
421bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
422 struct bfd_link_info *info,
423 const char *name,
424 bfd_boolean provide)
45d6a902
AM
425{
426 struct elf_link_hash_entry *h;
427
0eddce27 428 if (!is_elf_hash_table (info->hash))
45d6a902
AM
429 return TRUE;
430
431 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
432 if (h == NULL)
433 return FALSE;
434
02bb6eae
AO
435 /* Since we're defining the symbol, don't let it seem to have not
436 been defined. record_dynamic_symbol and size_dynamic_sections
437 may depend on this. */
438 if (h->root.type == bfd_link_hash_undefweak
439 || h->root.type == bfd_link_hash_undefined)
440 h->root.type = bfd_link_hash_new;
441
45d6a902
AM
442 if (h->root.type == bfd_link_hash_new)
443 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
444
445 /* If this symbol is being provided by the linker script, and it is
446 currently defined by a dynamic object, but not by a regular
447 object, then mark it as undefined so that the generic linker will
448 force the correct value. */
449 if (provide
450 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
451 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
452 h->root.type = bfd_link_hash_undefined;
453
454 /* If this symbol is not being provided by the linker script, and it is
455 currently defined by a dynamic object, but not by a regular object,
456 then clear out any version information because the symbol will not be
457 associated with the dynamic object any more. */
458 if (!provide
459 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
460 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
461 h->verinfo.verdef = NULL;
462
463 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
464
465 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
466 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
467 || info->shared)
468 && h->dynindx == -1)
469 {
c152c796 470 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
471 return FALSE;
472
473 /* If this is a weak defined symbol, and we know a corresponding
474 real symbol from the same dynamic object, make sure the real
475 symbol is also made into a dynamic symbol. */
476 if (h->weakdef != NULL
477 && h->weakdef->dynindx == -1)
478 {
c152c796 479 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
45d6a902
AM
480 return FALSE;
481 }
482 }
483
484 return TRUE;
485}
42751cf3 486
8c58d23b
AM
487/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
488 success, and 2 on a failure caused by attempting to record a symbol
489 in a discarded section, eg. a discarded link-once section symbol. */
490
491int
c152c796
AM
492bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
493 bfd *input_bfd,
494 long input_indx)
8c58d23b
AM
495{
496 bfd_size_type amt;
497 struct elf_link_local_dynamic_entry *entry;
498 struct elf_link_hash_table *eht;
499 struct elf_strtab_hash *dynstr;
500 unsigned long dynstr_index;
501 char *name;
502 Elf_External_Sym_Shndx eshndx;
503 char esym[sizeof (Elf64_External_Sym)];
504
0eddce27 505 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
506 return 0;
507
508 /* See if the entry exists already. */
509 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
510 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
511 return 1;
512
513 amt = sizeof (*entry);
268b6b39 514 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
515 if (entry == NULL)
516 return 0;
517
518 /* Go find the symbol, so that we can find it's name. */
519 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 520 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
521 {
522 bfd_release (input_bfd, entry);
523 return 0;
524 }
525
526 if (entry->isym.st_shndx != SHN_UNDEF
527 && (entry->isym.st_shndx < SHN_LORESERVE
528 || entry->isym.st_shndx > SHN_HIRESERVE))
529 {
530 asection *s;
531
532 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
533 if (s == NULL || bfd_is_abs_section (s->output_section))
534 {
535 /* We can still bfd_release here as nothing has done another
536 bfd_alloc. We can't do this later in this function. */
537 bfd_release (input_bfd, entry);
538 return 2;
539 }
540 }
541
542 name = (bfd_elf_string_from_elf_section
543 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
544 entry->isym.st_name));
545
546 dynstr = elf_hash_table (info)->dynstr;
547 if (dynstr == NULL)
548 {
549 /* Create a strtab to hold the dynamic symbol names. */
550 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
551 if (dynstr == NULL)
552 return 0;
553 }
554
b34976b6 555 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
556 if (dynstr_index == (unsigned long) -1)
557 return 0;
558 entry->isym.st_name = dynstr_index;
559
560 eht = elf_hash_table (info);
561
562 entry->next = eht->dynlocal;
563 eht->dynlocal = entry;
564 entry->input_bfd = input_bfd;
565 entry->input_indx = input_indx;
566 eht->dynsymcount++;
567
568 /* Whatever binding the symbol had before, it's now local. */
569 entry->isym.st_info
570 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
571
572 /* The dynindx will be set at the end of size_dynamic_sections. */
573
574 return 1;
575}
576
30b30c21 577/* Return the dynindex of a local dynamic symbol. */
42751cf3 578
30b30c21 579long
268b6b39
AM
580_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
581 bfd *input_bfd,
582 long input_indx)
30b30c21
RH
583{
584 struct elf_link_local_dynamic_entry *e;
585
586 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
587 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
588 return e->dynindx;
589 return -1;
590}
591
592/* This function is used to renumber the dynamic symbols, if some of
593 them are removed because they are marked as local. This is called
594 via elf_link_hash_traverse. */
595
b34976b6 596static bfd_boolean
268b6b39
AM
597elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
598 void *data)
42751cf3 599{
268b6b39 600 size_t *count = data;
30b30c21 601
e92d460e
AM
602 if (h->root.type == bfd_link_hash_warning)
603 h = (struct elf_link_hash_entry *) h->root.u.i.link;
604
42751cf3 605 if (h->dynindx != -1)
30b30c21
RH
606 h->dynindx = ++(*count);
607
b34976b6 608 return TRUE;
42751cf3 609}
30b30c21 610
aee6f5b4
AO
611/* Return true if the dynamic symbol for a given section should be
612 omitted when creating a shared library. */
613bfd_boolean
614_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
615 struct bfd_link_info *info,
616 asection *p)
617{
618 switch (elf_section_data (p)->this_hdr.sh_type)
619 {
620 case SHT_PROGBITS:
621 case SHT_NOBITS:
622 /* If sh_type is yet undecided, assume it could be
623 SHT_PROGBITS/SHT_NOBITS. */
624 case SHT_NULL:
625 if (strcmp (p->name, ".got") == 0
626 || strcmp (p->name, ".got.plt") == 0
627 || strcmp (p->name, ".plt") == 0)
628 {
629 asection *ip;
630 bfd *dynobj = elf_hash_table (info)->dynobj;
631
632 if (dynobj != NULL
633 && (ip = bfd_get_section_by_name (dynobj, p->name))
634 != NULL
635 && (ip->flags & SEC_LINKER_CREATED)
636 && ip->output_section == p)
637 return TRUE;
638 }
639 return FALSE;
640
641 /* There shouldn't be section relative relocations
642 against any other section. */
643 default:
644 return TRUE;
645 }
646}
647
062e2358 648/* Assign dynsym indices. In a shared library we generate a section
30b30c21
RH
649 symbol for each output section, which come first. Next come all of
650 the back-end allocated local dynamic syms, followed by the rest of
651 the global symbols. */
652
653unsigned long
268b6b39 654_bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
30b30c21
RH
655{
656 unsigned long dynsymcount = 0;
657
658 if (info->shared)
659 {
aee6f5b4 660 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
661 asection *p;
662 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 663 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
664 && (p->flags & SEC_ALLOC) != 0
665 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
666 elf_section_data (p)->dynindx = ++dynsymcount;
30b30c21
RH
667 }
668
669 if (elf_hash_table (info)->dynlocal)
670 {
671 struct elf_link_local_dynamic_entry *p;
672 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
673 p->dynindx = ++dynsymcount;
674 }
675
676 elf_link_hash_traverse (elf_hash_table (info),
677 elf_link_renumber_hash_table_dynsyms,
678 &dynsymcount);
679
680 /* There is an unused NULL entry at the head of the table which
681 we must account for in our count. Unless there weren't any
682 symbols, which means we'll have no table at all. */
683 if (dynsymcount != 0)
684 ++dynsymcount;
685
686 return elf_hash_table (info)->dynsymcount = dynsymcount;
687}
252b5132 688
45d6a902
AM
689/* This function is called when we want to define a new symbol. It
690 handles the various cases which arise when we find a definition in
691 a dynamic object, or when there is already a definition in a
692 dynamic object. The new symbol is described by NAME, SYM, PSEC,
693 and PVALUE. We set SYM_HASH to the hash table entry. We set
694 OVERRIDE if the old symbol is overriding a new definition. We set
695 TYPE_CHANGE_OK if it is OK for the type to change. We set
696 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
697 change, we mean that we shouldn't warn if the type or size does
0f8a2703 698 change. */
45d6a902
AM
699
700bfd_boolean
268b6b39
AM
701_bfd_elf_merge_symbol (bfd *abfd,
702 struct bfd_link_info *info,
703 const char *name,
704 Elf_Internal_Sym *sym,
705 asection **psec,
706 bfd_vma *pvalue,
707 struct elf_link_hash_entry **sym_hash,
708 bfd_boolean *skip,
709 bfd_boolean *override,
710 bfd_boolean *type_change_ok,
0f8a2703 711 bfd_boolean *size_change_ok)
252b5132 712{
45d6a902
AM
713 asection *sec;
714 struct elf_link_hash_entry *h;
715 struct elf_link_hash_entry *flip;
716 int bind;
717 bfd *oldbfd;
718 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
79349b09 719 bfd_boolean newweak, oldweak;
45d6a902
AM
720
721 *skip = FALSE;
722 *override = FALSE;
723
724 sec = *psec;
725 bind = ELF_ST_BIND (sym->st_info);
726
727 if (! bfd_is_und_section (sec))
728 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
729 else
730 h = ((struct elf_link_hash_entry *)
731 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
732 if (h == NULL)
733 return FALSE;
734 *sym_hash = h;
252b5132 735
45d6a902
AM
736 /* This code is for coping with dynamic objects, and is only useful
737 if we are doing an ELF link. */
738 if (info->hash->creator != abfd->xvec)
739 return TRUE;
252b5132 740
45d6a902
AM
741 /* For merging, we only care about real symbols. */
742
743 while (h->root.type == bfd_link_hash_indirect
744 || h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
746
747 /* If we just created the symbol, mark it as being an ELF symbol.
748 Other than that, there is nothing to do--there is no merge issue
749 with a newly defined symbol--so we just return. */
750
751 if (h->root.type == bfd_link_hash_new)
252b5132 752 {
45d6a902
AM
753 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
754 return TRUE;
755 }
252b5132 756
45d6a902 757 /* OLDBFD is a BFD associated with the existing symbol. */
252b5132 758
45d6a902
AM
759 switch (h->root.type)
760 {
761 default:
762 oldbfd = NULL;
763 break;
252b5132 764
45d6a902
AM
765 case bfd_link_hash_undefined:
766 case bfd_link_hash_undefweak:
767 oldbfd = h->root.u.undef.abfd;
768 break;
769
770 case bfd_link_hash_defined:
771 case bfd_link_hash_defweak:
772 oldbfd = h->root.u.def.section->owner;
773 break;
774
775 case bfd_link_hash_common:
776 oldbfd = h->root.u.c.p->section->owner;
777 break;
778 }
779
780 /* In cases involving weak versioned symbols, we may wind up trying
781 to merge a symbol with itself. Catch that here, to avoid the
782 confusion that results if we try to override a symbol with
783 itself. The additional tests catch cases like
784 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
785 dynamic object, which we do want to handle here. */
786 if (abfd == oldbfd
787 && ((abfd->flags & DYNAMIC) == 0
788 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
789 return TRUE;
790
791 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
792 respectively, is from a dynamic object. */
793
794 if ((abfd->flags & DYNAMIC) != 0)
795 newdyn = TRUE;
796 else
797 newdyn = FALSE;
798
799 if (oldbfd != NULL)
800 olddyn = (oldbfd->flags & DYNAMIC) != 0;
801 else
802 {
803 asection *hsec;
804
805 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
806 indices used by MIPS ELF. */
807 switch (h->root.type)
252b5132 808 {
45d6a902
AM
809 default:
810 hsec = NULL;
811 break;
252b5132 812
45d6a902
AM
813 case bfd_link_hash_defined:
814 case bfd_link_hash_defweak:
815 hsec = h->root.u.def.section;
816 break;
252b5132 817
45d6a902
AM
818 case bfd_link_hash_common:
819 hsec = h->root.u.c.p->section;
820 break;
252b5132 821 }
252b5132 822
45d6a902
AM
823 if (hsec == NULL)
824 olddyn = FALSE;
825 else
826 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
827 }
252b5132 828
45d6a902
AM
829 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
830 respectively, appear to be a definition rather than reference. */
831
832 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
833 newdef = FALSE;
834 else
835 newdef = TRUE;
836
837 if (h->root.type == bfd_link_hash_undefined
838 || h->root.type == bfd_link_hash_undefweak
839 || h->root.type == bfd_link_hash_common)
840 olddef = FALSE;
841 else
842 olddef = TRUE;
843
4cc11e76 844 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
845 object or is weak in all dynamic objects. Internal and hidden
846 visibility will make it unavailable to dynamic objects. */
847 if (newdyn && (h->elf_link_hash_flags & ELF_LINK_DYNAMIC_DEF) == 0)
848 {
849 if (!bfd_is_und_section (sec))
850 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_DEF;
851 else
252b5132 852 {
45d6a902
AM
853 /* Check if this symbol is weak in all dynamic objects. If it
854 is the first time we see it in a dynamic object, we mark
855 if it is weak. Otherwise, we clear it. */
856 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
79349b09 857 {
45d6a902
AM
858 if (bind == STB_WEAK)
859 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_WEAK;
252b5132 860 }
45d6a902
AM
861 else if (bind != STB_WEAK)
862 h->elf_link_hash_flags &= ~ELF_LINK_DYNAMIC_WEAK;
252b5132 863 }
45d6a902 864 }
252b5132 865
45d6a902
AM
866 /* If the old symbol has non-default visibility, we ignore the new
867 definition from a dynamic object. */
868 if (newdyn
9c7a29a3 869 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
870 && !bfd_is_und_section (sec))
871 {
872 *skip = TRUE;
873 /* Make sure this symbol is dynamic. */
874 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
875 /* A protected symbol has external availability. Make sure it is
876 recorded as dynamic.
877
878 FIXME: Should we check type and size for protected symbol? */
879 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 880 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
881 else
882 return TRUE;
883 }
884 else if (!newdyn
9c7a29a3 885 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
45d6a902
AM
886 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
887 {
888 /* If the new symbol with non-default visibility comes from a
889 relocatable file and the old definition comes from a dynamic
890 object, we remove the old definition. */
891 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
892 h = *sym_hash;
1de1a317
L
893
894 if ((h->root.und_next || info->hash->undefs_tail == &h->root)
895 && bfd_is_und_section (sec))
896 {
897 /* If the new symbol is undefined and the old symbol was
898 also undefined before, we need to make sure
899 _bfd_generic_link_add_one_symbol doesn't mess
900 up the linker hash table undefs list. Since the old
901 definition came from a dynamic object, it is still on the
902 undefs list. */
903 h->root.type = bfd_link_hash_undefined;
904 /* FIXME: What if the new symbol is weak undefined? */
905 h->root.u.undef.abfd = abfd;
906 }
907 else
908 {
909 h->root.type = bfd_link_hash_new;
910 h->root.u.undef.abfd = NULL;
911 }
912
45d6a902 913 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
252b5132 914 {
45d6a902 915 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
22d5e339
L
916 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_DYNAMIC
917 | ELF_LINK_DYNAMIC_DEF);
45d6a902
AM
918 }
919 /* FIXME: Should we check type and size for protected symbol? */
920 h->size = 0;
921 h->type = 0;
922 return TRUE;
923 }
14a793b2 924
79349b09
AM
925 /* Differentiate strong and weak symbols. */
926 newweak = bind == STB_WEAK;
927 oldweak = (h->root.type == bfd_link_hash_defweak
928 || h->root.type == bfd_link_hash_undefweak);
14a793b2 929
15b43f48
AM
930 /* If a new weak symbol definition comes from a regular file and the
931 old symbol comes from a dynamic library, we treat the new one as
932 strong. Similarly, an old weak symbol definition from a regular
933 file is treated as strong when the new symbol comes from a dynamic
934 library. Further, an old weak symbol from a dynamic library is
935 treated as strong if the new symbol is from a dynamic library.
936 This reflects the way glibc's ld.so works.
937
938 Do this before setting *type_change_ok or *size_change_ok so that
939 we warn properly when dynamic library symbols are overridden. */
940
941 if (newdef && !newdyn && olddyn)
0f8a2703 942 newweak = FALSE;
15b43f48 943 if (olddef && newdyn)
0f8a2703
AM
944 oldweak = FALSE;
945
79349b09
AM
946 /* It's OK to change the type if either the existing symbol or the
947 new symbol is weak. A type change is also OK if the old symbol
948 is undefined and the new symbol is defined. */
252b5132 949
79349b09
AM
950 if (oldweak
951 || newweak
952 || (newdef
953 && h->root.type == bfd_link_hash_undefined))
954 *type_change_ok = TRUE;
955
956 /* It's OK to change the size if either the existing symbol or the
957 new symbol is weak, or if the old symbol is undefined. */
958
959 if (*type_change_ok
960 || h->root.type == bfd_link_hash_undefined)
961 *size_change_ok = TRUE;
45d6a902 962
45d6a902
AM
963 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
964 symbol, respectively, appears to be a common symbol in a dynamic
965 object. If a symbol appears in an uninitialized section, and is
966 not weak, and is not a function, then it may be a common symbol
967 which was resolved when the dynamic object was created. We want
968 to treat such symbols specially, because they raise special
969 considerations when setting the symbol size: if the symbol
970 appears as a common symbol in a regular object, and the size in
971 the regular object is larger, we must make sure that we use the
972 larger size. This problematic case can always be avoided in C,
973 but it must be handled correctly when using Fortran shared
974 libraries.
975
976 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
977 likewise for OLDDYNCOMMON and OLDDEF.
978
979 Note that this test is just a heuristic, and that it is quite
980 possible to have an uninitialized symbol in a shared object which
981 is really a definition, rather than a common symbol. This could
982 lead to some minor confusion when the symbol really is a common
983 symbol in some regular object. However, I think it will be
984 harmless. */
985
986 if (newdyn
987 && newdef
79349b09 988 && !newweak
45d6a902
AM
989 && (sec->flags & SEC_ALLOC) != 0
990 && (sec->flags & SEC_LOAD) == 0
991 && sym->st_size > 0
45d6a902
AM
992 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
993 newdyncommon = TRUE;
994 else
995 newdyncommon = FALSE;
996
997 if (olddyn
998 && olddef
999 && h->root.type == bfd_link_hash_defined
1000 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1001 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1002 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1003 && h->size > 0
1004 && h->type != STT_FUNC)
1005 olddyncommon = TRUE;
1006 else
1007 olddyncommon = FALSE;
1008
45d6a902
AM
1009 /* If both the old and the new symbols look like common symbols in a
1010 dynamic object, set the size of the symbol to the larger of the
1011 two. */
1012
1013 if (olddyncommon
1014 && newdyncommon
1015 && sym->st_size != h->size)
1016 {
1017 /* Since we think we have two common symbols, issue a multiple
1018 common warning if desired. Note that we only warn if the
1019 size is different. If the size is the same, we simply let
1020 the old symbol override the new one as normally happens with
1021 symbols defined in dynamic objects. */
1022
1023 if (! ((*info->callbacks->multiple_common)
1024 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1025 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1026 return FALSE;
252b5132 1027
45d6a902
AM
1028 if (sym->st_size > h->size)
1029 h->size = sym->st_size;
252b5132 1030
45d6a902 1031 *size_change_ok = TRUE;
252b5132
RH
1032 }
1033
45d6a902
AM
1034 /* If we are looking at a dynamic object, and we have found a
1035 definition, we need to see if the symbol was already defined by
1036 some other object. If so, we want to use the existing
1037 definition, and we do not want to report a multiple symbol
1038 definition error; we do this by clobbering *PSEC to be
1039 bfd_und_section_ptr.
1040
1041 We treat a common symbol as a definition if the symbol in the
1042 shared library is a function, since common symbols always
1043 represent variables; this can cause confusion in principle, but
1044 any such confusion would seem to indicate an erroneous program or
1045 shared library. We also permit a common symbol in a regular
79349b09 1046 object to override a weak symbol in a shared object. */
45d6a902
AM
1047
1048 if (newdyn
1049 && newdef
1050 && (olddef
1051 || (h->root.type == bfd_link_hash_common
79349b09 1052 && (newweak
0f8a2703 1053 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
45d6a902
AM
1054 {
1055 *override = TRUE;
1056 newdef = FALSE;
1057 newdyncommon = FALSE;
252b5132 1058
45d6a902
AM
1059 *psec = sec = bfd_und_section_ptr;
1060 *size_change_ok = TRUE;
252b5132 1061
45d6a902
AM
1062 /* If we get here when the old symbol is a common symbol, then
1063 we are explicitly letting it override a weak symbol or
1064 function in a dynamic object, and we don't want to warn about
1065 a type change. If the old symbol is a defined symbol, a type
1066 change warning may still be appropriate. */
252b5132 1067
45d6a902
AM
1068 if (h->root.type == bfd_link_hash_common)
1069 *type_change_ok = TRUE;
1070 }
1071
1072 /* Handle the special case of an old common symbol merging with a
1073 new symbol which looks like a common symbol in a shared object.
1074 We change *PSEC and *PVALUE to make the new symbol look like a
1075 common symbol, and let _bfd_generic_link_add_one_symbol will do
1076 the right thing. */
1077
1078 if (newdyncommon
1079 && h->root.type == bfd_link_hash_common)
1080 {
1081 *override = TRUE;
1082 newdef = FALSE;
1083 newdyncommon = FALSE;
1084 *pvalue = sym->st_size;
1085 *psec = sec = bfd_com_section_ptr;
1086 *size_change_ok = TRUE;
1087 }
1088
1089 /* If the old symbol is from a dynamic object, and the new symbol is
1090 a definition which is not from a dynamic object, then the new
1091 symbol overrides the old symbol. Symbols from regular files
1092 always take precedence over symbols from dynamic objects, even if
1093 they are defined after the dynamic object in the link.
1094
1095 As above, we again permit a common symbol in a regular object to
1096 override a definition in a shared object if the shared object
0f8a2703 1097 symbol is a function or is weak. */
45d6a902
AM
1098
1099 flip = NULL;
1100 if (! newdyn
1101 && (newdef
1102 || (bfd_is_com_section (sec)
79349b09
AM
1103 && (oldweak
1104 || h->type == STT_FUNC)))
45d6a902
AM
1105 && olddyn
1106 && olddef
0f8a2703 1107 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
45d6a902
AM
1108 {
1109 /* Change the hash table entry to undefined, and let
1110 _bfd_generic_link_add_one_symbol do the right thing with the
1111 new definition. */
1112
1113 h->root.type = bfd_link_hash_undefined;
1114 h->root.u.undef.abfd = h->root.u.def.section->owner;
1115 *size_change_ok = TRUE;
1116
1117 olddef = FALSE;
1118 olddyncommon = FALSE;
1119
1120 /* We again permit a type change when a common symbol may be
1121 overriding a function. */
1122
1123 if (bfd_is_com_section (sec))
1124 *type_change_ok = TRUE;
1125
1126 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1127 flip = *sym_hash;
1128 else
1129 /* This union may have been set to be non-NULL when this symbol
1130 was seen in a dynamic object. We must force the union to be
1131 NULL, so that it is correct for a regular symbol. */
1132 h->verinfo.vertree = NULL;
1133 }
1134
1135 /* Handle the special case of a new common symbol merging with an
1136 old symbol that looks like it might be a common symbol defined in
1137 a shared object. Note that we have already handled the case in
1138 which a new common symbol should simply override the definition
1139 in the shared library. */
1140
1141 if (! newdyn
1142 && bfd_is_com_section (sec)
1143 && olddyncommon)
1144 {
1145 /* It would be best if we could set the hash table entry to a
1146 common symbol, but we don't know what to use for the section
1147 or the alignment. */
1148 if (! ((*info->callbacks->multiple_common)
1149 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1150 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1151 return FALSE;
1152
4cc11e76 1153 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1154 larger, pretend that the new symbol has its size. */
1155
1156 if (h->size > *pvalue)
1157 *pvalue = h->size;
1158
1159 /* FIXME: We no longer know the alignment required by the symbol
1160 in the dynamic object, so we just wind up using the one from
1161 the regular object. */
1162
1163 olddef = FALSE;
1164 olddyncommon = FALSE;
1165
1166 h->root.type = bfd_link_hash_undefined;
1167 h->root.u.undef.abfd = h->root.u.def.section->owner;
1168
1169 *size_change_ok = TRUE;
1170 *type_change_ok = TRUE;
1171
1172 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1173 flip = *sym_hash;
1174 else
1175 h->verinfo.vertree = NULL;
1176 }
1177
1178 if (flip != NULL)
1179 {
1180 /* Handle the case where we had a versioned symbol in a dynamic
1181 library and now find a definition in a normal object. In this
1182 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1184 flip->root.type = h->root.type;
1185 h->root.type = bfd_link_hash_indirect;
1186 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1187 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1188 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1189 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1190 {
1191 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
1192 flip->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1193 }
1194 }
1195
45d6a902
AM
1196 return TRUE;
1197}
1198
1199/* This function is called to create an indirect symbol from the
1200 default for the symbol with the default version if needed. The
1201 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1202 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902
AM
1203
1204bfd_boolean
268b6b39
AM
1205_bfd_elf_add_default_symbol (bfd *abfd,
1206 struct bfd_link_info *info,
1207 struct elf_link_hash_entry *h,
1208 const char *name,
1209 Elf_Internal_Sym *sym,
1210 asection **psec,
1211 bfd_vma *value,
1212 bfd_boolean *dynsym,
0f8a2703 1213 bfd_boolean override)
45d6a902
AM
1214{
1215 bfd_boolean type_change_ok;
1216 bfd_boolean size_change_ok;
1217 bfd_boolean skip;
1218 char *shortname;
1219 struct elf_link_hash_entry *hi;
1220 struct bfd_link_hash_entry *bh;
9c5bfbb7 1221 const struct elf_backend_data *bed;
45d6a902
AM
1222 bfd_boolean collect;
1223 bfd_boolean dynamic;
1224 char *p;
1225 size_t len, shortlen;
1226 asection *sec;
1227
1228 /* If this symbol has a version, and it is the default version, we
1229 create an indirect symbol from the default name to the fully
1230 decorated name. This will cause external references which do not
1231 specify a version to be bound to this version of the symbol. */
1232 p = strchr (name, ELF_VER_CHR);
1233 if (p == NULL || p[1] != ELF_VER_CHR)
1234 return TRUE;
1235
1236 if (override)
1237 {
4cc11e76 1238 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1239 need to create the indirect symbol from the default name. */
1240 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1241 FALSE, FALSE);
1242 BFD_ASSERT (hi != NULL);
1243 if (hi == h)
1244 return TRUE;
1245 while (hi->root.type == bfd_link_hash_indirect
1246 || hi->root.type == bfd_link_hash_warning)
1247 {
1248 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1249 if (hi == h)
1250 return TRUE;
1251 }
1252 }
1253
1254 bed = get_elf_backend_data (abfd);
1255 collect = bed->collect;
1256 dynamic = (abfd->flags & DYNAMIC) != 0;
1257
1258 shortlen = p - name;
1259 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1260 if (shortname == NULL)
1261 return FALSE;
1262 memcpy (shortname, name, shortlen);
1263 shortname[shortlen] = '\0';
1264
1265 /* We are going to create a new symbol. Merge it with any existing
1266 symbol with this name. For the purposes of the merge, act as
1267 though we were defining the symbol we just defined, although we
1268 actually going to define an indirect symbol. */
1269 type_change_ok = FALSE;
1270 size_change_ok = FALSE;
1271 sec = *psec;
1272 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1273 &hi, &skip, &override, &type_change_ok,
0f8a2703 1274 &size_change_ok))
45d6a902
AM
1275 return FALSE;
1276
1277 if (skip)
1278 goto nondefault;
1279
1280 if (! override)
1281 {
1282 bh = &hi->root;
1283 if (! (_bfd_generic_link_add_one_symbol
1284 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1285 0, name, FALSE, collect, &bh)))
45d6a902
AM
1286 return FALSE;
1287 hi = (struct elf_link_hash_entry *) bh;
1288 }
1289 else
1290 {
1291 /* In this case the symbol named SHORTNAME is overriding the
1292 indirect symbol we want to add. We were planning on making
1293 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1294 is the name without a version. NAME is the fully versioned
1295 name, and it is the default version.
1296
1297 Overriding means that we already saw a definition for the
1298 symbol SHORTNAME in a regular object, and it is overriding
1299 the symbol defined in the dynamic object.
1300
1301 When this happens, we actually want to change NAME, the
1302 symbol we just added, to refer to SHORTNAME. This will cause
1303 references to NAME in the shared object to become references
1304 to SHORTNAME in the regular object. This is what we expect
1305 when we override a function in a shared object: that the
1306 references in the shared object will be mapped to the
1307 definition in the regular object. */
1308
1309 while (hi->root.type == bfd_link_hash_indirect
1310 || hi->root.type == bfd_link_hash_warning)
1311 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1312
1313 h->root.type = bfd_link_hash_indirect;
1314 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1315 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1316 {
1317 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1318 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1319 if (hi->elf_link_hash_flags
1320 & (ELF_LINK_HASH_REF_REGULAR
1321 | ELF_LINK_HASH_DEF_REGULAR))
1322 {
c152c796 1323 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1324 return FALSE;
1325 }
1326 }
1327
1328 /* Now set HI to H, so that the following code will set the
1329 other fields correctly. */
1330 hi = h;
1331 }
1332
1333 /* If there is a duplicate definition somewhere, then HI may not
1334 point to an indirect symbol. We will have reported an error to
1335 the user in that case. */
1336
1337 if (hi->root.type == bfd_link_hash_indirect)
1338 {
1339 struct elf_link_hash_entry *ht;
1340
45d6a902
AM
1341 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1342 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1343
1344 /* See if the new flags lead us to realize that the symbol must
1345 be dynamic. */
1346 if (! *dynsym)
1347 {
1348 if (! dynamic)
1349 {
1350 if (info->shared
1351 || ((hi->elf_link_hash_flags
1352 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1353 *dynsym = TRUE;
1354 }
1355 else
1356 {
1357 if ((hi->elf_link_hash_flags
1358 & ELF_LINK_HASH_REF_REGULAR) != 0)
1359 *dynsym = TRUE;
1360 }
1361 }
1362 }
1363
1364 /* We also need to define an indirection from the nondefault version
1365 of the symbol. */
1366
1367nondefault:
1368 len = strlen (name);
1369 shortname = bfd_hash_allocate (&info->hash->table, len);
1370 if (shortname == NULL)
1371 return FALSE;
1372 memcpy (shortname, name, shortlen);
1373 memcpy (shortname + shortlen, p + 1, len - shortlen);
1374
1375 /* Once again, merge with any existing symbol. */
1376 type_change_ok = FALSE;
1377 size_change_ok = FALSE;
1378 sec = *psec;
1379 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1380 &hi, &skip, &override, &type_change_ok,
0f8a2703 1381 &size_change_ok))
45d6a902
AM
1382 return FALSE;
1383
1384 if (skip)
1385 return TRUE;
1386
1387 if (override)
1388 {
1389 /* Here SHORTNAME is a versioned name, so we don't expect to see
1390 the type of override we do in the case above unless it is
4cc11e76 1391 overridden by a versioned definition. */
45d6a902
AM
1392 if (hi->root.type != bfd_link_hash_defined
1393 && hi->root.type != bfd_link_hash_defweak)
1394 (*_bfd_error_handler)
d003868e
AM
1395 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1396 abfd, shortname);
45d6a902
AM
1397 }
1398 else
1399 {
1400 bh = &hi->root;
1401 if (! (_bfd_generic_link_add_one_symbol
1402 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1403 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1404 return FALSE;
1405 hi = (struct elf_link_hash_entry *) bh;
1406
1407 /* If there is a duplicate definition somewhere, then HI may not
1408 point to an indirect symbol. We will have reported an error
1409 to the user in that case. */
1410
1411 if (hi->root.type == bfd_link_hash_indirect)
1412 {
45d6a902
AM
1413 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1414
1415 /* See if the new flags lead us to realize that the symbol
1416 must be dynamic. */
1417 if (! *dynsym)
1418 {
1419 if (! dynamic)
1420 {
1421 if (info->shared
1422 || ((hi->elf_link_hash_flags
1423 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1424 *dynsym = TRUE;
1425 }
1426 else
1427 {
1428 if ((hi->elf_link_hash_flags
1429 & ELF_LINK_HASH_REF_REGULAR) != 0)
1430 *dynsym = TRUE;
1431 }
1432 }
1433 }
1434 }
1435
1436 return TRUE;
1437}
1438\f
1439/* This routine is used to export all defined symbols into the dynamic
1440 symbol table. It is called via elf_link_hash_traverse. */
1441
1442bfd_boolean
268b6b39 1443_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1444{
268b6b39 1445 struct elf_info_failed *eif = data;
45d6a902
AM
1446
1447 /* Ignore indirect symbols. These are added by the versioning code. */
1448 if (h->root.type == bfd_link_hash_indirect)
1449 return TRUE;
1450
1451 if (h->root.type == bfd_link_hash_warning)
1452 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1453
1454 if (h->dynindx == -1
1455 && (h->elf_link_hash_flags
1456 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
1457 {
1458 struct bfd_elf_version_tree *t;
1459 struct bfd_elf_version_expr *d;
1460
1461 for (t = eif->verdefs; t != NULL; t = t->next)
1462 {
108ba305 1463 if (t->globals.list != NULL)
45d6a902 1464 {
108ba305
JJ
1465 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1466 if (d != NULL)
1467 goto doit;
45d6a902
AM
1468 }
1469
108ba305 1470 if (t->locals.list != NULL)
45d6a902 1471 {
108ba305
JJ
1472 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1473 if (d != NULL)
1474 return TRUE;
45d6a902
AM
1475 }
1476 }
1477
1478 if (!eif->verdefs)
1479 {
1480 doit:
c152c796 1481 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1482 {
1483 eif->failed = TRUE;
1484 return FALSE;
1485 }
1486 }
1487 }
1488
1489 return TRUE;
1490}
1491\f
1492/* Look through the symbols which are defined in other shared
1493 libraries and referenced here. Update the list of version
1494 dependencies. This will be put into the .gnu.version_r section.
