]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elfnn-riscv.c
Introduce new convenience variables $_gdb_major and $_gdb_minor
[thirdparty/binutils-gdb.git] / bfd / elfnn-riscv.c
CommitLineData
e23eba97 1/* RISC-V-specific support for NN-bit ELF.
82704155 2 Copyright (C) 2011-2019 Free Software Foundation, Inc.
e23eba97
NC
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23/* This file handles RISC-V ELF targets. */
24
25#include "sysdep.h"
26#include "bfd.h"
27#include "libbfd.h"
28#include "bfdlink.h"
29#include "genlink.h"
30#include "elf-bfd.h"
31#include "elfxx-riscv.h"
32#include "elf/riscv.h"
33#include "opcode/riscv.h"
34
ff6f4d9b
PD
35/* Internal relocations used exclusively by the relaxation pass. */
36#define R_RISCV_DELETE (R_RISCV_max + 1)
37
e23eba97
NC
38#define ARCH_SIZE NN
39
40#define MINUS_ONE ((bfd_vma)0 - 1)
41
42#define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
43
44#define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
45
46/* The name of the dynamic interpreter. This is put in the .interp
47 section. */
48
49#define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50#define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
51
52#define ELF_ARCH bfd_arch_riscv
53#define ELF_TARGET_ID RISCV_ELF_DATA
54#define ELF_MACHINE_CODE EM_RISCV
55#define ELF_MAXPAGESIZE 0x1000
56#define ELF_COMMONPAGESIZE 0x1000
57
e23eba97
NC
58/* RISC-V ELF linker hash entry. */
59
60struct riscv_elf_link_hash_entry
61{
62 struct elf_link_hash_entry elf;
63
64 /* Track dynamic relocs copied for this symbol. */
3bf083ed 65 struct elf_dyn_relocs *dyn_relocs;
e23eba97
NC
66
67#define GOT_UNKNOWN 0
68#define GOT_NORMAL 1
69#define GOT_TLS_GD 2
70#define GOT_TLS_IE 4
71#define GOT_TLS_LE 8
72 char tls_type;
73};
74
75#define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
77
78struct _bfd_riscv_elf_obj_tdata
79{
80 struct elf_obj_tdata root;
81
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
84};
85
86#define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
88
89#define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
91
92#define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
95
96#define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
100
101#include "elf/common.h"
102#include "elf/internal.h"
103
104struct riscv_elf_link_hash_table
105{
106 struct elf_link_hash_table elf;
107
108 /* Short-cuts to get to dynamic linker sections. */
e23eba97
NC
109 asection *sdyntdata;
110
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
fc3c5343
L
113
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
e23eba97
NC
116};
117
118
119/* Get the RISC-V ELF linker hash table from a link_info structure. */
120#define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
123
f3185997 124static bfd_boolean
0aa13fee 125riscv_info_to_howto_rela (bfd *abfd,
e23eba97
NC
126 arelent *cache_ptr,
127 Elf_Internal_Rela *dst)
128{
0aa13fee 129 cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info));
f3185997 130 return cache_ptr->howto != NULL;
e23eba97
NC
131}
132
133static void
134riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
135{
136 const struct elf_backend_data *bed;
137 bfd_byte *loc;
138
139 bed = get_elf_backend_data (abfd);
140 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
141 bed->s->swap_reloca_out (abfd, rel, loc);
142}
143
144/* PLT/GOT stuff. */
145
146#define PLT_HEADER_INSNS 8
147#define PLT_ENTRY_INSNS 4
148#define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
149#define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
150
151#define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
152
153#define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
154
155#define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
156
157static bfd_vma
158riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
159{
160 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
161 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
162}
163
164#if ARCH_SIZE == 32
165# define MATCH_LREG MATCH_LW
166#else
167# define MATCH_LREG MATCH_LD
168#endif
169
170/* Generate a PLT header. */
171
5ef23793
JW
172static bfd_boolean
173riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr,
174 uint32_t *entry)
e23eba97
NC
175{
176 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
177 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
178
5ef23793
JW
179 /* RVE has no t3 register, so this won't work, and is not supported. */
180 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
181 {
182 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
183 output_bfd);
184 return FALSE;
185 }
186
e23eba97 187 /* auipc t2, %hi(.got.plt)
07d6d2b8 188 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
e23eba97
NC
189 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
190 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
191 addi t0, t2, %lo(.got.plt) # &.got.plt
192 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
07d6d2b8
AM
193 l[w|d] t0, PTRSIZE(t0) # link map
194 jr t3 */
e23eba97
NC
195
196 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
197 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
198 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
199 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
200 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
201 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
202 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
203 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
5ef23793
JW
204
205 return TRUE;
e23eba97
NC
206}
207
208/* Generate a PLT entry. */
209
5ef23793
JW
210static bfd_boolean
211riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr,
212 uint32_t *entry)
e23eba97 213{
5ef23793
JW
214 /* RVE has no t3 register, so this won't work, and is not supported. */
215 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
216 {
217 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
218 output_bfd);
219 return FALSE;
220 }
221
e23eba97
NC
222 /* auipc t3, %hi(.got.plt entry)
223 l[w|d] t3, %lo(.got.plt entry)(t3)
224 jalr t1, t3
225 nop */
226
227 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
1d65abb5 228 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
e23eba97
NC
229 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
230 entry[3] = RISCV_NOP;
5ef23793
JW
231
232 return TRUE;
e23eba97
NC
233}
234
235/* Create an entry in an RISC-V ELF linker hash table. */
236
237static struct bfd_hash_entry *
238link_hash_newfunc (struct bfd_hash_entry *entry,
239 struct bfd_hash_table *table, const char *string)
240{
241 /* Allocate the structure if it has not already been allocated by a
242 subclass. */
243 if (entry == NULL)
244 {
245 entry =
246 bfd_hash_allocate (table,
247 sizeof (struct riscv_elf_link_hash_entry));
248 if (entry == NULL)
249 return entry;
250 }
251
252 /* Call the allocation method of the superclass. */
253 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
254 if (entry != NULL)
255 {
256 struct riscv_elf_link_hash_entry *eh;
257
258 eh = (struct riscv_elf_link_hash_entry *) entry;
259 eh->dyn_relocs = NULL;
260 eh->tls_type = GOT_UNKNOWN;
261 }
262
263 return entry;
264}
265
266/* Create a RISC-V ELF linker hash table. */
267
268static struct bfd_link_hash_table *
269riscv_elf_link_hash_table_create (bfd *abfd)
270{
271 struct riscv_elf_link_hash_table *ret;
272 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
273
274 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
275 if (ret == NULL)
276 return NULL;
277
278 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
279 sizeof (struct riscv_elf_link_hash_entry),
280 RISCV_ELF_DATA))
281 {
282 free (ret);
283 return NULL;
284 }
285
fc3c5343 286 ret->max_alignment = (bfd_vma) -1;
e23eba97
NC
287 return &ret->elf.root;
288}
289
290/* Create the .got section. */
291
292static bfd_boolean
293riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
294{
295 flagword flags;
296 asection *s, *s_got;
297 struct elf_link_hash_entry *h;
298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
299 struct elf_link_hash_table *htab = elf_hash_table (info);
300
301 /* This function may be called more than once. */
ce558b89 302 if (htab->sgot != NULL)
e23eba97
NC
303 return TRUE;
304
305 flags = bed->dynamic_sec_flags;
306
307 s = bfd_make_section_anyway_with_flags (abfd,
308 (bed->rela_plts_and_copies_p
309 ? ".rela.got" : ".rel.got"),
310 (bed->dynamic_sec_flags
311 | SEC_READONLY));
312 if (s == NULL
313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
314 return FALSE;
315 htab->srelgot = s;
316
317 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
318 if (s == NULL
319 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
320 return FALSE;
321 htab->sgot = s;
322
323 /* The first bit of the global offset table is the header. */
324 s->size += bed->got_header_size;
325
326 if (bed->want_got_plt)
327 {
328 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
329 if (s == NULL
330 || !bfd_set_section_alignment (abfd, s,
331 bed->s->log_file_align))
332 return FALSE;
333 htab->sgotplt = s;
334
335 /* Reserve room for the header. */
336 s->size += GOTPLT_HEADER_SIZE;
337 }
338
339 if (bed->want_got_sym)
340 {
341 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
342 section. We don't do this in the linker script because we don't want
343 to define the symbol if we are not creating a global offset
344 table. */
345 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
346 "_GLOBAL_OFFSET_TABLE_");
347 elf_hash_table (info)->hgot = h;
348 if (h == NULL)
349 return FALSE;
350 }
351
352 return TRUE;
353}
354
355/* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
356 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
357 hash table. */
358
359static bfd_boolean
360riscv_elf_create_dynamic_sections (bfd *dynobj,
361 struct bfd_link_info *info)
362{
363 struct riscv_elf_link_hash_table *htab;
364
365 htab = riscv_elf_hash_table (info);
366 BFD_ASSERT (htab != NULL);
367
368 if (!riscv_elf_create_got_section (dynobj, info))
369 return FALSE;
370
371 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
372 return FALSE;
373
e23eba97
NC
374 if (!bfd_link_pic (info))
375 {
e23eba97
NC
376 htab->sdyntdata =
377 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
13755f40
JW
378 (SEC_ALLOC | SEC_THREAD_LOCAL
379 | SEC_LINKER_CREATED));
e23eba97
NC
380 }
381
9d19e4fd
AM
382 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
383 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
e23eba97
NC
384 abort ();
385
386 return TRUE;
387}
388
389/* Copy the extra info we tack onto an elf_link_hash_entry. */
390
391static void
392riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
393 struct elf_link_hash_entry *dir,
394 struct elf_link_hash_entry *ind)
395{
396 struct riscv_elf_link_hash_entry *edir, *eind;
397
398 edir = (struct riscv_elf_link_hash_entry *) dir;
399 eind = (struct riscv_elf_link_hash_entry *) ind;
400
401 if (eind->dyn_relocs != NULL)
402 {
403 if (edir->dyn_relocs != NULL)
404 {
3bf083ed
AM
405 struct elf_dyn_relocs **pp;
406 struct elf_dyn_relocs *p;
e23eba97
NC
407
408 /* Add reloc counts against the indirect sym to the direct sym
409 list. Merge any entries against the same section. */
410 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
411 {
3bf083ed 412 struct elf_dyn_relocs *q;
e23eba97
NC
413
414 for (q = edir->dyn_relocs; q != NULL; q = q->next)
415 if (q->sec == p->sec)
416 {
417 q->pc_count += p->pc_count;
418 q->count += p->count;
419 *pp = p->next;
420 break;
421 }
422 if (q == NULL)
423 pp = &p->next;
424 }
425 *pp = edir->dyn_relocs;
426 }
427
428 edir->dyn_relocs = eind->dyn_relocs;
429 eind->dyn_relocs = NULL;
430 }
431
432 if (ind->root.type == bfd_link_hash_indirect
433 && dir->got.refcount <= 0)
434 {
435 edir->tls_type = eind->tls_type;
436 eind->tls_type = GOT_UNKNOWN;
437 }
438 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
439}
440
441static bfd_boolean
442riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
443 unsigned long symndx, char tls_type)
444{
445 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
446
447 *new_tls_type |= tls_type;
448 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
