]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elfnn-aarch64.c
Add const qualifiers at various places.
[thirdparty/binutils-gdb.git] / bfd / elfnn-aarch64.c
CommitLineData
cec5225b 1/* AArch64-specific support for NN-bit ELF.
6f2750fe 2 Copyright (C) 2009-2016 Free Software Foundation, Inc.
a06ea964
NC
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21/* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
418009c2 43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
a06ea964
NC
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
a6bb11b2 53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
a06ea964
NC
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
a6bb11b2 67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
a06ea964
NC
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
a6bb11b2 72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
a06ea964
NC
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
cec5225b 95 elfNN_aarch64_check_relocs()
a06ea964
NC
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
a6bb11b2 100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
a06ea964
NC
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
cec5225b 107 elfNN_aarch64_allocate_dynrelocs ()
a06ea964
NC
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
cec5225b 115 elfNN_aarch64_size_dynamic_sections ()
a06ea964
NC
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
cec5225b 122 elfNN_aarch64_relocate_section ()
a06ea964 123
cec5225b 124 Calls elfNN_aarch64_final_link_relocate ()
a06ea964
NC
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
cec5225b 134 elfNN_aarch64_final_link_relocate ()
a06ea964
NC
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138#include "sysdep.h"
139#include "bfd.h"
140#include "libiberty.h"
141#include "libbfd.h"
142#include "bfd_stdint.h"
143#include "elf-bfd.h"
144#include "bfdlink.h"
1419bbe5 145#include "objalloc.h"
a06ea964 146#include "elf/aarch64.h"
caed7120 147#include "elfxx-aarch64.h"
a06ea964 148
cec5225b
YZ
149#define ARCH_SIZE NN
150
151#if ARCH_SIZE == 64
152#define AARCH64_R(NAME) R_AARCH64_ ## NAME
153#define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
a6bb11b2
YZ
154#define HOWTO64(...) HOWTO (__VA_ARGS__)
155#define HOWTO32(...) EMPTY_HOWTO (0)
cec5225b
YZ
156#define LOG_FILE_ALIGN 3
157#endif
158
159#if ARCH_SIZE == 32
160#define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161#define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
a6bb11b2
YZ
162#define HOWTO64(...) EMPTY_HOWTO (0)
163#define HOWTO32(...) HOWTO (__VA_ARGS__)
cec5225b
YZ
164#define LOG_FILE_ALIGN 2
165#endif
166
a6bb11b2 167#define IS_AARCH64_TLS_RELOC(R_TYPE) \
4c0a9a6f
JW
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
3c12b054 170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
3e8286c0 171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
1aa66fb1 172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
a6bb11b2 173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
a6bb11b2 174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
4c0a9a6f 175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
a6bb11b2 176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
4c0a9a6f
JW
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
6ffe9a1b 179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
40fbed84 180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
753999c1 181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
73f925cc 182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
f69e4920 183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
77a69ff8 184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
07c9aa07
JW
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
6ffe9a1b
JW
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
a6bb11b2 198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
4c0a9a6f 199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
a6bb11b2 200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
a6bb11b2
YZ
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
4c0a9a6f
JW
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
a6bb11b2
YZ
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
a06ea964
NC
209 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
210
9331eea1 211#define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
0484b454
RL
212 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
4af68b9c
JW
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
0484b454
RL
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
4af68b9c 223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
9331eea1
JW
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
ac734732
RL
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
9331eea1
JW
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
259364ad
JW
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
4af68b9c 233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
9331eea1 234
a6bb11b2 235#define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
4c0a9a6f
JW
236 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
a6bb11b2 239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
389b8029 240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
4c0a9a6f 241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
a6bb11b2 242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
4c0a9a6f 243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
a6bb11b2 244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
4c0a9a6f
JW
245 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
246 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
a06ea964
NC
248
249#define ELIMINATE_COPY_RELOCS 0
250
a06ea964 251/* Return size of a relocation entry. HTAB is the bfd's
cec5225b
YZ
252 elf_aarch64_link_hash_entry. */
253#define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
a06ea964 254
cec5225b
YZ
255/* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
256#define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
a06ea964
NC
257#define PLT_ENTRY_SIZE (32)
258#define PLT_SMALL_ENTRY_SIZE (16)
259#define PLT_TLSDESC_ENTRY_SIZE (32)
260
a06ea964
NC
261/* Encoding of the nop instruction */
262#define INSN_NOP 0xd503201f
263
264#define aarch64_compute_jump_table_size(htab) \
265 (((htab)->root.srelplt == NULL) ? 0 \
266 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
267
268/* The first entry in a procedure linkage table looks like this
269 if the distance between the PLTGOT and the PLT is < 4GB use
270 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
271 in x16 and needs to work out PLTGOT[1] by using an address of
cec5225b
YZ
272 [x16,#-GOT_ENTRY_SIZE]. */
273static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
a06ea964
NC
274{
275 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
276 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
caed7120 277#if ARCH_SIZE == 64
a06ea964
NC
278 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
279 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
caed7120
YZ
280#else
281 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
282 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
283#endif
a06ea964
NC
284 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
285 0x1f, 0x20, 0x03, 0xd5, /* nop */
286 0x1f, 0x20, 0x03, 0xd5, /* nop */
287 0x1f, 0x20, 0x03, 0xd5, /* nop */
288};
289
290/* Per function entry in a procedure linkage table looks like this
291 if the distance between the PLTGOT and the PLT is < 4GB use
292 these PLT entries. */
cec5225b 293static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
a06ea964
NC
294{
295 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
caed7120 296#if ARCH_SIZE == 64
a06ea964
NC
297 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
298 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
caed7120
YZ
299#else
300 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
301 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
302#endif
a06ea964
NC
303 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
304};
305
306static const bfd_byte
cec5225b 307elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
a06ea964
NC
308{
309 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
310 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
311 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
caed7120
YZ
312#if ARCH_SIZE == 64
313 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
a06ea964 314 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
caed7120
YZ
315#else
316 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
317 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
318#endif
319 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
a06ea964
NC
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322};
323
cec5225b
YZ
324#define elf_info_to_howto elfNN_aarch64_info_to_howto
325#define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
a06ea964
NC
326
327#define AARCH64_ELF_ABI_VERSION 0
a06ea964
NC
328
329/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
330#define ALL_ONES (~ (bfd_vma) 0)
331
a6bb11b2
YZ
332/* Indexed by the bfd interal reloc enumerators.
333 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
334 in reloc.c. */
a06ea964 335
a6bb11b2 336static reloc_howto_type elfNN_aarch64_howto_table[] =
a06ea964 337{
a6bb11b2 338 EMPTY_HOWTO (0),
a06ea964 339
a6bb11b2 340 /* Basic data relocations. */
a06ea964 341
a6bb11b2
YZ
342#if ARCH_SIZE == 64
343 HOWTO (R_AARCH64_NULL, /* type */
a06ea964 344 0, /* rightshift */
6346d5ca 345 3, /* size (0 = byte, 1 = short, 2 = long) */
a6bb11b2 346 0, /* bitsize */
a06ea964
NC
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_dont, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 351 "R_AARCH64_NULL", /* name */
a06ea964
NC
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
a6bb11b2 354 0, /* dst_mask */
a06ea964 355 FALSE), /* pcrel_offset */
a6bb11b2
YZ
356#else
357 HOWTO (R_AARCH64_NONE, /* type */
a06ea964 358 0, /* rightshift */
6346d5ca 359 3, /* size (0 = byte, 1 = short, 2 = long) */
a06ea964
NC
360 0, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_dont, /* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 365 "R_AARCH64_NONE", /* name */
a06ea964
NC
366 FALSE, /* partial_inplace */
367 0, /* src_mask */
368 0, /* dst_mask */
369 FALSE), /* pcrel_offset */
a6bb11b2 370#endif
a06ea964
NC
371
372 /* .xword: (S+A) */
a6bb11b2 373 HOWTO64 (AARCH64_R (ABS64), /* type */
a06ea964
NC
374 0, /* rightshift */
375 4, /* size (4 = long long) */
376 64, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_unsigned, /* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 381 AARCH64_R_STR (ABS64), /* name */
a06ea964
NC
382 FALSE, /* partial_inplace */
383 ALL_ONES, /* src_mask */
384 ALL_ONES, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 /* .word: (S+A) */
a6bb11b2 388 HOWTO (AARCH64_R (ABS32), /* type */
a06ea964
NC
389 0, /* rightshift */
390 2, /* size (0 = byte, 1 = short, 2 = long) */
391 32, /* bitsize */
392 FALSE, /* pc_relative */
393 0, /* bitpos */
394 complain_overflow_unsigned, /* complain_on_overflow */
395 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 396 AARCH64_R_STR (ABS32), /* name */
a06ea964
NC
397 FALSE, /* partial_inplace */
398 0xffffffff, /* src_mask */
399 0xffffffff, /* dst_mask */
400 FALSE), /* pcrel_offset */
401
402 /* .half: (S+A) */
a6bb11b2 403 HOWTO (AARCH64_R (ABS16), /* type */
a06ea964
NC
404 0, /* rightshift */
405 1, /* size (0 = byte, 1 = short, 2 = long) */
406 16, /* bitsize */
407 FALSE, /* pc_relative */
408 0, /* bitpos */
409 complain_overflow_unsigned, /* complain_on_overflow */
410 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 411 AARCH64_R_STR (ABS16), /* name */
a06ea964
NC
412 FALSE, /* partial_inplace */
413 0xffff, /* src_mask */
414 0xffff, /* dst_mask */
415 FALSE), /* pcrel_offset */
416
417 /* .xword: (S+A-P) */
a6bb11b2 418 HOWTO64 (AARCH64_R (PREL64), /* type */
a06ea964
NC
419 0, /* rightshift */
420 4, /* size (4 = long long) */
421 64, /* bitsize */
422 TRUE, /* pc_relative */
423 0, /* bitpos */
424 complain_overflow_signed, /* complain_on_overflow */
425 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 426 AARCH64_R_STR (PREL64), /* name */
a06ea964
NC
427 FALSE, /* partial_inplace */
428 ALL_ONES, /* src_mask */
429 ALL_ONES, /* dst_mask */
430 TRUE), /* pcrel_offset */
431
432 /* .word: (S+A-P) */
a6bb11b2 433 HOWTO (AARCH64_R (PREL32), /* type */
a06ea964
NC
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_signed, /* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 441 AARCH64_R_STR (PREL32), /* name */
a06ea964
NC
442 FALSE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 /* .half: (S+A-P) */
a6bb11b2 448 HOWTO (AARCH64_R (PREL16), /* type */
a06ea964
NC
449 0, /* rightshift */
450 1, /* size (0 = byte, 1 = short, 2 = long) */
451 16, /* bitsize */
452 TRUE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_signed, /* complain_on_overflow */
455 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 456 AARCH64_R_STR (PREL16), /* name */
a06ea964
NC
457 FALSE, /* partial_inplace */
458 0xffff, /* src_mask */
459 0xffff, /* dst_mask */
460 TRUE), /* pcrel_offset */
461
462 /* Group relocations to create a 16, 32, 48 or 64 bit
463 unsigned data or abs address inline. */
464
465 /* MOVZ: ((S+A) >> 0) & 0xffff */
a6bb11b2 466 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
a06ea964
NC
467 0, /* rightshift */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
469 16, /* bitsize */
470 FALSE, /* pc_relative */
471 0, /* bitpos */
472 complain_overflow_unsigned, /* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 474 AARCH64_R_STR (MOVW_UABS_G0), /* name */
a06ea964
NC
475 FALSE, /* partial_inplace */
476 0xffff, /* src_mask */
477 0xffff, /* dst_mask */
478 FALSE), /* pcrel_offset */
479
480 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
a6bb11b2 481 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
a06ea964
NC
482 0, /* rightshift */
483 2, /* size (0 = byte, 1 = short, 2 = long) */
484 16, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_dont, /* complain_on_overflow */
488 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 489 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
a06ea964
NC
490 FALSE, /* partial_inplace */
491 0xffff, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 /* MOVZ: ((S+A) >> 16) & 0xffff */
a6bb11b2 496 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
a06ea964
NC
497 16, /* rightshift */
498 2, /* size (0 = byte, 1 = short, 2 = long) */
499 16, /* bitsize */
500 FALSE, /* pc_relative */
501 0, /* bitpos */
502 complain_overflow_unsigned, /* complain_on_overflow */
503 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 504 AARCH64_R_STR (MOVW_UABS_G1), /* name */
a06ea964
NC
505 FALSE, /* partial_inplace */
506 0xffff, /* src_mask */
507 0xffff, /* dst_mask */
508 FALSE), /* pcrel_offset */
509
510 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
a6bb11b2 511 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
a06ea964
NC
512 16, /* rightshift */
513 2, /* size (0 = byte, 1 = short, 2 = long) */
514 16, /* bitsize */
515 FALSE, /* pc_relative */
516 0, /* bitpos */
517 complain_overflow_dont, /* complain_on_overflow */
518 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 519 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
a06ea964
NC
520 FALSE, /* partial_inplace */
521 0xffff, /* src_mask */
522 0xffff, /* dst_mask */
523 FALSE), /* pcrel_offset */
524
525 /* MOVZ: ((S+A) >> 32) & 0xffff */
a6bb11b2 526 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
a06ea964
NC
527 32, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 16, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_unsigned, /* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 534 AARCH64_R_STR (MOVW_UABS_G2), /* name */
a06ea964
NC
535 FALSE, /* partial_inplace */
536 0xffff, /* src_mask */
537 0xffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
a6bb11b2 541 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
a06ea964
NC
542 32, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 16, /* bitsize */
545 FALSE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_dont, /* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 549 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
a06ea964
NC
550 FALSE, /* partial_inplace */
551 0xffff, /* src_mask */
552 0xffff, /* dst_mask */
553 FALSE), /* pcrel_offset */
554
555 /* MOVZ: ((S+A) >> 48) & 0xffff */
a6bb11b2 556 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
a06ea964
NC
557 48, /* rightshift */
558 2, /* size (0 = byte, 1 = short, 2 = long) */
559 16, /* bitsize */
560 FALSE, /* pc_relative */
561 0, /* bitpos */
562 complain_overflow_unsigned, /* complain_on_overflow */
563 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 564 AARCH64_R_STR (MOVW_UABS_G3), /* name */
a06ea964
NC
565 FALSE, /* partial_inplace */
566 0xffff, /* src_mask */
567 0xffff, /* dst_mask */
568 FALSE), /* pcrel_offset */
569
570 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
571 signed data or abs address inline. Will change instruction
572 to MOVN or MOVZ depending on sign of calculated value. */
573
574 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
a6bb11b2 575 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
a06ea964
NC
576 0, /* rightshift */
577 2, /* size (0 = byte, 1 = short, 2 = long) */
c5e3a364 578 17, /* bitsize */
a06ea964
NC
579 FALSE, /* pc_relative */
580 0, /* bitpos */
581 complain_overflow_signed, /* complain_on_overflow */
582 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 583 AARCH64_R_STR (MOVW_SABS_G0), /* name */
a06ea964
NC
584 FALSE, /* partial_inplace */
585 0xffff, /* src_mask */
586 0xffff, /* dst_mask */
587 FALSE), /* pcrel_offset */
588
589 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
a6bb11b2 590 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
a06ea964
NC
591 16, /* rightshift */
592 2, /* size (0 = byte, 1 = short, 2 = long) */
c5e3a364 593 17, /* bitsize */
a06ea964
NC
594 FALSE, /* pc_relative */
595 0, /* bitpos */
596 complain_overflow_signed, /* complain_on_overflow */
597 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 598 AARCH64_R_STR (MOVW_SABS_G1), /* name */
a06ea964
NC
599 FALSE, /* partial_inplace */
600 0xffff, /* src_mask */
601 0xffff, /* dst_mask */
602 FALSE), /* pcrel_offset */
603
604 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
a6bb11b2 605 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
a06ea964
NC
606 32, /* rightshift */
607 2, /* size (0 = byte, 1 = short, 2 = long) */
c5e3a364 608 17, /* bitsize */
a06ea964
NC
609 FALSE, /* pc_relative */
610 0, /* bitpos */
611 complain_overflow_signed, /* complain_on_overflow */
612 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 613 AARCH64_R_STR (MOVW_SABS_G2), /* name */
a06ea964
NC
614 FALSE, /* partial_inplace */
615 0xffff, /* src_mask */
616 0xffff, /* dst_mask */
617 FALSE), /* pcrel_offset */
618
619/* Relocations to generate 19, 21 and 33 bit PC-relative load/store
620 addresses: PG(x) is (x & ~0xfff). */
621
622 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 623 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
a06ea964
NC
624 2, /* rightshift */
625 2, /* size (0 = byte, 1 = short, 2 = long) */
626 19, /* bitsize */
627 TRUE, /* pc_relative */
628 0, /* bitpos */
629 complain_overflow_signed, /* complain_on_overflow */
630 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 631 AARCH64_R_STR (LD_PREL_LO19), /* name */
a06ea964
NC
632 FALSE, /* partial_inplace */
633 0x7ffff, /* src_mask */
634 0x7ffff, /* dst_mask */
635 TRUE), /* pcrel_offset */
636
637 /* ADR: (S+A-P) & 0x1fffff */
a6bb11b2 638 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
a06ea964
NC
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 21, /* bitsize */
642 TRUE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_signed, /* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 646 AARCH64_R_STR (ADR_PREL_LO21), /* name */
a06ea964
NC
647 FALSE, /* partial_inplace */
648 0x1fffff, /* src_mask */
649 0x1fffff, /* dst_mask */
650 TRUE), /* pcrel_offset */
651
652 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
a6bb11b2 653 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
a06ea964
NC
654 12, /* rightshift */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
656 21, /* bitsize */
657 TRUE, /* pc_relative */
658 0, /* bitpos */
659 complain_overflow_signed, /* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 661 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
a06ea964
NC
662 FALSE, /* partial_inplace */
663 0x1fffff, /* src_mask */
664 0x1fffff, /* dst_mask */
665 TRUE), /* pcrel_offset */
666
667 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
a6bb11b2 668 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
a06ea964
NC
669 12, /* rightshift */
670 2, /* size (0 = byte, 1 = short, 2 = long) */
671 21, /* bitsize */
672 TRUE, /* pc_relative */
673 0, /* bitpos */
674 complain_overflow_dont, /* complain_on_overflow */
675 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 676 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
a06ea964
NC
677 FALSE, /* partial_inplace */
678 0x1fffff, /* src_mask */
679 0x1fffff, /* dst_mask */
680 TRUE), /* pcrel_offset */
681
682 /* ADD: (S+A) & 0xfff [no overflow check] */
a6bb11b2 683 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
a06ea964
NC
684 0, /* rightshift */
685 2, /* size (0 = byte, 1 = short, 2 = long) */
686 12, /* bitsize */
687 FALSE, /* pc_relative */
688 10, /* bitpos */
689 complain_overflow_dont, /* complain_on_overflow */
690 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 691 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
a06ea964
NC
692 FALSE, /* partial_inplace */
693 0x3ffc00, /* src_mask */
694 0x3ffc00, /* dst_mask */
695 FALSE), /* pcrel_offset */
696
697 /* LD/ST8: (S+A) & 0xfff */
a6bb11b2 698 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
a06ea964
NC
699 0, /* rightshift */
700 2, /* size (0 = byte, 1 = short, 2 = long) */
701 12, /* bitsize */
702 FALSE, /* pc_relative */
703 0, /* bitpos */
704 complain_overflow_dont, /* complain_on_overflow */
705 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 706 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
a06ea964
NC
707 FALSE, /* partial_inplace */
708 0xfff, /* src_mask */
709 0xfff, /* dst_mask */
710 FALSE), /* pcrel_offset */
711
712 /* Relocations for control-flow instructions. */
713
714 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
a6bb11b2 715 HOWTO (AARCH64_R (TSTBR14), /* type */
a06ea964
NC
716 2, /* rightshift */
717 2, /* size (0 = byte, 1 = short, 2 = long) */
718 14, /* bitsize */
719 TRUE, /* pc_relative */
720 0, /* bitpos */
721 complain_overflow_signed, /* complain_on_overflow */
722 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 723 AARCH64_R_STR (TSTBR14), /* name */
a06ea964
NC
724 FALSE, /* partial_inplace */
725 0x3fff, /* src_mask */
726 0x3fff, /* dst_mask */
727 TRUE), /* pcrel_offset */
728
729 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 730 HOWTO (AARCH64_R (CONDBR19), /* type */
a06ea964
NC
731 2, /* rightshift */
732 2, /* size (0 = byte, 1 = short, 2 = long) */
733 19, /* bitsize */
734 TRUE, /* pc_relative */
735 0, /* bitpos */
736 complain_overflow_signed, /* complain_on_overflow */
737 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 738 AARCH64_R_STR (CONDBR19), /* name */
a06ea964
NC
739 FALSE, /* partial_inplace */
740 0x7ffff, /* src_mask */
741 0x7ffff, /* dst_mask */
742 TRUE), /* pcrel_offset */
743
a06ea964 744 /* B: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 745 HOWTO (AARCH64_R (JUMP26), /* type */
a06ea964
NC
746 2, /* rightshift */
747 2, /* size (0 = byte, 1 = short, 2 = long) */
748 26, /* bitsize */
749 TRUE, /* pc_relative */
750 0, /* bitpos */
751 complain_overflow_signed, /* complain_on_overflow */
752 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 753 AARCH64_R_STR (JUMP26), /* name */
a06ea964
NC
754 FALSE, /* partial_inplace */
755 0x3ffffff, /* src_mask */
756 0x3ffffff, /* dst_mask */
757 TRUE), /* pcrel_offset */
758
759 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 760 HOWTO (AARCH64_R (CALL26), /* type */
a06ea964
NC
761 2, /* rightshift */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
763 26, /* bitsize */
764 TRUE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_signed, /* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 768 AARCH64_R_STR (CALL26), /* name */
a06ea964
NC
769 FALSE, /* partial_inplace */
770 0x3ffffff, /* src_mask */
771 0x3ffffff, /* dst_mask */
772 TRUE), /* pcrel_offset */
773
774 /* LD/ST16: (S+A) & 0xffe */
a6bb11b2 775 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
a06ea964
NC
776 1, /* rightshift */
777 2, /* size (0 = byte, 1 = short, 2 = long) */
778 12, /* bitsize */
779 FALSE, /* pc_relative */
780 0, /* bitpos */
781 complain_overflow_dont, /* complain_on_overflow */
782 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 783 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
a06ea964
NC
784 FALSE, /* partial_inplace */
785 0xffe, /* src_mask */
786 0xffe, /* dst_mask */
787 FALSE), /* pcrel_offset */
788
789 /* LD/ST32: (S+A) & 0xffc */
a6bb11b2 790 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
a06ea964
NC
791 2, /* rightshift */
792 2, /* size (0 = byte, 1 = short, 2 = long) */
793 12, /* bitsize */
794 FALSE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_dont, /* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 798 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
a06ea964
NC
799 FALSE, /* partial_inplace */
800 0xffc, /* src_mask */
801 0xffc, /* dst_mask */
802 FALSE), /* pcrel_offset */
803
804 /* LD/ST64: (S+A) & 0xff8 */
a6bb11b2 805 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
a06ea964
NC
806 3, /* rightshift */
807 2, /* size (0 = byte, 1 = short, 2 = long) */
808 12, /* bitsize */
809 FALSE, /* pc_relative */
810 0, /* bitpos */
811 complain_overflow_dont, /* complain_on_overflow */
812 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 813 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
a06ea964
NC
814 FALSE, /* partial_inplace */
815 0xff8, /* src_mask */
816 0xff8, /* dst_mask */
817 FALSE), /* pcrel_offset */
818
a06ea964 819 /* LD/ST128: (S+A) & 0xff0 */
a6bb11b2 820 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
a06ea964
NC
821 4, /* rightshift */
822 2, /* size (0 = byte, 1 = short, 2 = long) */
823 12, /* bitsize */
824 FALSE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_dont, /* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 828 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
a06ea964
NC
829 FALSE, /* partial_inplace */
830 0xff0, /* src_mask */
831 0xff0, /* dst_mask */
832 FALSE), /* pcrel_offset */
833
f41aef5f
RE
834 /* Set a load-literal immediate field to bits
835 0x1FFFFC of G(S)-P */
a6bb11b2 836 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
f41aef5f
RE
837 2, /* rightshift */
838 2, /* size (0 = byte,1 = short,2 = long) */
839 19, /* bitsize */
840 TRUE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_signed, /* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 844 AARCH64_R_STR (GOT_LD_PREL19), /* name */
f41aef5f
RE
845 FALSE, /* partial_inplace */
846 0xffffe0, /* src_mask */
847 0xffffe0, /* dst_mask */
848 TRUE), /* pcrel_offset */
849
a06ea964
NC
850 /* Get to the page for the GOT entry for the symbol
851 (G(S) - P) using an ADRP instruction. */
a6bb11b2 852 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
a06ea964
NC
853 12, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 21, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 860 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
a06ea964
NC
861 FALSE, /* partial_inplace */
862 0x1fffff, /* src_mask */
863 0x1fffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
a6bb11b2
YZ
866 /* LD64: GOT offset G(S) & 0xff8 */
867 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
a06ea964
NC
868 3, /* rightshift */
869 2, /* size (0 = byte, 1 = short, 2 = long) */
870 12, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 875 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
a06ea964
NC
876 FALSE, /* partial_inplace */
877 0xff8, /* src_mask */
878 0xff8, /* dst_mask */
a6bb11b2 879 FALSE), /* pcrel_offset */
a06ea964 880
a6bb11b2
YZ
881 /* LD32: GOT offset G(S) & 0xffc */
882 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
883 2, /* rightshift */
884 2, /* size (0 = byte, 1 = short, 2 = long) */
885 12, /* bitsize */
886 FALSE, /* pc_relative */
887 0, /* bitpos */
888 complain_overflow_dont, /* complain_on_overflow */
889 bfd_elf_generic_reloc, /* special_function */
890 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
891 FALSE, /* partial_inplace */
892 0xffc, /* src_mask */
893 0xffc, /* dst_mask */
894 FALSE), /* pcrel_offset */
a06ea964 895
ca632371
RL
896 /* Lower 16 bits of GOT offset for the symbol. */
897 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
898 0, /* rightshift */
899 2, /* size (0 = byte, 1 = short, 2 = long) */
900 16, /* bitsize */
901 FALSE, /* pc_relative */
902 0, /* bitpos */
903 complain_overflow_dont, /* complain_on_overflow */
904 bfd_elf_generic_reloc, /* special_function */
905 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
906 FALSE, /* partial_inplace */
907 0xffff, /* src_mask */
908 0xffff, /* dst_mask */
909 FALSE), /* pcrel_offset */
910
654248e7
RL
911 /* Higher 16 bits of GOT offset for the symbol. */
912 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
913 16, /* rightshift */
914 2, /* size (0 = byte, 1 = short, 2 = long) */
915 16, /* bitsize */
916 FALSE, /* pc_relative */
917 0, /* bitpos */
918 complain_overflow_unsigned, /* complain_on_overflow */
919 bfd_elf_generic_reloc, /* special_function */
920 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
921 FALSE, /* partial_inplace */
922 0xffff, /* src_mask */
923 0xffff, /* dst_mask */
924 FALSE), /* pcrel_offset */
925
87f5fbcc
RL
926 /* LD64: GOT offset for the symbol. */
927 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
928 3, /* rightshift */
929 2, /* size (0 = byte, 1 = short, 2 = long) */
930 12, /* bitsize */
931 FALSE, /* pc_relative */
932 0, /* bitpos */
933 complain_overflow_unsigned, /* complain_on_overflow */
934 bfd_elf_generic_reloc, /* special_function */
935 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
936 FALSE, /* partial_inplace */
937 0x7ff8, /* src_mask */
938 0x7ff8, /* dst_mask */
939 FALSE), /* pcrel_offset */
940
3d715ce4
JW
941 /* LD32: GOT offset to the page address of GOT table.
942 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
943 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
944 2, /* rightshift */
945 2, /* size (0 = byte, 1 = short, 2 = long) */
946 12, /* bitsize */
947 FALSE, /* pc_relative */
948 0, /* bitpos */
949 complain_overflow_unsigned, /* complain_on_overflow */
950 bfd_elf_generic_reloc, /* special_function */
951 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
952 FALSE, /* partial_inplace */
953 0x5ffc, /* src_mask */
954 0x5ffc, /* dst_mask */
955 FALSE), /* pcrel_offset */
956
a921b5bd
JW
957 /* LD64: GOT offset to the page address of GOT table.