1495 This function is called via elf_link_hash_traverse. */
1496
1497bfd_boolean
268b6b39
AM
1498_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1499 void *data)
45d6a902 1500{
268b6b39 1501 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1502 Elf_Internal_Verneed *t;
1503 Elf_Internal_Vernaux *a;
1504 bfd_size_type amt;
1505
1506 if (h->root.type == bfd_link_hash_warning)
1507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1508
1509 /* We only care about symbols defined in shared objects with version
1510 information. */
1511 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1512 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1513 || h->dynindx == -1
1514 || h->verinfo.verdef == NULL)
1515 return TRUE;
1516
1517 /* See if we already know about this version. */
1518 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1519 {
1520 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1521 continue;
1522
1523 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1524 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1525 return TRUE;
1526
1527 break;
1528 }
1529
1530 /* This is a new version. Add it to tree we are building. */
1531
1532 if (t == NULL)
1533 {
1534 amt = sizeof *t;
268b6b39 1535 t = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1536 if (t == NULL)
1537 {
1538 rinfo->failed = TRUE;
1539 return FALSE;
1540 }
1541
1542 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1543 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1544 elf_tdata (rinfo->output_bfd)->verref = t;
1545 }
1546
1547 amt = sizeof *a;
268b6b39 1548 a = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1549
1550 /* Note that we are copying a string pointer here, and testing it
1551 above. If bfd_elf_string_from_elf_section is ever changed to
1552 discard the string data when low in memory, this will have to be
1553 fixed. */
1554 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1555
1556 a->vna_flags = h->verinfo.verdef->vd_flags;
1557 a->vna_nextptr = t->vn_auxptr;
1558
1559 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1560 ++rinfo->vers;
1561
1562 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1563
1564 t->vn_auxptr = a;
1565
1566 return TRUE;
1567}
1568
1569/* Figure out appropriate versions for all the symbols. We may not
1570 have the version number script until we have read all of the input
1571 files, so until that point we don't know which symbols should be
1572 local. This function is called via elf_link_hash_traverse. */
1573
1574bfd_boolean
268b6b39 1575_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
1576{
1577 struct elf_assign_sym_version_info *sinfo;
1578 struct bfd_link_info *info;
9c5bfbb7 1579 const struct elf_backend_data *bed;
45d6a902
AM
1580 struct elf_info_failed eif;
1581 char *p;
1582 bfd_size_type amt;
1583
268b6b39 1584 sinfo = data;
45d6a902
AM
1585 info = sinfo->info;
1586
1587 if (h->root.type == bfd_link_hash_warning)
1588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1589
1590 /* Fix the symbol flags. */
1591 eif.failed = FALSE;
1592 eif.info = info;
1593 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1594 {
1595 if (eif.failed)
1596 sinfo->failed = TRUE;
1597 return FALSE;
1598 }
1599
1600 /* We only need version numbers for symbols defined in regular
1601 objects. */
1602 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1603 return TRUE;
1604
1605 bed = get_elf_backend_data (sinfo->output_bfd);
1606 p = strchr (h->root.root.string, ELF_VER_CHR);
1607 if (p != NULL && h->verinfo.vertree == NULL)
1608 {
1609 struct bfd_elf_version_tree *t;
1610 bfd_boolean hidden;
1611
1612 hidden = TRUE;
1613
1614 /* There are two consecutive ELF_VER_CHR characters if this is
1615 not a hidden symbol. */
1616 ++p;
1617 if (*p == ELF_VER_CHR)
1618 {
1619 hidden = FALSE;
1620 ++p;
1621 }
1622
1623 /* If there is no version string, we can just return out. */
1624 if (*p == '\0')
1625 {
1626 if (hidden)
1627 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1628 return TRUE;
1629 }
1630
1631 /* Look for the version. If we find it, it is no longer weak. */
1632 for (t = sinfo->verdefs; t != NULL; t = t->next)
1633 {
1634 if (strcmp (t->name, p) == 0)
1635 {
1636 size_t len;
1637 char *alc;
1638 struct bfd_elf_version_expr *d;
1639
1640 len = p - h->root.root.string;
268b6b39 1641 alc = bfd_malloc (len);
45d6a902
AM
1642 if (alc == NULL)
1643 return FALSE;
1644 memcpy (alc, h->root.root.string, len - 1);
1645 alc[len - 1] = '\0';
1646 if (alc[len - 2] == ELF_VER_CHR)
1647 alc[len - 2] = '\0';
1648
1649 h->verinfo.vertree = t;
1650 t->used = TRUE;
1651 d = NULL;
1652
108ba305
JJ
1653 if (t->globals.list != NULL)
1654 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
1655
1656 /* See if there is anything to force this symbol to
1657 local scope. */
108ba305 1658 if (d == NULL && t->locals.list != NULL)
45d6a902 1659 {
108ba305
JJ
1660 d = (*t->match) (&t->locals, NULL, alc);
1661 if (d != NULL
1662 && h->dynindx != -1
1663 && info->shared
1664 && ! info->export_dynamic)
1665 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
1666 }
1667
1668 free (alc);
1669 break;
1670 }
1671 }
1672
1673 /* If we are building an application, we need to create a
1674 version node for this version. */
36af4a4e 1675 if (t == NULL && info->executable)
45d6a902
AM
1676 {
1677 struct bfd_elf_version_tree **pp;
1678 int version_index;
1679
1680 /* If we aren't going to export this symbol, we don't need
1681 to worry about it. */
1682 if (h->dynindx == -1)
1683 return TRUE;
1684
1685 amt = sizeof *t;
108ba305 1686 t = bfd_zalloc (sinfo->output_bfd, amt);
45d6a902
AM
1687 if (t == NULL)
1688 {
1689 sinfo->failed = TRUE;
1690 return FALSE;
1691 }
1692
45d6a902 1693 t->name = p;
45d6a902
AM
1694 t->name_indx = (unsigned int) -1;
1695 t->used = TRUE;
1696
1697 version_index = 1;
1698 /* Don't count anonymous version tag. */
1699 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1700 version_index = 0;
1701 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1702 ++version_index;
1703 t->vernum = version_index;
1704
1705 *pp = t;
1706
1707 h->verinfo.vertree = t;
1708 }
1709 else if (t == NULL)
1710 {
1711 /* We could not find the version for a symbol when
1712 generating a shared archive. Return an error. */
1713 (*_bfd_error_handler)
d003868e
AM
1714 (_("%B: undefined versioned symbol name %s"),
1715 sinfo->output_bfd, h->root.root.string);
45d6a902
AM
1716 bfd_set_error (bfd_error_bad_value);
1717 sinfo->failed = TRUE;
1718 return FALSE;
1719 }
1720
1721 if (hidden)
1722 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1723 }
1724
1725 /* If we don't have a version for this symbol, see if we can find
1726 something. */
1727 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1728 {
1729 struct bfd_elf_version_tree *t;
1730 struct bfd_elf_version_tree *local_ver;
1731 struct bfd_elf_version_expr *d;
1732
1733 /* See if can find what version this symbol is in. If the
1734 symbol is supposed to be local, then don't actually register
1735 it. */
1736 local_ver = NULL;
1737 for (t = sinfo->verdefs; t != NULL; t = t->next)
1738 {
108ba305 1739 if (t->globals.list != NULL)
45d6a902
AM
1740 {
1741 bfd_boolean matched;
1742
1743 matched = FALSE;
108ba305
JJ
1744 d = NULL;
1745 while ((d = (*t->match) (&t->globals, d,
1746 h->root.root.string)) != NULL)
1747 if (d->symver)
1748 matched = TRUE;
1749 else
1750 {
1751 /* There is a version without definition. Make
1752 the symbol the default definition for this
1753 version. */
1754 h->verinfo.vertree = t;
1755 local_ver = NULL;
1756 d->script = 1;
1757 break;
1758 }
45d6a902
AM
1759 if (d != NULL)
1760 break;
1761 else if (matched)
1762 /* There is no undefined version for this symbol. Hide the
1763 default one. */
1764 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1765 }
1766
108ba305 1767 if (t->locals.list != NULL)
45d6a902 1768 {
108ba305
JJ
1769 d = NULL;
1770 while ((d = (*t->match) (&t->locals, d,
1771 h->root.root.string)) != NULL)
45d6a902 1772 {
108ba305 1773 local_ver = t;
45d6a902 1774 /* If the match is "*", keep looking for a more
108ba305
JJ
1775 explicit, perhaps even global, match.
1776 XXX: Shouldn't this be !d->wildcard instead? */
1777 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1778 break;
45d6a902
AM
1779 }
1780
1781 if (d != NULL)
1782 break;
1783 }
1784 }
1785
1786 if (local_ver != NULL)
1787 {
1788 h->verinfo.vertree = local_ver;
1789 if (h->dynindx != -1
1790 && info->shared
1791 && ! info->export_dynamic)
1792 {
1793 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1794 }
1795 }
1796 }
1797
1798 return TRUE;
1799}
1800\f
45d6a902
AM
1801/* Read and swap the relocs from the section indicated by SHDR. This
1802 may be either a REL or a RELA section. The relocations are
1803 translated into RELA relocations and stored in INTERNAL_RELOCS,
1804 which should have already been allocated to contain enough space.
1805 The EXTERNAL_RELOCS are a buffer where the external form of the
1806 relocations should be stored.
1807
1808 Returns FALSE if something goes wrong. */
1809
1810static bfd_boolean
268b6b39 1811elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 1812 asection *sec,
268b6b39
AM
1813 Elf_Internal_Shdr *shdr,
1814 void *external_relocs,
1815 Elf_Internal_Rela *internal_relocs)
45d6a902 1816{
9c5bfbb7 1817 const struct elf_backend_data *bed;
268b6b39 1818 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
1819 const bfd_byte *erela;
1820 const bfd_byte *erelaend;
1821 Elf_Internal_Rela *irela;
243ef1e0
L
1822 Elf_Internal_Shdr *symtab_hdr;
1823 size_t nsyms;
45d6a902 1824
45d6a902
AM
1825 /* Position ourselves at the start of the section. */
1826 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1827 return FALSE;
1828
1829 /* Read the relocations. */
1830 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1831 return FALSE;
1832
243ef1e0
L
1833 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1834 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1835
45d6a902
AM
1836 bed = get_elf_backend_data (abfd);
1837
1838 /* Convert the external relocations to the internal format. */
1839 if (shdr->sh_entsize == bed->s->sizeof_rel)
1840 swap_in = bed->s->swap_reloc_in;
1841 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1842 swap_in = bed->s->swap_reloca_in;
1843 else
1844 {
1845 bfd_set_error (bfd_error_wrong_format);
1846 return FALSE;
1847 }
1848
1849 erela = external_relocs;
51992aec 1850 erelaend = erela + shdr->sh_size;
45d6a902
AM
1851 irela = internal_relocs;
1852 while (erela < erelaend)
1853 {
243ef1e0
L
1854 bfd_vma r_symndx;
1855
45d6a902 1856 (*swap_in) (abfd, erela, irela);
243ef1e0
L
1857 r_symndx = ELF32_R_SYM (irela->r_info);
1858 if (bed->s->arch_size == 64)
1859 r_symndx >>= 24;
1860 if ((size_t) r_symndx >= nsyms)
1861 {
1862 (*_bfd_error_handler)
d003868e
AM
1863 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1864 " for offset 0x%lx in section `%A'"),
1865 abfd, sec,
1866 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
1867 bfd_set_error (bfd_error_bad_value);
1868 return FALSE;
1869 }
45d6a902
AM
1870 irela += bed->s->int_rels_per_ext_rel;
1871 erela += shdr->sh_entsize;
1872 }
1873
1874 return TRUE;
1875}
1876
1877/* Read and swap the relocs for a section O. They may have been
1878 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1879 not NULL, they are used as buffers to read into. They are known to
1880 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1881 the return value is allocated using either malloc or bfd_alloc,
1882 according to the KEEP_MEMORY argument. If O has two relocation
1883 sections (both REL and RELA relocations), then the REL_HDR
1884 relocations will appear first in INTERNAL_RELOCS, followed by the
1885 REL_HDR2 relocations. */
1886
1887Elf_Internal_Rela *
268b6b39
AM
1888_bfd_elf_link_read_relocs (bfd *abfd,
1889 asection *o,
1890 void *external_relocs,
1891 Elf_Internal_Rela *internal_relocs,
1892 bfd_boolean keep_memory)
45d6a902
AM
1893{
1894 Elf_Internal_Shdr *rel_hdr;
268b6b39 1895 void *alloc1 = NULL;
45d6a902 1896 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 1897 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1898
1899 if (elf_section_data (o)->relocs != NULL)
1900 return elf_section_data (o)->relocs;
1901
1902 if (o->reloc_count == 0)
1903 return NULL;
1904
1905 rel_hdr = &elf_section_data (o)->rel_hdr;
1906
1907 if (internal_relocs == NULL)
1908 {
1909 bfd_size_type size;
1910
1911 size = o->reloc_count;
1912 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
1913 if (keep_memory)
268b6b39 1914 internal_relocs = bfd_alloc (abfd, size);
45d6a902 1915 else
268b6b39 1916 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
1917 if (internal_relocs == NULL)
1918 goto error_return;
1919 }
1920
1921 if (external_relocs == NULL)
1922 {
1923 bfd_size_type size = rel_hdr->sh_size;
1924
1925 if (elf_section_data (o)->rel_hdr2)
1926 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 1927 alloc1 = bfd_malloc (size);
45d6a902
AM
1928 if (alloc1 == NULL)
1929 goto error_return;
1930 external_relocs = alloc1;
1931 }
1932
243ef1e0 1933 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
1934 external_relocs,
1935 internal_relocs))
1936 goto error_return;
51992aec
AM
1937 if (elf_section_data (o)->rel_hdr2
1938 && (!elf_link_read_relocs_from_section
1939 (abfd, o,
1940 elf_section_data (o)->rel_hdr2,
1941 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
1942 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
1943 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
1944 goto error_return;
1945
1946 /* Cache the results for next time, if we can. */
1947 if (keep_memory)
1948 elf_section_data (o)->relocs = internal_relocs;
1949
1950 if (alloc1 != NULL)
1951 free (alloc1);
1952
1953 /* Don't free alloc2, since if it was allocated we are passing it
1954 back (under the name of internal_relocs). */
1955
1956 return internal_relocs;
1957
1958 error_return:
1959 if (alloc1 != NULL)
1960 free (alloc1);
1961 if (alloc2 != NULL)
1962 free (alloc2);
1963 return NULL;
1964}
1965
1966/* Compute the size of, and allocate space for, REL_HDR which is the
1967 section header for a section containing relocations for O. */
1968
1969bfd_boolean
268b6b39
AM
1970_bfd_elf_link_size_reloc_section (bfd *abfd,
1971 Elf_Internal_Shdr *rel_hdr,
1972 asection *o)
45d6a902
AM
1973{
1974 bfd_size_type reloc_count;
1975 bfd_size_type num_rel_hashes;
1976
1977 /* Figure out how many relocations there will be. */
1978 if (rel_hdr == &elf_section_data (o)->rel_hdr)
1979 reloc_count = elf_section_data (o)->rel_count;
1980 else
1981 reloc_count = elf_section_data (o)->rel_count2;
1982
1983 num_rel_hashes = o->reloc_count;
1984 if (num_rel_hashes < reloc_count)
1985 num_rel_hashes = reloc_count;
1986
1987 /* That allows us to calculate the size of the section. */
1988 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
1989
1990 /* The contents field must last into write_object_contents, so we
1991 allocate it with bfd_alloc rather than malloc. Also since we
1992 cannot be sure that the contents will actually be filled in,
1993 we zero the allocated space. */
268b6b39 1994 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
1995 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
1996 return FALSE;
1997
1998 /* We only allocate one set of hash entries, so we only do it the
1999 first time we are called. */
2000 if (elf_section_data (o)->rel_hashes == NULL
2001 && num_rel_hashes)
2002 {
2003 struct elf_link_hash_entry **p;
2004
268b6b39 2005 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2006 if (p == NULL)
2007 return FALSE;
2008
2009 elf_section_data (o)->rel_hashes = p;
2010 }
2011
2012 return TRUE;
2013}
2014
2015/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2016 originated from the section given by INPUT_REL_HDR) to the
2017 OUTPUT_BFD. */
2018
2019bfd_boolean
268b6b39
AM
2020_bfd_elf_link_output_relocs (bfd *output_bfd,
2021 asection *input_section,
2022 Elf_Internal_Shdr *input_rel_hdr,
2023 Elf_Internal_Rela *internal_relocs)
45d6a902
AM
2024{
2025 Elf_Internal_Rela *irela;
2026 Elf_Internal_Rela *irelaend;
2027 bfd_byte *erel;
2028 Elf_Internal_Shdr *output_rel_hdr;
2029 asection *output_section;
2030 unsigned int *rel_countp = NULL;
9c5bfbb7 2031 const struct elf_backend_data *bed;
268b6b39 2032 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2033
2034 output_section = input_section->output_section;
2035 output_rel_hdr = NULL;
2036
2037 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2038 == input_rel_hdr->sh_entsize)
2039 {
2040 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2041 rel_countp = &elf_section_data (output_section)->rel_count;
2042 }
2043 else if (elf_section_data (output_section)->rel_hdr2
2044 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2045 == input_rel_hdr->sh_entsize))
2046 {
2047 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2048 rel_countp = &elf_section_data (output_section)->rel_count2;
2049 }
2050 else
2051 {
2052 (*_bfd_error_handler)
d003868e
AM
2053 (_("%B: relocation size mismatch in %B section %A"),
2054 output_bfd, input_section->owner, input_section);
45d6a902
AM
2055 bfd_set_error (bfd_error_wrong_object_format);
2056 return FALSE;
2057 }
2058
2059 bed = get_elf_backend_data (output_bfd);
2060 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2061 swap_out = bed->s->swap_reloc_out;
2062 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2063 swap_out = bed->s->swap_reloca_out;
2064 else
2065 abort ();
2066
2067 erel = output_rel_hdr->contents;
2068 erel += *rel_countp * input_rel_hdr->sh_entsize;
2069 irela = internal_relocs;
2070 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2071 * bed->s->int_rels_per_ext_rel);
2072 while (irela < irelaend)
2073 {
2074 (*swap_out) (output_bfd, irela, erel);
2075 irela += bed->s->int_rels_per_ext_rel;
2076 erel += input_rel_hdr->sh_entsize;
2077 }
2078
2079 /* Bump the counter, so that we know where to add the next set of
2080 relocations. */
2081 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2082
2083 return TRUE;
2084}
2085\f
2086/* Fix up the flags for a symbol. This handles various cases which
2087 can only be fixed after all the input files are seen. This is
2088 currently called by both adjust_dynamic_symbol and
2089 assign_sym_version, which is unnecessary but perhaps more robust in
2090 the face of future changes. */
2091
2092bfd_boolean
268b6b39
AM
2093_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2094 struct elf_info_failed *eif)
45d6a902
AM
2095{
2096 /* If this symbol was mentioned in a non-ELF file, try to set
2097 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2098 permit a non-ELF file to correctly refer to a symbol defined in
2099 an ELF dynamic object. */
2100 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2101 {
2102 while (h->root.type == bfd_link_hash_indirect)
2103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2104
2105 if (h->root.type != bfd_link_hash_defined
2106 && h->root.type != bfd_link_hash_defweak)
2107 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2108 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2109 else
2110 {
2111 if (h->root.u.def.section->owner != NULL
2112 && (bfd_get_flavour (h->root.u.def.section->owner)
2113 == bfd_target_elf_flavour))
2114 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2115 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2116 else
2117 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2118 }
2119
2120 if (h->dynindx == -1
2121 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2122 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
2123 {
c152c796 2124 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2125 {
2126 eif->failed = TRUE;
2127 return FALSE;
2128 }
2129 }
2130 }
2131 else
2132 {
2133 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
2134 was first seen in a non-ELF file. Fortunately, if the symbol
2135 was first seen in an ELF file, we're probably OK unless the
2136 symbol was defined in a non-ELF file. Catch that case here.
2137 FIXME: We're still in trouble if the symbol was first seen in
2138 a dynamic object, and then later in a non-ELF regular object. */
2139 if ((h->root.type == bfd_link_hash_defined
2140 || h->root.type == bfd_link_hash_defweak)
2141 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2142 && (h->root.u.def.section->owner != NULL
2143 ? (bfd_get_flavour (h->root.u.def.section->owner)
2144 != bfd_target_elf_flavour)
2145 : (bfd_is_abs_section (h->root.u.def.section)
2146 && (h->elf_link_hash_flags
2147 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
2148 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2149 }
2150
2151 /* If this is a final link, and the symbol was defined as a common
2152 symbol in a regular object file, and there was no definition in
2153 any dynamic object, then the linker will have allocated space for
2154 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2155 flag will not have been set. */
2156 if (h->root.type == bfd_link_hash_defined
2157 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2158 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
2159 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2160 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2161 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2162
2163 /* If -Bsymbolic was used (which means to bind references to global
2164 symbols to the definition within the shared object), and this
2165 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2166 need a PLT entry. Likewise, if the symbol has non-default
2167 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2168 will force it local. */
45d6a902
AM
2169 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
2170 && eif->info->shared
0eddce27 2171 && is_elf_hash_table (eif->info->hash)
45d6a902 2172 && (eif->info->symbolic
c1be741f 2173 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
45d6a902
AM
2174 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2175 {
9c5bfbb7 2176 const struct elf_backend_data *bed;
45d6a902
AM
2177 bfd_boolean force_local;
2178
2179 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2180
2181 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2182 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2183 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2184 }
2185
2186 /* If a weak undefined symbol has non-default visibility, we also
2187 hide it from the dynamic linker. */
9c7a29a3 2188 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
2189 && h->root.type == bfd_link_hash_undefweak)
2190 {
9c5bfbb7 2191 const struct elf_backend_data *bed;
45d6a902
AM
2192 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2193 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2194 }
2195
2196 /* If this is a weak defined symbol in a dynamic object, and we know
2197 the real definition in the dynamic object, copy interesting flags
2198 over to the real definition. */
2199 if (h->weakdef != NULL)
2200 {
2201 struct elf_link_hash_entry *weakdef;
2202
2203 weakdef = h->weakdef;
2204 if (h->root.type == bfd_link_hash_indirect)
2205 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2206
2207 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2208 || h->root.type == bfd_link_hash_defweak);
2209 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2210 || weakdef->root.type == bfd_link_hash_defweak);
2211 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
2212
2213 /* If the real definition is defined by a regular object file,
2214 don't do anything special. See the longer description in
2215 _bfd_elf_adjust_dynamic_symbol, below. */
2216 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2217 h->weakdef = NULL;
2218 else
2219 {
9c5bfbb7 2220 const struct elf_backend_data *bed;
45d6a902
AM
2221
2222 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2223 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2224 }
2225 }
2226
2227 return TRUE;
2228}
2229
2230/* Make the backend pick a good value for a dynamic symbol. This is
2231 called via elf_link_hash_traverse, and also calls itself
2232 recursively. */
2233
2234bfd_boolean
268b6b39 2235_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2236{
268b6b39 2237 struct elf_info_failed *eif = data;
45d6a902 2238 bfd *dynobj;
9c5bfbb7 2239 const struct elf_backend_data *bed;
45d6a902 2240
0eddce27 2241 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2242 return FALSE;
2243
2244 if (h->root.type == bfd_link_hash_warning)
2245 {
2246 h->plt = elf_hash_table (eif->info)->init_offset;
2247 h->got = elf_hash_table (eif->info)->init_offset;
2248
2249 /* When warning symbols are created, they **replace** the "real"
2250 entry in the hash table, thus we never get to see the real
2251 symbol in a hash traversal. So look at it now. */
2252 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2253 }
2254
2255 /* Ignore indirect symbols. These are added by the versioning code. */
2256 if (h->root.type == bfd_link_hash_indirect)
2257 return TRUE;
2258
2259 /* Fix the symbol flags. */
2260 if (! _bfd_elf_fix_symbol_flags (h, eif))
2261 return FALSE;
2262
2263 /* If this symbol does not require a PLT entry, and it is not
2264 defined by a dynamic object, or is not referenced by a regular
2265 object, ignore it. We do have to handle a weak defined symbol,
2266 even if no regular object refers to it, if we decided to add it
2267 to the dynamic symbol table. FIXME: Do we normally need to worry
2268 about symbols which are defined by one dynamic object and
2269 referenced by another one? */
2270 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
2271 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2272 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2273 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
2274 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
2275 {
2276 h->plt = elf_hash_table (eif->info)->init_offset;
2277 return TRUE;
2278 }
2279
2280 /* If we've already adjusted this symbol, don't do it again. This
2281 can happen via a recursive call. */
2282 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
2283 return TRUE;
2284
2285 /* Don't look at this symbol again. Note that we must set this
2286 after checking the above conditions, because we may look at a
2287 symbol once, decide not to do anything, and then get called
2288 recursively later after REF_REGULAR is set below. */
2289 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
2290
2291 /* If this is a weak definition, and we know a real definition, and
2292 the real symbol is not itself defined by a regular object file,
2293 then get a good value for the real definition. We handle the
2294 real symbol first, for the convenience of the backend routine.
2295
2296 Note that there is a confusing case here. If the real definition
2297 is defined by a regular object file, we don't get the real symbol
2298 from the dynamic object, but we do get the weak symbol. If the
2299 processor backend uses a COPY reloc, then if some routine in the
2300 dynamic object changes the real symbol, we will not see that
2301 change in the corresponding weak symbol. This is the way other
2302 ELF linkers work as well, and seems to be a result of the shared
2303 library model.
2304
2305 I will clarify this issue. Most SVR4 shared libraries define the
2306 variable _timezone and define timezone as a weak synonym. The
2307 tzset call changes _timezone. If you write
2308 extern int timezone;
2309 int _timezone = 5;
2310 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2311 you might expect that, since timezone is a synonym for _timezone,
2312 the same number will print both times. However, if the processor
2313 backend uses a COPY reloc, then actually timezone will be copied
2314 into your process image, and, since you define _timezone
2315 yourself, _timezone will not. Thus timezone and _timezone will
2316 wind up at different memory locations. The tzset call will set
2317 _timezone, leaving timezone unchanged. */
2318
2319 if (h->weakdef != NULL)
2320 {
2321 /* If we get to this point, we know there is an implicit
2322 reference by a regular object file via the weak symbol H.
2323 FIXME: Is this really true? What if the traversal finds
2324 H->WEAKDEF before it finds H? */
2325 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2326
268b6b39 2327 if (! _bfd_elf_adjust_dynamic_symbol (h->weakdef, eif))
45d6a902
AM
2328 return FALSE;
2329 }
2330
2331 /* If a symbol has no type and no size and does not require a PLT
2332 entry, then we are probably about to do the wrong thing here: we
2333 are probably going to create a COPY reloc for an empty object.
