]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elfnn-riscv.c
Fix AArch32 build attributes for Armv8.4-A.
[thirdparty/binutils-gdb.git] / bfd / elfnn-riscv.c
CommitLineData
e23eba97 1/* RISC-V-specific support for NN-bit ELF.
219d1afa 2 Copyright (C) 2011-2018 Free Software Foundation, Inc.
e23eba97
NC
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23/* This file handles RISC-V ELF targets. */
24
25#include "sysdep.h"
26#include "bfd.h"
27#include "libbfd.h"
28#include "bfdlink.h"
29#include "genlink.h"
30#include "elf-bfd.h"
31#include "elfxx-riscv.h"
32#include "elf/riscv.h"
33#include "opcode/riscv.h"
34
ff6f4d9b
PD
35/* Internal relocations used exclusively by the relaxation pass. */
36#define R_RISCV_DELETE (R_RISCV_max + 1)
37
e23eba97
NC
38#define ARCH_SIZE NN
39
40#define MINUS_ONE ((bfd_vma)0 - 1)
41
42#define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
43
44#define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
45
46/* The name of the dynamic interpreter. This is put in the .interp
47 section. */
48
49#define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50#define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
51
52#define ELF_ARCH bfd_arch_riscv
53#define ELF_TARGET_ID RISCV_ELF_DATA
54#define ELF_MACHINE_CODE EM_RISCV
55#define ELF_MAXPAGESIZE 0x1000
56#define ELF_COMMONPAGESIZE 0x1000
57
e23eba97
NC
58/* RISC-V ELF linker hash entry. */
59
60struct riscv_elf_link_hash_entry
61{
62 struct elf_link_hash_entry elf;
63
64 /* Track dynamic relocs copied for this symbol. */
3bf083ed 65 struct elf_dyn_relocs *dyn_relocs;
e23eba97
NC
66
67#define GOT_UNKNOWN 0
68#define GOT_NORMAL 1
69#define GOT_TLS_GD 2
70#define GOT_TLS_IE 4
71#define GOT_TLS_LE 8
72 char tls_type;
73};
74
75#define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
77
78struct _bfd_riscv_elf_obj_tdata
79{
80 struct elf_obj_tdata root;
81
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
84};
85
86#define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
88
89#define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
91
92#define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
95
96#define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
100
101#include "elf/common.h"
102#include "elf/internal.h"
103
104struct riscv_elf_link_hash_table
105{
106 struct elf_link_hash_table elf;
107
108 /* Short-cuts to get to dynamic linker sections. */
e23eba97
NC
109 asection *sdyntdata;
110
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
fc3c5343
L
113
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
e23eba97
NC
116};
117
118
119/* Get the RISC-V ELF linker hash table from a link_info structure. */
120#define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
123
124static void
125riscv_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
126 arelent *cache_ptr,
127 Elf_Internal_Rela *dst)
128{
129 cache_ptr->howto = riscv_elf_rtype_to_howto (ELFNN_R_TYPE (dst->r_info));
130}
131
132static void
133riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
134{
135 const struct elf_backend_data *bed;
136 bfd_byte *loc;
137
138 bed = get_elf_backend_data (abfd);
139 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
140 bed->s->swap_reloca_out (abfd, rel, loc);
141}
142
143/* PLT/GOT stuff. */
144
145#define PLT_HEADER_INSNS 8
146#define PLT_ENTRY_INSNS 4
147#define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
148#define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
149
150#define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
151
152#define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
153
154#define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
155
156static bfd_vma
157riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
158{
159 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
160 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
161}
162
163#if ARCH_SIZE == 32
164# define MATCH_LREG MATCH_LW
165#else
166# define MATCH_LREG MATCH_LD
167#endif
168
169/* Generate a PLT header. */
170
171static void
172riscv_make_plt_header (bfd_vma gotplt_addr, bfd_vma addr, uint32_t *entry)
173{
174 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
175 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
176
177 /* auipc t2, %hi(.got.plt)
07d6d2b8 178 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
e23eba97
NC
179 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
180 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
181 addi t0, t2, %lo(.got.plt) # &.got.plt
182 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
07d6d2b8
AM
183 l[w|d] t0, PTRSIZE(t0) # link map
184 jr t3 */
e23eba97
NC
185
186 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
187 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
188 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
189 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
190 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
191 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
192 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
193 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
194}
195
196/* Generate a PLT entry. */
197
198static void
199riscv_make_plt_entry (bfd_vma got, bfd_vma addr, uint32_t *entry)
200{
201 /* auipc t3, %hi(.got.plt entry)
202 l[w|d] t3, %lo(.got.plt entry)(t3)
203 jalr t1, t3
204 nop */
205
206 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
1d65abb5 207 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
e23eba97
NC
208 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
209 entry[3] = RISCV_NOP;
210}
211
212/* Create an entry in an RISC-V ELF linker hash table. */
213
214static struct bfd_hash_entry *
215link_hash_newfunc (struct bfd_hash_entry *entry,
216 struct bfd_hash_table *table, const char *string)
217{
218 /* Allocate the structure if it has not already been allocated by a
219 subclass. */
220 if (entry == NULL)
221 {
222 entry =
223 bfd_hash_allocate (table,
224 sizeof (struct riscv_elf_link_hash_entry));
225 if (entry == NULL)
226 return entry;
227 }
228
229 /* Call the allocation method of the superclass. */
230 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
231 if (entry != NULL)
232 {
233 struct riscv_elf_link_hash_entry *eh;
234
235 eh = (struct riscv_elf_link_hash_entry *) entry;
236 eh->dyn_relocs = NULL;
237 eh->tls_type = GOT_UNKNOWN;
238 }
239
240 return entry;
241}
242
243/* Create a RISC-V ELF linker hash table. */
244
245static struct bfd_link_hash_table *
246riscv_elf_link_hash_table_create (bfd *abfd)
247{
248 struct riscv_elf_link_hash_table *ret;
249 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
250
251 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
252 if (ret == NULL)
253 return NULL;
254
255 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
256 sizeof (struct riscv_elf_link_hash_entry),
257 RISCV_ELF_DATA))
258 {
259 free (ret);
260 return NULL;
261 }
262
fc3c5343 263 ret->max_alignment = (bfd_vma) -1;
e23eba97
NC
264 return &ret->elf.root;
265}
266
267/* Create the .got section. */
268
269static bfd_boolean
270riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
271{
272 flagword flags;
273 asection *s, *s_got;
274 struct elf_link_hash_entry *h;
275 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
276 struct elf_link_hash_table *htab = elf_hash_table (info);
277
278 /* This function may be called more than once. */
ce558b89 279 if (htab->sgot != NULL)
e23eba97
NC
280 return TRUE;
281
282 flags = bed->dynamic_sec_flags;
283
284 s = bfd_make_section_anyway_with_flags (abfd,
285 (bed->rela_plts_and_copies_p
286 ? ".rela.got" : ".rel.got"),
287 (bed->dynamic_sec_flags
288 | SEC_READONLY));
289 if (s == NULL
290 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
291 return FALSE;
292 htab->srelgot = s;
293
294 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
295 if (s == NULL
296 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
297 return FALSE;
298 htab->sgot = s;
299
300 /* The first bit of the global offset table is the header. */
301 s->size += bed->got_header_size;
302
303 if (bed->want_got_plt)
304 {
305 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
306 if (s == NULL
307 || !bfd_set_section_alignment (abfd, s,
308 bed->s->log_file_align))
309 return FALSE;
310 htab->sgotplt = s;
311
312 /* Reserve room for the header. */
313 s->size += GOTPLT_HEADER_SIZE;
314 }
315
316 if (bed->want_got_sym)
317 {
318 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
319 section. We don't do this in the linker script because we don't want
320 to define the symbol if we are not creating a global offset
321 table. */
322 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
323 "_GLOBAL_OFFSET_TABLE_");
324 elf_hash_table (info)->hgot = h;
325 if (h == NULL)
326 return FALSE;
327 }
328
329 return TRUE;
330}
331
332/* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
333 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
334 hash table. */
335
336static bfd_boolean
337riscv_elf_create_dynamic_sections (bfd *dynobj,
338 struct bfd_link_info *info)
339{
340 struct riscv_elf_link_hash_table *htab;
341
342 htab = riscv_elf_hash_table (info);
343 BFD_ASSERT (htab != NULL);
344
345 if (!riscv_elf_create_got_section (dynobj, info))
346 return FALSE;
347
348 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
349 return FALSE;
350
e23eba97
NC
351 if (!bfd_link_pic (info))
352 {
e23eba97
NC
353 htab->sdyntdata =
354 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
355 SEC_ALLOC | SEC_THREAD_LOCAL);
356 }
357
9d19e4fd
AM
358 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
359 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
e23eba97
NC
360 abort ();
361
362 return TRUE;
363}
364
365/* Copy the extra info we tack onto an elf_link_hash_entry. */
366
367static void
368riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
369 struct elf_link_hash_entry *dir,
370 struct elf_link_hash_entry *ind)
371{
372 struct riscv_elf_link_hash_entry *edir, *eind;
373
374 edir = (struct riscv_elf_link_hash_entry *) dir;
375 eind = (struct riscv_elf_link_hash_entry *) ind;
376
377 if (eind->dyn_relocs != NULL)
378 {
379 if (edir->dyn_relocs != NULL)
380 {
3bf083ed
AM
381 struct elf_dyn_relocs **pp;
382 struct elf_dyn_relocs *p;
e23eba97
NC
383
384 /* Add reloc counts against the indirect sym to the direct sym
385 list. Merge any entries against the same section. */
386 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
387 {
3bf083ed 388 struct elf_dyn_relocs *q;
e23eba97
NC
389
390 for (q = edir->dyn_relocs; q != NULL; q = q->next)
391 if (q->sec == p->sec)
392 {
393 q->pc_count += p->pc_count;
394 q->count += p->count;
395 *pp = p->next;
396 break;
397 }
398 if (q == NULL)
399 pp = &p->next;
400 }
401 *pp = edir->dyn_relocs;
402 }
403
404 edir->dyn_relocs = eind->dyn_relocs;
405 eind->dyn_relocs = NULL;
406 }
407
408 if (ind->root.type == bfd_link_hash_indirect
409 && dir->got.refcount <= 0)
410 {
411 edir->tls_type = eind->tls_type;
412 eind->tls_type = GOT_UNKNOWN;
413 }
414 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
415}
416
417static bfd_boolean
418riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
419 unsigned long symndx, char tls_type)
420{
421 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
422
423 *new_tls_type |= tls_type;
424 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
425 {
426 (*_bfd_error_handler)
427 (_("%B: `%s' accessed both as normal and thread local symbol"),
428 abfd, h ? h->root.root.string : "<local>");
429 return FALSE;
430 }
431 return TRUE;
432}
433
434static bfd_boolean
435riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
436 struct elf_link_hash_entry *h, long symndx)
437{
438 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
439 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
440
441 if (htab->elf.sgot == NULL)
442 {
443 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
444 return FALSE;
445 }
446
447 if (h != NULL)
448 {
449 h->got.refcount += 1;
450 return TRUE;
451 }
452
453 /* This is a global offset table entry for a local symbol. */
454 if (elf_local_got_refcounts (abfd) == NULL)
455 {
456 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
457 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
458 return FALSE;
459 _bfd_riscv_elf_local_got_tls_type (abfd)
460 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
461 }
462 elf_local_got_refcounts (abfd) [symndx] += 1;
463
464 return TRUE;
465}
466
467static bfd_boolean
468bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
469{
470 (*_bfd_error_handler)
471 (_("%B: relocation %s against `%s' can not be used when making a shared "
472 "object; recompile with -fPIC"),
473 abfd, riscv_elf_rtype_to_howto (r_type)->name,
474 h != NULL ? h->root.root.string : "a local symbol");
475 bfd_set_error (bfd_error_bad_value);
476 return FALSE;
477}
478/* Look through the relocs for a section during the first phase, and
479 allocate space in the global offset table or procedure linkage
480 table. */
481
482static bfd_boolean
483riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
484 asection *sec, const Elf_Internal_Rela *relocs)
485{
486 struct riscv_elf_link_hash_table *htab;
487 Elf_Internal_Shdr *symtab_hdr;
488 struct elf_link_hash_entry **sym_hashes;
489 const Elf_Internal_Rela *rel;
490 asection *sreloc = NULL;
491
492 if (bfd_link_relocatable (info))
493 return TRUE;
494
495 htab = riscv_elf_hash_table (info);
496 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
497 sym_hashes = elf_sym_hashes (abfd);
498
499 if (htab->elf.dynobj == NULL)
500 htab->elf.dynobj = abfd;
501
502 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
503 {
504 unsigned int r_type;
d42c267e 505 unsigned int r_symndx;
e23eba97
NC
506 struct elf_link_hash_entry *h;
507
508 r_symndx = ELFNN_R_SYM (rel->r_info);
509 r_type = ELFNN_R_TYPE (rel->r_info);
510
511 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
512 {
513 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
514 abfd, r_symndx);
515 return FALSE;
516 }
517
518 if (r_symndx < symtab_hdr->sh_info)
519 h = NULL;
520 else
521 {
522 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
523 while (h->root.type == bfd_link_hash_indirect
524 || h->root.type == bfd_link_hash_warning)
525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
e23eba97
NC
526 }
527
528 switch (r_type)
529 {
530 case R_RISCV_TLS_GD_HI20:
531 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
532 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
533 return FALSE;
534 break;
535
536 case R_RISCV_TLS_GOT_HI20:
537 if (bfd_link_pic (info))
538 info->flags |= DF_STATIC_TLS;
539 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
540 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
541 return FALSE;
542 break;
543
544 case R_RISCV_GOT_HI20:
545 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
546 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
547 return FALSE;
548 break;
549
550 case R_RISCV_CALL_PLT:
551 /* This symbol requires a procedure linkage table entry. We
552 actually build the entry in adjust_dynamic_symbol,
553 because this might be a case of linking PIC code without
554 linking in any dynamic objects, in which case we don't
555 need to generate a procedure linkage table after all. */
556
557 if (h != NULL)
558 {
559 h->needs_plt = 1;
560 h->plt.refcount += 1;
561 }
562 break;
563
564 case R_RISCV_CALL:
565 case R_RISCV_JAL:
566 case R_RISCV_BRANCH:
567 case R_RISCV_RVC_BRANCH:
568 case R_RISCV_RVC_JUMP:
569 case R_RISCV_PCREL_HI20:
570 /* In shared libraries, these relocs are known to bind locally. */
571 if (bfd_link_pic (info))
572 break;
573 goto static_reloc;
574
575 case R_RISCV_TPREL_HI20:
576 if (!bfd_link_executable (info))
577 return bad_static_reloc (abfd, r_type, h);
578 if (h != NULL)
579 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
580 goto static_reloc;
581
582 case R_RISCV_HI20:
583 if (bfd_link_pic (info))
584 return bad_static_reloc (abfd, r_type, h);
585 /* Fall through. */
586
587 case R_RISCV_COPY:
588 case R_RISCV_JUMP_SLOT:
589 case R_RISCV_RELATIVE:
590 case R_RISCV_64:
591 case R_RISCV_32:
592 /* Fall through. */
593
594 static_reloc:
595 /* This reloc might not bind locally. */
596 if (h != NULL)
597 h->non_got_ref = 1;
598
599 if (h != NULL && !bfd_link_pic (info))
600 {
601 /* We may need a .plt entry if the function this reloc
602 refers to is in a shared lib. */
603 h->plt.refcount += 1;
604 }
605
606 /* If we are creating a shared library, and this is a reloc
607 against a global symbol, or a non PC relative reloc
608 against a local symbol, then we need to copy the reloc
609 into the shared library. However, if we are linking with
610 -Bsymbolic, we do not need to copy a reloc against a
611 global symbol which is defined in an object we are
612 including in the link (i.e., DEF_REGULAR is set). At
613 this point we have not seen all the input files, so it is
614 possible that DEF_REGULAR is not set now but will be set
615 later (it is never cleared). In case of a weak definition,
616 DEF_REGULAR may be cleared later by a strong definition in
617 a shared library. We account for that possibility below by
618 storing information in the relocs_copied field of the hash
619 table entry. A similar situation occurs when creating
620 shared libraries and symbol visibility changes render the
621 symbol local.