449 {
450 (*_bfd_error_handler)
871b3ab2 451 (_("%pB: `%s' accessed both as normal and thread local symbol"),
e23eba97
NC
452 abfd, h ? h->root.root.string : "<local>");
453 return FALSE;
454 }
455 return TRUE;
456}
457
458static bfd_boolean
459riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
460 struct elf_link_hash_entry *h, long symndx)
461{
462 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
463 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
464
465 if (htab->elf.sgot == NULL)
466 {
467 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
468 return FALSE;
469 }
470
471 if (h != NULL)
472 {
473 h->got.refcount += 1;
474 return TRUE;
475 }
476
477 /* This is a global offset table entry for a local symbol. */
478 if (elf_local_got_refcounts (abfd) == NULL)
479 {
480 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
481 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
482 return FALSE;
483 _bfd_riscv_elf_local_got_tls_type (abfd)
484 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
485 }
486 elf_local_got_refcounts (abfd) [symndx] += 1;
487
488 return TRUE;
489}
490
491static bfd_boolean
492bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
493{
f3185997
NC
494 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
495
e23eba97 496 (*_bfd_error_handler)
871b3ab2 497 (_("%pB: relocation %s against `%s' can not be used when making a shared "
e23eba97 498 "object; recompile with -fPIC"),
f3185997
NC
499 abfd, r ? r->name : _("<unknown>"),
500 h != NULL ? h->root.root.string : "a local symbol");
e23eba97
NC
501 bfd_set_error (bfd_error_bad_value);
502 return FALSE;
503}
504/* Look through the relocs for a section during the first phase, and
505 allocate space in the global offset table or procedure linkage
506 table. */
507
508static bfd_boolean
509riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
510 asection *sec, const Elf_Internal_Rela *relocs)
511{
512 struct riscv_elf_link_hash_table *htab;
513 Elf_Internal_Shdr *symtab_hdr;
514 struct elf_link_hash_entry **sym_hashes;
515 const Elf_Internal_Rela *rel;
516 asection *sreloc = NULL;
517
518 if (bfd_link_relocatable (info))
519 return TRUE;
520
521 htab = riscv_elf_hash_table (info);
522 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
523 sym_hashes = elf_sym_hashes (abfd);
524
525 if (htab->elf.dynobj == NULL)
526 htab->elf.dynobj = abfd;
527
528 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
529 {
530 unsigned int r_type;
d42c267e 531 unsigned int r_symndx;
e23eba97
NC
532 struct elf_link_hash_entry *h;
533
534 r_symndx = ELFNN_R_SYM (rel->r_info);
535 r_type = ELFNN_R_TYPE (rel->r_info);
536
537 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
538 {
871b3ab2 539 (*_bfd_error_handler) (_("%pB: bad symbol index: %d"),
e23eba97
NC
540 abfd, r_symndx);
541 return FALSE;
542 }
543
544 if (r_symndx < symtab_hdr->sh_info)
545 h = NULL;
546 else
547 {
548 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
549 while (h->root.type == bfd_link_hash_indirect
550 || h->root.type == bfd_link_hash_warning)
551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
e23eba97
NC
552 }
553
554 switch (r_type)
555 {
556 case R_RISCV_TLS_GD_HI20:
557 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
558 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
559 return FALSE;
560 break;
561
562 case R_RISCV_TLS_GOT_HI20:
563 if (bfd_link_pic (info))
564 info->flags |= DF_STATIC_TLS;
565 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
566 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
567 return FALSE;
568 break;
569
570 case R_RISCV_GOT_HI20:
571 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
572 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
573 return FALSE;
574 break;
575
576 case R_RISCV_CALL_PLT:
577 /* This symbol requires a procedure linkage table entry. We
578 actually build the entry in adjust_dynamic_symbol,
579 because this might be a case of linking PIC code without
580 linking in any dynamic objects, in which case we don't
581 need to generate a procedure linkage table after all. */
582
583 if (h != NULL)
584 {
585 h->needs_plt = 1;
586 h->plt.refcount += 1;
587 }
588 break;
589
590 case R_RISCV_CALL:
591 case R_RISCV_JAL:
592 case R_RISCV_BRANCH:
593 case R_RISCV_RVC_BRANCH:
594 case R_RISCV_RVC_JUMP:
595 case R_RISCV_PCREL_HI20:
596 /* In shared libraries, these relocs are known to bind locally. */
597 if (bfd_link_pic (info))
598 break;
599 goto static_reloc;
600
601 case R_RISCV_TPREL_HI20:
602 if (!bfd_link_executable (info))
603 return bad_static_reloc (abfd, r_type, h);
604 if (h != NULL)
605 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
606 goto static_reloc;
607
608 case R_RISCV_HI20:
609 if (bfd_link_pic (info))
610 return bad_static_reloc (abfd, r_type, h);
611 /* Fall through. */
612
613 case R_RISCV_COPY:
614 case R_RISCV_JUMP_SLOT:
615 case R_RISCV_RELATIVE:
616 case R_RISCV_64:
617 case R_RISCV_32:
618 /* Fall through. */
619
620 static_reloc:
621 /* This reloc might not bind locally. */
622 if (h != NULL)
623 h->non_got_ref = 1;
624
625 if (h != NULL && !bfd_link_pic (info))
626 {
627 /* We may need a .plt entry if the function this reloc
628 refers to is in a shared lib. */
629 h->plt.refcount += 1;
630 }
631
632 /* If we are creating a shared library, and this is a reloc
633 against a global symbol, or a non PC relative reloc
634 against a local symbol, then we need to copy the reloc
635 into the shared library. However, if we are linking with
636 -Bsymbolic, we do not need to copy a reloc against a
637 global symbol which is defined in an object we are
638 including in the link (i.e., DEF_REGULAR is set). At
639 this point we have not seen all the input files, so it is
640 possible that DEF_REGULAR is not set now but will be set
641 later (it is never cleared). In case of a weak definition,
642 DEF_REGULAR may be cleared later by a strong definition in
643 a shared library. We account for that possibility below by
644 storing information in the relocs_copied field of the hash
645 table entry. A similar situation occurs when creating
646 shared libraries and symbol visibility changes render the
647 symbol local.
648
649 If on the other hand, we are creating an executable, we
650 may need to keep relocations for symbols satisfied by a
651 dynamic library if we manage to avoid copy relocs for the
652 symbol. */
f3185997
NC
653 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
654
e23eba97
NC
655 if ((bfd_link_pic (info)
656 && (sec->flags & SEC_ALLOC) != 0
f3185997 657 && ((r != NULL && ! r->pc_relative)
e23eba97
NC
658 || (h != NULL
659 && (! info->symbolic
660 || h->root.type == bfd_link_hash_defweak
661 || !h->def_regular))))
662 || (!bfd_link_pic (info)
663 && (sec->flags & SEC_ALLOC) != 0
664 && h != NULL
665 && (h->root.type == bfd_link_hash_defweak
666 || !h->def_regular)))
667 {
3bf083ed
AM
668 struct elf_dyn_relocs *p;
669 struct elf_dyn_relocs **head;
e23eba97
NC
670
671 /* When creating a shared object, we must copy these
672 relocs into the output file. We create a reloc
673 section in dynobj and make room for the reloc. */
674 if (sreloc == NULL)
675 {
676 sreloc = _bfd_elf_make_dynamic_reloc_section
677 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
678 abfd, /*rela?*/ TRUE);
679
680 if (sreloc == NULL)
681 return FALSE;
682 }
683
684 /* If this is a global symbol, we count the number of
685 relocations we need for this symbol. */
686 if (h != NULL)
687 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
688 else
689 {
690 /* Track dynamic relocs needed for local syms too.
691 We really need local syms available to do this
692 easily. Oh well. */
693
694 asection *s;
695 void *vpp;
696 Elf_Internal_Sym *isym;
697
698 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
699 abfd, r_symndx);
700 if (isym == NULL)
701 return FALSE;
702
703 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
704 if (s == NULL)
705 s = sec;
706
707 vpp = &elf_section_data (s)->local_dynrel;
3bf083ed 708 head = (struct elf_dyn_relocs **) vpp;
e23eba97
NC
709 }
710
711 p = *head;
712 if (p == NULL || p->sec != sec)
713 {
714 bfd_size_type amt = sizeof *p;
3bf083ed 715 p = ((struct elf_dyn_relocs *)
e23eba97
NC
716 bfd_alloc (htab->elf.dynobj, amt));
717 if (p == NULL)
718 return FALSE;
719 p->next = *head;
720 *head = p;
721 p->sec = sec;
722 p->count = 0;
723 p->pc_count = 0;
724 }
725
726 p->count += 1;
f3185997 727 p->pc_count += r == NULL ? 0 : r->pc_relative;
e23eba97
NC
728 }
729
730 break;
731
732 case R_RISCV_GNU_VTINHERIT:
733 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
734 return FALSE;
735 break;
736
737 case R_RISCV_GNU_VTENTRY:
738 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
739 return FALSE;
740 break;
741
742 default:
743 break;
744 }
745 }
746
747 return TRUE;
748}
749
750static asection *
751riscv_elf_gc_mark_hook (asection *sec,
752 struct bfd_link_info *info,
753 Elf_Internal_Rela *rel,
754 struct elf_link_hash_entry *h,
755 Elf_Internal_Sym *sym)
756{
757 if (h != NULL)
758 switch (ELFNN_R_TYPE (rel->r_info))
759 {
760 case R_RISCV_GNU_VTINHERIT:
761 case R_RISCV_GNU_VTENTRY:
762 return NULL;
763 }
764
765 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
766}
767
63c1f59d
AM
768/* Find dynamic relocs for H that apply to read-only sections. */
769
770static asection *
771readonly_dynrelocs (struct elf_link_hash_entry *h)
772{
3bf083ed 773 struct elf_dyn_relocs *p;
63c1f59d
AM
774
775 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
776 {
777 asection *s = p->sec->output_section;
778
779 if (s != NULL && (s->flags & SEC_READONLY) != 0)
780 return p->sec;
781 }
782 return NULL;
783}
784
e23eba97
NC
785/* Adjust a symbol defined by a dynamic object and referenced by a
786 regular object. The current definition is in some section of the
787 dynamic object, but we're not including those sections. We have to
788 change the definition to something the rest of the link can
789 understand. */
790
791static bfd_boolean
792riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
793 struct elf_link_hash_entry *h)
794{
795 struct riscv_elf_link_hash_table *htab;
796 struct riscv_elf_link_hash_entry * eh;
e23eba97 797 bfd *dynobj;
5474d94f 798 asection *s, *srel;
e23eba97
NC
799
800 htab = riscv_elf_hash_table (info);
801 BFD_ASSERT (htab != NULL);
802
803 dynobj = htab->elf.dynobj;
804
805 /* Make sure we know what is going on here. */
806 BFD_ASSERT (dynobj != NULL
807 && (h->needs_plt
808 || h->type == STT_GNU_IFUNC
60d67dc8 809 || h->is_weakalias
e23eba97
NC
810 || (h->def_dynamic
811 && h->ref_regular
812 && !h->def_regular)));
813
814 /* If this is a function, put it in the procedure linkage table. We
815 will fill in the contents of the procedure linkage table later
816 (although we could actually do it here). */
817 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
818 {
819 if (h->plt.refcount <= 0
820 || SYMBOL_CALLS_LOCAL (info, h)
821 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
822 && h->root.type == bfd_link_hash_undefweak))
823 {
824 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
825 input file, but the symbol was never referred to by a dynamic
826 object, or if all references were garbage collected. In such
827 a case, we don't actually need to build a PLT entry. */
828 h->plt.offset = (bfd_vma) -1;
829 h->needs_plt = 0;
830 }
831
832 return TRUE;
833 }
834 else
835 h->plt.offset = (bfd_vma) -1;
836
837 /* If this is a weak symbol, and there is a real definition, the
838 processor independent code will have arranged for us to see the
839 real definition first, and we can just use the same value. */
60d67dc8 840 if (h->is_weakalias)
e23eba97 841 {
60d67dc8
AM
842 struct elf_link_hash_entry *def = weakdef (h);
843 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
844 h->root.u.def.section = def->root.u.def.section;
845 h->root.u.def.value = def->root.u.def.value;
e23eba97
NC
846 return TRUE;
847 }
848
849 /* This is a reference to a symbol defined by a dynamic object which
850 is not a function. */
851
852 /* If we are creating a shared library, we must presume that the
853 only references to the symbol are via the global offset table.