2334 This case can arise when a shared object is built with assembly
2335 code, and the assembly code fails to set the symbol type. */
2336 if (h->size == 0
2337 && h->type == STT_NOTYPE
2338 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
2339 (*_bfd_error_handler)
2340 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2341 h->root.root.string);
2342
2343 dynobj = elf_hash_table (eif->info)->dynobj;
2344 bed = get_elf_backend_data (dynobj);
2345 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2346 {
2347 eif->failed = TRUE;
2348 return FALSE;
2349 }
2350
2351 return TRUE;
2352}
2353
2354/* Adjust all external symbols pointing into SEC_MERGE sections
2355 to reflect the object merging within the sections. */
2356
2357bfd_boolean
268b6b39 2358_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2359{
2360 asection *sec;
2361
2362 if (h->root.type == bfd_link_hash_warning)
2363 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2364
2365 if ((h->root.type == bfd_link_hash_defined
2366 || h->root.type == bfd_link_hash_defweak)
2367 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2368 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2369 {
268b6b39 2370 bfd *output_bfd = data;
45d6a902
AM
2371
2372 h->root.u.def.value =
2373 _bfd_merged_section_offset (output_bfd,
2374 &h->root.u.def.section,
2375 elf_section_data (sec)->sec_info,
753731ee 2376 h->root.u.def.value);
45d6a902
AM
2377 }
2378
2379 return TRUE;
2380}
986a241f
RH
2381
2382/* Returns false if the symbol referred to by H should be considered
2383 to resolve local to the current module, and true if it should be
2384 considered to bind dynamically. */
2385
2386bfd_boolean
268b6b39
AM
2387_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2388 struct bfd_link_info *info,
2389 bfd_boolean ignore_protected)
986a241f
RH
2390{
2391 bfd_boolean binding_stays_local_p;
2392
2393 if (h == NULL)
2394 return FALSE;
2395
2396 while (h->root.type == bfd_link_hash_indirect
2397 || h->root.type == bfd_link_hash_warning)
2398 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2399
2400 /* If it was forced local, then clearly it's not dynamic. */
2401 if (h->dynindx == -1)
2402 return FALSE;
2403 if (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2404 return FALSE;
2405
2406 /* Identify the cases where name binding rules say that a
2407 visible symbol resolves locally. */
2408 binding_stays_local_p = info->executable || info->symbolic;
2409
2410 switch (ELF_ST_VISIBILITY (h->other))
2411 {
2412 case STV_INTERNAL:
2413 case STV_HIDDEN:
2414 return FALSE;
2415
2416 case STV_PROTECTED:
2417 /* Proper resolution for function pointer equality may require
2418 that these symbols perhaps be resolved dynamically, even though
2419 we should be resolving them to the current module. */
2420 if (!ignore_protected)
2421 binding_stays_local_p = TRUE;
2422 break;
2423
2424 default:
986a241f
RH
2425 break;
2426 }
2427
aa37626c
L
2428 /* If it isn't defined locally, then clearly it's dynamic. */
2429 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2430 return TRUE;
2431
986a241f
RH
2432 /* Otherwise, the symbol is dynamic if binding rules don't tell
2433 us that it remains local. */
2434 return !binding_stays_local_p;
2435}
f6c52c13
AM
2436
2437/* Return true if the symbol referred to by H should be considered
2438 to resolve local to the current module, and false otherwise. Differs
2439 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2440 undefined symbols and weak symbols. */
2441
2442bfd_boolean
268b6b39
AM
2443_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2444 struct bfd_link_info *info,
2445 bfd_boolean local_protected)
f6c52c13
AM
2446{
2447 /* If it's a local sym, of course we resolve locally. */
2448 if (h == NULL)
2449 return TRUE;
2450
7e2294f9
AO
2451 /* Common symbols that become definitions don't get the DEF_REGULAR
2452 flag set, so test it first, and don't bail out. */
2453 if (ELF_COMMON_DEF_P (h))
2454 /* Do nothing. */;
f6c52c13
AM
2455 /* If we don't have a definition in a regular file, then we can't
2456 resolve locally. The sym is either undefined or dynamic. */
7e2294f9 2457 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
f6c52c13
AM
2458 return FALSE;
2459
2460 /* Forced local symbols resolve locally. */
2461 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2462 return TRUE;
2463
2464 /* As do non-dynamic symbols. */
2465 if (h->dynindx == -1)
2466 return TRUE;
2467
2468 /* At this point, we know the symbol is defined and dynamic. In an
2469 executable it must resolve locally, likewise when building symbolic
2470 shared libraries. */
2471 if (info->executable || info->symbolic)
2472 return TRUE;
2473
2474 /* Now deal with defined dynamic symbols in shared libraries. Ones
2475 with default visibility might not resolve locally. */
2476 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2477 return FALSE;
2478
2479 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2480 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2481 return TRUE;
2482
2483 /* Function pointer equality tests may require that STV_PROTECTED
2484 symbols be treated as dynamic symbols, even when we know that the
2485 dynamic linker will resolve them locally. */
2486 return local_protected;
2487}
e1918d23
AM
2488
2489/* Caches some TLS segment info, and ensures that the TLS segment vma is
2490 aligned. Returns the first TLS output section. */
2491
2492struct bfd_section *
2493_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2494{
2495 struct bfd_section *sec, *tls;
2496 unsigned int align = 0;
2497
2498 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2499 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2500 break;
2501 tls = sec;
2502
2503 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2504 if (sec->alignment_power > align)
2505 align = sec->alignment_power;
2506
2507 elf_hash_table (info)->tls_sec = tls;
2508
2509 /* Ensure the alignment of the first section is the largest alignment,
2510 so that the tls segment starts aligned. */
2511 if (tls != NULL)
2512 tls->alignment_power = align;
2513
2514 return tls;
2515}
0ad989f9
L
2516
2517/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2518static bfd_boolean
2519is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2520 Elf_Internal_Sym *sym)
2521{
2522 /* Local symbols do not count, but target specific ones might. */
2523 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2524 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2525 return FALSE;
2526
2527 /* Function symbols do not count. */
2528 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2529 return FALSE;
2530
2531 /* If the section is undefined, then so is the symbol. */
2532 if (sym->st_shndx == SHN_UNDEF)
2533 return FALSE;
2534
2535 /* If the symbol is defined in the common section, then
2536 it is a common definition and so does not count. */
2537 if (sym->st_shndx == SHN_COMMON)
2538 return FALSE;
2539
2540 /* If the symbol is in a target specific section then we
2541 must rely upon the backend to tell us what it is. */
2542 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2543 /* FIXME - this function is not coded yet:
2544
2545 return _bfd_is_global_symbol_definition (abfd, sym);
2546
2547 Instead for now assume that the definition is not global,
2548 Even if this is wrong, at least the linker will behave
2549 in the same way that it used to do. */
2550 return FALSE;
2551
2552 return TRUE;
2553}
2554
2555/* Search the symbol table of the archive element of the archive ABFD
2556 whose archive map contains a mention of SYMDEF, and determine if
2557 the symbol is defined in this element. */
2558static bfd_boolean
2559elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2560{
2561 Elf_Internal_Shdr * hdr;
2562 bfd_size_type symcount;
2563 bfd_size_type extsymcount;
2564 bfd_size_type extsymoff;
2565 Elf_Internal_Sym *isymbuf;
2566 Elf_Internal_Sym *isym;
2567 Elf_Internal_Sym *isymend;
2568 bfd_boolean result;
2569
2570 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2571 if (abfd == NULL)
2572 return FALSE;
2573
2574 if (! bfd_check_format (abfd, bfd_object))
2575 return FALSE;
2576
2577 /* If we have already included the element containing this symbol in the
2578 link then we do not need to include it again. Just claim that any symbol
2579 it contains is not a definition, so that our caller will not decide to
2580 (re)include this element. */
2581 if (abfd->archive_pass)
2582 return FALSE;
2583
2584 /* Select the appropriate symbol table. */
2585 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2586 hdr = &elf_tdata (abfd)->symtab_hdr;
2587 else
2588 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2589
2590 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2591
2592 /* The sh_info field of the symtab header tells us where the
2593 external symbols start. We don't care about the local symbols. */
2594 if (elf_bad_symtab (abfd))
2595 {
2596 extsymcount = symcount;
2597 extsymoff = 0;
2598 }
2599 else
2600 {
2601 extsymcount = symcount - hdr->sh_info;
2602 extsymoff = hdr->sh_info;
2603 }
2604
2605 if (extsymcount == 0)
2606 return FALSE;
2607
2608 /* Read in the symbol table. */
2609 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2610 NULL, NULL, NULL);
2611 if (isymbuf == NULL)
2612 return FALSE;
2613
2614 /* Scan the symbol table looking for SYMDEF. */
2615 result = FALSE;
2616 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2617 {
2618 const char *name;
2619
2620 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2621 isym->st_name);
2622 if (name == NULL)
2623 break;
2624
2625 if (strcmp (name, symdef->name) == 0)
2626 {
2627 result = is_global_data_symbol_definition (abfd, isym);
2628 break;
2629 }
2630 }
2631
2632 free (isymbuf);
2633
2634 return result;
2635}
2636\f
5a580b3a
AM
2637/* Add an entry to the .dynamic table. */
2638
2639bfd_boolean
2640_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2641 bfd_vma tag,
2642 bfd_vma val)
2643{
2644 struct elf_link_hash_table *hash_table;
2645 const struct elf_backend_data *bed;
2646 asection *s;
2647 bfd_size_type newsize;
2648 bfd_byte *newcontents;
2649 Elf_Internal_Dyn dyn;
2650
2651 hash_table = elf_hash_table (info);
2652 if (! is_elf_hash_table (hash_table))
2653 return FALSE;
2654
2655 bed = get_elf_backend_data (hash_table->dynobj);
2656 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2657 BFD_ASSERT (s != NULL);
2658
eea6121a 2659 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
2660 newcontents = bfd_realloc (s->contents, newsize);
2661 if (newcontents == NULL)
2662 return FALSE;
2663
2664 dyn.d_tag = tag;
2665 dyn.d_un.d_val = val;
eea6121a 2666 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 2667
eea6121a 2668 s->size = newsize;
5a580b3a
AM
2669 s->contents = newcontents;
2670
2671 return TRUE;
2672}
2673
2674/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2675 otherwise just check whether one already exists. Returns -1 on error,
2676 1 if a DT_NEEDED tag already exists, and 0 on success. */
2677
4ad4eba5
AM
2678static int
2679elf_add_dt_needed_tag (struct bfd_link_info *info,
2680 const char *soname,
2681 bfd_boolean do_it)
5a580b3a
AM
2682{
2683 struct elf_link_hash_table *hash_table;
2684 bfd_size_type oldsize;
2685 bfd_size_type strindex;
2686
2687 hash_table = elf_hash_table (info);
2688 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2689 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2690 if (strindex == (bfd_size_type) -1)
2691 return -1;
2692
2693 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2694 {
2695 asection *sdyn;
2696 const struct elf_backend_data *bed;
2697 bfd_byte *extdyn;
2698
2699 bed = get_elf_backend_data (hash_table->dynobj);
2700 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2701 BFD_ASSERT (sdyn != NULL);
2702
2703 for (extdyn = sdyn->contents;
eea6121a 2704 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
2705 extdyn += bed->s->sizeof_dyn)
2706 {
2707 Elf_Internal_Dyn dyn;
2708
2709 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2710 if (dyn.d_tag == DT_NEEDED
2711 && dyn.d_un.d_val == strindex)
2712 {
2713 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2714 return 1;
2715 }
2716 }
2717 }
2718
2719 if (do_it)
2720 {
2721 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2722 return -1;
2723 }
2724 else
2725 /* We were just checking for existence of the tag. */
2726 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2727
2728 return 0;
2729}
2730
2731/* Sort symbol by value and section. */
4ad4eba5
AM
2732static int
2733elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
2734{
2735 const struct elf_link_hash_entry *h1;
2736 const struct elf_link_hash_entry *h2;
10b7e05b 2737 bfd_signed_vma vdiff;
5a580b3a
AM
2738
2739 h1 = *(const struct elf_link_hash_entry **) arg1;
2740 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
2741 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2742 if (vdiff != 0)
2743 return vdiff > 0 ? 1 : -1;
2744 else
2745 {
2746 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2747 if (sdiff != 0)
2748 return sdiff > 0 ? 1 : -1;
2749 }
5a580b3a
AM
2750 return 0;
2751}
4ad4eba5 2752
5a580b3a
AM
2753/* This function is used to adjust offsets into .dynstr for
2754 dynamic symbols. This is called via elf_link_hash_traverse. */
2755
2756static bfd_boolean
2757elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2758{
2759 struct elf_strtab_hash *dynstr = data;
2760
2761 if (h->root.type == bfd_link_hash_warning)
2762 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2763
2764 if (h->dynindx != -1)
2765 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2766 return TRUE;
2767}
2768
2769/* Assign string offsets in .dynstr, update all structures referencing
2770 them. */
2771
4ad4eba5
AM
2772static bfd_boolean
2773elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
2774{
2775 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2776 struct elf_link_local_dynamic_entry *entry;
2777 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2778 bfd *dynobj = hash_table->dynobj;
2779 asection *sdyn;
2780 bfd_size_type size;
2781 const struct elf_backend_data *bed;
2782 bfd_byte *extdyn;
2783
2784 _bfd_elf_strtab_finalize (dynstr);
2785 size = _bfd_elf_strtab_size (dynstr);
2786
2787 bed = get_elf_backend_data (dynobj);
2788 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2789 BFD_ASSERT (sdyn != NULL);
2790
2791 /* Update all .dynamic entries referencing .dynstr strings. */
2792 for (extdyn = sdyn->contents;
eea6121a 2793 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
2794 extdyn += bed->s->sizeof_dyn)
2795 {
2796 Elf_Internal_Dyn dyn;
2797
2798 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2799 switch (dyn.d_tag)
2800 {
2801 case DT_STRSZ:
2802 dyn.d_un.d_val = size;
2803 break;
2804 case DT_NEEDED:
2805 case DT_SONAME:
2806 case DT_RPATH:
2807 case DT_RUNPATH:
2808 case DT_FILTER:
2809 case DT_AUXILIARY:
2810 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2811 break;
2812 default:
2813 continue;
2814 }
2815 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2816 }
2817
2818 /* Now update local dynamic symbols. */
2819 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2820 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2821 entry->isym.st_name);
2822
2823 /* And the rest of dynamic symbols. */
2824 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2825
2826 /* Adjust version definitions. */
2827 if (elf_tdata (output_bfd)->cverdefs)
2828 {
2829 asection *s;
2830 bfd_byte *p;
2831 bfd_size_type i;
2832 Elf_Internal_Verdef def;
2833 Elf_Internal_Verdaux defaux;
2834
2835 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2836 p = s->contents;
2837 do
2838 {
2839 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
2840 &def);
2841 p += sizeof (Elf_External_Verdef);
2842 for (i = 0; i < def.vd_cnt; ++i)
2843 {
2844 _bfd_elf_swap_verdaux_in (output_bfd,
2845 (Elf_External_Verdaux *) p, &defaux);
2846 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
2847 defaux.vda_name);
2848 _bfd_elf_swap_verdaux_out (output_bfd,
2849 &defaux, (Elf_External_Verdaux *) p);
2850 p += sizeof (Elf_External_Verdaux);
2851 }
2852 }
2853 while (def.vd_next);
2854 }
2855
2856 /* Adjust version references. */
2857 if (elf_tdata (output_bfd)->verref)
2858 {
2859 asection *s;
2860 bfd_byte *p;
2861 bfd_size_type i;
2862 Elf_Internal_Verneed need;
2863 Elf_Internal_Vernaux needaux;
2864
2865 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2866 p = s->contents;
2867 do
2868 {
2869 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
2870 &need);
2871 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
2872 _bfd_elf_swap_verneed_out (output_bfd, &need,
2873 (Elf_External_Verneed *) p);
2874 p += sizeof (Elf_External_Verneed);
2875 for (i = 0; i < need.vn_cnt; ++i)
2876 {
2877 _bfd_elf_swap_vernaux_in (output_bfd,
2878 (Elf_External_Vernaux *) p, &needaux);
2879 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
2880 needaux.vna_name);
2881 _bfd_elf_swap_vernaux_out (output_bfd,
2882 &needaux,
2883 (Elf_External_Vernaux *) p);
2884 p += sizeof (Elf_External_Vernaux);
2885 }
2886 }
2887 while (need.vn_next);
2888 }
2889
2890 return TRUE;
2891}
2892\f
4ad4eba5
AM
2893/* Add symbols from an ELF object file to the linker hash table. */
2894
2895static bfd_boolean
2896elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
2897{
2898 bfd_boolean (*add_symbol_hook)
555cd476 2899 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
4ad4eba5
AM
2900 const char **, flagword *, asection **, bfd_vma *);
2901 bfd_boolean (*check_relocs)
2902 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
85fbca6a
NC
2903 bfd_boolean (*check_directives)
2904 (bfd *, struct bfd_link_info *);
4ad4eba5
AM
2905 bfd_boolean collect;
2906 Elf_Internal_Shdr *hdr;
2907 bfd_size_type symcount;
2908 bfd_size_type extsymcount;
2909 bfd_size_type extsymoff;
2910 struct elf_link_hash_entry **sym_hash;
2911 bfd_boolean dynamic;
2912 Elf_External_Versym *extversym = NULL;
2913 Elf_External_Versym *ever;
2914 struct elf_link_hash_entry *weaks;
2915 struct elf_link_hash_entry **nondeflt_vers = NULL;
2916 bfd_size_type nondeflt_vers_cnt = 0;
2917 Elf_Internal_Sym *isymbuf = NULL;
2918 Elf_Internal_Sym *isym;
2919 Elf_Internal_Sym *isymend;
2920 const struct elf_backend_data *bed;
2921 bfd_boolean add_needed;
2922 struct elf_link_hash_table * hash_table;
2923 bfd_size_type amt;
2924
2925 hash_table = elf_hash_table (info);
2926
2927 bed = get_elf_backend_data (abfd);
2928 add_symbol_hook = bed->elf_add_symbol_hook;
2929 collect = bed->collect;
2930
2931 if ((abfd->flags & DYNAMIC) == 0)
2932 dynamic = FALSE;
2933 else
2934 {
2935 dynamic = TRUE;
2936
2937 /* You can't use -r against a dynamic object. Also, there's no
2938 hope of using a dynamic object which does not exactly match
2939 the format of the output file. */
2940 if (info->relocatable
2941 || !is_elf_hash_table (hash_table)
2942 || hash_table->root.creator != abfd->xvec)
2943 {
2944 bfd_set_error (bfd_error_invalid_operation);
2945 goto error_return;
2946 }
2947 }
2948
2949 /* As a GNU extension, any input sections which are named
2950 .gnu.warning.SYMBOL are treated as warning symbols for the given
2951 symbol. This differs from .gnu.warning sections, which generate
2952 warnings when they are included in an output file. */
2953 if (info->executable)
2954 {
2955 asection *s;
2956
2957 for (s = abfd->sections; s != NULL; s = s->next)
2958 {
2959 const char *name;
2960
2961 name = bfd_get_section_name (abfd, s);
2962 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
2963 {
2964 char *msg;
2965 bfd_size_type sz;
2966 bfd_size_type prefix_len;
2967 const char * gnu_warning_prefix = _("warning: ");
2968
2969 name += sizeof ".gnu.warning." - 1;
2970
2971 /* If this is a shared object, then look up the symbol
2972 in the hash table. If it is there, and it is already
2973 been defined, then we will not be using the entry
2974 from this shared object, so we don't need to warn.
2975 FIXME: If we see the definition in a regular object
2976 later on, we will warn, but we shouldn't. The only
2977 fix is to keep track of what warnings we are supposed
2978 to emit, and then handle them all at the end of the
2979 link. */
2980 if (dynamic)
2981 {
2982 struct elf_link_hash_entry *h;
2983
2984 h = elf_link_hash_lookup (hash_table, name,
2985 FALSE, FALSE, TRUE);
2986
2987 /* FIXME: What about bfd_link_hash_common? */
2988 if (h != NULL
2989 && (h->root.type == bfd_link_hash_defined
2990 || h->root.type == bfd_link_hash_defweak))
2991 {
2992 /* We don't want to issue this warning. Clobber
2993 the section size so that the warning does not
2994 get copied into the output file. */
eea6121a 2995 s->size = 0;
4ad4eba5
AM
2996 continue;
2997 }
2998 }
2999
eea6121a 3000 sz = s->size;
4ad4eba5
AM
3001 prefix_len = strlen (gnu_warning_prefix);
3002 msg = bfd_alloc (abfd, prefix_len + sz + 1);
3003 if (msg == NULL)
3004 goto error_return;
3005
3006 strcpy (msg, gnu_warning_prefix);
3007 if (! bfd_get_section_contents (abfd, s, msg + prefix_len, 0, sz))
3008 goto error_return;
3009
3010 msg[prefix_len + sz] = '\0';
3011
3012 if (! (_bfd_generic_link_add_one_symbol
3013 (info, abfd, name, BSF_WARNING, s, 0, msg,
3014 FALSE, collect, NULL)))
3015 goto error_return;
3016
3017 if (! info->relocatable)
3018 {
3019 /* Clobber the section size so that the warning does
3020 not get copied into the output file. */
eea6121a 3021 s->size = 0;
4ad4eba5
AM
3022 }
3023 }
3024 }
3025 }
3026
3027 add_needed = TRUE;
3028 if (! dynamic)
3029 {
3030 /* If we are creating a shared library, create all the dynamic
3031 sections immediately. We need to attach them to something,
3032 so we attach them to this BFD, provided it is the right
3033 format. FIXME: If there are no input BFD's of the same
3034 format as the output, we can't make a shared library. */
3035 if (info->shared
3036 && is_elf_hash_table (hash_table)
3037 && hash_table->root.creator == abfd->xvec
3038 && ! hash_table->dynamic_sections_created)
3039 {
3040 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3041 goto error_return;
3042 }
3043 }
3044 else if (!is_elf_hash_table (hash_table))
3045 goto error_return;
3046 else
3047 {
3048 asection *s;
3049 const char *soname = NULL;
3050 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3051 int ret;
3052
3053 /* ld --just-symbols and dynamic objects don't mix very well.
3054 Test for --just-symbols by looking at info set up by
3055 _bfd_elf_link_just_syms. */
3056 if ((s = abfd->sections) != NULL
3057 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3058 goto error_return;
3059
3060 /* If this dynamic lib was specified on the command line with
3061 --as-needed in effect, then we don't want to add a DT_NEEDED
3062 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3063 in by another lib's DT_NEEDED. When --no-add-needed is used
3064 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3065 any dynamic library in DT_NEEDED tags in the dynamic lib at
3066 all. */
3067 add_needed = (elf_dyn_lib_class (abfd)
3068 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3069 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3070
3071 s = bfd_get_section_by_name (abfd, ".dynamic");
3072 if (s != NULL)
3073 {
3074 bfd_byte *dynbuf;
3075 bfd_byte *extdyn;
3076 int elfsec;
3077 unsigned long shlink;
3078
eea6121a 3079 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3080 goto error_free_dyn;
3081
3082 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3083 if (elfsec == -1)
3084 goto error_free_dyn;
3085 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3086
3087 for (extdyn = dynbuf;
eea6121a 3088 extdyn < dynbuf + s->size;
4ad4eba5
AM
3089 extdyn += bed->s->sizeof_dyn)
3090 {
3091 Elf_Internal_Dyn dyn;
3092
3093 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3094 if (dyn.d_tag == DT_SONAME)
3095 {
3096 unsigned int tagv = dyn.d_un.d_val;
3097 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3098 if (soname == NULL)
3099 goto error_free_dyn;
3100 }
3101 if (dyn.d_tag == DT_NEEDED)
3102 {
3103 struct bfd_link_needed_list *n, **pn;
3104 char *fnm, *anm;
3105 unsigned int tagv = dyn.d_un.d_val;
3106
3107 amt = sizeof (struct bfd_link_needed_list);
3108 n = bfd_alloc (abfd, amt);
3109 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3110 if (n == NULL || fnm == NULL)
3111 goto error_free_dyn;
3112 amt = strlen (fnm) + 1;
3113 anm = bfd_alloc (abfd, amt);
3114 if (anm == NULL)
3115 goto error_free_dyn;
3116 memcpy (anm, fnm, amt);
3117 n->name = anm;
3118 n->by = abfd;
3119 n->next = NULL;
3120 for (pn = & hash_table->needed;
3121 *pn != NULL;
3122 pn = &(*pn)->next)
3123 ;
3124 *pn = n;
3125 }
3126 if (dyn.d_tag == DT_RUNPATH)
3127 {
3128 struct bfd_link_needed_list *n, **pn;
3129 char *fnm, *anm;
3130 unsigned int tagv = dyn.d_un.d_val;
3131
3132 amt = sizeof (struct bfd_link_needed_list);
3133 n = bfd_alloc (abfd, amt);
3134 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3135 if (n == NULL || fnm == NULL)
3136 goto error_free_dyn;
3137 amt = strlen (fnm) + 1;
3138 anm = bfd_alloc (abfd, amt);
3139 if (anm == NULL)
3140 goto error_free_dyn;
3141 memcpy (anm, fnm, amt);
3142 n->name = anm;
3143 n->by = abfd;
3144 n->next = NULL;
3145 for (pn = & runpath;
3146 *pn != NULL;
3147 pn = &(*pn)->next)
3148 ;
3149 *pn = n;
3150 }
3151 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3152 if (!runpath && dyn.d_tag == DT_RPATH)
3153 {
3154 struct bfd_link_needed_list *n, **pn;
3155 char *fnm, *anm;
3156 unsigned int tagv = dyn.d_un.d_val;
3157
3158 amt = sizeof (struct bfd_link_needed_list);
3159 n = bfd_alloc (abfd, amt);
3160 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3161 if (n == NULL || fnm == NULL)
3162 goto error_free_dyn;
3163 amt = strlen (fnm) + 1;
3164 anm = bfd_alloc (abfd, amt);
3165 if (anm == NULL)
3166 {
3167 error_free_dyn:
3168 free (dynbuf);
3169 goto error_return;
3170 }
3171 memcpy (anm, fnm, amt);
3172 n->name = anm;
3173 n->by = abfd;
3174 n->next = NULL;
3175 for (pn = & rpath;
3176 *pn != NULL;
3177 pn = &(*pn)->next)
3178 ;
3179 *pn = n;
3180 }
3181 }
3182
3183 free (dynbuf);
3184 }
3185
3186 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3187 frees all more recently bfd_alloc'd blocks as well. */
3188 if (runpath)
3189 rpath = runpath;
3190
3191 if (rpath)
3192 {
3193 struct bfd_link_needed_list **pn;
3194 for (pn = & hash_table->runpath;
3195 *pn != NULL;
3196 pn = &(*pn)->next)
3197 ;
3198 *pn = rpath;
3199 }
3200
3201 /* We do not want to include any of the sections in a dynamic
3202 object in the output file. We hack by simply clobbering the
3203 list of sections in the BFD. This could be handled more
3204 cleanly by, say, a new section flag; the existing
3205 SEC_NEVER_LOAD flag is not the one we want, because that one
3206 still implies that the section takes up space in the output
3207 file. */
3208 bfd_section_list_clear (abfd);
3209
3210 /* If this is the first dynamic object found in the link, create
3211 the special sections required for dynamic linking. */
3212 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3213 goto error_return;
3214
3215 /* Find the name to use in a DT_NEEDED entry that refers to this
3216 object. If the object has a DT_SONAME entry, we use it.
3217 Otherwise, if the generic linker stuck something in
3218 elf_dt_name, we use that. Otherwise, we just use the file
3219 name. */
3220 if (soname == NULL || *soname == '\0')
3221 {
3222 soname = elf_dt_name (abfd);
3223 if (soname == NULL || *soname == '\0')
3224 soname = bfd_get_filename (abfd);
3225 }
3226
3227 /* Save the SONAME because sometimes the linker emulation code
3228 will need to know it. */
3229 elf_dt_name (abfd) = soname;
3230
3231 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3232 if (ret < 0)
3233 goto error_return;
3234
3235 /* If we have already included this dynamic object in the
3236 link, just ignore it. There is no reason to include a
3237 particular dynamic object more than once. */
3238 if (ret > 0)
3239 return TRUE;
3240 }
3241
3242 /* If this is a dynamic object, we always link against the .dynsym
3243 symbol table, not the .symtab symbol table. The dynamic linker
3244 will only see the .dynsym symbol table, so there is no reason to
3245 look at .symtab for a dynamic object. */
3246
3247 if (! dynamic || elf_dynsymtab (abfd) == 0)
3248 hdr = &elf_tdata (abfd)->symtab_hdr;
3249 else
3250 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3251
3252 symcount = hdr->sh_size / bed->s->sizeof_sym;
3253
3254 /* The sh_info field of the symtab header tells us where the
3255 external symbols start. We don't care about the local symbols at
3256 this point. */
3257 if (elf_bad_symtab (abfd))
3258 {
3259 extsymcount = symcount;
3260 extsymoff = 0;
3261 }
3262 else
3263 {
3264 extsymcount = symcount - hdr->sh_info;
3265 extsymoff = hdr->sh_info;
3266 }
3267
3268 sym_hash = NULL;
3269 if (extsymcount != 0)
3270 {
3271 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3272 NULL, NULL, NULL);
3273 if (isymbuf == NULL)
3274 goto error_return;
3275
3276 /* We store a pointer to the hash table entry for each external
3277 symbol. */
3278 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3279 sym_hash = bfd_alloc (abfd, amt);
3280 if (sym_hash == NULL)
3281 goto error_free_sym;
3282 elf_sym_hashes (abfd) = sym_hash;
3283 }
3284
3285 if (dynamic)
3286 {
3287 /* Read in any version definitions. */
3288 if (! _bfd_elf_slurp_version_tables (abfd))
3289 goto error_free_sym;
3290
3291 /* Read in the symbol versions, but don't bother to convert them
3292 to internal format. */
3293 if (elf_dynversym (abfd) != 0)
3294 {
3295 Elf_Internal_Shdr *versymhdr;
3296
3297 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3298 extversym = bfd_malloc (versymhdr->sh_size);
3299 if (extversym == NULL)
3300 goto error_free_sym;
3301 amt = versymhdr->sh_size;
3302 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3303 || bfd_bread (extversym, amt, abfd) != amt)
3304 goto error_free_vers;
3305 }
3306 }
3307
3308 weaks = NULL;
3309
3310 ever = extversym != NULL ? extversym + extsymoff : NULL;
3311 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3312 isym < isymend;
3313 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3314 {
3315 int bind;
3316 bfd_vma value;
3317 asection *sec;
3318 flagword flags;
3319 const char *name;
3320 struct elf_link_hash_entry *h;
3321 bfd_boolean definition;
3322 bfd_boolean size_change_ok;
3323 bfd_boolean type_change_ok;
3324 bfd_boolean new_weakdef;
3325 bfd_boolean override;
3326 unsigned int old_alignment;
3327 bfd *old_bfd;
3328
3329 override = FALSE;
3330
3331 flags = BSF_NO_FLAGS;
3332 sec = NULL;
3333 value = isym->st_value;
3334 *sym_hash = NULL;
3335
3336 bind = ELF_ST_BIND (isym->st_info);
3337 if (bind == STB_LOCAL)
3338 {
3339 /* This should be impossible, since ELF requires that all
3340 global symbols follow all local symbols, and that sh_info
3341 point to the first global symbol. Unfortunately, Irix 5
3342 screws this up. */
3343 continue;
3344 }
3345 else if (bind == STB_GLOBAL)
3346 {
3347 if (isym->st_shndx != SHN_UNDEF
3348 && isym->st_shndx != SHN_COMMON)
3349 flags = BSF_GLOBAL;
3350 }
3351 else if (bind == STB_WEAK)
3352 flags = BSF_WEAK;
3353 else
3354 {
3355 /* Leave it up to the processor backend. */
3356 }
3357
3358 if (isym->st_shndx == SHN_UNDEF)
3359 sec = bfd_und_section_ptr;
3360 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3361 {
3362 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3363 if (sec == NULL)
3364 sec = bfd_abs_section_ptr;
3365 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3366 value -= sec->vma;
3367 }
3368 else if (isym->st_shndx == SHN_ABS)
3369 sec = bfd_abs_section_ptr;
3370 else if (isym->st_shndx == SHN_COMMON)
3371 {
3372 sec = bfd_com_section_ptr;
3373 /* What ELF calls the size we call the value. What ELF
3374 calls the value we call the alignment. */
3375 value = isym->st_size;
3376 }
3377 else
3378 {
3379 /* Leave it up to the processor backend. */
3380 }
3381
3382 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3383 isym->st_name);
3384 if (name == NULL)
3385 goto error_free_vers;
3386
3387 if (isym->st_shndx == SHN_COMMON
3388 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3389 {
3390 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3391
3392 if (tcomm == NULL)
3393 {
3394 tcomm = bfd_make_section (abfd, ".tcommon");
3395 if (tcomm == NULL
3396 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3397 | SEC_IS_COMMON
3398 | SEC_LINKER_CREATED
3399 | SEC_THREAD_LOCAL)))
3400 goto error_free_vers;
3401 }
3402 sec = tcomm;
3403 }
3404 else if (add_symbol_hook)
3405 {
3406 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3407 &value))
3408 goto error_free_vers;
3409
3410 /* The hook function sets the name to NULL if this symbol
3411 should be skipped for some reason. */
3412 if (name == NULL)
3413 continue;
3414 }
3415
3416 /* Sanity check that all possibilities were handled. */
3417 if (sec == NULL)
3418 {
3419 bfd_set_error (bfd_error_bad_value);
3420 goto error_free_vers;
3421 }
3422
3423 if (bfd_is_und_section (sec)
3424 || bfd_is_com_section (sec))
3425 definition = FALSE;
3426 else
3427 definition = TRUE;
3428
3429 size_change_ok = FALSE;
3430 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3431 old_alignment = 0;
3432 old_bfd = NULL;
3433
3434 if (is_elf_hash_table (hash_table))
3435 {
3436 Elf_Internal_Versym iver;
3437 unsigned int vernum = 0;
3438 bfd_boolean skip;
3439
3440 if (ever != NULL)
3441 {
3442 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3443 vernum = iver.vs_vers & VERSYM_VERSION;
3444
3445 /* If this is a hidden symbol, or if it is not version
3446 1, we append the version name to the symbol name.
3447 However, we do not modify a non-hidden absolute
3448 symbol, because it might be the version symbol
3449 itself. FIXME: What if it isn't? */
3450 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3451 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3452 {
3453 const char *verstr;
3454 size_t namelen, verlen, newlen;
3455 char *newname, *p;
3456
3457 if (isym->st_shndx != SHN_UNDEF)
3458 {
3459 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
3460 {
3461 (*_bfd_error_handler)
d003868e
AM
3462 (_("%B: %s: invalid version %u (max %d)"),
3463 abfd, name, vernum,
4ad4eba5
AM
3464 elf_tdata (abfd)->dynverdef_hdr.sh_info);
3465 bfd_set_error (bfd_error_bad_value);
3466 goto error_free_vers;
3467 }
3468 else if (vernum > 1)
3469 verstr =
3470 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3471 else
3472 verstr = "";
3473 }
3474 else
3475 {
3476 /* We cannot simply test for the number of
3477 entries in the VERNEED section since the
3478 numbers for the needed versions do not start
3479 at 0. */
3480 Elf_Internal_Verneed *t;
3481
3482 verstr = NULL;
3483 for (t = elf_tdata (abfd)->verref;
3484 t != NULL;
3485 t = t->vn_nextref)
3486 {
3487 Elf_Internal_Vernaux *a;
3488
3489 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3490 {
3491 if (a->vna_other == vernum)
3492 {
3493 verstr = a->vna_nodename;
3494 break;
3495 }
3496 }
3497 if (a != NULL)
3498 break;
3499 }
3500 if (verstr == NULL)
3501 {
3502 (*_bfd_error_handler)
d003868e
AM
3503 (_("%B: %s: invalid needed version %d"),
3504 abfd, name, vernum);
4ad4eba5
AM
3505 bfd_set_error (bfd_error_bad_value);
3506 goto error_free_vers;
3507 }
3508 }
3509
3510 namelen = strlen (name);
3511 verlen = strlen (verstr);
3512 newlen = namelen + verlen + 2;
3513 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3514 && isym->st_shndx != SHN_UNDEF)
3515 ++newlen;
3516
3517 newname = bfd_alloc (abfd, newlen);
3518 if (newname == NULL)
3519 goto error_free_vers;
3520 memcpy (newname, name, namelen);
3521 p = newname + namelen;
3522 *p++ = ELF_VER_CHR;
3523 /* If this is a defined non-hidden version symbol,
3524 we add another @ to the name. This indicates the
3525 default version of the symbol. */
3526 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3527 && isym->st_shndx != SHN_UNDEF)
3528 *p++ = ELF_VER_CHR;
3529 memcpy (p, verstr, verlen + 1);
3530
3531 name = newname;
3532 }
3533 }
3534
3535 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
3536 sym_hash, &skip, &override,
3537 &type_change_ok, &size_change_ok))
3538 goto error_free_vers;
3539
3540 if (skip)
3541 continue;
3542
3543 if (override)
3544 definition = FALSE;
3545
3546 h = *sym_hash;
3547 while (h->root.type == bfd_link_hash_indirect
3548 || h->root.type == bfd_link_hash_warning)
3549 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3550
3551 /* Remember the old alignment if this is a common symbol, so
3552 that we don't reduce the alignment later on. We can't
3553 check later, because _bfd_generic_link_add_one_symbol
3554 will set a default for the alignment which we want to
3555 override. We also remember the old bfd where the existing
3556 definition comes from. */
3557 switch (h->root.type)
3558 {
3559 default:
3560 break;
3561
3562 case bfd_link_hash_defined:
3563 case bfd_link_hash_defweak:
3564 old_bfd = h->root.u.def.section->owner;
3565 break;
3566
3567 case bfd_link_hash_common:
3568 old_bfd = h->root.u.c.p->section->owner;
3569 old_alignment = h->root.u.c.p->alignment_power;
3570 break;
3571 }
3572
3573 if (elf_tdata (abfd)->verdef != NULL
3574 && ! override
3575 && vernum > 1
3576 && definition)
3577 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3578 }
3579
3580 if (! (_bfd_generic_link_add_one_symbol
3581 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3582 (struct bfd_link_hash_entry **) sym_hash)))
3583 goto error_free_vers;
3584
3585 h = *sym_hash;
3586 while (h->root.type == bfd_link_hash_indirect
3587 || h->root.type == bfd_link_hash_warning)
3588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3589 *sym_hash = h;
3590
3591 new_weakdef = FALSE;
3592 if (dynamic
3593 && definition
3594 && (flags & BSF_WEAK) != 0
3595 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3596 && is_elf_hash_table (hash_table)
3597 && h->weakdef == NULL)
3598 {
3599 /* Keep a list of all weak defined non function symbols from
3600 a dynamic object, using the weakdef field. Later in this
3601 function we will set the weakdef field to the correct
3602 value. We only put non-function symbols from dynamic
3603 objects on this list, because that happens to be the only
3604 time we need to know the normal symbol corresponding to a
3605 weak symbol, and the information is time consuming to
3606 figure out. If the weakdef field is not already NULL,
3607 then this symbol was already defined by some previous
3608 dynamic object, and we will be using that previous
3609 definition anyhow. */
3610
3611 h->weakdef = weaks;
3612 weaks = h;
3613 new_weakdef = TRUE;
3614 }
3615
3616 /* Set the alignment of a common symbol. */
3617 if (isym->st_shndx == SHN_COMMON
3618 && h->root.type == bfd_link_hash_common)
3619 {
3620 unsigned int align;
3621
3622 align = bfd_log2 (isym->st_value);
3623 if (align > old_alignment
3624 /* Permit an alignment power of zero if an alignment of one
3625 is specified and no other alignments have been specified. */
3626 || (isym->st_value == 1 && old_alignment == 0))
3627 h->root.u.c.p->alignment_power = align;
3628 else
3629 h->root.u.c.p->alignment_power = old_alignment;
3630 }
3631
3632 if (is_elf_hash_table (hash_table))
3633 {
3634 int old_flags;
3635 bfd_boolean dynsym;
3636 int new_flag;
3637
3638 /* Check the alignment when a common symbol is involved. This
3639 can change when a common symbol is overridden by a normal
3640 definition or a common symbol is ignored due to the old
3641 normal definition. We need to make sure the maximum
3642 alignment is maintained. */
3643 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3644 && h->root.type != bfd_link_hash_common)
3645 {
3646 unsigned int common_align;
3647 unsigned int normal_align;
3648 unsigned int symbol_align;
3649 bfd *normal_bfd;
3650 bfd *common_bfd;
3651
3652 symbol_align = ffs (h->root.u.def.value) - 1;
3653 if (h->root.u.def.section->owner != NULL
3654 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3655 {
3656 normal_align = h->root.u.def.section->alignment_power;
3657 if (normal_align > symbol_align)
3658 normal_align = symbol_align;
3659 }
3660 else
3661 normal_align = symbol_align;
3662
3663 if (old_alignment)
3664 {
3665 common_align = old_alignment;
3666 common_bfd = old_bfd;
3667 normal_bfd = abfd;
3668 }
3669 else
3670 {
3671 common_align = bfd_log2 (isym->st_value);
3672 common_bfd = abfd;
3673 normal_bfd = old_bfd;
3674 }
3675
3676 if (normal_align < common_align)
3677 (*_bfd_error_handler)
d003868e
AM
3678 (_("Warning: alignment %u of symbol `%s' in %B"
3679 " is smaller than %u in %B"),
3680 normal_bfd, common_bfd,
3681 1 << normal_align, name, 1 << common_align);
4ad4eba5
AM
3682 }
3683
3684 /* Remember the symbol size and type. */
3685 if (isym->st_size != 0
3686 && (definition || h->size == 0))
3687 {
3688 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3689 (*_bfd_error_handler)
d003868e
AM
3690 (_("Warning: size of symbol `%s' changed"
3691 " from %lu in %B to %lu in %B"),
3692 old_bfd, abfd,
4ad4eba5 3693 name, (unsigned long) h->size,
d003868e 3694 (unsigned long) isym->st_size);
4ad4eba5
AM
3695
3696 h->size = isym->st_size;
3697 }
3698
3699 /* If this is a common symbol, then we always want H->SIZE
3700 to be the size of the common symbol. The code just above
3701 won't fix the size if a common symbol becomes larger. We
3702 don't warn about a size change here, because that is
3703 covered by --warn-common. */
3704 if (h->root.type == bfd_link_hash_common)
3705 h->size = h->root.u.c.size;
3706
3707 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3708 && (definition || h->type == STT_NOTYPE))
3709 {
3710 if (h->type != STT_NOTYPE
3711 && h->type != ELF_ST_TYPE (isym->st_info)
3712 && ! type_change_ok)
3713 (*_bfd_error_handler)
d003868e
AM
3714 (_("Warning: type of symbol `%s' changed"
3715 " from %d to %d in %B"),
3716 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4ad4eba5
AM
3717
3718 h->type = ELF_ST_TYPE (isym->st_info);
3719 }
3720
3721 /* If st_other has a processor-specific meaning, specific
3722 code might be needed here. We never merge the visibility
3723 attribute with the one from a dynamic object. */
3724 if (bed->elf_backend_merge_symbol_attribute)
3725 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3726 dynamic);
3727
3728 if (isym->st_other != 0 && !dynamic)
3729 {
3730 unsigned char hvis, symvis, other, nvis;
3731
3732 /* Take the balance of OTHER from the definition. */
3733 other = (definition ? isym->st_other : h->other);
3734 other &= ~ ELF_ST_VISIBILITY (-1);
3735
3736 /* Combine visibilities, using the most constraining one. */
3737 hvis = ELF_ST_VISIBILITY (h->other);
3738 symvis = ELF_ST_VISIBILITY (isym->st_other);
3739 if (! hvis)
3740 nvis = symvis;
3741 else if (! symvis)
3742 nvis = hvis;
3743 else
3744 nvis = hvis < symvis ? hvis : symvis;
3745
3746 h->other = other | nvis;
3747 }
3748
3749 /* Set a flag in the hash table entry indicating the type of
3750 reference or definition we just found. Keep a count of
3751 the number of dynamic symbols we find. A dynamic symbol
3752 is one which is referenced or defined by both a regular
3753 object and a shared object. */
3754 old_flags = h->elf_link_hash_flags;
3755 dynsym = FALSE;
3756 if (! dynamic)
3757 {
3758 if (! definition)
3759 {
3760 new_flag = ELF_LINK_HASH_REF_REGULAR;
3761 if (bind != STB_WEAK)
3762 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3763 }
3764 else
3765 new_flag = ELF_LINK_HASH_DEF_REGULAR;
3766 if (! info->executable
3767 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
3768 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
3769 dynsym = TRUE;
3770 }
3771 else
3772 {
3773 if (! definition)
3774 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
3775 else
3776 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
3777 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
3778 | ELF_LINK_HASH_REF_REGULAR)) != 0
3779 || (h->weakdef != NULL
3780 && ! new_weakdef
3781 && h->weakdef->dynindx != -1))
3782 dynsym = TRUE;
3783 }
3784
3785 h->elf_link_hash_flags |= new_flag;
3786
3787 /* Check to see if we need to add an indirect symbol for
3788 the default name. */
3789 if (definition || h->root.type == bfd_link_hash_common)
3790 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
3791 &sec, &value, &dynsym,
3792 override))
3793 goto error_free_vers;
3794
3795 if (definition && !dynamic)
3796 {
3797 char *p = strchr (name, ELF_VER_CHR);
3798 if (p != NULL && p[1] != ELF_VER_CHR)
3799 {
3800 /* Queue non-default versions so that .symver x, x@FOO
3801 aliases can be checked. */
3802 if (! nondeflt_vers)
3803 {
3804 amt = (isymend - isym + 1)
3805 * sizeof (struct elf_link_hash_entry *);
3806 nondeflt_vers = bfd_malloc (amt);
3807 }
3808 nondeflt_vers [nondeflt_vers_cnt++] = h;
3809 }
3810 }
3811
3812 if (dynsym && h->dynindx == -1)
3813 {
c152c796 3814 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
3815 goto error_free_vers;
3816 if (h->weakdef != NULL
3817 && ! new_weakdef
3818 && h->weakdef->dynindx == -1)
3819 {
c152c796 3820 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
4ad4eba5
AM
3821 goto error_free_vers;
3822 }
3823 }
3824 else if (dynsym && h->dynindx != -1)
3825 /* If the symbol already has a dynamic index, but
3826 visibility says it should not be visible, turn it into
3827 a local symbol. */
3828 switch (ELF_ST_VISIBILITY (h->other))
3829 {
3830 case STV_INTERNAL:
3831 case STV_HIDDEN:
3832 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
3833 dynsym = FALSE;
3834 break;
3835 }
3836
3837 if (!add_needed
3838 && definition
3839 && dynsym
3840 && (h->elf_link_hash_flags
3841 & ELF_LINK_HASH_REF_REGULAR) != 0)
3842 {
3843 int ret;
3844 const char *soname = elf_dt_name (abfd);
3845
3846 /* A symbol from a library loaded via DT_NEEDED of some
3847 other library is referenced by a regular object.