622
623 If on the other hand, we are creating an executable, we
624 may need to keep relocations for symbols satisfied by a
625 dynamic library if we manage to avoid copy relocs for the
626 symbol. */
627 if ((bfd_link_pic (info)
628 && (sec->flags & SEC_ALLOC) != 0
629 && (! riscv_elf_rtype_to_howto (r_type)->pc_relative
630 || (h != NULL
631 && (! info->symbolic
632 || h->root.type == bfd_link_hash_defweak
633 || !h->def_regular))))
634 || (!bfd_link_pic (info)
635 && (sec->flags & SEC_ALLOC) != 0
636 && h != NULL
637 && (h->root.type == bfd_link_hash_defweak
638 || !h->def_regular)))
639 {
3bf083ed
AM
640 struct elf_dyn_relocs *p;
641 struct elf_dyn_relocs **head;
e23eba97
NC
642
643 /* When creating a shared object, we must copy these
644 relocs into the output file. We create a reloc
645 section in dynobj and make room for the reloc. */
646 if (sreloc == NULL)
647 {
648 sreloc = _bfd_elf_make_dynamic_reloc_section
649 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
650 abfd, /*rela?*/ TRUE);
651
652 if (sreloc == NULL)
653 return FALSE;
654 }
655
656 /* If this is a global symbol, we count the number of
657 relocations we need for this symbol. */
658 if (h != NULL)
659 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
660 else
661 {
662 /* Track dynamic relocs needed for local syms too.
663 We really need local syms available to do this
664 easily. Oh well. */
665
666 asection *s;
667 void *vpp;
668 Elf_Internal_Sym *isym;
669
670 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
671 abfd, r_symndx);
672 if (isym == NULL)
673 return FALSE;
674
675 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
676 if (s == NULL)
677 s = sec;
678
679 vpp = &elf_section_data (s)->local_dynrel;
3bf083ed 680 head = (struct elf_dyn_relocs **) vpp;
e23eba97
NC
681 }
682
683 p = *head;
684 if (p == NULL || p->sec != sec)
685 {
686 bfd_size_type amt = sizeof *p;
3bf083ed 687 p = ((struct elf_dyn_relocs *)
e23eba97
NC
688 bfd_alloc (htab->elf.dynobj, amt));
689 if (p == NULL)
690 return FALSE;
691 p->next = *head;
692 *head = p;
693 p->sec = sec;
694 p->count = 0;
695 p->pc_count = 0;
696 }
697
698 p->count += 1;
699 p->pc_count += riscv_elf_rtype_to_howto (r_type)->pc_relative;
700 }
701
702 break;
703
704 case R_RISCV_GNU_VTINHERIT:
705 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
706 return FALSE;
707 break;
708
709 case R_RISCV_GNU_VTENTRY:
710 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
711 return FALSE;
712 break;
713
714 default:
715 break;
716 }
717 }
718
719 return TRUE;
720}
721
722static asection *
723riscv_elf_gc_mark_hook (asection *sec,
724 struct bfd_link_info *info,
725 Elf_Internal_Rela *rel,
726 struct elf_link_hash_entry *h,
727 Elf_Internal_Sym *sym)
728{
729 if (h != NULL)
730 switch (ELFNN_R_TYPE (rel->r_info))
731 {
732 case R_RISCV_GNU_VTINHERIT:
733 case R_RISCV_GNU_VTENTRY:
734 return NULL;
735 }
736
737 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
738}
739
63c1f59d
AM
740/* Find dynamic relocs for H that apply to read-only sections. */
741
742static asection *
743readonly_dynrelocs (struct elf_link_hash_entry *h)
744{
3bf083ed 745 struct elf_dyn_relocs *p;
63c1f59d
AM
746
747 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
748 {
749 asection *s = p->sec->output_section;
750
751 if (s != NULL && (s->flags & SEC_READONLY) != 0)
752 return p->sec;
753 }
754 return NULL;
755}
756
e23eba97
NC
757/* Adjust a symbol defined by a dynamic object and referenced by a
758 regular object. The current definition is in some section of the
759 dynamic object, but we're not including those sections. We have to
760 change the definition to something the rest of the link can
761 understand. */
762
763static bfd_boolean
764riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
765 struct elf_link_hash_entry *h)
766{
767 struct riscv_elf_link_hash_table *htab;
768 struct riscv_elf_link_hash_entry * eh;
e23eba97 769 bfd *dynobj;
5474d94f 770 asection *s, *srel;
e23eba97
NC
771
772 htab = riscv_elf_hash_table (info);
773 BFD_ASSERT (htab != NULL);
774
775 dynobj = htab->elf.dynobj;
776
777 /* Make sure we know what is going on here. */
778 BFD_ASSERT (dynobj != NULL
779 && (h->needs_plt
780 || h->type == STT_GNU_IFUNC
60d67dc8 781 || h->is_weakalias
e23eba97
NC
782 || (h->def_dynamic
783 && h->ref_regular
784 && !h->def_regular)));
785
786 /* If this is a function, put it in the procedure linkage table. We
787 will fill in the contents of the procedure linkage table later
788 (although we could actually do it here). */
789 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
790 {
791 if (h->plt.refcount <= 0
792 || SYMBOL_CALLS_LOCAL (info, h)
793 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
794 && h->root.type == bfd_link_hash_undefweak))
795 {
796 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
797 input file, but the symbol was never referred to by a dynamic
798 object, or if all references were garbage collected. In such
799 a case, we don't actually need to build a PLT entry. */
800 h->plt.offset = (bfd_vma) -1;
801 h->needs_plt = 0;
802 }
803
804 return TRUE;
805 }
806 else
807 h->plt.offset = (bfd_vma) -1;
808
809 /* If this is a weak symbol, and there is a real definition, the
810 processor independent code will have arranged for us to see the
811 real definition first, and we can just use the same value. */
60d67dc8 812 if (h->is_weakalias)
e23eba97 813 {
60d67dc8
AM
814 struct elf_link_hash_entry *def = weakdef (h);
815 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
816 h->root.u.def.section = def->root.u.def.section;
817 h->root.u.def.value = def->root.u.def.value;
e23eba97
NC
818 return TRUE;
819 }
820
821 /* This is a reference to a symbol defined by a dynamic object which
822 is not a function. */
823
824 /* If we are creating a shared library, we must presume that the
825 only references to the symbol are via the global offset table.
826 For such cases we need not do anything here; the relocations will
827 be handled correctly by relocate_section. */
828 if (bfd_link_pic (info))
829 return TRUE;
830
831 /* If there are no references to this symbol that do not use the
832 GOT, we don't need to generate a copy reloc. */
833 if (!h->non_got_ref)
834 return TRUE;
835
836 /* If -z nocopyreloc was given, we won't generate them either. */
837 if (info->nocopyreloc)
838 {
839 h->non_got_ref = 0;
840 return TRUE;
841 }
842
3bf083ed 843 /* If we don't find any dynamic relocs in read-only sections, then
e23eba97 844 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
3bf083ed 845 if (!readonly_dynrelocs (h))
e23eba97
NC
846 {
847 h->non_got_ref = 0;
848 return TRUE;
849 }
850
851 /* We must allocate the symbol in our .dynbss section, which will
852 become part of the .bss section of the executable. There will be
853 an entry for this symbol in the .dynsym section. The dynamic
854 object will contain position independent code, so all references
855 from the dynamic object to this symbol will go through the global
856 offset table. The dynamic linker will use the .dynsym entry to
857 determine the address it must put in the global offset table, so
858 both the dynamic object and the regular object will refer to the
859 same memory location for the variable. */
860
861 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
862 to copy the initial value out of the dynamic object and into the
863 runtime process image. We need to remember the offset into the
864 .rel.bss section we are going to use. */
3bf083ed 865 eh = (struct riscv_elf_link_hash_entry *) h;
3df5cd13
AW
866 if (eh->tls_type & ~GOT_NORMAL)
867 {
868 s = htab->sdyntdata;
869 srel = htab->elf.srelbss;
870 }
871 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
5474d94f
AM
872 {
873 s = htab->elf.sdynrelro;
874 srel = htab->elf.sreldynrelro;
875 }
876 else
877 {
878 s = htab->elf.sdynbss;
879 srel = htab->elf.srelbss;
880 }
e23eba97
NC
881 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
882 {
5474d94f 883 srel->size += sizeof (ElfNN_External_Rela);
e23eba97
NC
884 h->needs_copy = 1;
885 }
886
5474d94f 887 return _bfd_elf_adjust_dynamic_copy (info, h, s);
e23eba97
NC
888}
889
890/* Allocate space in .plt, .got and associated reloc sections for
891 dynamic relocs. */
892
893static bfd_boolean
894allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
895{
896 struct bfd_link_info *info;
897 struct riscv_elf_link_hash_table *htab;
898 struct riscv_elf_link_hash_entry *eh;
3bf083ed 899 struct elf_dyn_relocs *p;
e23eba97
NC
900
901 if (h->root.type == bfd_link_hash_indirect)
902 return TRUE;
903
904 info = (struct bfd_link_info *) inf;
905 htab = riscv_elf_hash_table (info);
906 BFD_ASSERT (htab != NULL);
907
908 if (htab->elf.dynamic_sections_created
909 && h->plt.refcount > 0)
910 {
911 /* Make sure this symbol is output as a dynamic symbol.
912 Undefined weak syms won't yet be marked as dynamic. */
913 if (h->dynindx == -1
914 && !h->forced_local)
915 {
916 if (! bfd_elf_link_record_dynamic_symbol (info, h))
917 return FALSE;
918 }
919
920 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
921 {
922 asection *s = htab->elf.splt;
923
924 if (s->size == 0)
925 s->size = PLT_HEADER_SIZE;
926
927 h->plt.offset = s->size;
928
929 /* Make room for this entry. */
930 s->size += PLT_ENTRY_SIZE;
931
932 /* We also need to make an entry in the .got.plt section. */
933 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
934
935 /* We also need to make an entry in the .rela.plt section. */
936 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
937
938 /* If this symbol is not defined in a regular file, and we are
939 not generating a shared library, then set the symbol to this
940 location in the .plt. This is required to make function
941 pointers compare as equal between the normal executable and
942 the shared library. */
943 if (! bfd_link_pic (info)
944 && !h->def_regular)
945 {
946 h->root.u.def.section = s;
947 h->root.u.def.value = h->plt.offset;
948 }
949 }
950 else
951 {
952 h->plt.offset = (bfd_vma) -1;
953 h->needs_plt = 0;
954 }
955 }
956 else
957 {
958 h->plt.offset = (bfd_vma) -1;
959 h->needs_plt = 0;
960 }
961
962 if (h->got.refcount > 0)
963 {
964 asection *s;
965 bfd_boolean dyn;
966 int tls_type = riscv_elf_hash_entry (h)->tls_type;
967
968 /* Make sure this symbol is output as a dynamic symbol.