958 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
959 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
960 3, /* rightshift */
961 2, /* size (0 = byte, 1 = short, 2 = long) */
962 12, /* bitsize */
963 FALSE, /* pc_relative */
964 0, /* bitpos */
965 complain_overflow_unsigned, /* complain_on_overflow */
966 bfd_elf_generic_reloc, /* special_function */
967 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
968 FALSE, /* partial_inplace */
969 0x7ff8, /* src_mask */
970 0x7ff8, /* dst_mask */
971 FALSE), /* pcrel_offset */
972
a06ea964
NC
973 /* Get to the page for the GOT entry for the symbol
974 (G(S) - P) using an ADRP instruction. */
a6bb11b2 975 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
a06ea964
NC
976 12, /* rightshift */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
978 21, /* bitsize */
979 TRUE, /* pc_relative */
980 0, /* bitpos */
981 complain_overflow_dont, /* complain_on_overflow */
982 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 983 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
a06ea964
NC
984 FALSE, /* partial_inplace */
985 0x1fffff, /* src_mask */
986 0x1fffff, /* dst_mask */
987 TRUE), /* pcrel_offset */
988
3c12b054
MS
989 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
990 0, /* rightshift */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
992 21, /* bitsize */
993 TRUE, /* pc_relative */
994 0, /* bitpos */
995 complain_overflow_dont, /* complain_on_overflow */
996 bfd_elf_generic_reloc, /* special_function */
997 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
998 FALSE, /* partial_inplace */
999 0x1fffff, /* src_mask */
1000 0x1fffff, /* dst_mask */
1001 TRUE), /* pcrel_offset */
1002
a06ea964 1003 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
a6bb11b2 1004 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
a06ea964
NC
1005 0, /* rightshift */
1006 2, /* size (0 = byte, 1 = short, 2 = long) */
1007 12, /* bitsize */
1008 FALSE, /* pc_relative */
1009 0, /* bitpos */
1010 complain_overflow_dont, /* complain_on_overflow */
1011 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1012 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
a06ea964
NC
1013 FALSE, /* partial_inplace */
1014 0xfff, /* src_mask */
1015 0xfff, /* dst_mask */
1016 FALSE), /* pcrel_offset */
1017
3e8286c0
RL
1018 /* Lower 16 bits of GOT offset to tls_index. */
1019 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1020 0, /* rightshift */
1021 2, /* size (0 = byte, 1 = short, 2 = long) */
1022 16, /* bitsize */
1023 FALSE, /* pc_relative */
1024 0, /* bitpos */
1025 complain_overflow_dont, /* complain_on_overflow */
1026 bfd_elf_generic_reloc, /* special_function */
1027 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1028 FALSE, /* partial_inplace */
1029 0xffff, /* src_mask */
1030 0xffff, /* dst_mask */
1031 FALSE), /* pcrel_offset */
1032
1aa66fb1
RL
1033 /* Higher 16 bits of GOT offset to tls_index. */
1034 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1035 16, /* rightshift */
1036 2, /* size (0 = byte, 1 = short, 2 = long) */
1037 16, /* bitsize */
1038 FALSE, /* pc_relative */
1039 0, /* bitpos */
1040 complain_overflow_unsigned, /* complain_on_overflow */
1041 bfd_elf_generic_reloc, /* special_function */
1042 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1043 FALSE, /* partial_inplace */
1044 0xffff, /* src_mask */
1045 0xffff, /* dst_mask */
1046 FALSE), /* pcrel_offset */
1047
a6bb11b2 1048 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
a06ea964
NC
1049 12, /* rightshift */
1050 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 21, /* bitsize */
1052 FALSE, /* pc_relative */
1053 0, /* bitpos */
1054 complain_overflow_dont, /* complain_on_overflow */
1055 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1056 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
a06ea964
NC
1057 FALSE, /* partial_inplace */
1058 0x1fffff, /* src_mask */
1059 0x1fffff, /* dst_mask */
1060 FALSE), /* pcrel_offset */
1061
a6bb11b2 1062 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
a06ea964
NC
1063 3, /* rightshift */
1064 2, /* size (0 = byte, 1 = short, 2 = long) */
1065 12, /* bitsize */
1066 FALSE, /* pc_relative */
1067 0, /* bitpos */
1068 complain_overflow_dont, /* complain_on_overflow */
1069 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1070 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
a06ea964
NC
1071 FALSE, /* partial_inplace */
1072 0xff8, /* src_mask */
1073 0xff8, /* dst_mask */
1074 FALSE), /* pcrel_offset */
1075
a6bb11b2
YZ
1076 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1077 2, /* rightshift */
1078 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 12, /* bitsize */
1080 FALSE, /* pc_relative */
1081 0, /* bitpos */
1082 complain_overflow_dont, /* complain_on_overflow */
1083 bfd_elf_generic_reloc, /* special_function */
1084 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1085 FALSE, /* partial_inplace */
1086 0xffc, /* src_mask */
1087 0xffc, /* dst_mask */
1088 FALSE), /* pcrel_offset */
1089
1090 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
bb3f9ed8 1091 2, /* rightshift */
a06ea964 1092 2, /* size (0 = byte, 1 = short, 2 = long) */
043bf05a 1093 19, /* bitsize */
a06ea964
NC
1094 FALSE, /* pc_relative */
1095 0, /* bitpos */
1096 complain_overflow_dont, /* complain_on_overflow */
1097 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1098 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
a06ea964
NC
1099 FALSE, /* partial_inplace */
1100 0x1ffffc, /* src_mask */
1101 0x1ffffc, /* dst_mask */
1102 FALSE), /* pcrel_offset */
1103
3b957e5b
RL
1104 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1105 0, /* rightshift */
1106 2, /* size (0 = byte, 1 = short, 2 = long) */
1107 16, /* bitsize */
1108 FALSE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont, /* complain_on_overflow */
1111 bfd_elf_generic_reloc, /* special_function */
1112 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1113 FALSE, /* partial_inplace */
1114 0xffff, /* src_mask */
1115 0xffff, /* dst_mask */
1116 FALSE), /* pcrel_offset */
1117
1118 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1119 16, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_unsigned, /* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1127 FALSE, /* partial_inplace */
1128 0xffff, /* src_mask */
1129 0xffff, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
49df5539
JW
1132 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1133 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1134 12, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 12, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_unsigned, /* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1142 FALSE, /* partial_inplace */
1143 0xfff, /* src_mask */
1144 0xfff, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
70151fb5
JW
1147 /* Unsigned 12 bit byte offset to module TLS base address. */
1148 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1149 0, /* rightshift */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 12, /* bitsize */
1152 FALSE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_unsigned, /* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
1156 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1157 FALSE, /* partial_inplace */
1158 0xfff, /* src_mask */
1159 0xfff, /* dst_mask */
1160 FALSE), /* pcrel_offset */
13289c10
JW
1161
1162 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1163 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1164 0, /* rightshift */
1165 2, /* size (0 = byte, 1 = short, 2 = long) */
1166 12, /* bitsize */
1167 FALSE, /* pc_relative */
1168 0, /* bitpos */
1169 complain_overflow_dont, /* complain_on_overflow */
1170 bfd_elf_generic_reloc, /* special_function */
1171 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1172 FALSE, /* partial_inplace */
1173 0xfff, /* src_mask */
1174 0xfff, /* dst_mask */
1175 FALSE), /* pcrel_offset */
70151fb5 1176
a12fad50
JW
1177 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1178 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1179 0, /* rightshift */
1180 2, /* size (0 = byte, 1 = short, 2 = long) */
1181 12, /* bitsize */
1182 FALSE, /* pc_relative */
1183 0, /* bitpos */
1184 complain_overflow_dont, /* complain_on_overflow */
1185 bfd_elf_generic_reloc, /* special_function */
1186 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1187 FALSE, /* partial_inplace */
1188 0xfff, /* src_mask */
1189 0xfff, /* dst_mask */
1190 FALSE), /* pcrel_offset */
1191
1107e076
JW
1192 /* Get to the page for the GOT entry for the symbol
1193 (G(S) - P) using an ADRP instruction. */
1194 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1195 12, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 21, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_signed, /* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1203 FALSE, /* partial_inplace */
1204 0x1fffff, /* src_mask */
1205 0x1fffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
6c37fedc
JW
1208 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 21, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_signed, /* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1217 FALSE, /* partial_inplace */
1218 0x1fffff, /* src_mask */
1219 0x1fffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
4c562523
JW
1222 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1223 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1224 1, /* rightshift */
1225 2, /* size (0 = byte, 1 = short, 2 = long) */
1226 11, /* bitsize */
1227 FALSE, /* pc_relative */
1228 10, /* bitpos */
1229 complain_overflow_unsigned, /* complain_on_overflow */
1230 bfd_elf_generic_reloc, /* special_function */
1231 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1232 FALSE, /* partial_inplace */
1233 0x1ffc00, /* src_mask */
1234 0x1ffc00, /* dst_mask */
1235 FALSE), /* pcrel_offset */
1236
1237 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1238 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1239 1, /* rightshift */
1240 2, /* size (0 = byte, 1 = short, 2 = long) */
1241 11, /* bitsize */
1242 FALSE, /* pc_relative */
1243 10, /* bitpos */
1244 complain_overflow_dont, /* complain_on_overflow */
1245 bfd_elf_generic_reloc, /* special_function */
1246 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1247 FALSE, /* partial_inplace */
1248 0x1ffc00, /* src_mask */
1249 0x1ffc00, /* dst_mask */
1250 FALSE), /* pcrel_offset */
1251
1252 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1253 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1254 2, /* rightshift */
1255 2, /* size (0 = byte, 1 = short, 2 = long) */
1256 10, /* bitsize */
1257 FALSE, /* pc_relative */
1258 10, /* bitpos */
1259 complain_overflow_unsigned, /* complain_on_overflow */
1260 bfd_elf_generic_reloc, /* special_function */
1261 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1262 FALSE, /* partial_inplace */
1263 0x3ffc00, /* src_mask */
1264 0x3ffc00, /* dst_mask */
1265 FALSE), /* pcrel_offset */
1266
1267 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1268 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1269 2, /* rightshift */
1270 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 10, /* bitsize */
1272 FALSE, /* pc_relative */
1273 10, /* bitpos */
1274 complain_overflow_dont, /* complain_on_overflow */
1275 bfd_elf_generic_reloc, /* special_function */
1276 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1277 FALSE, /* partial_inplace */
1278 0xffc00, /* src_mask */
1279 0xffc00, /* dst_mask */
1280 FALSE), /* pcrel_offset */
1281
1282 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1283 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1284 3, /* rightshift */
1285 2, /* size (0 = byte, 1 = short, 2 = long) */
1286 9, /* bitsize */
1287 FALSE, /* pc_relative */
1288 10, /* bitpos */
1289 complain_overflow_unsigned, /* complain_on_overflow */
1290 bfd_elf_generic_reloc, /* special_function */
1291 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1292 FALSE, /* partial_inplace */
1293 0x3ffc00, /* src_mask */
1294 0x3ffc00, /* dst_mask */
1295 FALSE), /* pcrel_offset */
1296
1297 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1298 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1299 3, /* rightshift */
1300 2, /* size (0 = byte, 1 = short, 2 = long) */
1301 9, /* bitsize */
1302 FALSE, /* pc_relative */
1303 10, /* bitpos */
1304 complain_overflow_dont, /* complain_on_overflow */
1305 bfd_elf_generic_reloc, /* special_function */
1306 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1307 FALSE, /* partial_inplace */
1308 0x7fc00, /* src_mask */
1309 0x7fc00, /* dst_mask */
1310 FALSE), /* pcrel_offset */
1311
1312 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1313 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1314 0, /* rightshift */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1316 12, /* bitsize */
1317 FALSE, /* pc_relative */
1318 10, /* bitpos */
1319 complain_overflow_unsigned, /* complain_on_overflow */
1320 bfd_elf_generic_reloc, /* special_function */
1321 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1322 FALSE, /* partial_inplace */
1323 0x3ffc00, /* src_mask */
1324 0x3ffc00, /* dst_mask */
1325 FALSE), /* pcrel_offset */
1326
1327 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1328 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1329 0, /* rightshift */
1330 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 12, /* bitsize */
1332 FALSE, /* pc_relative */
1333 10, /* bitpos */
1334 complain_overflow_dont, /* complain_on_overflow */
1335 bfd_elf_generic_reloc, /* special_function */
1336 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1337 FALSE, /* partial_inplace */
1338 0x3ffc00, /* src_mask */
1339 0x3ffc00, /* dst_mask */
1340 FALSE), /* pcrel_offset */
1341
49df5539
JW
1342 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1343 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1344 0, /* rightshift */
1345 2, /* size (0 = byte, 1 = short, 2 = long) */
1346 16, /* bitsize */
1347 FALSE, /* pc_relative */
1348 0, /* bitpos */
1349 complain_overflow_unsigned, /* complain_on_overflow */
1350 bfd_elf_generic_reloc, /* special_function */
1351 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1352 FALSE, /* partial_inplace */
1353 0xffff, /* src_mask */
1354 0xffff, /* dst_mask */
1355 FALSE), /* pcrel_offset */
1356
1357 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1358 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1359 0, /* rightshift */
1360 2, /* size (0 = byte, 1 = short, 2 = long) */
1361 16, /* bitsize */
1362 FALSE, /* pc_relative */
1363 0, /* bitpos */
1364 complain_overflow_dont, /* complain_on_overflow */
1365 bfd_elf_generic_reloc, /* special_function */
1366 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1367 FALSE, /* partial_inplace */
1368 0xffff, /* src_mask */
1369 0xffff, /* dst_mask */
1370 FALSE), /* pcrel_offset */
1371
1372 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1373 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1374 16, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 16, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_unsigned, /* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1382 FALSE, /* partial_inplace */
1383 0xffff, /* src_mask */
1384 0xffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1388 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1389 16, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 16, /* bitsize */
1392 FALSE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_dont, /* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1397 FALSE, /* partial_inplace */
1398 0xffff, /* src_mask */
1399 0xffff, /* dst_mask */
1400 FALSE), /* pcrel_offset */
1401
1402 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1403 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1404 32, /* rightshift */
1405 2, /* size (0 = byte, 1 = short, 2 = long) */
1406 16, /* bitsize */
1407 FALSE, /* pc_relative */
1408 0, /* bitpos */
1409 complain_overflow_unsigned, /* complain_on_overflow */
1410 bfd_elf_generic_reloc, /* special_function */
1411 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1412 FALSE, /* partial_inplace */
1413 0xffff, /* src_mask */
1414 0xffff, /* dst_mask */
1415 FALSE), /* pcrel_offset */
1416
a6bb11b2 1417 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
bb3f9ed8 1418 32, /* rightshift */
a06ea964 1419 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1420 16, /* bitsize */
a06ea964
NC
1421 FALSE, /* pc_relative */
1422 0, /* bitpos */
0172429c 1423 complain_overflow_unsigned, /* complain_on_overflow */
a06ea964 1424 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1425 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
a06ea964
NC
1426 FALSE, /* partial_inplace */
1427 0xffff, /* src_mask */
1428 0xffff, /* dst_mask */
1429 FALSE), /* pcrel_offset */
1430
a6bb11b2 1431 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
bb3f9ed8 1432 16, /* rightshift */
a06ea964 1433 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1434 16, /* bitsize */
a06ea964
NC
1435 FALSE, /* pc_relative */
1436 0, /* bitpos */
1437 complain_overflow_dont, /* complain_on_overflow */
1438 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1439 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
a06ea964
NC
1440 FALSE, /* partial_inplace */
1441 0xffff, /* src_mask */
1442 0xffff, /* dst_mask */
1443 FALSE), /* pcrel_offset */
1444
a6bb11b2 1445 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
bb3f9ed8 1446 16, /* rightshift */
a06ea964 1447 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1448 16, /* bitsize */
a06ea964
NC
1449 FALSE, /* pc_relative */
1450 0, /* bitpos */
1451 complain_overflow_dont, /* complain_on_overflow */
1452 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1453 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
a06ea964
NC
1454 FALSE, /* partial_inplace */
1455 0xffff, /* src_mask */
1456 0xffff, /* dst_mask */
1457 FALSE), /* pcrel_offset */
1458
a6bb11b2 1459 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
a06ea964
NC
1460 0, /* rightshift */
1461 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1462 16, /* bitsize */
a06ea964
NC
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_dont, /* complain_on_overflow */
1466 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1467 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
a06ea964
NC
1468 FALSE, /* partial_inplace */
1469 0xffff, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
a6bb11b2 1473 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
a06ea964
NC
1474 0, /* rightshift */
1475 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1476 16, /* bitsize */
a06ea964
NC
1477 FALSE, /* pc_relative */
1478 0, /* bitpos */
1479 complain_overflow_dont, /* complain_on_overflow */
1480 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1481 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
a06ea964
NC
1482 FALSE, /* partial_inplace */
1483 0xffff, /* src_mask */
1484 0xffff, /* dst_mask */
1485 FALSE), /* pcrel_offset */
1486
a6bb11b2 1487 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
bb3f9ed8 1488 12, /* rightshift */
a06ea964
NC
1489 2, /* size (0 = byte, 1 = short, 2 = long) */
1490 12, /* bitsize */
1491 FALSE, /* pc_relative */
1492 0, /* bitpos */
bab91cce 1493 complain_overflow_unsigned, /* complain_on_overflow */
a06ea964 1494 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1495 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
a06ea964
NC
1496 FALSE, /* partial_inplace */
1497 0xfff, /* src_mask */
1498 0xfff, /* dst_mask */
1499 FALSE), /* pcrel_offset */
1500
a6bb11b2 1501 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
a06ea964
NC
1502 0, /* rightshift */
1503 2, /* size (0 = byte, 1 = short, 2 = long) */
1504 12, /* bitsize */
1505 FALSE, /* pc_relative */
1506 0, /* bitpos */
36e6c140 1507 complain_overflow_unsigned, /* complain_on_overflow */
a06ea964 1508 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1509 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
a06ea964
NC
1510 FALSE, /* partial_inplace */
1511 0xfff, /* src_mask */
1512 0xfff, /* dst_mask */
1513 FALSE), /* pcrel_offset */
1514
a6bb11b2 1515 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
a06ea964
NC
1516 0, /* rightshift */
1517 2, /* size (0 = byte, 1 = short, 2 = long) */
1518 12, /* bitsize */
1519 FALSE, /* pc_relative */
1520 0, /* bitpos */
1521 complain_overflow_dont, /* complain_on_overflow */
1522 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1523 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
a06ea964
NC
1524 FALSE, /* partial_inplace */
1525 0xfff, /* src_mask */
1526 0xfff, /* dst_mask */
1527 FALSE), /* pcrel_offset */
a06ea964 1528
a6bb11b2 1529 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
bb3f9ed8 1530 2, /* rightshift */
a06ea964 1531 2, /* size (0 = byte, 1 = short, 2 = long) */
1ada945d 1532 19, /* bitsize */
a06ea964
NC
1533 TRUE, /* pc_relative */
1534 0, /* bitpos */
1535 complain_overflow_dont, /* complain_on_overflow */
1536 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1537 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
a06ea964 1538 FALSE, /* partial_inplace */
1ada945d
MS
1539 0x0ffffe0, /* src_mask */
1540 0x0ffffe0, /* dst_mask */
a06ea964
NC
1541 TRUE), /* pcrel_offset */
1542
a6bb11b2 1543 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
a06ea964
NC
1544 0, /* rightshift */
1545 2, /* size (0 = byte, 1 = short, 2 = long) */
1546 21, /* bitsize */
1547 TRUE, /* pc_relative */
1548 0, /* bitpos */
1549 complain_overflow_dont, /* complain_on_overflow */
1550 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1551 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
a06ea964
NC
1552 FALSE, /* partial_inplace */
1553 0x1fffff, /* src_mask */
1554 0x1fffff, /* dst_mask */
1555 TRUE), /* pcrel_offset */
1556
1557 /* Get to the page for the GOT entry for the symbol
1558 (G(S) - P) using an ADRP instruction. */
a6bb11b2 1559 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
a06ea964
NC
1560 12, /* rightshift */
1561 2, /* size (0 = byte, 1 = short, 2 = long) */
1562 21, /* bitsize */
1563 TRUE, /* pc_relative */
1564 0, /* bitpos */
1565 complain_overflow_dont, /* complain_on_overflow */
1566 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1567 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
a06ea964
NC
1568 FALSE, /* partial_inplace */
1569 0x1fffff, /* src_mask */
1570 0x1fffff, /* dst_mask */
1571 TRUE), /* pcrel_offset */
1572
a6bb11b2
YZ
1573 /* LD64: GOT offset G(S) & 0xff8. */
1574 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
a06ea964
NC
1575 3, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 12, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_dont, /* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1582 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
a06ea964 1583 FALSE, /* partial_inplace */
a6bb11b2
YZ
1584 0xff8, /* src_mask */
1585 0xff8, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 /* LD32: GOT offset G(S) & 0xffc. */
1589 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1590 2, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 12, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
1595 complain_overflow_dont, /* complain_on_overflow */
1596 bfd_elf_generic_reloc, /* special_function */
1597 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1598 FALSE, /* partial_inplace */
1599 0xffc, /* src_mask */
1600 0xffc, /* dst_mask */
a06ea964
NC
1601 FALSE), /* pcrel_offset */
1602
1603 /* ADD: GOT offset G(S) & 0xfff. */
a6bb11b2 1604 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
a06ea964
NC
1605 0, /* rightshift */
1606 2, /* size (0 = byte, 1 = short, 2 = long) */
1607 12, /* bitsize */
1608 FALSE, /* pc_relative */
1609 0, /* bitpos */
1610 complain_overflow_dont, /* complain_on_overflow */
1611 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1612 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
a06ea964
NC
1613 FALSE, /* partial_inplace */
1614 0xfff, /* src_mask */
1615 0xfff, /* dst_mask */
1616 FALSE), /* pcrel_offset */
1617
a6bb11b2 1618 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
bb3f9ed8 1619 16, /* rightshift */
a06ea964
NC
1620 2, /* size (0 = byte, 1 = short, 2 = long) */
1621 12, /* bitsize */
1622 FALSE, /* pc_relative */
1623 0, /* bitpos */
43a357f9 1624 complain_overflow_unsigned, /* complain_on_overflow */
a06ea964 1625 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1626 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
a06ea964
NC
1627 FALSE, /* partial_inplace */
1628 0xffff, /* src_mask */
1629 0xffff, /* dst_mask */
1630 FALSE), /* pcrel_offset */
1631
a6bb11b2 1632 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
a06ea964
NC
1633 0, /* rightshift */
1634 2, /* size (0 = byte, 1 = short, 2 = long) */
1635 12, /* bitsize */
1636 FALSE, /* pc_relative */
1637 0, /* bitpos */
1638 complain_overflow_dont, /* complain_on_overflow */
1639 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1640 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
a06ea964
NC
1641 FALSE, /* partial_inplace */
1642 0xffff, /* src_mask */
1643 0xffff, /* dst_mask */
1644 FALSE), /* pcrel_offset */
1645
a6bb11b2 1646 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
a06ea964
NC
1647 0, /* rightshift */
1648 2, /* size (0 = byte, 1 = short, 2 = long) */
1649 12, /* bitsize */
1650 FALSE, /* pc_relative */
1651 0, /* bitpos */
1652 complain_overflow_dont, /* complain_on_overflow */
1653 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1654 AARCH64_R_STR (TLSDESC_LDR), /* name */
a06ea964
NC
1655 FALSE, /* partial_inplace */
1656 0x0, /* src_mask */
1657 0x0, /* dst_mask */
1658 FALSE), /* pcrel_offset */
1659
a6bb11b2 1660 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
a06ea964
NC
1661 0, /* rightshift */
1662 2, /* size (0 = byte, 1 = short, 2 = long) */
1663 12, /* bitsize */
1664 FALSE, /* pc_relative */
1665 0, /* bitpos */
1666 complain_overflow_dont, /* complain_on_overflow */
1667 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1668 AARCH64_R_STR (TLSDESC_ADD), /* name */
a06ea964
NC
1669 FALSE, /* partial_inplace */
1670 0x0, /* src_mask */
1671 0x0, /* dst_mask */
1672 FALSE), /* pcrel_offset */
1673
a6bb11b2 1674 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
a06ea964
NC
1675 0, /* rightshift */
1676 2, /* size (0 = byte, 1 = short, 2 = long) */
7366006f 1677 0, /* bitsize */
a06ea964
NC
1678 FALSE, /* pc_relative */
1679 0, /* bitpos */
1680 complain_overflow_dont, /* complain_on_overflow */
1681 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1682 AARCH64_R_STR (TLSDESC_CALL), /* name */
a06ea964
NC
1683 FALSE, /* partial_inplace */
1684 0x0, /* src_mask */
1685 0x0, /* dst_mask */
1686 FALSE), /* pcrel_offset */
a6bb11b2
YZ
1687
1688 HOWTO (AARCH64_R (COPY), /* type */
1689 0, /* rightshift */
1690 2, /* size (0 = byte, 1 = short, 2 = long) */
1691 64, /* bitsize */
1692 FALSE, /* pc_relative */
1693 0, /* bitpos */
1694 complain_overflow_bitfield, /* complain_on_overflow */
1695 bfd_elf_generic_reloc, /* special_function */
1696 AARCH64_R_STR (COPY), /* name */
1697 TRUE, /* partial_inplace */
1698 0xffffffff, /* src_mask */
1699 0xffffffff, /* dst_mask */
1700 FALSE), /* pcrel_offset */
1701
1702 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1703 0, /* rightshift */
1704 2, /* size (0 = byte, 1 = short, 2 = long) */
1705 64, /* bitsize */
1706 FALSE, /* pc_relative */
1707 0, /* bitpos */
1708 complain_overflow_bitfield, /* complain_on_overflow */
1709 bfd_elf_generic_reloc, /* special_function */
1710 AARCH64_R_STR (GLOB_DAT), /* name */
1711 TRUE, /* partial_inplace */
1712 0xffffffff, /* src_mask */
1713 0xffffffff, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1717 0, /* rightshift */
1718 2, /* size (0 = byte, 1 = short, 2 = long) */
1719 64, /* bitsize */
1720 FALSE, /* pc_relative */
1721 0, /* bitpos */
1722 complain_overflow_bitfield, /* complain_on_overflow */
1723 bfd_elf_generic_reloc, /* special_function */
1724 AARCH64_R_STR (JUMP_SLOT), /* name */
1725 TRUE, /* partial_inplace */
1726 0xffffffff, /* src_mask */
1727 0xffffffff, /* dst_mask */
1728 FALSE), /* pcrel_offset */
1729
1730 HOWTO (AARCH64_R (RELATIVE), /* type */
1731 0, /* rightshift */
1732 2, /* size (0 = byte, 1 = short, 2 = long) */
1733 64, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_bitfield, /* complain_on_overflow */
1737 bfd_elf_generic_reloc, /* special_function */
1738 AARCH64_R_STR (RELATIVE), /* name */
1739 TRUE, /* partial_inplace */
1740 ALL_ONES, /* src_mask */
1741 ALL_ONES, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1745 0, /* rightshift */
1746 2, /* size (0 = byte, 1 = short, 2 = long) */
1747 64, /* bitsize */
1748 FALSE, /* pc_relative */
1749 0, /* bitpos */
1750 complain_overflow_dont, /* complain_on_overflow */
1751 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1752#if ARCH_SIZE == 64
1753 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1754#else
a6bb11b2 1755 AARCH64_R_STR (TLS_DTPMOD), /* name */
da0781dc 1756#endif
a6bb11b2
YZ
1757 FALSE, /* partial_inplace */
1758 0, /* src_mask */
1759 ALL_ONES, /* dst_mask */
1760 FALSE), /* pc_reloffset */
1761
1762 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1763 0, /* rightshift */
1764 2, /* size (0 = byte, 1 = short, 2 = long) */
1765 64, /* bitsize */
1766 FALSE, /* pc_relative */
1767 0, /* bitpos */
1768 complain_overflow_dont, /* complain_on_overflow */
1769 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1770#if ARCH_SIZE == 64
1771 AARCH64_R_STR (TLS_DTPREL64), /* name */
1772#else
a6bb11b2 1773 AARCH64_R_STR (TLS_DTPREL), /* name */
da0781dc 1774#endif
a6bb11b2
YZ
1775 FALSE, /* partial_inplace */
1776 0, /* src_mask */
1777 ALL_ONES, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1781 0, /* rightshift */
1782 2, /* size (0 = byte, 1 = short, 2 = long) */
1783 64, /* bitsize */
1784 FALSE, /* pc_relative */
1785 0, /* bitpos */
1786 complain_overflow_dont, /* complain_on_overflow */
1787 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1788#if ARCH_SIZE == 64
1789 AARCH64_R_STR (TLS_TPREL64), /* name */
1790#else
a6bb11b2 1791 AARCH64_R_STR (TLS_TPREL), /* name */
da0781dc 1792#endif
a6bb11b2
YZ
1793 FALSE, /* partial_inplace */
1794 0, /* src_mask */
1795 ALL_ONES, /* dst_mask */
1796 FALSE), /* pcrel_offset */
1797
1798 HOWTO (AARCH64_R (TLSDESC), /* type */
1799 0, /* rightshift */
1800 2, /* size (0 = byte, 1 = short, 2 = long) */
1801 64, /* bitsize */
1802 FALSE, /* pc_relative */
1803 0, /* bitpos */
1804 complain_overflow_dont, /* complain_on_overflow */
1805 bfd_elf_generic_reloc, /* special_function */
1806 AARCH64_R_STR (TLSDESC), /* name */
1807 FALSE, /* partial_inplace */
1808 0, /* src_mask */
1809 ALL_ONES, /* dst_mask */
1810 FALSE), /* pcrel_offset */
1811
1812 HOWTO (AARCH64_R (IRELATIVE), /* type */
1813 0, /* rightshift */
1814 2, /* size (0 = byte, 1 = short, 2 = long) */
1815 64, /* bitsize */
1816 FALSE, /* pc_relative */
1817 0, /* bitpos */
1818 complain_overflow_bitfield, /* complain_on_overflow */
1819 bfd_elf_generic_reloc, /* special_function */
1820 AARCH64_R_STR (IRELATIVE), /* name */
1821 FALSE, /* partial_inplace */
1822 0, /* src_mask */
1823 ALL_ONES, /* dst_mask */
1824 FALSE), /* pcrel_offset */
1825
1826 EMPTY_HOWTO (0),
a06ea964
NC
1827};
1828
a6bb11b2
YZ
1829static reloc_howto_type elfNN_aarch64_howto_none =
1830 HOWTO (R_AARCH64_NONE, /* type */
1831 0, /* rightshift */
6346d5ca 1832 3, /* size (0 = byte, 1 = short, 2 = long) */
a6bb11b2
YZ
1833 0, /* bitsize */
1834 FALSE, /* pc_relative */
1835 0, /* bitpos */
1836 complain_overflow_dont,/* complain_on_overflow */
1837 bfd_elf_generic_reloc, /* special_function */
1838 "R_AARCH64_NONE", /* name */
1839 FALSE, /* partial_inplace */
1840 0, /* src_mask */
1841 0, /* dst_mask */
1842 FALSE); /* pcrel_offset */
1843
1844/* Given HOWTO, return the bfd internal relocation enumerator. */
1845
1846static bfd_reloc_code_real_type
1847elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1848{
1849 const int size
1850 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1851 const ptrdiff_t offset
1852 = howto - elfNN_aarch64_howto_table;
1853
1854 if (offset > 0 && offset < size - 1)
1855 return BFD_RELOC_AARCH64_RELOC_START + offset;
1856
1857 if (howto == &elfNN_aarch64_howto_none)
1858 return BFD_RELOC_AARCH64_NONE;
1859
1860 return BFD_RELOC_AARCH64_RELOC_START;
1861}
1862
1863/* Given R_TYPE, return the bfd internal relocation enumerator. */
1864
1865static bfd_reloc_code_real_type
1866elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1867{
1868 static bfd_boolean initialized_p = FALSE;
1869 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1870 static unsigned int offsets[R_AARCH64_end];
1871
1872 if (initialized_p == FALSE)
1873 {
1874 unsigned int i;
1875
1876 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1877 if (elfNN_aarch64_howto_table[i].type != 0)
1878 offsets[elfNN_aarch64_howto_table[i].type] = i;
1879
1880 initialized_p = TRUE;
1881 }
1882
1883 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1884 return BFD_RELOC_AARCH64_NONE;
1885
5860e3f8
NC
1886 /* PR 17512: file: b371e70a. */
1887 if (r_type >= R_AARCH64_end)
1888 {
1889 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1890 bfd_set_error (bfd_error_bad_value);
1891 return BFD_RELOC_AARCH64_NONE;
1892 }
1893
a6bb11b2
YZ
1894 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1895}
1896
1897struct elf_aarch64_reloc_map
1898{
1899 bfd_reloc_code_real_type from;
1900 bfd_reloc_code_real_type to;
1901};
1902
1903/* Map bfd generic reloc to AArch64-specific reloc. */
1904static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1905{
1906 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1907
1908 /* Basic data relocations. */
1909 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1910 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1911 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1912 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1913 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1914 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1915 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1916};
1917
1918/* Given the bfd internal relocation enumerator in CODE, return the
1919 corresponding howto entry. */
1920
1921static reloc_howto_type *
1922elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1923{
1924 unsigned int i;
1925
1926 /* Convert bfd generic reloc to AArch64-specific reloc. */
1927 if (code < BFD_RELOC_AARCH64_RELOC_START
1928 || code > BFD_RELOC_AARCH64_RELOC_END)
1929 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1930 if (elf_aarch64_reloc_map[i].from == code)
1931 {
1932 code = elf_aarch64_reloc_map[i].to;
1933 break;
1934 }
1935
1936 if (code > BFD_RELOC_AARCH64_RELOC_START
1937 && code < BFD_RELOC_AARCH64_RELOC_END)
1938 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1939 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1940
54757ed1
AP
1941 if (code == BFD_RELOC_AARCH64_NONE)
1942 return &elfNN_aarch64_howto_none;
1943
a6bb11b2
YZ
1944 return NULL;
1945}
1946
a06ea964 1947static reloc_howto_type *
cec5225b 1948elfNN_aarch64_howto_from_type (unsigned int r_type)
a06ea964 1949{
a6bb11b2
YZ
1950 bfd_reloc_code_real_type val;
1951 reloc_howto_type *howto;
1952
cec5225b
YZ
1953#if ARCH_SIZE == 32
1954 if (r_type > 256)
1955 {
1956 bfd_set_error (bfd_error_bad_value);
1957 return NULL;
1958 }
1959#endif
1960
a6bb11b2
YZ
1961 if (r_type == R_AARCH64_NONE)
1962 return &elfNN_aarch64_howto_none;
a06ea964 1963
a6bb11b2
YZ
1964 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1965 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
a06ea964 1966
a6bb11b2
YZ
1967 if (howto != NULL)
1968 return howto;
a06ea964 1969
a06ea964
NC
1970 bfd_set_error (bfd_error_bad_value);
1971 return NULL;
1972}
1973
1974static void
cec5225b 1975elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
a06ea964
NC
1976 Elf_Internal_Rela *elf_reloc)
1977{
1978 unsigned int r_type;
1979
cec5225b
YZ
1980 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1981 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
1982}
1983
a06ea964 1984static reloc_howto_type *
cec5225b 1985elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1986 bfd_reloc_code_real_type code)
1987{
a6bb11b2 1988 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
a06ea964 1989
a6bb11b2
YZ
1990 if (howto != NULL)
1991 return howto;
a06ea964
NC
1992
1993 bfd_set_error (bfd_error_bad_value);
1994 return NULL;
1995}
1996
1997static reloc_howto_type *
cec5225b 1998elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1999 const char *r_name)
2000{
2001 unsigned int i;
2002
a6bb11b2
YZ
2003 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2004 if (elfNN_aarch64_howto_table[i].name != NULL
2005 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2006 return &elfNN_aarch64_howto_table[i];
a06ea964
NC
2007
2008 return NULL;
2009}
2010
6d00b590 2011#define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
cec5225b 2012#define TARGET_LITTLE_NAME "elfNN-littleaarch64"
6d00b590 2013#define TARGET_BIG_SYM aarch64_elfNN_be_vec
cec5225b 2014#define TARGET_BIG_NAME "elfNN-bigaarch64"
a06ea964 2015
a06ea964
NC
2016/* The linker script knows the section names for placement.
2017 The entry_names are used to do simple name mangling on the stubs.
2018 Given a function name, and its type, the stub can be found. The
2019 name can be changed. The only requirement is the %s be present. */
2020#define STUB_ENTRY_NAME "__%s_veneer"
2021
2022/* The name of the dynamic interpreter. This is put in the .interp
2023 section. */
2024#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2025
2026#define AARCH64_MAX_FWD_BRANCH_OFFSET \
2027 (((1 << 25) - 1) << 2)
2028#define AARCH64_MAX_BWD_BRANCH_OFFSET \
2029 (-((1 << 25) << 2))
2030
2031#define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2032#define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2033
2034static int
2035aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2036{
2037 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2038 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2039}
2040
2041static int
2042aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2043{
2044 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2045 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2046 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2047}
2048
2049static const uint32_t aarch64_adrp_branch_stub [] =
2050{
2051 0x90000010, /* adrp ip0, X */
2052 /* R_AARCH64_ADR_HI21_PCREL(X) */
2053 0x91000210, /* add ip0, ip0, :lo12:X */
2054 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2055 0xd61f0200, /* br ip0 */
2056};
2057
2058static const uint32_t aarch64_long_branch_stub[] =
2059{
cec5225b 2060#if ARCH_SIZE == 64
a06ea964 2061 0x58000090, /* ldr ip0, 1f */
cec5225b
YZ
2062#else
2063 0x18000090, /* ldr wip0, 1f */
2064#endif
a06ea964
NC
2065 0x10000011, /* adr ip1, #0 */
2066 0x8b110210, /* add ip0, ip0, ip1 */
2067 0xd61f0200, /* br ip0 */
cec5225b
YZ
2068 0x00000000, /* 1: .xword or .word
2069 R_AARCH64_PRELNN(X) + 12
a06ea964
NC
2070 */
2071 0x00000000,
2072};
2073
68fcca92
JW
2074static const uint32_t aarch64_erratum_835769_stub[] =
2075{
2076 0x00000000, /* Placeholder for multiply accumulate. */
2077 0x14000000, /* b <label> */
2078};
2079
4106101c
MS
2080static const uint32_t aarch64_erratum_843419_stub[] =
2081{
2082 0x00000000, /* Placeholder for LDR instruction. */
2083 0x14000000, /* b <label> */
2084};
2085
a06ea964
NC
2086/* Section name for stubs is the associated section name plus this
2087 string. */
2088#define STUB_SUFFIX ".stub"
2089
cec5225b 2090enum elf_aarch64_stub_type
a06ea964
NC
2091{
2092 aarch64_stub_none,
2093 aarch64_stub_adrp_branch,
2094 aarch64_stub_long_branch,
68fcca92 2095 aarch64_stub_erratum_835769_veneer,
4106101c 2096 aarch64_stub_erratum_843419_veneer,
a06ea964
NC
2097};
2098
cec5225b 2099struct elf_aarch64_stub_hash_entry
a06ea964
NC
2100{
2101 /* Base hash table entry structure. */
2102 struct bfd_hash_entry root;
2103
2104 /* The stub section. */
2105 asection *stub_sec;
2106
2107 /* Offset within stub_sec of the beginning of this stub. */
2108 bfd_vma stub_offset;
2109
2110 /* Given the symbol's value and its section we can determine its final
2111 value when building the stubs (so the stub knows where to jump). */
2112 bfd_vma target_value;
2113 asection *target_section;
2114
cec5225b 2115 enum elf_aarch64_stub_type stub_type;
a06ea964
NC
2116
2117 /* The symbol table entry, if any, that this was derived from. */
cec5225b 2118 struct elf_aarch64_link_hash_entry *h;
a06ea964
NC
2119
2120 /* Destination symbol type */
2121 unsigned char st_type;
2122
2123 /* Where this stub is being called from, or, in the case of combined
2124 stub sections, the first input section in the group. */
2125 asection *id_sec;
2126
2127 /* The name for the local symbol at the start of this stub. The
2128 stub name in the hash table has to be unique; this does not, so
2129 it can be friendlier. */
2130 char *output_name;
68fcca92
JW
2131
2132 /* The instruction which caused this stub to be generated (only valid for
2133 erratum 835769 workaround stubs at present). */
2134 uint32_t veneered_insn;
4106101c
MS
2135
2136 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2137 bfd_vma adrp_offset;
a06ea964
NC
2138};
2139
2140/* Used to build a map of a section. This is required for mixed-endian
2141 code/data. */
2142
cec5225b 2143typedef struct elf_elf_section_map
a06ea964
NC
2144{
2145 bfd_vma vma;
2146 char type;
2147}
cec5225b 2148elf_aarch64_section_map;
a06ea964
NC
2149
2150
2151typedef struct _aarch64_elf_section_data
2152{
2153 struct bfd_elf_section_data elf;
2154 unsigned int mapcount;
2155 unsigned int mapsize;
cec5225b 2156 elf_aarch64_section_map *map;
a06ea964
NC
2157}
2158_aarch64_elf_section_data;
2159
cec5225b 2160#define elf_aarch64_section_data(sec) \
a06ea964
NC
2161 ((_aarch64_elf_section_data *) elf_section_data (sec))
2162
4e8516b2
AP
2163/* The size of the thread control block which is defined to be two pointers. */
2164#define TCB_SIZE (ARCH_SIZE/8)*2
a06ea964
NC
2165
2166struct elf_aarch64_local_symbol
2167{
2168 unsigned int got_type;
2169 bfd_signed_vma got_refcount;
2170 bfd_vma got_offset;
2171
2172 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2173 offset is from the end of the jump table and reserved entries
2174 within the PLTGOT.
2175
2176 The magic value (bfd_vma) -1 indicates that an offset has not be
2177 allocated. */
2178 bfd_vma tlsdesc_got_jump_table_offset;
2179};
2180
2181struct elf_aarch64_obj_tdata
2182{
2183 struct elf_obj_tdata root;
2184
2185 /* local symbol descriptors */
2186 struct elf_aarch64_local_symbol *locals;
2187
2188 /* Zero to warn when linking objects with incompatible enum sizes. */
2189 int no_enum_size_warning;
2190
2191 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2192 int no_wchar_size_warning;
2193};
2194
2195#define elf_aarch64_tdata(bfd) \
2196 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2197
cec5225b 2198#define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
a06ea964
NC
2199
2200#define is_aarch64_elf(bfd) \
2201 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2202 && elf_tdata (bfd) != NULL \
2203 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2204
2205static bfd_boolean
cec5225b 2206elfNN_aarch64_mkobject (bfd *abfd)
a06ea964
NC
2207{
2208 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2209 AARCH64_ELF_DATA);
2210}
2211
cec5225b
YZ
2212#define elf_aarch64_hash_entry(ent) \
2213 ((struct elf_aarch64_link_hash_entry *)(ent))
a06ea964
NC
2214
2215#define GOT_UNKNOWN 0
2216#define GOT_NORMAL 1
2217#define GOT_TLS_GD 2
2218#define GOT_TLS_IE 4
2219#define GOT_TLSDESC_GD 8
2220
2221#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2222
2223/* AArch64 ELF linker hash entry. */
cec5225b 2224struct elf_aarch64_link_hash_entry
a06ea964
NC
2225{
2226 struct elf_link_hash_entry root;
2227
2228 /* Track dynamic relocs copied for this symbol. */
2229 struct elf_dyn_relocs *dyn_relocs;
2230
a06ea964
NC
2231 /* Since PLT entries have variable size, we need to record the
2232 index into .got.plt instead of recomputing it from the PLT
2233 offset. */
2234 bfd_signed_vma plt_got_offset;
2235
2236 /* Bit mask representing the type of GOT entry(s) if any required by
2237 this symbol. */
2238 unsigned int got_type;
2239
2240 /* A pointer to the most recently used stub hash entry against this
2241 symbol. */
cec5225b 2242 struct elf_aarch64_stub_hash_entry *stub_cache;
a06ea964
NC
2243
2244 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2245 is from the end of the jump table and reserved entries within the PLTGOT.