854 For such cases we need not do anything here; the relocations will
855 be handled correctly by relocate_section. */
856 if (bfd_link_pic (info))
857 return TRUE;
858
859 /* If there are no references to this symbol that do not use the
860 GOT, we don't need to generate a copy reloc. */
861 if (!h->non_got_ref)
862 return TRUE;
863
864 /* If -z nocopyreloc was given, we won't generate them either. */
865 if (info->nocopyreloc)
866 {
867 h->non_got_ref = 0;
868 return TRUE;
869 }
870
3bf083ed 871 /* If we don't find any dynamic relocs in read-only sections, then
e23eba97 872 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
3bf083ed 873 if (!readonly_dynrelocs (h))
e23eba97
NC
874 {
875 h->non_got_ref = 0;
876 return TRUE;
877 }
878
879 /* We must allocate the symbol in our .dynbss section, which will
880 become part of the .bss section of the executable. There will be
881 an entry for this symbol in the .dynsym section. The dynamic
882 object will contain position independent code, so all references
883 from the dynamic object to this symbol will go through the global
884 offset table. The dynamic linker will use the .dynsym entry to
885 determine the address it must put in the global offset table, so
886 both the dynamic object and the regular object will refer to the
887 same memory location for the variable. */
888
889 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
890 to copy the initial value out of the dynamic object and into the
891 runtime process image. We need to remember the offset into the
892 .rel.bss section we are going to use. */
3bf083ed 893 eh = (struct riscv_elf_link_hash_entry *) h;
3df5cd13
AW
894 if (eh->tls_type & ~GOT_NORMAL)
895 {
896 s = htab->sdyntdata;
897 srel = htab->elf.srelbss;
898 }
899 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
5474d94f
AM
900 {
901 s = htab->elf.sdynrelro;
902 srel = htab->elf.sreldynrelro;
903 }
904 else
905 {
906 s = htab->elf.sdynbss;
907 srel = htab->elf.srelbss;
908 }
e23eba97
NC
909 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
910 {
5474d94f 911 srel->size += sizeof (ElfNN_External_Rela);
e23eba97
NC
912 h->needs_copy = 1;
913 }
914
5474d94f 915 return _bfd_elf_adjust_dynamic_copy (info, h, s);
e23eba97
NC
916}
917
918/* Allocate space in .plt, .got and associated reloc sections for
919 dynamic relocs. */
920
921static bfd_boolean
922allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
923{
924 struct bfd_link_info *info;
925 struct riscv_elf_link_hash_table *htab;
926 struct riscv_elf_link_hash_entry *eh;
3bf083ed 927 struct elf_dyn_relocs *p;
e23eba97
NC
928
929 if (h->root.type == bfd_link_hash_indirect)
930 return TRUE;
931
932 info = (struct bfd_link_info *) inf;
933 htab = riscv_elf_hash_table (info);
934 BFD_ASSERT (htab != NULL);
935
936 if (htab->elf.dynamic_sections_created
937 && h->plt.refcount > 0)
938 {
939 /* Make sure this symbol is output as a dynamic symbol.
940 Undefined weak syms won't yet be marked as dynamic. */
941 if (h->dynindx == -1
942 && !h->forced_local)
943 {
944 if (! bfd_elf_link_record_dynamic_symbol (info, h))
945 return FALSE;
946 }
947
948 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
949 {
950 asection *s = htab->elf.splt;
951
952 if (s->size == 0)
953 s->size = PLT_HEADER_SIZE;
954
955 h->plt.offset = s->size;
956
957 /* Make room for this entry. */
958 s->size += PLT_ENTRY_SIZE;
959
960 /* We also need to make an entry in the .got.plt section. */
961 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
962
963 /* We also need to make an entry in the .rela.plt section. */
964 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
965
966 /* If this symbol is not defined in a regular file, and we are
967 not generating a shared library, then set the symbol to this
968 location in the .plt. This is required to make function
969 pointers compare as equal between the normal executable and
970 the shared library. */
971 if (! bfd_link_pic (info)
972 && !h->def_regular)
973 {
974 h->root.u.def.section = s;
975 h->root.u.def.value = h->plt.offset;
976 }
977 }
978 else
979 {
980 h->plt.offset = (bfd_vma) -1;
981 h->needs_plt = 0;
982 }
983 }
984 else
985 {
986 h->plt.offset = (bfd_vma) -1;
987 h->needs_plt = 0;
988 }
989
990 if (h->got.refcount > 0)
991 {
992 asection *s;
993 bfd_boolean dyn;
994 int tls_type = riscv_elf_hash_entry (h)->tls_type;
995
996 /* Make sure this symbol is output as a dynamic symbol.
997 Undefined weak syms won't yet be marked as dynamic. */
998 if (h->dynindx == -1
999 && !h->forced_local)
1000 {
1001 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1002 return FALSE;
1003 }
1004
1005 s = htab->elf.sgot;
1006 h->got.offset = s->size;
1007 dyn = htab->elf.dynamic_sections_created;
1008 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
1009 {
1010 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1011 if (tls_type & GOT_TLS_GD)
1012 {
1013 s->size += 2 * RISCV_ELF_WORD_BYTES;
1014 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
1015 }
1016
1017 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1018 if (tls_type & GOT_TLS_IE)
1019 {
1020 s->size += RISCV_ELF_WORD_BYTES;
1021 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1022 }
1023 }
1024 else
1025 {
1026 s->size += RISCV_ELF_WORD_BYTES;
6487709f
JW
1027 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
1028 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
e23eba97
NC
1029 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1030 }
1031 }
1032 else
1033 h->got.offset = (bfd_vma) -1;
1034
1035 eh = (struct riscv_elf_link_hash_entry *) h;
1036 if (eh->dyn_relocs == NULL)
1037 return TRUE;
1038
1039 /* In the shared -Bsymbolic case, discard space allocated for
1040 dynamic pc-relative relocs against symbols which turn out to be
1041 defined in regular objects. For the normal shared case, discard
1042 space for pc-relative relocs that have become local due to symbol
1043 visibility changes. */
1044
1045 if (bfd_link_pic (info))
1046 {
1047 if (SYMBOL_CALLS_LOCAL (info, h))
1048 {
3bf083ed 1049 struct elf_dyn_relocs **pp;
e23eba97
NC
1050
1051 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1052 {
1053 p->count -= p->pc_count;
1054 p->pc_count = 0;
1055 if (p->count == 0)
1056 *pp = p->next;
1057 else
1058 pp = &p->next;
1059 }
1060 }
1061
1062 /* Also discard relocs on undefined weak syms with non-default
1063 visibility. */
1064 if (eh->dyn_relocs != NULL
1065 && h->root.type == bfd_link_hash_undefweak)
1066 {
6487709f
JW
1067 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1068 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
e23eba97
NC
1069 eh->dyn_relocs = NULL;
1070
1071 /* Make sure undefined weak symbols are output as a dynamic
1072 symbol in PIEs. */
1073 else if (h->dynindx == -1
1074 && !h->forced_local)
1075 {
1076 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1077 return FALSE;
1078 }
1079 }
1080 }
1081 else
1082 {
1083 /* For the non-shared case, discard space for relocs against
1084 symbols which turn out to need copy relocs or are not
1085 dynamic. */
1086
1087 if (!h->non_got_ref
1088 && ((h->def_dynamic
1089 && !h->def_regular)
1090 || (htab->elf.dynamic_sections_created
1091 && (h->root.type == bfd_link_hash_undefweak
1092 || h->root.type == bfd_link_hash_undefined))))
1093 {
1094 /* Make sure this symbol is output as a dynamic symbol.
1095 Undefined weak syms won't yet be marked as dynamic. */
1096 if (h->dynindx == -1
1097 && !h->forced_local)
1098 {
1099 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1100 return FALSE;
1101 }
1102
1103 /* If that succeeded, we know we'll be keeping all the
1104 relocs. */
1105 if (h->dynindx != -1)
1106 goto keep;
1107 }
1108
1109 eh->dyn_relocs = NULL;
1110
1111 keep: ;
1112 }
1113
1114 /* Finally, allocate space. */
1115 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1116 {
1117 asection *sreloc = elf_section_data (p->sec)->sreloc;
1118 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1119 }
1120
1121 return TRUE;
1122}
1123
63c1f59d
AM
1124/* Set DF_TEXTREL if we find any dynamic relocs that apply to
1125 read-only sections. */
e23eba97
NC
1126
1127static bfd_boolean
63c1f59d 1128maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
e23eba97 1129{
63c1f59d 1130 asection *sec;
e23eba97 1131
63c1f59d
AM
1132 if (h->root.type == bfd_link_hash_indirect)
1133 return TRUE;
1134
1135 sec = readonly_dynrelocs (h);
1136 if (sec != NULL)
e23eba97 1137 {
63c1f59d 1138 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
e23eba97 1139
63c1f59d
AM
1140 info->flags |= DF_TEXTREL;
1141 info->callbacks->minfo
c1c8c1ef 1142 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
63c1f59d
AM
1143 sec->owner, h->root.root.string, sec);
1144
1145 /* Not an error, just cut short the traversal. */
1146 return FALSE;
e23eba97
NC
1147 }
1148 return TRUE;
1149}
1150
1151static bfd_boolean
1152riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1153{
1154 struct riscv_elf_link_hash_table *htab;
1155 bfd *dynobj;
1156 asection *s;
1157 bfd *ibfd;
1158
1159 htab = riscv_elf_hash_table (info);
1160 BFD_ASSERT (htab != NULL);
1161 dynobj = htab->elf.dynobj;
1162 BFD_ASSERT (dynobj != NULL);
1163
1164 if (elf_hash_table (info)->dynamic_sections_created)
1165 {
1166 /* Set the contents of the .interp section to the interpreter. */
1167 if (bfd_link_executable (info) && !info->nointerp)
1168 {
1169 s = bfd_get_linker_section (dynobj, ".interp");
1170 BFD_ASSERT (s != NULL);
1171 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1172 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1173 }
1174 }
1175
1176 /* Set up .got offsets for local syms, and space for local dynamic
1177 relocs. */
1178 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1179 {
1180 bfd_signed_vma *local_got;
1181 bfd_signed_vma *end_local_got;
1182 char *local_tls_type;
1183 bfd_size_type locsymcount;
1184 Elf_Internal_Shdr *symtab_hdr;
1185 asection *srel;
1186
1187 if (! is_riscv_elf (ibfd))
1188 continue;
1189
1190 for (s = ibfd->sections; s != NULL; s = s->next)
1191 {
3bf083ed 1192 struct elf_dyn_relocs *p;
e23eba97
NC
1193
1194 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1195 {
1196 if (!bfd_is_abs_section (p->sec)
1197 && bfd_is_abs_section (p->sec->output_section))
1198 {
1199 /* Input section has been discarded, either because
1200 it is a copy of a linkonce section or due to
1201 linker script /DISCARD/, so we'll be discarding
1202 the relocs too. */
1203 }
1204 else if (p->count != 0)
1205 {
1206 srel = elf_section_data (p->sec)->sreloc;
1207 srel->size += p->count * sizeof (ElfNN_External_Rela);