969 Undefined weak syms won't yet be marked as dynamic. */
970 if (h->dynindx == -1
971 && !h->forced_local)
972 {
973 if (! bfd_elf_link_record_dynamic_symbol (info, h))
974 return FALSE;
975 }
976
977 s = htab->elf.sgot;
978 h->got.offset = s->size;
979 dyn = htab->elf.dynamic_sections_created;
980 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
981 {
982 /* TLS_GD needs two dynamic relocs and two GOT slots. */
983 if (tls_type & GOT_TLS_GD)
984 {
985 s->size += 2 * RISCV_ELF_WORD_BYTES;
986 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
987 }
988
989 /* TLS_IE needs one dynamic reloc and one GOT slot. */
990 if (tls_type & GOT_TLS_IE)
991 {
992 s->size += RISCV_ELF_WORD_BYTES;
993 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
994 }
995 }
996 else
997 {
998 s->size += RISCV_ELF_WORD_BYTES;
999 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h))
1000 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1001 }
1002 }
1003 else
1004 h->got.offset = (bfd_vma) -1;
1005
1006 eh = (struct riscv_elf_link_hash_entry *) h;
1007 if (eh->dyn_relocs == NULL)
1008 return TRUE;
1009
1010 /* In the shared -Bsymbolic case, discard space allocated for
1011 dynamic pc-relative relocs against symbols which turn out to be
1012 defined in regular objects. For the normal shared case, discard
1013 space for pc-relative relocs that have become local due to symbol
1014 visibility changes. */
1015
1016 if (bfd_link_pic (info))
1017 {
1018 if (SYMBOL_CALLS_LOCAL (info, h))
1019 {
3bf083ed 1020 struct elf_dyn_relocs **pp;
e23eba97
NC
1021
1022 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1023 {
1024 p->count -= p->pc_count;
1025 p->pc_count = 0;
1026 if (p->count == 0)
1027 *pp = p->next;
1028 else
1029 pp = &p->next;
1030 }
1031 }
1032
1033 /* Also discard relocs on undefined weak syms with non-default
1034 visibility. */
1035 if (eh->dyn_relocs != NULL
1036 && h->root.type == bfd_link_hash_undefweak)
1037 {
1038 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1039 eh->dyn_relocs = NULL;
1040
1041 /* Make sure undefined weak symbols are output as a dynamic
1042 symbol in PIEs. */
1043 else if (h->dynindx == -1
1044 && !h->forced_local)
1045 {
1046 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1047 return FALSE;
1048 }
1049 }
1050 }
1051 else
1052 {
1053 /* For the non-shared case, discard space for relocs against
1054 symbols which turn out to need copy relocs or are not
1055 dynamic. */
1056
1057 if (!h->non_got_ref
1058 && ((h->def_dynamic
1059 && !h->def_regular)
1060 || (htab->elf.dynamic_sections_created
1061 && (h->root.type == bfd_link_hash_undefweak
1062 || h->root.type == bfd_link_hash_undefined))))
1063 {
1064 /* Make sure this symbol is output as a dynamic symbol.
1065 Undefined weak syms won't yet be marked as dynamic. */
1066 if (h->dynindx == -1
1067 && !h->forced_local)
1068 {
1069 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1070 return FALSE;
1071 }
1072
1073 /* If that succeeded, we know we'll be keeping all the
1074 relocs. */
1075 if (h->dynindx != -1)
1076 goto keep;
1077 }
1078
1079 eh->dyn_relocs = NULL;
1080
1081 keep: ;
1082 }
1083
1084 /* Finally, allocate space. */
1085 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1086 {
1087 asection *sreloc = elf_section_data (p->sec)->sreloc;
1088 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1089 }
1090
1091 return TRUE;
1092}
1093
63c1f59d
AM
1094/* Set DF_TEXTREL if we find any dynamic relocs that apply to
1095 read-only sections. */
e23eba97
NC
1096
1097static bfd_boolean
63c1f59d 1098maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
e23eba97 1099{
63c1f59d 1100 asection *sec;
e23eba97 1101
63c1f59d
AM
1102 if (h->root.type == bfd_link_hash_indirect)
1103 return TRUE;
1104
1105 sec = readonly_dynrelocs (h);
1106 if (sec != NULL)
e23eba97 1107 {
63c1f59d 1108 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
e23eba97 1109
63c1f59d
AM
1110 info->flags |= DF_TEXTREL;
1111 info->callbacks->minfo
1112 (_("%B: dynamic relocation against `%T' in read-only section `%A'\n"),
1113 sec->owner, h->root.root.string, sec);
1114
1115 /* Not an error, just cut short the traversal. */
1116 return FALSE;
e23eba97
NC
1117 }
1118 return TRUE;
1119}
1120
1121static bfd_boolean
1122riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1123{
1124 struct riscv_elf_link_hash_table *htab;
1125 bfd *dynobj;
1126 asection *s;
1127 bfd *ibfd;
1128
1129 htab = riscv_elf_hash_table (info);
1130 BFD_ASSERT (htab != NULL);
1131 dynobj = htab->elf.dynobj;
1132 BFD_ASSERT (dynobj != NULL);
1133
1134 if (elf_hash_table (info)->dynamic_sections_created)
1135 {
1136 /* Set the contents of the .interp section to the interpreter. */
1137 if (bfd_link_executable (info) && !info->nointerp)
1138 {
1139 s = bfd_get_linker_section (dynobj, ".interp");
1140 BFD_ASSERT (s != NULL);
1141 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1142 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1143 }
1144 }
1145
1146 /* Set up .got offsets for local syms, and space for local dynamic
1147 relocs. */
1148 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1149 {
1150 bfd_signed_vma *local_got;
1151 bfd_signed_vma *end_local_got;
1152 char *local_tls_type;
1153 bfd_size_type locsymcount;
1154 Elf_Internal_Shdr *symtab_hdr;
1155 asection *srel;
1156
1157 if (! is_riscv_elf (ibfd))
1158 continue;
1159
1160 for (s = ibfd->sections; s != NULL; s = s->next)
1161 {
3bf083ed 1162 struct elf_dyn_relocs *p;
e23eba97
NC
1163
1164 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1165 {
1166 if (!bfd_is_abs_section (p->sec)
1167 && bfd_is_abs_section (p->sec->output_section))
1168 {
1169 /* Input section has been discarded, either because
1170 it is a copy of a linkonce section or due to
1171 linker script /DISCARD/, so we'll be discarding
1172 the relocs too. */
1173 }
1174 else if (p->count != 0)
1175 {
1176 srel = elf_section_data (p->sec)->sreloc;
1177 srel->size += p->count * sizeof (ElfNN_External_Rela);
1178 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1179 info->flags |= DF_TEXTREL;
1180 }
1181 }
1182 }
1183
1184 local_got = elf_local_got_refcounts (ibfd);
1185 if (!local_got)
1186 continue;
1187
1188 symtab_hdr = &elf_symtab_hdr (ibfd);
1189 locsymcount = symtab_hdr->sh_info;
1190 end_local_got = local_got + locsymcount;
1191 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1192 s = htab->elf.sgot;
1193 srel = htab->elf.srelgot;
1194 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1195 {
1196 if (*local_got > 0)
1197 {
1198 *local_got = s->size;
1199 s->size += RISCV_ELF_WORD_BYTES;
1200 if (*local_tls_type & GOT_TLS_GD)
1201 s->size += RISCV_ELF_WORD_BYTES;
1202 if (bfd_link_pic (info)
1203 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1204 srel->size += sizeof (ElfNN_External_Rela);
1205 }
1206 else
1207 *local_got = (bfd_vma) -1;
1208 }
1209 }
1210
1211 /* Allocate global sym .plt and .got entries, and space for global
1212 sym dynamic relocs. */
1213 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1214
1215 if (htab->elf.sgotplt)
1216 {
1217 struct elf_link_hash_entry *got;
1218 got = elf_link_hash_lookup (elf_hash_table (info),
1219 "_GLOBAL_OFFSET_TABLE_",
1220 FALSE, FALSE, FALSE);
1221
1222 /* Don't allocate .got.plt section if there are no GOT nor PLT
1223 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1224 if ((got == NULL
1225 || !got->ref_regular_nonweak)
1226 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1227 && (htab->elf.splt == NULL
1228 || htab->elf.splt->size == 0)
1229 && (htab->elf.sgot == NULL
1230 || (htab->elf.sgot->size
1231 == get_elf_backend_data (output_bfd)->got_header_size)))
1232 htab->elf.sgotplt->size = 0;
1233 }
1234
1235 /* The check_relocs and adjust_dynamic_symbol entry points have
1236 determined the sizes of the various dynamic sections. Allocate
1237 memory for them. */
1238 for (s = dynobj->sections; s != NULL; s = s->next)
1239 {
1240 if ((s->flags & SEC_LINKER_CREATED) == 0)
1241 continue;
1242
1243 if (s == htab->elf.splt
1244 || s == htab->elf.sgot
1245 || s == htab->elf.sgotplt
5474d94f
AM
1246 || s == htab->elf.sdynbss
1247 || s == htab->elf.sdynrelro)
e23eba97
NC
1248 {
1249 /* Strip this section if we don't need it; see the
1250 comment below. */
1251 }
1252 else if (strncmp (s->name, ".rela", 5) == 0)
1253 {
1254 if (s->size != 0)
1255 {
1256 /* We use the reloc_count field as a counter if we need
1257 to copy relocs into the output file. */
1258 s->reloc_count = 0;
1259 }
1260 }
1261 else
1262 {
1263 /* It's not one of our sections. */
1264 continue;
1265 }
1266
1267 if (s->size == 0)
1268 {
1269 /* If we don't need this section, strip it from the
1270 output file. This is mostly to handle .rela.bss and
1271 .rela.plt. We must create both sections in
1272 create_dynamic_sections, because they must be created
1273 before the linker maps input sections to output
1274 sections. The linker does that before
1275 adjust_dynamic_symbol is called, and it is that
1276 function which decides whether anything needs to go
1277 into these sections. */
1278 s->flags |= SEC_EXCLUDE;
1279 continue;
1280 }
1281
1282 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1283 continue;
1284
1285 /* Allocate memory for the section contents. Zero the memory
1286 for the benefit of .rela.plt, which has 4 unused entries
1287 at the beginning, and we don't want garbage. */
1288 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1289 if (s->contents == NULL)
1290 return FALSE;
1291 }
1292
1293 if (elf_hash_table (info)->dynamic_sections_created)
1294 {
1295 /* Add some entries to the .dynamic section. We fill in the
1296 values later, in riscv_elf_finish_dynamic_sections, but we
1297 must add the entries now so that we get the correct size for
1298 the .dynamic section. The DT_DEBUG entry is filled in by the
1299 dynamic linker and used by the debugger. */
1300#define add_dynamic_entry(TAG, VAL) \
1301 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1302
1303 if (bfd_link_executable (info))
1304 {
1305 if (!add_dynamic_entry (DT_DEBUG, 0))
1306 return FALSE;
1307 }
1308
1309 if (htab->elf.srelplt->size != 0)
1310 {
1311 if (!add_dynamic_entry (DT_PLTGOT, 0)
1312 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1313 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1314 || !add_dynamic_entry (DT_JMPREL, 0))
1315 return FALSE;
1316 }
1317
1318 if (!add_dynamic_entry (DT_RELA, 0)
1319 || !add_dynamic_entry (DT_RELASZ, 0)
1320 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1321 return FALSE;
1322
1323 /* If any dynamic relocs apply to a read-only section,
1324 then we need a DT_TEXTREL entry. */
1325 if ((info->flags & DF_TEXTREL) == 0)
63c1f59d 1326 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
e23eba97
NC
1327
1328 if (info->flags & DF_TEXTREL)
1329 {
1330 if (!add_dynamic_entry (DT_TEXTREL, 0))
1331 return FALSE;
1332 }
1333 }
1334#undef add_dynamic_entry
1335
1336 return TRUE;
1337}
1338
1339#define TP_OFFSET 0
1340#define DTP_OFFSET 0x800
1341
1342/* Return the relocation value for a TLS dtp-relative reloc. */
1343
1344static bfd_vma
1345dtpoff (struct bfd_link_info *info, bfd_vma address)
1346{
1347 /* If tls_sec is NULL, we should have signalled an error already. */
1348 if (elf_hash_table (info)->tls_sec == NULL)
1349 return 0;
1350 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1351}
1352
1353/* Return the relocation value for a static TLS tp-relative relocation. */
1354
1355static bfd_vma
1356tpoff (struct bfd_link_info *info, bfd_vma address)
1357{
1358 /* If tls_sec is NULL, we should have signalled an error already. */
1359 if (elf_hash_table (info)->tls_sec == NULL)
1360 return 0;
1361 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1362}
1363
1364/* Return the global pointer's value, or 0 if it is not in use. */
1365
1366static bfd_vma
1367riscv_global_pointer_value (struct bfd_link_info *info)
1368{
1369 struct bfd_link_hash_entry *h;
1370
b5292032 1371 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
e23eba97
NC
1372 if (h == NULL || h->type != bfd_link_hash_defined)
1373 return 0;
1374
1375 return h->u.def.value + sec_addr (h->u.def.section);
1376}
1377
1378/* Emplace a static relocation. */
1379
1380static bfd_reloc_status_type
1381perform_relocation (const reloc_howto_type *howto,
1382 const Elf_Internal_Rela *rel,
1383 bfd_vma value,
1384 asection *input_section,
1385 bfd *input_bfd,
1386 bfd_byte *contents)
1387{
1388 if (howto->pc_relative)
1389 value -= sec_addr (input_section) + rel->r_offset;
1390 value += rel->r_addend;
1391
1392 switch (ELFNN_R_TYPE (rel->r_info))
1393 {
1394 case R_RISCV_HI20:
1395 case R_RISCV_TPREL_HI20:
1396 case R_RISCV_PCREL_HI20:
1397 case R_RISCV_GOT_HI20:
1398 case R_RISCV_TLS_GOT_HI20:
1399 case R_RISCV_TLS_GD_HI20:
1400 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1401 return bfd_reloc_overflow;
1402 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1403 break;
1404
1405 case R_RISCV_LO12_I:
1406 case R_RISCV_GPREL_I:
1407 case R_RISCV_TPREL_LO12_I:
45f76423 1408 case R_RISCV_TPREL_I:
e23eba97
NC
1409 case R_RISCV_PCREL_LO12_I:
1410 value = ENCODE_ITYPE_IMM (value);
1411 break;
1412
1413 case R_RISCV_LO12_S:
1414 case R_RISCV_GPREL_S:
1415 case R_RISCV_TPREL_LO12_S:
45f76423 1416 case R_RISCV_TPREL_S:
e23eba97
NC
1417 case R_RISCV_PCREL_LO12_S:
1418 value = ENCODE_STYPE_IMM (value);
1419 break;
1420
1421 case R_RISCV_CALL:
1422 case R_RISCV_CALL_PLT:
1423 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1424 return bfd_reloc_overflow;
1425 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1426 | (ENCODE_ITYPE_IMM (value) << 32);
1427 break;
1428
1429 case R_RISCV_JAL:
1430 if (!VALID_UJTYPE_IMM (value))
1431 return bfd_reloc_overflow;
1432 value = ENCODE_UJTYPE_IMM (value);
1433 break;
1434
1435 case R_RISCV_BRANCH:
1436 if (!VALID_SBTYPE_IMM (value))
1437 return bfd_reloc_overflow;
1438 value = ENCODE_SBTYPE_IMM (value);
1439 break;
1440
1441 case R_RISCV_RVC_BRANCH:
1442 if (!VALID_RVC_B_IMM (value))
1443 return bfd_reloc_overflow;
1444 value = ENCODE_RVC_B_IMM (value);
1445 break;
1446
1447 case R_RISCV_RVC_JUMP:
1448 if (!VALID_RVC_J_IMM (value))
1449 return bfd_reloc_overflow;
1450 value = ENCODE_RVC_J_IMM (value);
1451 break;
1452
1453 case R_RISCV_RVC_LUI:
1454 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1455 return bfd_reloc_overflow;
1456 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1457 break;
1458
1459 case R_RISCV_32:
1460 case R_RISCV_64:
1461 case R_RISCV_ADD8:
1462 case R_RISCV_ADD16:
1463 case R_RISCV_ADD32:
1464 case R_RISCV_ADD64:
45f76423 1465 case R_RISCV_SUB6:
e23eba97
NC
1466 case R_RISCV_SUB8:
1467 case R_RISCV_SUB16:
1468 case R_RISCV_SUB32:
1469 case R_RISCV_SUB64:
45f76423
AW
1470 case R_RISCV_SET6:
1471 case R_RISCV_SET8:
1472 case R_RISCV_SET16:
1473 case R_RISCV_SET32:
a6cbf936 1474 case R_RISCV_32_PCREL:
e23eba97
NC
1475 case R_RISCV_TLS_DTPREL32:
1476 case R_RISCV_TLS_DTPREL64:
1477 break;
1478
ff6f4d9b
PD
1479 case R_RISCV_DELETE:
1480 return bfd_reloc_ok;
1481
e23eba97
NC
1482 default:
1483 return bfd_reloc_notsupported;
1484 }
1485
1486 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1487 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1488 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1489
1490 return bfd_reloc_ok;
1491}
1492
1493/* Remember all PC-relative high-part relocs we've encountered to help us
1494 later resolve the corresponding low-part relocs. */
1495
1496typedef struct
1497{
1498 bfd_vma address;
1499 bfd_vma value;
1500} riscv_pcrel_hi_reloc;
1501
1502typedef struct riscv_pcrel_lo_reloc
1503{
07d6d2b8
AM
1504 asection * input_section;
1505 struct bfd_link_info * info;
1506 reloc_howto_type * howto;
1507 const Elf_Internal_Rela * reloc;
1508 bfd_vma addr;
1509 const char * name;
1510 bfd_byte * contents;
1511 struct riscv_pcrel_lo_reloc * next;
e23eba97
NC
1512} riscv_pcrel_lo_reloc;
1513
1514typedef struct
1515{
1516 htab_t hi_relocs;
1517 riscv_pcrel_lo_reloc *lo_relocs;
1518} riscv_pcrel_relocs;
1519
1520static hashval_t
1521riscv_pcrel_reloc_hash (const void *entry)
1522{
1523 const riscv_pcrel_hi_reloc *e = entry;
1524 return (hashval_t)(e->address >> 2);
1525}
1526
1527static bfd_boolean
1528riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1529{
1530 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1531 return e1->address == e2->address;
1532}
1533
1534static bfd_boolean
1535riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1536{
1537
1538 p->lo_relocs = NULL;
1539 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1540 riscv_pcrel_reloc_eq, free);
1541 return p->hi_relocs != NULL;
1542}
1543
1544static void
1545riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1546{
1547 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1548
1549 while (cur != NULL)
1550 {
1551 riscv_pcrel_lo_reloc *next = cur->next;
1552 free (cur);
1553 cur = next;
1554 }
1555
1556 htab_delete (p->hi_relocs);
1557}
1558
1559static bfd_boolean
b1308d2c
PD
1560riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1561 struct bfd_link_info *info,
1562 bfd_vma pc,
1563 bfd_vma addr,
1564 bfd_byte *contents,
1565 const reloc_howto_type *howto,
1566 bfd *input_bfd)
e23eba97 1567{
b1308d2c
PD
1568 /* We may need to reference low addreses in PC-relative modes even when the
1569 * PC is far away from these addresses. For example, undefweak references
1570 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1571 * addresses that we can link PC-relative programs at, the linker can't
1572 * actually relocate references to those symbols. In order to allow these
1573 * programs to work we simply convert the PC-relative auipc sequences to
1574 * 0-relative lui sequences. */
1575 if (bfd_link_pic (info))
1576 return FALSE;
1577
1578 /* If it's possible to reference the symbol using auipc we do so, as that's
1579 * more in the spirit of the PC-relative relocations we're processing. */
1580 bfd_vma offset = addr - pc;
1581 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1582 return FALSE;
1583
1584 /* If it's impossible to reference this with a LUI-based offset then don't
1585 * bother to convert it at all so users still see the PC-relative relocation
1586 * in the truncation message. */
1587 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1588 return FALSE;
1589
1590 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1591
1592 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1593 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1594 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1595 return TRUE;
1596}
1597
1598static bfd_boolean
1599riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1600 bfd_vma value, bfd_boolean absolute)
1601{
1602 bfd_vma offset = absolute ? value : value - addr;
1603 riscv_pcrel_hi_reloc entry = {addr, offset};
e23eba97
NC
1604 riscv_pcrel_hi_reloc **slot =
1605 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1606
1607 BFD_ASSERT (*slot == NULL);
1608 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1609 if (*slot == NULL)
1610 return FALSE;
1611 **slot = entry;
1612 return TRUE;
1613}
1614
1615static bfd_boolean
1616riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1617 asection *input_section,
1618 struct bfd_link_info *info,
1619 reloc_howto_type *howto,
1620 const Elf_Internal_Rela *reloc,
1621 bfd_vma addr,
1622 const char *name,
1623 bfd_byte *contents)
1624{
1625 riscv_pcrel_lo_reloc *entry;
1626 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1627 if (entry == NULL)
1628 return FALSE;
1629 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1630 name, contents, p->lo_relocs};
1631 p->lo_relocs = entry;
1632 return TRUE;
1633}
1634
1635static bfd_boolean
1636riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1637{
1638 riscv_pcrel_lo_reloc *r;
1639
1640 for (r = p->lo_relocs; r != NULL; r = r->next)
1641 {
1642 bfd *input_bfd = r->input_section->owner;
1643
1644 riscv_pcrel_hi_reloc search = {r->addr, 0};
1645 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1646 if (entry == NULL)
07d6d2b8 1647 {
e23eba97
NC
1648 ((*r->info->callbacks->reloc_overflow)
1649 (r->info, NULL, r->name, r->howto->name, (bfd_vma) 0,
1650 input_bfd, r->input_section, r->reloc->r_offset));
1651 return TRUE;
07d6d2b8 1652 }
e23eba97
NC
1653
1654 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1655 input_bfd, r->contents);
1656 }
1657
1658 return TRUE;
1659}
1660
1661/* Relocate a RISC-V ELF section.
1662
1663 The RELOCATE_SECTION function is called by the new ELF backend linker
1664 to handle the relocations for a section.
1665
1666 The relocs are always passed as Rela structures.
1667
1668 This function is responsible for adjusting the section contents as
1669 necessary, and (if generating a relocatable output file) adjusting
1670 the reloc addend as necessary.
1671
1672 This function does not have to worry about setting the reloc
1673 address or the reloc symbol index.
1674
1675 LOCAL_SYMS is a pointer to the swapped in local symbols.
1676
1677 LOCAL_SECTIONS is an array giving the section in the input file
1678 corresponding to the st_shndx field of each local symbol.
1679
1680 The global hash table entry for the global symbols can be found
1681 via elf_sym_hashes (input_bfd).
1682
1683 When generating relocatable output, this function must handle
1684 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1685 going to be the section symbol corresponding to the output
1686 section, which means that the addend must be adjusted
1687 accordingly. */
1688
1689static bfd_boolean
1690riscv_elf_relocate_section (bfd *output_bfd,
1691 struct bfd_link_info *info,
1692 bfd *input_bfd,
1693 asection *input_section,
1694 bfd_byte *contents,
1695 Elf_Internal_Rela *relocs,
1696 Elf_Internal_Sym *local_syms,
1697 asection **local_sections)
1698{
1699 Elf_Internal_Rela *rel;
1700 Elf_Internal_Rela *relend;
1701 riscv_pcrel_relocs pcrel_relocs;
1702 bfd_boolean ret = FALSE;
1703 asection *sreloc = elf_section_data (input_section)->sreloc;
1704 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1705 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1706 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1707 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
b1308d2c 1708 bfd_boolean absolute;
e23eba97
NC
1709
1710 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1711 return FALSE;
1712
1713 relend = relocs + input_section->reloc_count;
1714 for (rel = relocs; rel < relend; rel++)
1715 {
1716 unsigned long r_symndx;
1717 struct elf_link_hash_entry *h;
1718 Elf_Internal_Sym *sym;
1719 asection *sec;
1720 bfd_vma relocation;
1721 bfd_reloc_status_type r = bfd_reloc_ok;
1722 const char *name;
1723 bfd_vma off, ie_off;
1724 bfd_boolean unresolved_reloc, is_ie = FALSE;
1725 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1726 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1727 reloc_howto_type *howto = riscv_elf_rtype_to_howto (r_type);
1728 const char *msg = NULL;
1729
1730 if (r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1731 continue;
1732
1733 /* This is a final link. */
1734 r_symndx = ELFNN_R_SYM (rel->r_info);
1735 h = NULL;
1736 sym = NULL;
1737 sec = NULL;
1738 unresolved_reloc = FALSE;
1739 if (r_symndx < symtab_hdr->sh_info)
1740 {
1741 sym = local_syms + r_symndx;
1742 sec = local_sections[r_symndx];
1743 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1744 }
1745 else
1746 {
1747 bfd_boolean warned, ignored;
1748
1749 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1750 r_symndx, symtab_hdr, sym_hashes,
1751 h, sec, relocation,
1752 unresolved_reloc, warned, ignored);
1753 if (warned)
1754 {
1755 /* To avoid generating warning messages about truncated
1756 relocations, set the relocation's address to be the same as
1757 the start of this section. */
1758 if (input_section->output_section != NULL)
1759 relocation = input_section->output_section->vma;
1760 else
1761 relocation = 0;
1762 }
1763 }
1764
1765 if (sec != NULL && discarded_section (sec))
1766 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1767 rel, 1, relend, howto, 0, contents);
1768
1769 if (bfd_link_relocatable (info))
1770 continue;
1771
1772 if (h != NULL)
1773 name = h->root.root.string;
1774 else
1775 {
1776 name = (bfd_elf_string_from_elf_section
1777 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1778 if (name == NULL || *name == '\0')
1779 name = bfd_section_name (input_bfd, sec);
1780 }
1781
1782 switch (r_type)
1783 {
1784 case R_RISCV_NONE:
45f76423 1785 case R_RISCV_RELAX:
e23eba97
NC
1786 case R_RISCV_TPREL_ADD:
1787 case R_RISCV_COPY:
1788 case R_RISCV_JUMP_SLOT:
1789 case R_RISCV_RELATIVE:
1790 /* These require nothing of us at all. */
1791 continue;
1792
1793 case R_RISCV_HI20:
1794 case R_RISCV_BRANCH:
1795 case R_RISCV_RVC_BRANCH:
1796 case R_RISCV_RVC_LUI:
1797 case R_RISCV_LO12_I:
1798 case R_RISCV_LO12_S:
45f76423
AW
1799 case R_RISCV_SET6:
1800 case R_RISCV_SET8:
1801 case R_RISCV_SET16:
1802 case R_RISCV_SET32:
a6cbf936 1803 case R_RISCV_32_PCREL:
ff6f4d9b 1804 case R_RISCV_DELETE:
e23eba97
NC
1805 /* These require no special handling beyond perform_relocation. */
1806 break;
1807
1808 case R_RISCV_GOT_HI20:
1809 if (h != NULL)
1810 {
1811 bfd_boolean dyn, pic;
1812
1813 off = h->got.offset;
1814 BFD_ASSERT (off != (bfd_vma) -1);
1815 dyn = elf_hash_table (info)->dynamic_sections_created;
1816 pic = bfd_link_pic (info);
1817
1818 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1819 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1820 {
1821 /* This is actually a static link, or it is a
1822 -Bsymbolic link and the symbol is defined
1823 locally, or the symbol was forced to be local
1824 because of a version file. We must initialize
1825 this entry in the global offset table. Since the
1826 offset must always be a multiple of the word size,
1827 we use the least significant bit to record whether
1828 we have initialized it already.
1829
1830 When doing a dynamic link, we create a .rela.got
1831 relocation entry to initialize the value. This
1832 is done in the finish_dynamic_symbol routine. */
1833 if ((off & 1) != 0)
1834 off &= ~1;
1835 else
1836 {
1837 bfd_put_NN (output_bfd, relocation,
1838 htab->elf.sgot->contents + off);
1839 h->got.offset |= 1;
1840 }
1841 }
1842 else
1843 unresolved_reloc = FALSE;
1844 }
1845 else
1846 {
1847 BFD_ASSERT (local_got_offsets != NULL
1848 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1849
1850 off = local_got_offsets[r_symndx];
1851
1852 /* The offset must always be a multiple of the word size.