2246
2247 The magic value (bfd_vma) -1 indicates that an offset has not
2248 be allocated. */
2249 bfd_vma tlsdesc_got_jump_table_offset;
2250};
2251
2252static unsigned int
cec5225b 2253elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
a06ea964
NC
2254 bfd *abfd,
2255 unsigned long r_symndx)
2256{
2257 if (h)
cec5225b 2258 return elf_aarch64_hash_entry (h)->got_type;
a06ea964 2259
cec5225b 2260 if (! elf_aarch64_locals (abfd))
a06ea964
NC
2261 return GOT_UNKNOWN;
2262
cec5225b 2263 return elf_aarch64_locals (abfd)[r_symndx].got_type;
a06ea964
NC
2264}
2265
a06ea964 2266/* Get the AArch64 elf linker hash table from a link_info structure. */
cec5225b
YZ
2267#define elf_aarch64_hash_table(info) \
2268 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
a06ea964
NC
2269
2270#define aarch64_stub_hash_lookup(table, string, create, copy) \
cec5225b 2271 ((struct elf_aarch64_stub_hash_entry *) \
a06ea964
NC
2272 bfd_hash_lookup ((table), (string), (create), (copy)))
2273
2274/* AArch64 ELF linker hash table. */
cec5225b 2275struct elf_aarch64_link_hash_table
a06ea964
NC
2276{
2277 /* The main hash table. */
2278 struct elf_link_hash_table root;
2279
2280 /* Nonzero to force PIC branch veneers. */
2281 int pic_veneer;
2282
68fcca92
JW
2283 /* Fix erratum 835769. */
2284 int fix_erratum_835769;
2285
4106101c
MS
2286 /* Fix erratum 843419. */
2287 int fix_erratum_843419;
2288
2289 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2290 int fix_erratum_843419_adr;
2291
a06ea964
NC
2292 /* The number of bytes in the initial entry in the PLT. */
2293 bfd_size_type plt_header_size;
2294
2295 /* The number of bytes in the subsequent PLT etries. */
2296 bfd_size_type plt_entry_size;
2297
2298 /* Short-cuts to get to dynamic linker sections. */
2299 asection *sdynbss;
2300 asection *srelbss;
2301
2302 /* Small local sym cache. */
2303 struct sym_cache sym_cache;
2304
2305 /* For convenience in allocate_dynrelocs. */
2306 bfd *obfd;
2307
2308 /* The amount of space used by the reserved portion of the sgotplt
2309 section, plus whatever space is used by the jump slots. */
2310 bfd_vma sgotplt_jump_table_size;
2311
2312 /* The stub hash table. */
2313 struct bfd_hash_table stub_hash_table;
2314
2315 /* Linker stub bfd. */
2316 bfd *stub_bfd;
2317
2318 /* Linker call-backs. */
2319 asection *(*add_stub_section) (const char *, asection *);
2320 void (*layout_sections_again) (void);
2321
2322 /* Array to keep track of which stub sections have been created, and
2323 information on stub grouping. */
2324 struct map_stub
2325 {
2326 /* This is the section to which stubs in the group will be
2327 attached. */
2328 asection *link_sec;
2329 /* The stub section. */
2330 asection *stub_sec;
2331 } *stub_group;
2332
cec5225b 2333 /* Assorted information used by elfNN_aarch64_size_stubs. */
a06ea964 2334 unsigned int bfd_count;
7292b3ac 2335 unsigned int top_index;
a06ea964
NC
2336 asection **input_list;
2337
2338 /* The offset into splt of the PLT entry for the TLS descriptor
2339 resolver. Special values are 0, if not necessary (or not found
2340 to be necessary yet), and -1 if needed but not determined
2341 yet. */
2342 bfd_vma tlsdesc_plt;
2343
2344 /* The GOT offset for the lazy trampoline. Communicated to the
2345 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2346 indicates an offset is not allocated. */
2347 bfd_vma dt_tlsdesc_got;
1419bbe5
WN
2348
2349 /* Used by local STT_GNU_IFUNC symbols. */
2350 htab_t loc_hash_table;
2351 void * loc_hash_memory;
a06ea964
NC
2352};
2353
a06ea964
NC
2354/* Create an entry in an AArch64 ELF linker hash table. */
2355
2356static struct bfd_hash_entry *
cec5225b 2357elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
a06ea964
NC
2358 struct bfd_hash_table *table,
2359 const char *string)
2360{
cec5225b
YZ
2361 struct elf_aarch64_link_hash_entry *ret =
2362 (struct elf_aarch64_link_hash_entry *) entry;
a06ea964
NC
2363
2364 /* Allocate the structure if it has not already been allocated by a
2365 subclass. */
2366 if (ret == NULL)
2367 ret = bfd_hash_allocate (table,
cec5225b 2368 sizeof (struct elf_aarch64_link_hash_entry));
a06ea964
NC
2369 if (ret == NULL)
2370 return (struct bfd_hash_entry *) ret;
2371
2372 /* Call the allocation method of the superclass. */
cec5225b 2373 ret = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2374 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2375 table, string));
2376 if (ret != NULL)
2377 {
2378 ret->dyn_relocs = NULL;
a06ea964
NC
2379 ret->got_type = GOT_UNKNOWN;
2380 ret->plt_got_offset = (bfd_vma) - 1;
2381 ret->stub_cache = NULL;
2382 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2383 }
2384
2385 return (struct bfd_hash_entry *) ret;
2386}
2387
2388/* Initialize an entry in the stub hash table. */
2389
2390static struct bfd_hash_entry *
2391stub_hash_newfunc (struct bfd_hash_entry *entry,
2392 struct bfd_hash_table *table, const char *string)
2393{
2394 /* Allocate the structure if it has not already been allocated by a
2395 subclass. */
2396 if (entry == NULL)
2397 {
2398 entry = bfd_hash_allocate (table,
2399 sizeof (struct
cec5225b 2400 elf_aarch64_stub_hash_entry));
a06ea964
NC
2401 if (entry == NULL)
2402 return entry;
2403 }
2404
2405 /* Call the allocation method of the superclass. */
2406 entry = bfd_hash_newfunc (entry, table, string);
2407 if (entry != NULL)
2408 {
cec5225b 2409 struct elf_aarch64_stub_hash_entry *eh;
a06ea964
NC
2410
2411 /* Initialize the local fields. */
cec5225b 2412 eh = (struct elf_aarch64_stub_hash_entry *) entry;
4106101c 2413 eh->adrp_offset = 0;
a06ea964
NC
2414 eh->stub_sec = NULL;
2415 eh->stub_offset = 0;
2416 eh->target_value = 0;
2417 eh->target_section = NULL;
2418 eh->stub_type = aarch64_stub_none;
2419 eh->h = NULL;
2420 eh->id_sec = NULL;
2421 }
2422
2423 return entry;
2424}
2425
1419bbe5
WN
2426/* Compute a hash of a local hash entry. We use elf_link_hash_entry
2427 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2428 as global symbol. We reuse indx and dynstr_index for local symbol
2429 hash since they aren't used by global symbols in this backend. */
2430
2431static hashval_t
2432elfNN_aarch64_local_htab_hash (const void *ptr)
2433{
2434 struct elf_link_hash_entry *h
2435 = (struct elf_link_hash_entry *) ptr;
2436 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2437}
2438
2439/* Compare local hash entries. */
2440
2441static int
2442elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2443{
2444 struct elf_link_hash_entry *h1
2445 = (struct elf_link_hash_entry *) ptr1;
2446 struct elf_link_hash_entry *h2
2447 = (struct elf_link_hash_entry *) ptr2;
2448
2449 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2450}
2451
2452/* Find and/or create a hash entry for local symbol. */
2453
2454static struct elf_link_hash_entry *
2455elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2456 bfd *abfd, const Elf_Internal_Rela *rel,
2457 bfd_boolean create)
2458{
2459 struct elf_aarch64_link_hash_entry e, *ret;
2460 asection *sec = abfd->sections;
2461 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2462 ELFNN_R_SYM (rel->r_info));
2463 void **slot;
2464
2465 e.root.indx = sec->id;
2466 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2467 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2468 create ? INSERT : NO_INSERT);
2469
2470 if (!slot)
2471 return NULL;
2472
2473 if (*slot)
2474 {
2475 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2476 return &ret->root;
2477 }
2478
2479 ret = (struct elf_aarch64_link_hash_entry *)
2480 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2481 sizeof (struct elf_aarch64_link_hash_entry));
2482 if (ret)
2483 {
2484 memset (ret, 0, sizeof (*ret));
2485 ret->root.indx = sec->id;
2486 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2487 ret->root.dynindx = -1;
2488 *slot = ret;
2489 }
2490 return &ret->root;
2491}
a06ea964
NC
2492
2493/* Copy the extra info we tack onto an elf_link_hash_entry. */
2494
2495static void
cec5225b 2496elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
a06ea964
NC
2497 struct elf_link_hash_entry *dir,
2498 struct elf_link_hash_entry *ind)
2499{
cec5225b 2500 struct elf_aarch64_link_hash_entry *edir, *eind;
a06ea964 2501
cec5225b
YZ
2502 edir = (struct elf_aarch64_link_hash_entry *) dir;
2503 eind = (struct elf_aarch64_link_hash_entry *) ind;
a06ea964
NC
2504
2505 if (eind->dyn_relocs != NULL)
2506 {
2507 if (edir->dyn_relocs != NULL)
2508 {
2509 struct elf_dyn_relocs **pp;
2510 struct elf_dyn_relocs *p;
2511
2512 /* Add reloc counts against the indirect sym to the direct sym
2513 list. Merge any entries against the same section. */
2514 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2515 {
2516 struct elf_dyn_relocs *q;
2517
2518 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2519 if (q->sec == p->sec)
2520 {
2521 q->pc_count += p->pc_count;
2522 q->count += p->count;
2523 *pp = p->next;
2524 break;
2525 }
2526 if (q == NULL)
2527 pp = &p->next;
2528 }
2529 *pp = edir->dyn_relocs;
2530 }
2531
2532 edir->dyn_relocs = eind->dyn_relocs;
2533 eind->dyn_relocs = NULL;
2534 }
2535
a06ea964
NC
2536 if (ind->root.type == bfd_link_hash_indirect)
2537 {
2538 /* Copy over PLT info. */
2539 if (dir->got.refcount <= 0)
2540 {
2541 edir->got_type = eind->got_type;
2542 eind->got_type = GOT_UNKNOWN;
2543 }
2544 }
2545
2546 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2547}
2548
68faa637
AM
2549/* Destroy an AArch64 elf linker hash table. */
2550
2551static void
d495ab0d 2552elfNN_aarch64_link_hash_table_free (bfd *obfd)
68faa637
AM
2553{
2554 struct elf_aarch64_link_hash_table *ret
d495ab0d 2555 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
68faa637
AM
2556
2557 if (ret->loc_hash_table)
2558 htab_delete (ret->loc_hash_table);
2559 if (ret->loc_hash_memory)
2560 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2561
2562 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 2563 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
2564}
2565
a06ea964
NC
2566/* Create an AArch64 elf linker hash table. */
2567
2568static struct bfd_link_hash_table *
cec5225b 2569elfNN_aarch64_link_hash_table_create (bfd *abfd)
a06ea964 2570{
cec5225b
YZ
2571 struct elf_aarch64_link_hash_table *ret;
2572 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
a06ea964 2573
7bf52ea2 2574 ret = bfd_zmalloc (amt);
a06ea964
NC
2575 if (ret == NULL)
2576 return NULL;
2577
2578 if (!_bfd_elf_link_hash_table_init
cec5225b
YZ
2579 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2580 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
a06ea964
NC
2581 {
2582 free (ret);
2583 return NULL;
2584 }
2585
a06ea964
NC
2586 ret->plt_header_size = PLT_ENTRY_SIZE;
2587 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
a06ea964 2588 ret->obfd = abfd;
a06ea964
NC
2589 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2590
2591 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
cec5225b 2592 sizeof (struct elf_aarch64_stub_hash_entry)))
a06ea964 2593 {
d495ab0d 2594 _bfd_elf_link_hash_table_free (abfd);
a06ea964
NC
2595 return NULL;
2596 }
2597
1419bbe5
WN
2598 ret->loc_hash_table = htab_try_create (1024,
2599 elfNN_aarch64_local_htab_hash,
2600 elfNN_aarch64_local_htab_eq,
2601 NULL);
2602 ret->loc_hash_memory = objalloc_create ();
2603 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2604 {
d495ab0d 2605 elfNN_aarch64_link_hash_table_free (abfd);
1419bbe5
WN
2606 return NULL;
2607 }
d495ab0d 2608 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
1419bbe5 2609
a06ea964
NC
2610 return &ret->root.root;
2611}
2612
a06ea964
NC
2613static bfd_boolean
2614aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2615 bfd_vma offset, bfd_vma value)
2616{
2617 reloc_howto_type *howto;
2618 bfd_vma place;
2619
cec5225b 2620 howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
2621 place = (input_section->output_section->vma + input_section->output_offset
2622 + offset);
caed7120
YZ
2623
2624 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2625 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2626 return _bfd_aarch64_elf_put_addend (input_bfd,
2627 input_section->contents + offset, r_type,
2628 howto, value);
a06ea964
NC
2629}
2630
cec5225b 2631static enum elf_aarch64_stub_type
a06ea964
NC
2632aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2633{
2634 if (aarch64_valid_for_adrp_p (value, place))
2635 return aarch64_stub_adrp_branch;
2636 return aarch64_stub_long_branch;
2637}
2638
2639/* Determine the type of stub needed, if any, for a call. */
2640
cec5225b 2641static enum elf_aarch64_stub_type
9a228467 2642aarch64_type_of_stub (asection *input_sec,
a06ea964 2643 const Elf_Internal_Rela *rel,
f678ded7 2644 asection *sym_sec,
a06ea964 2645 unsigned char st_type,
a06ea964
NC
2646 bfd_vma destination)
2647{
2648 bfd_vma location;
2649 bfd_signed_vma branch_offset;
2650 unsigned int r_type;
cec5225b 2651 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
a06ea964 2652
f678ded7 2653 if (st_type != STT_FUNC
2f340668 2654 && (sym_sec == input_sec))
a06ea964
NC
2655 return stub_type;
2656
a06ea964
NC
2657 /* Determine where the call point is. */
2658 location = (input_sec->output_offset
2659 + input_sec->output_section->vma + rel->r_offset);
2660
2661 branch_offset = (bfd_signed_vma) (destination - location);
2662
cec5225b 2663 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
2664
2665 /* We don't want to redirect any old unconditional jump in this way,
2666 only one which is being used for a sibcall, where it is
2667 acceptable for the IP0 and IP1 registers to be clobbered. */
a6bb11b2 2668 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
a06ea964
NC
2669 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2670 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2671 {
2672 stub_type = aarch64_stub_long_branch;
2673 }
2674
2675 return stub_type;
2676}
2677
2678/* Build a name for an entry in the stub hash table. */
2679
2680static char *
cec5225b 2681elfNN_aarch64_stub_name (const asection *input_section,
a06ea964 2682 const asection *sym_sec,
cec5225b 2683 const struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2684 const Elf_Internal_Rela *rel)
2685{
2686 char *stub_name;
2687 bfd_size_type len;
2688
2689 if (hash)
2690 {
2691 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2692 stub_name = bfd_malloc (len);
2693 if (stub_name != NULL)
2694 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2695 (unsigned int) input_section->id,
2696 hash->root.root.root.string,
2697 rel->r_addend);
2698 }
2699 else
2700 {
2701 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2702 stub_name = bfd_malloc (len);
2703 if (stub_name != NULL)
2704 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2705 (unsigned int) input_section->id,
2706 (unsigned int) sym_sec->id,
cec5225b 2707 (unsigned int) ELFNN_R_SYM (rel->r_info),
a06ea964
NC
2708 rel->r_addend);
2709 }
2710
2711 return stub_name;
2712}
2713
2714/* Look up an entry in the stub hash. Stub entries are cached because
2715 creating the stub name takes a bit of time. */
2716
cec5225b
YZ
2717static struct elf_aarch64_stub_hash_entry *
2718elfNN_aarch64_get_stub_entry (const asection *input_section,
a06ea964
NC
2719 const asection *sym_sec,
2720 struct elf_link_hash_entry *hash,
2721 const Elf_Internal_Rela *rel,
cec5225b 2722 struct elf_aarch64_link_hash_table *htab)
a06ea964 2723{
cec5225b
YZ
2724 struct elf_aarch64_stub_hash_entry *stub_entry;
2725 struct elf_aarch64_link_hash_entry *h =
2726 (struct elf_aarch64_link_hash_entry *) hash;
a06ea964
NC
2727 const asection *id_sec;
2728
2729 if ((input_section->flags & SEC_CODE) == 0)
2730 return NULL;
2731
2732 /* If this input section is part of a group of sections sharing one
2733 stub section, then use the id of the first section in the group.
2734 Stub names need to include a section id, as there may well be
2735 more than one stub used to reach say, printf, and we need to
2736 distinguish between them. */
2737 id_sec = htab->stub_group[input_section->id].link_sec;
2738
2739 if (h != NULL && h->stub_cache != NULL
2740 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2741 {
2742 stub_entry = h->stub_cache;
2743 }
2744 else
2745 {
2746 char *stub_name;
2747
cec5225b 2748 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
a06ea964
NC
2749 if (stub_name == NULL)
2750 return NULL;
2751
2752 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2753 stub_name, FALSE, FALSE);
2754 if (h != NULL)
2755 h->stub_cache = stub_entry;
2756
2757 free (stub_name);
2758 }
2759
2760 return stub_entry;
2761}
2762
a06ea964 2763
66585675
MS
2764/* Create a stub section. */
2765
2766static asection *
2767_bfd_aarch64_create_stub_section (asection *section,
2768 struct elf_aarch64_link_hash_table *htab)
2769{
2770 size_t namelen;
2771 bfd_size_type len;
2772 char *s_name;
2773
2774 namelen = strlen (section->name);
2775 len = namelen + sizeof (STUB_SUFFIX);
2776 s_name = bfd_alloc (htab->stub_bfd, len);
2777 if (s_name == NULL)
2778 return NULL;
2779
2780 memcpy (s_name, section->name, namelen);
2781 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2782 return (*htab->add_stub_section) (s_name, section);
2783}
2784
2785
fc6d53be
MS
2786/* Find or create a stub section for a link section.
2787
2788 Fix or create the stub section used to collect stubs attached to
2789 the specified link section. */
2790
2791static asection *
2792_bfd_aarch64_get_stub_for_link_section (asection *link_section,
2793 struct elf_aarch64_link_hash_table *htab)
2794{
2795 if (htab->stub_group[link_section->id].stub_sec == NULL)
2796 htab->stub_group[link_section->id].stub_sec
2797 = _bfd_aarch64_create_stub_section (link_section, htab);
2798 return htab->stub_group[link_section->id].stub_sec;
2799}
2800
2801
ef857521
MS
2802/* Find or create a stub section in the stub group for an input
2803 section. */
2804
2805static asection *
2806_bfd_aarch64_create_or_find_stub_sec (asection *section,
2807 struct elf_aarch64_link_hash_table *htab)
a06ea964 2808{
fc6d53be
MS
2809 asection *link_sec = htab->stub_group[section->id].link_sec;
2810 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
ef857521
MS
2811}
2812
2813
2814/* Add a new stub entry in the stub group associated with an input
2815 section to the stub hash. Not all fields of the new stub entry are
2816 initialised. */
2817
2818static struct elf_aarch64_stub_hash_entry *
2819_bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2820 asection *section,
2821 struct elf_aarch64_link_hash_table *htab)
2822{
2823 asection *link_sec;
2824 asection *stub_sec;
2825 struct elf_aarch64_stub_hash_entry *stub_entry;
2826
2827 link_sec = htab->stub_group[section->id].link_sec;
2828 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2829
a06ea964
NC
2830 /* Enter this entry into the linker stub hash table. */
2831 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2832 TRUE, FALSE);
2833 if (stub_entry == NULL)
2834 {
2835 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2836 section->owner, stub_name);
2837 return NULL;
2838 }
2839
2840 stub_entry->stub_sec = stub_sec;
2841 stub_entry->stub_offset = 0;
2842 stub_entry->id_sec = link_sec;
2843
2844 return stub_entry;
2845}
2846
4106101c
MS
2847/* Add a new stub entry in the final stub section to the stub hash.
2848 Not all fields of the new stub entry are initialised. */
2849
2850static struct elf_aarch64_stub_hash_entry *
2851_bfd_aarch64_add_stub_entry_after (const char *stub_name,
2852 asection *link_section,
2853 struct elf_aarch64_link_hash_table *htab)
2854{
2855 asection *stub_sec;
2856 struct elf_aarch64_stub_hash_entry *stub_entry;
2857
2858 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2859 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2860 TRUE, FALSE);
2861 if (stub_entry == NULL)
2862 {
2863 (*_bfd_error_handler) (_("cannot create stub entry %s"), stub_name);
2864 return NULL;
2865 }
2866
2867 stub_entry->stub_sec = stub_sec;
2868 stub_entry->stub_offset = 0;
2869 stub_entry->id_sec = link_section;
2870
2871 return stub_entry;
2872}
2873
2874
a06ea964
NC
2875static bfd_boolean
2876aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2877 void *in_arg ATTRIBUTE_UNUSED)
2878{
cec5225b 2879 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2880 asection *stub_sec;
2881 bfd *stub_bfd;
2882 bfd_byte *loc;
2883 bfd_vma sym_value;
68fcca92
JW
2884 bfd_vma veneered_insn_loc;
2885 bfd_vma veneer_entry_loc;
2886 bfd_signed_vma branch_offset = 0;
a06ea964
NC
2887 unsigned int template_size;
2888 const uint32_t *template;
2889 unsigned int i;
2890
2891 /* Massage our args to the form they really have. */
cec5225b 2892 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2893
2894 stub_sec = stub_entry->stub_sec;
2895
2896 /* Make a note of the offset within the stubs for this entry. */
2897 stub_entry->stub_offset = stub_sec->size;
2898 loc = stub_sec->contents + stub_entry->stub_offset;
2899
2900 stub_bfd = stub_sec->owner;
2901
2902 /* This is the address of the stub destination. */
2903 sym_value = (stub_entry->target_value
2904 + stub_entry->target_section->output_offset
2905 + stub_entry->target_section->output_section->vma);
2906
2907 if (stub_entry->stub_type == aarch64_stub_long_branch)
2908 {
2909 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2910 + stub_sec->output_offset);
2911
2912 /* See if we can relax the stub. */
2913 if (aarch64_valid_for_adrp_p (sym_value, place))
2914 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2915 }
2916
2917 switch (stub_entry->stub_type)
2918 {
2919 case aarch64_stub_adrp_branch:
2920 template = aarch64_adrp_branch_stub;
2921 template_size = sizeof (aarch64_adrp_branch_stub);
2922 break;
2923 case aarch64_stub_long_branch:
2924 template = aarch64_long_branch_stub;
2925 template_size = sizeof (aarch64_long_branch_stub);
2926 break;
68fcca92
JW
2927 case aarch64_stub_erratum_835769_veneer:
2928 template = aarch64_erratum_835769_stub;
2929 template_size = sizeof (aarch64_erratum_835769_stub);
2930 break;
4106101c
MS
2931 case aarch64_stub_erratum_843419_veneer:
2932 template = aarch64_erratum_843419_stub;
2933 template_size = sizeof (aarch64_erratum_843419_stub);
2934 break;
a06ea964 2935 default:
8e2fe09f 2936 abort ();
a06ea964
NC
2937 }
2938
2939 for (i = 0; i < (template_size / sizeof template[0]); i++)
2940 {
2941 bfd_putl32 (template[i], loc);
2942 loc += 4;
2943 }
2944
2945 template_size = (template_size + 7) & ~7;
2946 stub_sec->size += template_size;
2947
2948 switch (stub_entry->stub_type)
2949 {
2950 case aarch64_stub_adrp_branch:
a6bb11b2 2951 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
a06ea964
NC
2952 stub_entry->stub_offset, sym_value))
2953 /* The stub would not have been relaxed if the offset was out
2954 of range. */
2955 BFD_FAIL ();
2956
93ca8569
TB
2957 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2958 stub_entry->stub_offset + 4, sym_value))
2959 BFD_FAIL ();
a06ea964
NC
2960 break;
2961
2962 case aarch64_stub_long_branch:
2963 /* We want the value relative to the address 12 bytes back from the
2964 value itself. */
93ca8569
TB
2965 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2966 stub_entry->stub_offset + 16, sym_value + 12))
2967 BFD_FAIL ();
a06ea964 2968 break;
68fcca92
JW
2969
2970 case aarch64_stub_erratum_835769_veneer:
2971 veneered_insn_loc = stub_entry->target_section->output_section->vma
2972 + stub_entry->target_section->output_offset
2973 + stub_entry->target_value;
2974 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2975 + stub_entry->stub_sec->output_offset
2976 + stub_entry->stub_offset;
2977 branch_offset = veneered_insn_loc - veneer_entry_loc;
2978 branch_offset >>= 2;
2979 branch_offset &= 0x3ffffff;
2980 bfd_putl32 (stub_entry->veneered_insn,
2981 stub_sec->contents + stub_entry->stub_offset);
2982 bfd_putl32 (template[1] | branch_offset,
2983 stub_sec->contents + stub_entry->stub_offset + 4);
2984 break;
2985
4106101c
MS
2986 case aarch64_stub_erratum_843419_veneer:
2987 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
2988 stub_entry->stub_offset + 4, sym_value + 4))
2989 BFD_FAIL ();
2990 break;
2991
a06ea964 2992 default:
8e2fe09f 2993 abort ();
a06ea964
NC
2994 }
2995
2996 return TRUE;
2997}
2998
2999/* As above, but don't actually build the stub. Just bump offset so
3000 we know stub section sizes. */
3001
3002static bfd_boolean
3003aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3004 void *in_arg ATTRIBUTE_UNUSED)
3005{
cec5225b 3006 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
3007 int size;
3008
3009 /* Massage our args to the form they really have. */
cec5225b 3010 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
3011
3012 switch (stub_entry->stub_type)
3013 {
3014 case aarch64_stub_adrp_branch:
3015 size = sizeof (aarch64_adrp_branch_stub);
3016 break;
3017 case aarch64_stub_long_branch:
3018 size = sizeof (aarch64_long_branch_stub);
3019 break;
68fcca92
JW
3020 case aarch64_stub_erratum_835769_veneer:
3021 size = sizeof (aarch64_erratum_835769_stub);
3022 break;
4106101c
MS
3023 case aarch64_stub_erratum_843419_veneer:
3024 size = sizeof (aarch64_erratum_843419_stub);
3025 break;
a06ea964 3026 default:
8e2fe09f 3027 abort ();
a06ea964
NC
3028 }
3029
3030 size = (size + 7) & ~7;
3031 stub_entry->stub_sec->size += size;
3032 return TRUE;
3033}
3034
3035/* External entry points for sizing and building linker stubs. */
3036
3037/* Set up various things so that we can make a list of input sections
3038 for each output section included in the link. Returns -1 on error,
3039 0 when no stubs will be needed, and 1 on success. */
3040
3041int
cec5225b 3042elfNN_aarch64_setup_section_lists (bfd *output_bfd,
a06ea964
NC
3043 struct bfd_link_info *info)
3044{
3045 bfd *input_bfd;
3046 unsigned int bfd_count;
7292b3ac 3047 unsigned int top_id, top_index;
a06ea964
NC
3048 asection *section;
3049 asection **input_list, **list;
3050 bfd_size_type amt;
cec5225b
YZ
3051 struct elf_aarch64_link_hash_table *htab =
3052 elf_aarch64_hash_table (info);
a06ea964
NC
3053
3054 if (!is_elf_hash_table (htab))
3055 return 0;
3056
3057 /* Count the number of input BFDs and find the top input section id. */
3058 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
c72f2fb2 3059 input_bfd != NULL; input_bfd = input_bfd->link.next)
a06ea964
NC
3060 {
3061 bfd_count += 1;
3062 for (section = input_bfd->sections;
3063 section != NULL; section = section->next)
3064 {
3065 if (top_id < section->id)
3066 top_id = section->id;
3067 }
3068 }
3069 htab->bfd_count = bfd_count;
3070
3071 amt = sizeof (struct map_stub) * (top_id + 1);
3072 htab->stub_group = bfd_zmalloc (amt);
3073 if (htab->stub_group == NULL)
3074 return -1;
3075
3076 /* We can't use output_bfd->section_count here to find the top output
3077 section index as some sections may have been removed, and
3078 _bfd_strip_section_from_output doesn't renumber the indices. */
3079 for (section = output_bfd->sections, top_index = 0;
3080 section != NULL; section = section->next)
3081 {
3082 if (top_index < section->index)
3083 top_index = section->index;
3084 }
3085
3086 htab->top_index = top_index;
3087 amt = sizeof (asection *) * (top_index + 1);
3088 input_list = bfd_malloc (amt);
3089 htab->input_list = input_list;
3090 if (input_list == NULL)
3091 return -1;
3092
3093 /* For sections we aren't interested in, mark their entries with a
3094 value we can check later. */
3095 list = input_list + top_index;
3096 do
3097 *list = bfd_abs_section_ptr;
3098 while (list-- != input_list);
3099
3100 for (section = output_bfd->sections;
3101 section != NULL; section = section->next)
3102 {
3103 if ((section->flags & SEC_CODE) != 0)
3104 input_list[section->index] = NULL;
3105 }
3106
3107 return 1;
3108}
3109
cec5225b 3110/* Used by elfNN_aarch64_next_input_section and group_sections. */
a06ea964
NC
3111#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3112
3113/* The linker repeatedly calls this function for each input section,
3114 in the order that input sections are linked into output sections.
3115 Build lists of input sections to determine groupings between which
3116 we may insert linker stubs. */
3117
3118void
cec5225b 3119elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
a06ea964 3120{
cec5225b
YZ
3121 struct elf_aarch64_link_hash_table *htab =
3122 elf_aarch64_hash_table (info);
a06ea964
NC
3123
3124 if (isec->output_section->index <= htab->top_index)
3125 {
3126 asection **list = htab->input_list + isec->output_section->index;
3127
3128 if (*list != bfd_abs_section_ptr)
3129 {
3130 /* Steal the link_sec pointer for our list. */
3131 /* This happens to make the list in reverse order,
3132 which is what we want. */
3133 PREV_SEC (isec) = *list;
3134 *list = isec;
3135 }
3136 }
3137}
3138
3139/* See whether we can group stub sections together. Grouping stub
3140 sections may result in fewer stubs. More importantly, we need to
3141 put all .init* and .fini* stubs at the beginning of the .init or
3142 .fini output sections respectively, because glibc splits the
3143 _init and _fini functions into multiple parts. Putting a stub in
3144 the middle of a function is not a good idea. */
3145
3146static void
cec5225b 3147group_sections (struct elf_aarch64_link_hash_table *htab,
a06ea964
NC
3148 bfd_size_type stub_group_size,
3149 bfd_boolean stubs_always_before_branch)
3150{
3151 asection **list = htab->input_list + htab->top_index;
3152
3153 do
3154 {
3155 asection *tail = *list;
3156
3157 if (tail == bfd_abs_section_ptr)
3158 continue;
3159
3160 while (tail != NULL)
3161 {
3162 asection *curr;
3163 asection *prev;
3164 bfd_size_type total;
3165
3166 curr = tail;
3167 total = tail->size;
3168 while ((prev = PREV_SEC (curr)) != NULL
3169 && ((total += curr->output_offset - prev->output_offset)
3170 < stub_group_size))
3171 curr = prev;
3172
3173 /* OK, the size from the start of CURR to the end is less
3174 than stub_group_size and thus can be handled by one stub
3175 section. (Or the tail section is itself larger than
3176 stub_group_size, in which case we may be toast.)
3177 We should really be keeping track of the total size of
3178 stubs added here, as stubs contribute to the final output
3179 section size. */
3180 do
3181 {
3182 prev = PREV_SEC (tail);
3183 /* Set up this stub group. */
3184 htab->stub_group[tail->id].link_sec = curr;
3185 }
3186 while (tail != curr && (tail = prev) != NULL);
3187
3188 /* But wait, there's more! Input sections up to stub_group_size
3189 bytes before the stub section can be handled by it too. */
3190 if (!stubs_always_before_branch)
3191 {
3192 total = 0;
3193 while (prev != NULL
3194 && ((total += tail->output_offset - prev->output_offset)
3195 < stub_group_size))
3196 {
3197 tail = prev;
3198 prev = PREV_SEC (tail);
3199 htab->stub_group[tail->id].link_sec = curr;
3200 }
3201 }
3202 tail = prev;
3203 }
3204 }
3205 while (list-- != htab->input_list);
3206
3207 free (htab->input_list);
3208}
3209
3210#undef PREV_SEC
3211
68fcca92
JW
3212#define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3213
3214#define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3215#define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3216#define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3217#define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3218#define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3219#define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3220
3221#define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3222#define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3223#define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3224#define AARCH64_ZR 0x1f
3225
3226/* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3227 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3228
3229#define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3230#define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3231#define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3232#define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3233#define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3234#define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3235#define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3236#define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3237#define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3238#define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3239#define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3240#define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3241#define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3242#define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3243#define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3244#define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3245#define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3246#define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3247
3d14faea
MS
3248/* Classify an INSN if it is indeed a load/store.
3249
3250 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3251
3252 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3253 is set equal to RT.
3254
3255 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned.
3256
3257 */
68fcca92
JW
3258
3259static bfd_boolean
3d14faea 3260aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
68fcca92
JW
3261 bfd_boolean *pair, bfd_boolean *load)
3262{
3263 uint32_t opcode;
3264 unsigned int r;
3265 uint32_t opc = 0;
3266 uint32_t v = 0;
3267 uint32_t opc_v = 0;
3268
3269 /* Bail out quickly if INSN doesn't fall into the the load-store
3270 encoding space. */
3271 if (!AARCH64_LDST (insn))
3272 return FALSE;
3273
3274 *pair = FALSE;
3275 *load = FALSE;
3276 if (AARCH64_LDST_EX (insn))
3277 {
3278 *rt = AARCH64_RT (insn);
3d14faea 3279 *rt2 = *rt;
68fcca92
JW
3280 if (AARCH64_BIT (insn, 21) == 1)
3281 {
3282 *pair = TRUE;
3d14faea 3283 *rt2 = AARCH64_RT2 (insn);
68fcca92
JW
3284 }
3285 *load = AARCH64_LD (insn);
3286 return TRUE;
3287 }
3288 else if (AARCH64_LDST_NAP (insn)
3289 || AARCH64_LDSTP_PI (insn)
3290 || AARCH64_LDSTP_O (insn)
3291 || AARCH64_LDSTP_PRE (insn))
3292 {
3293 *pair = TRUE;
3294 *rt = AARCH64_RT (insn);
3d14faea 3295 *rt2 = AARCH64_RT2 (insn);
68fcca92
JW
3296 *load = AARCH64_LD (insn);
3297 return TRUE;
3298 }
3299 else if (AARCH64_LDST_PCREL (insn)
3300 || AARCH64_LDST_UI (insn)
3301 || AARCH64_LDST_PIIMM (insn)
3302 || AARCH64_LDST_U (insn)
3303 || AARCH64_LDST_PREIMM (insn)
3304 || AARCH64_LDST_RO (insn)
3305 || AARCH64_LDST_UIMM (insn))
3306 {
3307 *rt = AARCH64_RT (insn);
3d14faea 3308 *rt2 = *rt;
68fcca92
JW
3309 if (AARCH64_LDST_PCREL (insn))
3310 *load = TRUE;
3311 opc = AARCH64_BITS (insn, 22, 2);
3312 v = AARCH64_BIT (insn, 26);
3313 opc_v = opc | (v << 2);
3314 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3315 || opc_v == 5 || opc_v == 7);
3316 return TRUE;
3317 }
3318 else if (AARCH64_LDST_SIMD_M (insn)
3319 || AARCH64_LDST_SIMD_M_PI (insn))
3320 {
3321 *rt = AARCH64_RT (insn);
3322 *load = AARCH64_BIT (insn, 22);
3323 opcode = (insn >> 12) & 0xf;
3324 switch (opcode)
3325 {
3326 case 0:
3327 case 2:
3d14faea 3328 *rt2 = *rt + 3;
68fcca92
JW
3329 break;
3330
3331 case 4:
3332 case 6:
3d14faea 3333 *rt2 = *rt + 2;
68fcca92
JW
3334 break;
3335
3336 case 7:
3d14faea 3337 *rt2 = *rt;
68fcca92
JW
3338 break;
3339
3340 case 8:
3341 case 10:
3d14faea 3342 *rt2 = *rt + 1;
68fcca92
JW
3343 break;
3344
3345 default:
3346 return FALSE;
3347 }
3348 return TRUE;
3349 }
3350 else if (AARCH64_LDST_SIMD_S (insn)
3351 || AARCH64_LDST_SIMD_S_PI (insn))
3352 {
3353 *rt = AARCH64_RT (insn);
3354 r = (insn >> 21) & 1;
3355 *load = AARCH64_BIT (insn, 22);
3356 opcode = (insn >> 13) & 0x7;
3357 switch (opcode)
3358 {
3359 case 0:
3360 case 2:
3361 case 4:
3d14faea 3362 *rt2 = *rt + r;
68fcca92
JW
3363 break;
3364
3365 case 1:
3366 case 3:
3367 case 5:
3d14faea 3368 *rt2 = *rt + (r == 0 ? 2 : 3);
68fcca92
JW
3369 break;
3370
3371 case 6:
3d14faea 3372 *rt2 = *rt + r;
68fcca92
JW
3373 break;
3374
3375 case 7:
3d14faea 3376 *rt2 = *rt + (r == 0 ? 2 : 3);
68fcca92
JW
3377 break;
3378
3379 default:
3380 return FALSE;
3381 }
3382 return TRUE;
3383 }
3384
3385 return FALSE;
3386}
3387
3388/* Return TRUE if INSN is multiply-accumulate. */
3389
3390static bfd_boolean
3391aarch64_mlxl_p (uint32_t insn)
3392{
3393 uint32_t op31 = AARCH64_OP31 (insn);
3394
3395 if (AARCH64_MAC (insn)
3396 && (op31 == 0 || op31 == 1 || op31 == 5)
3397 /* Exclude MUL instructions which are encoded as a multiple accumulate
3398 with RA = XZR. */
3399 && AARCH64_RA (insn) != AARCH64_ZR)
3400 return TRUE;
3401
3402 return FALSE;
3403}
3404
3405/* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3406 it is possible for a 64-bit multiply-accumulate instruction to generate an
3407 incorrect result. The details are quite complex and hard to
3408 determine statically, since branches in the code may exist in some
3409 circumstances, but all cases end with a memory (load, store, or
3410 prefetch) instruction followed immediately by the multiply-accumulate
3411 operation. We employ a linker patching technique, by moving the potentially
3412 affected multiply-accumulate instruction into a patch region and replacing
3413 the original instruction with a branch to the patch. This function checks
3414 if INSN_1 is the memory operation followed by a multiply-accumulate
3415 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3416 if INSN_1 and INSN_2 are safe. */
3417
3418static bfd_boolean
3419aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3420{
3421 uint32_t rt;
3d14faea 3422 uint32_t rt2;
68fcca92
JW
3423 uint32_t rn;
3424 uint32_t rm;
3425 uint32_t ra;
3426 bfd_boolean pair;
3427 bfd_boolean load;
3428
3429 if (aarch64_mlxl_p (insn_2)
3d14faea 3430 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
68fcca92
JW
3431 {
3432 /* Any SIMD memory op is independent of the subsequent MLA
3433 by definition of the erratum. */
3434 if (AARCH64_BIT (insn_1, 26))
3435 return TRUE;
3436
3437 /* If not SIMD, check for integer memory ops and MLA relationship. */
3438 rn = AARCH64_RN (insn_2);
3439 ra = AARCH64_RA (insn_2);
3440 rm = AARCH64_RM (insn_2);
3441
3442 /* If this is a load and there's a true(RAW) dependency, we are safe
3443 and this is not an erratum sequence. */
3444 if (load &&
3445 (rt == rn || rt == rm || rt == ra
3d14faea 3446 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
68fcca92
JW
3447 return FALSE;
3448
3449 /* We conservatively put out stubs for all other cases (including
3450 writebacks). */
3451 return TRUE;
3452 }
3453
3454 return FALSE;
3455}
3456
520c7b56
JW
3457/* Used to order a list of mapping symbols by address. */
3458
3459static int
3460elf_aarch64_compare_mapping (const void *a, const void *b)
3461{
3462 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3463 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3464
3465 if (amap->vma > bmap->vma)
3466 return 1;
3467 else if (amap->vma < bmap->vma)
3468 return -1;
3469 else if (amap->type > bmap->type)
3470 /* Ensure results do not depend on the host qsort for objects with
3471 multiple mapping symbols at the same address by sorting on type
3472 after vma. */
3473 return 1;
3474 else if (amap->type < bmap->type)
3475 return -1;
3476 else
3477 return 0;
3478}
3479
2144188d 3480
35fee8b7
MS
3481static char *
3482_bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3483{
3484 char *stub_name = (char *) bfd_malloc
3485 (strlen ("__erratum_835769_veneer_") + 16);
3486 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3487 return stub_name;
3488}
3489
4106101c 3490/* Scan for Cortex-A53 erratum 835769 sequence.