1208 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1209 info->flags |= DF_TEXTREL;
1210 }
1211 }
1212 }
1213
1214 local_got = elf_local_got_refcounts (ibfd);
1215 if (!local_got)
1216 continue;
1217
1218 symtab_hdr = &elf_symtab_hdr (ibfd);
1219 locsymcount = symtab_hdr->sh_info;
1220 end_local_got = local_got + locsymcount;
1221 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1222 s = htab->elf.sgot;
1223 srel = htab->elf.srelgot;
1224 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1225 {
1226 if (*local_got > 0)
1227 {
1228 *local_got = s->size;
1229 s->size += RISCV_ELF_WORD_BYTES;
1230 if (*local_tls_type & GOT_TLS_GD)
1231 s->size += RISCV_ELF_WORD_BYTES;
1232 if (bfd_link_pic (info)
1233 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1234 srel->size += sizeof (ElfNN_External_Rela);
1235 }
1236 else
1237 *local_got = (bfd_vma) -1;
1238 }
1239 }
1240
1241 /* Allocate global sym .plt and .got entries, and space for global
1242 sym dynamic relocs. */
1243 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1244
1245 if (htab->elf.sgotplt)
1246 {
1247 struct elf_link_hash_entry *got;
1248 got = elf_link_hash_lookup (elf_hash_table (info),
1249 "_GLOBAL_OFFSET_TABLE_",
1250 FALSE, FALSE, FALSE);
1251
1252 /* Don't allocate .got.plt section if there are no GOT nor PLT
1253 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1254 if ((got == NULL
1255 || !got->ref_regular_nonweak)
1256 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1257 && (htab->elf.splt == NULL
1258 || htab->elf.splt->size == 0)
1259 && (htab->elf.sgot == NULL
1260 || (htab->elf.sgot->size
1261 == get_elf_backend_data (output_bfd)->got_header_size)))
1262 htab->elf.sgotplt->size = 0;
1263 }
1264
1265 /* The check_relocs and adjust_dynamic_symbol entry points have
1266 determined the sizes of the various dynamic sections. Allocate
1267 memory for them. */
1268 for (s = dynobj->sections; s != NULL; s = s->next)
1269 {
1270 if ((s->flags & SEC_LINKER_CREATED) == 0)
1271 continue;
1272
1273 if (s == htab->elf.splt
1274 || s == htab->elf.sgot
1275 || s == htab->elf.sgotplt
5474d94f 1276 || s == htab->elf.sdynbss
3e1b4df8
JW
1277 || s == htab->elf.sdynrelro
1278 || s == htab->sdyntdata)
e23eba97
NC
1279 {
1280 /* Strip this section if we don't need it; see the
1281 comment below. */
1282 }
1283 else if (strncmp (s->name, ".rela", 5) == 0)
1284 {
1285 if (s->size != 0)
1286 {
1287 /* We use the reloc_count field as a counter if we need
1288 to copy relocs into the output file. */
1289 s->reloc_count = 0;
1290 }
1291 }
1292 else
1293 {
1294 /* It's not one of our sections. */
1295 continue;
1296 }
1297
1298 if (s->size == 0)
1299 {
1300 /* If we don't need this section, strip it from the
1301 output file. This is mostly to handle .rela.bss and
1302 .rela.plt. We must create both sections in
1303 create_dynamic_sections, because they must be created
1304 before the linker maps input sections to output
1305 sections. The linker does that before
1306 adjust_dynamic_symbol is called, and it is that
1307 function which decides whether anything needs to go
1308 into these sections. */
1309 s->flags |= SEC_EXCLUDE;
1310 continue;
1311 }
1312
1313 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1314 continue;
1315
1316 /* Allocate memory for the section contents. Zero the memory
1317 for the benefit of .rela.plt, which has 4 unused entries
1318 at the beginning, and we don't want garbage. */
1319 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1320 if (s->contents == NULL)
1321 return FALSE;
1322 }
1323
1324 if (elf_hash_table (info)->dynamic_sections_created)
1325 {
1326 /* Add some entries to the .dynamic section. We fill in the
1327 values later, in riscv_elf_finish_dynamic_sections, but we
1328 must add the entries now so that we get the correct size for
1329 the .dynamic section. The DT_DEBUG entry is filled in by the
1330 dynamic linker and used by the debugger. */
1331#define add_dynamic_entry(TAG, VAL) \
1332 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1333
1334 if (bfd_link_executable (info))
1335 {
1336 if (!add_dynamic_entry (DT_DEBUG, 0))
1337 return FALSE;
1338 }
1339
1340 if (htab->elf.srelplt->size != 0)
1341 {
1342 if (!add_dynamic_entry (DT_PLTGOT, 0)
1343 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1344 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1345 || !add_dynamic_entry (DT_JMPREL, 0))
1346 return FALSE;
1347 }
1348
1349 if (!add_dynamic_entry (DT_RELA, 0)
1350 || !add_dynamic_entry (DT_RELASZ, 0)
1351 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1352 return FALSE;
1353
1354 /* If any dynamic relocs apply to a read-only section,
1355 then we need a DT_TEXTREL entry. */
1356 if ((info->flags & DF_TEXTREL) == 0)
63c1f59d 1357 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
e23eba97
NC
1358
1359 if (info->flags & DF_TEXTREL)
1360 {
1361 if (!add_dynamic_entry (DT_TEXTREL, 0))
1362 return FALSE;
1363 }
1364 }
1365#undef add_dynamic_entry
1366
1367 return TRUE;
1368}
1369
1370#define TP_OFFSET 0
1371#define DTP_OFFSET 0x800
1372
1373/* Return the relocation value for a TLS dtp-relative reloc. */
1374
1375static bfd_vma
1376dtpoff (struct bfd_link_info *info, bfd_vma address)
1377{
1378 /* If tls_sec is NULL, we should have signalled an error already. */
1379 if (elf_hash_table (info)->tls_sec == NULL)
1380 return 0;
1381 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1382}
1383
1384/* Return the relocation value for a static TLS tp-relative relocation. */
1385
1386static bfd_vma
1387tpoff (struct bfd_link_info *info, bfd_vma address)
1388{
1389 /* If tls_sec is NULL, we should have signalled an error already. */
1390 if (elf_hash_table (info)->tls_sec == NULL)
1391 return 0;
1392 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1393}
1394
1395/* Return the global pointer's value, or 0 if it is not in use. */
1396
1397static bfd_vma
1398riscv_global_pointer_value (struct bfd_link_info *info)
1399{
1400 struct bfd_link_hash_entry *h;
1401
b5292032 1402 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
e23eba97
NC
1403 if (h == NULL || h->type != bfd_link_hash_defined)
1404 return 0;
1405
1406 return h->u.def.value + sec_addr (h->u.def.section);
1407}
1408
1409/* Emplace a static relocation. */
1410
1411static bfd_reloc_status_type
1412perform_relocation (const reloc_howto_type *howto,
1413 const Elf_Internal_Rela *rel,
1414 bfd_vma value,
1415 asection *input_section,
1416 bfd *input_bfd,
1417 bfd_byte *contents)
1418{
1419 if (howto->pc_relative)
1420 value -= sec_addr (input_section) + rel->r_offset;
1421 value += rel->r_addend;
1422
1423 switch (ELFNN_R_TYPE (rel->r_info))
1424 {
1425 case R_RISCV_HI20:
1426 case R_RISCV_TPREL_HI20:
1427 case R_RISCV_PCREL_HI20:
1428 case R_RISCV_GOT_HI20:
1429 case R_RISCV_TLS_GOT_HI20:
1430 case R_RISCV_TLS_GD_HI20:
1431 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1432 return bfd_reloc_overflow;
1433 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1434 break;
1435
1436 case R_RISCV_LO12_I:
1437 case R_RISCV_GPREL_I:
1438 case R_RISCV_TPREL_LO12_I:
45f76423 1439 case R_RISCV_TPREL_I:
e23eba97
NC
1440 case R_RISCV_PCREL_LO12_I:
1441 value = ENCODE_ITYPE_IMM (value);
1442 break;
1443
1444 case R_RISCV_LO12_S:
1445 case R_RISCV_GPREL_S:
1446 case R_RISCV_TPREL_LO12_S:
45f76423 1447 case R_RISCV_TPREL_S:
e23eba97
NC
1448 case R_RISCV_PCREL_LO12_S:
1449 value = ENCODE_STYPE_IMM (value);
1450 break;
1451
1452 case R_RISCV_CALL:
1453 case R_RISCV_CALL_PLT:
1454 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1455 return bfd_reloc_overflow;
1456 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1457 | (ENCODE_ITYPE_IMM (value) << 32);
1458 break;
1459
1460 case R_RISCV_JAL:
1461 if (!VALID_UJTYPE_IMM (value))
1462 return bfd_reloc_overflow;
1463 value = ENCODE_UJTYPE_IMM (value);
1464 break;
1465
1466 case R_RISCV_BRANCH:
1467 if (!VALID_SBTYPE_IMM (value))
1468 return bfd_reloc_overflow;
1469 value = ENCODE_SBTYPE_IMM (value);
1470 break;
1471
1472 case R_RISCV_RVC_BRANCH:
1473 if (!VALID_RVC_B_IMM (value))
1474 return bfd_reloc_overflow;
1475 value = ENCODE_RVC_B_IMM (value);
1476 break;
1477
1478 case R_RISCV_RVC_JUMP:
1479 if (!VALID_RVC_J_IMM (value))
1480 return bfd_reloc_overflow;
1481 value = ENCODE_RVC_J_IMM (value);
1482 break;
1483
1484 case R_RISCV_RVC_LUI:
1485 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1486 return bfd_reloc_overflow;
1487 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1488 break;
1489
1490 case R_RISCV_32:
1491 case R_RISCV_64:
1492 case R_RISCV_ADD8:
1493 case R_RISCV_ADD16:
1494 case R_RISCV_ADD32:
1495 case R_RISCV_ADD64:
45f76423 1496 case R_RISCV_SUB6:
e23eba97
NC
1497 case R_RISCV_SUB8:
1498 case R_RISCV_SUB16:
1499 case R_RISCV_SUB32:
1500 case R_RISCV_SUB64:
45f76423
AW
1501 case R_RISCV_SET6:
1502 case R_RISCV_SET8:
1503 case R_RISCV_SET16:
1504 case R_RISCV_SET32:
a6cbf936 1505 case R_RISCV_32_PCREL:
e23eba97
NC
1506 case R_RISCV_TLS_DTPREL32:
1507 case R_RISCV_TLS_DTPREL64:
1508 break;
1509
ff6f4d9b
PD
1510 case R_RISCV_DELETE:
1511 return bfd_reloc_ok;
1512
e23eba97
NC
1513 default:
1514 return bfd_reloc_notsupported;
1515 }
1516
1517 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1518 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1519 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1520
1521 return bfd_reloc_ok;
1522}
1523
1524/* Remember all PC-relative high-part relocs we've encountered to help us
1525 later resolve the corresponding low-part relocs. */
1526
1527typedef struct
1528{
1529 bfd_vma address;
1530 bfd_vma value;
1531} riscv_pcrel_hi_reloc;
1532
1533typedef struct riscv_pcrel_lo_reloc
1534{
07d6d2b8
AM
1535 asection * input_section;
1536 struct bfd_link_info * info;
1537 reloc_howto_type * howto;
1538 const Elf_Internal_Rela * reloc;
1539 bfd_vma addr;
1540 const char * name;
1541 bfd_byte * contents;
1542 struct riscv_pcrel_lo_reloc * next;
e23eba97
NC
1543} riscv_pcrel_lo_reloc;
1544
1545typedef struct
1546{
1547 htab_t hi_relocs;
1548 riscv_pcrel_lo_reloc *lo_relocs;
1549} riscv_pcrel_relocs;
1550
1551static hashval_t
1552riscv_pcrel_reloc_hash (const void *entry)
1553{
1554 const riscv_pcrel_hi_reloc *e = entry;
1555 return (hashval_t)(e->address >> 2);
1556}
1557
1558static bfd_boolean
1559riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1560{
1561 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1562 return e1->address == e2->address;
1563}
1564
1565static bfd_boolean
1566riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1567{