1853 So, we can use the least significant bit to record
1854 whether we have already processed this entry. */
1855 if ((off & 1) != 0)
1856 off &= ~1;
1857 else
1858 {
1859 if (bfd_link_pic (info))
1860 {
1861 asection *s;
1862 Elf_Internal_Rela outrel;
1863
1864 /* We need to generate a R_RISCV_RELATIVE reloc
1865 for the dynamic linker. */
1866 s = htab->elf.srelgot;
1867 BFD_ASSERT (s != NULL);
1868
1869 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1870 outrel.r_info =
1871 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1872 outrel.r_addend = relocation;
1873 relocation = 0;
1874 riscv_elf_append_rela (output_bfd, s, &outrel);
1875 }
1876
1877 bfd_put_NN (output_bfd, relocation,
1878 htab->elf.sgot->contents + off);
1879 local_got_offsets[r_symndx] |= 1;
1880 }
1881 }
1882 relocation = sec_addr (htab->elf.sgot) + off;
b1308d2c
PD
1883 absolute = riscv_zero_pcrel_hi_reloc (rel,
1884 info,
1885 pc,
1886 relocation,
1887 contents,
1888 howto,
1889 input_bfd);
1890 r_type = ELFNN_R_TYPE (rel->r_info);
1891 howto = riscv_elf_rtype_to_howto (r_type);
1892 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1893 relocation, absolute))
e23eba97
NC
1894 r = bfd_reloc_overflow;
1895 break;
1896
1897 case R_RISCV_ADD8:
1898 case R_RISCV_ADD16:
1899 case R_RISCV_ADD32:
1900 case R_RISCV_ADD64:
1901 {
1902 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1903 contents + rel->r_offset);
1904 relocation = old_value + relocation;
1905 }
1906 break;
1907
45f76423 1908 case R_RISCV_SUB6:
e23eba97
NC
1909 case R_RISCV_SUB8:
1910 case R_RISCV_SUB16:
1911 case R_RISCV_SUB32:
1912 case R_RISCV_SUB64:
1913 {
1914 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1915 contents + rel->r_offset);
1916 relocation = old_value - relocation;
1917 }
1918 break;
1919
1920 case R_RISCV_CALL_PLT:
1921 case R_RISCV_CALL:
1922 case R_RISCV_JAL:
1923 case R_RISCV_RVC_JUMP:
1924 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
1925 {
1926 /* Refer to the PLT entry. */
1927 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
1928 unresolved_reloc = FALSE;
1929 }
1930 break;
1931
1932 case R_RISCV_TPREL_HI20:
1933 relocation = tpoff (info, relocation);
1934 break;
1935
1936 case R_RISCV_TPREL_LO12_I:
1937 case R_RISCV_TPREL_LO12_S:
45f76423
AW
1938 relocation = tpoff (info, relocation);
1939 break;
1940
1941 case R_RISCV_TPREL_I:
1942 case R_RISCV_TPREL_S:
e23eba97
NC
1943 relocation = tpoff (info, relocation);
1944 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
1945 {
1946 /* We can use tp as the base register. */
1947 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1948 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1949 insn |= X_TP << OP_SH_RS1;
1950 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1951 }
45f76423
AW
1952 else
1953 r = bfd_reloc_overflow;
e23eba97
NC
1954 break;
1955
1956 case R_RISCV_GPREL_I:
1957 case R_RISCV_GPREL_S:
1958 {
1959 bfd_vma gp = riscv_global_pointer_value (info);
1960 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
1961 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
1962 {
1963 /* We can use x0 or gp as the base register. */
1964 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1965 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1966 if (!x0_base)
1967 {
1968 rel->r_addend -= gp;
1969 insn |= X_GP << OP_SH_RS1;
1970 }
1971 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1972 }
1973 else
1974 r = bfd_reloc_overflow;
1975 break;
1976 }
1977
1978 case R_RISCV_PCREL_HI20:
b1308d2c
PD
1979 absolute = riscv_zero_pcrel_hi_reloc (rel,
1980 info,
1981 pc,
1982 relocation,
1983 contents,
1984 howto,
1985 input_bfd);
1986 r_type = ELFNN_R_TYPE (rel->r_info);
1987 howto = riscv_elf_rtype_to_howto (r_type);
e23eba97 1988 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
b1308d2c
PD
1989 relocation + rel->r_addend,
1990 absolute))
e23eba97
NC
1991 r = bfd_reloc_overflow;
1992 break;
1993
1994 case R_RISCV_PCREL_LO12_I:
1995 case R_RISCV_PCREL_LO12_S:
1996 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
1997 howto, rel, relocation, name,
1998 contents))
1999 continue;
2000 r = bfd_reloc_overflow;
2001 break;
2002
2003 case R_RISCV_TLS_DTPREL32:
2004 case R_RISCV_TLS_DTPREL64:
2005 relocation = dtpoff (info, relocation);
2006 break;
2007
2008 case R_RISCV_32:
2009 case R_RISCV_64:
2010 if ((input_section->flags & SEC_ALLOC) == 0)
2011 break;
2012
2013 if ((bfd_link_pic (info)
2014 && (h == NULL
2015 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2016 || h->root.type != bfd_link_hash_undefweak)
2017 && (! howto->pc_relative
2018 || !SYMBOL_CALLS_LOCAL (info, h)))
2019 || (!bfd_link_pic (info)
2020 && h != NULL
2021 && h->dynindx != -1
2022 && !h->non_got_ref
2023 && ((h->def_dynamic
2024 && !h->def_regular)
2025 || h->root.type == bfd_link_hash_undefweak
2026 || h->root.type == bfd_link_hash_undefined)))
2027 {
2028 Elf_Internal_Rela outrel;
2029 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2030
2031 /* When generating a shared object, these relocations
2032 are copied into the output file to be resolved at run
2033 time. */
2034
2035 outrel.r_offset =
2036 _bfd_elf_section_offset (output_bfd, info, input_section,
2037 rel->r_offset);
2038 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2039 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2040 outrel.r_offset += sec_addr (input_section);
2041
2042 if (skip_dynamic_relocation)
2043 memset (&outrel, 0, sizeof outrel);
2044 else if (h != NULL && h->dynindx != -1
2045 && !(bfd_link_pic (info)
2046 && SYMBOLIC_BIND (info, h)
2047 && h->def_regular))
2048 {
2049 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2050 outrel.r_addend = rel->r_addend;
2051 }
2052 else
2053 {
2054 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2055 outrel.r_addend = relocation + rel->r_addend;
2056 }
2057
2058 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2059 if (skip_static_relocation)
2060 continue;
2061 }
2062 break;
2063
2064 case R_RISCV_TLS_GOT_HI20:
2065 is_ie = TRUE;
2066 /* Fall through. */
2067
2068 case R_RISCV_TLS_GD_HI20:
2069 if (h != NULL)
2070 {
2071 off = h->got.offset;
2072 h->got.offset |= 1;
2073 }
2074 else
2075 {
2076 off = local_got_offsets[r_symndx];
2077 local_got_offsets[r_symndx] |= 1;
2078 }
2079
2080 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2081 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2082 /* If this symbol is referenced by both GD and IE TLS, the IE
2083 reference's GOT slot follows the GD reference's slots. */
2084 ie_off = 0;
2085 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2086 ie_off = 2 * GOT_ENTRY_SIZE;
2087
2088 if ((off & 1) != 0)
2089 off &= ~1;
2090 else
2091 {
2092 Elf_Internal_Rela outrel;
2093 int indx = 0;
2094 bfd_boolean need_relocs = FALSE;
2095
2096 if (htab->elf.srelgot == NULL)
2097 abort ();
2098
2099 if (h != NULL)
2100 {
2101 bfd_boolean dyn, pic;
2102 dyn = htab->elf.dynamic_sections_created;
2103 pic = bfd_link_pic (info);
2104
2105 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2106 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2107 indx = h->dynindx;
2108 }
2109
2110 /* The GOT entries have not been initialized yet. Do it
07d6d2b8 2111 now, and emit any relocations. */
e23eba97
NC
2112 if ((bfd_link_pic (info) || indx != 0)
2113 && (h == NULL
2114 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2115 || h->root.type != bfd_link_hash_undefweak))
2116 need_relocs = TRUE;
2117
2118 if (tls_type & GOT_TLS_GD)
2119 {
2120 if (need_relocs)
2121 {
2122 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2123 outrel.r_addend = 0;
2124 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2125 bfd_put_NN (output_bfd, 0,
2126 htab->elf.sgot->contents + off);
2127 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2128 if (indx == 0)
2129 {
2130 BFD_ASSERT (! unresolved_reloc);
2131 bfd_put_NN (output_bfd,
2132 dtpoff (info, relocation),
2133 (htab->elf.sgot->contents + off +
2134 RISCV_ELF_WORD_BYTES));
2135 }
2136 else
2137 {
2138 bfd_put_NN (output_bfd, 0,
2139 (htab->elf.sgot->contents + off +
2140 RISCV_ELF_WORD_BYTES));
2141 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2142 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2143 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2144 }
2145 }
2146 else
2147 {
2148 /* If we are not emitting relocations for a
2149 general dynamic reference, then we must be in a
2150 static link or an executable link with the
2151 symbol binding locally. Mark it as belonging
2152 to module 1, the executable. */
2153 bfd_put_NN (output_bfd, 1,
2154 htab->elf.sgot->contents + off);
2155 bfd_put_NN (output_bfd,
2156 dtpoff (info, relocation),
2157 (htab->elf.sgot->contents + off +
2158 RISCV_ELF_WORD_BYTES));
2159 }
2160 }
2161
2162 if (tls_type & GOT_TLS_IE)
2163 {
2164 if (need_relocs)
2165 {
2166 bfd_put_NN (output_bfd, 0,
2167 htab->elf.sgot->contents + off + ie_off);
2168 outrel.r_offset = sec_addr (htab->elf.sgot)
2169 + off + ie_off;
2170 outrel.r_addend = 0;
2171 if (indx == 0)
2172 outrel.r_addend = tpoff (info, relocation);
2173 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2174 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2175 }
2176 else
2177 {
2178 bfd_put_NN (output_bfd, tpoff (info, relocation),
2179 htab->elf.sgot->contents + off + ie_off);
2180 }
2181 }
2182 }
2183
2184 BFD_ASSERT (off < (bfd_vma) -2);
2185 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
b1308d2c
PD
2186 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2187 relocation, FALSE))
e23eba97
NC
2188 r = bfd_reloc_overflow;
2189 unresolved_reloc = FALSE;
2190 break;
2191
2192 default:
2193 r = bfd_reloc_notsupported;
2194 }
2195
2196 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2197 because such sections are not SEC_ALLOC and thus ld.so will
2198 not process them. */
2199 if (unresolved_reloc
2200 && !((input_section->flags & SEC_DEBUGGING) != 0
2201 && h->def_dynamic)
2202 && _bfd_elf_section_offset (output_bfd, info, input_section,
2203 rel->r_offset) != (bfd_vma) -1)
2204 {
2205 (*_bfd_error_handler)
d42c267e 2206 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
e23eba97
NC
2207 input_bfd,
2208 input_section,
d42c267e 2209 rel->r_offset,
e23eba97
NC
2210 howto->name,
2211 h->root.root.string);
2212 continue;
2213 }
2214
2215 if (r == bfd_reloc_ok)
2216 r = perform_relocation (howto, rel, relocation, input_section,
2217 input_bfd, contents);
2218
2219 switch (r)
2220 {
2221 case bfd_reloc_ok:
2222 continue;
2223
2224 case bfd_reloc_overflow:
2225 info->callbacks->reloc_overflow
2226 (info, (h ? &h->root : NULL), name, howto->name,
2227 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2228 break;
2229
2230 case bfd_reloc_undefined:
2231 info->callbacks->undefined_symbol
2232 (info, name, input_bfd, input_section, rel->r_offset,
2233 TRUE);
2234 break;
2235
2236 case bfd_reloc_outofrange:
2237 msg = _("internal error: out of range error");
2238 break;
2239
2240 case bfd_reloc_notsupported:
2241 msg = _("internal error: unsupported relocation error");
2242 break;
2243
2244 case bfd_reloc_dangerous:
2245 msg = _("internal error: dangerous relocation");
2246 break;
2247
2248 default:
2249 msg = _("internal error: unknown error");
2250 break;
2251 }
2252
2253 if (msg)
2254 info->callbacks->warning
2255 (info, msg, name, input_bfd, input_section, rel->r_offset);
3f48fe4a
JW
2256 /* We already reported the error via a callback, so don't try to report
2257 it again by returning false. That leads to spurious errors. */
ed01220c 2258 ret = TRUE;
e23eba97
NC
2259 goto out;
2260 }
2261
2262 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2263out:
2264 riscv_free_pcrel_relocs (&pcrel_relocs);
2265 return ret;
2266}
2267
2268/* Finish up dynamic symbol handling. We set the contents of various
2269 dynamic sections here. */
2270
2271static bfd_boolean
2272riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2273 struct bfd_link_info *info,
2274 struct elf_link_hash_entry *h,
2275 Elf_Internal_Sym *sym)
2276{
2277 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2278 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2279
2280 if (h->plt.offset != (bfd_vma) -1)
2281 {
2282 /* We've decided to create a PLT entry for this symbol. */
2283 bfd_byte *loc;
2284 bfd_vma i, header_address, plt_idx, got_address;
2285 uint32_t plt_entry[PLT_ENTRY_INSNS];
2286 Elf_Internal_Rela rela;
2287
2288 BFD_ASSERT (h->dynindx != -1);
2289
2290 /* Calculate the address of the PLT header. */
2291 header_address = sec_addr (htab->elf.splt);
2292
2293 /* Calculate the index of the entry. */
2294 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2295
2296 /* Calculate the address of the .got.plt entry. */
2297 got_address = riscv_elf_got_plt_val (plt_idx, info);
2298
2299 /* Find out where the .plt entry should go. */
2300 loc = htab->elf.splt->contents + h->plt.offset;
2301
2302 /* Fill in the PLT entry itself. */
2303 riscv_make_plt_entry (got_address, header_address + h->plt.offset,
2304 plt_entry);
2305 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2306 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2307
2308 /* Fill in the initial value of the .got.plt entry. */
2309 loc = htab->elf.sgotplt->contents
2310 + (got_address - sec_addr (htab->elf.sgotplt));
2311 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2312
2313 /* Fill in the entry in the .rela.plt section. */
2314 rela.r_offset = got_address;
2315 rela.r_addend = 0;
2316 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2317
2318 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2319 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2320
2321 if (!h->def_regular)
2322 {
2323 /* Mark the symbol as undefined, rather than as defined in
2324 the .plt section. Leave the value alone. */
2325 sym->st_shndx = SHN_UNDEF;
2326 /* If the symbol is weak, we do need to clear the value.