2144188d
MS
3491
3492 Return TRUE else FALSE on abnormal termination. */
3493
68fcca92 3494static bfd_boolean
5421cc6e
MS
3495_bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3496 struct bfd_link_info *info,
3497 unsigned int *num_fixes_p)
68fcca92
JW
3498{
3499 asection *section;
3500 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
68fcca92 3501 unsigned int num_fixes = *num_fixes_p;
68fcca92
JW
3502
3503 if (htab == NULL)
2144188d 3504 return TRUE;
68fcca92
JW
3505
3506 for (section = input_bfd->sections;
3507 section != NULL;
3508 section = section->next)
3509 {
3510 bfd_byte *contents = NULL;
3511 struct _aarch64_elf_section_data *sec_data;
3512 unsigned int span;
3513
3514 if (elf_section_type (section) != SHT_PROGBITS
3515 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3516 || (section->flags & SEC_EXCLUDE) != 0
3517 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3518 || (section->output_section == bfd_abs_section_ptr))
3519 continue;
3520
3521 if (elf_section_data (section)->this_hdr.contents != NULL)
3522 contents = elf_section_data (section)->this_hdr.contents;
3523 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
2144188d 3524 return FALSE;
68fcca92
JW
3525
3526 sec_data = elf_aarch64_section_data (section);
520c7b56
JW
3527
3528 qsort (sec_data->map, sec_data->mapcount,
3529 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3530
68fcca92
JW
3531 for (span = 0; span < sec_data->mapcount; span++)
3532 {
3533 unsigned int span_start = sec_data->map[span].vma;
3534 unsigned int span_end = ((span == sec_data->mapcount - 1)
3535 ? sec_data->map[0].vma + section->size
3536 : sec_data->map[span + 1].vma);
3537 unsigned int i;
3538 char span_type = sec_data->map[span].type;
3539
3540 if (span_type == 'd')
3541 continue;
3542
3543 for (i = span_start; i + 4 < span_end; i += 4)
3544 {
3545 uint32_t insn_1 = bfd_getl32 (contents + i);
3546 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3547
3548 if (aarch64_erratum_sequence (insn_1, insn_2))
3549 {
5421cc6e 3550 struct elf_aarch64_stub_hash_entry *stub_entry;
35fee8b7
MS
3551 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3552 if (! stub_name)
2144188d 3553 return FALSE;
68fcca92 3554
5421cc6e
MS
3555 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3556 section,
3557 htab);
3558 if (! stub_entry)
3559 return FALSE;
68fcca92 3560
5421cc6e
MS
3561 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3562 stub_entry->target_section = section;
3563 stub_entry->target_value = i + 4;
3564 stub_entry->veneered_insn = insn_2;
3565 stub_entry->output_name = stub_name;
68fcca92
JW
3566 num_fixes++;
3567 }
3568 }
3569 }
3570 if (elf_section_data (section)->this_hdr.contents == NULL)
3571 free (contents);
3572 }
3573
357d1523
MS
3574 *num_fixes_p = num_fixes;
3575
2144188d 3576 return TRUE;
68fcca92
JW
3577}
3578
13f622ec 3579
4106101c
MS
3580/* Test if instruction INSN is ADRP. */
3581
3582static bfd_boolean
3583_bfd_aarch64_adrp_p (uint32_t insn)
3584{
3585 return ((insn & 0x9f000000) == 0x90000000);
3586}
3587
3588
3589/* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3590
3591static bfd_boolean
3592_bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3593 uint32_t insn_3)
3594{
3595 uint32_t rt;
3596 uint32_t rt2;
3597 bfd_boolean pair;
3598 bfd_boolean load;
3599
3600 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3601 && (!pair
3602 || (pair && !load))
3603 && AARCH64_LDST_UIMM (insn_3)
3604 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3605}
3606
3607
3608/* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3609
3610 Return TRUE if section CONTENTS at offset I contains one of the
3611 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3612 seen set P_VENEER_I to the offset of the final LOAD/STORE
3613 instruction in the sequence.
3614 */
3615
3616static bfd_boolean
3617_bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3618 bfd_vma i, bfd_vma span_end,
3619 bfd_vma *p_veneer_i)
3620{
3621 uint32_t insn_1 = bfd_getl32 (contents + i);
3622
3623 if (!_bfd_aarch64_adrp_p (insn_1))
3624 return FALSE;
3625
3626 if (span_end < i + 12)
3627 return FALSE;
3628
3629 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3630 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3631
3632 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3633 return FALSE;
3634
3635 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3636 {
3637 *p_veneer_i = i + 8;
3638 return TRUE;
3639 }
3640
3641 if (span_end < i + 16)
3642 return FALSE;
3643
3644 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3645
3646 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3647 {
3648 *p_veneer_i = i + 12;
3649 return TRUE;
3650 }
3651
3652 return FALSE;
3653}
3654
3655
13f622ec
MS
3656/* Resize all stub sections. */
3657
3658static void
3659_bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3660{
3661 asection *section;
3662
3663 /* OK, we've added some stubs. Find out the new size of the
3664 stub sections. */
3665 for (section = htab->stub_bfd->sections;
3666 section != NULL; section = section->next)
3667 {
3668 /* Ignore non-stub sections. */
3669 if (!strstr (section->name, STUB_SUFFIX))
3670 continue;
3671 section->size = 0;
3672 }
3673
3674 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
13f622ec 3675
61865519
MS
3676 for (section = htab->stub_bfd->sections;
3677 section != NULL; section = section->next)
3678 {
3679 if (!strstr (section->name, STUB_SUFFIX))
3680 continue;
3681
3682 if (section->size)
3683 section->size += 4;
4106101c
MS
3684
3685 /* Ensure all stub sections have a size which is a multiple of
3686 4096. This is important in order to ensure that the insertion
3687 of stub sections does not in itself move existing code around
3688 in such a way that new errata sequences are created. */
3689 if (htab->fix_erratum_843419)
3690 if (section->size)
3691 section->size = BFD_ALIGN (section->size, 0x1000);
3692 }
3693}
3694
3695
3696/* Construct an erratum 843419 workaround stub name.
3697 */
3698
3699static char *
3700_bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3701 bfd_vma offset)
3702{
3703 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3704 char *stub_name = bfd_malloc (len);
3705
3706 if (stub_name != NULL)
3707 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3708 input_section->owner->id,
3709 input_section->id,
3710 offset);
3711 return stub_name;
3712}
3713
3714/* Build a stub_entry structure describing an 843419 fixup.
3715
3716 The stub_entry constructed is populated with the bit pattern INSN
3717 of the instruction located at OFFSET within input SECTION.
3718
3719 Returns TRUE on success. */
3720
3721static bfd_boolean
3722_bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3723 bfd_vma adrp_offset,
3724 bfd_vma ldst_offset,
3725 asection *section,
3726 struct bfd_link_info *info)
3727{
3728 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3729 char *stub_name;
3730 struct elf_aarch64_stub_hash_entry *stub_entry;
3731
3732 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3733 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3734 FALSE, FALSE);
3735 if (stub_entry)
3736 {
3737 free (stub_name);
3738 return TRUE;
3739 }
3740
3741 /* We always place an 843419 workaround veneer in the stub section
3742 attached to the input section in which an erratum sequence has
3743 been found. This ensures that later in the link process (in
3744 elfNN_aarch64_write_section) when we copy the veneered
3745 instruction from the input section into the stub section the
3746 copied instruction will have had any relocations applied to it.
3747 If we placed workaround veneers in any other stub section then we
3748 could not assume that all relocations have been processed on the
3749 corresponding input section at the point we output the stub
3750 section.
3751 */
3752
3753 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3754 if (stub_entry == NULL)
3755 {
3756 free (stub_name);
3757 return FALSE;
3758 }
3759
3760 stub_entry->adrp_offset = adrp_offset;
3761 stub_entry->target_value = ldst_offset;
3762 stub_entry->target_section = section;
3763 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3764 stub_entry->veneered_insn = insn;
3765 stub_entry->output_name = stub_name;
3766
3767 return TRUE;
3768}
3769
3770
3771/* Scan an input section looking for the signature of erratum 843419.
3772
3773 Scans input SECTION in INPUT_BFD looking for erratum 843419
3774 signatures, for each signature found a stub_entry is created
3775 describing the location of the erratum for subsequent fixup.
3776
3777 Return TRUE on successful scan, FALSE on failure to scan.
3778 */
3779
3780static bfd_boolean
3781_bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3782 struct bfd_link_info *info)
3783{
3784 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3785
3786 if (htab == NULL)
3787 return TRUE;
3788
3789 if (elf_section_type (section) != SHT_PROGBITS
3790 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3791 || (section->flags & SEC_EXCLUDE) != 0
3792 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3793 || (section->output_section == bfd_abs_section_ptr))
3794 return TRUE;
3795
3796 do
3797 {
3798 bfd_byte *contents = NULL;
3799 struct _aarch64_elf_section_data *sec_data;
3800 unsigned int span;
3801
3802 if (elf_section_data (section)->this_hdr.contents != NULL)
3803 contents = elf_section_data (section)->this_hdr.contents;
3804 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3805 return FALSE;
3806
3807 sec_data = elf_aarch64_section_data (section);
3808
3809 qsort (sec_data->map, sec_data->mapcount,
3810 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3811
3812 for (span = 0; span < sec_data->mapcount; span++)
3813 {
3814 unsigned int span_start = sec_data->map[span].vma;
3815 unsigned int span_end = ((span == sec_data->mapcount - 1)
3816 ? sec_data->map[0].vma + section->size
3817 : sec_data->map[span + 1].vma);
3818 unsigned int i;
3819 char span_type = sec_data->map[span].type;
3820
3821 if (span_type == 'd')
3822 continue;
3823
3824 for (i = span_start; i + 8 < span_end; i += 4)
3825 {
3826 bfd_vma vma = (section->output_section->vma
3827 + section->output_offset
3828 + i);
3829 bfd_vma veneer_i;
3830
3831 if (_bfd_aarch64_erratum_843419_p
3832 (contents, vma, i, span_end, &veneer_i))
3833 {
3834 uint32_t insn = bfd_getl32 (contents + veneer_i);
3835
3836 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3837 section, info))
3838 return FALSE;
3839 }
3840 }
3841 }
3842
3843 if (elf_section_data (section)->this_hdr.contents == NULL)
3844 free (contents);
61865519 3845 }
4106101c
MS
3846 while (0);
3847
3848 return TRUE;
61865519 3849}
13f622ec 3850
4106101c 3851
a06ea964
NC
3852/* Determine and set the size of the stub section for a final link.
3853
3854 The basic idea here is to examine all the relocations looking for
3855 PC-relative calls to a target that is unreachable with a "bl"
3856 instruction. */
3857
3858bfd_boolean
cec5225b 3859elfNN_aarch64_size_stubs (bfd *output_bfd,
a06ea964
NC
3860 bfd *stub_bfd,
3861 struct bfd_link_info *info,
3862 bfd_signed_vma group_size,
3863 asection * (*add_stub_section) (const char *,
3864 asection *),
3865 void (*layout_sections_again) (void))
3866{
3867 bfd_size_type stub_group_size;
3868 bfd_boolean stubs_always_before_branch;
5421cc6e 3869 bfd_boolean stub_changed = FALSE;
cec5225b 3870 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
68fcca92 3871 unsigned int num_erratum_835769_fixes = 0;
a06ea964
NC
3872
3873 /* Propagate mach to stub bfd, because it may not have been
3874 finalized when we created stub_bfd. */
3875 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3876 bfd_get_mach (output_bfd));
3877
3878 /* Stash our params away. */
3879 htab->stub_bfd = stub_bfd;
3880 htab->add_stub_section = add_stub_section;
3881 htab->layout_sections_again = layout_sections_again;
3882 stubs_always_before_branch = group_size < 0;
3883 if (group_size < 0)
3884 stub_group_size = -group_size;
3885 else
3886 stub_group_size = group_size;
3887
3888 if (stub_group_size == 1)
3889 {
3890 /* Default values. */
b9eead84 3891 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
a06ea964
NC
3892 stub_group_size = 127 * 1024 * 1024;
3893 }
3894
3895 group_sections (htab, stub_group_size, stubs_always_before_branch);
3896
4106101c
MS
3897 (*htab->layout_sections_again) ();
3898
5421cc6e
MS
3899 if (htab->fix_erratum_835769)
3900 {
3901 bfd *input_bfd;
3902
3903 for (input_bfd = info->input_bfds;
3904 input_bfd != NULL; input_bfd = input_bfd->link.next)
3905 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3906 &num_erratum_835769_fixes))
3907 return FALSE;
3908
4106101c
MS
3909 _bfd_aarch64_resize_stubs (htab);
3910 (*htab->layout_sections_again) ();
3911 }
3912
3913 if (htab->fix_erratum_843419)
3914 {
3915 bfd *input_bfd;
3916
3917 for (input_bfd = info->input_bfds;
3918 input_bfd != NULL;
3919 input_bfd = input_bfd->link.next)
3920 {
3921 asection *section;
3922
3923 for (section = input_bfd->sections;
3924 section != NULL;
3925 section = section->next)
3926 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3927 return FALSE;
3928 }
3929
3930 _bfd_aarch64_resize_stubs (htab);
3931 (*htab->layout_sections_again) ();
5421cc6e
MS
3932 }
3933
a06ea964
NC
3934 while (1)
3935 {
3936 bfd *input_bfd;
a06ea964 3937
9b9971aa
MS
3938 for (input_bfd = info->input_bfds;
3939 input_bfd != NULL; input_bfd = input_bfd->link.next)
a06ea964
NC
3940 {
3941 Elf_Internal_Shdr *symtab_hdr;
3942 asection *section;
3943 Elf_Internal_Sym *local_syms = NULL;
3944
3945 /* We'll need the symbol table in a second. */
3946 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3947 if (symtab_hdr->sh_info == 0)
3948 continue;
3949
3950 /* Walk over each section attached to the input bfd. */
3951 for (section = input_bfd->sections;
3952 section != NULL; section = section->next)
3953 {
3954 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3955
3956 /* If there aren't any relocs, then there's nothing more
3957 to do. */
3958 if ((section->flags & SEC_RELOC) == 0
3959 || section->reloc_count == 0
3960 || (section->flags & SEC_CODE) == 0)
3961 continue;
3962
3963 /* If this section is a link-once section that will be
3964 discarded, then don't create any stubs. */
3965 if (section->output_section == NULL
3966 || section->output_section->owner != output_bfd)
3967 continue;
3968
3969 /* Get the relocs. */
3970 internal_relocs
3971 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3972 NULL, info->keep_memory);
3973 if (internal_relocs == NULL)
3974 goto error_ret_free_local;
3975
3976 /* Now examine each relocation. */
3977 irela = internal_relocs;
3978 irelaend = irela + section->reloc_count;
3979 for (; irela < irelaend; irela++)
3980 {
3981 unsigned int r_type, r_indx;
cec5225b
YZ
3982 enum elf_aarch64_stub_type stub_type;
3983 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
3984 asection *sym_sec;
3985 bfd_vma sym_value;
3986 bfd_vma destination;
cec5225b 3987 struct elf_aarch64_link_hash_entry *hash;
a06ea964
NC
3988 const char *sym_name;
3989 char *stub_name;
3990 const asection *id_sec;
3991 unsigned char st_type;
3992 bfd_size_type len;
3993
cec5225b
YZ
3994 r_type = ELFNN_R_TYPE (irela->r_info);
3995 r_indx = ELFNN_R_SYM (irela->r_info);
a06ea964
NC
3996
3997 if (r_type >= (unsigned int) R_AARCH64_end)
3998 {
3999 bfd_set_error (bfd_error_bad_value);
4000 error_ret_free_internal:
4001 if (elf_section_data (section)->relocs == NULL)
4002 free (internal_relocs);
4003 goto error_ret_free_local;
4004 }
4005
4006 /* Only look for stubs on unconditional branch and
4007 branch and link instructions. */
a6bb11b2
YZ
4008 if (r_type != (unsigned int) AARCH64_R (CALL26)
4009 && r_type != (unsigned int) AARCH64_R (JUMP26))
a06ea964
NC
4010 continue;
4011
4012 /* Now determine the call target, its name, value,
4013 section. */
4014 sym_sec = NULL;
4015 sym_value = 0;
4016 destination = 0;
4017 hash = NULL;
4018 sym_name = NULL;
4019 if (r_indx < symtab_hdr->sh_info)
4020 {
4021 /* It's a local symbol. */
4022 Elf_Internal_Sym *sym;
4023 Elf_Internal_Shdr *hdr;
4024
4025 if (local_syms == NULL)
4026 {
4027 local_syms
4028 = (Elf_Internal_Sym *) symtab_hdr->contents;
4029 if (local_syms == NULL)
4030 local_syms
4031 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4032 symtab_hdr->sh_info, 0,
4033 NULL, NULL, NULL);
4034 if (local_syms == NULL)
4035 goto error_ret_free_internal;
4036 }
4037
4038 sym = local_syms + r_indx;
4039 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4040 sym_sec = hdr->bfd_section;
4041 if (!sym_sec)
4042 /* This is an undefined symbol. It can never
4043 be resolved. */
4044 continue;
4045
4046 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4047 sym_value = sym->st_value;
4048 destination = (sym_value + irela->r_addend
4049 + sym_sec->output_offset
4050 + sym_sec->output_section->vma);
4051 st_type = ELF_ST_TYPE (sym->st_info);
4052 sym_name
4053 = bfd_elf_string_from_elf_section (input_bfd,
4054 symtab_hdr->sh_link,
4055 sym->st_name);
4056 }
4057 else
4058 {
4059 int e_indx;
4060
4061 e_indx = r_indx - symtab_hdr->sh_info;
cec5225b 4062 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
4063 elf_sym_hashes (input_bfd)[e_indx]);
4064
4065 while (hash->root.root.type == bfd_link_hash_indirect
4066 || hash->root.root.type == bfd_link_hash_warning)
cec5225b 4067 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
4068 hash->root.root.u.i.link);
4069
4070 if (hash->root.root.type == bfd_link_hash_defined
4071 || hash->root.root.type == bfd_link_hash_defweak)
4072 {
cec5225b
YZ
4073 struct elf_aarch64_link_hash_table *globals =
4074 elf_aarch64_hash_table (info);
a06ea964
NC
4075 sym_sec = hash->root.root.u.def.section;
4076 sym_value = hash->root.root.u.def.value;
4077 /* For a destination in a shared library,
4078 use the PLT stub as target address to
4079 decide whether a branch stub is
4080 needed. */
4081 if (globals->root.splt != NULL && hash != NULL
4082 && hash->root.plt.offset != (bfd_vma) - 1)
4083 {
4084 sym_sec = globals->root.splt;
4085 sym_value = hash->root.plt.offset;
4086 if (sym_sec->output_section != NULL)
4087 destination = (sym_value
4088 + sym_sec->output_offset
4089 +
4090 sym_sec->output_section->vma);
4091 }
4092 else if (sym_sec->output_section != NULL)
4093 destination = (sym_value + irela->r_addend
4094 + sym_sec->output_offset
4095 + sym_sec->output_section->vma);
4096 }
4097 else if (hash->root.root.type == bfd_link_hash_undefined
4098 || (hash->root.root.type
4099 == bfd_link_hash_undefweak))
4100 {
4101 /* For a shared library, use the PLT stub as
4102 target address to decide whether a long
4103 branch stub is needed.
4104 For absolute code, they cannot be handled. */
cec5225b
YZ
4105 struct elf_aarch64_link_hash_table *globals =
4106 elf_aarch64_hash_table (info);
a06ea964
NC
4107
4108 if (globals->root.splt != NULL && hash != NULL
4109 && hash->root.plt.offset != (bfd_vma) - 1)
4110 {
4111 sym_sec = globals->root.splt;
4112 sym_value = hash->root.plt.offset;
4113 if (sym_sec->output_section != NULL)
4114 destination = (sym_value
4115 + sym_sec->output_offset
4116 +
4117 sym_sec->output_section->vma);
4118 }
4119 else
4120 continue;
4121 }
4122 else
4123 {
4124 bfd_set_error (bfd_error_bad_value);
4125 goto error_ret_free_internal;
4126 }
4127 st_type = ELF_ST_TYPE (hash->root.type);
4128 sym_name = hash->root.root.root.string;
4129 }
4130
4131 /* Determine what (if any) linker stub is needed. */
9a228467
JW
4132 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4133 st_type, destination);
a06ea964
NC
4134 if (stub_type == aarch64_stub_none)
4135 continue;
4136
4137 /* Support for grouping stub sections. */
4138 id_sec = htab->stub_group[section->id].link_sec;
4139
4140 /* Get the name of this stub. */
cec5225b 4141 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
a06ea964
NC
4142 irela);
4143 if (!stub_name)
4144 goto error_ret_free_internal;
4145
4146 stub_entry =
4147 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4148 stub_name, FALSE, FALSE);
4149 if (stub_entry != NULL)
4150 {
4151 /* The proper stub has already been created. */
4152 free (stub_name);
4153 continue;
4154 }
4155
ef857521
MS
4156 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4157 (stub_name, section, htab);
a06ea964
NC
4158 if (stub_entry == NULL)
4159 {
4160 free (stub_name);
4161 goto error_ret_free_internal;
4162 }
4163
2f340668 4164 stub_entry->target_value = sym_value + irela->r_addend;
a06ea964
NC
4165 stub_entry->target_section = sym_sec;
4166 stub_entry->stub_type = stub_type;
4167 stub_entry->h = hash;
4168 stub_entry->st_type = st_type;
4169
4170 if (sym_name == NULL)
4171 sym_name = "unnamed";
4172 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4173 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4174 if (stub_entry->output_name == NULL)
4175 {
4176 free (stub_name);
4177 goto error_ret_free_internal;
4178 }
4179
4180 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4181 sym_name);
4182
4183 stub_changed = TRUE;
4184 }
4185
4186 /* We're done with the internal relocs, free them. */
4187 if (elf_section_data (section)->relocs == NULL)
4188 free (internal_relocs);
4189 }
4190 }
4191
4192 if (!stub_changed)
4193 break;
4194
13f622ec 4195 _bfd_aarch64_resize_stubs (htab);
a06ea964
NC
4196
4197 /* Ask the linker to do its stuff. */
4198 (*htab->layout_sections_again) ();
4199 stub_changed = FALSE;
4200 }
4201
4202 return TRUE;
4203
4204error_ret_free_local:
4205 return FALSE;
4206}
4207
4208/* Build all the stubs associated with the current output file. The
4209 stubs are kept in a hash table attached to the main linker hash
4210 table. We also set up the .plt entries for statically linked PIC
4211 functions here. This function is called via aarch64_elf_finish in the
4212 linker. */
4213
4214bfd_boolean
cec5225b 4215elfNN_aarch64_build_stubs (struct bfd_link_info *info)
a06ea964
NC
4216{
4217 asection *stub_sec;
4218 struct bfd_hash_table *table;
cec5225b 4219 struct elf_aarch64_link_hash_table *htab;
a06ea964 4220
cec5225b 4221 htab = elf_aarch64_hash_table (info);
a06ea964
NC
4222
4223 for (stub_sec = htab->stub_bfd->sections;
4224 stub_sec != NULL; stub_sec = stub_sec->next)
4225 {
4226 bfd_size_type size;
4227
4228 /* Ignore non-stub sections. */
4229 if (!strstr (stub_sec->name, STUB_SUFFIX))
4230 continue;
4231
4232 /* Allocate memory to hold the linker stubs. */
4233 size = stub_sec->size;
4234 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4235 if (stub_sec->contents == NULL && size != 0)
4236 return FALSE;
4237 stub_sec->size = 0;
61865519
MS
4238
4239 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4240 stub_sec->size += 4;
a06ea964
NC
4241 }
4242
4243 /* Build the stubs as directed by the stub hash table. */
4244 table = &htab->stub_hash_table;
4245 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4246
4247 return TRUE;
4248}
4249
4250
4251/* Add an entry to the code/data map for section SEC. */
4252
4253static void
cec5225b 4254elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
a06ea964
NC
4255{
4256 struct _aarch64_elf_section_data *sec_data =
cec5225b 4257 elf_aarch64_section_data (sec);
a06ea964
NC
4258 unsigned int newidx;
4259
4260 if (sec_data->map == NULL)
4261 {
cec5225b 4262 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
a06ea964
NC
4263 sec_data->mapcount = 0;
4264 sec_data->mapsize = 1;
4265 }
4266
4267 newidx = sec_data->mapcount++;
4268
4269 if (sec_data->mapcount > sec_data->mapsize)
4270 {
4271 sec_data->mapsize *= 2;
4272 sec_data->map = bfd_realloc_or_free
cec5225b 4273 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
a06ea964
NC
4274 }
4275
4276 if (sec_data->map)
4277 {
4278 sec_data->map[newidx].vma = vma;
4279 sec_data->map[newidx].type = type;
4280 }
4281}
4282
4283
4284/* Initialise maps of insn/data for input BFDs. */
4285void
cec5225b 4286bfd_elfNN_aarch64_init_maps (bfd *abfd)
a06ea964
NC
4287{
4288 Elf_Internal_Sym *isymbuf;
4289 Elf_Internal_Shdr *hdr;
4290 unsigned int i, localsyms;
4291
4292 /* Make sure that we are dealing with an AArch64 elf binary. */
4293 if (!is_aarch64_elf (abfd))
4294 return;
4295
4296 if ((abfd->flags & DYNAMIC) != 0)
68fcca92 4297 return;
a06ea964
NC
4298
4299 hdr = &elf_symtab_hdr (abfd);
4300 localsyms = hdr->sh_info;
4301
4302 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4303 should contain the number of local symbols, which should come before any
4304 global symbols. Mapping symbols are always local. */
4305 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4306
4307 /* No internal symbols read? Skip this BFD. */
4308 if (isymbuf == NULL)
4309 return;
4310
4311 for (i = 0; i < localsyms; i++)
4312 {
4313 Elf_Internal_Sym *isym = &isymbuf[i];
4314 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4315 const char *name;
4316
4317 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4318 {
4319 name = bfd_elf_string_from_elf_section (abfd,
4320 hdr->sh_link,
4321 isym->st_name);
4322
4323 if (bfd_is_aarch64_special_symbol_name
4324 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
cec5225b 4325 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
a06ea964
NC
4326 }
4327 }
4328}
4329
4330/* Set option values needed during linking. */
4331void
cec5225b 4332bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
a06ea964
NC
4333 struct bfd_link_info *link_info,
4334 int no_enum_warn,
68fcca92 4335 int no_wchar_warn, int pic_veneer,
4106101c
MS
4336 int fix_erratum_835769,
4337 int fix_erratum_843419)
a06ea964 4338{
cec5225b 4339 struct elf_aarch64_link_hash_table *globals;
a06ea964 4340
cec5225b 4341 globals = elf_aarch64_hash_table (link_info);
a06ea964 4342 globals->pic_veneer = pic_veneer;
68fcca92 4343 globals->fix_erratum_835769 = fix_erratum_835769;
4106101c
MS
4344 globals->fix_erratum_843419 = fix_erratum_843419;
4345 globals->fix_erratum_843419_adr = TRUE;
a06ea964
NC
4346
4347 BFD_ASSERT (is_aarch64_elf (output_bfd));
4348 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4349 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4350}
4351
a06ea964
NC
4352static bfd_vma
4353aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
cec5225b 4354 struct elf_aarch64_link_hash_table
a06ea964
NC
4355 *globals, struct bfd_link_info *info,
4356 bfd_vma value, bfd *output_bfd,
4357 bfd_boolean *unresolved_reloc_p)
4358{
4359 bfd_vma off = (bfd_vma) - 1;
4360 asection *basegot = globals->root.sgot;
4361 bfd_boolean dyn = globals->root.dynamic_sections_created;
4362
4363 if (h != NULL)
4364 {
a6bb11b2 4365 BFD_ASSERT (basegot != NULL);
a06ea964
NC
4366 off = h->got.offset;
4367 BFD_ASSERT (off != (bfd_vma) - 1);
0e1862bb
L
4368 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4369 || (bfd_link_pic (info)
a06ea964
NC
4370 && SYMBOL_REFERENCES_LOCAL (info, h))
4371 || (ELF_ST_VISIBILITY (h->other)
4372 && h->root.type == bfd_link_hash_undefweak))
4373 {
4374 /* This is actually a static link, or it is a -Bsymbolic link
4375 and the symbol is defined locally. We must initialize this
4376 entry in the global offset table. Since the offset must
a6bb11b2
YZ
4377 always be a multiple of 8 (4 in the case of ILP32), we use
4378 the least significant bit to record whether we have
4379 initialized it already.