1568
1569 p->lo_relocs = NULL;
1570 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1571 riscv_pcrel_reloc_eq, free);
1572 return p->hi_relocs != NULL;
1573}
1574
1575static void
1576riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1577{
1578 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1579
1580 while (cur != NULL)
1581 {
1582 riscv_pcrel_lo_reloc *next = cur->next;
1583 free (cur);
1584 cur = next;
1585 }
1586
1587 htab_delete (p->hi_relocs);
1588}
1589
1590static bfd_boolean
b1308d2c
PD
1591riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1592 struct bfd_link_info *info,
1593 bfd_vma pc,
1594 bfd_vma addr,
1595 bfd_byte *contents,
1596 const reloc_howto_type *howto,
1597 bfd *input_bfd)
e23eba97 1598{
b1308d2c
PD
1599 /* We may need to reference low addreses in PC-relative modes even when the
1600 * PC is far away from these addresses. For example, undefweak references
1601 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1602 * addresses that we can link PC-relative programs at, the linker can't
1603 * actually relocate references to those symbols. In order to allow these
1604 * programs to work we simply convert the PC-relative auipc sequences to
1605 * 0-relative lui sequences. */
1606 if (bfd_link_pic (info))
1607 return FALSE;
1608
1609 /* If it's possible to reference the symbol using auipc we do so, as that's
1610 * more in the spirit of the PC-relative relocations we're processing. */
1611 bfd_vma offset = addr - pc;
1612 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1613 return FALSE;
1614
1615 /* If it's impossible to reference this with a LUI-based offset then don't
1616 * bother to convert it at all so users still see the PC-relative relocation
1617 * in the truncation message. */
1618 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1619 return FALSE;
1620
1621 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1622
1623 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1624 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1625 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1626 return TRUE;
1627}
1628
1629static bfd_boolean
1630riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1631 bfd_vma value, bfd_boolean absolute)
1632{
1633 bfd_vma offset = absolute ? value : value - addr;
1634 riscv_pcrel_hi_reloc entry = {addr, offset};
e23eba97
NC
1635 riscv_pcrel_hi_reloc **slot =
1636 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1637
1638 BFD_ASSERT (*slot == NULL);
1639 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1640 if (*slot == NULL)
1641 return FALSE;
1642 **slot = entry;
1643 return TRUE;
1644}
1645
1646static bfd_boolean
1647riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1648 asection *input_section,
1649 struct bfd_link_info *info,
1650 reloc_howto_type *howto,
1651 const Elf_Internal_Rela *reloc,
1652 bfd_vma addr,
1653 const char *name,
1654 bfd_byte *contents)
1655{
1656 riscv_pcrel_lo_reloc *entry;
1657 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1658 if (entry == NULL)
1659 return FALSE;
1660 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1661 name, contents, p->lo_relocs};
1662 p->lo_relocs = entry;
1663 return TRUE;
1664}
1665
1666static bfd_boolean
1667riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1668{
1669 riscv_pcrel_lo_reloc *r;
1670
1671 for (r = p->lo_relocs; r != NULL; r = r->next)
1672 {
1673 bfd *input_bfd = r->input_section->owner;
1674
1675 riscv_pcrel_hi_reloc search = {r->addr, 0};
1676 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
551703cf
JW
1677 if (entry == NULL
1678 /* Check for overflow into bit 11 when adding reloc addend. */
1679 || (! (entry->value & 0x800)
1680 && ((entry->value + r->reloc->r_addend) & 0x800)))
07d6d2b8 1681 {
551703cf
JW
1682 char *string = (entry == NULL
1683 ? "%pcrel_lo missing matching %pcrel_hi"
1684 : "%pcrel_lo overflow with an addend");
1685 (*r->info->callbacks->reloc_dangerous)
1686 (r->info, string, input_bfd, r->input_section, r->reloc->r_offset);
e23eba97 1687 return TRUE;
07d6d2b8 1688 }
e23eba97
NC
1689
1690 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1691 input_bfd, r->contents);
1692 }
1693
1694 return TRUE;
1695}
1696
1697/* Relocate a RISC-V ELF section.
1698
1699 The RELOCATE_SECTION function is called by the new ELF backend linker
1700 to handle the relocations for a section.
1701
1702 The relocs are always passed as Rela structures.
1703
1704 This function is responsible for adjusting the section contents as
1705 necessary, and (if generating a relocatable output file) adjusting
1706 the reloc addend as necessary.
1707
1708 This function does not have to worry about setting the reloc
1709 address or the reloc symbol index.
1710
1711 LOCAL_SYMS is a pointer to the swapped in local symbols.
1712
1713 LOCAL_SECTIONS is an array giving the section in the input file
1714 corresponding to the st_shndx field of each local symbol.
1715
1716 The global hash table entry for the global symbols can be found
1717 via elf_sym_hashes (input_bfd).
1718
1719 When generating relocatable output, this function must handle
1720 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1721 going to be the section symbol corresponding to the output
1722 section, which means that the addend must be adjusted
1723 accordingly. */
1724
1725static bfd_boolean
1726riscv_elf_relocate_section (bfd *output_bfd,
1727 struct bfd_link_info *info,
1728 bfd *input_bfd,
1729 asection *input_section,
1730 bfd_byte *contents,
1731 Elf_Internal_Rela *relocs,
1732 Elf_Internal_Sym *local_syms,
1733 asection **local_sections)
1734{
1735 Elf_Internal_Rela *rel;
1736 Elf_Internal_Rela *relend;
1737 riscv_pcrel_relocs pcrel_relocs;
1738 bfd_boolean ret = FALSE;
1739 asection *sreloc = elf_section_data (input_section)->sreloc;
1740 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1741 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1742 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1743 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
b1308d2c 1744 bfd_boolean absolute;
e23eba97
NC
1745
1746 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1747 return FALSE;
1748
1749 relend = relocs + input_section->reloc_count;
1750 for (rel = relocs; rel < relend; rel++)
1751 {
1752 unsigned long r_symndx;
1753 struct elf_link_hash_entry *h;
1754 Elf_Internal_Sym *sym;
1755 asection *sec;
1756 bfd_vma relocation;
1757 bfd_reloc_status_type r = bfd_reloc_ok;
1758 const char *name;
1759 bfd_vma off, ie_off;
1760 bfd_boolean unresolved_reloc, is_ie = FALSE;
1761 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1762 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
0aa13fee 1763 reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
e23eba97 1764 const char *msg = NULL;
6487709f 1765 bfd_boolean resolved_to_zero;
e23eba97 1766
f3185997
NC
1767 if (howto == NULL
1768 || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
e23eba97
NC
1769 continue;
1770
1771 /* This is a final link. */
1772 r_symndx = ELFNN_R_SYM (rel->r_info);
1773 h = NULL;
1774 sym = NULL;
1775 sec = NULL;
1776 unresolved_reloc = FALSE;
1777 if (r_symndx < symtab_hdr->sh_info)
1778 {
1779 sym = local_syms + r_symndx;
1780 sec = local_sections[r_symndx];
1781 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1782 }
1783 else
1784 {
1785 bfd_boolean warned, ignored;
1786
1787 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1788 r_symndx, symtab_hdr, sym_hashes,
1789 h, sec, relocation,
1790 unresolved_reloc, warned, ignored);
1791 if (warned)
1792 {
1793 /* To avoid generating warning messages about truncated
1794 relocations, set the relocation's address to be the same as
1795 the start of this section. */
1796 if (input_section->output_section != NULL)
1797 relocation = input_section->output_section->vma;
1798 else
1799 relocation = 0;
1800 }
1801 }
1802
1803 if (sec != NULL && discarded_section (sec))
1804 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1805 rel, 1, relend, howto, 0, contents);
1806
1807 if (bfd_link_relocatable (info))
1808 continue;
1809
1810 if (h != NULL)
1811 name = h->root.root.string;
1812 else
1813 {
1814 name = (bfd_elf_string_from_elf_section
1815 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1816 if (name == NULL || *name == '\0')
1817 name = bfd_section_name (input_bfd, sec);
1818 }
1819
6487709f
JW
1820 resolved_to_zero = (h != NULL
1821 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
1822
e23eba97
NC
1823 switch (r_type)
1824 {
1825 case R_RISCV_NONE:
45f76423 1826 case R_RISCV_RELAX:
e23eba97
NC
1827 case R_RISCV_TPREL_ADD:
1828 case R_RISCV_COPY:
1829 case R_RISCV_JUMP_SLOT:
1830 case R_RISCV_RELATIVE:
1831 /* These require nothing of us at all. */
1832 continue;
1833
1834 case R_RISCV_HI20:
1835 case R_RISCV_BRANCH:
1836 case R_RISCV_RVC_BRANCH:
1837 case R_RISCV_RVC_LUI:
1838 case R_RISCV_LO12_I:
1839 case R_RISCV_LO12_S:
45f76423
AW
1840 case R_RISCV_SET6:
1841 case R_RISCV_SET8:
1842 case R_RISCV_SET16:
1843 case R_RISCV_SET32:
a6cbf936 1844 case R_RISCV_32_PCREL:
ff6f4d9b 1845 case R_RISCV_DELETE:
e23eba97
NC
1846 /* These require no special handling beyond perform_relocation. */
1847 break;
1848
1849 case R_RISCV_GOT_HI20:
1850 if (h != NULL)
1851 {
1852 bfd_boolean dyn, pic;
1853
1854 off = h->got.offset;
1855 BFD_ASSERT (off != (bfd_vma) -1);
1856 dyn = elf_hash_table (info)->dynamic_sections_created;
1857 pic = bfd_link_pic (info);
1858
1859 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1860 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1861 {
1862 /* This is actually a static link, or it is a
1863 -Bsymbolic link and the symbol is defined
1864 locally, or the symbol was forced to be local
1865 because of a version file. We must initialize
1866 this entry in the global offset table. Since the
1867 offset must always be a multiple of the word size,
1868 we use the least significant bit to record whether
1869 we have initialized it already.
1870
1871 When doing a dynamic link, we create a .rela.got
1872 relocation entry to initialize the value. This
1873 is done in the finish_dynamic_symbol routine. */
1874 if ((off & 1) != 0)
1875 off &= ~1;
1876 else
1877 {
1878 bfd_put_NN (output_bfd, relocation,
1879 htab->elf.sgot->contents + off);
1880 h->got.offset |= 1;
1881 }
1882 }
1883 else
1884 unresolved_reloc = FALSE;
1885 }
1886 else
1887 {
1888 BFD_ASSERT (local_got_offsets != NULL
1889 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1890
1891 off = local_got_offsets[r_symndx];
1892
1893 /* The offset must always be a multiple of the word size.