e56f61be
L
3848 Add a DT_NEEDED entry for it. Issue an error if
3849 --no-add-needed is used. */
3850 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
3851 {
3852 (*_bfd_error_handler)
3853 (_("%s: invalid DSO for symbol `%s' definition"),
d003868e 3854 abfd, name);
e56f61be
L
3855 bfd_set_error (bfd_error_bad_value);
3856 goto error_free_vers;
3857 }
3858
4ad4eba5
AM
3859 add_needed = TRUE;
3860 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3861 if (ret < 0)
3862 goto error_free_vers;
3863
3864 BFD_ASSERT (ret == 0);
3865 }
3866 }
3867 }
3868
3869 /* Now that all the symbols from this input file are created, handle
3870 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
3871 if (nondeflt_vers != NULL)
3872 {
3873 bfd_size_type cnt, symidx;
3874
3875 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
3876 {
3877 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
3878 char *shortname, *p;
3879
3880 p = strchr (h->root.root.string, ELF_VER_CHR);
3881 if (p == NULL
3882 || (h->root.type != bfd_link_hash_defined
3883 && h->root.type != bfd_link_hash_defweak))
3884 continue;
3885
3886 amt = p - h->root.root.string;
3887 shortname = bfd_malloc (amt + 1);
3888 memcpy (shortname, h->root.root.string, amt);
3889 shortname[amt] = '\0';
3890
3891 hi = (struct elf_link_hash_entry *)
3892 bfd_link_hash_lookup (&hash_table->root, shortname,
3893 FALSE, FALSE, FALSE);
3894 if (hi != NULL
3895 && hi->root.type == h->root.type
3896 && hi->root.u.def.value == h->root.u.def.value
3897 && hi->root.u.def.section == h->root.u.def.section)
3898 {
3899 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
3900 hi->root.type = bfd_link_hash_indirect;
3901 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
3902 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
3903 sym_hash = elf_sym_hashes (abfd);
3904 if (sym_hash)
3905 for (symidx = 0; symidx < extsymcount; ++symidx)
3906 if (sym_hash[symidx] == hi)
3907 {
3908 sym_hash[symidx] = h;
3909 break;
3910 }
3911 }
3912 free (shortname);
3913 }
3914 free (nondeflt_vers);
3915 nondeflt_vers = NULL;
3916 }
3917
3918 if (extversym != NULL)
3919 {
3920 free (extversym);
3921 extversym = NULL;
3922 }
3923
3924 if (isymbuf != NULL)
3925 free (isymbuf);
3926 isymbuf = NULL;
3927
3928 /* Now set the weakdefs field correctly for all the weak defined
3929 symbols we found. The only way to do this is to search all the
3930 symbols. Since we only need the information for non functions in
3931 dynamic objects, that's the only time we actually put anything on
3932 the list WEAKS. We need this information so that if a regular
3933 object refers to a symbol defined weakly in a dynamic object, the
3934 real symbol in the dynamic object is also put in the dynamic
3935 symbols; we also must arrange for both symbols to point to the
3936 same memory location. We could handle the general case of symbol
3937 aliasing, but a general symbol alias can only be generated in
3938 assembler code, handling it correctly would be very time
3939 consuming, and other ELF linkers don't handle general aliasing
3940 either. */
3941 if (weaks != NULL)
3942 {
3943 struct elf_link_hash_entry **hpp;
3944 struct elf_link_hash_entry **hppend;
3945 struct elf_link_hash_entry **sorted_sym_hash;
3946 struct elf_link_hash_entry *h;
3947 size_t sym_count;
3948
3949 /* Since we have to search the whole symbol list for each weak
3950 defined symbol, search time for N weak defined symbols will be
3951 O(N^2). Binary search will cut it down to O(NlogN). */
3952 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3953 sorted_sym_hash = bfd_malloc (amt);
3954 if (sorted_sym_hash == NULL)
3955 goto error_return;
3956 sym_hash = sorted_sym_hash;
3957 hpp = elf_sym_hashes (abfd);
3958 hppend = hpp + extsymcount;
3959 sym_count = 0;
3960 for (; hpp < hppend; hpp++)
3961 {
3962 h = *hpp;
3963 if (h != NULL
3964 && h->root.type == bfd_link_hash_defined
3965 && h->type != STT_FUNC)
3966 {
3967 *sym_hash = h;
3968 sym_hash++;
3969 sym_count++;
3970 }
3971 }
3972
3973 qsort (sorted_sym_hash, sym_count,
3974 sizeof (struct elf_link_hash_entry *),
3975 elf_sort_symbol);
3976
3977 while (weaks != NULL)
3978 {
3979 struct elf_link_hash_entry *hlook;
3980 asection *slook;
3981 bfd_vma vlook;
3982 long ilook;
3983 size_t i, j, idx;
3984
3985 hlook = weaks;
3986 weaks = hlook->weakdef;
3987 hlook->weakdef = NULL;
3988
3989 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
3990 || hlook->root.type == bfd_link_hash_defweak
3991 || hlook->root.type == bfd_link_hash_common
3992 || hlook->root.type == bfd_link_hash_indirect);
3993 slook = hlook->root.u.def.section;
3994 vlook = hlook->root.u.def.value;
3995
3996 ilook = -1;
3997 i = 0;
3998 j = sym_count;
3999 while (i < j)
4000 {
4001 bfd_signed_vma vdiff;
4002 idx = (i + j) / 2;
4003 h = sorted_sym_hash [idx];
4004 vdiff = vlook - h->root.u.def.value;
4005 if (vdiff < 0)
4006 j = idx;
4007 else if (vdiff > 0)
4008 i = idx + 1;
4009 else
4010 {
a9b881be 4011 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4012 if (sdiff < 0)
4013 j = idx;
4014 else if (sdiff > 0)
4015 i = idx + 1;
4016 else
4017 {
4018 ilook = idx;
4019 break;
4020 }
4021 }
4022 }
4023
4024 /* We didn't find a value/section match. */
4025 if (ilook == -1)
4026 continue;
4027
4028 for (i = ilook; i < sym_count; i++)
4029 {
4030 h = sorted_sym_hash [i];
4031
4032 /* Stop if value or section doesn't match. */
4033 if (h->root.u.def.value != vlook
4034 || h->root.u.def.section != slook)
4035 break;
4036 else if (h != hlook)
4037 {
4038 hlook->weakdef = h;
4039
4040 /* If the weak definition is in the list of dynamic
4041 symbols, make sure the real definition is put
4042 there as well. */
4043 if (hlook->dynindx != -1 && h->dynindx == -1)
4044 {
c152c796 4045 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
4046 goto error_return;
4047 }
4048
4049 /* If the real definition is in the list of dynamic
4050 symbols, make sure the weak definition is put
4051 there as well. If we don't do this, then the
4052 dynamic loader might not merge the entries for the
4053 real definition and the weak definition. */
4054 if (h->dynindx != -1 && hlook->dynindx == -1)
4055 {
c152c796 4056 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4ad4eba5
AM
4057 goto error_return;
4058 }
4059 break;
4060 }
4061 }
4062 }
4063
4064 free (sorted_sym_hash);
4065 }
4066
85fbca6a
NC
4067 check_directives = get_elf_backend_data (abfd)->check_directives;
4068 if (check_directives)
4069 check_directives (abfd, info);
4070
4ad4eba5
AM
4071 /* If this object is the same format as the output object, and it is
4072 not a shared library, then let the backend look through the
4073 relocs.
4074
4075 This is required to build global offset table entries and to
4076 arrange for dynamic relocs. It is not required for the
4077 particular common case of linking non PIC code, even when linking
4078 against shared libraries, but unfortunately there is no way of
4079 knowing whether an object file has been compiled PIC or not.
4080 Looking through the relocs is not particularly time consuming.
4081 The problem is that we must either (1) keep the relocs in memory,
4082 which causes the linker to require additional runtime memory or
4083 (2) read the relocs twice from the input file, which wastes time.
4084 This would be a good case for using mmap.
4085
4086 I have no idea how to handle linking PIC code into a file of a
4087 different format. It probably can't be done. */
4088 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4089 if (! dynamic
4090 && is_elf_hash_table (hash_table)
4091 && hash_table->root.creator == abfd->xvec
4092 && check_relocs != NULL)
4093 {
4094 asection *o;
4095
4096 for (o = abfd->sections; o != NULL; o = o->next)
4097 {
4098 Elf_Internal_Rela *internal_relocs;
4099 bfd_boolean ok;
4100
4101 if ((o->flags & SEC_RELOC) == 0
4102 || o->reloc_count == 0
4103 || ((info->strip == strip_all || info->strip == strip_debugger)
4104 && (o->flags & SEC_DEBUGGING) != 0)
4105 || bfd_is_abs_section (o->output_section))
4106 continue;
4107
4108 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4109 info->keep_memory);
4110 if (internal_relocs == NULL)
4111 goto error_return;
4112
4113 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4114
4115 if (elf_section_data (o)->relocs != internal_relocs)
4116 free (internal_relocs);
4117
4118 if (! ok)
4119 goto error_return;
4120 }
4121 }
4122
4123 /* If this is a non-traditional link, try to optimize the handling
4124 of the .stab/.stabstr sections. */
4125 if (! dynamic
4126 && ! info->traditional_format
4127 && is_elf_hash_table (hash_table)
4128 && (info->strip != strip_all && info->strip != strip_debugger))
4129 {
4130 asection *stabstr;
4131
4132 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4133 if (stabstr != NULL)
4134 {
4135 bfd_size_type string_offset = 0;
4136 asection *stab;
4137
4138 for (stab = abfd->sections; stab; stab = stab->next)
4139 if (strncmp (".stab", stab->name, 5) == 0
4140 && (!stab->name[5] ||
4141 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4142 && (stab->flags & SEC_MERGE) == 0
4143 && !bfd_is_abs_section (stab->output_section))
4144 {
4145 struct bfd_elf_section_data *secdata;
4146
4147 secdata = elf_section_data (stab);
4148 if (! _bfd_link_section_stabs (abfd,
3722b82f 4149 &hash_table->stab_info,
4ad4eba5
AM
4150 stab, stabstr,
4151 &secdata->sec_info,
4152 &string_offset))
4153 goto error_return;
4154 if (secdata->sec_info)
4155 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4156 }
4157 }
4158 }
4159
4ad4eba5
AM
4160 if (is_elf_hash_table (hash_table))
4161 {
4162 /* Add this bfd to the loaded list. */
4163 struct elf_link_loaded_list *n;
4164
4165 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4166 if (n == NULL)
4167 goto error_return;
4168 n->abfd = abfd;
4169 n->next = hash_table->loaded;
4170 hash_table->loaded = n;
4171 }
4172
4173 return TRUE;
4174
4175 error_free_vers:
4176 if (nondeflt_vers != NULL)
4177 free (nondeflt_vers);
4178 if (extversym != NULL)
4179 free (extversym);
4180 error_free_sym:
4181 if (isymbuf != NULL)
4182 free (isymbuf);
4183 error_return:
4184 return FALSE;
4185}
4186
8387904d
AM
4187/* Return the linker hash table entry of a symbol that might be
4188 satisfied by an archive symbol. Return -1 on error. */
4189
4190struct elf_link_hash_entry *
4191_bfd_elf_archive_symbol_lookup (bfd *abfd,
4192 struct bfd_link_info *info,
4193 const char *name)
4194{
4195 struct elf_link_hash_entry *h;
4196 char *p, *copy;
4197 size_t len, first;
4198
4199 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4200 if (h != NULL)
4201 return h;
4202
4203 /* If this is a default version (the name contains @@), look up the
4204 symbol again with only one `@' as well as without the version.
4205 The effect is that references to the symbol with and without the
4206 version will be matched by the default symbol in the archive. */
4207
4208 p = strchr (name, ELF_VER_CHR);
4209 if (p == NULL || p[1] != ELF_VER_CHR)
4210 return h;
4211
4212 /* First check with only one `@'. */
4213 len = strlen (name);
4214 copy = bfd_alloc (abfd, len);
4215 if (copy == NULL)
4216 return (struct elf_link_hash_entry *) 0 - 1;
4217
4218 first = p - name + 1;
4219 memcpy (copy, name, first);
4220 memcpy (copy + first, name + first + 1, len - first);
4221
4222 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4223 if (h == NULL)
4224 {
4225 /* We also need to check references to the symbol without the
4226 version. */
4227 copy[first - 1] = '\0';
4228 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4229 FALSE, FALSE, FALSE);
4230 }
4231
4232 bfd_release (abfd, copy);
4233 return h;
4234}
4235
0ad989f9
L
4236/* Add symbols from an ELF archive file to the linker hash table. We
4237 don't use _bfd_generic_link_add_archive_symbols because of a
4238 problem which arises on UnixWare. The UnixWare libc.so is an
4239 archive which includes an entry libc.so.1 which defines a bunch of
4240 symbols. The libc.so archive also includes a number of other
4241 object files, which also define symbols, some of which are the same
4242 as those defined in libc.so.1. Correct linking requires that we
4243 consider each object file in turn, and include it if it defines any
4244 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4245 this; it looks through the list of undefined symbols, and includes
4246 any object file which defines them. When this algorithm is used on
4247 UnixWare, it winds up pulling in libc.so.1 early and defining a
4248 bunch of symbols. This means that some of the other objects in the
4249 archive are not included in the link, which is incorrect since they
4250 precede libc.so.1 in the archive.
4251
4252 Fortunately, ELF archive handling is simpler than that done by
4253 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4254 oddities. In ELF, if we find a symbol in the archive map, and the
4255 symbol is currently undefined, we know that we must pull in that
4256 object file.
4257
4258 Unfortunately, we do have to make multiple passes over the symbol
4259 table until nothing further is resolved. */
4260
4ad4eba5
AM
4261static bfd_boolean
4262elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4263{
4264 symindex c;
4265 bfd_boolean *defined = NULL;
4266 bfd_boolean *included = NULL;
4267 carsym *symdefs;
4268 bfd_boolean loop;
4269 bfd_size_type amt;
8387904d
AM
4270 const struct elf_backend_data *bed;
4271 struct elf_link_hash_entry * (*archive_symbol_lookup)
4272 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4273
4274 if (! bfd_has_map (abfd))
4275 {
4276 /* An empty archive is a special case. */
4277 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4278 return TRUE;
4279 bfd_set_error (bfd_error_no_armap);
4280 return FALSE;
4281 }
4282
4283 /* Keep track of all symbols we know to be already defined, and all
4284 files we know to be already included. This is to speed up the
4285 second and subsequent passes. */
4286 c = bfd_ardata (abfd)->symdef_count;
4287 if (c == 0)
4288 return TRUE;
4289 amt = c;
4290 amt *= sizeof (bfd_boolean);
4291 defined = bfd_zmalloc (amt);
4292 included = bfd_zmalloc (amt);
4293 if (defined == NULL || included == NULL)
4294 goto error_return;
4295
4296 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
4297 bed = get_elf_backend_data (abfd);
4298 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
4299
4300 do
4301 {
4302 file_ptr last;
4303 symindex i;
4304 carsym *symdef;
4305 carsym *symdefend;
4306
4307 loop = FALSE;
4308 last = -1;
4309
4310 symdef = symdefs;
4311 symdefend = symdef + c;
4312 for (i = 0; symdef < symdefend; symdef++, i++)
4313 {
4314 struct elf_link_hash_entry *h;
4315 bfd *element;
4316 struct bfd_link_hash_entry *undefs_tail;
4317 symindex mark;
4318
4319 if (defined[i] || included[i])
4320 continue;
4321 if (symdef->file_offset == last)
4322 {
4323 included[i] = TRUE;
4324 continue;
4325 }
4326
8387904d
AM
4327 h = archive_symbol_lookup (abfd, info, symdef->name);
4328 if (h == (struct elf_link_hash_entry *) 0 - 1)
4329 goto error_return;
0ad989f9
L
4330
4331 if (h == NULL)
4332 continue;
4333
4334 if (h->root.type == bfd_link_hash_common)
4335 {
4336 /* We currently have a common symbol. The archive map contains
4337 a reference to this symbol, so we may want to include it. We
4338 only want to include it however, if this archive element
4339 contains a definition of the symbol, not just another common
4340 declaration of it.
4341
4342 Unfortunately some archivers (including GNU ar) will put
4343 declarations of common symbols into their archive maps, as
4344 well as real definitions, so we cannot just go by the archive
4345 map alone. Instead we must read in the element's symbol
4346 table and check that to see what kind of symbol definition
4347 this is. */
4348 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4349 continue;
4350 }
4351 else if (h->root.type != bfd_link_hash_undefined)
4352 {
4353 if (h->root.type != bfd_link_hash_undefweak)
4354 defined[i] = TRUE;
4355 continue;
4356 }
4357
4358 /* We need to include this archive member. */
4359 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4360 if (element == NULL)
4361 goto error_return;
4362
4363 if (! bfd_check_format (element, bfd_object))
4364 goto error_return;
4365
4366 /* Doublecheck that we have not included this object
4367 already--it should be impossible, but there may be
4368 something wrong with the archive. */
4369 if (element->archive_pass != 0)
4370 {
4371 bfd_set_error (bfd_error_bad_value);
4372 goto error_return;
4373 }
4374 element->archive_pass = 1;
4375
4376 undefs_tail = info->hash->undefs_tail;
4377
4378 if (! (*info->callbacks->add_archive_element) (info, element,
4379 symdef->name))
4380 goto error_return;
4381 if (! bfd_link_add_symbols (element, info))
4382 goto error_return;
4383
4384 /* If there are any new undefined symbols, we need to make
4385 another pass through the archive in order to see whether
4386 they can be defined. FIXME: This isn't perfect, because
4387 common symbols wind up on undefs_tail and because an
4388 undefined symbol which is defined later on in this pass
4389 does not require another pass. This isn't a bug, but it
4390 does make the code less efficient than it could be. */
4391 if (undefs_tail != info->hash->undefs_tail)
4392 loop = TRUE;
4393
4394 /* Look backward to mark all symbols from this object file
4395 which we have already seen in this pass. */
4396 mark = i;
4397 do
4398 {
4399 included[mark] = TRUE;
4400 if (mark == 0)
4401 break;
4402 --mark;
4403 }
4404 while (symdefs[mark].file_offset == symdef->file_offset);
4405
4406 /* We mark subsequent symbols from this object file as we go
4407 on through the loop. */
4408 last = symdef->file_offset;
4409 }
4410 }
4411 while (loop);
4412
4413 free (defined);
4414 free (included);
4415
4416 return TRUE;
4417
4418 error_return:
4419 if (defined != NULL)
4420 free (defined);
4421 if (included != NULL)
4422 free (included);
4423 return FALSE;
4424}
4ad4eba5
AM
4425
4426/* Given an ELF BFD, add symbols to the global hash table as
4427 appropriate. */
4428
4429bfd_boolean
4430bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4431{
4432 switch (bfd_get_format (abfd))
4433 {
4434 case bfd_object:
4435 return elf_link_add_object_symbols (abfd, info);
4436 case bfd_archive:
4437 return elf_link_add_archive_symbols (abfd, info);
4438 default:
4439 bfd_set_error (bfd_error_wrong_format);
4440 return FALSE;
4441 }
4442}
5a580b3a
AM
4443\f
4444/* This function will be called though elf_link_hash_traverse to store
4445 all hash value of the exported symbols in an array. */
4446
4447static bfd_boolean
4448elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4449{
4450 unsigned long **valuep = data;
4451 const char *name;
4452 char *p;
4453 unsigned long ha;
4454 char *alc = NULL;
4455
4456 if (h->root.type == bfd_link_hash_warning)
4457 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4458
4459 /* Ignore indirect symbols. These are added by the versioning code. */
4460 if (h->dynindx == -1)
4461 return TRUE;
4462
4463 name = h->root.root.string;
4464 p = strchr (name, ELF_VER_CHR);
4465 if (p != NULL)
4466 {
4467 alc = bfd_malloc (p - name + 1);
4468 memcpy (alc, name, p - name);
4469 alc[p - name] = '\0';
4470 name = alc;
4471 }
4472
4473 /* Compute the hash value. */
4474 ha = bfd_elf_hash (name);
4475
4476 /* Store the found hash value in the array given as the argument. */
4477 *(*valuep)++ = ha;
4478
4479 /* And store it in the struct so that we can put it in the hash table
4480 later. */
4481 h->elf_hash_value = ha;
4482
4483 if (alc != NULL)
4484 free (alc);
4485
4486 return TRUE;
4487}
4488
4489/* Array used to determine the number of hash table buckets to use
4490 based on the number of symbols there are. If there are fewer than
4491 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4492 fewer than 37 we use 17 buckets, and so forth. We never use more
4493 than 32771 buckets. */
4494
4495static const size_t elf_buckets[] =
4496{
4497 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4498 16411, 32771, 0
4499};
4500
4501/* Compute bucket count for hashing table. We do not use a static set
4502 of possible tables sizes anymore. Instead we determine for all
4503 possible reasonable sizes of the table the outcome (i.e., the
4504 number of collisions etc) and choose the best solution. The
4505 weighting functions are not too simple to allow the table to grow
4506 without bounds. Instead one of the weighting factors is the size.
4507 Therefore the result is always a good payoff between few collisions
4508 (= short chain lengths) and table size. */
4509static size_t
4510compute_bucket_count (struct bfd_link_info *info)
4511{
4512 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4513 size_t best_size = 0;
4514 unsigned long int *hashcodes;
4515 unsigned long int *hashcodesp;
4516 unsigned long int i;
4517 bfd_size_type amt;
4518
4519 /* Compute the hash values for all exported symbols. At the same
4520 time store the values in an array so that we could use them for
4521 optimizations. */
4522 amt = dynsymcount;
4523 amt *= sizeof (unsigned long int);
4524 hashcodes = bfd_malloc (amt);
4525 if (hashcodes == NULL)
4526 return 0;
4527 hashcodesp = hashcodes;
4528
4529 /* Put all hash values in HASHCODES. */
4530 elf_link_hash_traverse (elf_hash_table (info),
4531 elf_collect_hash_codes, &hashcodesp);
4532
4533 /* We have a problem here. The following code to optimize the table
4534 size requires an integer type with more the 32 bits. If
4535 BFD_HOST_U_64_BIT is set we know about such a type. */
4536#ifdef BFD_HOST_U_64_BIT
4537 if (info->optimize)
4538 {
4539 unsigned long int nsyms = hashcodesp - hashcodes;
4540 size_t minsize;
4541 size_t maxsize;
4542 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4543 unsigned long int *counts ;
4544 bfd *dynobj = elf_hash_table (info)->dynobj;
4545 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4546
4547 /* Possible optimization parameters: if we have NSYMS symbols we say
4548 that the hashing table must at least have NSYMS/4 and at most
4549 2*NSYMS buckets. */
4550 minsize = nsyms / 4;
4551 if (minsize == 0)
4552 minsize = 1;
4553 best_size = maxsize = nsyms * 2;
4554
4555 /* Create array where we count the collisions in. We must use bfd_malloc
4556 since the size could be large. */
4557 amt = maxsize;
4558 amt *= sizeof (unsigned long int);
4559 counts = bfd_malloc (amt);
4560 if (counts == NULL)
4561 {
4562 free (hashcodes);
4563 return 0;
4564 }
4565
4566 /* Compute the "optimal" size for the hash table. The criteria is a
4567 minimal chain length. The minor criteria is (of course) the size
4568 of the table. */
4569 for (i = minsize; i < maxsize; ++i)
4570 {
4571 /* Walk through the array of hashcodes and count the collisions. */
4572 BFD_HOST_U_64_BIT max;
4573 unsigned long int j;
4574 unsigned long int fact;
4575
4576 memset (counts, '\0', i * sizeof (unsigned long int));
4577
4578 /* Determine how often each hash bucket is used. */
4579 for (j = 0; j < nsyms; ++j)
4580 ++counts[hashcodes[j] % i];
4581
4582 /* For the weight function we need some information about the
4583 pagesize on the target. This is information need not be 100%
4584 accurate. Since this information is not available (so far) we
4585 define it here to a reasonable default value. If it is crucial
4586 to have a better value some day simply define this value. */
4587# ifndef BFD_TARGET_PAGESIZE
4588# define BFD_TARGET_PAGESIZE (4096)
4589# endif
4590
4591 /* We in any case need 2 + NSYMS entries for the size values and
4592 the chains. */
4593 max = (2 + nsyms) * (bed->s->arch_size / 8);
4594
4595# if 1
4596 /* Variant 1: optimize for short chains. We add the squares
4597 of all the chain lengths (which favors many small chain
4598 over a few long chains). */
4599 for (j = 0; j < i; ++j)
4600 max += counts[j] * counts[j];
4601
4602 /* This adds penalties for the overall size of the table. */
4603 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4604 max *= fact * fact;
4605# else
4606 /* Variant 2: Optimize a lot more for small table. Here we
4607 also add squares of the size but we also add penalties for
4608 empty slots (the +1 term). */
4609 for (j = 0; j < i; ++j)
4610 max += (1 + counts[j]) * (1 + counts[j]);
4611
4612 /* The overall size of the table is considered, but not as
4613 strong as in variant 1, where it is squared. */
4614 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4615 max *= fact;
4616# endif
4617
4618 /* Compare with current best results. */
4619 if (max < best_chlen)
4620 {
4621 best_chlen = max;
4622 best_size = i;
4623 }
4624 }
4625
4626 free (counts);
4627 }
4628 else
4629#endif /* defined (BFD_HOST_U_64_BIT) */
4630 {
4631 /* This is the fallback solution if no 64bit type is available or if we
4632 are not supposed to spend much time on optimizations. We select the
4633 bucket count using a fixed set of numbers. */
4634 for (i = 0; elf_buckets[i] != 0; i++)
4635 {
4636 best_size = elf_buckets[i];
4637 if (dynsymcount < elf_buckets[i + 1])
4638 break;
4639 }
4640 }
4641
4642 /* Free the arrays we needed. */
4643 free (hashcodes);
4644
4645 return best_size;
4646}
4647
4648/* Set up the sizes and contents of the ELF dynamic sections. This is
4649 called by the ELF linker emulation before_allocation routine. We
4650 must set the sizes of the sections before the linker sets the
4651 addresses of the various sections. */
4652
4653bfd_boolean
4654bfd_elf_size_dynamic_sections (bfd *output_bfd,
4655 const char *soname,
4656 const char *rpath,
4657 const char *filter_shlib,
4658 const char * const *auxiliary_filters,
4659 struct bfd_link_info *info,
4660 asection **sinterpptr,
4661 struct bfd_elf_version_tree *verdefs)
4662{
4663 bfd_size_type soname_indx;
4664 bfd *dynobj;
4665 const struct elf_backend_data *bed;
4666 struct elf_assign_sym_version_info asvinfo;
4667
4668 *sinterpptr = NULL;
4669
4670 soname_indx = (bfd_size_type) -1;
4671
4672 if (!is_elf_hash_table (info->hash))
4673 return TRUE;
4674
8c37241b 4675 elf_tdata (output_bfd)->relro = info->relro;
5a580b3a
AM
4676 if (info->execstack)
4677 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4678 else if (info->noexecstack)
4679 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4680 else
4681 {
4682 bfd *inputobj;
4683 asection *notesec = NULL;
4684 int exec = 0;
4685
4686 for (inputobj = info->input_bfds;
4687 inputobj;
4688 inputobj = inputobj->link_next)
4689 {
4690 asection *s;
4691
4692 if (inputobj->flags & DYNAMIC)
4693 continue;
4694 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4695 if (s)
4696 {
4697 if (s->flags & SEC_CODE)
4698 exec = PF_X;
4699 notesec = s;
4700 }
4701 else
4702 exec = PF_X;
4703 }
4704 if (notesec)
4705 {
4706 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4707 if (exec && info->relocatable
4708 && notesec->output_section != bfd_abs_section_ptr)
4709 notesec->output_section->flags |= SEC_CODE;
4710 }
4711 }
4712
4713 /* Any syms created from now on start with -1 in
4714 got.refcount/offset and plt.refcount/offset. */
4715 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4716
4717 /* The backend may have to create some sections regardless of whether
4718 we're dynamic or not. */
4719 bed = get_elf_backend_data (output_bfd);
4720 if (bed->elf_backend_always_size_sections
4721 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4722 return FALSE;
4723
4724 dynobj = elf_hash_table (info)->dynobj;
4725
4726 /* If there were no dynamic objects in the link, there is nothing to
4727 do here. */
4728 if (dynobj == NULL)
4729 return TRUE;
4730
4731 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
4732 return FALSE;
4733
4734 if (elf_hash_table (info)->dynamic_sections_created)
4735 {
4736 struct elf_info_failed eif;
4737 struct elf_link_hash_entry *h;
4738 asection *dynstr;
4739 struct bfd_elf_version_tree *t;
4740 struct bfd_elf_version_expr *d;
4741 bfd_boolean all_defined;
4742
4743 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
4744 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
4745
4746 if (soname != NULL)
4747 {
4748 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4749 soname, TRUE);
4750 if (soname_indx == (bfd_size_type) -1
4751 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
4752 return FALSE;
4753 }
4754
4755 if (info->symbolic)
4756 {
4757 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
4758 return FALSE;
4759 info->flags |= DF_SYMBOLIC;
4760 }
4761
4762 if (rpath != NULL)
4763 {
4764 bfd_size_type indx;
4765
4766 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
4767 TRUE);
4768 if (indx == (bfd_size_type) -1
4769 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
4770 return FALSE;
4771
4772 if (info->new_dtags)
4773 {
4774 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
4775 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
4776 return FALSE;
4777 }
4778 }
4779
4780 if (filter_shlib != NULL)
4781 {
4782 bfd_size_type indx;
4783
4784 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4785 filter_shlib, TRUE);
4786 if (indx == (bfd_size_type) -1
4787 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
4788 return FALSE;
4789 }
4790
4791 if (auxiliary_filters != NULL)
4792 {
4793 const char * const *p;
4794
4795 for (p = auxiliary_filters; *p != NULL; p++)
4796 {
4797 bfd_size_type indx;
4798
4799 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4800 *p, TRUE);
4801 if (indx == (bfd_size_type) -1
4802 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
4803 return FALSE;
4804 }
4805 }
4806
4807 eif.info = info;
4808 eif.verdefs = verdefs;
4809 eif.failed = FALSE;
4810
4811 /* If we are supposed to export all symbols into the dynamic symbol
4812 table (this is not the normal case), then do so. */
4813 if (info->export_dynamic)
4814 {
4815 elf_link_hash_traverse (elf_hash_table (info),
4816 _bfd_elf_export_symbol,
4817 &eif);
4818 if (eif.failed)
4819 return FALSE;
4820 }
4821
4822 /* Make all global versions with definition. */