a06ea964
NC
4380 When doing a dynamic link, we create a .rel(a).got relocation
4381 entry to initialize the value. This is done in the
4382 finish_dynamic_symbol routine. */
4383 if ((off & 1) != 0)
4384 off &= ~1;
4385 else
4386 {
cec5225b 4387 bfd_put_NN (output_bfd, value, basegot->contents + off);
a06ea964
NC
4388 h->got.offset |= 1;
4389 }
4390 }
4391 else
4392 *unresolved_reloc_p = FALSE;
4393
4394 off = off + basegot->output_section->vma + basegot->output_offset;
4395 }
4396
4397 return off;
4398}
4399
4400/* Change R_TYPE to a more efficient access model where possible,
4401 return the new reloc type. */
4402
a6bb11b2
YZ
4403static bfd_reloc_code_real_type
4404aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
a06ea964
NC
4405 struct elf_link_hash_entry *h)
4406{
4407 bfd_boolean is_local = h == NULL;
a6bb11b2 4408
a06ea964
NC
4409 switch (r_type)
4410 {
a6bb11b2 4411 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
ce336788 4412 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2
YZ
4413 return (is_local
4414 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4415 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4416
389b8029
MS
4417 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4418 return (is_local
4419 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4420 : r_type);
4421
1ada945d
MS
4422 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4423 return (is_local
4424 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4425 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4426
0484b454
RL
4427 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4428 return (is_local
4429 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4430 : BFD_RELOC_AARCH64_NONE);
4431
4432 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4433 return (is_local
4434 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4435 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4436
4437 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4438 return (is_local
4439 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4440 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4441
a6bb11b2 4442 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
ce336788 4443 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a6bb11b2
YZ
4444 return (is_local
4445 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4446 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4447
4448 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4449 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4450
4451 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4452 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4453
043bf05a
MS
4454 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4455 return r_type;
4456
3c12b054
MS
4457 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4458 return (is_local
4459 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4460 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4461
0484b454 4462 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a6bb11b2
YZ
4463 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4464 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964 4465 /* Instructions with these relocations will become NOPs. */
a6bb11b2
YZ
4466 return BFD_RELOC_AARCH64_NONE;
4467
259364ad
JW
4468 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4469 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4470 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4471 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4472
ac734732
RL
4473#if ARCH_SIZE == 64
4474 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4475 return is_local
4476 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4477 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4478
4479 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4480 return is_local
4481 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4482 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4483#endif
4484
a6bb11b2
YZ
4485 default:
4486 break;
a06ea964
NC
4487 }
4488
4489 return r_type;
4490}
4491
4492static unsigned int
a6bb11b2 4493aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
a06ea964
NC
4494{
4495 switch (r_type)
4496 {
a6bb11b2
YZ
4497 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4498 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 4499 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
ce336788 4500 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
a2e1db00 4501 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
99ad26cb 4502 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
ce336788 4503 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
dc8008f5 4504 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
74a1bfe1 4505 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a06ea964
NC
4506 return GOT_NORMAL;
4507
ce336788 4508 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a6bb11b2 4509 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 4510 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7ba7cfe4 4511 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
94facae3 4512 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
73f925cc 4513 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 4514 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 4515 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a06ea964
NC
4516 return GOT_TLS_GD;
4517
0484b454 4518 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a6bb11b2
YZ
4519 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4520 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 4521 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
a6bb11b2 4522 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a6bb11b2 4523 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
ce336788 4524 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 4525 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
0484b454
RL
4526 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4527 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4528 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
4529 return GOT_TLSDESC_GD;
4530
a6bb11b2 4531 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 4532 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
ce336788 4533 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 4534 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
4535 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4536 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
a06ea964
NC
4537 return GOT_TLS_IE;
4538
a6bb11b2
YZ
4539 default:
4540 break;
a06ea964
NC
4541 }
4542 return GOT_UNKNOWN;
4543}
4544
4545static bfd_boolean
4546aarch64_can_relax_tls (bfd *input_bfd,
4547 struct bfd_link_info *info,
a6bb11b2 4548 bfd_reloc_code_real_type r_type,
a06ea964
NC
4549 struct elf_link_hash_entry *h,
4550 unsigned long r_symndx)
4551{
4552 unsigned int symbol_got_type;
4553 unsigned int reloc_got_type;
4554
9331eea1 4555 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
a06ea964
NC
4556 return FALSE;
4557
cec5225b 4558 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
a06ea964
NC
4559 reloc_got_type = aarch64_reloc_got_type (r_type);
4560
4561 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4562 return TRUE;
4563
0e1862bb 4564 if (bfd_link_pic (info))
a06ea964
NC
4565 return FALSE;
4566
4567 if (h && h->root.type == bfd_link_hash_undefweak)
4568 return FALSE;
4569
4570 return TRUE;
4571}
4572
a6bb11b2
YZ
4573/* Given the relocation code R_TYPE, return the relaxed bfd reloc
4574 enumerator. */
4575
4576static bfd_reloc_code_real_type
a06ea964
NC
4577aarch64_tls_transition (bfd *input_bfd,
4578 struct bfd_link_info *info,
4579 unsigned int r_type,
4580 struct elf_link_hash_entry *h,
4581 unsigned long r_symndx)
4582{
a6bb11b2
YZ
4583 bfd_reloc_code_real_type bfd_r_type
4584 = elfNN_aarch64_bfd_reloc_from_type (r_type);
a06ea964 4585
a6bb11b2
YZ
4586 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4587 return bfd_r_type;
4588
4589 return aarch64_tls_transition_without_check (bfd_r_type, h);
a06ea964
NC
4590}
4591
4592/* Return the base VMA address which should be subtracted from real addresses
a6bb11b2 4593 when resolving R_AARCH64_TLS_DTPREL relocation. */
a06ea964
NC
4594
4595static bfd_vma
4596dtpoff_base (struct bfd_link_info *info)
4597{
4598 /* If tls_sec is NULL, we should have signalled an error already. */
4599 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4600 return elf_hash_table (info)->tls_sec->vma;
4601}
4602
a06ea964
NC
4603/* Return the base VMA address which should be subtracted from real addresses
4604 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4605
4606static bfd_vma
4607tpoff_base (struct bfd_link_info *info)
4608{
4609 struct elf_link_hash_table *htab = elf_hash_table (info);
4610
4611 /* If tls_sec is NULL, we should have signalled an error already. */
ac21917f 4612 BFD_ASSERT (htab->tls_sec != NULL);
a06ea964
NC
4613
4614 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4615 htab->tls_sec->alignment_power);
4616 return htab->tls_sec->vma - base;
4617}
4618
4619static bfd_vma *
4620symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4621 unsigned long r_symndx)
4622{
4623 /* Calculate the address of the GOT entry for symbol
4624 referred to in h. */
4625 if (h != NULL)
4626 return &h->got.offset;
4627 else
4628 {
4629 /* local symbol */
4630 struct elf_aarch64_local_symbol *l;
4631
cec5225b 4632 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
4633 return &l[r_symndx].got_offset;
4634 }
4635}
4636
4637static void
4638symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4639 unsigned long r_symndx)
4640{
4641 bfd_vma *p;
4642 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4643 *p |= 1;
4644}
4645
4646static int
4647symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4648 unsigned long r_symndx)
4649{
4650 bfd_vma value;
4651 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4652 return value & 1;
4653}
4654
4655static bfd_vma
4656symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4657 unsigned long r_symndx)
4658{
4659 bfd_vma value;
4660 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4661 value &= ~1;
4662 return value;
4663}
4664
4665static bfd_vma *
4666symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4667 unsigned long r_symndx)
4668{
4669 /* Calculate the address of the GOT entry for symbol
4670 referred to in h. */
4671 if (h != NULL)
4672 {
cec5225b
YZ
4673 struct elf_aarch64_link_hash_entry *eh;
4674 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
4675 return &eh->tlsdesc_got_jump_table_offset;
4676 }
4677 else
4678 {
4679 /* local symbol */
4680 struct elf_aarch64_local_symbol *l;
4681
cec5225b 4682 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
4683 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4684 }
4685}
4686
4687static void
4688symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4689 unsigned long r_symndx)
4690{
4691 bfd_vma *p;
4692 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4693 *p |= 1;
4694}
4695
4696static int
4697symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4698 struct elf_link_hash_entry *h,
4699 unsigned long r_symndx)
4700{
4701 bfd_vma value;
4702 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4703 return value & 1;
4704}
4705
4706static bfd_vma
4707symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4708 unsigned long r_symndx)
4709{
4710 bfd_vma value;
4711 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4712 value &= ~1;
4713 return value;
4714}
4715
68fcca92
JW
4716/* Data for make_branch_to_erratum_835769_stub(). */
4717
4718struct erratum_835769_branch_to_stub_data
4719{
4106101c 4720 struct bfd_link_info *info;
68fcca92
JW
4721 asection *output_section;
4722 bfd_byte *contents;
4723};
4724
4725/* Helper to insert branches to erratum 835769 stubs in the right
4726 places for a particular section. */
4727
4728static bfd_boolean
4729make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4730 void *in_arg)
4731{
4732 struct elf_aarch64_stub_hash_entry *stub_entry;
4733 struct erratum_835769_branch_to_stub_data *data;
4734 bfd_byte *contents;
4735 unsigned long branch_insn = 0;
4736 bfd_vma veneered_insn_loc, veneer_entry_loc;
4737 bfd_signed_vma branch_offset;
4738 unsigned int target;
4739 bfd *abfd;
4740
4741 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4742 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4743
4744 if (stub_entry->target_section != data->output_section
4745 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4746 return TRUE;
4747
4748 contents = data->contents;
4749 veneered_insn_loc = stub_entry->target_section->output_section->vma
4750 + stub_entry->target_section->output_offset
4751 + stub_entry->target_value;
4752 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4753 + stub_entry->stub_sec->output_offset
4754 + stub_entry->stub_offset;
4755 branch_offset = veneer_entry_loc - veneered_insn_loc;
4756
4757 abfd = stub_entry->target_section->owner;
4758 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4759 (*_bfd_error_handler)
4760 (_("%B: error: Erratum 835769 stub out "
4761 "of range (input file too large)"), abfd);
4762
4763 target = stub_entry->target_value;
4764 branch_insn = 0x14000000;
4765 branch_offset >>= 2;
4766 branch_offset &= 0x3ffffff;
4767 branch_insn |= branch_offset;
4768 bfd_putl32 (branch_insn, &contents[target]);
4769
4770 return TRUE;
4771}
4772
4106101c
MS
4773
4774static bfd_boolean
4775_bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4776 void *in_arg)
4777{
4778 struct elf_aarch64_stub_hash_entry *stub_entry
4779 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4780 struct erratum_835769_branch_to_stub_data *data
4781 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4782 struct bfd_link_info *info;
4783 struct elf_aarch64_link_hash_table *htab;
4784 bfd_byte *contents;
4785 asection *section;
4786 bfd *abfd;
4787 bfd_vma place;
4788 uint32_t insn;
4789
4790 info = data->info;
4791 contents = data->contents;
4792 section = data->output_section;
4793
4794 htab = elf_aarch64_hash_table (info);
4795
4796 if (stub_entry->target_section != section
4797 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4798 return TRUE;
4799
4800 insn = bfd_getl32 (contents + stub_entry->target_value);
4801 bfd_putl32 (insn,
4802 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4803
4804 place = (section->output_section->vma + section->output_offset
4805 + stub_entry->adrp_offset);
4806 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4807
4808 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4809 abort ();
4810
4811 bfd_signed_vma imm =
4812 (_bfd_aarch64_sign_extend
4813 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4814 - (place & 0xfff));
4815
4816 if (htab->fix_erratum_843419_adr
4817 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4818 {
4819 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4820 | AARCH64_RT (insn));
4821 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4822 }
4823 else
4824 {
4825 bfd_vma veneered_insn_loc;
4826 bfd_vma veneer_entry_loc;
4827 bfd_signed_vma branch_offset;
4828 uint32_t branch_insn;
4829
4830 veneered_insn_loc = stub_entry->target_section->output_section->vma
4831 + stub_entry->target_section->output_offset
4832 + stub_entry->target_value;
4833 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4834 + stub_entry->stub_sec->output_offset
4835 + stub_entry->stub_offset;
4836 branch_offset = veneer_entry_loc - veneered_insn_loc;
4837
4838 abfd = stub_entry->target_section->owner;
4839 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4840 (*_bfd_error_handler)
4841 (_("%B: error: Erratum 843419 stub out "
4842 "of range (input file too large)"), abfd);
4843
4844 branch_insn = 0x14000000;
4845 branch_offset >>= 2;
4846 branch_offset &= 0x3ffffff;
4847 branch_insn |= branch_offset;
4848 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4849 }
4850 return TRUE;
4851}
4852
4853
68fcca92
JW
4854static bfd_boolean
4855elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4856 struct bfd_link_info *link_info,
4857 asection *sec,
4858 bfd_byte *contents)
4859
4860{
4861 struct elf_aarch64_link_hash_table *globals =
f872121a 4862 elf_aarch64_hash_table (link_info);
68fcca92
JW
4863
4864 if (globals == NULL)
4865 return FALSE;
4866
4867 /* Fix code to point to erratum 835769 stubs. */
4868 if (globals->fix_erratum_835769)
4869 {
4870 struct erratum_835769_branch_to_stub_data data;
4871
4106101c 4872 data.info = link_info;
68fcca92
JW
4873 data.output_section = sec;
4874 data.contents = contents;
4875 bfd_hash_traverse (&globals->stub_hash_table,
4876 make_branch_to_erratum_835769_stub, &data);
4877 }
4878
4106101c
MS
4879 if (globals->fix_erratum_843419)
4880 {
4881 struct erratum_835769_branch_to_stub_data data;
4882
4883 data.info = link_info;
4884 data.output_section = sec;
4885 data.contents = contents;
4886 bfd_hash_traverse (&globals->stub_hash_table,
4887 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4888 }
4889
68fcca92
JW
4890 return FALSE;
4891}
4892
a06ea964
NC
4893/* Perform a relocation as part of a final link. */
4894static bfd_reloc_status_type
cec5225b 4895elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
a06ea964
NC
4896 bfd *input_bfd,
4897 bfd *output_bfd,
4898 asection *input_section,
4899 bfd_byte *contents,
4900 Elf_Internal_Rela *rel,
4901 bfd_vma value,
4902 struct bfd_link_info *info,
4903 asection *sym_sec,
4904 struct elf_link_hash_entry *h,
4905 bfd_boolean *unresolved_reloc_p,
4906 bfd_boolean save_addend,
1419bbe5
WN
4907 bfd_vma *saved_addend,
4908 Elf_Internal_Sym *sym)
a06ea964 4909{
1419bbe5 4910 Elf_Internal_Shdr *symtab_hdr;
a06ea964 4911 unsigned int r_type = howto->type;
a6bb11b2
YZ
4912 bfd_reloc_code_real_type bfd_r_type
4913 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4914 bfd_reloc_code_real_type new_bfd_r_type;
a06ea964
NC
4915 unsigned long r_symndx;
4916 bfd_byte *hit_data = contents + rel->r_offset;
b53b1bed 4917 bfd_vma place, off;
a06ea964 4918 bfd_signed_vma signed_addend;
cec5225b 4919 struct elf_aarch64_link_hash_table *globals;
a06ea964 4920 bfd_boolean weak_undef_p;
b53b1bed 4921 asection *base_got;
a06ea964 4922
cec5225b 4923 globals = elf_aarch64_hash_table (info);
a06ea964 4924
1419bbe5
WN
4925 symtab_hdr = &elf_symtab_hdr (input_bfd);
4926
a06ea964
NC
4927 BFD_ASSERT (is_aarch64_elf (input_bfd));
4928
cec5225b 4929 r_symndx = ELFNN_R_SYM (rel->r_info);
a06ea964
NC
4930
4931 /* It is possible to have linker relaxations on some TLS access
4932 models. Update our information here. */
a6bb11b2
YZ
4933 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
4934 if (new_bfd_r_type != bfd_r_type)
4935 {
4936 bfd_r_type = new_bfd_r_type;
4937 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4938 BFD_ASSERT (howto != NULL);
4939 r_type = howto->type;
4940 }
a06ea964
NC
4941
4942 place = input_section->output_section->vma
4943 + input_section->output_offset + rel->r_offset;
4944
4945 /* Get addend, accumulating the addend for consecutive relocs
4946 which refer to the same offset. */
4947 signed_addend = saved_addend ? *saved_addend : 0;
4948 signed_addend += rel->r_addend;
4949
4950 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4951 : bfd_is_und_section (sym_sec));
a6bb11b2 4952
1419bbe5
WN
4953 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4954 it here if it is defined in a non-shared object. */
4955 if (h != NULL
4956 && h->type == STT_GNU_IFUNC
4957 && h->def_regular)
4958 {
4959 asection *plt;
4960 const char *name;
99ad26cb 4961 bfd_vma addend = 0;
1419bbe5
WN
4962
4963 if ((input_section->flags & SEC_ALLOC) == 0
4964 || h->plt.offset == (bfd_vma) -1)
4965 abort ();
4966
4967 /* STT_GNU_IFUNC symbol must go through PLT. */
4968 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4969 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4970
4971 switch (bfd_r_type)
4972 {
4973 default:
4974 if (h->root.root.string)
4975 name = h->root.root.string;
4976 else
4977 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4978 NULL);
4979 (*_bfd_error_handler)
4980 (_("%B: relocation %s against STT_GNU_IFUNC "
4981 "symbol `%s' isn't handled by %s"), input_bfd,
4982 howto->name, name, __FUNCTION__);
4983 bfd_set_error (bfd_error_bad_value);
4984 return FALSE;
4985
4986 case BFD_RELOC_AARCH64_NN:
4987 if (rel->r_addend != 0)
4988 {
4989 if (h->root.root.string)
4990 name = h->root.root.string;
4991 else
4992 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4993 sym, NULL);
4994 (*_bfd_error_handler)
4995 (_("%B: relocation %s against STT_GNU_IFUNC "
4996 "symbol `%s' has non-zero addend: %d"),
4997 input_bfd, howto->name, name, rel->r_addend);
4998 bfd_set_error (bfd_error_bad_value);
4999 return FALSE;
5000 }
5001
5002 /* Generate dynamic relocation only when there is a
5003 non-GOT reference in a shared object. */
0e1862bb 5004 if (bfd_link_pic (info) && h->non_got_ref)
1419bbe5
WN
5005 {
5006 Elf_Internal_Rela outrel;
5007 asection *sreloc;
5008
5009 /* Need a dynamic relocation to get the real function
5010 address. */
5011 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5012 info,
5013 input_section,
5014 rel->r_offset);
5015 if (outrel.r_offset == (bfd_vma) -1
5016 || outrel.r_offset == (bfd_vma) -2)
5017 abort ();
5018
5019 outrel.r_offset += (input_section->output_section->vma
5020 + input_section->output_offset);
5021
5022 if (h->dynindx == -1
5023 || h->forced_local
0e1862bb 5024 || bfd_link_executable (info))
1419bbe5
WN
5025 {
5026 /* This symbol is resolved locally. */
5027 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5028 outrel.r_addend = (h->root.u.def.value
5029 + h->root.u.def.section->output_section->vma
5030 + h->root.u.def.section->output_offset);
5031 }
5032 else
5033 {
5034 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5035 outrel.r_addend = 0;
5036 }
5037
5038 sreloc = globals->root.irelifunc;
5039 elf_append_rela (output_bfd, sreloc, &outrel);
5040
5041 /* If this reloc is against an external symbol, we
5042 do not want to fiddle with the addend. Otherwise,
5043 we need to include the symbol value so that it
5044 becomes an addend for the dynamic reloc. For an
5045 internal symbol, we have updated addend. */
5046 return bfd_reloc_ok;
5047 }
5048 /* FALLTHROUGH */
1419bbe5 5049 case BFD_RELOC_AARCH64_CALL26:
ce336788 5050 case BFD_RELOC_AARCH64_JUMP26:
1419bbe5
WN
5051 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5052 signed_addend,
5053 weak_undef_p);
5054 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5055 howto, value);
1419bbe5
WN
5056 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5057 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 5058 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
ce336788 5059 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
99ad26cb 5060 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
dc8008f5 5061 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
74a1bfe1 5062 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a2e1db00 5063 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
ce336788 5064 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
1419bbe5
WN
5065 base_got = globals->root.sgot;
5066 off = h->got.offset;
5067
5068 if (base_got == NULL)
5069 abort ();
5070
5071 if (off == (bfd_vma) -1)
5072 {
5073 bfd_vma plt_index;
5074
5075 /* We can't use h->got.offset here to save state, or
5076 even just remember the offset, as finish_dynamic_symbol
5077 would use that as offset into .got. */
5078
5079 if (globals->root.splt != NULL)
5080 {
b1ee0cc4
WN
5081 plt_index = ((h->plt.offset - globals->plt_header_size) /
5082 globals->plt_entry_size);
1419bbe5
WN
5083 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5084 base_got = globals->root.sgotplt;
5085 }
5086 else
5087 {
5088 plt_index = h->plt.offset / globals->plt_entry_size;
5089 off = plt_index * GOT_ENTRY_SIZE;
5090 base_got = globals->root.igotplt;
5091 }
5092
5093 if (h->dynindx == -1
5094 || h->forced_local
5095 || info->symbolic)
5096 {
5097 /* This references the local definition. We must
5098 initialize this entry in the global offset table.
5099 Since the offset must always be a multiple of 8,
5100 we use the least significant bit to record
5101 whether we have initialized it already.
5102
5103 When doing a dynamic link, we create a .rela.got
5104 relocation entry to initialize the value. This
5105 is done in the finish_dynamic_symbol routine. */
5106 if ((off & 1) != 0)
5107 off &= ~1;
5108 else
5109 {
5110 bfd_put_NN (output_bfd, value,
5111 base_got->contents + off);
5112 /* Note that this is harmless as -1 | 1 still is -1. */
5113 h->got.offset |= 1;
5114 }
5115 }
5116 value = (base_got->output_section->vma
5117 + base_got->output_offset + off);
5118 }
5119 else
5120 value = aarch64_calculate_got_entry_vma (h, globals, info,
5121 value, output_bfd,
5122 unresolved_reloc_p);
a0becb89
RL
5123
5124 switch (bfd_r_type)
5125 {
5126 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5127 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5128 addend = (globals->root.sgot->output_section->vma
5129 + globals->root.sgot->output_offset);
5130 break;
dc8008f5 5131 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
74a1bfe1 5132 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a2e1db00
RL
5133 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5134 value = (value - globals->root.sgot->output_section->vma
5135 - globals->root.sgot->output_offset);
a0becb89
RL
5136 default:
5137 break;
5138 }
5139
1419bbe5 5140 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
99ad26cb 5141 addend, weak_undef_p);
1419bbe5 5142 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
1419bbe5 5143 case BFD_RELOC_AARCH64_ADD_LO12:
ce336788 5144 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
1419bbe5
WN
5145 break;
5146 }
5147 }
5148
a6bb11b2 5149 switch (bfd_r_type)
a06ea964 5150 {
a6bb11b2 5151 case BFD_RELOC_AARCH64_NONE:
0484b454 5152 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a6bb11b2 5153 case BFD_RELOC_AARCH64_TLSDESC_CALL:
0484b454 5154 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
5155 *unresolved_reloc_p = FALSE;
5156 return bfd_reloc_ok;
5157
a6bb11b2 5158 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
5159
5160 /* When generating a shared object or relocatable executable, these
5161 relocations are copied into the output file to be resolved at
5162 run time. */
0e1862bb
L
5163 if (((bfd_link_pic (info) == TRUE)
5164 || globals->root.is_relocatable_executable)
a06ea964
NC
5165 && (input_section->flags & SEC_ALLOC)
5166 && (h == NULL
5167 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5168 || h->root.type != bfd_link_hash_undefweak))
5169 {
5170 Elf_Internal_Rela outrel;
5171 bfd_byte *loc;
5172 bfd_boolean skip, relocate;
5173 asection *sreloc;
5174
5175 *unresolved_reloc_p = FALSE;
5176
a06ea964
NC
5177 skip = FALSE;
5178 relocate = FALSE;
5179
5180 outrel.r_addend = signed_addend;
5181 outrel.r_offset =
5182 _bfd_elf_section_offset (output_bfd, info, input_section,
5183 rel->r_offset);
5184 if (outrel.r_offset == (bfd_vma) - 1)
5185 skip = TRUE;
5186 else if (outrel.r_offset == (bfd_vma) - 2)
5187 {
5188 skip = TRUE;
5189 relocate = TRUE;
5190 }
5191
5192 outrel.r_offset += (input_section->output_section->vma
5193 + input_section->output_offset);
5194
5195 if (skip)
5196 memset (&outrel, 0, sizeof outrel);
5197 else if (h != NULL
5198 && h->dynindx != -1
0e1862bb
L
5199 && (!bfd_link_pic (info)
5200 || !SYMBOLIC_BIND (info, h)
5201 || !h->def_regular))
cec5225b 5202 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
a06ea964
NC
5203 else
5204 {
5205 int symbol;
5206
5207 /* On SVR4-ish systems, the dynamic loader cannot
5208 relocate the text and data segments independently,
5209 so the symbol does not matter. */
5210 symbol = 0;
a6bb11b2 5211 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
a06ea964
NC
5212 outrel.r_addend += value;
5213 }
5214
1419bbe5
WN
5215 sreloc = elf_section_data (input_section)->sreloc;
5216 if (sreloc == NULL || sreloc->contents == NULL)
5217 return bfd_reloc_notsupported;
5218
5219 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
cec5225b 5220 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
a06ea964 5221
1419bbe5 5222 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
a06ea964
NC
5223 {
5224 /* Sanity to check that we have previously allocated
5225 sufficient space in the relocation section for the
5226 number of relocations we actually want to emit. */
5227 abort ();
5228 }
5229
5230 /* If this reloc is against an external symbol, we do not want to
5231 fiddle with the addend. Otherwise, we need to include the symbol
5232 value so that it becomes an addend for the dynamic reloc. */
5233 if (!relocate)
5234 return bfd_reloc_ok;
5235
5236 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5237 contents, rel->r_offset, value,
5238 signed_addend);
5239 }
5240 else
5241 value += signed_addend;
5242 break;
5243
a6bb11b2 5244 case BFD_RELOC_AARCH64_CALL26:
ce336788 5245 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
5246 {
5247 asection *splt = globals->root.splt;
5248 bfd_boolean via_plt_p =
5249 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5250
5251 /* A call to an undefined weak symbol is converted to a jump to
5252 the next instruction unless a PLT entry will be created.
5253 The jump to the next instruction is optimized as a NOP.
5254 Do the same for local undefined symbols. */
5255 if (weak_undef_p && ! via_plt_p)
5256 {
5257 bfd_putl32 (INSN_NOP, hit_data);
5258 return bfd_reloc_ok;
5259 }
5260
5261 /* If the call goes through a PLT entry, make sure to
5262 check distance to the right destination address. */
5263 if (via_plt_p)
07f9ddfe
JW
5264 value = (splt->output_section->vma
5265 + splt->output_offset + h->plt.offset);
5266
5267 /* Check if a stub has to be inserted because the destination
5268 is too far away. */
5269 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
2f340668
JW
5270
5271 /* If the branch destination is directed to plt stub, "value" will be
5272 the final destination, otherwise we should plus signed_addend, it may
5273 contain non-zero value, for example call to local function symbol
5274 which are turned into "sec_sym + sec_off", and sec_off is kept in
5275 signed_addend. */
5276 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5277 place))
07f9ddfe
JW
5278 /* The target is out of reach, so redirect the branch to
5279 the local stub for this function. */
5280 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5281 rel, globals);
5282 if (stub_entry != NULL)
2f340668
JW
5283 {
5284 value = (stub_entry->stub_offset
5285 + stub_entry->stub_sec->output_offset
5286 + stub_entry->stub_sec->output_section->vma);
5287
5288 /* We have redirected the destination to stub entry address,
5289 so ignore any addend record in the original rela entry. */
5290 signed_addend = 0;
5291 }
a06ea964 5292 }
caed7120
YZ
5293 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5294 signed_addend, weak_undef_p);
07f9ddfe 5295 *unresolved_reloc_p = FALSE;
a06ea964
NC
5296 break;
5297
dcbd20eb
JW
5298 case BFD_RELOC_AARCH64_16_PCREL:
5299 case BFD_RELOC_AARCH64_32_PCREL:
5300 case BFD_RELOC_AARCH64_64_PCREL:
ce336788
JW
5301 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5302 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5303 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5304 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
0e1862bb 5305 if (bfd_link_pic (info)
dcbd20eb
JW
5306 && (input_section->flags & SEC_ALLOC) != 0
5307 && (input_section->flags & SEC_READONLY) != 0
5308 && h != NULL
5309 && !h->def_regular)
5310 {
5311 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5312
5313 (*_bfd_error_handler)
5314 (_("%B: relocation %s against external symbol `%s' can not be used"
5315 " when making a shared object; recompile with -fPIC"),
5316 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5317 h->root.root.string);
5318 bfd_set_error (bfd_error_bad_value);
5319 return FALSE;
5320 }
5321
a6bb11b2 5322 case BFD_RELOC_AARCH64_16:
92d77487
RL
5323#if ARCH_SIZE == 64
5324 case BFD_RELOC_AARCH64_32:
5325#endif
a6bb11b2 5326 case BFD_RELOC_AARCH64_ADD_LO12:
a6bb11b2 5327 case BFD_RELOC_AARCH64_BRANCH19:
ce336788 5328 case BFD_RELOC_AARCH64_LDST128_LO12:
a6bb11b2
YZ
5329 case BFD_RELOC_AARCH64_LDST16_LO12:
5330 case BFD_RELOC_AARCH64_LDST32_LO12:
5331 case BFD_RELOC_AARCH64_LDST64_LO12:
ce336788 5332 case BFD_RELOC_AARCH64_LDST8_LO12:
a6bb11b2
YZ
5333 case BFD_RELOC_AARCH64_MOVW_G0:
5334 case BFD_RELOC_AARCH64_MOVW_G0_NC:
ce336788 5335 case BFD_RELOC_AARCH64_MOVW_G0_S:
a6bb11b2
YZ
5336 case BFD_RELOC_AARCH64_MOVW_G1:
5337 case BFD_RELOC_AARCH64_MOVW_G1_NC:
ce336788 5338 case BFD_RELOC_AARCH64_MOVW_G1_S:
a6bb11b2
YZ
5339 case BFD_RELOC_AARCH64_MOVW_G2:
5340 case BFD_RELOC_AARCH64_MOVW_G2_NC:
ce336788 5341 case BFD_RELOC_AARCH64_MOVW_G2_S:
a6bb11b2 5342 case BFD_RELOC_AARCH64_MOVW_G3:
a6bb11b2 5343 case BFD_RELOC_AARCH64_TSTBR14:
caed7120
YZ
5344 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5345 signed_addend, weak_undef_p);
a06ea964
NC
5346 break;
5347
a6bb11b2
YZ
5348 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5349 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 5350 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
ce336788 5351 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
99ad26cb 5352 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
ce336788 5353 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
a06ea964
NC
5354 if (globals->root.sgot == NULL)
5355 BFD_ASSERT (h != NULL);
5356
5357 if (h != NULL)
5358 {
99ad26cb 5359 bfd_vma addend = 0;
a06ea964
NC
5360 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5361 output_bfd,
5362 unresolved_reloc_p);
7018c030
JW
5363 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5364 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
99ad26cb
JW
5365 addend = (globals->root.sgot->output_section->vma
5366 + globals->root.sgot->output_offset);
caed7120 5367 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
99ad26cb 5368 addend, weak_undef_p);
a06ea964 5369 }
b53b1bed
JW
5370 else
5371 {
99ad26cb 5372 bfd_vma addend = 0;
b53b1bed
JW
5373 struct elf_aarch64_local_symbol *locals
5374 = elf_aarch64_locals (input_bfd);
5375
5376 if (locals == NULL)
5377 {
5378 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5379 (*_bfd_error_handler)
5380 (_("%B: Local symbol descriptor table be NULL when applying "
5381 "relocation %s against local symbol"),
5382 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5383 abort ();
5384 }
5385
5386 off = symbol_got_offset (input_bfd, h, r_symndx);
5387 base_got = globals->root.sgot;
5388 bfd_vma got_entry_addr = (base_got->output_section->vma
5389 + base_got->output_offset + off);
5390
5391 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5392 {
5393 bfd_put_64 (output_bfd, value, base_got->contents + off);
5394
0e1862bb 5395 if (bfd_link_pic (info))
b53b1bed
JW
5396 {
5397 asection *s;
5398 Elf_Internal_Rela outrel;
5399
5400 /* For local symbol, we have done absolute relocation in static
5401 linking stageh. While for share library, we need to update
5402 the content of GOT entry according to the share objects
5403 loading base address. So we need to generate a
5404 R_AARCH64_RELATIVE reloc for dynamic linker. */
5405 s = globals->root.srelgot;
5406 if (s == NULL)
5407 abort ();
5408
5409 outrel.r_offset = got_entry_addr;
5410 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5411 outrel.r_addend = value;
5412 elf_append_rela (output_bfd, s, &outrel);
5413 }
5414
5415 symbol_got_offset_mark (input_bfd, h, r_symndx);
5416 }
5417
5418 /* Update the relocation value to GOT entry addr as we have transformed
5419 the direct data access into indirect data access through GOT. */
5420 value = got_entry_addr;
99ad26cb 5421
7018c030
JW
5422 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5423 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
99ad26cb
JW
5424 addend = base_got->output_section->vma + base_got->output_offset;
5425
5426 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5427 addend, weak_undef_p);
b53b1bed
JW
5428 }
5429
a06ea964
NC
5430 break;
5431
a2e1db00 5432 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
dc8008f5 5433 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
74a1bfe1 5434 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a2e1db00
RL
5435 if (h != NULL)
5436 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5437 output_bfd,
5438 unresolved_reloc_p);
5439 else
5440 {
5441 struct elf_aarch64_local_symbol *locals
5442 = elf_aarch64_locals (input_bfd);
5443
5444 if (locals == NULL)
5445 {
5446 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5447 (*_bfd_error_handler)
5448 (_("%B: Local symbol descriptor table be NULL when applying "
5449 "relocation %s against local symbol"),
5450 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5451 abort ();
5452 }
5453
5454 off = symbol_got_offset (input_bfd, h, r_symndx);
5455 base_got = globals->root.sgot;
5456 if (base_got == NULL)
5457 abort ();
5458
5459 bfd_vma got_entry_addr = (base_got->output_section->vma
5460 + base_got->output_offset + off);
5461
5462 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5463 {
5464 bfd_put_64 (output_bfd, value, base_got->contents + off);
5465
5466 if (bfd_link_pic (info))
5467 {
5468 asection *s;
5469 Elf_Internal_Rela outrel;
5470
5471 /* For local symbol, we have done absolute relocation in static
5472 linking stage. While for share library, we need to update
5473 the content of GOT entry according to the share objects
5474 loading base address. So we need to generate a
5475 R_AARCH64_RELATIVE reloc for dynamic linker. */
5476 s = globals->root.srelgot;
5477 if (s == NULL)
5478 abort ();
5479
5480 outrel.r_offset = got_entry_addr;
5481 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5482 outrel.r_addend = value;
5483 elf_append_rela (output_bfd, s, &outrel);
5484 }
5485
5486 symbol_got_offset_mark (input_bfd, h, r_symndx);
5487 }
5488 }
5489
5490 /* Update the relocation value to GOT entry addr as we have transformed
5491 the direct data access into indirect data access through GOT. */
5492 value = symbol_got_offset (input_bfd, h, r_symndx);
5493 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5494 0, weak_undef_p);
5495 *unresolved_reloc_p = FALSE;
5496 break;
5497
ce336788 5498 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a6bb11b2 5499 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 5500 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a6bb11b2 5501 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 5502 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
ce336788 5503 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 5504 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
73f925cc 5505 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 5506 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 5507 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a06ea964
NC
5508 if (globals->root.sgot == NULL)
5509 return bfd_reloc_notsupported;
5510
5511 value = (symbol_got_offset (input_bfd, h, r_symndx)
5512 + globals->root.sgot->output_section->vma
f44a1f8e 5513 + globals->root.sgot->output_offset);
a06ea964 5514
caed7120
YZ
5515 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5516 0, weak_undef_p);
a06ea964
NC
5517 *unresolved_reloc_p = FALSE;
5518 break;
5519
7ba7cfe4 5520 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
94facae3 5521 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3b957e5b
RL
5522 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5523 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
94facae3
RL
5524 if (globals->root.sgot == NULL)
5525 return bfd_reloc_notsupported;
5526
5527 value = symbol_got_offset (input_bfd, h, r_symndx);
5528 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5529 0, weak_undef_p);
5530 *unresolved_reloc_p = FALSE;
5531 break;
5532
6ffe9a1b 5533 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
40fbed84 5534 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
753999c1 5535 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
07c9aa07
JW
5536 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5537 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5538 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5539 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5540 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5541 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5542 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5543 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6ffe9a1b
JW
5544 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5545 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5546 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5547 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5548 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
40fbed84
JW
5549 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5550 signed_addend - dtpoff_base (info),
5551 weak_undef_p);
5552 break;
5553
a6bb11b2
YZ
5554 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5555 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5556 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5557 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5558 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5559 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5560 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5561 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
caed7120
YZ
5562 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5563 signed_addend - tpoff_base (info),
5564 weak_undef_p);
a06ea964
NC
5565 *unresolved_reloc_p = FALSE;
5566 break;
5567
7bcccb57 5568 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2 5569 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 5570 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
a6bb11b2 5571 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7bcccb57 5572 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 5573 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964
NC
5574 if (globals->root.sgot == NULL)
5575 return bfd_reloc_notsupported;
a06ea964
NC
5576 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5577 + globals->root.sgotplt->output_section->vma
f44a1f8e 5578 + globals->root.sgotplt->output_offset
a06ea964
NC
5579 + globals->sgotplt_jump_table_size);
5580
caed7120
YZ
5581 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5582 0, weak_undef_p);
a06ea964
NC
5583 *unresolved_reloc_p = FALSE;
5584 break;
5585
0484b454
RL
5586 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5587 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5588 if (globals->root.sgot == NULL)
5589 return bfd_reloc_notsupported;
5590
5591 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5592 + globals->root.sgotplt->output_section->vma
5593 + globals->root.sgotplt->output_offset
5594 + globals->sgotplt_jump_table_size);
5595
5596 value -= (globals->root.sgot->output_section->vma
5597 + globals->root.sgot->output_offset);
5598
5599 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5600 0, weak_undef_p);
5601 *unresolved_reloc_p = FALSE;
5602 break;
5603
a06ea964
NC
5604 default:
5605 return bfd_reloc_notsupported;
5606 }
5607
5608 if (saved_addend)
5609 *saved_addend = value;
5610
5611 /* Only apply the final relocation in a sequence. */
5612 if (save_addend)
5613 return bfd_reloc_continue;
5614
caed7120
YZ
5615 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5616 howto, value);
a06ea964
NC
5617}
5618
5619/* Handle TLS relaxations. Relaxing is possible for symbols that use
5620 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5621 link.
5622
5623 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5624 is to then call final_link_relocate. Return other values in the
5625 case of error. */
5626
5627static bfd_reloc_status_type
cec5225b 5628elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
a06ea964 5629 bfd *input_bfd, bfd_byte *contents,
06d2788c 5630 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
a06ea964
NC
5631{
5632 bfd_boolean is_local = h == NULL;
cec5225b 5633 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
5634 unsigned long insn;
5635
5636 BFD_ASSERT (globals && input_bfd && contents && rel);
5637
a6bb11b2 5638 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 5639 {
a6bb11b2 5640 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
ce336788 5641 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a06ea964
NC
5642 if (is_local)
5643 {
5644 /* GD->LE relaxation:
5645 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
5646 or
5647 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
5648 */
5649 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5650 return bfd_reloc_continue;
5651 }
5652 else
5653 {
5654 /* GD->IE relaxation:
5655 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5656 or
5657 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5658 */
a06ea964
NC
5659 return bfd_reloc_continue;
5660 }
5661
389b8029
MS
5662 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5663 BFD_ASSERT (0);
5664 break;
5665
1ada945d
MS
5666 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5667 if (is_local)
5668 {
5669 /* Tiny TLSDESC->LE relaxation:
5670 ldr x1, :tlsdesc:var => movz x0, #:tprel_g1:var
5671 adr x0, :tlsdesc:var => movk x0, #:tprel_g0_nc:var
5672 .tlsdesccall var
5673 blr x1 => nop
5674 */
5675 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5676 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5677
5678 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5679 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5680 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5681
5682 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5683 bfd_putl32 (0xf2800000, contents + rel->r_offset + 4);
5684 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5685 return bfd_reloc_continue;
5686 }
5687 else
5688 {
5689 /* Tiny TLSDESC->IE relaxation:
5690 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5691 adr x0, :tlsdesc:var => nop
5692 .tlsdesccall var
5693 blr x1 => nop
5694 */
5695 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5696 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5697
5698 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5699 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5700
5701 bfd_putl32 (0x58000000, contents + rel->r_offset);
5702 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5703 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5704 return bfd_reloc_continue;
5705 }
5706
3c12b054
MS
5707 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5708 if (is_local)
5709 {
5710 /* Tiny GD->LE relaxation:
5711 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5712 bl __tls_get_addr => add x0, x1, #:tprel_hi12:x, lsl #12
5713 nop => add x0, x0, #:tprel_lo12_nc:x
5714 */
5715
5716 /* First kill the tls_get_addr reloc on the bl instruction. */
5717 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5718
5719 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5720 bfd_putl32 (0x91400020, contents + rel->r_offset + 4);
5721 bfd_putl32 (0x91000000, contents + rel->r_offset + 8);
5722
5723 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5724 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5725 rel[1].r_offset = rel->r_offset + 8;
5726
5727 /* Move the current relocation to the second instruction in
5728 the sequence. */
5729 rel->r_offset += 4;
5730 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5731 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5732 return bfd_reloc_continue;
5733 }
5734 else
5735 {
5736 /* Tiny GD->IE relaxation:
5737 adr x0, :tlsgd:var => ldr x0, :gottprel:var
5738 bl __tls_get_addr => mrs x1, tpidr_el0
5739 nop => add x0, x0, x1
5740 */
5741
5742 /* First kill the tls_get_addr reloc on the bl instruction. */
5743 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5744 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5745
5746 bfd_putl32 (0x58000000, contents + rel->r_offset);
5747 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5748 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5749 return bfd_reloc_continue;
5750 }
5751
ac734732
RL
5752#if ARCH_SIZE == 64
5753 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5754 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
5755 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
5756 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
5757
5758 if (is_local)
5759 {
5760 /* Large GD->LE relaxation:
5761 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
5762 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5763 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
5764 bl __tls_get_addr => mrs x1, tpidr_el0
5765 nop => add x0, x0, x1
5766 */
5767 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5768 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5769 rel[2].r_offset = rel->r_offset + 8;
5770
5771 bfd_putl32 (0xd2c00000, contents + rel->r_offset + 0);
5772 bfd_putl32 (0xf2a00000, contents + rel->r_offset + 4);
5773 bfd_putl32 (0xf2800000, contents + rel->r_offset + 8);
5774 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5775 bfd_putl32 (0x8b000020, contents + rel->r_offset + 16);
5776 }
5777 else
5778 {
5779 /* Large GD->IE relaxation:
5780 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
5781 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
5782 add x0, gp, x0 => ldr x0, [gp, x0]
5783 bl __tls_get_addr => mrs x1, tpidr_el0
5784 nop => add x0, x0, x1
5785 */
5786 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5787 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
5788 bfd_putl32 (0x58000000, contents + rel->r_offset + 8);
5789 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5790 bfd_putl32 (0x8b000020, contents + rel->r_offset + 16);
5791 }
5792 return bfd_reloc_continue;
5793
5794 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5795 return bfd_reloc_continue;
5796#endif
5797
043bf05a
MS
5798 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5799 return bfd_reloc_continue;
5800
a6bb11b2 5801 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
5802 if (is_local)
5803 {
5804 /* GD->LE relaxation:
5805 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5806 */
5807 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5808 return bfd_reloc_continue;
5809 }
5810 else
5811 {
5812 /* GD->IE relaxation:
5813 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
5814 */
5815 insn = bfd_getl32 (contents + rel->r_offset);
fa85fb9a 5816 insn &= 0xffffffe0;
a06ea964
NC
5817 bfd_putl32 (insn, contents + rel->r_offset);
5818 return bfd_reloc_continue;
5819 }
5820
a6bb11b2 5821 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
5822 if (is_local)
5823 {
5824 /* GD->LE relaxation
5825 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
5826 bl __tls_get_addr => mrs x1, tpidr_el0
5827 nop => add x0, x1, x0
5828 */
5829
5830 /* First kill the tls_get_addr reloc on the bl instruction. */
5831 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
cec5225b 5832 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
5833
5834 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5835 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5836 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5837 return bfd_reloc_continue;
5838 }
5839 else
5840 {
5841 /* GD->IE relaxation
5842 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
5843 BL __tls_get_addr => mrs x1, tpidr_el0
5844 R_AARCH64_CALL26
5845 NOP => add x0, x1, x0
5846 */
5847
a6bb11b2 5848 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
a06ea964
NC
5849
5850 /* Remove the relocation on the BL instruction. */
cec5225b 5851 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
5852
5853 bfd_putl32 (0xf9400000, contents + rel->r_offset);
5854
5855 /* We choose to fixup the BL and NOP instructions using the
5856 offset from the second relocation to allow flexibility in
5857 scheduling instructions between the ADD and BL. */
5858 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5859 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
5860 return bfd_reloc_continue;
5861 }
5862
0484b454 5863 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a6bb11b2
YZ
5864 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5865 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
5866 /* GD->IE/LE relaxation:
5867 add x0, x0, #:tlsdesc_lo12:var => nop
5868 blr xd => nop
5869 */
5870 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5871 return bfd_reloc_ok;
5872
0484b454
RL
5873 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5874 if (is_local)
5875 {
5876 /* GD->LE relaxation:
5877 ldr xd, [gp, xn] => movk x0, #:tprel_g0_nc:var
5878 */
5879 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5880 return bfd_reloc_continue;
5881 }
5882 else
5883 {
5884 /* GD->IE relaxation:
5885 ldr xd, [gp, xn] => ldr x0, [gp, xn]
5886 */
5887 insn = bfd_getl32 (contents + rel->r_offset);
5888 insn &= 0xffffffe0;
5889 bfd_putl32 (insn, contents + rel->r_offset);
5890 return bfd_reloc_ok;
5891 }
5892
5893 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5894 /* GD->LE relaxation:
5895 movk xd, #:tlsdesc_off_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5896 GD->IE relaxation:
5897 movk xd, #:tlsdesc_off_g0_nc:var => movk xd, #:gottprel_g0_nc:var
5898 */
5899 if (is_local)
5900 bfd_putl32 (0xf2a00000, contents + rel->r_offset);
5901 return bfd_reloc_continue;
5902
5903 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5904 if (is_local)
5905 {
5906 /* GD->LE relaxation:
5907 movz xd, #:tlsdesc_off_g1:var => movz x0, #:tprel_g2:var, lsl #32
5908 */
5909 bfd_putl32 (0xd2c00000, contents + rel->r_offset);
5910 return bfd_reloc_continue;
5911 }
5912 else
5913 {
5914 /* GD->IE relaxation:
5915 movz xd, #:tlsdesc_off_g1:var => movz xd, #:gottprel_g1:var, lsl #16
5916 */
5917 insn = bfd_getl32 (contents + rel->r_offset);
5918 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5919 return bfd_reloc_continue;
5920 }
5921
a6bb11b2 5922 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a06ea964
NC
5923 /* IE->LE relaxation:
5924 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
5925 */
5926 if (is_local)
5927 {
5928 insn = bfd_getl32 (contents + rel->r_offset);
5929 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5930 }
5931 return bfd_reloc_continue;
5932
a6bb11b2 5933 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964
NC
5934 /* IE->LE relaxation:
5935 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
5936 */
5937 if (is_local)
5938 {
5939 insn = bfd_getl32 (contents + rel->r_offset);
5940 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
5941 }
5942 return bfd_reloc_continue;
5943
259364ad
JW
5944 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5945 /* LD->LE relaxation (tiny):
5946 adr x0, :tlsldm:x => mrs x0, tpidr_el0
5947 bl __tls_get_addr => add x0, x0, TCB_SIZE
5948 */
5949 if (is_local)
5950 {
5951 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5952 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5953 /* No need of CALL26 relocation for tls_get_addr. */
5954 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5955 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
5956 bfd_putl32 (0x91004000, contents + rel->r_offset + 4);
5957 return bfd_reloc_ok;
5958 }
5959 return bfd_reloc_continue;
5960
5961 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5962 /* LD->LE relaxation (small):
5963 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
5964 */
5965 if (is_local)
5966 {
5967 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
5968 return bfd_reloc_ok;
5969 }
5970 return bfd_reloc_continue;
5971
5972 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5973 /* LD->LE relaxation (small):
5974 add x0, #:tlsldm_lo12:x => add x0, x0, TCB_SIZE
5975 bl __tls_get_addr => nop
5976 */
5977 if (is_local)
5978 {
5979 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5980 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5981 /* No need of CALL26 relocation for tls_get_addr. */
5982 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5983 bfd_putl32 (0x91004000, contents + rel->r_offset + 0);
5984 bfd_putl32 (0xd503201f, contents + rel->r_offset + 4);
5985 return bfd_reloc_ok;
5986 }
5987 return bfd_reloc_continue;
5988
a06ea964
NC
5989 default:
5990 return bfd_reloc_continue;
5991 }
5992
5993 return bfd_reloc_ok;
5994}
5995
5996/* Relocate an AArch64 ELF section. */
5997
5998static bfd_boolean
cec5225b 5999elfNN_aarch64_relocate_section (bfd *output_bfd,
a06ea964
NC
6000 struct bfd_link_info *info,
6001 bfd *input_bfd,
6002 asection *input_section,
6003 bfd_byte *contents,
6004 Elf_Internal_Rela *relocs,
6005 Elf_Internal_Sym *local_syms,
6006 asection **local_sections)
6007{
6008 Elf_Internal_Shdr *symtab_hdr;
6009 struct elf_link_hash_entry **sym_hashes;
6010 Elf_Internal_Rela *rel;
6011 Elf_Internal_Rela *relend;
6012 const char *name;
cec5225b 6013 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
6014 bfd_boolean save_addend = FALSE;
6015 bfd_vma addend = 0;
6016
cec5225b 6017 globals = elf_aarch64_hash_table (info);
a06ea964
NC
6018
6019 symtab_hdr = &elf_symtab_hdr (input_bfd);
6020 sym_hashes = elf_sym_hashes (input_bfd);
6021
6022 rel = relocs;
6023 relend = relocs + input_section->reloc_count;
6024 for (; rel < relend; rel++)
6025 {
6026 unsigned int r_type;
a6bb11b2
YZ
6027 bfd_reloc_code_real_type bfd_r_type;
6028 bfd_reloc_code_real_type relaxed_bfd_r_type;
a06ea964
NC
6029 reloc_howto_type *howto;
6030 unsigned long r_symndx;
6031 Elf_Internal_Sym *sym;
6032 asection *sec;
6033 struct elf_link_hash_entry *h;
6034 bfd_vma relocation;
6035 bfd_reloc_status_type r;
6036 arelent bfd_reloc;
6037 char sym_type;
6038 bfd_boolean unresolved_reloc = FALSE;
6039 char *error_message = NULL;
6040
cec5225b
YZ
6041 r_symndx = ELFNN_R_SYM (rel->r_info);
6042 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964 6043
cec5225b 6044 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
6045 howto = bfd_reloc.howto;
6046
7fcfd62d
NC
6047 if (howto == NULL)
6048 {
6049 (*_bfd_error_handler)
6050 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
6051 input_bfd, input_section, r_type);
6052 return FALSE;
6053 }
a6bb11b2 6054 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
7fcfd62d 6055
a06ea964
NC
6056 h = NULL;
6057 sym = NULL;
6058 sec = NULL;
6059
6060 if (r_symndx < symtab_hdr->sh_info)
6061 {
6062 sym = local_syms + r_symndx;
cec5225b 6063 sym_type = ELFNN_ST_TYPE (sym->st_info);
a06ea964
NC
6064 sec = local_sections[r_symndx];
6065
6066 /* An object file might have a reference to a local
6067 undefined symbol. This is a daft object file, but we
6068 should at least do something about it. */
6069 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6070 && bfd_is_und_section (sec)
6071 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6072 {
6073 if (!info->callbacks->undefined_symbol
6074 (info, bfd_elf_string_from_elf_section
6075 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6076 input_bfd, input_section, rel->r_offset, TRUE))
6077 return FALSE;
6078 }
6079
a06ea964 6080 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1419bbe5
WN
6081
6082 /* Relocate against local STT_GNU_IFUNC symbol. */
0e1862bb 6083 if (!bfd_link_relocatable (info)
1419bbe5
WN
6084 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6085 {
6086 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6087 rel, FALSE);
6088 if (h == NULL)
6089 abort ();
6090
6091 /* Set STT_GNU_IFUNC symbol value. */
6092 h->root.u.def.value = sym->st_value;
6093 h->root.u.def.section = sec;
6094 }
a06ea964
NC
6095 }
6096 else
6097 {
62d887d4 6098 bfd_boolean warned, ignored;
a06ea964
NC
6099
6100 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6101 r_symndx, symtab_hdr, sym_hashes,
6102 h, sec, relocation,
62d887d4 6103 unresolved_reloc, warned, ignored);
a06ea964
NC
6104
6105 sym_type = h->type;
6106 }
6107
6108 if (sec != NULL && discarded_section (sec))
6109 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6110 rel, 1, relend, howto, 0, contents);
6111
0e1862bb 6112 if (bfd_link_relocatable (info))
2e0488d3 6113 continue;
a06ea964
NC
6114
6115 if (h != NULL)
6116 name = h->root.root.string;
6117 else
6118 {
6119 name = (bfd_elf_string_from_elf_section
6120 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6121 if (name == NULL || *name == '\0')
6122 name = bfd_section_name (input_bfd, sec);
6123 }
6124
6125 if (r_symndx != 0
6126 && r_type != R_AARCH64_NONE
6127 && r_type != R_AARCH64_NULL
6128 && (h == NULL
6129 || h->root.type == bfd_link_hash_defined
6130 || h->root.type == bfd_link_hash_defweak)
a6bb11b2 6131 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
a06ea964
NC
6132 {
6133 (*_bfd_error_handler)
6134 ((sym_type == STT_TLS
6135 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
6136 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
6137 input_bfd,
6138 input_section, (long) rel->r_offset, howto->name, name);
6139 }
6140
a06ea964
NC
6141 /* We relax only if we can see that there can be a valid transition
6142 from a reloc type to another.