1894 So, we can use the least significant bit to record
1895 whether we have already processed this entry. */
1896 if ((off & 1) != 0)
1897 off &= ~1;
1898 else
1899 {
1900 if (bfd_link_pic (info))
1901 {
1902 asection *s;
1903 Elf_Internal_Rela outrel;
1904
1905 /* We need to generate a R_RISCV_RELATIVE reloc
1906 for the dynamic linker. */
1907 s = htab->elf.srelgot;
1908 BFD_ASSERT (s != NULL);
1909
1910 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1911 outrel.r_info =
1912 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1913 outrel.r_addend = relocation;
1914 relocation = 0;
1915 riscv_elf_append_rela (output_bfd, s, &outrel);
1916 }
1917
1918 bfd_put_NN (output_bfd, relocation,
1919 htab->elf.sgot->contents + off);
1920 local_got_offsets[r_symndx] |= 1;
1921 }
1922 }
1923 relocation = sec_addr (htab->elf.sgot) + off;
b1308d2c
PD
1924 absolute = riscv_zero_pcrel_hi_reloc (rel,
1925 info,
1926 pc,
1927 relocation,
1928 contents,
1929 howto,
1930 input_bfd);
1931 r_type = ELFNN_R_TYPE (rel->r_info);
0aa13fee 1932 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
f3185997
NC
1933 if (howto == NULL)
1934 r = bfd_reloc_notsupported;
1935 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1936 relocation, absolute))
e23eba97
NC
1937 r = bfd_reloc_overflow;
1938 break;
1939
1940 case R_RISCV_ADD8:
1941 case R_RISCV_ADD16:
1942 case R_RISCV_ADD32:
1943 case R_RISCV_ADD64:
1944 {
1945 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1946 contents + rel->r_offset);
1947 relocation = old_value + relocation;
1948 }
1949 break;
1950
45f76423 1951 case R_RISCV_SUB6:
e23eba97
NC
1952 case R_RISCV_SUB8:
1953 case R_RISCV_SUB16:
1954 case R_RISCV_SUB32:
1955 case R_RISCV_SUB64:
1956 {
1957 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1958 contents + rel->r_offset);
1959 relocation = old_value - relocation;
1960 }
1961 break;
1962
e23eba97 1963 case R_RISCV_CALL:
cf7a5066
JW
1964 /* Handle a call to an undefined weak function. This won't be
1965 relaxed, so we have to handle it here. */
1966 if (h != NULL && h->root.type == bfd_link_hash_undefweak
1967 && h->plt.offset == MINUS_ONE)
1968 {
1969 /* We can use x0 as the base register. */
1970 bfd_vma insn = bfd_get_32 (input_bfd,
1971 contents + rel->r_offset + 4);
1972 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1973 bfd_put_32 (input_bfd, insn, contents + rel->r_offset + 4);
1974 /* Set the relocation value so that we get 0 after the pc
1975 relative adjustment. */
1976 relocation = sec_addr (input_section) + rel->r_offset;
1977 }
1978 /* Fall through. */
1979
1980 case R_RISCV_CALL_PLT:
e23eba97
NC
1981 case R_RISCV_JAL:
1982 case R_RISCV_RVC_JUMP:
1983 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
1984 {
1985 /* Refer to the PLT entry. */
1986 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
1987 unresolved_reloc = FALSE;
1988 }
1989 break;
1990
1991 case R_RISCV_TPREL_HI20:
1992 relocation = tpoff (info, relocation);
1993 break;
1994
1995 case R_RISCV_TPREL_LO12_I:
1996 case R_RISCV_TPREL_LO12_S:
45f76423
AW
1997 relocation = tpoff (info, relocation);
1998 break;
1999
2000 case R_RISCV_TPREL_I:
2001 case R_RISCV_TPREL_S:
e23eba97
NC
2002 relocation = tpoff (info, relocation);
2003 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
2004 {
2005 /* We can use tp as the base register. */
2006 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2007 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2008 insn |= X_TP << OP_SH_RS1;
2009 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2010 }
45f76423
AW
2011 else
2012 r = bfd_reloc_overflow;
e23eba97
NC
2013 break;
2014
2015 case R_RISCV_GPREL_I:
2016 case R_RISCV_GPREL_S:
2017 {
2018 bfd_vma gp = riscv_global_pointer_value (info);
2019 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
2020 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
2021 {
2022 /* We can use x0 or gp as the base register. */
2023 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2024 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2025 if (!x0_base)
2026 {
2027 rel->r_addend -= gp;
2028 insn |= X_GP << OP_SH_RS1;
2029 }
2030 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2031 }
2032 else
2033 r = bfd_reloc_overflow;
2034 break;
2035 }
2036
2037 case R_RISCV_PCREL_HI20:
b1308d2c
PD
2038 absolute = riscv_zero_pcrel_hi_reloc (rel,
2039 info,
2040 pc,
2041 relocation,
2042 contents,
2043 howto,
2044 input_bfd);
2045 r_type = ELFNN_R_TYPE (rel->r_info);
0aa13fee 2046 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
f3185997
NC
2047 if (howto == NULL)
2048 r = bfd_reloc_notsupported;
2049 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2050 relocation + rel->r_addend,
2051 absolute))
e23eba97
NC
2052 r = bfd_reloc_overflow;
2053 break;
2054
2055 case R_RISCV_PCREL_LO12_I:
2056 case R_RISCV_PCREL_LO12_S:
551703cf
JW
2057 /* We don't allow section symbols plus addends as the auipc address,
2058 because then riscv_relax_delete_bytes would have to search through
2059 all relocs to update these addends. This is also ambiguous, as
2060 we do allow offsets to be added to the target address, which are
2061 not to be used to find the auipc address. */
a9f5a551
JW
2062 if (((sym != NULL && (ELF_ST_TYPE (sym->st_info) == STT_SECTION))
2063 || (h != NULL && h->type == STT_SECTION))
2064 && rel->r_addend)
2a0d9853
JW
2065 {
2066 r = bfd_reloc_dangerous;
2067 break;
2068 }
2069
e23eba97
NC
2070 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2071 howto, rel, relocation, name,
2072 contents))
2073 continue;
2074 r = bfd_reloc_overflow;
2075 break;
2076
2077 case R_RISCV_TLS_DTPREL32:
2078 case R_RISCV_TLS_DTPREL64:
2079 relocation = dtpoff (info, relocation);
2080 break;
2081
2082 case R_RISCV_32:
2083 case R_RISCV_64:
2084 if ((input_section->flags & SEC_ALLOC) == 0)
2085 break;
2086
2087 if ((bfd_link_pic (info)
2088 && (h == NULL
6487709f
JW
2089 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2090 && !resolved_to_zero)
e23eba97
NC
2091 || h->root.type != bfd_link_hash_undefweak)
2092 && (! howto->pc_relative
2093 || !SYMBOL_CALLS_LOCAL (info, h)))
2094 || (!bfd_link_pic (info)
2095 && h != NULL
2096 && h->dynindx != -1
2097 && !h->non_got_ref
2098 && ((h->def_dynamic
2099 && !h->def_regular)
2100 || h->root.type == bfd_link_hash_undefweak
2101 || h->root.type == bfd_link_hash_undefined)))
2102 {
2103 Elf_Internal_Rela outrel;
2104 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2105
2106 /* When generating a shared object, these relocations
2107 are copied into the output file to be resolved at run
2108 time. */
2109
2110 outrel.r_offset =
2111 _bfd_elf_section_offset (output_bfd, info, input_section,
2112 rel->r_offset);
2113 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2114 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2115 outrel.r_offset += sec_addr (input_section);
2116
2117 if (skip_dynamic_relocation)
2118 memset (&outrel, 0, sizeof outrel);
2119 else if (h != NULL && h->dynindx != -1
2120 && !(bfd_link_pic (info)
2121 && SYMBOLIC_BIND (info, h)
2122 && h->def_regular))
2123 {
2124 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2125 outrel.r_addend = rel->r_addend;
2126 }
2127 else
2128 {
2129 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2130 outrel.r_addend = relocation + rel->r_addend;
2131 }
2132
2133 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2134 if (skip_static_relocation)
2135 continue;
2136 }
2137 break;
2138
2139 case R_RISCV_TLS_GOT_HI20:
2140 is_ie = TRUE;
2141 /* Fall through. */
2142
2143 case R_RISCV_TLS_GD_HI20:
2144 if (h != NULL)
2145 {
2146 off = h->got.offset;
2147 h->got.offset |= 1;
2148 }
2149 else
2150 {
2151 off = local_got_offsets[r_symndx];
2152 local_got_offsets[r_symndx] |= 1;
2153 }
2154
2155 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2156 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2157 /* If this symbol is referenced by both GD and IE TLS, the IE
2158 reference's GOT slot follows the GD reference's slots. */
2159 ie_off = 0;
2160 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2161 ie_off = 2 * GOT_ENTRY_SIZE;
2162
2163 if ((off & 1) != 0)
2164 off &= ~1;
2165 else
2166 {
2167 Elf_Internal_Rela outrel;
2168 int indx = 0;
2169 bfd_boolean need_relocs = FALSE;
2170
2171 if (htab->elf.srelgot == NULL)
2172 abort ();
2173
2174 if (h != NULL)
2175 {
2176 bfd_boolean dyn, pic;
2177 dyn = htab->elf.dynamic_sections_created;
2178 pic = bfd_link_pic (info);
2179
2180 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2181 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2182 indx = h->dynindx;
2183 }
2184
2185 /* The GOT entries have not been initialized yet. Do it
07d6d2b8 2186 now, and emit any relocations. */
e23eba97
NC
2187 if ((bfd_link_pic (info) || indx != 0)
2188 && (h == NULL
2189 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2190 || h->root.type != bfd_link_hash_undefweak))
2191 need_relocs = TRUE;
2192
2193 if (tls_type & GOT_TLS_GD)
2194 {
2195 if (need_relocs)
2196 {
2197 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2198 outrel.r_addend = 0;
2199 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2200 bfd_put_NN (output_bfd, 0,
2201 htab->elf.sgot->contents + off);
2202 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2203 if (indx == 0)
2204 {
2205 BFD_ASSERT (! unresolved_reloc);
2206 bfd_put_NN (output_bfd,
2207 dtpoff (info, relocation),
2208 (htab->elf.sgot->contents + off +
2209 RISCV_ELF_WORD_BYTES));
2210 }
2211 else
2212 {
2213 bfd_put_NN (output_bfd, 0,
2214 (htab->elf.sgot->contents + off +
2215 RISCV_ELF_WORD_BYTES));
2216 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2217 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2218 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2219 }
2220 }
2221 else
2222 {
2223 /* If we are not emitting relocations for a
2224 general dynamic reference, then we must be in a
2225 static link or an executable link with the
2226 symbol binding locally. Mark it as belonging
2227 to module 1, the executable. */
2228 bfd_put_NN (output_bfd, 1,
2229 htab->elf.sgot->contents + off);
2230 bfd_put_NN (output_bfd,
2231 dtpoff (info, relocation),
2232 (htab->elf.sgot->contents + off +
2233 RISCV_ELF_WORD_BYTES));
2234 }
2235 }
2236
2237 if (tls_type & GOT_TLS_IE)
2238 {
2239 if (need_relocs)
2240 {
2241 bfd_put_NN (output_bfd, 0,
2242 htab->elf.sgot->contents + off + ie_off);
2243 outrel.r_offset = sec_addr (htab->elf.sgot)
2244 + off + ie_off;
2245 outrel.r_addend = 0;
2246 if (indx == 0)
2247 outrel.r_addend = tpoff (info, relocation);
2248 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2249 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2250 }
2251 else
2252 {
2253 bfd_put_NN (output_bfd, tpoff (info, relocation),
2254 htab->elf.sgot->contents + off + ie_off);
2255 }
2256 }
2257 }
2258
2259 BFD_ASSERT (off < (bfd_vma) -2);
2260 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
b1308d2c
PD
2261 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2262 relocation, FALSE))
e23eba97
NC
2263 r = bfd_reloc_overflow;
2264 unresolved_reloc = FALSE;
2265 break;
2266
2267 default:
2268 r = bfd_reloc_notsupported;
2269 }
2270
2271 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2272 because such sections are not SEC_ALLOC and thus ld.so will
2273 not process them. */
2274 if (unresolved_reloc
2275 && !((input_section->flags & SEC_DEBUGGING) != 0
2276 && h->def_dynamic)
2277 && _bfd_elf_section_offset (output_bfd, info, input_section,
2278 rel->r_offset) != (bfd_vma) -1)
2279 {
2280 (*_bfd_error_handler)
2dcf00ce
AM
2281 (_("%pB(%pA+%#" PRIx64 "): "
2282 "unresolvable %s relocation against symbol `%s'"),
e23eba97
NC
2283 input_bfd,
2284 input_section,
2dcf00ce 2285 (uint64_t) rel->r_offset,
e23eba97
NC
2286 howto->name,
2287 h->root.root.string);
2288 continue;
2289 }
2290
2291 if (r == bfd_reloc_ok)
2292 r = perform_relocation (howto, rel, relocation, input_section,
2293 input_bfd, contents);
2294
2295 switch (r)
2296 {
2297 case bfd_reloc_ok:
2298 continue;
2299
2300 case bfd_reloc_overflow:
2301 info->callbacks->reloc_overflow
2302 (info, (h ? &h->root : NULL), name, howto->name,
2303 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2304 break;
2305
2306 case bfd_reloc_undefined:
2307 info->callbacks->undefined_symbol
2308 (info, name, input_bfd, input_section, rel->r_offset,
2309 TRUE);
2310 break;
2311
2312 case bfd_reloc_outofrange:
2a0d9853 2313 msg = _("%X%P: internal error: out of range error\n");
e23eba97
NC
2314 break;
2315
2316 case bfd_reloc_notsupported:
2a0d9853 2317 msg = _("%X%P: internal error: unsupported relocation error\n");
e23eba97
NC
2318 break;
2319
2320 case bfd_reloc_dangerous:
2a0d9853 2321 info->callbacks->reloc_dangerous
551703cf
JW
2322 (info, "%pcrel_lo section symbol with an addend", input_bfd,
2323 input_section, rel->r_offset);
e23eba97
NC
2324 break;
2325
2326 default:
2a0d9853 2327 msg = _("%X%P: internal error: unknown error\n");
e23eba97
NC
2328 break;
2329 }
2330
2331 if (msg)
2a0d9853
JW
2332 info->callbacks->einfo (msg);
2333
3f48fe4a
JW
2334 /* We already reported the error via a callback, so don't try to report
2335 it again by returning false. That leads to spurious errors. */
ed01220c 2336 ret = TRUE;
e23eba97
NC
2337 goto out;
2338 }
2339
2340 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2341out:
2342 riscv_free_pcrel_relocs (&pcrel_relocs);
2343 return ret;
2344}
2345
2346/* Finish up dynamic symbol handling. We set the contents of various
2347 dynamic sections here. */
2348
2349static bfd_boolean
2350riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2351 struct bfd_link_info *info,
2352 struct elf_link_hash_entry *h,
2353 Elf_Internal_Sym *sym)
2354{
2355 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2356 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2357
2358 if (h->plt.offset != (bfd_vma) -1)
2359 {
2360 /* We've decided to create a PLT entry for this symbol. */
2361 bfd_byte *loc;
2362 bfd_vma i, header_address, plt_idx, got_address;
2363 uint32_t plt_entry[PLT_ENTRY_INSNS];
2364 Elf_Internal_Rela rela;
2365
2366 BFD_ASSERT (h->dynindx != -1);
2367
2368 /* Calculate the address of the PLT header. */
2369 header_address = sec_addr (htab->elf.splt);
2370
2371 /* Calculate the index of the entry. */
2372 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2373
2374 /* Calculate the address of the .got.plt entry. */
2375 got_address = riscv_elf_got_plt_val (plt_idx, info);
2376
2377 /* Find out where the .plt entry should go. */
2378 loc = htab->elf.splt->contents + h->plt.offset;
2379
2380 /* Fill in the PLT entry itself. */
5ef23793
JW
2381 if (! riscv_make_plt_entry (output_bfd, got_address,
2382 header_address + h->plt.offset,
2383 plt_entry))
2384 return FALSE;
2385
e23eba97
NC
2386 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2387 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2388
2389 /* Fill in the initial value of the .got.plt entry. */
2390 loc = htab->elf.sgotplt->contents
2391 + (got_address - sec_addr (htab->elf.sgotplt));
2392 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2393
2394 /* Fill in the entry in the .rela.plt section. */
2395 rela.r_offset = got_address;
2396 rela.r_addend = 0;
2397 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2398
2399 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2400 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2401
2402 if (!h->def_regular)
2403 {
2404 /* Mark the symbol as undefined, rather than as defined in
2405 the .plt section. Leave the value alone. */
2406 sym->st_shndx = SHN_UNDEF;
2407 /* If the symbol is weak, we do need to clear the value.