4823 for (t = verdefs; t != NULL; t = t->next)
4824 for (d = t->globals.list; d != NULL; d = d->next)
4825 if (!d->symver && d->symbol)
4826 {
4827 const char *verstr, *name;
4828 size_t namelen, verlen, newlen;
4829 char *newname, *p;
4830 struct elf_link_hash_entry *newh;
4831
4832 name = d->symbol;
4833 namelen = strlen (name);
4834 verstr = t->name;
4835 verlen = strlen (verstr);
4836 newlen = namelen + verlen + 3;
4837
4838 newname = bfd_malloc (newlen);
4839 if (newname == NULL)
4840 return FALSE;
4841 memcpy (newname, name, namelen);
4842
4843 /* Check the hidden versioned definition. */
4844 p = newname + namelen;
4845 *p++ = ELF_VER_CHR;
4846 memcpy (p, verstr, verlen + 1);
4847 newh = elf_link_hash_lookup (elf_hash_table (info),
4848 newname, FALSE, FALSE,
4849 FALSE);
4850 if (newh == NULL
4851 || (newh->root.type != bfd_link_hash_defined
4852 && newh->root.type != bfd_link_hash_defweak))
4853 {
4854 /* Check the default versioned definition. */
4855 *p++ = ELF_VER_CHR;
4856 memcpy (p, verstr, verlen + 1);
4857 newh = elf_link_hash_lookup (elf_hash_table (info),
4858 newname, FALSE, FALSE,
4859 FALSE);
4860 }
4861 free (newname);
4862
4863 /* Mark this version if there is a definition and it is
4864 not defined in a shared object. */
4865 if (newh != NULL
4866 && ((newh->elf_link_hash_flags
4867 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
4868 && (newh->root.type == bfd_link_hash_defined
4869 || newh->root.type == bfd_link_hash_defweak))
4870 d->symver = 1;
4871 }
4872
4873 /* Attach all the symbols to their version information. */
4874 asvinfo.output_bfd = output_bfd;
4875 asvinfo.info = info;
4876 asvinfo.verdefs = verdefs;
4877 asvinfo.failed = FALSE;
4878
4879 elf_link_hash_traverse (elf_hash_table (info),
4880 _bfd_elf_link_assign_sym_version,
4881 &asvinfo);
4882 if (asvinfo.failed)
4883 return FALSE;
4884
4885 if (!info->allow_undefined_version)
4886 {
4887 /* Check if all global versions have a definition. */
4888 all_defined = TRUE;
4889 for (t = verdefs; t != NULL; t = t->next)
4890 for (d = t->globals.list; d != NULL; d = d->next)
4891 if (!d->symver && !d->script)
4892 {
4893 (*_bfd_error_handler)
4894 (_("%s: undefined version: %s"),
4895 d->pattern, t->name);
4896 all_defined = FALSE;
4897 }
4898
4899 if (!all_defined)
4900 {
4901 bfd_set_error (bfd_error_bad_value);
4902 return FALSE;
4903 }
4904 }
4905
4906 /* Find all symbols which were defined in a dynamic object and make
4907 the backend pick a reasonable value for them. */
4908 elf_link_hash_traverse (elf_hash_table (info),
4909 _bfd_elf_adjust_dynamic_symbol,
4910 &eif);
4911 if (eif.failed)
4912 return FALSE;
4913
4914 /* Add some entries to the .dynamic section. We fill in some of the
4915 values later, in elf_bfd_final_link, but we must add the entries
4916 now so that we know the final size of the .dynamic section. */
4917
4918 /* If there are initialization and/or finalization functions to
4919 call then add the corresponding DT_INIT/DT_FINI entries. */
4920 h = (info->init_function
4921 ? elf_link_hash_lookup (elf_hash_table (info),
4922 info->init_function, FALSE,
4923 FALSE, FALSE)
4924 : NULL);
4925 if (h != NULL
4926 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4927 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4928 {
4929 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
4930 return FALSE;
4931 }
4932 h = (info->fini_function
4933 ? elf_link_hash_lookup (elf_hash_table (info),
4934 info->fini_function, FALSE,
4935 FALSE, FALSE)
4936 : NULL);
4937 if (h != NULL
4938 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4939 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4940 {
4941 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
4942 return FALSE;
4943 }
4944
4945 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
4946 {
4947 /* DT_PREINIT_ARRAY is not allowed in shared library. */
4948 if (! info->executable)
4949 {
4950 bfd *sub;
4951 asection *o;
4952
4953 for (sub = info->input_bfds; sub != NULL;
4954 sub = sub->link_next)
4955 for (o = sub->sections; o != NULL; o = o->next)
4956 if (elf_section_data (o)->this_hdr.sh_type
4957 == SHT_PREINIT_ARRAY)
4958 {
4959 (*_bfd_error_handler)
d003868e
AM
4960 (_("%B: .preinit_array section is not allowed in DSO"),
4961 sub);
5a580b3a
AM
4962 break;
4963 }
4964
4965 bfd_set_error (bfd_error_nonrepresentable_section);
4966 return FALSE;
4967 }
4968
4969 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
4970 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
4971 return FALSE;
4972 }
4973 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
4974 {
4975 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
4976 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
4977 return FALSE;
4978 }
4979 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
4980 {
4981 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
4982 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
4983 return FALSE;
4984 }
4985
4986 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
4987 /* If .dynstr is excluded from the link, we don't want any of
4988 these tags. Strictly, we should be checking each section
4989 individually; This quick check covers for the case where
4990 someone does a /DISCARD/ : { *(*) }. */
4991 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
4992 {
4993 bfd_size_type strsize;
4994
4995 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
4996 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
4997 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
4998 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
4999 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5000 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5001 bed->s->sizeof_sym))
5002 return FALSE;
5003 }
5004 }
5005
5006 /* The backend must work out the sizes of all the other dynamic
5007 sections. */
5008 if (bed->elf_backend_size_dynamic_sections
5009 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5010 return FALSE;
5011
5012 if (elf_hash_table (info)->dynamic_sections_created)
5013 {
5014 bfd_size_type dynsymcount;
5015 asection *s;
5016 size_t bucketcount = 0;
5017 size_t hash_entry_size;
5018 unsigned int dtagcount;
5019
5020 /* Set up the version definition section. */
5021 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5022 BFD_ASSERT (s != NULL);
5023
5024 /* We may have created additional version definitions if we are
5025 just linking a regular application. */
5026 verdefs = asvinfo.verdefs;
5027
5028 /* Skip anonymous version tag. */
5029 if (verdefs != NULL && verdefs->vernum == 0)
5030 verdefs = verdefs->next;
5031
5032 if (verdefs == NULL)
5033 _bfd_strip_section_from_output (info, s);
5034 else
5035 {
5036 unsigned int cdefs;
5037 bfd_size_type size;
5038 struct bfd_elf_version_tree *t;
5039 bfd_byte *p;
5040 Elf_Internal_Verdef def;
5041 Elf_Internal_Verdaux defaux;
5042
5043 cdefs = 0;
5044 size = 0;
5045
5046 /* Make space for the base version. */
5047 size += sizeof (Elf_External_Verdef);
5048 size += sizeof (Elf_External_Verdaux);
5049 ++cdefs;
5050
5051 for (t = verdefs; t != NULL; t = t->next)
5052 {
5053 struct bfd_elf_version_deps *n;
5054
5055 size += sizeof (Elf_External_Verdef);
5056 size += sizeof (Elf_External_Verdaux);
5057 ++cdefs;
5058
5059 for (n = t->deps; n != NULL; n = n->next)
5060 size += sizeof (Elf_External_Verdaux);
5061 }
5062
eea6121a
AM
5063 s->size = size;
5064 s->contents = bfd_alloc (output_bfd, s->size);
5065 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5066 return FALSE;
5067
5068 /* Fill in the version definition section. */
5069
5070 p = s->contents;
5071
5072 def.vd_version = VER_DEF_CURRENT;
5073 def.vd_flags = VER_FLG_BASE;
5074 def.vd_ndx = 1;
5075 def.vd_cnt = 1;
5076 def.vd_aux = sizeof (Elf_External_Verdef);
5077 def.vd_next = (sizeof (Elf_External_Verdef)
5078 + sizeof (Elf_External_Verdaux));
5079
5080 if (soname_indx != (bfd_size_type) -1)
5081 {
5082 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5083 soname_indx);
5084 def.vd_hash = bfd_elf_hash (soname);
5085 defaux.vda_name = soname_indx;
5086 }
5087 else
5088 {
5089 const char *name;
5090 bfd_size_type indx;
5091
5092 name = basename (output_bfd->filename);
5093 def.vd_hash = bfd_elf_hash (name);
5094 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5095 name, FALSE);
5096 if (indx == (bfd_size_type) -1)
5097 return FALSE;
5098 defaux.vda_name = indx;
5099 }
5100 defaux.vda_next = 0;
5101
5102 _bfd_elf_swap_verdef_out (output_bfd, &def,
5103 (Elf_External_Verdef *) p);
5104 p += sizeof (Elf_External_Verdef);
5105 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5106 (Elf_External_Verdaux *) p);
5107 p += sizeof (Elf_External_Verdaux);
5108
5109 for (t = verdefs; t != NULL; t = t->next)
5110 {
5111 unsigned int cdeps;
5112 struct bfd_elf_version_deps *n;
5113 struct elf_link_hash_entry *h;
5114 struct bfd_link_hash_entry *bh;
5115
5116 cdeps = 0;
5117 for (n = t->deps; n != NULL; n = n->next)
5118 ++cdeps;
5119
5120 /* Add a symbol representing this version. */
5121 bh = NULL;
5122 if (! (_bfd_generic_link_add_one_symbol
5123 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5124 0, NULL, FALSE,
5125 get_elf_backend_data (dynobj)->collect, &bh)))
5126 return FALSE;
5127 h = (struct elf_link_hash_entry *) bh;
5128 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
5129 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5130 h->type = STT_OBJECT;
5131 h->verinfo.vertree = t;
5132
c152c796 5133 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
5134 return FALSE;
5135
5136 def.vd_version = VER_DEF_CURRENT;
5137 def.vd_flags = 0;
5138 if (t->globals.list == NULL
5139 && t->locals.list == NULL
5140 && ! t->used)
5141 def.vd_flags |= VER_FLG_WEAK;
5142 def.vd_ndx = t->vernum + 1;
5143 def.vd_cnt = cdeps + 1;
5144 def.vd_hash = bfd_elf_hash (t->name);
5145 def.vd_aux = sizeof (Elf_External_Verdef);
5146 def.vd_next = 0;
5147 if (t->next != NULL)
5148 def.vd_next = (sizeof (Elf_External_Verdef)
5149 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5150
5151 _bfd_elf_swap_verdef_out (output_bfd, &def,
5152 (Elf_External_Verdef *) p);
5153 p += sizeof (Elf_External_Verdef);
5154
5155 defaux.vda_name = h->dynstr_index;
5156 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5157 h->dynstr_index);
5158 defaux.vda_next = 0;
5159 if (t->deps != NULL)
5160 defaux.vda_next = sizeof (Elf_External_Verdaux);
5161 t->name_indx = defaux.vda_name;
5162
5163 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5164 (Elf_External_Verdaux *) p);
5165 p += sizeof (Elf_External_Verdaux);
5166
5167 for (n = t->deps; n != NULL; n = n->next)
5168 {
5169 if (n->version_needed == NULL)
5170 {
5171 /* This can happen if there was an error in the
5172 version script. */
5173 defaux.vda_name = 0;
5174 }
5175 else
5176 {
5177 defaux.vda_name = n->version_needed->name_indx;
5178 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5179 defaux.vda_name);
5180 }
5181 if (n->next == NULL)
5182 defaux.vda_next = 0;
5183 else
5184 defaux.vda_next = sizeof (Elf_External_Verdaux);
5185
5186 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5187 (Elf_External_Verdaux *) p);
5188 p += sizeof (Elf_External_Verdaux);
5189 }
5190 }
5191
5192 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5193 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5194 return FALSE;
5195
5196 elf_tdata (output_bfd)->cverdefs = cdefs;
5197 }
5198
5199 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5200 {
5201 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5202 return FALSE;
5203 }
5204 else if (info->flags & DF_BIND_NOW)
5205 {
5206 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5207 return FALSE;
5208 }
5209
5210 if (info->flags_1)
5211 {
5212 if (info->executable)
5213 info->flags_1 &= ~ (DF_1_INITFIRST
5214 | DF_1_NODELETE
5215 | DF_1_NOOPEN);
5216 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5217 return FALSE;
5218 }
5219
5220 /* Work out the size of the version reference section. */
5221
5222 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5223 BFD_ASSERT (s != NULL);
5224 {
5225 struct elf_find_verdep_info sinfo;
5226
5227 sinfo.output_bfd = output_bfd;
5228 sinfo.info = info;
5229 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5230 if (sinfo.vers == 0)
5231 sinfo.vers = 1;
5232 sinfo.failed = FALSE;
5233
5234 elf_link_hash_traverse (elf_hash_table (info),
5235 _bfd_elf_link_find_version_dependencies,
5236 &sinfo);
5237
5238 if (elf_tdata (output_bfd)->verref == NULL)
5239 _bfd_strip_section_from_output (info, s);
5240 else
5241 {
5242 Elf_Internal_Verneed *t;
5243 unsigned int size;
5244 unsigned int crefs;
5245 bfd_byte *p;
5246
5247 /* Build the version definition section. */
5248 size = 0;
5249 crefs = 0;
5250 for (t = elf_tdata (output_bfd)->verref;
5251 t != NULL;
5252 t = t->vn_nextref)
5253 {
5254 Elf_Internal_Vernaux *a;
5255
5256 size += sizeof (Elf_External_Verneed);
5257 ++crefs;
5258 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5259 size += sizeof (Elf_External_Vernaux);
5260 }
5261
eea6121a
AM
5262 s->size = size;
5263 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
5264 if (s->contents == NULL)
5265 return FALSE;
5266
5267 p = s->contents;
5268 for (t = elf_tdata (output_bfd)->verref;
5269 t != NULL;
5270 t = t->vn_nextref)
5271 {
5272 unsigned int caux;
5273 Elf_Internal_Vernaux *a;
5274 bfd_size_type indx;
5275
5276 caux = 0;
5277 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5278 ++caux;
5279
5280 t->vn_version = VER_NEED_CURRENT;
5281 t->vn_cnt = caux;
5282 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5283 elf_dt_name (t->vn_bfd) != NULL
5284 ? elf_dt_name (t->vn_bfd)
5285 : basename (t->vn_bfd->filename),
5286 FALSE);
5287 if (indx == (bfd_size_type) -1)
5288 return FALSE;
5289 t->vn_file = indx;
5290 t->vn_aux = sizeof (Elf_External_Verneed);
5291 if (t->vn_nextref == NULL)
5292 t->vn_next = 0;
5293 else
5294 t->vn_next = (sizeof (Elf_External_Verneed)
5295 + caux * sizeof (Elf_External_Vernaux));
5296
5297 _bfd_elf_swap_verneed_out (output_bfd, t,
5298 (Elf_External_Verneed *) p);
5299 p += sizeof (Elf_External_Verneed);
5300
5301 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5302 {
5303 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5304 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5305 a->vna_nodename, FALSE);
5306 if (indx == (bfd_size_type) -1)
5307 return FALSE;
5308 a->vna_name = indx;
5309 if (a->vna_nextptr == NULL)
5310 a->vna_next = 0;
5311 else
5312 a->vna_next = sizeof (Elf_External_Vernaux);
5313
5314 _bfd_elf_swap_vernaux_out (output_bfd, a,
5315 (Elf_External_Vernaux *) p);
5316 p += sizeof (Elf_External_Vernaux);
5317 }
5318 }
5319
5320 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5321 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5322 return FALSE;
5323
5324 elf_tdata (output_bfd)->cverrefs = crefs;
5325 }
5326 }
5327
5328 /* Assign dynsym indicies. In a shared library we generate a
5329 section symbol for each output section, which come first.
5330 Next come all of the back-end allocated local dynamic syms,
5331 followed by the rest of the global symbols. */
5332
5333 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5334
5335 /* Work out the size of the symbol version section. */
5336 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5337 BFD_ASSERT (s != NULL);
5338 if (dynsymcount == 0
5339 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
5340 {
5341 _bfd_strip_section_from_output (info, s);
5342 /* The DYNSYMCOUNT might have changed if we were going to
5343 output a dynamic symbol table entry for S. */
5344 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5345 }
5346 else
5347 {
eea6121a
AM
5348 s->size = dynsymcount * sizeof (Elf_External_Versym);
5349 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5350 if (s->contents == NULL)
5351 return FALSE;
5352
5353 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5354 return FALSE;
5355 }
5356
5357 /* Set the size of the .dynsym and .hash sections. We counted
5358 the number of dynamic symbols in elf_link_add_object_symbols.
5359 We will build the contents of .dynsym and .hash when we build
5360 the final symbol table, because until then we do not know the
5361 correct value to give the symbols. We built the .dynstr
5362 section as we went along in elf_link_add_object_symbols. */
5363 s = bfd_get_section_by_name (dynobj, ".dynsym");
5364 BFD_ASSERT (s != NULL);
eea6121a
AM
5365 s->size = dynsymcount * bed->s->sizeof_sym;
5366 s->contents = bfd_alloc (output_bfd, s->size);
5367 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5368 return FALSE;
5369
5370 if (dynsymcount != 0)
5371 {
5372 Elf_Internal_Sym isym;
5373
5374 /* The first entry in .dynsym is a dummy symbol. */
5375 isym.st_value = 0;
5376 isym.st_size = 0;
5377 isym.st_name = 0;
5378 isym.st_info = 0;
5379 isym.st_other = 0;
5380 isym.st_shndx = 0;
5381 bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0);
5382 }
5383
5384 /* Compute the size of the hashing table. As a side effect this
5385 computes the hash values for all the names we export. */
5386 bucketcount = compute_bucket_count (info);
5387
5388 s = bfd_get_section_by_name (dynobj, ".hash");
5389 BFD_ASSERT (s != NULL);
5390 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
eea6121a
AM
5391 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5392 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5393 if (s->contents == NULL)
5394 return FALSE;
5395
5396 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5397 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5398 s->contents + hash_entry_size);
5399
5400 elf_hash_table (info)->bucketcount = bucketcount;
5401
5402 s = bfd_get_section_by_name (dynobj, ".dynstr");
5403 BFD_ASSERT (s != NULL);
5404
4ad4eba5 5405 elf_finalize_dynstr (output_bfd, info);
5a580b3a 5406
eea6121a 5407 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
5408
5409 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5410 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5411 return FALSE;
5412 }
5413
5414 return TRUE;
5415}
c152c796
AM
5416
5417/* Final phase of ELF linker. */
5418
5419/* A structure we use to avoid passing large numbers of arguments. */
5420
5421struct elf_final_link_info
5422{
5423 /* General link information. */
5424 struct bfd_link_info *info;
5425 /* Output BFD. */
5426 bfd *output_bfd;
5427 /* Symbol string table. */
5428 struct bfd_strtab_hash *symstrtab;
5429 /* .dynsym section. */
5430 asection *dynsym_sec;
5431 /* .hash section. */
5432 asection *hash_sec;
5433 /* symbol version section (.gnu.version). */
5434 asection *symver_sec;
5435 /* Buffer large enough to hold contents of any section. */
5436 bfd_byte *contents;
5437 /* Buffer large enough to hold external relocs of any section. */
5438 void *external_relocs;
5439 /* Buffer large enough to hold internal relocs of any section. */
5440 Elf_Internal_Rela *internal_relocs;
5441 /* Buffer large enough to hold external local symbols of any input
5442 BFD. */
5443 bfd_byte *external_syms;
5444 /* And a buffer for symbol section indices. */
5445 Elf_External_Sym_Shndx *locsym_shndx;
5446 /* Buffer large enough to hold internal local symbols of any input
5447 BFD. */
5448 Elf_Internal_Sym *internal_syms;
5449 /* Array large enough to hold a symbol index for each local symbol
5450 of any input BFD. */
5451 long *indices;
5452 /* Array large enough to hold a section pointer for each local
5453 symbol of any input BFD. */
5454 asection **sections;
5455 /* Buffer to hold swapped out symbols. */
5456 bfd_byte *symbuf;
5457 /* And one for symbol section indices. */
5458 Elf_External_Sym_Shndx *symshndxbuf;
5459 /* Number of swapped out symbols in buffer. */
5460 size_t symbuf_count;
5461 /* Number of symbols which fit in symbuf. */
5462 size_t symbuf_size;
5463 /* And same for symshndxbuf. */
5464 size_t shndxbuf_size;
5465};
5466
5467/* This struct is used to pass information to elf_link_output_extsym. */
5468
5469struct elf_outext_info
5470{
5471 bfd_boolean failed;
5472 bfd_boolean localsyms;
5473 struct elf_final_link_info *finfo;
5474};
5475
5476/* When performing a relocatable link, the input relocations are
5477 preserved. But, if they reference global symbols, the indices
5478 referenced must be updated. Update all the relocations in
5479 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5480
5481static void
5482elf_link_adjust_relocs (bfd *abfd,
5483 Elf_Internal_Shdr *rel_hdr,
5484 unsigned int count,
5485 struct elf_link_hash_entry **rel_hash)
5486{
5487 unsigned int i;
5488 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5489 bfd_byte *erela;
5490 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5491 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5492 bfd_vma r_type_mask;
5493 int r_sym_shift;
5494
5495 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5496 {
5497 swap_in = bed->s->swap_reloc_in;
5498 swap_out = bed->s->swap_reloc_out;
5499 }
5500 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5501 {
5502 swap_in = bed->s->swap_reloca_in;
5503 swap_out = bed->s->swap_reloca_out;
5504 }
5505 else
5506 abort ();
5507
5508 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5509 abort ();
5510
5511 if (bed->s->arch_size == 32)
5512 {
5513 r_type_mask = 0xff;
5514 r_sym_shift = 8;
5515 }
5516 else
5517 {
5518 r_type_mask = 0xffffffff;
5519 r_sym_shift = 32;
5520 }
5521
5522 erela = rel_hdr->contents;
5523 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5524 {
5525 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5526 unsigned int j;
5527
5528 if (*rel_hash == NULL)
5529 continue;
5530
5531 BFD_ASSERT ((*rel_hash)->indx >= 0);
5532
5533 (*swap_in) (abfd, erela, irela);
5534 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5535 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5536 | (irela[j].r_info & r_type_mask));
5537 (*swap_out) (abfd, irela, erela);
5538 }
5539}
5540
5541struct elf_link_sort_rela
5542{
5543 union {
5544 bfd_vma offset;
5545 bfd_vma sym_mask;
5546 } u;
5547 enum elf_reloc_type_class type;
5548 /* We use this as an array of size int_rels_per_ext_rel. */
5549 Elf_Internal_Rela rela[1];
5550};
5551
5552static int
5553elf_link_sort_cmp1 (const void *A, const void *B)
5554{
5555 const struct elf_link_sort_rela *a = A;
5556 const struct elf_link_sort_rela *b = B;
5557 int relativea, relativeb;
5558
5559 relativea = a->type == reloc_class_relative;
5560 relativeb = b->type == reloc_class_relative;
5561
5562 if (relativea < relativeb)
5563 return 1;
5564 if (relativea > relativeb)
5565 return -1;
5566 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5567 return -1;
5568 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5569 return 1;
5570 if (a->rela->r_offset < b->rela->r_offset)
5571 return -1;
5572 if (a->rela->r_offset > b->rela->r_offset)
5573 return 1;
5574 return 0;
5575}
5576
5577static int
5578elf_link_sort_cmp2 (const void *A, const void *B)
5579{
5580 const struct elf_link_sort_rela *a = A;
5581 const struct elf_link_sort_rela *b = B;
5582 int copya, copyb;
5583
5584 if (a->u.offset < b->u.offset)
5585 return -1;
5586 if (a->u.offset > b->u.offset)
5587 return 1;
5588 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5589 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5590 if (copya < copyb)
5591 return -1;
5592 if (copya > copyb)
5593 return 1;
5594 if (a->rela->r_offset < b->rela->r_offset)
5595 return -1;
5596 if (a->rela->r_offset > b->rela->r_offset)
5597 return 1;
5598 return 0;
5599}
5600
5601static size_t
5602elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5603{
5604 asection *reldyn;
5605 bfd_size_type count, size;
5606 size_t i, ret, sort_elt, ext_size;
5607 bfd_byte *sort, *s_non_relative, *p;
5608 struct elf_link_sort_rela *sq;
5609 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5610 int i2e = bed->s->int_rels_per_ext_rel;
5611 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5612 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5613 struct bfd_link_order *lo;
5614 bfd_vma r_sym_mask;
5615
5616 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
eea6121a 5617 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5618 {
5619 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
eea6121a 5620 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5621 return 0;
5622 ext_size = bed->s->sizeof_rel;
5623 swap_in = bed->s->swap_reloc_in;
5624 swap_out = bed->s->swap_reloc_out;
5625 }
5626 else
5627 {
5628 ext_size = bed->s->sizeof_rela;
5629 swap_in = bed->s->swap_reloca_in;
5630 swap_out = bed->s->swap_reloca_out;
5631 }
eea6121a 5632 count = reldyn->size / ext_size;
c152c796
AM
5633
5634 size = 0;
5635 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5636 if (lo->type == bfd_indirect_link_order)
5637 {
5638 asection *o = lo->u.indirect.section;
eea6121a 5639 size += o->size;
c152c796
AM
5640 }
5641
eea6121a 5642 if (size != reldyn->size)
c152c796
AM
5643 return 0;
5644
5645 sort_elt = (sizeof (struct elf_link_sort_rela)
5646 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5647 sort = bfd_zmalloc (sort_elt * count);
5648 if (sort == NULL)
5649 {
5650 (*info->callbacks->warning)
5651 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5652 return 0;
5653 }
5654
5655 if (bed->s->arch_size == 32)
5656 r_sym_mask = ~(bfd_vma) 0xff;
5657 else
5658 r_sym_mask = ~(bfd_vma) 0xffffffff;
5659
5660 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5661 if (lo->type == bfd_indirect_link_order)
5662 {
5663 bfd_byte *erel, *erelend;
5664 asection *o = lo->u.indirect.section;
5665
5666 erel = o->contents;
eea6121a 5667 erelend = o->contents + o->size;
c152c796
AM
5668 p = sort + o->output_offset / ext_size * sort_elt;
5669 while (erel < erelend)
5670 {
5671 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5672 (*swap_in) (abfd, erel, s->rela);
5673 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5674 s->u.sym_mask = r_sym_mask;
5675 p += sort_elt;
5676 erel += ext_size;
5677 }
5678 }
5679
5680 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
5681
5682 for (i = 0, p = sort; i < count; i++, p += sort_elt)
5683 {
5684 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5685 if (s->type != reloc_class_relative)
5686 break;
5687 }
5688 ret = i;
5689 s_non_relative = p;
5690
5691 sq = (struct elf_link_sort_rela *) s_non_relative;
5692 for (; i < count; i++, p += sort_elt)
5693 {
5694 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
5695 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
5696 sq = sp;
5697 sp->u.offset = sq->rela->r_offset;
5698 }
5699
5700 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
5701
5702 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5703 if (lo->type == bfd_indirect_link_order)
5704 {
5705 bfd_byte *erel, *erelend;
5706 asection *o = lo->u.indirect.section;
5707
5708 erel = o->contents;
eea6121a 5709 erelend = o->contents + o->size;
c152c796
AM
5710 p = sort + o->output_offset / ext_size * sort_elt;
5711 while (erel < erelend)
5712 {
5713 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5714 (*swap_out) (abfd, s->rela, erel);
5715 p += sort_elt;
5716 erel += ext_size;
5717 }
5718 }
5719
5720 free (sort);
5721 *psec = reldyn;
5722 return ret;
5723}
5724
5725/* Flush the output symbols to the file. */
5726
5727static bfd_boolean
5728elf_link_flush_output_syms (struct elf_final_link_info *finfo,
5729 const struct elf_backend_data *bed)
5730{
5731 if (finfo->symbuf_count > 0)
5732 {
5733 Elf_Internal_Shdr *hdr;
5734 file_ptr pos;
5735 bfd_size_type amt;
5736
5737 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5738 pos = hdr->sh_offset + hdr->sh_size;
5739 amt = finfo->symbuf_count * bed->s->sizeof_sym;
5740 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5741 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
5742 return FALSE;
5743
5744 hdr->sh_size += amt;
5745 finfo->symbuf_count = 0;
5746 }
5747
5748 return TRUE;
5749}
5750
5751/* Add a symbol to the output symbol table. */
5752
5753static bfd_boolean
5754elf_link_output_sym (struct elf_final_link_info *finfo,
5755 const char *name,
5756 Elf_Internal_Sym *elfsym,
5757 asection *input_sec,
5758 struct elf_link_hash_entry *h)
5759{
5760 bfd_byte *dest;
5761 Elf_External_Sym_Shndx *destshndx;
5762 bfd_boolean (*output_symbol_hook)
5763 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
5764 struct elf_link_hash_entry *);
5765 const struct elf_backend_data *bed;
5766
5767 bed = get_elf_backend_data (finfo->output_bfd);
5768 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
5769 if (output_symbol_hook != NULL)
5770 {
5771 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
5772 return FALSE;
5773 }
5774
5775 if (name == NULL || *name == '\0')
5776 elfsym->st_name = 0;
5777 else if (input_sec->flags & SEC_EXCLUDE)
5778 elfsym->st_name = 0;
5779 else
5780 {
5781 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5782 name, TRUE, FALSE);
5783 if (elfsym->st_name == (unsigned long) -1)
5784 return FALSE;
5785 }
5786
5787 if (finfo->symbuf_count >= finfo->symbuf_size)
5788 {
5789 if (! elf_link_flush_output_syms (finfo, bed))
5790 return FALSE;
5791 }
5792
5793 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
5794 destshndx = finfo->symshndxbuf;
5795 if (destshndx != NULL)
5796 {
5797 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
5798 {
5799 bfd_size_type amt;
5800
5801 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
5802 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
5803 if (destshndx == NULL)
5804 return FALSE;
5805 memset ((char *) destshndx + amt, 0, amt);
5806 finfo->shndxbuf_size *= 2;
5807 }
5808 destshndx += bfd_get_symcount (finfo->output_bfd);
5809 }
5810
5811 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
5812 finfo->symbuf_count += 1;
5813 bfd_get_symcount (finfo->output_bfd) += 1;
5814
5815 return TRUE;
5816}
5817
5818/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5819 allowing an unsatisfied unversioned symbol in the DSO to match a
5820 versioned symbol that would normally require an explicit version.