cec5225b 6143 We call elfNN_aarch64_final_link_relocate unless we're completely
a06ea964
NC
6144 done, i.e., the relaxation produced the final output we want. */
6145
a6bb11b2
YZ
6146 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6147 h, r_symndx);
6148 if (relaxed_bfd_r_type != bfd_r_type)
a06ea964 6149 {
a6bb11b2
YZ
6150 bfd_r_type = relaxed_bfd_r_type;
6151 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6152 BFD_ASSERT (howto != NULL);
6153 r_type = howto->type;
06d2788c 6154 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
a06ea964
NC
6155 unresolved_reloc = 0;
6156 }
6157 else
6158 r = bfd_reloc_continue;
6159
6160 /* There may be multiple consecutive relocations for the
6161 same offset. In that case we are supposed to treat the
6162 output of each relocation as the addend for the next. */
6163 if (rel + 1 < relend
6164 && rel->r_offset == rel[1].r_offset
cec5225b
YZ
6165 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6166 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
a06ea964
NC
6167 save_addend = TRUE;
6168 else
6169 save_addend = FALSE;
6170
6171 if (r == bfd_reloc_continue)
cec5225b 6172 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
a06ea964
NC
6173 input_section, contents, rel,
6174 relocation, info, sec,
6175 h, &unresolved_reloc,
1419bbe5 6176 save_addend, &addend, sym);
a06ea964 6177
a6bb11b2 6178 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 6179 {
ce336788 6180 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a6bb11b2 6181 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6182 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7ba7cfe4 6183 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
94facae3 6184 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
73f925cc 6185 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 6186 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 6187 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a06ea964
NC
6188 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6189 {
6190 bfd_boolean need_relocs = FALSE;
6191 bfd_byte *loc;
6192 int indx;
6193 bfd_vma off;
6194
6195 off = symbol_got_offset (input_bfd, h, r_symndx);
6196 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6197
6198 need_relocs =
0e1862bb 6199 (bfd_link_pic (info) || indx != 0) &&
a06ea964
NC
6200 (h == NULL
6201 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6202 || h->root.type != bfd_link_hash_undefweak);
6203
6204 BFD_ASSERT (globals->root.srelgot != NULL);
6205
6206 if (need_relocs)
6207 {
6208 Elf_Internal_Rela rela;
a6bb11b2 6209 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
a06ea964
NC
6210 rela.r_addend = 0;
6211 rela.r_offset = globals->root.sgot->output_section->vma +
6212 globals->root.sgot->output_offset + off;
6213
6214
6215 loc = globals->root.srelgot->contents;
6216 loc += globals->root.srelgot->reloc_count++
6217 * RELOC_SIZE (htab);
cec5225b 6218 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 6219
f69e4920
JW
6220 bfd_reloc_code_real_type real_type =
6221 elfNN_aarch64_bfd_reloc_from_type (r_type);
6222
6223 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
73f925cc
JW
6224 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6225 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
77a69ff8
JW
6226 {
6227 /* For local dynamic, don't generate DTPREL in any case.
6228 Initialize the DTPREL slot into zero, so we get module
6229 base address when invoke runtime TLS resolver. */
6230 bfd_put_NN (output_bfd, 0,
6231 globals->root.sgot->contents + off
6232 + GOT_ENTRY_SIZE);
6233 }
6234 else if (indx == 0)
a06ea964 6235 {
cec5225b 6236 bfd_put_NN (output_bfd,
a06ea964
NC
6237 relocation - dtpoff_base (info),
6238 globals->root.sgot->contents + off
6239 + GOT_ENTRY_SIZE);
6240 }
6241 else
6242 {
6243 /* This TLS symbol is global. We emit a
6244 relocation to fixup the tls offset at load
6245 time. */
6246 rela.r_info =
a6bb11b2 6247 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
a06ea964
NC
6248 rela.r_addend = 0;
6249 rela.r_offset =
6250 (globals->root.sgot->output_section->vma
6251 + globals->root.sgot->output_offset + off
6252 + GOT_ENTRY_SIZE);
6253
6254 loc = globals->root.srelgot->contents;
6255 loc += globals->root.srelgot->reloc_count++
6256 * RELOC_SIZE (globals);
cec5225b
YZ
6257 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6258 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
6259 globals->root.sgot->contents + off
6260 + GOT_ENTRY_SIZE);
6261 }
6262 }
6263 else
6264 {
cec5225b 6265 bfd_put_NN (output_bfd, (bfd_vma) 1,
a06ea964 6266 globals->root.sgot->contents + off);
cec5225b 6267 bfd_put_NN (output_bfd,
a06ea964
NC
6268 relocation - dtpoff_base (info),
6269 globals->root.sgot->contents + off
6270 + GOT_ENTRY_SIZE);
6271 }
6272
6273 symbol_got_offset_mark (input_bfd, h, r_symndx);
6274 }
6275 break;
6276
a6bb11b2
YZ
6277 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6278 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
043bf05a 6279 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
6280 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6281 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
a06ea964
NC
6282 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6283 {
6284 bfd_boolean need_relocs = FALSE;
6285 bfd_byte *loc;
6286 int indx;
6287 bfd_vma off;
6288
6289 off = symbol_got_offset (input_bfd, h, r_symndx);
6290
6291 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6292
6293 need_relocs =
0e1862bb 6294 (bfd_link_pic (info) || indx != 0) &&
a06ea964
NC
6295 (h == NULL
6296 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6297 || h->root.type != bfd_link_hash_undefweak);
6298
6299 BFD_ASSERT (globals->root.srelgot != NULL);
6300
6301 if (need_relocs)
6302 {
6303 Elf_Internal_Rela rela;
6304
6305 if (indx == 0)
6306 rela.r_addend = relocation - dtpoff_base (info);
6307 else
6308 rela.r_addend = 0;
6309
a6bb11b2 6310 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
a06ea964
NC
6311 rela.r_offset = globals->root.sgot->output_section->vma +
6312 globals->root.sgot->output_offset + off;
6313
6314 loc = globals->root.srelgot->contents;
6315 loc += globals->root.srelgot->reloc_count++
6316 * RELOC_SIZE (htab);
6317
cec5225b 6318 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 6319
cec5225b 6320 bfd_put_NN (output_bfd, rela.r_addend,
a06ea964
NC
6321 globals->root.sgot->contents + off);
6322 }
6323 else
cec5225b 6324 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
a06ea964
NC
6325 globals->root.sgot->contents + off);
6326
6327 symbol_got_offset_mark (input_bfd, h, r_symndx);
6328 }
6329 break;
6330
7bcccb57 6331 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2 6332 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6333 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
a6bb11b2 6334 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
1ada945d 6335 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
0484b454
RL
6336 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6337 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
6338 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6339 {
6340 bfd_boolean need_relocs = FALSE;
6341 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6342 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6343
6344 need_relocs = (h == NULL
6345 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6346 || h->root.type != bfd_link_hash_undefweak);
6347
6348 BFD_ASSERT (globals->root.srelgot != NULL);
6349 BFD_ASSERT (globals->root.sgot != NULL);
6350
6351 if (need_relocs)
6352 {
6353 bfd_byte *loc;
6354 Elf_Internal_Rela rela;
a6bb11b2
YZ
6355 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6356
a06ea964
NC
6357 rela.r_addend = 0;
6358 rela.r_offset = (globals->root.sgotplt->output_section->vma
6359 + globals->root.sgotplt->output_offset
6360 + off + globals->sgotplt_jump_table_size);
6361
6362 if (indx == 0)
6363 rela.r_addend = relocation - dtpoff_base (info);
6364
6365 /* Allocate the next available slot in the PLT reloc
6366 section to hold our R_AARCH64_TLSDESC, the next
6367 available slot is determined from reloc_count,
6368 which we step. But note, reloc_count was
6369 artifically moved down while allocating slots for
6370 real PLT relocs such that all of the PLT relocs
6371 will fit above the initial reloc_count and the
6372 extra stuff will fit below. */
6373 loc = globals->root.srelplt->contents;
6374 loc += globals->root.srelplt->reloc_count++
6375 * RELOC_SIZE (globals);
6376
cec5225b 6377 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 6378
cec5225b 6379 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
6380 globals->root.sgotplt->contents + off +
6381 globals->sgotplt_jump_table_size);
cec5225b 6382 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
6383 globals->root.sgotplt->contents + off +
6384 globals->sgotplt_jump_table_size +
6385 GOT_ENTRY_SIZE);
6386 }
6387
6388 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6389 }
6390 break;
a6bb11b2
YZ
6391 default:
6392 break;
a06ea964
NC
6393 }
6394
a06ea964
NC
6395 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6396 because such sections are not SEC_ALLOC and thus ld.so will
6397 not process them. */
6398 if (unresolved_reloc
6399 && !((input_section->flags & SEC_DEBUGGING) != 0
6400 && h->def_dynamic)
6401 && _bfd_elf_section_offset (output_bfd, info, input_section,
6402 +rel->r_offset) != (bfd_vma) - 1)
6403 {
6404 (*_bfd_error_handler)
6405 (_
6406 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6407 input_bfd, input_section, (long) rel->r_offset, howto->name,
6408 h->root.root.string);
6409 return FALSE;
6410 }
6411
6412 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6413 {
c674f5cd
JW
6414 bfd_reloc_code_real_type real_r_type
6415 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6416
a06ea964
NC
6417 switch (r)
6418 {
6419 case bfd_reloc_overflow:
fdc3b1b1
JW
6420 if (!(*info->callbacks->reloc_overflow)
6421 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6422 input_bfd, input_section, rel->r_offset))
a06ea964 6423 return FALSE;
c674f5cd
JW
6424 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6425 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6426 {
6427 (*info->callbacks->warning)
6428 (info,
6429 _("Too many GOT entries for -fpic, "
6430 "please recompile with -fPIC"),
6431 name, input_bfd, input_section, rel->r_offset);
6432 return FALSE;
6433 }
027e9c75
NC
6434 /* Overflow can occur when a variable is referenced with a type
6435 that has a larger alignment than the type with which it was
6436 declared. eg:
6437 file1.c: extern int foo; int a (void) { return foo; }
6438 file2.c: char bar, foo, baz;
6439 If the variable is placed into a data section at an offset
6440 that is incompatible with the larger alignment requirement
6441 overflow will occur. (Strictly speaking this is not overflow
6442 but rather an alignment problem, but the bfd_reloc_ error
6443 enum does not have a value to cover that situation).
6444
6445 Try to catch this situation here and provide a more helpful
6446 error message to the user. */
6447 if (addend & ((1 << howto->rightshift) - 1)
6448 /* FIXME: Are we testing all of the appropriate reloc
6449 types here ? */
6450 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6451 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6452 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6453 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6454 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6455 {
6456 info->callbacks->warning
6457 (info, _("One possible cause of this error is that the \
6458symbol is being referenced in the indicated code as if it had a larger \
6459alignment than was declared where it was defined."),
6460 name, input_bfd, input_section, rel->r_offset);
6461 }
a06ea964
NC
6462 break;
6463
6464 case bfd_reloc_undefined:
6465 if (!((*info->callbacks->undefined_symbol)
6466 (info, name, input_bfd, input_section,
6467 rel->r_offset, TRUE)))
6468 return FALSE;
6469 break;
6470
6471 case bfd_reloc_outofrange:
6472 error_message = _("out of range");
6473 goto common_error;
6474
6475 case bfd_reloc_notsupported:
6476 error_message = _("unsupported relocation");
6477 goto common_error;
6478
6479 case bfd_reloc_dangerous:
6480 /* error_message should already be set. */
6481 goto common_error;
6482
6483 default:
6484 error_message = _("unknown error");
6485 /* Fall through. */
6486
6487 common_error:
6488 BFD_ASSERT (error_message != NULL);
6489 if (!((*info->callbacks->reloc_dangerous)
6490 (info, error_message, input_bfd, input_section,
6491 rel->r_offset)))
6492 return FALSE;
6493 break;
6494 }
6495 }
027e9c75
NC
6496
6497 if (!save_addend)
6498 addend = 0;
a06ea964
NC
6499 }
6500
6501 return TRUE;
6502}
6503
6504/* Set the right machine number. */
6505
6506static bfd_boolean
cec5225b 6507elfNN_aarch64_object_p (bfd *abfd)
a06ea964 6508{
cec5225b
YZ
6509#if ARCH_SIZE == 32
6510 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6511#else
a06ea964 6512 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
cec5225b 6513#endif
a06ea964
NC
6514 return TRUE;
6515}
6516
6517/* Function to keep AArch64 specific flags in the ELF header. */
6518
6519static bfd_boolean
cec5225b 6520elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
a06ea964
NC
6521{
6522 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6523 {
6524 }
6525 else
6526 {
6527 elf_elfheader (abfd)->e_flags = flags;
6528 elf_flags_init (abfd) = TRUE;
6529 }
6530
6531 return TRUE;
6532}
6533
a06ea964
NC
6534/* Merge backend specific data from an object file to the output
6535 object file when linking. */
6536
6537static bfd_boolean
cec5225b 6538elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
a06ea964
NC
6539{
6540 flagword out_flags;
6541 flagword in_flags;
6542 bfd_boolean flags_compatible = TRUE;
6543 asection *sec;
6544
6545 /* Check if we have the same endianess. */
6546 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
6547 return FALSE;
6548
6549 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6550 return TRUE;
6551
6552 /* The input BFD must have had its flags initialised. */
6553 /* The following seems bogus to me -- The flags are initialized in
6554 the assembler but I don't think an elf_flags_init field is
6555 written into the object. */
6556 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6557
6558 in_flags = elf_elfheader (ibfd)->e_flags;
6559 out_flags = elf_elfheader (obfd)->e_flags;
6560
6561 if (!elf_flags_init (obfd))
6562 {
6563 /* If the input is the default architecture and had the default
6564 flags then do not bother setting the flags for the output
6565 architecture, instead allow future merges to do this. If no
6566 future merges ever set these flags then they will retain their
6567 uninitialised values, which surprise surprise, correspond
6568 to the default values. */
6569 if (bfd_get_arch_info (ibfd)->the_default
6570 && elf_elfheader (ibfd)->e_flags == 0)
6571 return TRUE;
6572
6573 elf_flags_init (obfd) = TRUE;
6574 elf_elfheader (obfd)->e_flags = in_flags;
6575
6576 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6577 && bfd_get_arch_info (obfd)->the_default)
6578 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6579 bfd_get_mach (ibfd));
6580
6581 return TRUE;
6582 }
6583
6584 /* Identical flags must be compatible. */
6585 if (in_flags == out_flags)
6586 return TRUE;
6587
6588 /* Check to see if the input BFD actually contains any sections. If
6589 not, its flags may not have been initialised either, but it
6590 cannot actually cause any incompatiblity. Do not short-circuit
6591 dynamic objects; their section list may be emptied by
6592 elf_link_add_object_symbols.
6593
6594 Also check to see if there are no code sections in the input.
6595 In this case there is no need to check for code specific flags.
6596 XXX - do we need to worry about floating-point format compatability
6597 in data sections ? */
6598 if (!(ibfd->flags & DYNAMIC))
6599 {
6600 bfd_boolean null_input_bfd = TRUE;
6601 bfd_boolean only_data_sections = TRUE;
6602
6603 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6604 {
6605 if ((bfd_get_section_flags (ibfd, sec)
6606 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6607 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6608 only_data_sections = FALSE;
6609
6610 null_input_bfd = FALSE;
6611 break;
6612 }
6613
6614 if (null_input_bfd || only_data_sections)
6615 return TRUE;
6616 }
6617
6618 return flags_compatible;
6619}
6620
6621/* Display the flags field. */
6622
6623static bfd_boolean
cec5225b 6624elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
a06ea964
NC
6625{
6626 FILE *file = (FILE *) ptr;
6627 unsigned long flags;
6628
6629 BFD_ASSERT (abfd != NULL && ptr != NULL);
6630
6631 /* Print normal ELF private data. */
6632 _bfd_elf_print_private_bfd_data (abfd, ptr);
6633
6634 flags = elf_elfheader (abfd)->e_flags;
6635 /* Ignore init flag - it may not be set, despite the flags field
6636 containing valid data. */
6637
6638 /* xgettext:c-format */
6639 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6640
6641 if (flags)
6642 fprintf (file, _("<Unrecognised flag bits set>"));
6643
6644 fputc ('\n', file);
6645
6646 return TRUE;
6647}
6648
6649/* Update the got entry reference counts for the section being removed. */
6650
6651static bfd_boolean
cec5225b 6652elfNN_aarch64_gc_sweep_hook (bfd *abfd,
cb8af559
NC
6653 struct bfd_link_info *info,
6654 asection *sec,
6655 const Elf_Internal_Rela * relocs)
a06ea964 6656{
cec5225b 6657 struct elf_aarch64_link_hash_table *htab;
59c108f7
NC
6658 Elf_Internal_Shdr *symtab_hdr;
6659 struct elf_link_hash_entry **sym_hashes;
cb8af559 6660 struct elf_aarch64_local_symbol *locals;
59c108f7
NC
6661 const Elf_Internal_Rela *rel, *relend;
6662
0e1862bb 6663 if (bfd_link_relocatable (info))
59c108f7
NC
6664 return TRUE;
6665
cec5225b 6666 htab = elf_aarch64_hash_table (info);
59c108f7
NC
6667
6668 if (htab == NULL)
6669 return FALSE;
6670
6671 elf_section_data (sec)->local_dynrel = NULL;
6672
6673 symtab_hdr = &elf_symtab_hdr (abfd);
6674 sym_hashes = elf_sym_hashes (abfd);
6675
cec5225b 6676 locals = elf_aarch64_locals (abfd);
59c108f7
NC
6677
6678 relend = relocs + sec->reloc_count;
6679 for (rel = relocs; rel < relend; rel++)
6680 {
6681 unsigned long r_symndx;
6682 unsigned int r_type;
6683 struct elf_link_hash_entry *h = NULL;
6684
cec5225b 6685 r_symndx = ELFNN_R_SYM (rel->r_info);
8847944f 6686
59c108f7
NC
6687 if (r_symndx >= symtab_hdr->sh_info)
6688 {
8847944f 6689
59c108f7
NC
6690 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6691 while (h->root.type == bfd_link_hash_indirect
6692 || h->root.type == bfd_link_hash_warning)
6693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
59c108f7
NC
6694 }
6695 else
6696 {
6697 Elf_Internal_Sym *isym;
6698
8847944f 6699 /* A local symbol. */
59c108f7
NC
6700 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6701 abfd, r_symndx);
1419bbe5
WN
6702
6703 /* Check relocation against local STT_GNU_IFUNC symbol. */
6704 if (isym != NULL
6705 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6706 {
6707 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6708 if (h == NULL)
6709 abort ();
6710 }
6711 }
6712
6713 if (h)
6714 {
6715 struct elf_aarch64_link_hash_entry *eh;
6716 struct elf_dyn_relocs **pp;
6717 struct elf_dyn_relocs *p;
6718
6719 eh = (struct elf_aarch64_link_hash_entry *) h;
6720
6721 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6722 if (p->sec == sec)
6723 {
6724 /* Everything must go for SEC. */
6725 *pp = p->next;
6726 break;
6727 }
59c108f7
NC
6728 }
6729
cec5225b 6730 r_type = ELFNN_R_TYPE (rel->r_info);
a6bb11b2 6731 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
59c108f7 6732 {
a6bb11b2 6733 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57 6734 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 6735 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7bcccb57 6736 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
a2e1db00 6737 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
99ad26cb 6738 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7bcccb57 6739 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
dc8008f5 6740 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
74a1bfe1 6741 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7bcccb57
MS
6742 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6743 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6744 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7bcccb57
MS
6745 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6746 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 6747 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
0484b454
RL
6748 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6749 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a6bb11b2 6750 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 6751 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6752 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7ba7cfe4 6753 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
94facae3 6754 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a6bb11b2 6755 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6756 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 6757 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 6758 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
6759 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6760 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
73f925cc 6761 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 6762 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 6763 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a6bb11b2 6764 if (h != NULL)
59c108f7
NC
6765 {
6766 if (h->got.refcount > 0)
6767 h->got.refcount -= 1;
1419bbe5
WN
6768
6769 if (h->type == STT_GNU_IFUNC)
6770 {
6771 if (h->plt.refcount > 0)
6772 h->plt.refcount -= 1;
6773 }
59c108f7 6774 }
cb8af559 6775 else if (locals != NULL)
59c108f7 6776 {
cb8af559
NC
6777 if (locals[r_symndx].got_refcount > 0)
6778 locals[r_symndx].got_refcount -= 1;
59c108f7
NC
6779 }
6780 break;
6781
a6bb11b2
YZ
6782 case BFD_RELOC_AARCH64_CALL26:
6783 case BFD_RELOC_AARCH64_JUMP26:
6784 /* If this is a local symbol then we resolve it
6785 directly without creating a PLT entry. */
59c108f7
NC
6786 if (h == NULL)
6787 continue;
6788
6789 if (h->plt.refcount > 0)
6790 h->plt.refcount -= 1;
6791 break;
6792
ce336788
JW
6793 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6794 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6795 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
614b09ce
JW
6796 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6797 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6798 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6799 case BFD_RELOC_AARCH64_MOVW_G3:
a6bb11b2 6800 case BFD_RELOC_AARCH64_NN:
0e1862bb 6801 if (h != NULL && bfd_link_executable (info))
59c108f7
NC
6802 {
6803 if (h->plt.refcount > 0)
6804 h->plt.refcount -= 1;
6805 }
6806 break;
cec5225b 6807
59c108f7
NC
6808 default:
6809 break;
6810 }
6811 }
6812
a06ea964
NC
6813 return TRUE;
6814}
6815
6816/* Adjust a symbol defined by a dynamic object and referenced by a
6817 regular object. The current definition is in some section of the
6818 dynamic object, but we're not including those sections. We have to
6819 change the definition to something the rest of the link can
6820 understand. */
6821
6822static bfd_boolean
cec5225b 6823elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
a06ea964
NC
6824 struct elf_link_hash_entry *h)
6825{
cec5225b 6826 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
6827 asection *s;
6828
6829 /* If this is a function, put it in the procedure linkage table. We
6830 will fill in the contents of the procedure linkage table later,
6831 when we know the address of the .got section. */
1419bbe5 6832 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
a06ea964
NC
6833 {
6834 if (h->plt.refcount <= 0
1419bbe5
WN
6835 || (h->type != STT_GNU_IFUNC
6836 && (SYMBOL_CALLS_LOCAL (info, h)
6837 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6838 && h->root.type == bfd_link_hash_undefweak))))
a06ea964
NC
6839 {
6840 /* This case can occur if we saw a CALL26 reloc in
6841 an input file, but the symbol wasn't referred to
6842 by a dynamic object or all references were
6843 garbage collected. In which case we can end up
6844 resolving. */
6845 h->plt.offset = (bfd_vma) - 1;
6846 h->needs_plt = 0;
6847 }
6848
6849 return TRUE;
6850 }
6851 else
80de0c6d 6852 /* Otherwise, reset to -1. */
a06ea964
NC
6853 h->plt.offset = (bfd_vma) - 1;
6854
6855
6856 /* If this is a weak symbol, and there is a real definition, the
6857 processor independent code will have arranged for us to see the
6858 real definition first, and we can just use the same value. */
6859 if (h->u.weakdef != NULL)
6860 {
6861 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6862 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6863 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6864 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6865 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6866 h->non_got_ref = h->u.weakdef->non_got_ref;
6867 return TRUE;
6868 }
6869
6870 /* If we are creating a shared library, we must presume that the
6871 only references to the symbol are via the global offset table.
6872 For such cases we need not do anything here; the relocations will
6873 be handled correctly by relocate_section. */
0e1862bb 6874 if (bfd_link_pic (info))
a06ea964
NC
6875 return TRUE;
6876
6877 /* If there are no references to this symbol that do not use the
6878 GOT, we don't need to generate a copy reloc. */
6879 if (!h->non_got_ref)
6880 return TRUE;
6881
6882 /* If -z nocopyreloc was given, we won't generate them either. */
6883 if (info->nocopyreloc)
6884 {
6885 h->non_got_ref = 0;
6886 return TRUE;
6887 }
6888
6889 /* We must allocate the symbol in our .dynbss section, which will
6890 become part of the .bss section of the executable. There will be
6891 an entry for this symbol in the .dynsym section. The dynamic
6892 object will contain position independent code, so all references
6893 from the dynamic object to this symbol will go through the global
6894 offset table. The dynamic linker will use the .dynsym entry to
6895 determine the address it must put in the global offset table, so
6896 both the dynamic object and the regular object will refer to the
6897 same memory location for the variable. */
6898
cec5225b 6899 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6900
6901 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6902 to copy the initial value out of the dynamic object and into the
6903 runtime process image. */
6904 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6905 {
6906 htab->srelbss->size += RELOC_SIZE (htab);
6907 h->needs_copy = 1;
6908 }
6909
6910 s = htab->sdynbss;
6911
6cabe1ea 6912 return _bfd_elf_adjust_dynamic_copy (info, h, s);
a06ea964
NC
6913
6914}
6915
6916static bfd_boolean
cec5225b 6917elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
a06ea964
NC
6918{
6919 struct elf_aarch64_local_symbol *locals;
cec5225b 6920 locals = elf_aarch64_locals (abfd);
a06ea964
NC
6921 if (locals == NULL)
6922 {
6923 locals = (struct elf_aarch64_local_symbol *)
6924 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
6925 if (locals == NULL)
6926 return FALSE;
cec5225b 6927 elf_aarch64_locals (abfd) = locals;
a06ea964
NC
6928 }
6929 return TRUE;
6930}
6931
cc0efaa8
MS
6932/* Create the .got section to hold the global offset table. */
6933
6934static bfd_boolean
6935aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
6936{
6937 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6938 flagword flags;
6939 asection *s;
6940 struct elf_link_hash_entry *h;
6941 struct elf_link_hash_table *htab = elf_hash_table (info);
6942
6943 /* This function may be called more than once. */
6944 s = bfd_get_linker_section (abfd, ".got");
6945 if (s != NULL)
6946 return TRUE;
6947
6948 flags = bed->dynamic_sec_flags;
6949
6950 s = bfd_make_section_anyway_with_flags (abfd,
6951 (bed->rela_plts_and_copies_p
6952 ? ".rela.got" : ".rel.got"),
6953 (bed->dynamic_sec_flags
6954 | SEC_READONLY));
6955 if (s == NULL
6956 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6957 return FALSE;
6958 htab->srelgot = s;
6959
6960 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
6961 if (s == NULL
6962 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6963 return FALSE;
6964 htab->sgot = s;
6965 htab->sgot->size += GOT_ENTRY_SIZE;
6966
6967 if (bed->want_got_sym)
6968 {
6969 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
6970 (or .got.plt) section. We don't do this in the linker script
6971 because we don't want to define the symbol if we are not creating
6972 a global offset table. */
6973 h = _bfd_elf_define_linkage_sym (abfd, info, s,
6974 "_GLOBAL_OFFSET_TABLE_");
6975 elf_hash_table (info)->hgot = h;
6976 if (h == NULL)
6977 return FALSE;
6978 }
6979
6980 if (bed->want_got_plt)
6981 {
6982 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
6983 if (s == NULL
6984 || !bfd_set_section_alignment (abfd, s,
6985 bed->s->log_file_align))
6986 return FALSE;
6987 htab->sgotplt = s;
6988 }
6989
6990 /* The first bit of the global offset table is the header. */
6991 s->size += bed->got_header_size;
6992
6993 return TRUE;
6994}
6995
a06ea964
NC
6996/* Look through the relocs for a section during the first phase. */
6997
6998static bfd_boolean
cec5225b 6999elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
a06ea964
NC
7000 asection *sec, const Elf_Internal_Rela *relocs)
7001{
7002 Elf_Internal_Shdr *symtab_hdr;
7003 struct elf_link_hash_entry **sym_hashes;
7004 const Elf_Internal_Rela *rel;
7005 const Elf_Internal_Rela *rel_end;
7006 asection *sreloc;
7007
cec5225b 7008 struct elf_aarch64_link_hash_table *htab;
a06ea964 7009
0e1862bb 7010 if (bfd_link_relocatable (info))
a06ea964
NC
7011 return TRUE;
7012
7013 BFD_ASSERT (is_aarch64_elf (abfd));
7014
cec5225b 7015 htab = elf_aarch64_hash_table (info);
a06ea964
NC
7016 sreloc = NULL;
7017
7018 symtab_hdr = &elf_symtab_hdr (abfd);
7019 sym_hashes = elf_sym_hashes (abfd);
a06ea964
NC
7020
7021 rel_end = relocs + sec->reloc_count;
7022 for (rel = relocs; rel < rel_end; rel++)
7023 {
7024 struct elf_link_hash_entry *h;
7025 unsigned long r_symndx;
7026 unsigned int r_type;
a6bb11b2 7027 bfd_reloc_code_real_type bfd_r_type;
1419bbe5 7028 Elf_Internal_Sym *isym;
a06ea964 7029
cec5225b
YZ
7030 r_symndx = ELFNN_R_SYM (rel->r_info);
7031 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
7032
7033 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7034 {
7035 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
7036 r_symndx);
7037 return FALSE;
7038 }
7039
ed5acf27 7040 if (r_symndx < symtab_hdr->sh_info)
1419bbe5
WN
7041 {
7042 /* A local symbol. */
7043 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7044 abfd, r_symndx);
7045 if (isym == NULL)
7046 return FALSE;
7047
7048 /* Check relocation against local STT_GNU_IFUNC symbol. */
7049 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7050 {
7051 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7052 TRUE);
7053 if (h == NULL)
7054 return FALSE;
7055
7056 /* Fake a STT_GNU_IFUNC symbol. */
7057 h->type = STT_GNU_IFUNC;
7058 h->def_regular = 1;
7059 h->ref_regular = 1;
7060 h->forced_local = 1;
7061 h->root.type = bfd_link_hash_defined;
7062 }
7063 else
7064 h = NULL;
7065 }
a06ea964
NC
7066 else
7067 {
7068 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7069 while (h->root.type == bfd_link_hash_indirect
7070 || h->root.type == bfd_link_hash_warning)
7071 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
7072
7073 /* PR15323, ref flags aren't set for references in the same
7074 object. */
7075 h->root.non_ir_ref = 1;
a06ea964
NC
7076 }
7077
7078 /* Could be done earlier, if h were already available. */
a6bb11b2 7079 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
a06ea964 7080
1419bbe5
WN
7081 if (h != NULL)
7082 {
7083 /* Create the ifunc sections for static executables. If we
7084 never see an indirect function symbol nor we are building
7085 a static executable, those sections will be empty and
7086 won't appear in output. */
7087 switch (bfd_r_type)
7088 {
7089 default:
7090 break;
7091
ce336788
JW
7092 case BFD_RELOC_AARCH64_ADD_LO12:
7093 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7094 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
1419bbe5 7095 case BFD_RELOC_AARCH64_CALL26:
ce336788 7096 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
1419bbe5 7097 case BFD_RELOC_AARCH64_JUMP26:
7018c030 7098 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
1419bbe5 7099 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
a2e1db00 7100 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
99ad26cb 7101 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
1419bbe5 7102 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
dc8008f5 7103 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
74a1bfe1 7104 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
ce336788 7105 case BFD_RELOC_AARCH64_NN:
1419bbe5
WN
7106 if (htab->root.dynobj == NULL)
7107 htab->root.dynobj = abfd;
7108 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7109 return FALSE;
7110 break;
7111 }
7112
7113 /* It is referenced by a non-shared object. */
7114 h->ref_regular = 1;
7115 h->root.non_ir_ref = 1;
7116 }
7117
a6bb11b2 7118 switch (bfd_r_type)
a06ea964 7119 {
a6bb11b2 7120 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
7121
7122 /* We don't need to handle relocs into sections not going into
7123 the "real" output. */
7124 if ((sec->flags & SEC_ALLOC) == 0)
7125 break;
7126
7127 if (h != NULL)
7128 {
0e1862bb 7129 if (!bfd_link_pic (info))
a06ea964
NC
7130 h->non_got_ref = 1;
7131
7132 h->plt.refcount += 1;
7133 h->pointer_equality_needed = 1;
7134 }
7135
7136 /* No need to do anything if we're not creating a shared
7137 object. */
0e1862bb 7138 if (! bfd_link_pic (info))
a06ea964
NC
7139 break;
7140
7141 {
7142 struct elf_dyn_relocs *p;
7143 struct elf_dyn_relocs **head;
7144
7145 /* We must copy these reloc types into the output file.