2408 Otherwise, the PLT entry would provide a definition for
2409 the symbol even if the symbol wasn't defined anywhere,
2410 and so the symbol would never be NULL. */
2411 if (!h->ref_regular_nonweak)
2412 sym->st_value = 0;
2413 }
2414 }
2415
2416 if (h->got.offset != (bfd_vma) -1
6487709f
JW
2417 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE))
2418 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
e23eba97
NC
2419 {
2420 asection *sgot;
2421 asection *srela;
2422 Elf_Internal_Rela rela;
2423
2424 /* This symbol has an entry in the GOT. Set it up. */
2425
2426 sgot = htab->elf.sgot;
2427 srela = htab->elf.srelgot;
2428 BFD_ASSERT (sgot != NULL && srela != NULL);
2429
2430 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2431
25eb8346
JW
2432 /* If this is a local symbol reference, we just want to emit a RELATIVE
2433 reloc. This can happen if it is a -Bsymbolic link, or a pie link, or
e23eba97
NC
2434 the symbol was forced to be local because of a version file.
2435 The entry in the global offset table will already have been
2436 initialized in the relocate_section function. */
2437 if (bfd_link_pic (info)
25eb8346 2438 && SYMBOL_REFERENCES_LOCAL (info, h))
e23eba97 2439 {
25eb8346 2440 BFD_ASSERT((h->got.offset & 1) != 0);
e23eba97
NC
2441 asection *sec = h->root.u.def.section;
2442 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2443 rela.r_addend = (h->root.u.def.value
2444 + sec->output_section->vma
2445 + sec->output_offset);
2446 }
2447 else
2448 {
25eb8346 2449 BFD_ASSERT((h->got.offset & 1) == 0);
e23eba97
NC
2450 BFD_ASSERT (h->dynindx != -1);
2451 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2452 rela.r_addend = 0;
2453 }
2454
2455 bfd_put_NN (output_bfd, 0,
2456 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2457 riscv_elf_append_rela (output_bfd, srela, &rela);
2458 }
2459
2460 if (h->needs_copy)
2461 {
2462 Elf_Internal_Rela rela;
5474d94f 2463 asection *s;
e23eba97
NC
2464
2465 /* This symbols needs a copy reloc. Set it up. */
2466 BFD_ASSERT (h->dynindx != -1);
2467
2468 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2469 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2470 rela.r_addend = 0;
afbf7e8e 2471 if (h->root.u.def.section == htab->elf.sdynrelro)
5474d94f
AM
2472 s = htab->elf.sreldynrelro;
2473 else
2474 s = htab->elf.srelbss;
2475 riscv_elf_append_rela (output_bfd, s, &rela);
e23eba97
NC
2476 }
2477
2478 /* Mark some specially defined symbols as absolute. */
2479 if (h == htab->elf.hdynamic
2480 || (h == htab->elf.hgot || h == htab->elf.hplt))
2481 sym->st_shndx = SHN_ABS;
2482
2483 return TRUE;
2484}
2485
2486/* Finish up the dynamic sections. */
2487
2488static bfd_boolean
2489riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2490 bfd *dynobj, asection *sdyn)
2491{
2492 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2493 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2494 size_t dynsize = bed->s->sizeof_dyn;
2495 bfd_byte *dyncon, *dynconend;
2496
2497 dynconend = sdyn->contents + sdyn->size;
2498 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2499 {
2500 Elf_Internal_Dyn dyn;
2501 asection *s;
2502
2503 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2504
2505 switch (dyn.d_tag)
2506 {
2507 case DT_PLTGOT:
2508 s = htab->elf.sgotplt;
2509 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2510 break;
2511 case DT_JMPREL:
2512 s = htab->elf.srelplt;
2513 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2514 break;
2515 case DT_PLTRELSZ:
2516 s = htab->elf.srelplt;
2517 dyn.d_un.d_val = s->size;
2518 break;
2519 default:
2520 continue;
2521 }
2522
2523 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2524 }
2525 return TRUE;
2526}
2527
2528static bfd_boolean
2529riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2530 struct bfd_link_info *info)
2531{
2532 bfd *dynobj;
2533 asection *sdyn;
2534 struct riscv_elf_link_hash_table *htab;
2535
2536 htab = riscv_elf_hash_table (info);
2537 BFD_ASSERT (htab != NULL);
2538 dynobj = htab->elf.dynobj;
2539
2540 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2541
2542 if (elf_hash_table (info)->dynamic_sections_created)
2543 {
2544 asection *splt;
2545 bfd_boolean ret;
2546
2547 splt = htab->elf.splt;
2548 BFD_ASSERT (splt != NULL && sdyn != NULL);
2549
2550 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2551
535b785f 2552 if (!ret)
e23eba97
NC
2553 return ret;
2554
2555 /* Fill in the head and tail entries in the procedure linkage table. */
2556 if (splt->size > 0)
2557 {
2558 int i;
2559 uint32_t plt_header[PLT_HEADER_INSNS];
5ef23793
JW
2560 ret = riscv_make_plt_header (output_bfd,
2561 sec_addr (htab->elf.sgotplt),
2562 sec_addr (splt), plt_header);
2563 if (!ret)
2564 return ret;
e23eba97
NC
2565
2566 for (i = 0; i < PLT_HEADER_INSNS; i++)
2567 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
e23eba97 2568
cc162427
AW
2569 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2570 = PLT_ENTRY_SIZE;
2571 }
e23eba97
NC
2572 }
2573
2574 if (htab->elf.sgotplt)
2575 {
2576 asection *output_section = htab->elf.sgotplt->output_section;
2577
2578 if (bfd_is_abs_section (output_section))
2579 {
2580 (*_bfd_error_handler)
871b3ab2 2581 (_("discarded output section: `%pA'"), htab->elf.sgotplt);
e23eba97
NC
2582 return FALSE;
2583 }
2584
2585 if (htab->elf.sgotplt->size > 0)
2586 {
2587 /* Write the first two entries in .got.plt, needed for the dynamic
2588 linker. */
2589 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2590 bfd_put_NN (output_bfd, (bfd_vma) 0,
2591 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2592 }
2593
2594 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2595 }
2596
2597 if (htab->elf.sgot)
2598 {
2599 asection *output_section = htab->elf.sgot->output_section;
2600
2601 if (htab->elf.sgot->size > 0)
2602 {
2603 /* Set the first entry in the global offset table to the address of
2604 the dynamic section. */
2605 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2606 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2607 }
2608
2609 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2610 }
2611
2612 return TRUE;
2613}
2614
2615/* Return address for Ith PLT stub in section PLT, for relocation REL
2616 or (bfd_vma) -1 if it should not be included. */
2617
2618static bfd_vma
2619riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2620 const arelent *rel ATTRIBUTE_UNUSED)
2621{
2622 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2623}
2624
2625static enum elf_reloc_type_class
2626riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2627 const asection *rel_sec ATTRIBUTE_UNUSED,
2628 const Elf_Internal_Rela *rela)
2629{
2630 switch (ELFNN_R_TYPE (rela->r_info))
2631 {
2632 case R_RISCV_RELATIVE:
2633 return reloc_class_relative;
2634 case R_RISCV_JUMP_SLOT:
2635 return reloc_class_plt;
2636 case R_RISCV_COPY:
2637 return reloc_class_copy;
2638 default:
2639 return reloc_class_normal;
2640 }
2641}
2642
0242af40
JW
2643/* Given the ELF header flags in FLAGS, it returns a string that describes the
2644 float ABI. */
2645
2646static const char *
2647riscv_float_abi_string (flagword flags)
2648{
2649 switch (flags & EF_RISCV_FLOAT_ABI)
2650 {
2651 case EF_RISCV_FLOAT_ABI_SOFT:
2652 return "soft-float";
2653 break;
2654 case EF_RISCV_FLOAT_ABI_SINGLE:
2655 return "single-float";
2656 break;
2657 case EF_RISCV_FLOAT_ABI_DOUBLE:
2658 return "double-float";
2659 break;
2660 case EF_RISCV_FLOAT_ABI_QUAD:
2661 return "quad-float";
2662 break;
2663 default:
2664 abort ();
2665 }
2666}
2667
7d7a7d7c
JW
2668/* The information of architecture attribute. */
2669static riscv_subset_list_t in_subsets;
2670static riscv_subset_list_t out_subsets;
2671static riscv_subset_list_t merged_subsets;
2672
2673/* Predicator for standard extension. */
2674
2675static bfd_boolean
2676riscv_std_ext_p (const char *name)
2677{
2678 return (strlen (name) == 1) && (name[0] != 'x') && (name[0] != 's');
2679}
2680
2681/* Predicator for non-standard extension. */
2682
2683static bfd_boolean
2684riscv_non_std_ext_p (const char *name)
2685{
2686 return (strlen (name) >= 2) && (name[0] == 'x');
2687}
2688
2689/* Predicator for standard supervisor extension. */
2690
2691static bfd_boolean
2692riscv_std_sv_ext_p (const char *name)
2693{
2694 return (strlen (name) >= 2) && (name[0] == 's') && (name[1] != 'x');
2695}
2696
2697/* Predicator for non-standard supervisor extension. */
2698
2699static bfd_boolean
2700riscv_non_std_sv_ext_p (const char *name)
2701{
2702 return (strlen (name) >= 3) && (name[0] == 's') && (name[1] == 'x');
2703}
2704
2705/* Error handler when version mis-match. */
2706
2707static void
2708riscv_version_mismatch (bfd *ibfd,
2709 struct riscv_subset_t *in,
2710 struct riscv_subset_t *out)
2711{
2712 _bfd_error_handler
acef8081 2713 (_("error: %pB: Mis-matched ISA version for '%s' extension. "
7d7a7d7c
JW
2714 "%d.%d vs %d.%d"),
2715 ibfd, in->name,
2716 in->major_version, in->minor_version,
2717 out->major_version, out->minor_version);
2718}
2719
2720/* Return true if subset is 'i' or 'e'. */
2721
2722static bfd_boolean
2723riscv_i_or_e_p (bfd *ibfd,
2724 const char *arch,
2725 struct riscv_subset_t *subset)
2726{
2727 if ((strcasecmp (subset->name, "e") != 0)
2728 && (strcasecmp (subset->name, "i") != 0))
2729 {
2730 _bfd_error_handler
acef8081
YC
2731 (_("error: %pB: corrupted ISA string '%s'. "
2732 "First letter should be 'i' or 'e' but got '%s'."),
7d7a7d7c
JW
2733 ibfd, arch, subset->name);
2734 return FALSE;
2735 }
2736 return TRUE;
2737}
2738
2739/* Merge standard extensions.