5821 We also handle the case that a DSO references a hidden symbol
5822 which may be satisfied by a versioned symbol in another DSO. */
5823
5824static bfd_boolean
5825elf_link_check_versioned_symbol (struct bfd_link_info *info,
5826 const struct elf_backend_data *bed,
5827 struct elf_link_hash_entry *h)
5828{
5829 bfd *abfd;
5830 struct elf_link_loaded_list *loaded;
5831
5832 if (!is_elf_hash_table (info->hash))
5833 return FALSE;
5834
5835 switch (h->root.type)
5836 {
5837 default:
5838 abfd = NULL;
5839 break;
5840
5841 case bfd_link_hash_undefined:
5842 case bfd_link_hash_undefweak:
5843 abfd = h->root.u.undef.abfd;
5844 if ((abfd->flags & DYNAMIC) == 0
e56f61be 5845 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
5846 return FALSE;
5847 break;
5848
5849 case bfd_link_hash_defined:
5850 case bfd_link_hash_defweak:
5851 abfd = h->root.u.def.section->owner;
5852 break;
5853
5854 case bfd_link_hash_common:
5855 abfd = h->root.u.c.p->section->owner;
5856 break;
5857 }
5858 BFD_ASSERT (abfd != NULL);
5859
5860 for (loaded = elf_hash_table (info)->loaded;
5861 loaded != NULL;
5862 loaded = loaded->next)
5863 {
5864 bfd *input;
5865 Elf_Internal_Shdr *hdr;
5866 bfd_size_type symcount;
5867 bfd_size_type extsymcount;
5868 bfd_size_type extsymoff;
5869 Elf_Internal_Shdr *versymhdr;
5870 Elf_Internal_Sym *isym;
5871 Elf_Internal_Sym *isymend;
5872 Elf_Internal_Sym *isymbuf;
5873 Elf_External_Versym *ever;
5874 Elf_External_Versym *extversym;
5875
5876 input = loaded->abfd;
5877
5878 /* We check each DSO for a possible hidden versioned definition. */
5879 if (input == abfd
5880 || (input->flags & DYNAMIC) == 0
5881 || elf_dynversym (input) == 0)
5882 continue;
5883
5884 hdr = &elf_tdata (input)->dynsymtab_hdr;
5885
5886 symcount = hdr->sh_size / bed->s->sizeof_sym;
5887 if (elf_bad_symtab (input))
5888 {
5889 extsymcount = symcount;
5890 extsymoff = 0;
5891 }
5892 else
5893 {
5894 extsymcount = symcount - hdr->sh_info;
5895 extsymoff = hdr->sh_info;
5896 }
5897
5898 if (extsymcount == 0)
5899 continue;
5900
5901 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
5902 NULL, NULL, NULL);
5903 if (isymbuf == NULL)
5904 return FALSE;
5905
5906 /* Read in any version definitions. */
5907 versymhdr = &elf_tdata (input)->dynversym_hdr;
5908 extversym = bfd_malloc (versymhdr->sh_size);
5909 if (extversym == NULL)
5910 goto error_ret;
5911
5912 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
5913 || (bfd_bread (extversym, versymhdr->sh_size, input)
5914 != versymhdr->sh_size))
5915 {
5916 free (extversym);
5917 error_ret:
5918 free (isymbuf);
5919 return FALSE;
5920 }
5921
5922 ever = extversym + extsymoff;
5923 isymend = isymbuf + extsymcount;
5924 for (isym = isymbuf; isym < isymend; isym++, ever++)
5925 {
5926 const char *name;
5927 Elf_Internal_Versym iver;
5928 unsigned short version_index;
5929
5930 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
5931 || isym->st_shndx == SHN_UNDEF)
5932 continue;
5933
5934 name = bfd_elf_string_from_elf_section (input,
5935 hdr->sh_link,
5936 isym->st_name);
5937 if (strcmp (name, h->root.root.string) != 0)
5938 continue;
5939
5940 _bfd_elf_swap_versym_in (input, ever, &iver);
5941
5942 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
5943 {
5944 /* If we have a non-hidden versioned sym, then it should
5945 have provided a definition for the undefined sym. */
5946 abort ();
5947 }
5948
5949 version_index = iver.vs_vers & VERSYM_VERSION;
5950 if (version_index == 1 || version_index == 2)
5951 {
5952 /* This is the base or first version. We can use it. */
5953 free (extversym);
5954 free (isymbuf);
5955 return TRUE;
5956 }
5957 }
5958
5959 free (extversym);
5960 free (isymbuf);
5961 }
5962
5963 return FALSE;
5964}
5965
5966/* Add an external symbol to the symbol table. This is called from
5967 the hash table traversal routine. When generating a shared object,
5968 we go through the symbol table twice. The first time we output
5969 anything that might have been forced to local scope in a version
5970 script. The second time we output the symbols that are still
5971 global symbols. */
5972
5973static bfd_boolean
5974elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
5975{
5976 struct elf_outext_info *eoinfo = data;
5977 struct elf_final_link_info *finfo = eoinfo->finfo;
5978 bfd_boolean strip;
5979 Elf_Internal_Sym sym;
5980 asection *input_sec;
5981 const struct elf_backend_data *bed;
5982
5983 if (h->root.type == bfd_link_hash_warning)
5984 {
5985 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5986 if (h->root.type == bfd_link_hash_new)
5987 return TRUE;
5988 }
5989
5990 /* Decide whether to output this symbol in this pass. */
5991 if (eoinfo->localsyms)
5992 {
5993 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5994 return TRUE;
5995 }
5996 else
5997 {
5998 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5999 return TRUE;
6000 }
6001
6002 bed = get_elf_backend_data (finfo->output_bfd);
6003
6004 /* If we have an undefined symbol reference here then it must have
6005 come from a shared library that is being linked in. (Undefined
6006 references in regular files have already been handled). If we
6007 are reporting errors for this situation then do so now. */
6008 if (h->root.type == bfd_link_hash_undefined
6009 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
6010 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
6011 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6012 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6013 {
6014 if (! ((*finfo->info->callbacks->undefined_symbol)
6015 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6016 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6017 {
6018 eoinfo->failed = TRUE;
6019 return FALSE;
6020 }
6021 }
6022
6023 /* We should also warn if a forced local symbol is referenced from
6024 shared libraries. */
6025 if (! finfo->info->relocatable
6026 && (! finfo->info->shared)
6027 && (h->elf_link_hash_flags
6028 & (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC | ELF_LINK_DYNAMIC_DEF | ELF_LINK_DYNAMIC_WEAK))
6029 == (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC)
6030 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6031 {
6032 (*_bfd_error_handler)
d003868e
AM
6033 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6034 finfo->output_bfd, h->root.u.def.section->owner,
c152c796
AM
6035 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6036 ? "internal"
6037 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
6038 ? "hidden" : "local",
6039 h->root.root.string);
c152c796
AM
6040 eoinfo->failed = TRUE;
6041 return FALSE;
6042 }
6043
6044 /* We don't want to output symbols that have never been mentioned by
6045 a regular file, or that we have been told to strip. However, if
6046 h->indx is set to -2, the symbol is used by a reloc and we must
6047 output it. */
6048 if (h->indx == -2)
6049 strip = FALSE;
6050 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6051 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6052 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6053 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6054 strip = TRUE;
6055 else if (finfo->info->strip == strip_all)
6056 strip = TRUE;
6057 else if (finfo->info->strip == strip_some
6058 && bfd_hash_lookup (finfo->info->keep_hash,
6059 h->root.root.string, FALSE, FALSE) == NULL)
6060 strip = TRUE;
6061 else if (finfo->info->strip_discarded
6062 && (h->root.type == bfd_link_hash_defined
6063 || h->root.type == bfd_link_hash_defweak)
6064 && elf_discarded_section (h->root.u.def.section))
6065 strip = TRUE;
6066 else
6067 strip = FALSE;
6068
6069 /* If we're stripping it, and it's not a dynamic symbol, there's
6070 nothing else to do unless it is a forced local symbol. */
6071 if (strip
6072 && h->dynindx == -1
6073 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6074 return TRUE;
6075
6076 sym.st_value = 0;
6077 sym.st_size = h->size;
6078 sym.st_other = h->other;
6079 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6080 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6081 else if (h->root.type == bfd_link_hash_undefweak
6082 || h->root.type == bfd_link_hash_defweak)
6083 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6084 else
6085 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6086
6087 switch (h->root.type)
6088 {
6089 default:
6090 case bfd_link_hash_new:
6091 case bfd_link_hash_warning:
6092 abort ();
6093 return FALSE;
6094
6095 case bfd_link_hash_undefined:
6096 case bfd_link_hash_undefweak:
6097 input_sec = bfd_und_section_ptr;
6098 sym.st_shndx = SHN_UNDEF;
6099 break;
6100
6101 case bfd_link_hash_defined:
6102 case bfd_link_hash_defweak:
6103 {
6104 input_sec = h->root.u.def.section;
6105 if (input_sec->output_section != NULL)
6106 {
6107 sym.st_shndx =
6108 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6109 input_sec->output_section);
6110 if (sym.st_shndx == SHN_BAD)
6111 {
6112 (*_bfd_error_handler)
d003868e
AM
6113 (_("%B: could not find output section %A for input section %A"),
6114 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
6115 eoinfo->failed = TRUE;
6116 return FALSE;
6117 }
6118
6119 /* ELF symbols in relocatable files are section relative,
6120 but in nonrelocatable files they are virtual
6121 addresses. */
6122 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6123 if (! finfo->info->relocatable)
6124 {
6125 sym.st_value += input_sec->output_section->vma;
6126 if (h->type == STT_TLS)
6127 {
6128 /* STT_TLS symbols are relative to PT_TLS segment
6129 base. */
6130 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6131 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6132 }
6133 }
6134 }
6135 else
6136 {
6137 BFD_ASSERT (input_sec->owner == NULL
6138 || (input_sec->owner->flags & DYNAMIC) != 0);
6139 sym.st_shndx = SHN_UNDEF;
6140 input_sec = bfd_und_section_ptr;
6141 }
6142 }
6143 break;
6144
6145 case bfd_link_hash_common:
6146 input_sec = h->root.u.c.p->section;
6147 sym.st_shndx = SHN_COMMON;
6148 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6149 break;
6150
6151 case bfd_link_hash_indirect:
6152 /* These symbols are created by symbol versioning. They point
6153 to the decorated version of the name. For example, if the
6154 symbol foo@@GNU_1.2 is the default, which should be used when
6155 foo is used with no version, then we add an indirect symbol
6156 foo which points to foo@@GNU_1.2. We ignore these symbols,
6157 since the indirected symbol is already in the hash table. */
6158 return TRUE;
6159 }
6160
6161 /* Give the processor backend a chance to tweak the symbol value,
6162 and also to finish up anything that needs to be done for this
6163 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6164 forced local syms when non-shared is due to a historical quirk. */
6165 if ((h->dynindx != -1
6166 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6167 && ((finfo->info->shared
6168 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6169 || h->root.type != bfd_link_hash_undefweak))
6170 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6171 && elf_hash_table (finfo->info)->dynamic_sections_created)
6172 {
6173 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6174 (finfo->output_bfd, finfo->info, h, &sym)))
6175 {
6176 eoinfo->failed = TRUE;
6177 return FALSE;
6178 }
6179 }
6180
6181 /* If we are marking the symbol as undefined, and there are no
6182 non-weak references to this symbol from a regular object, then
6183 mark the symbol as weak undefined; if there are non-weak
6184 references, mark the symbol as strong. We can't do this earlier,
6185 because it might not be marked as undefined until the
6186 finish_dynamic_symbol routine gets through with it. */
6187 if (sym.st_shndx == SHN_UNDEF
6188 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6189 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6190 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6191 {
6192 int bindtype;
6193
6194 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6195 bindtype = STB_GLOBAL;
6196 else
6197 bindtype = STB_WEAK;
6198 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6199 }
6200
6201 /* If a non-weak symbol with non-default visibility is not defined
6202 locally, it is a fatal error. */
6203 if (! finfo->info->relocatable
6204 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6205 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6206 && h->root.type == bfd_link_hash_undefined
6207 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6208 {
6209 (*_bfd_error_handler)
d003868e
AM
6210 (_("%B: %s symbol `%s' isn't defined"),
6211 finfo->output_bfd,
6212 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6213 ? "protected"
6214 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6215 ? "internal" : "hidden",
6216 h->root.root.string);
c152c796
AM
6217 eoinfo->failed = TRUE;
6218 return FALSE;
6219 }
6220
6221 /* If this symbol should be put in the .dynsym section, then put it
6222 there now. We already know the symbol index. We also fill in
6223 the entry in the .hash section. */
6224 if (h->dynindx != -1
6225 && elf_hash_table (finfo->info)->dynamic_sections_created)
6226 {
6227 size_t bucketcount;
6228 size_t bucket;
6229 size_t hash_entry_size;
6230 bfd_byte *bucketpos;
6231 bfd_vma chain;
6232 bfd_byte *esym;
6233
6234 sym.st_name = h->dynstr_index;
6235 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6236 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6237
6238 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6239 bucket = h->elf_hash_value % bucketcount;
6240 hash_entry_size
6241 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6242 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6243 + (bucket + 2) * hash_entry_size);
6244 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6245 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6246 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6247 ((bfd_byte *) finfo->hash_sec->contents
6248 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6249
6250 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6251 {
6252 Elf_Internal_Versym iversym;
6253 Elf_External_Versym *eversym;
6254
6255 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6256 {
6257 if (h->verinfo.verdef == NULL)
6258 iversym.vs_vers = 0;
6259 else
6260 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6261 }
6262 else
6263 {
6264 if (h->verinfo.vertree == NULL)
6265 iversym.vs_vers = 1;
6266 else
6267 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6268 }
6269
6270 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6271 iversym.vs_vers |= VERSYM_HIDDEN;
6272
6273 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6274 eversym += h->dynindx;
6275 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6276 }
6277 }
6278
6279 /* If we're stripping it, then it was just a dynamic symbol, and
6280 there's nothing else to do. */
6281 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6282 return TRUE;
6283
6284 h->indx = bfd_get_symcount (finfo->output_bfd);
6285
6286 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6287 {
6288 eoinfo->failed = TRUE;
6289 return FALSE;
6290 }
6291
6292 return TRUE;
6293}
6294
cdd3575c
AM
6295/* Return TRUE if special handling is done for relocs in SEC against
6296 symbols defined in discarded sections. */
6297
c152c796
AM
6298static bfd_boolean
6299elf_section_ignore_discarded_relocs (asection *sec)
6300{
6301 const struct elf_backend_data *bed;
6302
cdd3575c
AM
6303 switch (sec->sec_info_type)
6304 {
6305 case ELF_INFO_TYPE_STABS:
6306 case ELF_INFO_TYPE_EH_FRAME:
6307 return TRUE;
6308 default:
6309 break;
6310 }
c152c796
AM
6311
6312 bed = get_elf_backend_data (sec->owner);
6313 if (bed->elf_backend_ignore_discarded_relocs != NULL
6314 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6315 return TRUE;
6316
6317 return FALSE;
6318}
6319
cdd3575c
AM
6320/* Return TRUE if we should complain about a reloc in SEC against a
6321 symbol defined in a discarded section. */
6322
6323static bfd_boolean
6324elf_section_complain_discarded (asection *sec)
6325{
6326 if (strncmp (".stab", sec->name, 5) == 0
6327 && (!sec->name[5] ||
6328 (sec->name[5] == '.' && ISDIGIT (sec->name[6]))))
6329 return FALSE;
6330
6331 if (strcmp (".eh_frame", sec->name) == 0)
6332 return FALSE;
6333
6334 if (strcmp (".gcc_except_table", sec->name) == 0)
6335 return FALSE;
6336
27b56da8
DA
6337 if (strcmp (".PARISC.unwind", sec->name) == 0)
6338 return FALSE;
327c1315
AM
6339
6340 if (strcmp (".fixup", sec->name) == 0)
6341 return FALSE;
27b56da8 6342
cdd3575c
AM
6343 return TRUE;
6344}
6345
3d7f7666
L
6346/* Find a match between a section and a member of a section group. */
6347
6348static asection *
6349match_group_member (asection *sec, asection *group)
6350{
6351 asection *first = elf_next_in_group (group);
6352 asection *s = first;
6353
6354 while (s != NULL)
6355 {
6356 if (bfd_elf_match_symbols_in_sections (s, sec))
6357 return s;
6358
6359 if (s == first)
6360 break;
6361 }
6362
6363 return NULL;
6364}
6365
c152c796
AM
6366/* Link an input file into the linker output file. This function
6367 handles all the sections and relocations of the input file at once.
6368 This is so that we only have to read the local symbols once, and
6369 don't have to keep them in memory. */
6370
6371static bfd_boolean
6372elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6373{
6374 bfd_boolean (*relocate_section)
6375 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6376 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6377 bfd *output_bfd;
6378 Elf_Internal_Shdr *symtab_hdr;
6379 size_t locsymcount;
6380 size_t extsymoff;
6381 Elf_Internal_Sym *isymbuf;
6382 Elf_Internal_Sym *isym;
6383 Elf_Internal_Sym *isymend;
6384 long *pindex;
6385 asection **ppsection;
6386 asection *o;
6387 const struct elf_backend_data *bed;
6388 bfd_boolean emit_relocs;
6389 struct elf_link_hash_entry **sym_hashes;
6390
6391 output_bfd = finfo->output_bfd;
6392 bed = get_elf_backend_data (output_bfd);
6393 relocate_section = bed->elf_backend_relocate_section;
6394
6395 /* If this is a dynamic object, we don't want to do anything here:
6396 we don't want the local symbols, and we don't want the section
6397 contents. */
6398 if ((input_bfd->flags & DYNAMIC) != 0)
6399 return TRUE;
6400
6401 emit_relocs = (finfo->info->relocatable
6402 || finfo->info->emitrelocations
6403 || bed->elf_backend_emit_relocs);
6404
6405 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6406 if (elf_bad_symtab (input_bfd))
6407 {
6408 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6409 extsymoff = 0;
6410 }
6411 else
6412 {
6413 locsymcount = symtab_hdr->sh_info;
6414 extsymoff = symtab_hdr->sh_info;
6415 }
6416
6417 /* Read the local symbols. */
6418 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6419 if (isymbuf == NULL && locsymcount != 0)
6420 {
6421 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6422 finfo->internal_syms,
6423 finfo->external_syms,
6424 finfo->locsym_shndx);
6425 if (isymbuf == NULL)
6426 return FALSE;
6427 }
6428
6429 /* Find local symbol sections and adjust values of symbols in
6430 SEC_MERGE sections. Write out those local symbols we know are
6431 going into the output file. */
6432 isymend = isymbuf + locsymcount;
6433 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6434 isym < isymend;
6435 isym++, pindex++, ppsection++)
6436 {
6437 asection *isec;
6438 const char *name;
6439 Elf_Internal_Sym osym;
6440
6441 *pindex = -1;
6442
6443 if (elf_bad_symtab (input_bfd))
6444 {
6445 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6446 {
6447 *ppsection = NULL;
6448 continue;
6449 }
6450 }
6451
6452 if (isym->st_shndx == SHN_UNDEF)
6453 isec = bfd_und_section_ptr;
6454 else if (isym->st_shndx < SHN_LORESERVE
6455 || isym->st_shndx > SHN_HIRESERVE)
6456 {
6457 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6458 if (isec
6459 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6460 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6461 isym->st_value =
6462 _bfd_merged_section_offset (output_bfd, &isec,
6463 elf_section_data (isec)->sec_info,
753731ee 6464 isym->st_value);
c152c796
AM
6465 }
6466 else if (isym->st_shndx == SHN_ABS)
6467 isec = bfd_abs_section_ptr;
6468 else if (isym->st_shndx == SHN_COMMON)
6469 isec = bfd_com_section_ptr;
6470 else
6471 {
6472 /* Who knows? */
6473 isec = NULL;
6474 }
6475
6476 *ppsection = isec;
6477
6478 /* Don't output the first, undefined, symbol. */
6479 if (ppsection == finfo->sections)
6480 continue;
6481
6482 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6483 {
6484 /* We never output section symbols. Instead, we use the
6485 section symbol of the corresponding section in the output
6486 file. */
6487 continue;
6488 }
6489
6490 /* If we are stripping all symbols, we don't want to output this
6491 one. */
6492 if (finfo->info->strip == strip_all)
6493 continue;
6494
6495 /* If we are discarding all local symbols, we don't want to
6496 output this one. If we are generating a relocatable output
6497 file, then some of the local symbols may be required by
6498 relocs; we output them below as we discover that they are
6499 needed. */
6500 if (finfo->info->discard == discard_all)
6501 continue;
6502
6503 /* If this symbol is defined in a section which we are
6504 discarding, we don't need to keep it, but note that
6505 linker_mark is only reliable for sections that have contents.
6506 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6507 as well as linker_mark. */
6508 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6509 && isec != NULL
6510 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6511 || (! finfo->info->relocatable
6512 && (isec->flags & SEC_EXCLUDE) != 0)))
6513 continue;
6514
6515 /* Get the name of the symbol. */
6516 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6517 isym->st_name);
6518 if (name == NULL)
6519 return FALSE;
6520
6521 /* See if we are discarding symbols with this name. */
6522 if ((finfo->info->strip == strip_some
6523 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6524 == NULL))
6525 || (((finfo->info->discard == discard_sec_merge
6526 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6527 || finfo->info->discard == discard_l)
6528 && bfd_is_local_label_name (input_bfd, name)))
6529 continue;
6530
6531 /* If we get here, we are going to output this symbol. */
6532
6533 osym = *isym;
6534
6535 /* Adjust the section index for the output file. */
6536 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6537 isec->output_section);
6538 if (osym.st_shndx == SHN_BAD)
6539 return FALSE;
6540
6541 *pindex = bfd_get_symcount (output_bfd);
6542
6543 /* ELF symbols in relocatable files are section relative, but
6544 in executable files they are virtual addresses. Note that
6545 this code assumes that all ELF sections have an associated
6546 BFD section with a reasonable value for output_offset; below
6547 we assume that they also have a reasonable value for
6548 output_section. Any special sections must be set up to meet
6549 these requirements. */
6550 osym.st_value += isec->output_offset;
6551 if (! finfo->info->relocatable)
6552 {
6553 osym.st_value += isec->output_section->vma;
6554 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6555 {
6556 /* STT_TLS symbols are relative to PT_TLS segment base. */
6557 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6558 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6559 }
6560 }
6561
6562 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6563 return FALSE;
6564 }
6565
6566 /* Relocate the contents of each section. */
6567 sym_hashes = elf_sym_hashes (input_bfd);
6568 for (o = input_bfd->sections; o != NULL; o = o->next)
6569 {
6570 bfd_byte *contents;
6571
6572 if (! o->linker_mark)
6573 {
6574 /* This section was omitted from the link. */
6575 continue;
6576 }
6577
6578 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 6579 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
6580 continue;
6581
6582 if ((o->flags & SEC_LINKER_CREATED) != 0)
6583 {
6584 /* Section was created by _bfd_elf_link_create_dynamic_sections
6585 or somesuch. */
6586 continue;
6587 }
6588
6589 /* Get the contents of the section. They have been cached by a
6590 relaxation routine. Note that o is a section in an input
6591 file, so the contents field will not have been set by any of
6592 the routines which work on output files. */
6593 if (elf_section_data (o)->this_hdr.contents != NULL)
6594 contents = elf_section_data (o)->this_hdr.contents;
6595 else
6596 {
eea6121a
AM
6597 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6598
c152c796 6599 contents = finfo->contents;
eea6121a 6600 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
6601 return FALSE;
6602 }
6603
6604 if ((o->flags & SEC_RELOC) != 0)
6605 {
6606 Elf_Internal_Rela *internal_relocs;
6607 bfd_vma r_type_mask;
6608 int r_sym_shift;
6609
6610 /* Get the swapped relocs. */
6611 internal_relocs
6612 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6613 finfo->internal_relocs, FALSE);
6614 if (internal_relocs == NULL
6615 && o->reloc_count > 0)
6616 return FALSE;
6617
6618 if (bed->s->arch_size == 32)
6619 {
6620 r_type_mask = 0xff;
6621 r_sym_shift = 8;
6622 }
6623 else
6624 {
6625 r_type_mask = 0xffffffff;
6626 r_sym_shift = 32;
6627 }
6628
6629 /* Run through the relocs looking for any against symbols
6630 from discarded sections and section symbols from
6631 removed link-once sections. Complain about relocs
6632 against discarded sections. Zero relocs against removed
6633 link-once sections. Preserve debug information as much
6634 as we can. */
6635 if (!elf_section_ignore_discarded_relocs (o))
6636 {
6637 Elf_Internal_Rela *rel, *relend;
cdd3575c 6638 bfd_boolean complain = elf_section_complain_discarded (o);
c152c796
AM
6639
6640 rel = internal_relocs;
6641 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6642 for ( ; rel < relend; rel++)
6643 {
6644 unsigned long r_symndx = rel->r_info >> r_sym_shift;
cdd3575c
AM
6645 asection **ps, *sec;
6646 struct elf_link_hash_entry *h = NULL;
6647 const char *sym_name;
c152c796
AM
6648
6649 if (r_symndx >= locsymcount
6650 || (elf_bad_symtab (input_bfd)
6651 && finfo->sections[r_symndx] == NULL))
6652 {
c152c796
AM
6653 h = sym_hashes[r_symndx - extsymoff];
6654 while (h->root.type == bfd_link_hash_indirect
6655 || h->root.type == bfd_link_hash_warning)
6656 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6657
cdd3575c
AM
6658 if (h->root.type != bfd_link_hash_defined
6659 && h->root.type != bfd_link_hash_defweak)
6660 continue;
6661
6662 ps = &h->root.u.def.section;
6663 sym_name = h->root.root.string;
c152c796
AM
6664 }
6665 else
6666 {
cdd3575c
AM
6667 Elf_Internal_Sym *sym = isymbuf + r_symndx;
6668 ps = &finfo->sections[r_symndx];
6669 sym_name = bfd_elf_local_sym_name (input_bfd, sym);
6670 }
c152c796 6671
cdd3575c
AM
6672 /* Complain if the definition comes from a
6673 discarded section. */
6674 if ((sec = *ps) != NULL && elf_discarded_section (sec))
6675 {
6676 if ((o->flags & SEC_DEBUGGING) != 0)
c152c796 6677 {
cdd3575c
AM
6678 BFD_ASSERT (r_symndx != 0);
6679
6680 /* Try to preserve debug information.
6681 FIXME: This is quite broken. Modifying
6682 the symbol here means we will be changing
6683 all uses of the symbol, not just those in
6684 debug sections. The only thing that makes
6685 this half reasonable is that debug sections
6686 tend to come after other sections. Of
6687 course, that doesn't help with globals.
6688 ??? All link-once sections of the same name
6689 ought to define the same set of symbols, so
6690 it would seem that globals ought to always
6691 be defined in the kept section. */
3d7f7666 6692 if (sec->kept_section != NULL)
c152c796 6693 {
3d7f7666
L
6694 asection *member;
6695
6696 /* Check if it is a linkonce section or
6697 member of a comdat group. */
6698 if (elf_sec_group (sec) == NULL
6699 && sec->size == sec->kept_section->size)
6700 {
6701 *ps = sec->kept_section;
6702 continue;
6703 }
6704 else if (elf_sec_group (sec) != NULL
6705 && (member = match_group_member (sec, sec->kept_section))
6706 && sec->size == member->size)
6707 {
6708 *ps = member;
6709 continue;
6710 }
c152c796
AM
6711 }
6712 }
cdd3575c
AM
6713 else if (complain)
6714 {
d003868e
AM
6715 (*_bfd_error_handler)
6716 (_("`%s' referenced in section `%A' of %B: "
6717 "defined in discarded section `%A' of %B\n"),
6718 o, input_bfd, sec, sec->owner, sym_name);
cdd3575c
AM
6719 }
6720
6721 /* Remove the symbol reference from the reloc, but
6722 don't kill the reloc completely. This is so that
6723 a zero value will be written into the section,
6724 which may have non-zero contents put there by the
6725 assembler. Zero in things like an eh_frame fde
6726 pc_begin allows stack unwinders to recognize the
6727 fde as bogus. */
6728 rel->r_info &= r_type_mask;
6729 rel->r_addend = 0;
c152c796
AM
6730 }
6731 }
6732 }
6733
6734 /* Relocate the section by invoking a back end routine.
6735
6736 The back end routine is responsible for adjusting the
6737 section contents as necessary, and (if using Rela relocs
6738 and generating a relocatable output file) adjusting the
6739 reloc addend as necessary.
6740
6741 The back end routine does not have to worry about setting
6742 the reloc address or the reloc symbol index.
6743
6744 The back end routine is given a pointer to the swapped in
6745 internal symbols, and can access the hash table entries
6746 for the external symbols via elf_sym_hashes (input_bfd).
6747
6748 When generating relocatable output, the back end routine
6749 must handle STB_LOCAL/STT_SECTION symbols specially. The
6750 output symbol is going to be a section symbol
6751 corresponding to the output section, which will require
6752 the addend to be adjusted. */
6753
6754 if (! (*relocate_section) (output_bfd, finfo->info,
6755 input_bfd, o, contents,
6756 internal_relocs,
6757 isymbuf,
6758 finfo->sections))
6759 return FALSE;
6760
6761 if (emit_relocs)
6762 {
6763 Elf_Internal_Rela *irela;
6764 Elf_Internal_Rela *irelaend;
6765 bfd_vma last_offset;
6766 struct elf_link_hash_entry **rel_hash;
6767 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6768 unsigned int next_erel;
6769 bfd_boolean (*reloc_emitter)
6770 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
6771 bfd_boolean rela_normal;
6772
6773 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6774 rela_normal = (bed->rela_normal
6775 && (input_rel_hdr->sh_entsize
6776 == bed->s->sizeof_rela));
6777
6778 /* Adjust the reloc addresses and symbol indices. */
6779
6780 irela = internal_relocs;
6781 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6782 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6783 + elf_section_data (o->output_section)->rel_count
6784 + elf_section_data (o->output_section)->rel_count2);
6785 last_offset = o->output_offset;
6786 if (!finfo->info->relocatable)
6787 last_offset += o->output_section->vma;
6788 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6789 {
6790 unsigned long r_symndx;
6791 asection *sec;
6792 Elf_Internal_Sym sym;
6793
6794 if (next_erel == bed->s->int_rels_per_ext_rel)
6795 {
6796 rel_hash++;
6797 next_erel = 0;
6798 }
6799
6800 irela->r_offset = _bfd_elf_section_offset (output_bfd,
6801 finfo->info, o,
6802 irela->r_offset);
6803 if (irela->r_offset >= (bfd_vma) -2)
6804 {
6805 /* This is a reloc for a deleted entry or somesuch.