7146 Create a reloc section in dynobj and make room for
7147 this reloc. */
7148 if (sreloc == NULL)
7149 {
7150 if (htab->root.dynobj == NULL)
7151 htab->root.dynobj = abfd;
7152
7153 sreloc = _bfd_elf_make_dynamic_reloc_section
0608afa7 7154 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
a06ea964
NC
7155
7156 if (sreloc == NULL)
7157 return FALSE;
7158 }
7159
7160 /* If this is a global symbol, we count the number of
7161 relocations we need for this symbol. */
7162 if (h != NULL)
7163 {
cec5225b
YZ
7164 struct elf_aarch64_link_hash_entry *eh;
7165 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
7166 head = &eh->dyn_relocs;
7167 }
7168 else
7169 {
7170 /* Track dynamic relocs needed for local syms too.
7171 We really need local syms available to do this
7172 easily. Oh well. */
7173
7174 asection *s;
7175 void **vpp;
a06ea964
NC
7176
7177 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7178 abfd, r_symndx);
7179 if (isym == NULL)
7180 return FALSE;
7181
7182 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7183 if (s == NULL)
7184 s = sec;
7185
7186 /* Beware of type punned pointers vs strict aliasing
7187 rules. */
7188 vpp = &(elf_section_data (s)->local_dynrel);
7189 head = (struct elf_dyn_relocs **) vpp;
7190 }
7191
7192 p = *head;
7193 if (p == NULL || p->sec != sec)
7194 {
7195 bfd_size_type amt = sizeof *p;
7196 p = ((struct elf_dyn_relocs *)
7197 bfd_zalloc (htab->root.dynobj, amt));
7198 if (p == NULL)
7199 return FALSE;
7200 p->next = *head;
7201 *head = p;
7202 p->sec = sec;
7203 }
7204
7205 p->count += 1;
7206
7207 }
7208 break;
7209
7210 /* RR: We probably want to keep a consistency check that
7211 there are no dangling GOT_PAGE relocs. */
a6bb11b2 7212 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57 7213 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 7214 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7bcccb57 7215 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
a2e1db00 7216 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
99ad26cb 7217 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7bcccb57 7218 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
dc8008f5 7219 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
74a1bfe1 7220 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7bcccb57
MS
7221 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7222 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7223 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7bcccb57
MS
7224 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7225 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7226 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
0484b454
RL
7227 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7228 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a6bb11b2 7229 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 7230 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7231 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7ba7cfe4 7232 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
94facae3 7233 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a6bb11b2 7234 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7235 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 7236 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7237 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7238 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7239 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
73f925cc 7240 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 7241 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 7242 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
b7a944fe
RL
7243 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7244 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7245 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7246 {
7247 unsigned got_type;
7248 unsigned old_got_type;
7249
a6bb11b2 7250 got_type = aarch64_reloc_got_type (bfd_r_type);
a06ea964
NC
7251
7252 if (h)
7253 {
7254 h->got.refcount += 1;
cec5225b 7255 old_got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
7256 }
7257 else
7258 {
7259 struct elf_aarch64_local_symbol *locals;
7260
cec5225b 7261 if (!elfNN_aarch64_allocate_local_symbols
a06ea964
NC
7262 (abfd, symtab_hdr->sh_info))
7263 return FALSE;
7264
cec5225b 7265 locals = elf_aarch64_locals (abfd);
a06ea964
NC
7266 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7267 locals[r_symndx].got_refcount += 1;
7268 old_got_type = locals[r_symndx].got_type;
7269 }
7270
7271 /* If a variable is accessed with both general dynamic TLS
7272 methods, two slots may be created. */
7273 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7274 got_type |= old_got_type;
7275
7276 /* We will already have issued an error message if there
7277 is a TLS/non-TLS mismatch, based on the symbol type.
7278 So just combine any TLS types needed. */
7279 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7280 && got_type != GOT_NORMAL)
7281 got_type |= old_got_type;
7282
7283 /* If the symbol is accessed by both IE and GD methods, we
7284 are able to relax. Turn off the GD flag, without
7285 messing up with any other kind of TLS types that may be
7286 involved. */
7287 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7288 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7289
7290 if (old_got_type != got_type)
7291 {
7292 if (h != NULL)
cec5225b 7293 elf_aarch64_hash_entry (h)->got_type = got_type;
a06ea964
NC
7294 else
7295 {
7296 struct elf_aarch64_local_symbol *locals;
cec5225b 7297 locals = elf_aarch64_locals (abfd);
a06ea964
NC
7298 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7299 locals[r_symndx].got_type = got_type;
7300 }
7301 }
7302
cc0efaa8
MS
7303 if (htab->root.dynobj == NULL)
7304 htab->root.dynobj = abfd;
7305 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7306 return FALSE;
a06ea964
NC
7307 break;
7308 }
7309
614b09ce
JW
7310 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7311 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7312 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7313 case BFD_RELOC_AARCH64_MOVW_G3:
0e1862bb 7314 if (bfd_link_pic (info))
614b09ce
JW
7315 {
7316 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7317 (*_bfd_error_handler)
7318 (_("%B: relocation %s against `%s' can not be used when making "
7319 "a shared object; recompile with -fPIC"),
7320 abfd, elfNN_aarch64_howto_table[howto_index].name,
7321 (h) ? h->root.root.string : "a local symbol");
7322 bfd_set_error (bfd_error_bad_value);
7323 return FALSE;
7324 }
7325
a6bb11b2
YZ
7326 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7327 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7328 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
0e1862bb 7329 if (h != NULL && bfd_link_executable (info))
a06ea964
NC
7330 {
7331 /* If this reloc is in a read-only section, we might
7332 need a copy reloc. We can't check reliably at this
7333 stage whether the section is read-only, as input
7334 sections have not yet been mapped to output sections.
7335 Tentatively set the flag for now, and correct in
7336 adjust_dynamic_symbol. */
7337 h->non_got_ref = 1;
7338 h->plt.refcount += 1;
7339 h->pointer_equality_needed = 1;
7340 }
7341 /* FIXME:: RR need to handle these in shared libraries
7342 and essentially bomb out as these being non-PIC
7343 relocations in shared libraries. */
7344 break;
7345
a6bb11b2
YZ
7346 case BFD_RELOC_AARCH64_CALL26:
7347 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
7348 /* If this is a local symbol then we resolve it
7349 directly without creating a PLT entry. */
7350 if (h == NULL)
7351 continue;
7352
7353 h->needs_plt = 1;
1419bbe5
WN
7354 if (h->plt.refcount <= 0)
7355 h->plt.refcount = 1;
7356 else
7357 h->plt.refcount += 1;
a06ea964 7358 break;
a6bb11b2
YZ
7359
7360 default:
7361 break;
a06ea964
NC
7362 }
7363 }
a6bb11b2 7364
a06ea964
NC
7365 return TRUE;
7366}
7367
7368/* Treat mapping symbols as special target symbols. */
7369
7370static bfd_boolean
cec5225b 7371elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
7372 asymbol *sym)
7373{
7374 return bfd_is_aarch64_special_symbol_name (sym->name,
7375 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7376}
7377
7378/* This is a copy of elf_find_function () from elf.c except that
7379 AArch64 mapping symbols are ignored when looking for function names. */
7380
7381static bfd_boolean
7382aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964 7383 asymbol **symbols,
fb167eb2 7384 asection *section,
a06ea964
NC
7385 bfd_vma offset,
7386 const char **filename_ptr,
7387 const char **functionname_ptr)
7388{
7389 const char *filename = NULL;
7390 asymbol *func = NULL;
7391 bfd_vma low_func = 0;
7392 asymbol **p;
7393
7394 for (p = symbols; *p != NULL; p++)
7395 {
7396 elf_symbol_type *q;
7397
7398 q = (elf_symbol_type *) * p;
7399
7400 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7401 {
7402 default:
7403 break;
7404 case STT_FILE:
7405 filename = bfd_asymbol_name (&q->symbol);
7406 break;
7407 case STT_FUNC:
7408 case STT_NOTYPE:
7409 /* Skip mapping symbols. */
7410 if ((q->symbol.flags & BSF_LOCAL)
7411 && (bfd_is_aarch64_special_symbol_name
7412 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7413 continue;
7414 /* Fall through. */
7415 if (bfd_get_section (&q->symbol) == section
7416 && q->symbol.value >= low_func && q->symbol.value <= offset)
7417 {
7418 func = (asymbol *) q;
7419 low_func = q->symbol.value;
7420 }
7421 break;
7422 }
7423 }
7424
7425 if (func == NULL)
7426 return FALSE;
7427
7428 if (filename_ptr)
7429 *filename_ptr = filename;
7430 if (functionname_ptr)
7431 *functionname_ptr = bfd_asymbol_name (func);
7432
7433 return TRUE;
7434}
7435
7436
7437/* Find the nearest line to a particular section and offset, for error
7438 reporting. This code is a duplicate of the code in elf.c, except
7439 that it uses aarch64_elf_find_function. */
7440
7441static bfd_boolean
cec5225b 7442elfNN_aarch64_find_nearest_line (bfd *abfd,
a06ea964 7443 asymbol **symbols,
fb167eb2 7444 asection *section,
a06ea964
NC
7445 bfd_vma offset,
7446 const char **filename_ptr,
7447 const char **functionname_ptr,
fb167eb2
AM
7448 unsigned int *line_ptr,
7449 unsigned int *discriminator_ptr)
a06ea964
NC
7450{
7451 bfd_boolean found = FALSE;
7452
fb167eb2 7453 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
a06ea964 7454 filename_ptr, functionname_ptr,
fb167eb2
AM
7455 line_ptr, discriminator_ptr,
7456 dwarf_debug_sections, 0,
a06ea964
NC
7457 &elf_tdata (abfd)->dwarf2_find_line_info))
7458 {
7459 if (!*functionname_ptr)
fb167eb2 7460 aarch64_elf_find_function (abfd, symbols, section, offset,
a06ea964
NC
7461 *filename_ptr ? NULL : filename_ptr,
7462 functionname_ptr);
7463
7464 return TRUE;
7465 }
7466
fb167eb2
AM
7467 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7468 toolchain uses DWARF1. */
7469
a06ea964
NC
7470 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7471 &found, filename_ptr,
7472 functionname_ptr, line_ptr,
7473 &elf_tdata (abfd)->line_info))
7474 return FALSE;
7475
7476 if (found && (*functionname_ptr || *line_ptr))
7477 return TRUE;
7478
7479 if (symbols == NULL)
7480 return FALSE;
7481
fb167eb2 7482 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
a06ea964
NC
7483 filename_ptr, functionname_ptr))
7484 return FALSE;
7485
7486 *line_ptr = 0;
7487 return TRUE;
7488}
7489
7490static bfd_boolean
cec5225b 7491elfNN_aarch64_find_inliner_info (bfd *abfd,
a06ea964
NC
7492 const char **filename_ptr,
7493 const char **functionname_ptr,
7494 unsigned int *line_ptr)
7495{
7496 bfd_boolean found;
7497 found = _bfd_dwarf2_find_inliner_info
7498 (abfd, filename_ptr,
7499 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7500 return found;
7501}
7502
7503
7504static void
cec5225b 7505elfNN_aarch64_post_process_headers (bfd *abfd,
1419bbe5 7506 struct bfd_link_info *link_info)
a06ea964
NC
7507{
7508 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7509
7510 i_ehdrp = elf_elfheader (abfd);
a06ea964 7511 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
1419bbe5 7512
78245035 7513 _bfd_elf_post_process_headers (abfd, link_info);
a06ea964
NC
7514}
7515
7516static enum elf_reloc_type_class
cec5225b 7517elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7e612e98
AM
7518 const asection *rel_sec ATTRIBUTE_UNUSED,
7519 const Elf_Internal_Rela *rela)
a06ea964 7520{
cec5225b 7521 switch ((int) ELFNN_R_TYPE (rela->r_info))
a06ea964 7522 {
a6bb11b2 7523 case AARCH64_R (RELATIVE):
a06ea964 7524 return reloc_class_relative;
a6bb11b2 7525 case AARCH64_R (JUMP_SLOT):
a06ea964 7526 return reloc_class_plt;
a6bb11b2 7527 case AARCH64_R (COPY):
a06ea964
NC
7528 return reloc_class_copy;
7529 default:
7530 return reloc_class_normal;
7531 }
7532}
7533
a06ea964
NC
7534/* Handle an AArch64 specific section when reading an object file. This is
7535 called when bfd_section_from_shdr finds a section with an unknown
7536 type. */
7537
7538static bfd_boolean
cec5225b 7539elfNN_aarch64_section_from_shdr (bfd *abfd,
a06ea964
NC
7540 Elf_Internal_Shdr *hdr,
7541 const char *name, int shindex)
7542{
7543 /* There ought to be a place to keep ELF backend specific flags, but
7544 at the moment there isn't one. We just keep track of the
7545 sections by their name, instead. Fortunately, the ABI gives
7546 names for all the AArch64 specific sections, so we will probably get
7547 away with this. */
7548 switch (hdr->sh_type)
7549 {
7550 case SHT_AARCH64_ATTRIBUTES:
7551 break;
7552
7553 default:
7554 return FALSE;
7555 }
7556
7557 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7558 return FALSE;
7559
7560 return TRUE;
7561}
7562
7563/* A structure used to record a list of sections, independently
7564 of the next and prev fields in the asection structure. */
7565typedef struct section_list
7566{
7567 asection *sec;
7568 struct section_list *next;
7569 struct section_list *prev;
7570}
7571section_list;
7572
7573/* Unfortunately we need to keep a list of sections for which
7574 an _aarch64_elf_section_data structure has been allocated. This
cec5225b 7575 is because it is possible for functions like elfNN_aarch64_write_section
a06ea964
NC
7576 to be called on a section which has had an elf_data_structure
7577 allocated for it (and so the used_by_bfd field is valid) but
7578 for which the AArch64 extended version of this structure - the
7579 _aarch64_elf_section_data structure - has not been allocated. */
7580static section_list *sections_with_aarch64_elf_section_data = NULL;
7581
7582static void
7583record_section_with_aarch64_elf_section_data (asection *sec)
7584{
7585 struct section_list *entry;
7586
7587 entry = bfd_malloc (sizeof (*entry));
7588 if (entry == NULL)
7589 return;
7590 entry->sec = sec;
7591 entry->next = sections_with_aarch64_elf_section_data;
7592 entry->prev = NULL;
7593 if (entry->next != NULL)
7594 entry->next->prev = entry;
7595 sections_with_aarch64_elf_section_data = entry;
7596}
7597
7598static struct section_list *
7599find_aarch64_elf_section_entry (asection *sec)
7600{
7601 struct section_list *entry;
7602 static struct section_list *last_entry = NULL;
7603
7604 /* This is a short cut for the typical case where the sections are added
7605 to the sections_with_aarch64_elf_section_data list in forward order and
7606 then looked up here in backwards order. This makes a real difference
7607 to the ld-srec/sec64k.exp linker test. */
7608 entry = sections_with_aarch64_elf_section_data;
7609 if (last_entry != NULL)
7610 {
7611 if (last_entry->sec == sec)
7612 entry = last_entry;
7613 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7614 entry = last_entry->next;
7615 }
7616
7617 for (; entry; entry = entry->next)
7618 if (entry->sec == sec)
7619 break;
7620
7621 if (entry)
7622 /* Record the entry prior to this one - it is the entry we are
7623 most likely to want to locate next time. Also this way if we
7624 have been called from
7625 unrecord_section_with_aarch64_elf_section_data () we will not
7626 be caching a pointer that is about to be freed. */
7627 last_entry = entry->prev;
7628
7629 return entry;
7630}
7631
7632static void
7633unrecord_section_with_aarch64_elf_section_data (asection *sec)
7634{
7635 struct section_list *entry;
7636
7637 entry = find_aarch64_elf_section_entry (sec);
7638
7639 if (entry)
7640 {
7641 if (entry->prev != NULL)
7642 entry->prev->next = entry->next;
7643 if (entry->next != NULL)
7644 entry->next->prev = entry->prev;
7645 if (entry == sections_with_aarch64_elf_section_data)
7646 sections_with_aarch64_elf_section_data = entry->next;
7647 free (entry);
7648 }
7649}
7650
7651
7652typedef struct
7653{
7654 void *finfo;
7655 struct bfd_link_info *info;
7656 asection *sec;
7657 int sec_shndx;
7658 int (*func) (void *, const char *, Elf_Internal_Sym *,
7659 asection *, struct elf_link_hash_entry *);
7660} output_arch_syminfo;
7661
7662enum map_symbol_type
7663{
7664 AARCH64_MAP_INSN,
7665 AARCH64_MAP_DATA
7666};
7667
7668
7669/* Output a single mapping symbol. */
7670
7671static bfd_boolean
cec5225b 7672elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
a06ea964
NC
7673 enum map_symbol_type type, bfd_vma offset)
7674{
7675 static const char *names[2] = { "$x", "$d" };
7676 Elf_Internal_Sym sym;
7677
7678 sym.st_value = (osi->sec->output_section->vma
7679 + osi->sec->output_offset + offset);
7680 sym.st_size = 0;
7681 sym.st_other = 0;
7682 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7683 sym.st_shndx = osi->sec_shndx;
7684 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7685}
7686
a06ea964
NC
7687/* Output a single local symbol for a generated stub. */
7688
7689static bfd_boolean
cec5225b 7690elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
a06ea964
NC
7691 bfd_vma offset, bfd_vma size)
7692{
7693 Elf_Internal_Sym sym;
7694
7695 sym.st_value = (osi->sec->output_section->vma
7696 + osi->sec->output_offset + offset);
7697 sym.st_size = size;
7698 sym.st_other = 0;
7699 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7700 sym.st_shndx = osi->sec_shndx;
7701 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7702}
7703
7704static bfd_boolean
7705aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7706{
cec5225b 7707 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
7708 asection *stub_sec;
7709 bfd_vma addr;
7710 char *stub_name;
7711 output_arch_syminfo *osi;
7712
7713 /* Massage our args to the form they really have. */
cec5225b 7714 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
7715 osi = (output_arch_syminfo *) in_arg;
7716
7717 stub_sec = stub_entry->stub_sec;
7718
7719 /* Ensure this stub is attached to the current section being
7720 processed. */
7721 if (stub_sec != osi->sec)
7722 return TRUE;
7723
7724 addr = (bfd_vma) stub_entry->stub_offset;
7725
7726 stub_name = stub_entry->output_name;
7727
7728 switch (stub_entry->stub_type)
7729 {
7730 case aarch64_stub_adrp_branch:
cec5225b 7731 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
a06ea964
NC
7732 sizeof (aarch64_adrp_branch_stub)))
7733 return FALSE;
cec5225b 7734 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
7735 return FALSE;
7736 break;
7737 case aarch64_stub_long_branch:
cec5225b 7738 if (!elfNN_aarch64_output_stub_sym
a06ea964
NC
7739 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7740 return FALSE;
cec5225b 7741 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964 7742 return FALSE;
cec5225b 7743 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
a06ea964
NC
7744 return FALSE;
7745 break;
68fcca92
JW
7746 case aarch64_stub_erratum_835769_veneer:
7747 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7748 sizeof (aarch64_erratum_835769_stub)))
7749 return FALSE;
7750 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7751 return FALSE;
7752 break;
4106101c
MS
7753 case aarch64_stub_erratum_843419_veneer:
7754 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7755 sizeof (aarch64_erratum_843419_stub)))
7756 return FALSE;
7757 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7758 return FALSE;
7759 break;
7760
a06ea964 7761 default:
8e2fe09f 7762 abort ();
a06ea964
NC
7763 }
7764
7765 return TRUE;
7766}
7767
7768/* Output mapping symbols for linker generated sections. */
7769
7770static bfd_boolean
cec5225b 7771elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
a06ea964
NC
7772 struct bfd_link_info *info,
7773 void *finfo,
7774 int (*func) (void *, const char *,
7775 Elf_Internal_Sym *,
7776 asection *,
7777 struct elf_link_hash_entry
7778 *))
7779{
7780 output_arch_syminfo osi;
cec5225b 7781 struct elf_aarch64_link_hash_table *htab;
a06ea964 7782
cec5225b 7783 htab = elf_aarch64_hash_table (info);
a06ea964
NC
7784
7785 osi.finfo = finfo;
7786 osi.info = info;
7787 osi.func = func;
7788
7789 /* Long calls stubs. */
7790 if (htab->stub_bfd && htab->stub_bfd->sections)
7791 {
7792 asection *stub_sec;
7793
7794 for (stub_sec = htab->stub_bfd->sections;
7795 stub_sec != NULL; stub_sec = stub_sec->next)
7796 {
7797 /* Ignore non-stub sections. */
7798 if (!strstr (stub_sec->name, STUB_SUFFIX))
7799 continue;
7800
7801 osi.sec = stub_sec;
7802
7803 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7804 (output_bfd, osi.sec->output_section);
7805
61865519
MS
7806 /* The first instruction in a stub is always a branch. */
7807 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7808 return FALSE;
7809
a06ea964
NC
7810 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7811 &osi);
7812 }
7813 }
7814
7815 /* Finally, output mapping symbols for the PLT. */
7816 if (!htab->root.splt || htab->root.splt->size == 0)
7817 return TRUE;
7818
a06ea964
NC
7819 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7820 (output_bfd, htab->root.splt->output_section);
7821 osi.sec = htab->root.splt;
7822
73524045 7823 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
a06ea964
NC
7824
7825 return TRUE;
7826
7827}
7828
7829/* Allocate target specific section data. */
7830
7831static bfd_boolean
cec5225b 7832elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
a06ea964
NC
7833{
7834 if (!sec->used_by_bfd)
7835 {
7836 _aarch64_elf_section_data *sdata;
7837 bfd_size_type amt = sizeof (*sdata);
7838
7839 sdata = bfd_zalloc (abfd, amt);
7840 if (sdata == NULL)
7841 return FALSE;
7842 sec->used_by_bfd = sdata;
7843 }
7844
7845 record_section_with_aarch64_elf_section_data (sec);
7846
7847 return _bfd_elf_new_section_hook (abfd, sec);
7848}
7849
7850
7851static void
7852unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
7853 asection *sec,
7854 void *ignore ATTRIBUTE_UNUSED)
7855{
7856 unrecord_section_with_aarch64_elf_section_data (sec);
7857}
7858
7859static bfd_boolean
cec5225b 7860elfNN_aarch64_close_and_cleanup (bfd *abfd)
a06ea964
NC
7861{
7862 if (abfd->sections)
7863 bfd_map_over_sections (abfd,
7864 unrecord_section_via_map_over_sections, NULL);
7865
7866 return _bfd_elf_close_and_cleanup (abfd);
7867}
7868
7869static bfd_boolean
cec5225b 7870elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
a06ea964
NC
7871{
7872 if (abfd->sections)
7873 bfd_map_over_sections (abfd,
7874 unrecord_section_via_map_over_sections, NULL);
7875
7876 return _bfd_free_cached_info (abfd);
7877}
7878
a06ea964
NC
7879/* Create dynamic sections. This is different from the ARM backend in that
7880 the got, plt, gotplt and their relocation sections are all created in the
7881 standard part of the bfd elf backend. */
7882
7883static bfd_boolean
cec5225b 7884elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
a06ea964
NC
7885 struct bfd_link_info *info)
7886{
cec5225b 7887 struct elf_aarch64_link_hash_table *htab;
cc0efaa8
MS
7888
7889 /* We need to create .got section. */
7890 if (!aarch64_elf_create_got_section (dynobj, info))
7891 return FALSE;
a06ea964
NC
7892
7893 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
7894 return FALSE;
7895
cec5225b 7896 htab = elf_aarch64_hash_table (info);
a06ea964 7897 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
0e1862bb 7898 if (!bfd_link_pic (info))
a06ea964
NC
7899 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
7900
0e1862bb 7901 if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss))
a06ea964
NC
7902 abort ();
7903
a06ea964
NC
7904 return TRUE;
7905}
7906
7907
7908/* Allocate space in .plt, .got and associated reloc sections for
7909 dynamic relocs. */
7910
7911static bfd_boolean
cec5225b 7912elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
7913{
7914 struct bfd_link_info *info;
cec5225b
YZ
7915 struct elf_aarch64_link_hash_table *htab;
7916 struct elf_aarch64_link_hash_entry *eh;
a06ea964
NC
7917 struct elf_dyn_relocs *p;
7918
7919 /* An example of a bfd_link_hash_indirect symbol is versioned
7920 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7921 -> __gxx_personality_v0(bfd_link_hash_defined)
7922
7923 There is no need to process bfd_link_hash_indirect symbols here
7924 because we will also be presented with the concrete instance of
cec5225b 7925 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
a06ea964
NC
7926 called to copy all relevant data from the generic to the concrete
7927 symbol instance.
7928 */
7929 if (h->root.type == bfd_link_hash_indirect)
7930 return TRUE;
7931
7932 if (h->root.type == bfd_link_hash_warning)
7933 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7934
7935 info = (struct bfd_link_info *) inf;
cec5225b 7936 htab = elf_aarch64_hash_table (info);
a06ea964 7937
1419bbe5
WN
7938 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7939 here if it is defined and referenced in a non-shared object. */
7940 if (h->type == STT_GNU_IFUNC
7941 && h->def_regular)
7942 return TRUE;
7943 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
a06ea964
NC
7944 {
7945 /* Make sure this symbol is output as a dynamic symbol.
7946 Undefined weak syms won't yet be marked as dynamic. */
7947 if (h->dynindx == -1 && !h->forced_local)
7948 {
7949 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7950 return FALSE;
7951 }
7952
0e1862bb 7953 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
a06ea964
NC
7954 {
7955 asection *s = htab->root.splt;
7956
7957 /* If this is the first .plt entry, make room for the special
7958 first entry. */
7959 if (s->size == 0)
7960 s->size += htab->plt_header_size;
7961
7962 h->plt.offset = s->size;
7963
7964 /* If this symbol is not defined in a regular file, and we are
7965 not generating a shared library, then set the symbol to this
7966 location in the .plt. This is required to make function
7967 pointers compare as equal between the normal executable and
7968 the shared library. */
0e1862bb 7969 if (!bfd_link_pic (info) && !h->def_regular)
a06ea964
NC
7970 {
7971 h->root.u.def.section = s;
7972 h->root.u.def.value = h->plt.offset;
7973 }
7974
7975 /* Make room for this entry. For now we only create the
7976 small model PLT entries. We later need to find a way
7977 of relaxing into these from the large model PLT entries. */
7978 s->size += PLT_SMALL_ENTRY_SIZE;
7979
7980 /* We also need to make an entry in the .got.plt section, which
7981 will be placed in the .got section by the linker script. */
7982 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
7983
7984 /* We also need to make an entry in the .rela.plt section. */
7985 htab->root.srelplt->size += RELOC_SIZE (htab);
7986
7987 /* We need to ensure that all GOT entries that serve the PLT
7988 are consecutive with the special GOT slots [0] [1] and
7989 [2]. Any addtional relocations, such as
7990 R_AARCH64_TLSDESC, must be placed after the PLT related
7991 entries. We abuse the reloc_count such that during
7992 sizing we adjust reloc_count to indicate the number of
7993 PLT related reserved entries. In subsequent phases when
7994 filling in the contents of the reloc entries, PLT related
7995 entries are placed by computing their PLT index (0
7996 .. reloc_count). While other none PLT relocs are placed
7997 at the slot indicated by reloc_count and reloc_count is
7998 updated. */
7999
8000 htab->root.srelplt->reloc_count++;
8001 }
8002 else
8003 {
8004 h->plt.offset = (bfd_vma) - 1;
8005 h->needs_plt = 0;
8006 }
8007 }
8008 else
8009 {
8010 h->plt.offset = (bfd_vma) - 1;
8011 h->needs_plt = 0;
8012 }
8013
cec5225b 8014 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
8015 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8016
8017 if (h->got.refcount > 0)
8018 {
8019 bfd_boolean dyn;
cec5225b 8020 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
8021
8022 h->got.offset = (bfd_vma) - 1;
8023
8024 dyn = htab->root.dynamic_sections_created;
8025
8026 /* Make sure this symbol is output as a dynamic symbol.
8027 Undefined weak syms won't yet be marked as dynamic. */
8028 if (dyn && h->dynindx == -1 && !h->forced_local)
8029 {
8030 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8031 return FALSE;
8032 }
8033
8034 if (got_type == GOT_UNKNOWN)
8035 {
8036 }
8037 else if (got_type == GOT_NORMAL)
8038 {
8039 h->got.offset = htab->root.sgot->size;
8040 htab->root.sgot->size += GOT_ENTRY_SIZE;
8041 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8042 || h->root.type != bfd_link_hash_undefweak)
0e1862bb 8043 && (bfd_link_pic (info)
a06ea964
NC
8044 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8045 {
8046 htab->root.srelgot->size += RELOC_SIZE (htab);
8047 }
8048 }
8049 else
8050 {
8051 int indx;
8052 if (got_type & GOT_TLSDESC_GD)
8053 {
8054 eh->tlsdesc_got_jump_table_offset =
8055 (htab->root.sgotplt->size
8056 - aarch64_compute_jump_table_size (htab));
8057 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8058 h->got.offset = (bfd_vma) - 2;
8059 }
8060
8061 if (got_type & GOT_TLS_GD)
8062 {
8063 h->got.offset = htab->root.sgot->size;
8064 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8065 }
8066
8067 if (got_type & GOT_TLS_IE)
8068 {
8069 h->got.offset = htab->root.sgot->size;
8070 htab->root.sgot->size += GOT_ENTRY_SIZE;
8071 }
8072
8073 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8074 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8075 || h->root.type != bfd_link_hash_undefweak)
0e1862bb 8076 && (bfd_link_pic (info)
a06ea964
NC
8077 || indx != 0
8078 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8079 {
8080 if (got_type & GOT_TLSDESC_GD)
8081 {
8082 htab->root.srelplt->size += RELOC_SIZE (htab);
8083 /* Note reloc_count not incremented here! We have
8084 already adjusted reloc_count for this relocation
8085 type. */
8086
8087 /* TLSDESC PLT is now needed, but not yet determined. */
8088 htab->tlsdesc_plt = (bfd_vma) - 1;
8089 }
8090
8091 if (got_type & GOT_TLS_GD)
8092 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8093
8094 if (got_type & GOT_TLS_IE)
8095 htab->root.srelgot->size += RELOC_SIZE (htab);
8096 }
8097 }
8098 }
8099 else
8100 {
8101 h->got.offset = (bfd_vma) - 1;
8102 }
8103
8104 if (eh->dyn_relocs == NULL)
8105 return TRUE;
8106
8107 /* In the shared -Bsymbolic case, discard space allocated for
8108 dynamic pc-relative relocs against symbols which turn out to be
8109 defined in regular objects. For the normal shared case, discard
8110 space for pc-relative relocs that have become local due to symbol
8111 visibility changes. */
8112
0e1862bb 8113 if (bfd_link_pic (info))
a06ea964
NC
8114 {
8115 /* Relocs that use pc_count are those that appear on a call
8116 insn, or certain REL relocs that can generated via assembly.
8117 We want calls to protected symbols to resolve directly to the
8118 function rather than going via the plt. If people want
8119 function pointer comparisons to work as expected then they
8120 should avoid writing weird assembly. */
8121 if (SYMBOL_CALLS_LOCAL (info, h))
8122 {
8123 struct elf_dyn_relocs **pp;
8124
8125 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8126 {
8127 p->count -= p->pc_count;
8128 p->pc_count = 0;
8129 if (p->count == 0)
8130 *pp = p->next;
8131 else
8132 pp = &p->next;
8133 }
8134 }
8135
8136 /* Also discard relocs on undefined weak syms with non-default
8137 visibility. */
8138 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8139 {
8140 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8141 eh->dyn_relocs = NULL;
8142
8143 /* Make sure undefined weak symbols are output as a dynamic
8144 symbol in PIEs. */
8145 else if (h->dynindx == -1
8146 && !h->forced_local
8147 && !bfd_elf_link_record_dynamic_symbol (info, h))
8148 return FALSE;
8149 }
8150
8151 }
8152 else if (ELIMINATE_COPY_RELOCS)
8153 {
8154 /* For the non-shared case, discard space for relocs against
8155 symbols which turn out to need copy relocs or are not
8156 dynamic. */
8157
8158 if (!h->non_got_ref
8159 && ((h->def_dynamic
8160 && !h->def_regular)
8161 || (htab->root.dynamic_sections_created
8162 && (h->root.type == bfd_link_hash_undefweak
8163 || h->root.type == bfd_link_hash_undefined))))
8164 {
8165 /* Make sure this symbol is output as a dynamic symbol.
8166 Undefined weak syms won't yet be marked as dynamic. */
8167 if (h->dynindx == -1
8168 && !h->forced_local
8169 && !bfd_elf_link_record_dynamic_symbol (info, h))
8170 return FALSE;
8171
8172 /* If that succeeded, we know we'll be keeping all the
8173 relocs. */
8174 if (h->dynindx != -1)
8175 goto keep;
8176 }
8177
8178 eh->dyn_relocs = NULL;
8179
8180 keep:;
8181 }
8182
8183 /* Finally, allocate space. */
8184 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8185 {
8186 asection *sreloc;
8187
8188 sreloc = elf_section_data (p->sec)->sreloc;
8189
8190 BFD_ASSERT (sreloc != NULL);
8191
8192 sreloc->size += p->count * RELOC_SIZE (htab);
8193 }
8194
8195 return TRUE;
8196}
8197
1419bbe5
WN
8198/* Allocate space in .plt, .got and associated reloc sections for
8199 ifunc dynamic relocs. */
8200
8201static bfd_boolean
8202elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8203 void *inf)
8204{
8205 struct bfd_link_info *info;
8206 struct elf_aarch64_link_hash_table *htab;
8207 struct elf_aarch64_link_hash_entry *eh;
8208
8209 /* An example of a bfd_link_hash_indirect symbol is versioned
8210 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8211 -> __gxx_personality_v0(bfd_link_hash_defined)
8212
8213 There is no need to process bfd_link_hash_indirect symbols here
8214 because we will also be presented with the concrete instance of
8215 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8216 called to copy all relevant data from the generic to the concrete
8217 symbol instance.