2327 Otherwise, the PLT entry would provide a definition for
2328 the symbol even if the symbol wasn't defined anywhere,
2329 and so the symbol would never be NULL. */
2330 if (!h->ref_regular_nonweak)
2331 sym->st_value = 0;
2332 }
2333 }
2334
2335 if (h->got.offset != (bfd_vma) -1
1d65abb5 2336 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
e23eba97
NC
2337 {
2338 asection *sgot;
2339 asection *srela;
2340 Elf_Internal_Rela rela;
2341
2342 /* This symbol has an entry in the GOT. Set it up. */
2343
2344 sgot = htab->elf.sgot;
2345 srela = htab->elf.srelgot;
2346 BFD_ASSERT (sgot != NULL && srela != NULL);
2347
2348 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2349
2350 /* If this is a -Bsymbolic link, and the symbol is defined
2351 locally, we just want to emit a RELATIVE reloc. Likewise if
2352 the symbol was forced to be local because of a version file.
2353 The entry in the global offset table will already have been
2354 initialized in the relocate_section function. */
2355 if (bfd_link_pic (info)
2356 && (info->symbolic || h->dynindx == -1)
2357 && h->def_regular)
2358 {
2359 asection *sec = h->root.u.def.section;
2360 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2361 rela.r_addend = (h->root.u.def.value
2362 + sec->output_section->vma
2363 + sec->output_offset);
2364 }
2365 else
2366 {
2367 BFD_ASSERT (h->dynindx != -1);
2368 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2369 rela.r_addend = 0;
2370 }
2371
2372 bfd_put_NN (output_bfd, 0,
2373 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2374 riscv_elf_append_rela (output_bfd, srela, &rela);
2375 }
2376
2377 if (h->needs_copy)
2378 {
2379 Elf_Internal_Rela rela;
5474d94f 2380 asection *s;
e23eba97
NC
2381
2382 /* This symbols needs a copy reloc. Set it up. */
2383 BFD_ASSERT (h->dynindx != -1);
2384
2385 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2386 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2387 rela.r_addend = 0;
afbf7e8e 2388 if (h->root.u.def.section == htab->elf.sdynrelro)
5474d94f
AM
2389 s = htab->elf.sreldynrelro;
2390 else
2391 s = htab->elf.srelbss;
2392 riscv_elf_append_rela (output_bfd, s, &rela);
e23eba97
NC
2393 }
2394
2395 /* Mark some specially defined symbols as absolute. */
2396 if (h == htab->elf.hdynamic
2397 || (h == htab->elf.hgot || h == htab->elf.hplt))
2398 sym->st_shndx = SHN_ABS;
2399
2400 return TRUE;
2401}
2402
2403/* Finish up the dynamic sections. */
2404
2405static bfd_boolean
2406riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2407 bfd *dynobj, asection *sdyn)
2408{
2409 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2410 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2411 size_t dynsize = bed->s->sizeof_dyn;
2412 bfd_byte *dyncon, *dynconend;
2413
2414 dynconend = sdyn->contents + sdyn->size;
2415 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2416 {
2417 Elf_Internal_Dyn dyn;
2418 asection *s;
2419
2420 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2421
2422 switch (dyn.d_tag)
2423 {
2424 case DT_PLTGOT:
2425 s = htab->elf.sgotplt;
2426 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2427 break;
2428 case DT_JMPREL:
2429 s = htab->elf.srelplt;
2430 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2431 break;
2432 case DT_PLTRELSZ:
2433 s = htab->elf.srelplt;
2434 dyn.d_un.d_val = s->size;
2435 break;
2436 default:
2437 continue;
2438 }
2439
2440 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2441 }
2442 return TRUE;
2443}
2444
2445static bfd_boolean
2446riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2447 struct bfd_link_info *info)
2448{
2449 bfd *dynobj;
2450 asection *sdyn;
2451 struct riscv_elf_link_hash_table *htab;
2452
2453 htab = riscv_elf_hash_table (info);
2454 BFD_ASSERT (htab != NULL);
2455 dynobj = htab->elf.dynobj;
2456
2457 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2458
2459 if (elf_hash_table (info)->dynamic_sections_created)
2460 {
2461 asection *splt;
2462 bfd_boolean ret;
2463
2464 splt = htab->elf.splt;
2465 BFD_ASSERT (splt != NULL && sdyn != NULL);
2466
2467 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2468
535b785f 2469 if (!ret)
e23eba97
NC
2470 return ret;
2471
2472 /* Fill in the head and tail entries in the procedure linkage table. */
2473 if (splt->size > 0)
2474 {
2475 int i;
2476 uint32_t plt_header[PLT_HEADER_INSNS];
2477 riscv_make_plt_header (sec_addr (htab->elf.sgotplt),
2478 sec_addr (splt), plt_header);
2479
2480 for (i = 0; i < PLT_HEADER_INSNS; i++)
2481 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
e23eba97 2482
cc162427
AW
2483 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2484 = PLT_ENTRY_SIZE;
2485 }
e23eba97
NC
2486 }
2487
2488 if (htab->elf.sgotplt)
2489 {
2490 asection *output_section = htab->elf.sgotplt->output_section;
2491
2492 if (bfd_is_abs_section (output_section))
2493 {
2494 (*_bfd_error_handler)
2495 (_("discarded output section: `%A'"), htab->elf.sgotplt);
2496 return FALSE;
2497 }
2498
2499 if (htab->elf.sgotplt->size > 0)
2500 {
2501 /* Write the first two entries in .got.plt, needed for the dynamic
2502 linker. */
2503 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2504 bfd_put_NN (output_bfd, (bfd_vma) 0,
2505 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2506 }
2507
2508 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2509 }
2510
2511 if (htab->elf.sgot)
2512 {
2513 asection *output_section = htab->elf.sgot->output_section;
2514
2515 if (htab->elf.sgot->size > 0)
2516 {
2517 /* Set the first entry in the global offset table to the address of
2518 the dynamic section. */
2519 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2520 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2521 }
2522
2523 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2524 }
2525
2526 return TRUE;
2527}
2528
2529/* Return address for Ith PLT stub in section PLT, for relocation REL
2530 or (bfd_vma) -1 if it should not be included. */
2531
2532static bfd_vma
2533riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2534 const arelent *rel ATTRIBUTE_UNUSED)
2535{
2536 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2537}
2538
2539static enum elf_reloc_type_class
2540riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2541 const asection *rel_sec ATTRIBUTE_UNUSED,
2542 const Elf_Internal_Rela *rela)
2543{
2544 switch (ELFNN_R_TYPE (rela->r_info))
2545 {
2546 case R_RISCV_RELATIVE:
2547 return reloc_class_relative;
2548 case R_RISCV_JUMP_SLOT:
2549 return reloc_class_plt;
2550 case R_RISCV_COPY:
2551 return reloc_class_copy;
2552 default:
2553 return reloc_class_normal;
2554 }
2555}
2556
2557/* Merge backend specific data from an object file to the output
2558 object file when linking. */
2559
2560static bfd_boolean
2561_bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2562{
2563 bfd *obfd = info->output_bfd;
2564 flagword new_flags = elf_elfheader (ibfd)->e_flags;
2565 flagword old_flags = elf_elfheader (obfd)->e_flags;
2566
2567 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
2568 return TRUE;
2569
2570 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
2571 {
2572 (*_bfd_error_handler)
96b0927d
PD
2573 (_("%B: ABI is incompatible with that of the selected emulation:\n"
2574 " target emulation `%s' does not match `%s'"),
2575 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
e23eba97
NC
2576 return FALSE;
2577 }
2578
2579 if (!_bfd_elf_merge_object_attributes (ibfd, info))
2580 return FALSE;
2581
2582 if (! elf_flags_init (obfd))
2583 {
2584 elf_flags_init (obfd) = TRUE;
2585 elf_elfheader (obfd)->e_flags = new_flags;
2586 return TRUE;
2587 }
2588
2922d21d
AW
2589 /* Disallow linking different float ABIs. */
2590 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
e23eba97
NC
2591 {
2592 (*_bfd_error_handler)
2593 (_("%B: can't link hard-float modules with soft-float modules"), ibfd);
2594 goto fail;
2595 }
2596
2597 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
2598 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
2599
2600 return TRUE;
2601
2602fail:
2603 bfd_set_error (bfd_error_bad_value);
2604 return FALSE;
2605}
2606
2607/* Delete some bytes from a section while relaxing. */
2608
2609static bfd_boolean
7f02625e
JW
2610riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count,
2611 struct bfd_link_info *link_info)
e23eba97
NC
2612{
2613 unsigned int i, symcount;
2614 bfd_vma toaddr = sec->size;
2615 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
2616 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2617 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2618 struct bfd_elf_section_data *data = elf_section_data (sec);
2619 bfd_byte *contents = data->this_hdr.contents;
2620
2621 /* Actually delete the bytes. */
2622 sec->size -= count;
2623 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
2624
2625 /* Adjust the location of all of the relocs. Note that we need not
2626 adjust the addends, since all PC-relative references must be against
2627 symbols, which we will adjust below. */
2628 for (i = 0; i < sec->reloc_count; i++)
2629 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
2630 data->relocs[i].r_offset -= count;
2631
2632 /* Adjust the local symbols defined in this section. */
2633 for (i = 0; i < symtab_hdr->sh_info; i++)
2634 {
2635 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
2636 if (sym->st_shndx == sec_shndx)
2637 {
2638 /* If the symbol is in the range of memory we just moved, we
2639 have to adjust its value. */
2640 if (sym->st_value > addr && sym->st_value <= toaddr)
2641 sym->st_value -= count;
2642
2643 /* If the symbol *spans* the bytes we just deleted (i.e. its
2644 *end* is in the moved bytes but its *start* isn't), then we
2645 must adjust its size. */
2646 if (sym->st_value <= addr
2647 && sym->st_value + sym->st_size > addr
2648 && sym->st_value + sym->st_size <= toaddr)
2649 sym->st_size -= count;
2650 }
2651 }
2652
2653 /* Now adjust the global symbols defined in this section. */
2654 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
2655 - symtab_hdr->sh_info);
2656
2657 for (i = 0; i < symcount; i++)
2658 {
2659 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
2660
7f02625e
JW
2661 /* The '--wrap SYMBOL' option is causing a pain when the object file,
2662 containing the definition of __wrap_SYMBOL, includes a direct
2663 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
2664 the same symbol (which is __wrap_SYMBOL), but still exist as two
2665 different symbols in 'sym_hashes', we don't want to adjust
2666 the global symbol __wrap_SYMBOL twice.