6806 Turn it into an R_*_NONE reloc, at the same
6807 offset as the last reloc. elf_eh_frame.c and
6808 elf_bfd_discard_info rely on reloc offsets
6809 being ordered. */
6810 irela->r_offset = last_offset;
6811 irela->r_info = 0;
6812 irela->r_addend = 0;
6813 continue;
6814 }
6815
6816 irela->r_offset += o->output_offset;
6817
6818 /* Relocs in an executable have to be virtual addresses. */
6819 if (!finfo->info->relocatable)
6820 irela->r_offset += o->output_section->vma;
6821
6822 last_offset = irela->r_offset;
6823
6824 r_symndx = irela->r_info >> r_sym_shift;
6825 if (r_symndx == STN_UNDEF)
6826 continue;
6827
6828 if (r_symndx >= locsymcount
6829 || (elf_bad_symtab (input_bfd)
6830 && finfo->sections[r_symndx] == NULL))
6831 {
6832 struct elf_link_hash_entry *rh;
6833 unsigned long indx;
6834
6835 /* This is a reloc against a global symbol. We
6836 have not yet output all the local symbols, so
6837 we do not know the symbol index of any global
6838 symbol. We set the rel_hash entry for this
6839 reloc to point to the global hash table entry
6840 for this symbol. The symbol index is then
6841 set at the end of elf_bfd_final_link. */
6842 indx = r_symndx - extsymoff;
6843 rh = elf_sym_hashes (input_bfd)[indx];
6844 while (rh->root.type == bfd_link_hash_indirect
6845 || rh->root.type == bfd_link_hash_warning)
6846 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6847
6848 /* Setting the index to -2 tells
6849 elf_link_output_extsym that this symbol is
6850 used by a reloc. */
6851 BFD_ASSERT (rh->indx < 0);
6852 rh->indx = -2;
6853
6854 *rel_hash = rh;
6855
6856 continue;
6857 }
6858
6859 /* This is a reloc against a local symbol. */
6860
6861 *rel_hash = NULL;
6862 sym = isymbuf[r_symndx];
6863 sec = finfo->sections[r_symndx];
6864 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
6865 {
6866 /* I suppose the backend ought to fill in the
6867 section of any STT_SECTION symbol against a
6a8d1586
AM
6868 processor specific section. */
6869 r_symndx = 0;
6870 if (bfd_is_abs_section (sec))
6871 ;
c152c796
AM
6872 else if (sec == NULL || sec->owner == NULL)
6873 {
6874 bfd_set_error (bfd_error_bad_value);
6875 return FALSE;
6876 }
6877 else
6878 {
6a8d1586
AM
6879 asection *osec = sec->output_section;
6880
6881 /* If we have discarded a section, the output
6882 section will be the absolute section. In
6883 case of discarded link-once and discarded
6884 SEC_MERGE sections, use the kept section. */
6885 if (bfd_is_abs_section (osec)
6886 && sec->kept_section != NULL
6887 && sec->kept_section->output_section != NULL)
6888 {
6889 osec = sec->kept_section->output_section;
6890 irela->r_addend -= osec->vma;
6891 }
6892
6893 if (!bfd_is_abs_section (osec))
6894 {
6895 r_symndx = osec->target_index;
6896 BFD_ASSERT (r_symndx != 0);
6897 }
c152c796
AM
6898 }
6899
6900 /* Adjust the addend according to where the
6901 section winds up in the output section. */
6902 if (rela_normal)
6903 irela->r_addend += sec->output_offset;
6904 }
6905 else
6906 {
6907 if (finfo->indices[r_symndx] == -1)
6908 {
6909 unsigned long shlink;
6910 const char *name;
6911 asection *osec;
6912
6913 if (finfo->info->strip == strip_all)
6914 {
6915 /* You can't do ld -r -s. */
6916 bfd_set_error (bfd_error_invalid_operation);
6917 return FALSE;
6918 }
6919
6920 /* This symbol was skipped earlier, but
6921 since it is needed by a reloc, we
6922 must output it now. */
6923 shlink = symtab_hdr->sh_link;
6924 name = (bfd_elf_string_from_elf_section
6925 (input_bfd, shlink, sym.st_name));
6926 if (name == NULL)
6927 return FALSE;
6928
6929 osec = sec->output_section;
6930 sym.st_shndx =
6931 _bfd_elf_section_from_bfd_section (output_bfd,
6932 osec);
6933 if (sym.st_shndx == SHN_BAD)
6934 return FALSE;
6935
6936 sym.st_value += sec->output_offset;
6937 if (! finfo->info->relocatable)
6938 {
6939 sym.st_value += osec->vma;
6940 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
6941 {
6942 /* STT_TLS symbols are relative to PT_TLS
6943 segment base. */
6944 BFD_ASSERT (elf_hash_table (finfo->info)
6945 ->tls_sec != NULL);
6946 sym.st_value -= (elf_hash_table (finfo->info)
6947 ->tls_sec->vma);
6948 }
6949 }
6950
6951 finfo->indices[r_symndx]
6952 = bfd_get_symcount (output_bfd);
6953
6954 if (! elf_link_output_sym (finfo, name, &sym, sec,
6955 NULL))
6956 return FALSE;
6957 }
6958
6959 r_symndx = finfo->indices[r_symndx];
6960 }
6961
6962 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
6963 | (irela->r_info & r_type_mask));
6964 }
6965
6966 /* Swap out the relocs. */
6967 if (bed->elf_backend_emit_relocs
6968 && !(finfo->info->relocatable
6969 || finfo->info->emitrelocations))
6970 reloc_emitter = bed->elf_backend_emit_relocs;
6971 else
6972 reloc_emitter = _bfd_elf_link_output_relocs;
6973
6974 if (input_rel_hdr->sh_size != 0
6975 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
6976 internal_relocs))
6977 return FALSE;
6978
6979 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
6980 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
6981 {
6982 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6983 * bed->s->int_rels_per_ext_rel);
6984 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
6985 internal_relocs))
6986 return FALSE;
6987 }
6988 }
6989 }
6990
6991 /* Write out the modified section contents. */
6992 if (bed->elf_backend_write_section
6993 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
6994 {
6995 /* Section written out. */
6996 }
6997 else switch (o->sec_info_type)
6998 {
6999 case ELF_INFO_TYPE_STABS:
7000 if (! (_bfd_write_section_stabs
7001 (output_bfd,
7002 &elf_hash_table (finfo->info)->stab_info,
7003 o, &elf_section_data (o)->sec_info, contents)))
7004 return FALSE;
7005 break;
7006 case ELF_INFO_TYPE_MERGE:
7007 if (! _bfd_write_merged_section (output_bfd, o,
7008 elf_section_data (o)->sec_info))
7009 return FALSE;
7010 break;
7011 case ELF_INFO_TYPE_EH_FRAME:
7012 {
7013 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7014 o, contents))
7015 return FALSE;
7016 }
7017 break;
7018 default:
7019 {
c152c796
AM
7020 if (! (o->flags & SEC_EXCLUDE)
7021 && ! bfd_set_section_contents (output_bfd, o->output_section,
7022 contents,
7023 (file_ptr) o->output_offset,
eea6121a 7024 o->size))
c152c796
AM
7025 return FALSE;
7026 }
7027 break;
7028 }
7029 }
7030
7031 return TRUE;
7032}
7033
7034/* Generate a reloc when linking an ELF file. This is a reloc
7035 requested by the linker, and does come from any input file. This
7036 is used to build constructor and destructor tables when linking
7037 with -Ur. */
7038
7039static bfd_boolean
7040elf_reloc_link_order (bfd *output_bfd,
7041 struct bfd_link_info *info,
7042 asection *output_section,
7043 struct bfd_link_order *link_order)
7044{
7045 reloc_howto_type *howto;
7046 long indx;
7047 bfd_vma offset;
7048 bfd_vma addend;
7049 struct elf_link_hash_entry **rel_hash_ptr;
7050 Elf_Internal_Shdr *rel_hdr;
7051 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7052 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7053 bfd_byte *erel;
7054 unsigned int i;
7055
7056 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7057 if (howto == NULL)
7058 {
7059 bfd_set_error (bfd_error_bad_value);
7060 return FALSE;
7061 }
7062
7063 addend = link_order->u.reloc.p->addend;
7064
7065 /* Figure out the symbol index. */
7066 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7067 + elf_section_data (output_section)->rel_count
7068 + elf_section_data (output_section)->rel_count2);
7069 if (link_order->type == bfd_section_reloc_link_order)
7070 {
7071 indx = link_order->u.reloc.p->u.section->target_index;
7072 BFD_ASSERT (indx != 0);
7073 *rel_hash_ptr = NULL;
7074 }
7075 else
7076 {
7077 struct elf_link_hash_entry *h;
7078
7079 /* Treat a reloc against a defined symbol as though it were
7080 actually against the section. */
7081 h = ((struct elf_link_hash_entry *)
7082 bfd_wrapped_link_hash_lookup (output_bfd, info,
7083 link_order->u.reloc.p->u.name,
7084 FALSE, FALSE, TRUE));
7085 if (h != NULL
7086 && (h->root.type == bfd_link_hash_defined
7087 || h->root.type == bfd_link_hash_defweak))
7088 {
7089 asection *section;
7090
7091 section = h->root.u.def.section;
7092 indx = section->output_section->target_index;
7093 *rel_hash_ptr = NULL;
7094 /* It seems that we ought to add the symbol value to the
7095 addend here, but in practice it has already been added
7096 because it was passed to constructor_callback. */
7097 addend += section->output_section->vma + section->output_offset;
7098 }
7099 else if (h != NULL)
7100 {
7101 /* Setting the index to -2 tells elf_link_output_extsym that
7102 this symbol is used by a reloc. */
7103 h->indx = -2;
7104 *rel_hash_ptr = h;
7105 indx = 0;
7106 }
7107 else
7108 {
7109 if (! ((*info->callbacks->unattached_reloc)
7110 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7111 return FALSE;
7112 indx = 0;
7113 }
7114 }
7115
7116 /* If this is an inplace reloc, we must write the addend into the
7117 object file. */
7118 if (howto->partial_inplace && addend != 0)
7119 {
7120 bfd_size_type size;
7121 bfd_reloc_status_type rstat;
7122 bfd_byte *buf;
7123 bfd_boolean ok;
7124 const char *sym_name;
7125
7126 size = bfd_get_reloc_size (howto);
7127 buf = bfd_zmalloc (size);
7128 if (buf == NULL)
7129 return FALSE;
7130 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7131 switch (rstat)
7132 {
7133 case bfd_reloc_ok:
7134 break;
7135
7136 default:
7137 case bfd_reloc_outofrange:
7138 abort ();
7139
7140 case bfd_reloc_overflow:
7141 if (link_order->type == bfd_section_reloc_link_order)
7142 sym_name = bfd_section_name (output_bfd,
7143 link_order->u.reloc.p->u.section);
7144 else
7145 sym_name = link_order->u.reloc.p->u.name;
7146 if (! ((*info->callbacks->reloc_overflow)
7147 (info, sym_name, howto->name, addend, NULL, NULL, 0)))
7148 {
7149 free (buf);
7150 return FALSE;
7151 }
7152 break;
7153 }
7154 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7155 link_order->offset, size);
7156 free (buf);
7157 if (! ok)
7158 return FALSE;
7159 }
7160
7161 /* The address of a reloc is relative to the section in a
7162 relocatable file, and is a virtual address in an executable
7163 file. */
7164 offset = link_order->offset;
7165 if (! info->relocatable)
7166 offset += output_section->vma;
7167
7168 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7169 {
7170 irel[i].r_offset = offset;
7171 irel[i].r_info = 0;
7172 irel[i].r_addend = 0;
7173 }
7174 if (bed->s->arch_size == 32)
7175 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7176 else
7177 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7178
7179 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7180 erel = rel_hdr->contents;
7181 if (rel_hdr->sh_type == SHT_REL)
7182 {
7183 erel += (elf_section_data (output_section)->rel_count
7184 * bed->s->sizeof_rel);
7185 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7186 }
7187 else
7188 {
7189 irel[0].r_addend = addend;
7190 erel += (elf_section_data (output_section)->rel_count
7191 * bed->s->sizeof_rela);
7192 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7193 }
7194
7195 ++elf_section_data (output_section)->rel_count;
7196
7197 return TRUE;
7198}
7199
0b52efa6
PB
7200
7201/* Get the output vma of the section pointed to by the sh_link field. */
7202
7203static bfd_vma
7204elf_get_linked_section_vma (struct bfd_link_order *p)
7205{
7206 Elf_Internal_Shdr **elf_shdrp;
7207 asection *s;
7208 int elfsec;
7209
7210 s = p->u.indirect.section;
7211 elf_shdrp = elf_elfsections (s->owner);
7212 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7213 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
7214 /* PR 290:
7215 The Intel C compiler generates SHT_IA_64_UNWIND with
7216 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7217 sh_info fields. Hence we could get the situation
7218 where elfsec is 0. */
7219 if (elfsec == 0)
7220 {
7221 const struct elf_backend_data *bed
7222 = get_elf_backend_data (s->owner);
7223 if (bed->link_order_error_handler)
d003868e
AM
7224 bed->link_order_error_handler
7225 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
7226 return 0;
7227 }
7228 else
7229 {
7230 s = elf_shdrp[elfsec]->bfd_section;
7231 return s->output_section->vma + s->output_offset;
7232 }
0b52efa6
PB
7233}
7234
7235
7236/* Compare two sections based on the locations of the sections they are
7237 linked to. Used by elf_fixup_link_order. */
7238
7239static int
7240compare_link_order (const void * a, const void * b)
7241{
7242 bfd_vma apos;
7243 bfd_vma bpos;
7244
7245 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7246 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7247 if (apos < bpos)
7248 return -1;
7249 return apos > bpos;
7250}
7251
7252
7253/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7254 order as their linked sections. Returns false if this could not be done
7255 because an output section includes both ordered and unordered
7256 sections. Ideally we'd do this in the linker proper. */
7257
7258static bfd_boolean
7259elf_fixup_link_order (bfd *abfd, asection *o)
7260{
7261 int seen_linkorder;
7262 int seen_other;
7263 int n;
7264 struct bfd_link_order *p;
7265 bfd *sub;
7266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7267 int elfsec;
7268 struct bfd_link_order **sections;
7269 asection *s;
7270 bfd_vma offset;
7271
7272 seen_other = 0;
7273 seen_linkorder = 0;
7274 for (p = o->link_order_head; p != NULL; p = p->next)
7275 {
7276 if (p->type == bfd_indirect_link_order
7277 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7278 == bfd_target_elf_flavour)
7279 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7280 {
7281 s = p->u.indirect.section;
7282 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7283 if (elfsec != -1
7284 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7285 seen_linkorder++;
7286 else
7287 seen_other++;
7288 }
7289 else
7290 seen_other++;
7291 }
7292
7293 if (!seen_linkorder)
7294 return TRUE;
7295
7296 if (seen_other && seen_linkorder)
08ccf96b 7297 {
d003868e
AM
7298 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7299 o);
08ccf96b
L
7300 bfd_set_error (bfd_error_bad_value);
7301 return FALSE;
7302 }
0b52efa6
PB
7303
7304 sections = (struct bfd_link_order **)
7305 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7306 seen_linkorder = 0;
7307
7308 for (p = o->link_order_head; p != NULL; p = p->next)
7309 {
7310 sections[seen_linkorder++] = p;
7311 }
7312 /* Sort the input sections in the order of their linked section. */
7313 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7314 compare_link_order);
7315
7316 /* Change the offsets of the sections. */
7317 offset = 0;
7318 for (n = 0; n < seen_linkorder; n++)
7319 {
7320 s = sections[n]->u.indirect.section;
7321 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7322 s->output_offset = offset;
7323 sections[n]->offset = offset;
7324 offset += sections[n]->size;
7325 }
7326
7327 return TRUE;
7328}
7329
7330
c152c796
AM
7331/* Do the final step of an ELF link. */
7332
7333bfd_boolean
7334bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7335{
7336 bfd_boolean dynamic;
7337 bfd_boolean emit_relocs;
7338 bfd *dynobj;
7339 struct elf_final_link_info finfo;
7340 register asection *o;
7341 register struct bfd_link_order *p;
7342 register bfd *sub;
7343 bfd_size_type max_contents_size;
7344 bfd_size_type max_external_reloc_size;
7345 bfd_size_type max_internal_reloc_count;
7346 bfd_size_type max_sym_count;
7347 bfd_size_type max_sym_shndx_count;
7348 file_ptr off;
7349 Elf_Internal_Sym elfsym;
7350 unsigned int i;
7351 Elf_Internal_Shdr *symtab_hdr;
7352 Elf_Internal_Shdr *symtab_shndx_hdr;
7353 Elf_Internal_Shdr *symstrtab_hdr;
7354 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7355 struct elf_outext_info eoinfo;
7356 bfd_boolean merged;
7357 size_t relativecount = 0;
7358 asection *reldyn = 0;
7359 bfd_size_type amt;
7360
7361 if (! is_elf_hash_table (info->hash))
7362 return FALSE;
7363
7364 if (info->shared)
7365 abfd->flags |= DYNAMIC;
7366
7367 dynamic = elf_hash_table (info)->dynamic_sections_created;
7368 dynobj = elf_hash_table (info)->dynobj;
7369
7370 emit_relocs = (info->relocatable
7371 || info->emitrelocations
7372 || bed->elf_backend_emit_relocs);
7373
7374 finfo.info = info;
7375 finfo.output_bfd = abfd;
7376 finfo.symstrtab = _bfd_elf_stringtab_init ();
7377 if (finfo.symstrtab == NULL)
7378 return FALSE;
7379
7380 if (! dynamic)
7381 {
7382 finfo.dynsym_sec = NULL;
7383 finfo.hash_sec = NULL;
7384 finfo.symver_sec = NULL;
7385 }
7386 else
7387 {
7388 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7389 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7390 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7391 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7392 /* Note that it is OK if symver_sec is NULL. */
7393 }
7394
7395 finfo.contents = NULL;
7396 finfo.external_relocs = NULL;
7397 finfo.internal_relocs = NULL;
7398 finfo.external_syms = NULL;
7399 finfo.locsym_shndx = NULL;
7400 finfo.internal_syms = NULL;
7401 finfo.indices = NULL;
7402 finfo.sections = NULL;
7403 finfo.symbuf = NULL;
7404 finfo.symshndxbuf = NULL;
7405 finfo.symbuf_count = 0;
7406 finfo.shndxbuf_size = 0;
7407
7408 /* Count up the number of relocations we will output for each output
7409 section, so that we know the sizes of the reloc sections. We
7410 also figure out some maximum sizes. */
7411 max_contents_size = 0;
7412 max_external_reloc_size = 0;
7413 max_internal_reloc_count = 0;
7414 max_sym_count = 0;
7415 max_sym_shndx_count = 0;
7416 merged = FALSE;
7417 for (o = abfd->sections; o != NULL; o = o->next)
7418 {
7419 struct bfd_elf_section_data *esdo = elf_section_data (o);
7420 o->reloc_count = 0;
7421
7422 for (p = o->link_order_head; p != NULL; p = p->next)
7423 {
7424 unsigned int reloc_count = 0;
7425 struct bfd_elf_section_data *esdi = NULL;
7426 unsigned int *rel_count1;
7427
7428 if (p->type == bfd_section_reloc_link_order
7429 || p->type == bfd_symbol_reloc_link_order)
7430 reloc_count = 1;
7431 else if (p->type == bfd_indirect_link_order)
7432 {
7433 asection *sec;
7434
7435 sec = p->u.indirect.section;
7436 esdi = elf_section_data (sec);
7437
7438 /* Mark all sections which are to be included in the
7439 link. This will normally be every section. We need
7440 to do this so that we can identify any sections which
7441 the linker has decided to not include. */
7442 sec->linker_mark = TRUE;
7443
7444 if (sec->flags & SEC_MERGE)
7445 merged = TRUE;
7446
7447 if (info->relocatable || info->emitrelocations)
7448 reloc_count = sec->reloc_count;
7449 else if (bed->elf_backend_count_relocs)
7450 {
7451 Elf_Internal_Rela * relocs;
7452
7453 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7454 info->keep_memory);
7455
7456 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7457
7458 if (elf_section_data (o)->relocs != relocs)
7459 free (relocs);
7460 }
7461
eea6121a
AM
7462 if (sec->rawsize > max_contents_size)
7463 max_contents_size = sec->rawsize;
7464 if (sec->size > max_contents_size)
7465 max_contents_size = sec->size;
c152c796
AM
7466
7467 /* We are interested in just local symbols, not all
7468 symbols. */
7469 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7470 && (sec->owner->flags & DYNAMIC) == 0)
7471 {
7472 size_t sym_count;
7473
7474 if (elf_bad_symtab (sec->owner))
7475 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7476 / bed->s->sizeof_sym);
7477 else
7478 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7479
7480 if (sym_count > max_sym_count)
7481 max_sym_count = sym_count;
7482
7483 if (sym_count > max_sym_shndx_count
7484 && elf_symtab_shndx (sec->owner) != 0)
7485 max_sym_shndx_count = sym_count;
7486
7487 if ((sec->flags & SEC_RELOC) != 0)
7488 {
7489 size_t ext_size;
7490
7491 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7492 if (ext_size > max_external_reloc_size)
7493 max_external_reloc_size = ext_size;
7494 if (sec->reloc_count > max_internal_reloc_count)
7495 max_internal_reloc_count = sec->reloc_count;
7496 }
7497 }
7498 }
7499
7500 if (reloc_count == 0)
7501 continue;
7502
7503 o->reloc_count += reloc_count;
7504
7505 /* MIPS may have a mix of REL and RELA relocs on sections.
7506 To support this curious ABI we keep reloc counts in
7507 elf_section_data too. We must be careful to add the
7508 relocations from the input section to the right output
7509 count. FIXME: Get rid of one count. We have
7510 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7511 rel_count1 = &esdo->rel_count;
7512 if (esdi != NULL)
7513 {
7514 bfd_boolean same_size;
7515 bfd_size_type entsize1;
7516
7517 entsize1 = esdi->rel_hdr.sh_entsize;
7518 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7519 || entsize1 == bed->s->sizeof_rela);
7520 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7521
7522 if (!same_size)
7523 rel_count1 = &esdo->rel_count2;
7524
7525 if (esdi->rel_hdr2 != NULL)
7526 {
7527 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7528 unsigned int alt_count;
7529 unsigned int *rel_count2;
7530
7531 BFD_ASSERT (entsize2 != entsize1
7532 && (entsize2 == bed->s->sizeof_rel
7533 || entsize2 == bed->s->sizeof_rela));
7534
7535 rel_count2 = &esdo->rel_count2;
7536 if (!same_size)
7537 rel_count2 = &esdo->rel_count;
7538
7539 /* The following is probably too simplistic if the
7540 backend counts output relocs unusually. */
7541 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7542 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7543 *rel_count2 += alt_count;
7544 reloc_count -= alt_count;
7545 }
7546 }
7547 *rel_count1 += reloc_count;
7548 }
7549
7550 if (o->reloc_count > 0)
7551 o->flags |= SEC_RELOC;
7552 else
7553 {
7554 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7555 set it (this is probably a bug) and if it is set
7556 assign_section_numbers will create a reloc section. */
7557 o->flags &=~ SEC_RELOC;
7558 }
7559
7560 /* If the SEC_ALLOC flag is not set, force the section VMA to
7561 zero. This is done in elf_fake_sections as well, but forcing
7562 the VMA to 0 here will ensure that relocs against these
7563 sections are handled correctly. */
7564 if ((o->flags & SEC_ALLOC) == 0
7565 && ! o->user_set_vma)
7566 o->vma = 0;
7567 }
7568
7569 if (! info->relocatable && merged)
7570 elf_link_hash_traverse (elf_hash_table (info),
7571 _bfd_elf_link_sec_merge_syms, abfd);
7572
7573 /* Figure out the file positions for everything but the symbol table
7574 and the relocs. We set symcount to force assign_section_numbers
7575 to create a symbol table. */
7576 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7577 BFD_ASSERT (! abfd->output_has_begun);
7578 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7579 goto error_return;
7580
7581 /* That created the reloc sections. Set their sizes, and assign
7582 them file positions, and allocate some buffers. */
7583 for (o = abfd->sections; o != NULL; o = o->next)
7584 {
7585 if ((o->flags & SEC_RELOC) != 0)
7586 {
7587 if (!(_bfd_elf_link_size_reloc_section
7588 (abfd, &elf_section_data (o)->rel_hdr, o)))
7589 goto error_return;
7590
7591 if (elf_section_data (o)->rel_hdr2
7592 && !(_bfd_elf_link_size_reloc_section
7593 (abfd, elf_section_data (o)->rel_hdr2, o)))
7594 goto error_return;
7595 }
7596
7597 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7598 to count upwards while actually outputting the relocations. */
7599 elf_section_data (o)->rel_count = 0;
7600 elf_section_data (o)->rel_count2 = 0;
7601 }
7602
7603 _bfd_elf_assign_file_positions_for_relocs (abfd);
7604
7605 /* We have now assigned file positions for all the sections except
7606 .symtab and .strtab. We start the .symtab section at the current
7607 file position, and write directly to it. We build the .strtab
7608 section in memory. */
7609 bfd_get_symcount (abfd) = 0;
7610 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7611 /* sh_name is set in prep_headers. */
7612 symtab_hdr->sh_type = SHT_SYMTAB;
7613 /* sh_flags, sh_addr and sh_size all start off zero. */
7614 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7615 /* sh_link is set in assign_section_numbers. */
7616 /* sh_info is set below. */
7617 /* sh_offset is set just below. */
7618 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7619
7620 off = elf_tdata (abfd)->next_file_pos;
7621 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7622
7623 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7624 incorrect. We do not yet know the size of the .symtab section.
7625 We correct next_file_pos below, after we do know the size. */
7626
7627 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7628 continuously seeking to the right position in the file. */
7629 if (! info->keep_memory || max_sym_count < 20)
7630 finfo.symbuf_size = 20;
7631 else
7632 finfo.symbuf_size = max_sym_count;
7633 amt = finfo.symbuf_size;
7634 amt *= bed->s->sizeof_sym;
7635 finfo.symbuf = bfd_malloc (amt);
7636 if (finfo.symbuf == NULL)
7637 goto error_return;
7638 if (elf_numsections (abfd) > SHN_LORESERVE)
7639 {
7640 /* Wild guess at number of output symbols. realloc'd as needed. */
7641 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7642 finfo.shndxbuf_size = amt;
7643 amt *= sizeof (Elf_External_Sym_Shndx);
7644 finfo.symshndxbuf = bfd_zmalloc (amt);
7645 if (finfo.symshndxbuf == NULL)
7646 goto error_return;
7647 }
7648
7649 /* Start writing out the symbol table. The first symbol is always a
7650 dummy symbol. */
7651 if (info->strip != strip_all
7652 || emit_relocs)
7653 {
7654 elfsym.st_value = 0;
7655 elfsym.st_size = 0;
7656 elfsym.st_info = 0;
7657 elfsym.st_other = 0;
7658 elfsym.st_shndx = SHN_UNDEF;
7659 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7660 NULL))
7661 goto error_return;
7662 }
7663
7664#if 0
7665 /* Some standard ELF linkers do this, but we don't because it causes
7666 bootstrap comparison failures. */
7667 /* Output a file symbol for the output file as the second symbol.
7668 We output this even if we are discarding local symbols, although
7669 I'm not sure if this is correct. */
7670 elfsym.st_value = 0;
7671 elfsym.st_size = 0;
7672 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7673 elfsym.st_other = 0;
7674 elfsym.st_shndx = SHN_ABS;
7675 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
7676 &elfsym, bfd_abs_section_ptr, NULL))
7677 goto error_return;
7678#endif
7679
7680 /* Output a symbol for each section. We output these even if we are
7681 discarding local symbols, since they are used for relocs. These
7682 symbols have no names. We store the index of each one in the
7683 index field of the section, so that we can find it again when
7684 outputting relocs. */
7685 if (info->strip != strip_all
7686 || emit_relocs)
7687 {
7688 elfsym.st_size = 0;
7689 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7690 elfsym.st_other = 0;
7691 for (i = 1; i < elf_numsections (abfd); i++)
7692 {
7693 o = bfd_section_from_elf_index (abfd, i);
7694 if (o != NULL)
7695 o->target_index = bfd_get_symcount (abfd);
7696 elfsym.st_shndx = i;
7697 if (info->relocatable || o == NULL)
7698 elfsym.st_value = 0;
7699 else
7700 elfsym.st_value = o->vma;
7701 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
7702 goto error_return;
7703 if (i == SHN_LORESERVE - 1)
7704 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
7705 }
7706 }
7707
7708 /* Allocate some memory to hold information read in from the input
7709 files. */
7710 if (max_contents_size != 0)
7711 {
7712 finfo.contents = bfd_malloc (max_contents_size);
7713 if (finfo.contents == NULL)
7714 goto error_return;
7715 }
7716
7717 if (max_external_reloc_size != 0)
7718 {
7719 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
7720 if (finfo.external_relocs == NULL)
7721 goto error_return;
7722 }
7723
7724 if (max_internal_reloc_count != 0)
7725 {
7726 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
7727 amt *= sizeof (Elf_Internal_Rela);
7728 finfo.internal_relocs = bfd_malloc (amt);
7729 if (finfo.internal_relocs == NULL)
7730 goto error_return;
7731 }
7732
7733 if (max_sym_count != 0)
7734 {
7735 amt = max_sym_count * bed->s->sizeof_sym;
7736 finfo.external_syms = bfd_malloc (amt);
7737 if (finfo.external_syms == NULL)
7738 goto error_return;
7739
7740 amt = max_sym_count * sizeof (Elf_Internal_Sym);
7741 finfo.internal_syms = bfd_malloc (amt);
7742 if (finfo.internal_syms == NULL)
7743 goto error_return;
7744
7745 amt = max_sym_count * sizeof (long);
7746 finfo.indices = bfd_malloc (amt);
7747 if (finfo.indices == NULL)
7748 goto error_return;
7749
7750 amt = max_sym_count * sizeof (asection *);
7751 finfo.sections = bfd_malloc (amt);
7752 if (finfo.sections == NULL)
7753 goto error_return;
7754 }
7755
7756 if (max_sym_shndx_count != 0)
7757 {
7758 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
7759 finfo.locsym_shndx = bfd_malloc (amt);
7760 if (finfo.locsym_shndx == NULL)
7761 goto error_return;
7762 }
7763
7764 if (elf_hash_table (info)->tls_sec)
7765 {
7766 bfd_vma base, end = 0;
7767 asection *sec;
7768
7769 for (sec = elf_hash_table (info)->tls_sec;
7770 sec && (sec->flags & SEC_THREAD_LOCAL);
7771 sec = sec->next)
7772 {
eea6121a 7773 bfd_vma size = sec->size;
c152c796
AM
7774
7775 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
7776 {
7777 struct bfd_link_order *o;
7778
7779 for (o = sec->link_order_head; o != NULL; o = o->next)
7780 if (size < o->offset + o->size)
7781 size = o->offset + o->size;
7782 }
7783 end = sec->vma + size;
7784 }
7785 base = elf_hash_table (info)->tls_sec->vma;
7786 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
7787 elf_hash_table (info)->tls_size = end - base;
7788 }
7789
0b52efa6
PB
7790 /* Reorder SHF_LINK_ORDER sections. */
7791 for (o = abfd->sections; o != NULL; o = o->next)
7792 {
7793 if (!elf_fixup_link_order (abfd, o))
7794 return FALSE;
7795 }
7796
c152c796
AM
7797 /* Since ELF permits relocations to be against local symbols, we
7798 must have the local symbols available when we do the relocations.
7799 Since we would rather only read the local symbols once, and we
7800 would rather not keep them in memory, we handle all the
7801 relocations for a single input file at the same time.
7802
7803 Unfortunately, there is no way to know the total number of local
7804 symbols until we have seen all of them, and the local symbol
7805 indices precede the global symbol indices. This means that when
7806 we are generating relocatable output, and we see a reloc against
7807 a global symbol, we can not know the symbol index until we have
7808 finished examining all the local symbols to see which ones we are
7809 going to output. To deal with this, we keep the relocations in
7810 memory, and don't output them until the end of the link. This is
7811 an unfortunate waste of memory, but I don't see a good way around
7812 it. Fortunately, it only happens when performing a relocatable
7813 link, which is not the common case. FIXME: If keep_memory is set
7814 we could write the relocs out and then read them again; I don't
7815 know how bad the memory loss will be. */
7816
7817 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7818 sub->output_has_begun = FALSE;
7819 for (o = abfd->sections; o != NULL; o = o->next)
7820 {
7821 for (p = o->link_order_head; p != NULL; p = p->next)
7822 {
7823 if (p->type == bfd_indirect_link_order
7824 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7825 == bfd_target_elf_flavour)
7826 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7827 {
7828 if (! sub->output_has_begun)
7829 {
7830 if (! elf_link_input_bfd (&finfo, sub))
7831 goto error_return;
7832 sub->output_has_begun = TRUE;
7833 }
7834 }
7835 else if (p->type == bfd_section_reloc_link_order
7836 || p->type == bfd_symbol_reloc_link_order)
7837 {
7838 if (! elf_reloc_link_order (abfd, info, o, p))
7839 goto error_return;
7840 }
7841 else
7842 {
7843 if (! _bfd_default_link_order (abfd, info, o, p))
7844 goto error_return;
7845 }
7846 }
7847 }
7848
7849 /* Output any global symbols that got converted to local in a
7850 version script or due to symbol visibility. We do this in a
7851 separate step since ELF requires all local symbols to appear
7852 prior to any global symbols. FIXME: We should only do this if
7853 some global symbols were, in fact, converted to become local.
7854 FIXME: Will this work correctly with the Irix 5 linker? */
7855 eoinfo.failed = FALSE;
7856 eoinfo.finfo = &finfo;
7857 eoinfo.localsyms = TRUE;
7858 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7859 &eoinfo);
7860 if (eoinfo.failed)
7861 return FALSE;
7862
7863 /* That wrote out all the local symbols. Finish up the symbol table
7864 with the global symbols. Even if we want to strip everything we
7865 can, we still need to deal with those global symbols that got
7866 converted to local in a version script. */
7867
7868 /* The sh_info field records the index of the first non local symbol. */
7869 symtab_hdr->sh_info = bfd_get_symcount (abfd);
7870
7871 if (dynamic
7872 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
7873 {
7874 Elf_Internal_Sym sym;
7875 bfd_byte *dynsym = finfo.dynsym_sec->contents;
7876 long last_local = 0;
7877
7878 /* Write out the section symbols for the output sections. */
7879 if (info->shared)
7880 {
7881 asection *s;
7882
7883 sym.st_size = 0;
7884 sym.st_name = 0;
7885 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7886 sym.st_other = 0;
7887
7888 for (s = abfd->sections; s != NULL; s = s->next)
7889 {
7890 int indx;
7891 bfd_byte *dest;
7892 long dynindx;
7893
c152c796 7894 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
7895 if (dynindx <= 0)
7896 continue;
7897 indx = elf_section_data (s)->this_idx;
c152c796
AM
7898 BFD_ASSERT (indx > 0);
7899 sym.st_shndx = indx;
7900 sym.st_value = s->vma;
7901 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
7902 if (last_local < dynindx)
7903 last_local = dynindx;
c152c796
AM
7904 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7905 }
c152c796
AM
7906 }
7907
7908 /* Write out the local dynsyms. */
7909 if (elf_hash_table (info)->dynlocal)
7910 {
7911 struct elf_link_local_dynamic_entry *e;
7912 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
7913 {
7914 asection *s;
7915 bfd_byte *dest;
7916
7917 sym.st_size = e->isym.st_size;
7918 sym.st_other = e->isym.st_other;
7919
7920 /* Copy the internal symbol as is.