8218 */
8219 if (h->root.type == bfd_link_hash_indirect)
8220 return TRUE;
8221
8222 if (h->root.type == bfd_link_hash_warning)
8223 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8224
8225 info = (struct bfd_link_info *) inf;
8226 htab = elf_aarch64_hash_table (info);
8227
8228 eh = (struct elf_aarch64_link_hash_entry *) h;
8229
8230 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8231 here if it is defined and referenced in a non-shared object. */
8232 if (h->type == STT_GNU_IFUNC
8233 && h->def_regular)
8234 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8235 &eh->dyn_relocs,
8236 htab->plt_entry_size,
8237 htab->plt_header_size,
8238 GOT_ENTRY_SIZE);
8239 return TRUE;
8240}
8241
8242/* Allocate space in .plt, .got and associated reloc sections for
8243 local dynamic relocs. */
8244
8245static bfd_boolean
8246elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8247{
8248 struct elf_link_hash_entry *h
8249 = (struct elf_link_hash_entry *) *slot;
8250
8251 if (h->type != STT_GNU_IFUNC
8252 || !h->def_regular
8253 || !h->ref_regular
8254 || !h->forced_local
8255 || h->root.type != bfd_link_hash_defined)
8256 abort ();
8257
8258 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8259}
8260
8261/* Allocate space in .plt, .got and associated reloc sections for
8262 local ifunc dynamic relocs. */
8263
8264static bfd_boolean
8265elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8266{
8267 struct elf_link_hash_entry *h
8268 = (struct elf_link_hash_entry *) *slot;
8269
8270 if (h->type != STT_GNU_IFUNC
8271 || !h->def_regular
8272 || !h->ref_regular
8273 || !h->forced_local
8274 || h->root.type != bfd_link_hash_defined)
8275 abort ();
8276
8277 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8278}
a06ea964 8279
c2170589
JW
8280/* Find any dynamic relocs that apply to read-only sections. */
8281
8282static bfd_boolean
8283aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
8284{
8285 struct elf_aarch64_link_hash_entry * eh;
8286 struct elf_dyn_relocs * p;
8287
8288 eh = (struct elf_aarch64_link_hash_entry *) h;
8289 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8290 {
8291 asection *s = p->sec;
8292
8293 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8294 {
8295 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8296
8297 info->flags |= DF_TEXTREL;
8298
8299 /* Not an error, just cut short the traversal. */
8300 return FALSE;
8301 }
8302 }
8303 return TRUE;
8304}
8305
a06ea964
NC
8306/* This is the most important function of all . Innocuosly named
8307 though ! */
8308static bfd_boolean
cec5225b 8309elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
a06ea964
NC
8310 struct bfd_link_info *info)
8311{
cec5225b 8312 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
8313 bfd *dynobj;
8314 asection *s;
8315 bfd_boolean relocs;
8316 bfd *ibfd;
8317
cec5225b 8318 htab = elf_aarch64_hash_table ((info));
a06ea964
NC
8319 dynobj = htab->root.dynobj;
8320
8321 BFD_ASSERT (dynobj != NULL);
8322
8323 if (htab->root.dynamic_sections_created)
8324 {
9b8b325a 8325 if (bfd_link_executable (info) && !info->nointerp)
a06ea964
NC
8326 {
8327 s = bfd_get_linker_section (dynobj, ".interp");
8328 if (s == NULL)
8329 abort ();
8330 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8331 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8332 }
8333 }
8334
8335 /* Set up .got offsets for local syms, and space for local dynamic
8336 relocs. */
c72f2fb2 8337 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
a06ea964
NC
8338 {
8339 struct elf_aarch64_local_symbol *locals = NULL;
8340 Elf_Internal_Shdr *symtab_hdr;
8341 asection *srel;
8342 unsigned int i;
8343
8344 if (!is_aarch64_elf (ibfd))
8345 continue;
8346
8347 for (s = ibfd->sections; s != NULL; s = s->next)
8348 {
8349 struct elf_dyn_relocs *p;
8350
8351 for (p = (struct elf_dyn_relocs *)
8352 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8353 {
8354 if (!bfd_is_abs_section (p->sec)
8355 && bfd_is_abs_section (p->sec->output_section))
8356 {
8357 /* Input section has been discarded, either because
8358 it is a copy of a linkonce section or due to
8359 linker script /DISCARD/, so we'll be discarding
8360 the relocs too. */
8361 }
8362 else if (p->count != 0)
8363 {
8364 srel = elf_section_data (p->sec)->sreloc;
8365 srel->size += p->count * RELOC_SIZE (htab);
8366 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8367 info->flags |= DF_TEXTREL;
8368 }
8369 }
8370 }
8371
cec5225b 8372 locals = elf_aarch64_locals (ibfd);
a06ea964
NC
8373 if (!locals)
8374 continue;
8375
8376 symtab_hdr = &elf_symtab_hdr (ibfd);
8377 srel = htab->root.srelgot;
8378 for (i = 0; i < symtab_hdr->sh_info; i++)
8379 {
8380 locals[i].got_offset = (bfd_vma) - 1;
8381 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8382 if (locals[i].got_refcount > 0)
8383 {
8384 unsigned got_type = locals[i].got_type;
8385 if (got_type & GOT_TLSDESC_GD)
8386 {
8387 locals[i].tlsdesc_got_jump_table_offset =
8388 (htab->root.sgotplt->size
8389 - aarch64_compute_jump_table_size (htab));
8390 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8391 locals[i].got_offset = (bfd_vma) - 2;
8392 }
8393
8394 if (got_type & GOT_TLS_GD)
8395 {
8396 locals[i].got_offset = htab->root.sgot->size;
8397 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8398 }
8399
b53b1bed
JW
8400 if (got_type & GOT_TLS_IE
8401 || got_type & GOT_NORMAL)
a06ea964
NC
8402 {
8403 locals[i].got_offset = htab->root.sgot->size;
8404 htab->root.sgot->size += GOT_ENTRY_SIZE;
8405 }
8406
8407 if (got_type == GOT_UNKNOWN)
8408 {
8409 }
8410
0e1862bb 8411 if (bfd_link_pic (info))
a06ea964
NC
8412 {
8413 if (got_type & GOT_TLSDESC_GD)
8414 {
8415 htab->root.srelplt->size += RELOC_SIZE (htab);
8416 /* Note RELOC_COUNT not incremented here! */
8417 htab->tlsdesc_plt = (bfd_vma) - 1;
8418 }
8419
8420 if (got_type & GOT_TLS_GD)
8421 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8422
b53b1bed
JW
8423 if (got_type & GOT_TLS_IE
8424 || got_type & GOT_NORMAL)
a06ea964
NC
8425 htab->root.srelgot->size += RELOC_SIZE (htab);
8426 }
8427 }
8428 else
8429 {
8430 locals[i].got_refcount = (bfd_vma) - 1;
8431 }
8432 }
8433 }
8434
8435
8436 /* Allocate global sym .plt and .got entries, and space for global
8437 sym dynamic relocs. */
cec5225b 8438 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
a06ea964
NC
8439 info);
8440
1419bbe5
WN
8441 /* Allocate global ifunc sym .plt and .got entries, and space for global
8442 ifunc sym dynamic relocs. */
8443 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8444 info);
8445
8446 /* Allocate .plt and .got entries, and space for local symbols. */
8447 htab_traverse (htab->loc_hash_table,
8448 elfNN_aarch64_allocate_local_dynrelocs,
8449 info);
8450
8451 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8452 htab_traverse (htab->loc_hash_table,
8453 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8454 info);
a06ea964
NC
8455
8456 /* For every jump slot reserved in the sgotplt, reloc_count is
8457 incremented. However, when we reserve space for TLS descriptors,
8458 it's not incremented, so in order to compute the space reserved
8459 for them, it suffices to multiply the reloc count by the jump
8460 slot size. */
8461
8462 if (htab->root.srelplt)
8847944f 8463 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
a06ea964
NC
8464
8465 if (htab->tlsdesc_plt)
8466 {
8467 if (htab->root.splt->size == 0)
8468 htab->root.splt->size += PLT_ENTRY_SIZE;
8469
8470 htab->tlsdesc_plt = htab->root.splt->size;
8471 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8472
8473 /* If we're not using lazy TLS relocations, don't generate the
8474 GOT entry required. */
8475 if (!(info->flags & DF_BIND_NOW))
8476 {
8477 htab->dt_tlsdesc_got = htab->root.sgot->size;
8478 htab->root.sgot->size += GOT_ENTRY_SIZE;
8479 }
8480 }
8481
68fcca92 8482 /* Init mapping symbols information to use later to distingush between
4106101c
MS
8483 code and data while scanning for errata. */
8484 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
68fcca92
JW
8485 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8486 {
8487 if (!is_aarch64_elf (ibfd))
8488 continue;
8489 bfd_elfNN_aarch64_init_maps (ibfd);
8490 }
8491
a06ea964
NC
8492 /* We now have determined the sizes of the various dynamic sections.
8493 Allocate memory for them. */
8494 relocs = FALSE;
8495 for (s = dynobj->sections; s != NULL; s = s->next)
8496 {
8497 if ((s->flags & SEC_LINKER_CREATED) == 0)
8498 continue;
8499
8500 if (s == htab->root.splt
8501 || s == htab->root.sgot
8502 || s == htab->root.sgotplt
8503 || s == htab->root.iplt
8504 || s == htab->root.igotplt || s == htab->sdynbss)
8505 {
8506 /* Strip this section if we don't need it; see the
8507 comment below. */
8508 }
8509 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8510 {
8511 if (s->size != 0 && s != htab->root.srelplt)
8512 relocs = TRUE;
8513
8514 /* We use the reloc_count field as a counter if we need
8515 to copy relocs into the output file. */
8516 if (s != htab->root.srelplt)
8517 s->reloc_count = 0;
8518 }
8519 else
8520 {
8521 /* It's not one of our sections, so don't allocate space. */
8522 continue;
8523 }
8524
8525 if (s->size == 0)
8526 {
8527 /* If we don't need this section, strip it from the
8528 output file. This is mostly to handle .rela.bss and
8529 .rela.plt. We must create both sections in
8530 create_dynamic_sections, because they must be created
8531 before the linker maps input sections to output
8532 sections. The linker does that before
8533 adjust_dynamic_symbol is called, and it is that
8534 function which decides whether anything needs to go
8535 into these sections. */
8536
8537 s->flags |= SEC_EXCLUDE;
8538 continue;
8539 }
8540
8541 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8542 continue;
8543
8544 /* Allocate memory for the section contents. We use bfd_zalloc
8545 here in case unused entries are not reclaimed before the
8546 section's contents are written out. This should not happen,
8547 but this way if it does, we get a R_AARCH64_NONE reloc instead
8548 of garbage. */
8549 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8550 if (s->contents == NULL)
8551 return FALSE;
8552 }
8553
8554 if (htab->root.dynamic_sections_created)
8555 {
8556 /* Add some entries to the .dynamic section. We fill in the
cec5225b 8557 values later, in elfNN_aarch64_finish_dynamic_sections, but we
a06ea964
NC
8558 must add the entries now so that we get the correct size for
8559 the .dynamic section. The DT_DEBUG entry is filled in by the
8560 dynamic linker and used by the debugger. */
8561#define add_dynamic_entry(TAG, VAL) \
8562 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8563
0e1862bb 8564 if (bfd_link_executable (info))
a06ea964
NC
8565 {
8566 if (!add_dynamic_entry (DT_DEBUG, 0))
8567 return FALSE;
8568 }
8569
8570 if (htab->root.splt->size != 0)
8571 {
8572 if (!add_dynamic_entry (DT_PLTGOT, 0)
8573 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8574 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8575 || !add_dynamic_entry (DT_JMPREL, 0))
8576 return FALSE;
8577
8578 if (htab->tlsdesc_plt
8579 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8580 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8581 return FALSE;
8582 }
8583
8584 if (relocs)
8585 {
8586 if (!add_dynamic_entry (DT_RELA, 0)
8587 || !add_dynamic_entry (DT_RELASZ, 0)
8588 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8589 return FALSE;
8590
8591 /* If any dynamic relocs apply to a read-only section,
8592 then we need a DT_TEXTREL entry. */
c2170589
JW
8593 if ((info->flags & DF_TEXTREL) == 0)
8594 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8595 info);
8596
a06ea964
NC
8597 if ((info->flags & DF_TEXTREL) != 0)
8598 {
8599 if (!add_dynamic_entry (DT_TEXTREL, 0))
8600 return FALSE;
8601 }
8602 }
8603 }
8604#undef add_dynamic_entry
8605
8606 return TRUE;
a06ea964
NC
8607}
8608
8609static inline void
caed7120
YZ
8610elf_aarch64_update_plt_entry (bfd *output_bfd,
8611 bfd_reloc_code_real_type r_type,
8612 bfd_byte *plt_entry, bfd_vma value)
a06ea964 8613{
caed7120
YZ
8614 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8615
8616 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
a06ea964
NC
8617}
8618
8619static void
cec5225b
YZ
8620elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8621 struct elf_aarch64_link_hash_table
1419bbe5
WN
8622 *htab, bfd *output_bfd,
8623 struct bfd_link_info *info)
a06ea964
NC
8624{
8625 bfd_byte *plt_entry;
8626 bfd_vma plt_index;
8627 bfd_vma got_offset;
8628 bfd_vma gotplt_entry_address;
8629 bfd_vma plt_entry_address;
8630 Elf_Internal_Rela rela;
8631 bfd_byte *loc;
1419bbe5
WN
8632 asection *plt, *gotplt, *relplt;
8633
8634 /* When building a static executable, use .iplt, .igot.plt and
8635 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8636 if (htab->root.splt != NULL)
8637 {
8638 plt = htab->root.splt;
8639 gotplt = htab->root.sgotplt;
8640 relplt = htab->root.srelplt;
8641 }
8642 else
8643 {
8644 plt = htab->root.iplt;
8645 gotplt = htab->root.igotplt;
8646 relplt = htab->root.irelplt;
8647 }
8648
8649 /* Get the index in the procedure linkage table which
8650 corresponds to this symbol. This is the index of this symbol
8651 in all the symbols for which we are making plt entries. The
8652 first entry in the procedure linkage table is reserved.
a06ea964 8653
1419bbe5
WN
8654 Get the offset into the .got table of the entry that
8655 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8656 bytes. The first three are reserved for the dynamic linker.
692e2b8b 8657
1419bbe5
WN
8658 For static executables, we don't reserve anything. */
8659
8660 if (plt == htab->root.splt)
8661 {
8662 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8663 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8664 }
8665 else
8666 {
8667 plt_index = h->plt.offset / htab->plt_entry_size;
8668 got_offset = plt_index * GOT_ENTRY_SIZE;
8669 }
8670
8671 plt_entry = plt->contents + h->plt.offset;
8672 plt_entry_address = plt->output_section->vma
f44a1f8e 8673 + plt->output_offset + h->plt.offset;
1419bbe5
WN
8674 gotplt_entry_address = gotplt->output_section->vma +
8675 gotplt->output_offset + got_offset;
a06ea964
NC
8676
8677 /* Copy in the boiler-plate for the PLTn entry. */
cec5225b 8678 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
a06ea964
NC
8679
8680 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8681 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
8682 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8683 plt_entry,
8684 PG (gotplt_entry_address) -
8685 PG (plt_entry_address));
a06ea964
NC
8686
8687 /* Fill in the lo12 bits for the load from the pltgot. */
caed7120
YZ
8688 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8689 plt_entry + 4,
8690 PG_OFFSET (gotplt_entry_address));
a06ea964 8691
9aff4b7a 8692 /* Fill in the lo12 bits for the add from the pltgot entry. */
caed7120
YZ
8693 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8694 plt_entry + 8,
8695 PG_OFFSET (gotplt_entry_address));
a06ea964
NC
8696
8697 /* All the GOTPLT Entries are essentially initialized to PLT0. */
cec5225b 8698 bfd_put_NN (output_bfd,
1419bbe5
WN
8699 plt->output_section->vma + plt->output_offset,
8700 gotplt->contents + got_offset);
a06ea964 8701
a06ea964 8702 rela.r_offset = gotplt_entry_address;
1419bbe5
WN
8703
8704 if (h->dynindx == -1
0e1862bb 8705 || ((bfd_link_executable (info)
1419bbe5
WN
8706 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8707 && h->def_regular
8708 && h->type == STT_GNU_IFUNC))
8709 {
8710 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8711 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8712 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8713 rela.r_addend = (h->root.u.def.value
8714 + h->root.u.def.section->output_section->vma
8715 + h->root.u.def.section->output_offset);
8716 }
8717 else
8718 {
8719 /* Fill in the entry in the .rela.plt section. */
8720 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8721 rela.r_addend = 0;
8722 }
a06ea964
NC
8723
8724 /* Compute the relocation entry to used based on PLT index and do
8725 not adjust reloc_count. The reloc_count has already been adjusted
8726 to account for this entry. */
1419bbe5 8727 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
cec5225b 8728 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
8729}
8730
8731/* Size sections even though they're not dynamic. We use it to setup
8732 _TLS_MODULE_BASE_, if needed. */
8733
8734static bfd_boolean
cec5225b 8735elfNN_aarch64_always_size_sections (bfd *output_bfd,
a06ea964
NC
8736 struct bfd_link_info *info)
8737{
8738 asection *tls_sec;
8739
0e1862bb 8740 if (bfd_link_relocatable (info))
a06ea964
NC
8741 return TRUE;
8742
8743 tls_sec = elf_hash_table (info)->tls_sec;
8744
8745 if (tls_sec)
8746 {
8747 struct elf_link_hash_entry *tlsbase;
8748
8749 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8750 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8751
8752 if (tlsbase)
8753 {
8754 struct bfd_link_hash_entry *h = NULL;
8755 const struct elf_backend_data *bed =
8756 get_elf_backend_data (output_bfd);
8757
8758 if (!(_bfd_generic_link_add_one_symbol
8759 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8760 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8761 return FALSE;
8762
8763 tlsbase->type = STT_TLS;
8764 tlsbase = (struct elf_link_hash_entry *) h;
8765 tlsbase->def_regular = 1;
8766 tlsbase->other = STV_HIDDEN;
8767 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8768 }
8769 }
8770
8771 return TRUE;
8772}
8773
8774/* Finish up dynamic symbol handling. We set the contents of various
8775 dynamic sections here. */
8776static bfd_boolean
cec5225b 8777elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
a06ea964
NC
8778 struct bfd_link_info *info,
8779 struct elf_link_hash_entry *h,
8780 Elf_Internal_Sym *sym)
8781{
cec5225b
YZ
8782 struct elf_aarch64_link_hash_table *htab;
8783 htab = elf_aarch64_hash_table (info);
a06ea964
NC
8784
8785 if (h->plt.offset != (bfd_vma) - 1)
8786 {
1419bbe5
WN
8787 asection *plt, *gotplt, *relplt;
8788
a06ea964
NC
8789 /* This symbol has an entry in the procedure linkage table. Set
8790 it up. */
8791
1419bbe5
WN
8792 /* When building a static executable, use .iplt, .igot.plt and
8793 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8794 if (htab->root.splt != NULL)
8795 {
8796 plt = htab->root.splt;
8797 gotplt = htab->root.sgotplt;
8798 relplt = htab->root.srelplt;
8799 }
8800 else
8801 {
8802 plt = htab->root.iplt;
8803 gotplt = htab->root.igotplt;
8804 relplt = htab->root.irelplt;
8805 }
8806
8807 /* This symbol has an entry in the procedure linkage table. Set
8808 it up. */
8809 if ((h->dynindx == -1
0e1862bb 8810 && !((h->forced_local || bfd_link_executable (info))
1419bbe5
WN
8811 && h->def_regular
8812 && h->type == STT_GNU_IFUNC))
8813 || plt == NULL
8814 || gotplt == NULL
8815 || relplt == NULL)
a06ea964
NC
8816 abort ();
8817
1419bbe5 8818 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
a06ea964
NC
8819 if (!h->def_regular)
8820 {
8821 /* Mark the symbol as undefined, rather than as defined in
46b87d49 8822 the .plt section. */
a06ea964 8823 sym->st_shndx = SHN_UNDEF;
46b87d49
WN
8824 /* If the symbol is weak we need to clear the value.
8825 Otherwise, the PLT entry would provide a definition for
8826 the symbol even if the symbol wasn't defined anywhere,
8827 and so the symbol would never be NULL. Leave the value if
8828 there were any relocations where pointer equality matters
8829 (this is a clue for the dynamic linker, to make function
8830 pointer comparisons work between an application and shared
8831 library). */
8832 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8833 sym->st_value = 0;
a06ea964
NC
8834 }
8835 }
8836
8837 if (h->got.offset != (bfd_vma) - 1
cec5225b 8838 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
a06ea964
NC
8839 {
8840 Elf_Internal_Rela rela;
8841 bfd_byte *loc;
8842
8843 /* This symbol has an entry in the global offset table. Set it
8844 up. */
8845 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8846 abort ();
8847
8848 rela.r_offset = (htab->root.sgot->output_section->vma
8849 + htab->root.sgot->output_offset
8850 + (h->got.offset & ~(bfd_vma) 1));
8851
49206388
WN
8852 if (h->def_regular
8853 && h->type == STT_GNU_IFUNC)
8854 {
0e1862bb 8855 if (bfd_link_pic (info))
49206388
WN
8856 {
8857 /* Generate R_AARCH64_GLOB_DAT. */
8858 goto do_glob_dat;
8859 }
8860 else
8861 {
8862 asection *plt;
8863
8864 if (!h->pointer_equality_needed)
8865 abort ();
8866
8867 /* For non-shared object, we can't use .got.plt, which
8868 contains the real function address if we need pointer
8869 equality. We load the GOT entry with the PLT entry. */
8870 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
8871 bfd_put_NN (output_bfd, (plt->output_section->vma
8872 + plt->output_offset
8873 + h->plt.offset),
8874 htab->root.sgot->contents
8875 + (h->got.offset & ~(bfd_vma) 1));
8876 return TRUE;
8877 }
8878 }
0e1862bb 8879 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
a06ea964
NC
8880 {
8881 if (!h->def_regular)
8882 return FALSE;
8883
8884 BFD_ASSERT ((h->got.offset & 1) != 0);
a6bb11b2 8885 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
a06ea964
NC
8886 rela.r_addend = (h->root.u.def.value
8887 + h->root.u.def.section->output_section->vma
8888 + h->root.u.def.section->output_offset);
8889 }
8890 else
8891 {
49206388 8892do_glob_dat:
a06ea964 8893 BFD_ASSERT ((h->got.offset & 1) == 0);
cec5225b 8894 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964 8895 htab->root.sgot->contents + h->got.offset);
a6bb11b2 8896 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
a06ea964
NC
8897 rela.r_addend = 0;
8898 }
8899
8900 loc = htab->root.srelgot->contents;
8901 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
cec5225b 8902 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
8903 }
8904
8905 if (h->needs_copy)
8906 {
8907 Elf_Internal_Rela rela;
8908 bfd_byte *loc;
8909
8910 /* This symbol needs a copy reloc. Set it up. */
8911
8912 if (h->dynindx == -1
8913 || (h->root.type != bfd_link_hash_defined
8914 && h->root.type != bfd_link_hash_defweak)
8915 || htab->srelbss == NULL)
8916 abort ();
8917
8918 rela.r_offset = (h->root.u.def.value
8919 + h->root.u.def.section->output_section->vma
8920 + h->root.u.def.section->output_offset);
a6bb11b2 8921 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
a06ea964
NC
8922 rela.r_addend = 0;
8923 loc = htab->srelbss->contents;
8924 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
cec5225b 8925 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
8926 }
8927
8928 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
8929 be NULL for local symbols. */
8930 if (sym != NULL
9637f6ef 8931 && (h == elf_hash_table (info)->hdynamic
a06ea964
NC
8932 || h == elf_hash_table (info)->hgot))
8933 sym->st_shndx = SHN_ABS;
8934
8935 return TRUE;
8936}
8937
1419bbe5
WN
8938/* Finish up local dynamic symbol handling. We set the contents of
8939 various dynamic sections here. */
8940
8941static bfd_boolean
8942elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
8943{
8944 struct elf_link_hash_entry *h
8945 = (struct elf_link_hash_entry *) *slot;
8946 struct bfd_link_info *info
8947 = (struct bfd_link_info *) inf;
8948
8949 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
8950 info, h, NULL);
8951}
8952
a06ea964 8953static void
cec5225b
YZ
8954elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
8955 struct elf_aarch64_link_hash_table
a06ea964
NC
8956 *htab)
8957{
8958 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
8959 small and large plts and at the minute just generates
8960 the small PLT. */
8961
cec5225b 8962 /* PLT0 of the small PLT looks like this in ELF64 -
a06ea964
NC
8963 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
8964 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
8965 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
8966 // symbol resolver
8967 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
8968 // GOTPLT entry for this.
8969 br x17
cec5225b
YZ
8970 PLT0 will be slightly different in ELF32 due to different got entry
8971 size.
a06ea964 8972 */
caed7120 8973 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
a06ea964
NC
8974 bfd_vma plt_base;
8975
8976
cec5225b 8977 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
a06ea964
NC
8978 PLT_ENTRY_SIZE);
8979 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
8980 PLT_ENTRY_SIZE;
8981
caed7120
YZ
8982 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
8983 + htab->root.sgotplt->output_offset
8984 + GOT_ENTRY_SIZE * 2);
a06ea964
NC
8985
8986 plt_base = htab->root.splt->output_section->vma +
f44a1f8e 8987 htab->root.splt->output_offset;
a06ea964
NC
8988
8989 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8990 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
8991 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8992 htab->root.splt->contents + 4,
8993 PG (plt_got_2nd_ent) - PG (plt_base + 4));
a06ea964 8994
caed7120
YZ
8995 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8996 htab->root.splt->contents + 8,
8997 PG_OFFSET (plt_got_2nd_ent));
a06ea964 8998
caed7120
YZ
8999 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9000 htab->root.splt->contents + 12,
9001 PG_OFFSET (plt_got_2nd_ent));
a06ea964
NC
9002}
9003
9004static bfd_boolean
cec5225b 9005elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
a06ea964
NC
9006 struct bfd_link_info *info)
9007{
cec5225b 9008 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
9009 bfd *dynobj;
9010 asection *sdyn;
9011
cec5225b 9012 htab = elf_aarch64_hash_table (info);
a06ea964
NC
9013 dynobj = htab->root.dynobj;
9014 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9015
9016 if (htab->root.dynamic_sections_created)
9017 {
cec5225b 9018 ElfNN_External_Dyn *dyncon, *dynconend;
a06ea964
NC
9019
9020 if (sdyn == NULL || htab->root.sgot == NULL)
9021 abort ();
9022
cec5225b
YZ
9023 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9024 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
a06ea964
NC
9025 for (; dyncon < dynconend; dyncon++)
9026 {
9027 Elf_Internal_Dyn dyn;
9028 asection *s;
9029
cec5225b 9030 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
a06ea964
NC
9031
9032 switch (dyn.d_tag)
9033 {
9034 default:
9035 continue;
9036
9037 case DT_PLTGOT:
9038 s = htab->root.sgotplt;
9039 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9040 break;
9041
9042 case DT_JMPREL:
9043 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
9044 break;
9045
9046 case DT_PLTRELSZ:
c955de36 9047 s = htab->root.srelplt;
a06ea964
NC
9048 dyn.d_un.d_val = s->size;
9049 break;
9050
9051 case DT_RELASZ:
9052 /* The procedure linkage table relocs (DT_JMPREL) should
9053 not be included in the overall relocs (DT_RELA).
9054 Therefore, we override the DT_RELASZ entry here to
9055 make it not include the JMPREL relocs. Since the
9056 linker script arranges for .rela.plt to follow all
9057 other relocation sections, we don't have to worry
9058 about changing the DT_RELA entry. */
9059 if (htab->root.srelplt != NULL)
9060 {
c955de36 9061 s = htab->root.srelplt;
a06ea964
NC
9062 dyn.d_un.d_val -= s->size;
9063 }
9064 break;
9065
9066 case DT_TLSDESC_PLT:
9067 s = htab->root.splt;
9068 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9069 + htab->tlsdesc_plt;
9070 break;
9071
9072 case DT_TLSDESC_GOT:
9073 s = htab->root.sgot;
9074 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9075 + htab->dt_tlsdesc_got;
9076 break;
9077 }
9078
cec5225b 9079 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
a06ea964
NC
9080 }
9081
9082 }
9083
9084 /* Fill in the special first entry in the procedure linkage table. */
9085 if (htab->root.splt && htab->root.splt->size > 0)
9086 {
cec5225b 9087 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
a06ea964
NC
9088
9089 elf_section_data (htab->root.splt->output_section)->
9090 this_hdr.sh_entsize = htab->plt_entry_size;
9091
9092
9093 if (htab->tlsdesc_plt)
9094 {
cec5225b 9095 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
9096 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9097
9098 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
cec5225b
YZ
9099 elfNN_aarch64_tlsdesc_small_plt_entry,
9100 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
a06ea964
NC
9101
9102 {
9103 bfd_vma adrp1_addr =
9104 htab->root.splt->output_section->vma
9105 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9106
caed7120 9107 bfd_vma adrp2_addr = adrp1_addr + 4;
a06ea964
NC
9108
9109 bfd_vma got_addr =
9110 htab->root.sgot->output_section->vma
9111 + htab->root.sgot->output_offset;
9112
9113 bfd_vma pltgot_addr =
9114 htab->root.sgotplt->output_section->vma
9115 + htab->root.sgotplt->output_offset;
9116
9117 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
caed7120
YZ
9118
9119 bfd_byte *plt_entry =
9120 htab->root.splt->contents + htab->tlsdesc_plt;
a06ea964
NC
9121
9122 /* adrp x2, DT_TLSDESC_GOT */
caed7120
YZ
9123 elf_aarch64_update_plt_entry (output_bfd,
9124 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9125 plt_entry + 4,
9126 (PG (dt_tlsdesc_got)
9127 - PG (adrp1_addr)));
a06ea964
NC
9128
9129 /* adrp x3, 0 */
caed7120
YZ
9130 elf_aarch64_update_plt_entry (output_bfd,
9131 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9132 plt_entry + 8,
9133 (PG (pltgot_addr)
9134 - PG (adrp2_addr)));
a06ea964
NC
9135
9136 /* ldr x2, [x2, #0] */
caed7120
YZ
9137 elf_aarch64_update_plt_entry (output_bfd,
9138 BFD_RELOC_AARCH64_LDSTNN_LO12,
9139 plt_entry + 12,
9140 PG_OFFSET (dt_tlsdesc_got));
a06ea964
NC
9141
9142 /* add x3, x3, 0 */
caed7120
YZ
9143 elf_aarch64_update_plt_entry (output_bfd,
9144 BFD_RELOC_AARCH64_ADD_LO12,
9145 plt_entry + 16,
9146 PG_OFFSET (pltgot_addr));
a06ea964
NC
9147 }
9148 }
9149 }
9150
9151 if (htab->root.sgotplt)
9152 {
9153 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9154 {
9155 (*_bfd_error_handler)
9156 (_("discarded output section: `%A'"), htab->root.sgotplt);
9157 return FALSE;
9158 }
9159
9160 /* Fill in the first three entries in the global offset table. */
9161 if (htab->root.sgotplt->size > 0)
9162 {
8db339a6
MS
9163 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9164
a06ea964 9165 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
cec5225b 9166 bfd_put_NN (output_bfd,
a06ea964
NC
9167 (bfd_vma) 0,
9168 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
cec5225b 9169 bfd_put_NN (output_bfd,
a06ea964
NC
9170 (bfd_vma) 0,
9171 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9172 }
9173
8db339a6
MS
9174 if (htab->root.sgot)
9175 {
9176 if (htab->root.sgot->size > 0)
9177 {
9178 bfd_vma addr =
9179 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9180 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9181 }
9182 }
9183
a06ea964
NC
9184 elf_section_data (htab->root.sgotplt->output_section)->
9185 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9186 }
9187
9188 if (htab->root.sgot && htab->root.sgot->size > 0)
9189 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9190 = GOT_ENTRY_SIZE;
9191
1419bbe5
WN
9192 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9193 htab_traverse (htab->loc_hash_table,
9194 elfNN_aarch64_finish_local_dynamic_symbol,
9195 info);
9196
a06ea964
NC
9197 return TRUE;
9198}
9199
9200/* Return address for Ith PLT stub in section PLT, for relocation REL
9201 or (bfd_vma) -1 if it should not be included. */
9202
9203static bfd_vma
cec5225b 9204elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
a06ea964
NC
9205 const arelent *rel ATTRIBUTE_UNUSED)
9206{
9207 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9208}
9209
9210
9211/* We use this so we can override certain functions
9212 (though currently we don't). */
9213
cec5225b 9214const struct elf_size_info elfNN_aarch64_size_info =
a06ea964 9215{
cec5225b
YZ
9216 sizeof (ElfNN_External_Ehdr),
9217 sizeof (ElfNN_External_Phdr),
9218 sizeof (ElfNN_External_Shdr),
9219 sizeof (ElfNN_External_Rel),
9220 sizeof (ElfNN_External_Rela),
9221 sizeof (ElfNN_External_Sym),
9222 sizeof (ElfNN_External_Dyn),
a06ea964
NC
9223 sizeof (Elf_External_Note),
9224 4, /* Hash table entry size. */
9225 1, /* Internal relocs per external relocs. */
cec5225b
YZ
9226 ARCH_SIZE, /* Arch size. */
9227 LOG_FILE_ALIGN, /* Log_file_align. */
9228 ELFCLASSNN, EV_CURRENT,
9229 bfd_elfNN_write_out_phdrs,
9230 bfd_elfNN_write_shdrs_and_ehdr,
9231 bfd_elfNN_checksum_contents,
9232 bfd_elfNN_write_relocs,
9233 bfd_elfNN_swap_symbol_in,
9234 bfd_elfNN_swap_symbol_out,
9235 bfd_elfNN_slurp_reloc_table,
9236 bfd_elfNN_slurp_symbol_table,
9237 bfd_elfNN_swap_dyn_in,
9238 bfd_elfNN_swap_dyn_out,
9239 bfd_elfNN_swap_reloc_in,
9240 bfd_elfNN_swap_reloc_out,
9241 bfd_elfNN_swap_reloca_in,
9242 bfd_elfNN_swap_reloca_out
a06ea964
NC
9243};
9244
9245#define ELF_ARCH bfd_arch_aarch64
9246#define ELF_MACHINE_CODE EM_AARCH64
9247#define ELF_MAXPAGESIZE 0x10000
9248#define ELF_MINPAGESIZE 0x1000
9249#define ELF_COMMONPAGESIZE 0x1000
9250
cec5225b
YZ
9251#define bfd_elfNN_close_and_cleanup \
9252 elfNN_aarch64_close_and_cleanup
a06ea964 9253
cec5225b
YZ
9254#define bfd_elfNN_bfd_free_cached_info \
9255 elfNN_aarch64_bfd_free_cached_info
a06ea964 9256
cec5225b
YZ
9257#define bfd_elfNN_bfd_is_target_special_symbol \
9258 elfNN_aarch64_is_target_special_symbol
a06ea964 9259
cec5225b
YZ
9260#define bfd_elfNN_bfd_link_hash_table_create \
9261 elfNN_aarch64_link_hash_table_create
a06ea964 9262
cec5225b
YZ
9263#define bfd_elfNN_bfd_merge_private_bfd_data \
9264 elfNN_aarch64_merge_private_bfd_data
a06ea964 9265
cec5225b
YZ
9266#define bfd_elfNN_bfd_print_private_bfd_data \
9267 elfNN_aarch64_print_private_bfd_data
a06ea964 9268
cec5225b
YZ
9269#define bfd_elfNN_bfd_reloc_type_lookup \
9270 elfNN_aarch64_reloc_type_lookup
a06ea964 9271
cec5225b
YZ
9272#define bfd_elfNN_bfd_reloc_name_lookup \
9273 elfNN_aarch64_reloc_name_lookup
a06ea964 9274
cec5225b
YZ
9275#define bfd_elfNN_bfd_set_private_flags \
9276 elfNN_aarch64_set_private_flags
a06ea964 9277
cec5225b
YZ
9278#define bfd_elfNN_find_inliner_info \
9279 elfNN_aarch64_find_inliner_info
a06ea964 9280
cec5225b
YZ
9281#define bfd_elfNN_find_nearest_line \
9282 elfNN_aarch64_find_nearest_line
a06ea964 9283
cec5225b
YZ
9284#define bfd_elfNN_mkobject \
9285 elfNN_aarch64_mkobject
a06ea964 9286
cec5225b
YZ
9287#define bfd_elfNN_new_section_hook \
9288 elfNN_aarch64_new_section_hook
a06ea964
NC
9289
9290#define elf_backend_adjust_dynamic_symbol \
cec5225b 9291 elfNN_aarch64_adjust_dynamic_symbol
a06ea964
NC
9292
9293#define elf_backend_always_size_sections \
cec5225b 9294 elfNN_aarch64_always_size_sections
a06ea964
NC
9295
9296#define elf_backend_check_relocs \
cec5225b 9297 elfNN_aarch64_check_relocs
a06ea964
NC
9298
9299#define elf_backend_copy_indirect_symbol \
cec5225b 9300 elfNN_aarch64_copy_indirect_symbol
a06ea964
NC
9301
9302/* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9303 to them in our hash. */
9304#define elf_backend_create_dynamic_sections \
cec5225b 9305 elfNN_aarch64_create_dynamic_sections
a06ea964
NC
9306
9307#define elf_backend_init_index_section \
9308 _bfd_elf_init_2_index_sections
9309
a06ea964 9310#define elf_backend_finish_dynamic_sections \
cec5225b 9311 elfNN_aarch64_finish_dynamic_sections
a06ea964
NC
9312
9313#define elf_backend_finish_dynamic_symbol \
cec5225b 9314 elfNN_aarch64_finish_dynamic_symbol
a06ea964
NC
9315
9316#define elf_backend_gc_sweep_hook \
cec5225b 9317 elfNN_aarch64_gc_sweep_hook
a06ea964
NC
9318
9319#define elf_backend_object_p \
cec5225b 9320 elfNN_aarch64_object_p
a06ea964
NC
9321
9322#define elf_backend_output_arch_local_syms \
cec5225b 9323 elfNN_aarch64_output_arch_local_syms
a06ea964
NC
9324
9325#define elf_backend_plt_sym_val \
cec5225b 9326 elfNN_aarch64_plt_sym_val
a06ea964
NC
9327
9328#define elf_backend_post_process_headers \
cec5225b 9329 elfNN_aarch64_post_process_headers
a06ea964
NC
9330
9331#define elf_backend_relocate_section \
cec5225b 9332 elfNN_aarch64_relocate_section
a06ea964
NC
9333
9334#define elf_backend_reloc_type_class \
cec5225b 9335 elfNN_aarch64_reloc_type_class
a06ea964 9336
a06ea964 9337#define elf_backend_section_from_shdr \
cec5225b 9338 elfNN_aarch64_section_from_shdr
a06ea964
NC
9339
9340#define elf_backend_size_dynamic_sections \
cec5225b 9341 elfNN_aarch64_size_dynamic_sections
a06ea964
NC
9342
9343#define elf_backend_size_info \
cec5225b 9344 elfNN_aarch64_size_info
a06ea964 9345
68fcca92
JW
9346#define elf_backend_write_section \
9347 elfNN_aarch64_write_section
9348
a06ea964 9349#define elf_backend_can_refcount 1
59c108f7 9350#define elf_backend_can_gc_sections 1
a06ea964
NC
9351#define elf_backend_plt_readonly 1
9352#define elf_backend_want_got_plt 1
9353#define elf_backend_want_plt_sym 0
9354#define elf_backend_may_use_rel_p 0
9355#define elf_backend_may_use_rela_p 1
9356#define elf_backend_default_use_rela_p 1
2e0488d3 9357#define elf_backend_rela_normal 1
a06ea964 9358#define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
c495064d 9359#define elf_backend_default_execstack 0
32f573bc 9360#define elf_backend_extern_protected_data 1
a06ea964
NC
9361
9362#undef elf_backend_obj_attrs_section
9363#define elf_backend_obj_attrs_section ".ARM.attributes"
9364
cec5225b 9365#include "elfNN-target.h"
a75cf613
ES
9366
9367/* CloudABI support. */
9368
9369#undef TARGET_LITTLE_SYM
9370#define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9371#undef TARGET_LITTLE_NAME
9372#define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9373#undef TARGET_BIG_SYM
9374#define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9375#undef TARGET_BIG_NAME
9376#define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9377
9378#undef ELF_OSABI
9379#define ELF_OSABI ELFOSABI_CLOUDABI
9380
9381#undef elfNN_bed
9382#define elfNN_bed elfNN_aarch64_cloudabi_bed
9383
9384#include "elfNN-target.h"