2667 This check is only relevant when symbols are being wrapped. */
2668 if (link_info->wrap_hash != NULL)
2669 {
2670 struct elf_link_hash_entry **cur_sym_hashes;
2671
2672 /* Loop only over the symbols which have already been checked. */
2673 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
2674 cur_sym_hashes++)
2675 {
2676 /* If the current symbol is identical to 'sym_hash', that means
2677 the symbol was already adjusted (or at least checked). */
2678 if (*cur_sym_hashes == sym_hash)
2679 break;
2680 }
2681 /* Don't adjust the symbol again. */
2682 if (cur_sym_hashes < &sym_hashes[i])
2683 continue;
2684 }
2685
e23eba97
NC
2686 if ((sym_hash->root.type == bfd_link_hash_defined
2687 || sym_hash->root.type == bfd_link_hash_defweak)
2688 && sym_hash->root.u.def.section == sec)
2689 {
2690 /* As above, adjust the value if needed. */
2691 if (sym_hash->root.u.def.value > addr
2692 && sym_hash->root.u.def.value <= toaddr)
2693 sym_hash->root.u.def.value -= count;
2694
2695 /* As above, adjust the size if needed. */
2696 if (sym_hash->root.u.def.value <= addr
2697 && sym_hash->root.u.def.value + sym_hash->size > addr
2698 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
2699 sym_hash->size -= count;
2700 }
2701 }
2702
2703 return TRUE;
2704}
2705
9d06997a
PD
2706/* A second format for recording PC-relative hi relocations. This stores the
2707 information required to relax them to GP-relative addresses. */
2708
2709typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
2710struct riscv_pcgp_hi_reloc
2711{
2712 bfd_vma hi_sec_off;
2713 bfd_vma hi_addend;
2714 bfd_vma hi_addr;
2715 unsigned hi_sym;
2716 asection *sym_sec;
2717 riscv_pcgp_hi_reloc *next;
2718};
2719
2720typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
2721struct riscv_pcgp_lo_reloc
2722{
2723 bfd_vma hi_sec_off;
2724 riscv_pcgp_lo_reloc *next;
2725};
2726
2727typedef struct
2728{
2729 riscv_pcgp_hi_reloc *hi;
2730 riscv_pcgp_lo_reloc *lo;
2731} riscv_pcgp_relocs;
2732
2733static bfd_boolean
2734riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
2735{
2736 p->hi = NULL;
2737 p->lo = NULL;
2738 return TRUE;
2739}
2740
2741static void
2742riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
2743 bfd *abfd ATTRIBUTE_UNUSED,
2744 asection *sec ATTRIBUTE_UNUSED)
2745{
2746 riscv_pcgp_hi_reloc *c;
2747 riscv_pcgp_lo_reloc *l;
2748
2749 for (c = p->hi; c != NULL;)
2750 {
2751 riscv_pcgp_hi_reloc *next = c->next;
2752 free (c);
2753 c = next;
2754 }
2755
2756 for (l = p->lo; l != NULL;)
2757 {
2758 riscv_pcgp_lo_reloc *next = l->next;
2759 free (l);
2760 l = next;
2761 }
2762}
2763
2764static bfd_boolean
2765riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
2766 bfd_vma hi_addend, bfd_vma hi_addr,
2767 unsigned hi_sym, asection *sym_sec)
2768{
2769 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
2770 if (!new)
2771 return FALSE;
2772 new->hi_sec_off = hi_sec_off;
2773 new->hi_addend = hi_addend;
2774 new->hi_addr = hi_addr;
2775 new->hi_sym = hi_sym;
2776 new->sym_sec = sym_sec;
2777 new->next = p->hi;
2778 p->hi = new;
2779 return TRUE;
2780}
2781
2782static riscv_pcgp_hi_reloc *
2783riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2784{
2785 riscv_pcgp_hi_reloc *c;
2786
2787 for (c = p->hi; c != NULL; c = c->next)
2788 if (c->hi_sec_off == hi_sec_off)
2789 return c;
2790 return NULL;
2791}
2792
2793static bfd_boolean
2794riscv_delete_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2795{
2796 bfd_boolean out = FALSE;
2797 riscv_pcgp_hi_reloc *c;
2798
2799 for (c = p->hi; c != NULL; c = c->next)
2800 if (c->hi_sec_off == hi_sec_off)
2801 out = TRUE;
2802
2803 return out;
2804}
2805
2806static bfd_boolean
2807riscv_use_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2808{
2809 bfd_boolean out = FALSE;
2810 riscv_pcgp_hi_reloc *c;
2811
2812 for (c = p->hi; c != NULL; c = c->next)
2813 if (c->hi_sec_off == hi_sec_off)
2814 out = TRUE;
2815
2816 return out;
2817}
2818
2819static bfd_boolean
2820riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2821{
2822 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
2823 if (!new)
2824 return FALSE;
2825 new->hi_sec_off = hi_sec_off;
2826 new->next = p->lo;
2827 p->lo = new;
2828 return TRUE;
2829}
2830
2831static bfd_boolean
2832riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2833{
2834 riscv_pcgp_lo_reloc *c;
2835
2836 for (c = p->lo; c != NULL; c = c->next)
2837 if (c->hi_sec_off == hi_sec_off)
2838 return TRUE;
2839 return FALSE;
2840}
2841
2842static bfd_boolean
2843riscv_delete_pcgp_lo_reloc (riscv_pcgp_relocs *p ATTRIBUTE_UNUSED,
2844 bfd_vma lo_sec_off ATTRIBUTE_UNUSED,
2845 size_t bytes ATTRIBUTE_UNUSED)
2846{
2847 return TRUE;
2848}
2849
45f76423
AW
2850typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
2851 struct bfd_link_info *,
2852 Elf_Internal_Rela *,
9d06997a
PD
2853 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
2854 riscv_pcgp_relocs *);
45f76423 2855
e23eba97
NC
2856/* Relax AUIPC + JALR into JAL. */
2857
2858static bfd_boolean
2859_bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
2860 struct bfd_link_info *link_info,
2861 Elf_Internal_Rela *rel,
2862 bfd_vma symval,
45f76423
AW
2863 bfd_vma max_alignment,
2864 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
2865 bfd_boolean *again,
2866 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
2867{
2868 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2869 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
2870 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
2871 bfd_vma auipc, jalr;
2872 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2873
2874 /* If the call crosses section boundaries, an alignment directive could
2875 cause the PC-relative offset to later increase. */
2876 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
2877 foff += (foff < 0 ? -max_alignment : max_alignment);
2878
2879 /* See if this function call can be shortened. */
2880 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
2881 return TRUE;
2882
2883 /* Shorten the function call. */
2884 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
2885
2886 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
2887 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
2888 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
2889 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32;
2890
2891 if (rvc && (rd == 0 || rd == X_RA))
2892 {
2893 /* Relax to C.J[AL] rd, addr. */
2894 r_type = R_RISCV_RVC_JUMP;
2895 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
2896 len = 2;
2897 }
2898 else if (VALID_UJTYPE_IMM (foff))
2899 {
2900 /* Relax to JAL rd, addr. */
2901 r_type = R_RISCV_JAL;
2902 auipc = MATCH_JAL | (rd << OP_SH_RD);
2903 }
2904 else /* near_zero */
2905 {
2906 /* Relax to JALR rd, x0, addr. */
2907 r_type = R_RISCV_LO12_I;
2908 auipc = MATCH_JALR | (rd << OP_SH_RD);
2909 }
2910
2911 /* Replace the R_RISCV_CALL reloc. */
2912 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
2913 /* Replace the AUIPC. */
2914 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
2915
2916 /* Delete unnecessary JALR. */
2917 *again = TRUE;
7f02625e
JW
2918 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
2919 link_info);
e23eba97
NC
2920}
2921
2922/* Traverse all output sections and return the max alignment. */
2923
1d61f794 2924static bfd_vma
e23eba97
NC
2925_bfd_riscv_get_max_alignment (asection *sec)
2926{
2927 unsigned int max_alignment_power = 0;
2928 asection *o;
2929
2930 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
2931 {
2932 if (o->alignment_power > max_alignment_power)
2933 max_alignment_power = o->alignment_power;
2934 }
2935
1d61f794 2936 return (bfd_vma) 1 << max_alignment_power;
e23eba97
NC
2937}
2938
2939/* Relax non-PIC global variable references. */
2940
2941static bfd_boolean
2942_bfd_riscv_relax_lui (bfd *abfd,
2943 asection *sec,
2944 asection *sym_sec,
2945 struct bfd_link_info *link_info,
2946 Elf_Internal_Rela *rel,
2947 bfd_vma symval,
45f76423
AW
2948 bfd_vma max_alignment,
2949 bfd_vma reserve_size,
9d06997a
PD
2950 bfd_boolean *again,
2951 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
2952{
2953 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2954 bfd_vma gp = riscv_global_pointer_value (link_info);
2955 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2956
2957 /* Mergeable symbols and code might later move out of range. */
2958 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
2959 return TRUE;
2960
2961 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
2962
d0f744f9
AW
2963 if (gp)
2964 {
2965 /* If gp and the symbol are in the same output section, then
2966 consider only that section's alignment. */
2967 struct bfd_link_hash_entry *h =
b5292032
PD
2968 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
2969 TRUE);
d0f744f9
AW
2970 if (h->u.def.section->output_section == sym_sec->output_section)
2971 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
2972 }
2973
e23eba97
NC
2974 /* Is the reference in range of x0 or gp?
2975 Valid gp range conservatively because of alignment issue. */
2976 if (VALID_ITYPE_IMM (symval)
45f76423
AW
2977 || (symval >= gp
2978 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
2979 || (symval < gp
2980 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
e23eba97
NC
2981 {
2982 unsigned sym = ELFNN_R_SYM (rel->r_info);
2983 switch (ELFNN_R_TYPE (rel->r_info))
2984 {
2985 case R_RISCV_LO12_I:
2986 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
2987 return TRUE;
2988
2989 case R_RISCV_LO12_S:
2990 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
2991 return TRUE;
2992
2993 case R_RISCV_HI20:
2994 /* We can delete the unnecessary LUI and reloc. */
2995 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
2996 *again = TRUE;
7f02625e
JW
2997 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
2998 link_info);
e23eba97
NC
2999
3000 default:
3001 abort ();
3002 }
3003 }
3004
3005 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3006 account for this assuming page alignment at worst. */
3007 if (use_rvc
3008 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
3009 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
3010 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
3011 {
3342be5d 3012 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
e23eba97 3013 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
3342be5d
AW
3014 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
3015 if (rd == 0 || rd == X_SP)
e23eba97
NC
3016 return TRUE;
3017
3018 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
3019 bfd_put_32 (abfd, lui, contents + rel->r_offset);
3020
3021 /* Replace the R_RISCV_HI20 reloc. */
3022 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
3023
3024 *again = TRUE;
7f02625e
JW
3025 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
3026 link_info);
e23eba97
NC
3027 }
3028
3029 return TRUE;
3030}
3031
3032/* Relax non-PIC TLS references. */
3033
3034static bfd_boolean
3035_bfd_riscv_relax_tls_le (bfd *abfd,
3036 asection *sec,
3037 asection *sym_sec ATTRIBUTE_UNUSED,
3038 struct bfd_link_info *link_info,
3039 Elf_Internal_Rela *rel,
3040 bfd_vma symval,
45f76423
AW
3041 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3042 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3043 bfd_boolean *again,
3044 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3045{
3046 /* See if this symbol is in range of tp. */
3047 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3048 return TRUE;
3049
e23eba97 3050 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
45f76423
AW
3051 switch (ELFNN_R_TYPE (rel->r_info))
3052 {
3053 case R_RISCV_TPREL_LO12_I:
3054 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3055 return TRUE;
e23eba97 3056
45f76423
AW
3057 case R_RISCV_TPREL_LO12_S:
3058 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3059 return TRUE;
3060
3061 case R_RISCV_TPREL_HI20:
3062 case R_RISCV_TPREL_ADD:
3063 /* We can delete the unnecessary instruction and reloc. */
3064 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3065 *again = TRUE;
7f02625e 3066 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info);
45f76423
AW
3067
3068 default:
3069 abort ();
3070 }
e23eba97
NC
3071}
3072
3073/* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3074
3075static bfd_boolean
3076_bfd_riscv_relax_align (bfd *abfd, asection *sec,
9eb7b0ac 3077 asection *sym_sec,
7f02625e 3078 struct bfd_link_info *link_info,
e23eba97
NC
3079 Elf_Internal_Rela *rel,
3080 bfd_vma symval,
45f76423
AW
3081 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3082 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3083 bfd_boolean *again ATTRIBUTE_UNUSED,
3084 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3085{
3086 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3087 bfd_vma alignment = 1, pos;
3088 while (alignment <= rel->r_addend)
3089 alignment *= 2;
3090
3091 symval -= rel->r_addend;
3092 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3093 bfd_vma nop_bytes = aligned_addr - symval;
3094
3095 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3096 sec->sec_flg0 = TRUE;
3097
3098 /* Make sure there are enough NOPs to actually achieve the alignment. */
3099 if (rel->r_addend < nop_bytes)
9eb7b0ac
PD
3100 {
3101 (*_bfd_error_handler)
671275c3 3102 (_("%B(%A+0x%lx): %d bytes required for alignment "
9eb7b0ac
PD
3103 "to %d-byte boundary, but only %d present"),
3104 abfd, sym_sec, rel->r_offset, nop_bytes, alignment, rel->r_addend);
3105 bfd_set_error (bfd_error_bad_value);
3106 return FALSE;
3107 }
e23eba97
NC
3108
3109 /* Delete the reloc. */
3110 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3111
3112 /* If the number of NOPs is already correct, there's nothing to do. */
3113 if (nop_bytes == rel->r_addend)
3114 return TRUE;
3115
3116 /* Write as many RISC-V NOPs as we need. */
3117 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3118 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3119
3120 /* Write a final RVC NOP if need be. */
3121 if (nop_bytes % 4 != 0)
3122 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3123
3124 /* Delete the excess bytes. */
3125 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
7f02625e 3126 rel->r_addend - nop_bytes, link_info);
e23eba97
NC
3127}
3128
ff6f4d9b
PD
3129/* Relax PC-relative references to GP-relative references. */
3130
9d06997a
PD
3131static bfd_boolean
3132_bfd_riscv_relax_pc (bfd *abfd,
3133 asection *sec,
3134 asection *sym_sec,
3135 struct bfd_link_info *link_info,
3136 Elf_Internal_Rela *rel,
3137 bfd_vma symval,
3138 bfd_vma max_alignment,
3139 bfd_vma reserve_size,
3140 bfd_boolean *again ATTRIBUTE_UNUSED,
3141 riscv_pcgp_relocs *pcgp_relocs)
3142{
3143 bfd_vma gp = riscv_global_pointer_value (link_info);
3144
3145 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3146
3147 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3148 * actual target address. */
e65b1a78
MR
3149 riscv_pcgp_hi_reloc hi_reloc;
3150 memset (&hi_reloc, 0, sizeof (hi_reloc));
9d06997a
PD
3151 switch (ELFNN_R_TYPE (rel->r_info))
3152 {
3153 case R_RISCV_PCREL_LO12_I:
3154 case R_RISCV_PCREL_LO12_S:
3155 {
3156 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
3157 symval - sec_addr(sym_sec));
3158 if (hi == NULL)
3159 {
3160 riscv_record_pcgp_lo_reloc (pcgp_relocs, symval - sec_addr(sym_sec));
3161 return TRUE;
3162 }
3163
3164 hi_reloc = *hi;
3165 symval = hi_reloc.hi_addr;
3166 sym_sec = hi_reloc.sym_sec;
3167 if (!riscv_use_pcgp_hi_reloc(pcgp_relocs, hi->hi_sec_off))
3168 (*_bfd_error_handler)
3169 (_("%B(%A+0x%lx): Unable to clear RISCV_PCREL_HI20 reloc"
3170 "for cooresponding RISCV_PCREL_LO12 reloc"),
3171 abfd, sec, rel->r_offset);
3172 }
3173 break;
3174
3175 case R_RISCV_PCREL_HI20:
3176 /* Mergeable symbols and code might later move out of range. */
3177 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3178 return TRUE;
3179
3180 /* If the cooresponding lo relocation has already been seen then it's not
3181 * safe to relax this relocation. */
3182 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
07d6d2b8 3183 return TRUE;
9d06997a
PD
3184
3185 break;
3186
3187 default:
3188 abort ();
3189 }
3190
3191 if (gp)
3192 {
3193 /* If gp and the symbol are in the same output section, then
3194 consider only that section's alignment. */
3195 struct bfd_link_hash_entry *h =
3196 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
3197 if (h->u.def.section->output_section == sym_sec->output_section)
3198 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3199 }
3200
3201 /* Is the reference in range of x0 or gp?