7921 Note that we saved a word of storage and overwrote
7922 the original st_name with the dynstr_index. */
7923 sym = e->isym;
7924
7925 if (e->isym.st_shndx != SHN_UNDEF
7926 && (e->isym.st_shndx < SHN_LORESERVE
7927 || e->isym.st_shndx > SHN_HIRESERVE))
7928 {
7929 s = bfd_section_from_elf_index (e->input_bfd,
7930 e->isym.st_shndx);
7931
7932 sym.st_shndx =
7933 elf_section_data (s->output_section)->this_idx;
7934 sym.st_value = (s->output_section->vma
7935 + s->output_offset
7936 + e->isym.st_value);
7937 }
7938
7939 if (last_local < e->dynindx)
7940 last_local = e->dynindx;
7941
7942 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
7943 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7944 }
7945 }
7946
7947 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
7948 last_local + 1;
7949 }
7950
7951 /* We get the global symbols from the hash table. */
7952 eoinfo.failed = FALSE;
7953 eoinfo.localsyms = FALSE;
7954 eoinfo.finfo = &finfo;
7955 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7956 &eoinfo);
7957 if (eoinfo.failed)
7958 return FALSE;
7959
7960 /* If backend needs to output some symbols not present in the hash
7961 table, do it now. */
7962 if (bed->elf_backend_output_arch_syms)
7963 {
7964 typedef bfd_boolean (*out_sym_func)
7965 (void *, const char *, Elf_Internal_Sym *, asection *,
7966 struct elf_link_hash_entry *);
7967
7968 if (! ((*bed->elf_backend_output_arch_syms)
7969 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
7970 return FALSE;
7971 }
7972
7973 /* Flush all symbols to the file. */
7974 if (! elf_link_flush_output_syms (&finfo, bed))
7975 return FALSE;
7976
7977 /* Now we know the size of the symtab section. */
7978 off += symtab_hdr->sh_size;
7979
7980 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
7981 if (symtab_shndx_hdr->sh_name != 0)
7982 {
7983 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7984 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7985 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7986 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
7987 symtab_shndx_hdr->sh_size = amt;
7988
7989 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
7990 off, TRUE);
7991
7992 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
7993 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
7994 return FALSE;
7995 }
7996
7997
7998 /* Finish up and write out the symbol string table (.strtab)
7999 section. */
8000 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8001 /* sh_name was set in prep_headers. */
8002 symstrtab_hdr->sh_type = SHT_STRTAB;
8003 symstrtab_hdr->sh_flags = 0;
8004 symstrtab_hdr->sh_addr = 0;
8005 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8006 symstrtab_hdr->sh_entsize = 0;
8007 symstrtab_hdr->sh_link = 0;
8008 symstrtab_hdr->sh_info = 0;
8009 /* sh_offset is set just below. */
8010 symstrtab_hdr->sh_addralign = 1;
8011
8012 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8013 elf_tdata (abfd)->next_file_pos = off;
8014
8015 if (bfd_get_symcount (abfd) > 0)
8016 {
8017 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8018 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8019 return FALSE;
8020 }
8021
8022 /* Adjust the relocs to have the correct symbol indices. */
8023 for (o = abfd->sections; o != NULL; o = o->next)
8024 {
8025 if ((o->flags & SEC_RELOC) == 0)
8026 continue;
8027
8028 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8029 elf_section_data (o)->rel_count,
8030 elf_section_data (o)->rel_hashes);
8031 if (elf_section_data (o)->rel_hdr2 != NULL)
8032 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8033 elf_section_data (o)->rel_count2,
8034 (elf_section_data (o)->rel_hashes
8035 + elf_section_data (o)->rel_count));
8036
8037 /* Set the reloc_count field to 0 to prevent write_relocs from
8038 trying to swap the relocs out itself. */
8039 o->reloc_count = 0;
8040 }
8041
8042 if (dynamic && info->combreloc && dynobj != NULL)
8043 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8044
8045 /* If we are linking against a dynamic object, or generating a
8046 shared library, finish up the dynamic linking information. */
8047 if (dynamic)
8048 {
8049 bfd_byte *dyncon, *dynconend;
8050
8051 /* Fix up .dynamic entries. */
8052 o = bfd_get_section_by_name (dynobj, ".dynamic");
8053 BFD_ASSERT (o != NULL);
8054
8055 dyncon = o->contents;
eea6121a 8056 dynconend = o->contents + o->size;
c152c796
AM
8057 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8058 {
8059 Elf_Internal_Dyn dyn;
8060 const char *name;
8061 unsigned int type;
8062
8063 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8064
8065 switch (dyn.d_tag)
8066 {
8067 default:
8068 continue;
8069 case DT_NULL:
8070 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8071 {
8072 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8073 {
8074 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8075 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8076 default: continue;
8077 }
8078 dyn.d_un.d_val = relativecount;
8079 relativecount = 0;
8080 break;
8081 }
8082 continue;
8083
8084 case DT_INIT:
8085 name = info->init_function;
8086 goto get_sym;
8087 case DT_FINI:
8088 name = info->fini_function;
8089 get_sym:
8090 {
8091 struct elf_link_hash_entry *h;
8092
8093 h = elf_link_hash_lookup (elf_hash_table (info), name,
8094 FALSE, FALSE, TRUE);
8095 if (h != NULL
8096 && (h->root.type == bfd_link_hash_defined
8097 || h->root.type == bfd_link_hash_defweak))
8098 {
8099 dyn.d_un.d_val = h->root.u.def.value;
8100 o = h->root.u.def.section;
8101 if (o->output_section != NULL)
8102 dyn.d_un.d_val += (o->output_section->vma
8103 + o->output_offset);
8104 else
8105 {
8106 /* The symbol is imported from another shared
8107 library and does not apply to this one. */
8108 dyn.d_un.d_val = 0;
8109 }
8110 break;
8111 }
8112 }
8113 continue;
8114
8115 case DT_PREINIT_ARRAYSZ:
8116 name = ".preinit_array";
8117 goto get_size;
8118 case DT_INIT_ARRAYSZ:
8119 name = ".init_array";
8120 goto get_size;
8121 case DT_FINI_ARRAYSZ:
8122 name = ".fini_array";
8123 get_size:
8124 o = bfd_get_section_by_name (abfd, name);
8125 if (o == NULL)
8126 {
8127 (*_bfd_error_handler)
d003868e 8128 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8129 goto error_return;
8130 }
eea6121a 8131 if (o->size == 0)
c152c796
AM
8132 (*_bfd_error_handler)
8133 (_("warning: %s section has zero size"), name);
eea6121a 8134 dyn.d_un.d_val = o->size;
c152c796
AM
8135 break;
8136
8137 case DT_PREINIT_ARRAY:
8138 name = ".preinit_array";
8139 goto get_vma;
8140 case DT_INIT_ARRAY:
8141 name = ".init_array";
8142 goto get_vma;
8143 case DT_FINI_ARRAY:
8144 name = ".fini_array";
8145 goto get_vma;
8146
8147 case DT_HASH:
8148 name = ".hash";
8149 goto get_vma;
8150 case DT_STRTAB:
8151 name = ".dynstr";
8152 goto get_vma;
8153 case DT_SYMTAB:
8154 name = ".dynsym";
8155 goto get_vma;
8156 case DT_VERDEF:
8157 name = ".gnu.version_d";
8158 goto get_vma;
8159 case DT_VERNEED:
8160 name = ".gnu.version_r";
8161 goto get_vma;
8162 case DT_VERSYM:
8163 name = ".gnu.version";
8164 get_vma:
8165 o = bfd_get_section_by_name (abfd, name);
8166 if (o == NULL)
8167 {
8168 (*_bfd_error_handler)
d003868e 8169 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8170 goto error_return;
8171 }
8172 dyn.d_un.d_ptr = o->vma;
8173 break;
8174
8175 case DT_REL:
8176 case DT_RELA:
8177 case DT_RELSZ:
8178 case DT_RELASZ:
8179 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8180 type = SHT_REL;
8181 else
8182 type = SHT_RELA;
8183 dyn.d_un.d_val = 0;
8184 for (i = 1; i < elf_numsections (abfd); i++)
8185 {
8186 Elf_Internal_Shdr *hdr;
8187
8188 hdr = elf_elfsections (abfd)[i];
8189 if (hdr->sh_type == type
8190 && (hdr->sh_flags & SHF_ALLOC) != 0)
8191 {
8192 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8193 dyn.d_un.d_val += hdr->sh_size;
8194 else
8195 {
8196 if (dyn.d_un.d_val == 0
8197 || hdr->sh_addr < dyn.d_un.d_val)
8198 dyn.d_un.d_val = hdr->sh_addr;
8199 }
8200 }
8201 }
8202 break;
8203 }
8204 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8205 }
8206 }
8207
8208 /* If we have created any dynamic sections, then output them. */
8209 if (dynobj != NULL)
8210 {
8211 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8212 goto error_return;
8213
8214 for (o = dynobj->sections; o != NULL; o = o->next)
8215 {
8216 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 8217 || o->size == 0
c152c796
AM
8218 || o->output_section == bfd_abs_section_ptr)
8219 continue;
8220 if ((o->flags & SEC_LINKER_CREATED) == 0)
8221 {
8222 /* At this point, we are only interested in sections
8223 created by _bfd_elf_link_create_dynamic_sections. */
8224 continue;
8225 }
3722b82f
AM
8226 if (elf_hash_table (info)->stab_info.stabstr == o)
8227 continue;
eea6121a
AM
8228 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8229 continue;
c152c796
AM
8230 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8231 != SHT_STRTAB)
8232 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8233 {
8234 if (! bfd_set_section_contents (abfd, o->output_section,
8235 o->contents,
8236 (file_ptr) o->output_offset,
eea6121a 8237 o->size))
c152c796
AM
8238 goto error_return;
8239 }
8240 else
8241 {
8242 /* The contents of the .dynstr section are actually in a
8243 stringtab. */
8244 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8245 if (bfd_seek (abfd, off, SEEK_SET) != 0
8246 || ! _bfd_elf_strtab_emit (abfd,
8247 elf_hash_table (info)->dynstr))
8248 goto error_return;
8249 }
8250 }
8251 }
8252
8253 if (info->relocatable)
8254 {
8255 bfd_boolean failed = FALSE;
8256
8257 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8258 if (failed)
8259 goto error_return;
8260 }
8261
8262 /* If we have optimized stabs strings, output them. */
3722b82f 8263 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
8264 {
8265 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8266 goto error_return;
8267 }
8268
8269 if (info->eh_frame_hdr)
8270 {
8271 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8272 goto error_return;
8273 }
8274
8275 if (finfo.symstrtab != NULL)
8276 _bfd_stringtab_free (finfo.symstrtab);
8277 if (finfo.contents != NULL)
8278 free (finfo.contents);
8279 if (finfo.external_relocs != NULL)
8280 free (finfo.external_relocs);
8281 if (finfo.internal_relocs != NULL)
8282 free (finfo.internal_relocs);
8283 if (finfo.external_syms != NULL)
8284 free (finfo.external_syms);
8285 if (finfo.locsym_shndx != NULL)
8286 free (finfo.locsym_shndx);
8287 if (finfo.internal_syms != NULL)
8288 free (finfo.internal_syms);
8289 if (finfo.indices != NULL)
8290 free (finfo.indices);
8291 if (finfo.sections != NULL)
8292 free (finfo.sections);
8293 if (finfo.symbuf != NULL)
8294 free (finfo.symbuf);
8295 if (finfo.symshndxbuf != NULL)
8296 free (finfo.symshndxbuf);
8297 for (o = abfd->sections; o != NULL; o = o->next)
8298 {
8299 if ((o->flags & SEC_RELOC) != 0
8300 && elf_section_data (o)->rel_hashes != NULL)
8301 free (elf_section_data (o)->rel_hashes);
8302 }
8303
8304 elf_tdata (abfd)->linker = TRUE;
8305
8306 return TRUE;
8307
8308 error_return:
8309 if (finfo.symstrtab != NULL)
8310 _bfd_stringtab_free (finfo.symstrtab);
8311 if (finfo.contents != NULL)
8312 free (finfo.contents);
8313 if (finfo.external_relocs != NULL)
8314 free (finfo.external_relocs);
8315 if (finfo.internal_relocs != NULL)
8316 free (finfo.internal_relocs);
8317 if (finfo.external_syms != NULL)
8318 free (finfo.external_syms);
8319 if (finfo.locsym_shndx != NULL)
8320 free (finfo.locsym_shndx);
8321 if (finfo.internal_syms != NULL)
8322 free (finfo.internal_syms);
8323 if (finfo.indices != NULL)
8324 free (finfo.indices);
8325 if (finfo.sections != NULL)
8326 free (finfo.sections);
8327 if (finfo.symbuf != NULL)
8328 free (finfo.symbuf);
8329 if (finfo.symshndxbuf != NULL)
8330 free (finfo.symshndxbuf);
8331 for (o = abfd->sections; o != NULL; o = o->next)
8332 {
8333 if ((o->flags & SEC_RELOC) != 0
8334 && elf_section_data (o)->rel_hashes != NULL)
8335 free (elf_section_data (o)->rel_hashes);
8336 }
8337
8338 return FALSE;
8339}
8340\f
8341/* Garbage collect unused sections. */
8342
8343/* The mark phase of garbage collection. For a given section, mark
8344 it and any sections in this section's group, and all the sections
8345 which define symbols to which it refers. */
8346
8347typedef asection * (*gc_mark_hook_fn)
8348 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8349 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8350
ccfa59ea
AM
8351bfd_boolean
8352_bfd_elf_gc_mark (struct bfd_link_info *info,
8353 asection *sec,
8354 gc_mark_hook_fn gc_mark_hook)
c152c796
AM
8355{
8356 bfd_boolean ret;
8357 asection *group_sec;
8358
8359 sec->gc_mark = 1;
8360
8361 /* Mark all the sections in the group. */
8362 group_sec = elf_section_data (sec)->next_in_group;
8363 if (group_sec && !group_sec->gc_mark)
ccfa59ea 8364 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
8365 return FALSE;
8366
8367 /* Look through the section relocs. */
8368 ret = TRUE;
8369 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8370 {
8371 Elf_Internal_Rela *relstart, *rel, *relend;
8372 Elf_Internal_Shdr *symtab_hdr;
8373 struct elf_link_hash_entry **sym_hashes;
8374 size_t nlocsyms;
8375 size_t extsymoff;
8376 bfd *input_bfd = sec->owner;
8377 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8378 Elf_Internal_Sym *isym = NULL;
8379 int r_sym_shift;
8380
8381 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8382 sym_hashes = elf_sym_hashes (input_bfd);
8383
8384 /* Read the local symbols. */
8385 if (elf_bad_symtab (input_bfd))
8386 {
8387 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8388 extsymoff = 0;
8389 }
8390 else
8391 extsymoff = nlocsyms = symtab_hdr->sh_info;
8392
8393 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8394 if (isym == NULL && nlocsyms != 0)
8395 {
8396 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8397 NULL, NULL, NULL);
8398 if (isym == NULL)
8399 return FALSE;
8400 }
8401
8402 /* Read the relocations. */
8403 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8404 info->keep_memory);
8405 if (relstart == NULL)
8406 {
8407 ret = FALSE;
8408 goto out1;
8409 }
8410 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8411
8412 if (bed->s->arch_size == 32)
8413 r_sym_shift = 8;
8414 else
8415 r_sym_shift = 32;
8416
8417 for (rel = relstart; rel < relend; rel++)
8418 {
8419 unsigned long r_symndx;
8420 asection *rsec;
8421 struct elf_link_hash_entry *h;
8422
8423 r_symndx = rel->r_info >> r_sym_shift;
8424 if (r_symndx == 0)
8425 continue;
8426
8427 if (r_symndx >= nlocsyms
8428 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8429 {
8430 h = sym_hashes[r_symndx - extsymoff];
20f0a1ad
AM
8431 while (h->root.type == bfd_link_hash_indirect
8432 || h->root.type == bfd_link_hash_warning)
8433 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796
AM
8434 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8435 }
8436 else
8437 {
8438 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8439 }
8440
8441 if (rsec && !rsec->gc_mark)
8442 {
8443 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8444 rsec->gc_mark = 1;
ccfa59ea 8445 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
c152c796
AM
8446 {
8447 ret = FALSE;
8448 goto out2;
8449 }
8450 }
8451 }
8452
8453 out2:
8454 if (elf_section_data (sec)->relocs != relstart)
8455 free (relstart);
8456 out1:
8457 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8458 {
8459 if (! info->keep_memory)
8460 free (isym);
8461 else
8462 symtab_hdr->contents = (unsigned char *) isym;
8463 }
8464 }
8465
8466 return ret;
8467}
8468
8469/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8470
8471static bfd_boolean
8472elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8473{
8474 int *idx = idxptr;
8475
8476 if (h->root.type == bfd_link_hash_warning)
8477 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8478
8479 if (h->dynindx != -1
8480 && ((h->root.type != bfd_link_hash_defined
8481 && h->root.type != bfd_link_hash_defweak)
8482 || h->root.u.def.section->gc_mark))
8483 h->dynindx = (*idx)++;
8484
8485 return TRUE;
8486}
8487
8488/* The sweep phase of garbage collection. Remove all garbage sections. */
8489
8490typedef bfd_boolean (*gc_sweep_hook_fn)
8491 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8492
8493static bfd_boolean
8494elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8495{
8496 bfd *sub;
8497
8498 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8499 {
8500 asection *o;
8501
8502 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8503 continue;
8504
8505 for (o = sub->sections; o != NULL; o = o->next)
8506 {
8507 /* Keep special sections. Keep .debug sections. */
8508 if ((o->flags & SEC_LINKER_CREATED)
8509 || (o->flags & SEC_DEBUGGING))
8510 o->gc_mark = 1;
8511
8512 if (o->gc_mark)
8513 continue;
8514
8515 /* Skip sweeping sections already excluded. */
8516 if (o->flags & SEC_EXCLUDE)
8517 continue;
8518
8519 /* Since this is early in the link process, it is simple
8520 to remove a section from the output. */
8521 o->flags |= SEC_EXCLUDE;
8522
8523 /* But we also have to update some of the relocation
8524 info we collected before. */
8525 if (gc_sweep_hook
8526 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8527 {
8528 Elf_Internal_Rela *internal_relocs;
8529 bfd_boolean r;
8530
8531 internal_relocs
8532 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8533 info->keep_memory);
8534 if (internal_relocs == NULL)
8535 return FALSE;
8536
8537 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8538
8539 if (elf_section_data (o)->relocs != internal_relocs)
8540 free (internal_relocs);
8541
8542 if (!r)
8543 return FALSE;
8544 }
8545 }
8546 }
8547
8548 /* Remove the symbols that were in the swept sections from the dynamic
8549 symbol table. GCFIXME: Anyone know how to get them out of the
8550 static symbol table as well? */
8551 {
8552 int i = 0;
8553
8554 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8555
8556 elf_hash_table (info)->dynsymcount = i;
8557 }
8558
8559 return TRUE;
8560}
8561
8562/* Propagate collected vtable information. This is called through
8563 elf_link_hash_traverse. */
8564
8565static bfd_boolean
8566elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8567{
8568 if (h->root.type == bfd_link_hash_warning)
8569 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8570
8571 /* Those that are not vtables. */
8572 if (h->vtable_parent == NULL)
8573 return TRUE;
8574
8575 /* Those vtables that do not have parents, we cannot merge. */
8576 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
8577 return TRUE;
8578
8579 /* If we've already been done, exit. */
8580 if (h->vtable_entries_used && h->vtable_entries_used[-1])
8581 return TRUE;
8582
8583 /* Make sure the parent's table is up to date. */
8584 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
8585
8586 if (h->vtable_entries_used == NULL)
8587 {
8588 /* None of this table's entries were referenced. Re-use the
8589 parent's table. */
8590 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
8591 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
8592 }
8593 else
8594 {
8595 size_t n;
8596 bfd_boolean *cu, *pu;
8597
8598 /* Or the parent's entries into ours. */
8599 cu = h->vtable_entries_used;
8600 cu[-1] = TRUE;
8601 pu = h->vtable_parent->vtable_entries_used;
8602 if (pu != NULL)
8603 {
8604 const struct elf_backend_data *bed;
8605 unsigned int log_file_align;
8606
8607 bed = get_elf_backend_data (h->root.u.def.section->owner);
8608 log_file_align = bed->s->log_file_align;
8609 n = h->vtable_parent->vtable_entries_size >> log_file_align;
8610 while (n--)
8611 {
8612 if (*pu)
8613 *cu = TRUE;
8614 pu++;
8615 cu++;
8616 }
8617 }
8618 }
8619
8620 return TRUE;
8621}
8622
8623static bfd_boolean
8624elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8625{
8626 asection *sec;
8627 bfd_vma hstart, hend;
8628 Elf_Internal_Rela *relstart, *relend, *rel;
8629 const struct elf_backend_data *bed;
8630 unsigned int log_file_align;
8631
8632 if (h->root.type == bfd_link_hash_warning)
8633 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8634
8635 /* Take care of both those symbols that do not describe vtables as
8636 well as those that are not loaded. */
8637 if (h->vtable_parent == NULL)
8638 return TRUE;
8639
8640 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8641 || h->root.type == bfd_link_hash_defweak);
8642
8643 sec = h->root.u.def.section;
8644 hstart = h->root.u.def.value;
8645 hend = hstart + h->size;
8646
8647 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8648 if (!relstart)
8649 return *(bfd_boolean *) okp = FALSE;
8650 bed = get_elf_backend_data (sec->owner);
8651 log_file_align = bed->s->log_file_align;
8652
8653 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8654
8655 for (rel = relstart; rel < relend; ++rel)
8656 if (rel->r_offset >= hstart && rel->r_offset < hend)
8657 {
8658 /* If the entry is in use, do nothing. */
8659 if (h->vtable_entries_used
8660 && (rel->r_offset - hstart) < h->vtable_entries_size)
8661 {
8662 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
8663 if (h->vtable_entries_used[entry])
8664 continue;
8665 }
8666 /* Otherwise, kill it. */
8667 rel->r_offset = rel->r_info = rel->r_addend = 0;
8668 }
8669
8670 return TRUE;
8671}
8672
715df9b8
EB
8673/* Mark sections containing dynamically referenced symbols. This is called
8674 through elf_link_hash_traverse. */
8675
8676static bfd_boolean
8677elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8678 void *okp ATTRIBUTE_UNUSED)
8679{
8680 if (h->root.type == bfd_link_hash_warning)
8681 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8682
8683 if ((h->root.type == bfd_link_hash_defined
8684 || h->root.type == bfd_link_hash_defweak)
8685 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC))
8686 h->root.u.def.section->flags |= SEC_KEEP;
8687
8688 return TRUE;
8689}
8690
c152c796
AM
8691/* Do mark and sweep of unused sections. */
8692
8693bfd_boolean
8694bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
8695{
8696 bfd_boolean ok = TRUE;
8697 bfd *sub;
8698 asection * (*gc_mark_hook)
8699 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8700 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
8701
8702 if (!get_elf_backend_data (abfd)->can_gc_sections
8703 || info->relocatable
8704 || info->emitrelocations
715df9b8
EB
8705 || info->shared
8706 || !is_elf_hash_table (info->hash))
c152c796
AM
8707 {
8708 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
8709 return TRUE;
8710 }
8711
8712 /* Apply transitive closure to the vtable entry usage info. */
8713 elf_link_hash_traverse (elf_hash_table (info),
8714 elf_gc_propagate_vtable_entries_used,
8715 &ok);
8716 if (!ok)
8717 return FALSE;
8718
8719 /* Kill the vtable relocations that were not used. */
8720 elf_link_hash_traverse (elf_hash_table (info),
8721 elf_gc_smash_unused_vtentry_relocs,
8722 &ok);
8723 if (!ok)
8724 return FALSE;
8725
715df9b8
EB
8726 /* Mark dynamically referenced symbols. */
8727 if (elf_hash_table (info)->dynamic_sections_created)
8728 elf_link_hash_traverse (elf_hash_table (info),
8729 elf_gc_mark_dynamic_ref_symbol,
8730 &ok);
8731 if (!ok)
8732 return FALSE;
c152c796 8733
715df9b8 8734 /* Grovel through relocs to find out who stays ... */
c152c796
AM
8735 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8736 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8737 {
8738 asection *o;
8739
8740 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8741 continue;
8742
8743 for (o = sub->sections; o != NULL; o = o->next)
8744 {
8745 if (o->flags & SEC_KEEP)
715df9b8
EB
8746 {
8747 /* _bfd_elf_discard_section_eh_frame knows how to discard
8748 orphaned FDEs so don't mark sections referenced by the
8749 EH frame section. */
8750 if (strcmp (o->name, ".eh_frame") == 0)
8751 o->gc_mark = 1;
ccfa59ea 8752 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
715df9b8
EB
8753 return FALSE;
8754 }
c152c796
AM
8755 }
8756 }
8757
8758 /* ... and mark SEC_EXCLUDE for those that go. */
8759 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8760 return FALSE;
8761
8762 return TRUE;
8763}
8764\f
8765/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
8766
8767bfd_boolean
8768bfd_elf_gc_record_vtinherit (bfd *abfd,
8769 asection *sec,
8770 struct elf_link_hash_entry *h,
8771 bfd_vma offset)
8772{
8773 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8774 struct elf_link_hash_entry **search, *child;
8775 bfd_size_type extsymcount;
8776 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8777
8778 /* The sh_info field of the symtab header tells us where the
8779 external symbols start. We don't care about the local symbols at
8780 this point. */
8781 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
8782 if (!elf_bad_symtab (abfd))
8783 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8784
8785 sym_hashes = elf_sym_hashes (abfd);
8786 sym_hashes_end = sym_hashes + extsymcount;
8787
8788 /* Hunt down the child symbol, which is in this section at the same
8789 offset as the relocation. */
8790 for (search = sym_hashes; search != sym_hashes_end; ++search)
8791 {
8792 if ((child = *search) != NULL
8793 && (child->root.type == bfd_link_hash_defined
8794 || child->root.type == bfd_link_hash_defweak)
8795 && child->root.u.def.section == sec
8796 && child->root.u.def.value == offset)
8797 goto win;
8798 }
8799
d003868e
AM
8800 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
8801 abfd, sec, (unsigned long) offset);
c152c796
AM
8802 bfd_set_error (bfd_error_invalid_operation);
8803 return FALSE;
8804
8805 win:
8806 if (!h)
8807 {
8808 /* This *should* only be the absolute section. It could potentially
8809 be that someone has defined a non-global vtable though, which
8810 would be bad. It isn't worth paging in the local symbols to be
8811 sure though; that case should simply be handled by the assembler. */
8812
8813 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8814 }
8815 else
8816 child->vtable_parent = h;
8817
8818 return TRUE;
8819}
8820
8821/* Called from check_relocs to record the existence of a VTENTRY reloc. */
8822
8823bfd_boolean
8824bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
8825 asection *sec ATTRIBUTE_UNUSED,
8826 struct elf_link_hash_entry *h,
8827 bfd_vma addend)
8828{
8829 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8830 unsigned int log_file_align = bed->s->log_file_align;
8831
8832 if (addend >= h->vtable_entries_size)
8833 {
8834 size_t size, bytes, file_align;
8835 bfd_boolean *ptr = h->vtable_entries_used;
8836
8837 /* While the symbol is undefined, we have to be prepared to handle
8838 a zero size. */
8839 file_align = 1 << log_file_align;
8840 if (h->root.type == bfd_link_hash_undefined)
8841 size = addend + file_align;
8842 else
8843 {
8844 size = h->size;
8845 if (addend >= size)
8846 {
8847 /* Oops! We've got a reference past the defined end of
8848 the table. This is probably a bug -- shall we warn? */
8849 size = addend + file_align;
8850 }
8851 }
8852 size = (size + file_align - 1) & -file_align;
8853
8854 /* Allocate one extra entry for use as a "done" flag for the
8855 consolidation pass. */
8856 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
8857
8858 if (ptr)
8859 {
8860 ptr = bfd_realloc (ptr - 1, bytes);
8861
8862 if (ptr != NULL)
8863 {
8864 size_t oldbytes;
8865
8866 oldbytes = (((h->vtable_entries_size >> log_file_align) + 1)
8867 * sizeof (bfd_boolean));
8868 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8869 }
8870 }
8871 else
8872 ptr = bfd_zmalloc (bytes);
8873
8874 if (ptr == NULL)
8875 return FALSE;
8876
8877 /* And arrange for that done flag to be at index -1. */
8878 h->vtable_entries_used = ptr + 1;
8879 h->vtable_entries_size = size;
8880 }
8881
8882 h->vtable_entries_used[addend >> log_file_align] = TRUE;
8883
8884 return TRUE;
8885}
8886
8887struct alloc_got_off_arg {
8888 bfd_vma gotoff;
8889 unsigned int got_elt_size;
8890};
8891
8892/* We need a special top-level link routine to convert got reference counts
8893 to real got offsets. */
8894
8895static bfd_boolean
8896elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
8897{
8898 struct alloc_got_off_arg *gofarg = arg;
8899
8900 if (h->root.type == bfd_link_hash_warning)
8901 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8902
8903 if (h->got.refcount > 0)
8904 {
8905 h->got.offset = gofarg->gotoff;
8906 gofarg->gotoff += gofarg->got_elt_size;
8907 }
8908 else
8909 h->got.offset = (bfd_vma) -1;
8910
8911 return TRUE;
8912}
8913
8914/* And an accompanying bit to work out final got entry offsets once
8915 we're done. Should be called from final_link. */
8916
8917bfd_boolean
8918bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
8919 struct bfd_link_info *info)
8920{
8921 bfd *i;
8922 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8923 bfd_vma gotoff;
8924 unsigned int got_elt_size = bed->s->arch_size / 8;
8925 struct alloc_got_off_arg gofarg;
8926
8927 if (! is_elf_hash_table (info->hash))
8928 return FALSE;
8929
8930 /* The GOT offset is relative to the .got section, but the GOT header is
8931 put into the .got.plt section, if the backend uses it. */
8932 if (bed->want_got_plt)
8933 gotoff = 0;
8934 else
8935 gotoff = bed->got_header_size;
8936
8937 /* Do the local .got entries first. */
8938 for (i = info->input_bfds; i; i = i->link_next)
8939 {
8940 bfd_signed_vma *local_got;
8941 bfd_size_type j, locsymcount;
8942 Elf_Internal_Shdr *symtab_hdr;
8943
8944 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8945 continue;
8946
8947 local_got = elf_local_got_refcounts (i);
8948 if (!local_got)
8949 continue;
8950
8951 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8952 if (elf_bad_symtab (i))
8953 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8954 else
8955 locsymcount = symtab_hdr->sh_info;
8956
8957 for (j = 0; j < locsymcount; ++j)
8958 {
8959 if (local_got[j] > 0)
8960 {
8961 local_got[j] = gotoff;
8962 gotoff += got_elt_size;
8963 }
8964 else
8965 local_got[j] = (bfd_vma) -1;
8966 }
8967 }
8968
8969 /* Then the global .got entries. .plt refcounts are handled by
8970 adjust_dynamic_symbol */
8971 gofarg.gotoff = gotoff;
8972 gofarg.got_elt_size = got_elt_size;
8973 elf_link_hash_traverse (elf_hash_table (info),
8974 elf_gc_allocate_got_offsets,
8975 &gofarg);
8976 return TRUE;
8977}
8978
8979/* Many folk need no more in the way of final link than this, once
8980 got entry reference counting is enabled. */
8981
8982bfd_boolean
8983bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
8984{
8985 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
8986 return FALSE;
8987
8988 /* Invoke the regular ELF backend linker to do all the work. */
8989 return bfd_elf_final_link (abfd, info);
8990}
8991
8992bfd_boolean
8993bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
8994{
8995 struct elf_reloc_cookie *rcookie = cookie;
8996
8997 if (rcookie->bad_symtab)
8998 rcookie->rel = rcookie->rels;
8999
9000 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9001 {
9002 unsigned long r_symndx;
9003
9004 if (! rcookie->bad_symtab)
9005 if (rcookie->rel->r_offset > offset)
9006 return FALSE;
9007 if (rcookie->rel->r_offset != offset)
9008 continue;
9009
9010 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9011 if (r_symndx == SHN_UNDEF)
9012 return TRUE;
9013
9014 if (r_symndx >= rcookie->locsymcount
9015 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9016 {
9017 struct elf_link_hash_entry *h;
9018
9019 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9020
9021 while (h->root.type == bfd_link_hash_indirect
9022 || h->root.type == bfd_link_hash_warning)
9023 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9024
9025 if ((h->root.type == bfd_link_hash_defined
9026 || h->root.type == bfd_link_hash_defweak)
9027 && elf_discarded_section (h->root.u.def.section))
9028 return TRUE;
9029 else
9030 return FALSE;
9031 }
9032 else
9033 {
9034 /* It's not a relocation against a global symbol,
9035 but it could be a relocation against a local
9036 symbol for a discarded section. */
9037 asection *isec;
9038 Elf_Internal_Sym *isym;
9039
9040 /* Need to: get the symbol; get the section. */
9041 isym = &rcookie->locsyms[r_symndx];
9042 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9043 {
9044 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9045 if (isec != NULL && elf_discarded_section (isec))
9046 return TRUE;
9047 }
9048 }
9049 return FALSE;
9050 }
9051 return FALSE;
9052}
9053
9054/* Discard unneeded references to discarded sections.
9055 Returns TRUE if any section's size was changed. */
9056/* This function assumes that the relocations are in sorted order,
9057 which is true for all known assemblers. */
9058
9059bfd_boolean
9060bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9061{
9062 struct elf_reloc_cookie cookie;
9063 asection *stab, *eh;
9064 Elf_Internal_Shdr *symtab_hdr;
9065 const struct elf_backend_data *bed;
9066 bfd *abfd;
9067 unsigned int count;
9068 bfd_boolean ret = FALSE;
9069
9070 if (info->traditional_format
9071 || !is_elf_hash_table (info->hash))
9072 return FALSE;
9073
9074 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9075 {
9076 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9077 continue;
9078
9079 bed = get_elf_backend_data (abfd);
9080
9081 if ((abfd->flags & DYNAMIC) != 0)
9082 continue;
9083
9084 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9085 if (info->relocatable
9086 || (eh != NULL
eea6121a 9087 && (eh->size == 0
c152c796
AM
9088 || bfd_is_abs_section (eh->output_section))))
9089 eh = NULL;
9090
9091 stab = bfd_get_section_by_name (abfd, ".stab");
9092 if (stab != NULL
eea6121a 9093 && (stab->size == 0
c152c796
AM
9094 || bfd_is_abs_section (stab->output_section)
9095 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9096 stab = NULL;
9097
9098 if (stab == NULL
9099 && eh == NULL
9100 && bed->elf_backend_discard_info == NULL)
9101 continue;
9102
9103 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9104 cookie.abfd = abfd;
9105 cookie.sym_hashes = elf_sym_hashes (abfd);
9106 cookie.bad_symtab = elf_bad_symtab (abfd);
9107 if (cookie.bad_symtab)
9108 {
9109 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9110 cookie.extsymoff = 0;
9111 }
9112 else
9113 {
9114 cookie.locsymcount = symtab_hdr->sh_info;
9115 cookie.extsymoff = symtab_hdr->sh_info;
9116 }
9117
9118 if (bed->s->arch_size == 32)
9119 cookie.r_sym_shift = 8;
9120 else
9121 cookie.r_sym_shift = 32;
9122
9123 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9124 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9125 {
9126 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9127 cookie.locsymcount, 0,
9128 NULL, NULL, NULL);
9129 if (cookie.locsyms == NULL)
9130 return FALSE;
9131 }
9132
9133 if (stab != NULL)
9134 {
9135 cookie.rels = NULL;
9136 count = stab->reloc_count;
9137 if (count != 0)
9138 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9139 info->keep_memory);
9140 if (cookie.rels != NULL)
9141 {
9142 cookie.rel = cookie.rels;
9143 cookie.relend = cookie.rels;
9144 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9145 if (_bfd_discard_section_stabs (abfd, stab,
9146 elf_section_data (stab)->sec_info,
9147 bfd_elf_reloc_symbol_deleted_p,
9148 &cookie))
9149 ret = TRUE;
9150 if (elf_section_data (stab)->relocs != cookie.rels)
9151 free (cookie.rels);
9152 }
9153 }
9154
9155 if (eh != NULL)
9156 {
9157 cookie.rels = NULL;
9158 count = eh->reloc_count;
9159 if (count != 0)
9160 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9161 info->keep_memory);
9162 cookie.rel = cookie.rels;
9163 cookie.relend = cookie.rels;
9164 if (cookie.rels != NULL)
9165 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9166
9167 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9168 bfd_elf_reloc_symbol_deleted_p,
9169 &cookie))
9170 ret = TRUE;
9171
9172 if (cookie.rels != NULL
9173 && elf_section_data (eh)->relocs != cookie.rels)
9174 free (cookie.rels);
9175 }
9176
9177 if (bed->elf_backend_discard_info != NULL
9178 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9179 ret = TRUE;
9180
9181 if (cookie.locsyms != NULL
9182 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9183 {
9184 if (! info->keep_memory)
9185 free (cookie.locsyms);
9186 else
9187 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9188 }
9189 }
9190
9191 if (info->eh_frame_hdr
9192 && !info->relocatable
9193 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9194 ret = TRUE;
9195
9196 return ret;
9197}
082b7297 9198
3d7f7666
L
9199struct already_linked_section
9200{
9201 asection *sec;
9202 asection *linked;
9203};
9204
9205/* Check if the member of a single member comdat group matches a
9206 linkonce section and vice versa. */
9207static bfd_boolean
9208try_match_symbols_in_sections
9209 (struct bfd_section_already_linked_hash_entry *h, void *info)
9210{
9211 struct bfd_section_already_linked *l;
9212 struct already_linked_section *s
9213 = (struct already_linked_section *) info;
9214
9215 if (elf_sec_group (s->sec) == NULL)
9216 {
9217 /* It is a linkonce section. Try to match it with the member of a
9218 single member comdat group. */
9219 for (l = h->entry; l != NULL; l = l->next)
9220 if ((l->sec->flags & SEC_GROUP))
9221 {
9222 asection *first = elf_next_in_group (l->sec);
9223
9224 if (first != NULL
9225 && elf_next_in_group (first) == first
9226 && bfd_elf_match_symbols_in_sections (first, s->sec))
9227 {
9228 s->linked = first;
9229 return FALSE;
9230 }
9231 }
9232 }
9233 else
9234 {
9235 /* It is the member of a single member comdat group. Try to match
9236 it with a linkonce section. */
9237 for (l = h->entry; l != NULL; l = l->next)
9238 if ((l->sec->flags & SEC_GROUP) == 0
9239 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9240 && bfd_elf_match_symbols_in_sections (l->sec, s->sec))
9241 {
9242 s->linked = l->sec;
9243 return FALSE;
9244 }
9245 }
9246
9247 return TRUE;
9248}
9249
9250static bfd_boolean
9251already_linked (asection *sec, asection *group)
9252{
9253 struct already_linked_section result;
9254
9255 result.sec = sec;
9256 result.linked = NULL;
9257
9258 bfd_section_already_linked_table_traverse
9259 (try_match_symbols_in_sections, &result);
9260
9261 if (result.linked)
9262 {
9263 sec->output_section = bfd_abs_section_ptr;
9264 sec->kept_section = result.linked;
9265
9266 /* Also discard the group section. */
9267 if (group)
9268 group->output_section = bfd_abs_section_ptr;
9269
9270 return TRUE;
9271 }
9272
9273 return FALSE;
9274}
9275
082b7297
L
9276void
9277_bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9278{
9279 flagword flags;
9280 const char *name;
9281 struct bfd_section_already_linked *l;
9282 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666
L
9283 asection *group;
9284
9285 /* A single member comdat group section may be discarded by a
9286 linkonce section. See below. */
9287 if (sec->output_section == bfd_abs_section_ptr)
9288 return;
082b7297
L
9289
9290 flags = sec->flags;
3d7f7666
L
9291
9292 /* Check if it belongs to a section group. */
9293 group = elf_sec_group (sec);
9294
9295 /* Return if it isn't a linkonce section nor a member of a group. A
9296 comdat group section also has SEC_LINK_ONCE set. */
9297 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
082b7297
L
9298 return;
9299
3d7f7666
L
9300 if (group)
9301 {
9302 /* If this is the member of a single member comdat group, check if
9303 the group should be discarded. */
9304 if (elf_next_in_group (sec) == sec
9305 && (group->flags & SEC_LINK_ONCE) != 0)
9306 sec = group;
9307 else
9308 return;
9309 }
9310
082b7297
L
9311 /* FIXME: When doing a relocatable link, we may have trouble
9312 copying relocations in other sections that refer to local symbols
9313 in the section being discarded. Those relocations will have to
9314 be converted somehow; as of this writing I'm not sure that any of
9315 the backends handle that correctly.
9316
9317 It is tempting to instead not discard link once sections when
9318 doing a relocatable link (technically, they should be discarded
9319 whenever we are building constructors). However, that fails,
9320 because the linker winds up combining all the link once sections
9321 into a single large link once section, which defeats the purpose
9322 of having link once sections in the first place.
9323
9324 Also, not merging link once sections in a relocatable link
9325 causes trouble for MIPS ELF, which relies on link once semantics
9326 to handle the .reginfo section correctly. */
9327
9328 name = bfd_get_section_name (abfd, sec);
9329
9330 already_linked_list = bfd_section_already_linked_table_lookup (name);
9331
9332 for (l = already_linked_list->entry; l != NULL; l = l->next)
9333 {
9334 /* We may have 3 different sections on the list: group section,
9335 comdat section and linkonce section. SEC may be a linkonce or
9336 group section. We match a group section with a group section,
9337 a linkonce section with a linkonce section, and ignore comdat
9338 section. */
3d7f7666 9339 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
082b7297
L
9340 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9341 {
9342 /* The section has already been linked. See if we should
9343 issue a warning. */
9344 switch (flags & SEC_LINK_DUPLICATES)
9345 {
9346 default:
9347 abort ();
9348
9349 case SEC_LINK_DUPLICATES_DISCARD:
9350 break;
9351
9352 case SEC_LINK_DUPLICATES_ONE_ONLY:
9353 (*_bfd_error_handler)
d003868e
AM
9354 (_("%B: ignoring duplicate section `%A'\n"),
9355 abfd, sec);
082b7297
L
9356 break;
9357
9358 case SEC_LINK_DUPLICATES_SAME_SIZE:
9359 if (sec->size != l->sec->size)
9360 (*_bfd_error_handler)
d003868e
AM
9361 (_("%B: duplicate section `%A' has different size\n"),
9362 abfd, sec);
082b7297
L
9363 break;
9364 }
9365
9366 /* Set the output_section field so that lang_add_section
9367 does not create a lang_input_section structure for this
9368 section. Since there might be a symbol in the section
9369 being discarded, we must retain a pointer to the section
9370 which we are really going to use. */
9371 sec->output_section = bfd_abs_section_ptr;
9372 sec->kept_section = l->sec;
9373
9374 if (flags & SEC_GROUP)
3d7f7666
L
9375 {
9376 asection *first = elf_next_in_group (sec);
9377 asection *s = first;
9378
9379 while (s != NULL)
9380 {
9381 s->output_section = bfd_abs_section_ptr;
9382 /* Record which group discards it. */
9383 s->kept_section = l->sec;
9384 s = elf_next_in_group (s);
9385 /* These lists are circular. */
9386 if (s == first)
9387 break;
9388 }
9389 }
082b7297
L
9390
9391 return;
9392 }
9393 }
9394
3d7f7666
L
9395 if (group)
9396 {
9397 /* If this is the member of a single member comdat group and the
9398 group hasn't be discarded, we check if it matches a linkonce
9399 section. We only record the discarded comdat group. Otherwise
9400 the undiscarded group will be discarded incorrectly later since
9401 itself has been recorded. */
9402 if (! already_linked (elf_next_in_group (sec), group))
9403 return;
9404 }
9405 else
9406 /* There is no direct match. But for linkonce section, we should
9407 check if there is a match with comdat group member. We always
9408 record the linkonce section, discarded or not. */
9409 already_linked (sec, group);
9410
082b7297
L
9411 /* This is the first section with this name. Record it. */
9412 bfd_section_already_linked_table_insert (already_linked_list, sec);
9413}