3202 Valid gp range conservatively because of alignment issue. */
3203 if (VALID_ITYPE_IMM (symval)
3204 || (symval >= gp
3205 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3206 || (symval < gp
3207 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3208 {
3209 unsigned sym = hi_reloc.hi_sym;
3210 switch (ELFNN_R_TYPE (rel->r_info))
3211 {
3212 case R_RISCV_PCREL_LO12_I:
3213 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3214 rel->r_addend += hi_reloc.hi_addend;
3215 return riscv_delete_pcgp_lo_reloc (pcgp_relocs, rel->r_offset, 4);
3216
3217 case R_RISCV_PCREL_LO12_S:
3218 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3219 rel->r_addend += hi_reloc.hi_addend;
3220 return riscv_delete_pcgp_lo_reloc (pcgp_relocs, rel->r_offset, 4);
3221
3222 case R_RISCV_PCREL_HI20:
07d6d2b8 3223 riscv_record_pcgp_hi_reloc (pcgp_relocs,
9d06997a
PD
3224 rel->r_offset,
3225 rel->r_addend,
3226 symval,
3227 ELFNN_R_SYM(rel->r_info),
3228 sym_sec);
3229 /* We can delete the unnecessary AUIPC and reloc. */
3230 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3231 rel->r_addend = 4;
3232 return riscv_delete_pcgp_hi_reloc (pcgp_relocs, rel->r_offset);
3233
3234 default:
3235 abort ();
3236 }
3237 }
3238
3239 return TRUE;
3240}
3241
3242/* Relax PC-relative references to GP-relative references. */
3243
ff6f4d9b
PD
3244static bfd_boolean
3245_bfd_riscv_relax_delete (bfd *abfd,
3246 asection *sec,
3247 asection *sym_sec ATTRIBUTE_UNUSED,
7f02625e 3248 struct bfd_link_info *link_info,
ff6f4d9b
PD
3249 Elf_Internal_Rela *rel,
3250 bfd_vma symval ATTRIBUTE_UNUSED,
3251 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3252 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3253 bfd_boolean *again ATTRIBUTE_UNUSED,
3254 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
ff6f4d9b 3255{
7f02625e
JW
3256 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend,
3257 link_info))
ff6f4d9b
PD
3258 return FALSE;
3259 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3260 return TRUE;
3261}
3262
3263/* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3264 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3265 disabled, handles code alignment directives. */
e23eba97
NC
3266
3267static bfd_boolean
3268_bfd_riscv_relax_section (bfd *abfd, asection *sec,
3269 struct bfd_link_info *info,
3270 bfd_boolean *again)
3271{
3272 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3273 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3274 struct bfd_elf_section_data *data = elf_section_data (sec);
3275 Elf_Internal_Rela *relocs;
3276 bfd_boolean ret = FALSE;
3277 unsigned int i;
45f76423 3278 bfd_vma max_alignment, reserve_size = 0;
9d06997a 3279 riscv_pcgp_relocs pcgp_relocs;
e23eba97
NC
3280
3281 *again = FALSE;
3282
3283 if (bfd_link_relocatable (info)
3284 || sec->sec_flg0
3285 || (sec->flags & SEC_RELOC) == 0
3286 || sec->reloc_count == 0
3287 || (info->disable_target_specific_optimizations
3288 && info->relax_pass == 0))
3289 return TRUE;
3290
9d06997a
PD
3291 riscv_init_pcgp_relocs (&pcgp_relocs);
3292
e23eba97
NC
3293 /* Read this BFD's relocs if we haven't done so already. */
3294 if (data->relocs)
3295 relocs = data->relocs;
3296 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3297 info->keep_memory)))
3298 goto fail;
3299
fc3c5343
L
3300 if (htab)
3301 {
3302 max_alignment = htab->max_alignment;
3303 if (max_alignment == (bfd_vma) -1)
3304 {
3305 max_alignment = _bfd_riscv_get_max_alignment (sec);
3306 htab->max_alignment = max_alignment;
3307 }
3308 }
3309 else
3310 max_alignment = _bfd_riscv_get_max_alignment (sec);
e23eba97
NC
3311
3312 /* Examine and consider relaxing each reloc. */
3313 for (i = 0; i < sec->reloc_count; i++)
3314 {
3315 asection *sym_sec;
3316 Elf_Internal_Rela *rel = relocs + i;
45f76423 3317 relax_func_t relax_func;
e23eba97
NC
3318 int type = ELFNN_R_TYPE (rel->r_info);
3319 bfd_vma symval;
3320
ff6f4d9b 3321 relax_func = NULL;
e23eba97
NC
3322 if (info->relax_pass == 0)
3323 {
3324 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3325 relax_func = _bfd_riscv_relax_call;
3326 else if (type == R_RISCV_HI20
3327 || type == R_RISCV_LO12_I
3328 || type == R_RISCV_LO12_S)
3329 relax_func = _bfd_riscv_relax_lui;
9d06997a
PD
3330 else if (!bfd_link_pic(info)
3331 && (type == R_RISCV_PCREL_HI20
3332 || type == R_RISCV_PCREL_LO12_I
3333 || type == R_RISCV_PCREL_LO12_S))
3334 relax_func = _bfd_riscv_relax_pc;
45f76423
AW
3335 else if (type == R_RISCV_TPREL_HI20
3336 || type == R_RISCV_TPREL_ADD
3337 || type == R_RISCV_TPREL_LO12_I
3338 || type == R_RISCV_TPREL_LO12_S)
e23eba97 3339 relax_func = _bfd_riscv_relax_tls_le;
45f76423
AW
3340 else
3341 continue;
3342
3343 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3344 if (i == sec->reloc_count - 1
3345 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3346 || rel->r_offset != (rel + 1)->r_offset)
3347 continue;
3348
3349 /* Skip over the R_RISCV_RELAX. */
3350 i++;
e23eba97 3351 }
ff6f4d9b 3352 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
07d6d2b8 3353 relax_func = _bfd_riscv_relax_delete;
ff6f4d9b 3354 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
e23eba97 3355 relax_func = _bfd_riscv_relax_align;
45f76423 3356 else
e23eba97
NC
3357 continue;
3358
3359 data->relocs = relocs;
3360
3361 /* Read this BFD's contents if we haven't done so already. */
3362 if (!data->this_hdr.contents
3363 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3364 goto fail;
3365
3366 /* Read this BFD's symbols if we haven't done so already. */
3367 if (symtab_hdr->sh_info != 0
3368 && !symtab_hdr->contents
3369 && !(symtab_hdr->contents =
3370 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3371 symtab_hdr->sh_info,
3372 0, NULL, NULL, NULL)))
3373 goto fail;
3374
3375 /* Get the value of the symbol referred to by the reloc. */
3376 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3377 {
3378 /* A local symbol. */
3379 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3380 + ELFNN_R_SYM (rel->r_info));
45f76423
AW
3381 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3382 ? 0 : isym->st_size - rel->r_addend;
e23eba97
NC
3383
3384 if (isym->st_shndx == SHN_UNDEF)
3385 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
3386 else
3387 {
3388 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3389 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
3390 if (sec_addr (sym_sec) == 0)
3391 continue;
3392 symval = sec_addr (sym_sec) + isym->st_value;
3393 }
3394 }
3395 else
3396 {
3397 unsigned long indx;
3398 struct elf_link_hash_entry *h;
3399
3400 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
3401 h = elf_sym_hashes (abfd)[indx];
3402
3403 while (h->root.type == bfd_link_hash_indirect
3404 || h->root.type == bfd_link_hash_warning)
3405 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3406
3407 if (h->plt.offset != MINUS_ONE)
3408 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3409 else if (h->root.u.def.section->output_section == NULL
3410 || (h->root.type != bfd_link_hash_defined
3411 && h->root.type != bfd_link_hash_defweak))
3412 continue;
3413 else
3414 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3415
45f76423
AW
3416 if (h->type != STT_FUNC)
3417 reserve_size =
3418 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
e23eba97
NC
3419 sym_sec = h->root.u.def.section;
3420 }
3421
3422 symval += rel->r_addend;
3423
3424 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
9d06997a
PD
3425 max_alignment, reserve_size, again,
3426 &pcgp_relocs))
e23eba97
NC
3427 goto fail;
3428 }
3429
3430 ret = TRUE;
3431
3432fail:
3433 if (relocs != data->relocs)
3434 free (relocs);
9d06997a 3435 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
e23eba97
NC
3436
3437 return ret;
3438}
3439
3440#if ARCH_SIZE == 32
3441# define PRSTATUS_SIZE 0 /* FIXME */
3442# define PRSTATUS_OFFSET_PR_CURSIG 12
3443# define PRSTATUS_OFFSET_PR_PID 24
3444# define PRSTATUS_OFFSET_PR_REG 72
3445# define ELF_GREGSET_T_SIZE 128
3446# define PRPSINFO_SIZE 128
3447# define PRPSINFO_OFFSET_PR_PID 16
3448# define PRPSINFO_OFFSET_PR_FNAME 32
3449# define PRPSINFO_OFFSET_PR_PSARGS 48
3450#else
3451# define PRSTATUS_SIZE 376
3452# define PRSTATUS_OFFSET_PR_CURSIG 12
3453# define PRSTATUS_OFFSET_PR_PID 32
3454# define PRSTATUS_OFFSET_PR_REG 112
3455# define ELF_GREGSET_T_SIZE 256
3456# define PRPSINFO_SIZE 136
3457# define PRPSINFO_OFFSET_PR_PID 24
3458# define PRPSINFO_OFFSET_PR_FNAME 40
3459# define PRPSINFO_OFFSET_PR_PSARGS 56
3460#endif
3461
3462/* Support for core dump NOTE sections. */
3463
3464static bfd_boolean
3465riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3466{
3467 switch (note->descsz)
3468 {
3469 default:
3470 return FALSE;
3471
3472 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
3473 /* pr_cursig */
3474 elf_tdata (abfd)->core->signal
3475 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
3476
3477 /* pr_pid */
3478 elf_tdata (abfd)->core->lwpid
3479 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
3480 break;
3481 }
3482
3483 /* Make a ".reg/999" section. */
3484 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
3485 note->descpos + PRSTATUS_OFFSET_PR_REG);
3486}
3487
3488static bfd_boolean
3489riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3490{
3491 switch (note->descsz)
3492 {
3493 default:
3494 return FALSE;
3495
3496 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
3497 /* pr_pid */
3498 elf_tdata (abfd)->core->pid
3499 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
3500
3501 /* pr_fname */
3502 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
3503 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
3504
3505 /* pr_psargs */
3506 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
3507 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
3508 break;
3509 }
3510
3511 /* Note that for some reason, a spurious space is tacked
3512 onto the end of the args in some (at least one anyway)
3513 implementations, so strip it off if it exists. */
3514
3515 {
3516 char *command = elf_tdata (abfd)->core->command;
3517 int n = strlen (command);
3518
3519 if (0 < n && command[n - 1] == ' ')
3520 command[n - 1] = '\0';
3521 }
3522
3523 return TRUE;
3524}
3525
640d6bfd
KLC
3526/* Set the right mach type. */
3527static bfd_boolean
3528riscv_elf_object_p (bfd *abfd)
3529{
3530 /* There are only two mach types in RISCV currently. */
3531 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
3532 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
3533 else
3534 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
3535
3536 return TRUE;
3537}
3538
e23eba97
NC
3539
3540#define TARGET_LITTLE_SYM riscv_elfNN_vec
3541#define TARGET_LITTLE_NAME "elfNN-littleriscv"
3542
3543#define elf_backend_reloc_type_class riscv_reloc_type_class
3544
3545#define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
3546#define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
3547#define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
3548#define bfd_elfNN_bfd_merge_private_bfd_data \
3549 _bfd_riscv_elf_merge_private_bfd_data
3550
3551#define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
3552#define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
3553#define elf_backend_check_relocs riscv_elf_check_relocs
3554#define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
3555#define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
3556#define elf_backend_relocate_section riscv_elf_relocate_section
3557#define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
3558#define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
3559#define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
e23eba97 3560#define elf_backend_plt_sym_val riscv_elf_plt_sym_val
07d6d2b8
AM
3561#define elf_backend_grok_prstatus riscv_elf_grok_prstatus
3562#define elf_backend_grok_psinfo riscv_elf_grok_psinfo
3563#define elf_backend_object_p riscv_elf_object_p
e23eba97
NC
3564#define elf_info_to_howto_rel NULL
3565#define elf_info_to_howto riscv_info_to_howto_rela
3566#define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
3567
3568#define elf_backend_init_index_section _bfd_elf_init_1_index_section
3569
3570#define elf_backend_can_gc_sections 1
3571#define elf_backend_can_refcount 1
3572#define elf_backend_want_got_plt 1
3573#define elf_backend_plt_readonly 1
3574#define elf_backend_plt_alignment 4
3575#define elf_backend_want_plt_sym 1
3576#define elf_backend_got_header_size (ARCH_SIZE / 8)
5474d94f 3577#define elf_backend_want_dynrelro 1
e23eba97
NC
3578#define elf_backend_rela_normal 1
3579#define elf_backend_default_execstack 0
3580
3581#include "elfNN-target.h"