2740
2741 Return Value:
2742 Return FALSE if failed to merge.
2743
2744 Arguments:
2745 `bfd`: bfd handler.
2746 `in_arch`: Raw arch string for input object.
2747 `out_arch`: Raw arch string for output object.
2748 `pin`: subset list for input object, and it'll skip all merged subset after
2749 merge.
2750 `pout`: Like `pin`, but for output object. */
2751
2752static bfd_boolean
2753riscv_merge_std_ext (bfd *ibfd,
2754 const char *in_arch,
2755 const char *out_arch,
2756 struct riscv_subset_t **pin,
2757 struct riscv_subset_t **pout)
2758{
2759 const char *standard_exts = riscv_supported_std_ext ();
2760 const char *p;
2761 struct riscv_subset_t *in = *pin;
2762 struct riscv_subset_t *out = *pout;
2763
2764 /* First letter should be 'i' or 'e'. */
2765 if (!riscv_i_or_e_p (ibfd, in_arch, in))
2766 return FALSE;
2767
2768 if (!riscv_i_or_e_p (ibfd, out_arch, out))
2769 return FALSE;
2770
2771 if (in->name[0] != out->name[0])
2772 {
2773 /* TODO: We might allow merge 'i' with 'e'. */
2774 _bfd_error_handler
2775 (_("error: %pB: Mis-matched ISA string to merge '%s' and '%s'."),
2776 ibfd, in->name, out->name);
2777 return FALSE;
2778 }
2779 else if ((in->major_version != out->major_version) ||
2780 (in->minor_version != out->minor_version))
2781 {
2782 /* TODO: Allow different merge policy. */
2783 riscv_version_mismatch (ibfd, in, out);
2784 return FALSE;
2785 }
2786 else
2787 riscv_add_subset (&merged_subsets,
2788 in->name, in->major_version, in->minor_version);
2789
2790 in = in->next;
2791 out = out->next;
2792
2793 /* Handle standard extension first. */
2794 for (p = standard_exts; *p; ++p)
2795 {
2796 char find_ext[2] = {*p, '\0'};
2797 struct riscv_subset_t *find_in =
2798 riscv_lookup_subset (&in_subsets, find_ext);
2799 struct riscv_subset_t *find_out =
2800 riscv_lookup_subset (&out_subsets, find_ext);
2801
2802 if (find_in == NULL && find_out == NULL)
2803 continue;
2804
2805 /* Check version is same or not. */
2806 /* TODO: Allow different merge policy. */
2807 if ((find_in != NULL && find_out != NULL)
2808 && ((find_in->major_version != find_out->major_version)
2809 || (find_in->minor_version != find_out->minor_version)))
2810 {
2811 riscv_version_mismatch (ibfd, in, out);
2812 return FALSE;
2813 }
2814
2815 struct riscv_subset_t *merged = find_in ? find_in : find_out;
2816 riscv_add_subset (&merged_subsets, merged->name,
2817 merged->major_version, merged->minor_version);
2818 }
2819
2820 /* Skip all standard extensions. */
2821 while ((in != NULL) && riscv_std_ext_p (in->name)) in = in->next;
2822 while ((out != NULL) && riscv_std_ext_p (out->name)) out = out->next;
2823
2824 *pin = in;
2825 *pout = out;
2826
2827 return TRUE;
2828}
2829
2830/* Merge non-standard and supervisor extensions.
2831 Return Value:
2832 Return FALSE if failed to merge.
2833
2834 Arguments:
2835 `bfd`: bfd handler.
2836 `in_arch`: Raw arch string for input object.
2837 `out_arch`: Raw arch string for output object.
2838 `pin`: subset list for input object, and it'll skip all merged subset after
2839 merge.
2840 `pout`: Like `pin`, but for output object. */
2841
2842static bfd_boolean
2843riscv_merge_non_std_and_sv_ext (bfd *ibfd,
2844 riscv_subset_t **pin,
2845 riscv_subset_t **pout,
2846 bfd_boolean (*predicate_func) (const char *))
2847{
2848 riscv_subset_t *in = *pin;
2849 riscv_subset_t *out = *pout;
2850
2851 for (in = *pin; in != NULL && predicate_func (in->name); in = in->next)
2852 riscv_add_subset (&merged_subsets, in->name, in->major_version,
2853 in->minor_version);
2854
2855 for (out = *pout; out != NULL && predicate_func (out->name); out = out->next)
2856 {
2857 riscv_subset_t *find_ext =
2858 riscv_lookup_subset (&merged_subsets, out->name);
2859 if (find_ext != NULL)
2860 {
2861 /* Check version is same or not. */
2862 /* TODO: Allow different merge policy. */
2863 if ((find_ext->major_version != out->major_version)
2864 || (find_ext->minor_version != out->minor_version))
2865 {
2866 riscv_version_mismatch (ibfd, find_ext, out);
2867 return FALSE;
2868 }
2869 }
2870 else
2871 riscv_add_subset (&merged_subsets, out->name,
2872 out->major_version, out->minor_version);
2873 }
2874
2875 *pin = in;
2876 *pout = out;
2877 return TRUE;
2878}
2879
2880/* Merge Tag_RISCV_arch attribute. */
2881
2882static char *
2883riscv_merge_arch_attr_info (bfd *ibfd, char *in_arch, char *out_arch)
2884{
2885 riscv_subset_t *in, *out;
2886 char *merged_arch_str;
2887
2888 unsigned xlen_in, xlen_out;
2889 merged_subsets.head = NULL;
2890 merged_subsets.tail = NULL;
2891
2892 riscv_parse_subset_t rpe_in;
2893 riscv_parse_subset_t rpe_out;
2894
2895 rpe_in.subset_list = &in_subsets;
2896 rpe_in.error_handler = _bfd_error_handler;
2897 rpe_in.xlen = &xlen_in;
2898
2899 rpe_out.subset_list = &out_subsets;
2900 rpe_out.error_handler = _bfd_error_handler;
2901 rpe_out.xlen = &xlen_out;
2902
2903 if (in_arch == NULL && out_arch == NULL)
2904 return NULL;
2905
2906 if (in_arch == NULL && out_arch != NULL)
2907 return out_arch;
2908
2909 if (in_arch != NULL && out_arch == NULL)
2910 return in_arch;
2911
2912 /* Parse subset from arch string. */
2913 if (!riscv_parse_subset (&rpe_in, in_arch))
2914 return NULL;
2915
2916 if (!riscv_parse_subset (&rpe_out, out_arch))
2917 return NULL;
2918
2919 /* Checking XLEN. */
2920 if (xlen_out != xlen_in)
2921 {
2922 _bfd_error_handler
2923 (_("error: %pB: ISA string of input (%s) doesn't match "
2924 "output (%s)."), ibfd, in_arch, out_arch);
2925 return NULL;
2926 }
2927
2928 /* Merge subset list. */
2929 in = in_subsets.head;
2930 out = out_subsets.head;
2931
2932 /* Merge standard extension. */
2933 if (!riscv_merge_std_ext (ibfd, in_arch, out_arch, &in, &out))
2934 return NULL;
2935 /* Merge non-standard extension. */
2936 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_non_std_ext_p))
2937 return NULL;
2938 /* Merge standard supervisor extension. */
2939 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_std_sv_ext_p))
2940 return NULL;
2941 /* Merge non-standard supervisor extension. */
2942 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_non_std_sv_ext_p))
2943 return NULL;
2944
2945 if (xlen_in != xlen_out)
2946 {
2947 _bfd_error_handler
2948 (_("error: %pB: XLEN of input (%u) doesn't match "
2949 "output (%u)."), ibfd, xlen_in, xlen_out);
2950 return NULL;
2951 }
2952
2953 if (xlen_in != ARCH_SIZE)
2954 {
2955 _bfd_error_handler
acef8081 2956 (_("error: %pB: Unsupported XLEN (%u), you might be "
7d7a7d7c
JW
2957 "using wrong emulation."), ibfd, xlen_in);
2958 return NULL;
2959 }
2960
2961 merged_arch_str = riscv_arch_str (ARCH_SIZE, &merged_subsets);
2962
2963 /* Release the subset lists. */
2964 riscv_release_subset_list (&in_subsets);
2965 riscv_release_subset_list (&out_subsets);
2966 riscv_release_subset_list (&merged_subsets);
2967
2968 return merged_arch_str;
2969}
2970
2971/* Merge object attributes from IBFD into output_bfd of INFO.
2972 Raise an error if there are conflicting attributes. */
2973
2974static bfd_boolean
2975riscv_merge_attributes (bfd *ibfd, struct bfd_link_info *info)
2976{
2977 bfd *obfd = info->output_bfd;
2978 obj_attribute *in_attr;
2979 obj_attribute *out_attr;
2980 bfd_boolean result = TRUE;
2981 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
2982 unsigned int i;
2983
2984 /* Skip linker created files. */
2985 if (ibfd->flags & BFD_LINKER_CREATED)
2986 return TRUE;
2987
2988 /* Skip any input that doesn't have an attribute section.
2989 This enables to link object files without attribute section with
2990 any others. */
2991 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
2992 return TRUE;
2993
2994 if (!elf_known_obj_attributes_proc (obfd)[0].i)
2995 {
2996 /* This is the first object. Copy the attributes. */
2997 _bfd_elf_copy_obj_attributes (ibfd, obfd);
2998
2999 out_attr = elf_known_obj_attributes_proc (obfd);
3000
3001 /* Use the Tag_null value to indicate the attributes have been
3002 initialized. */
3003 out_attr[0].i = 1;
3004
3005 return TRUE;
3006 }
3007
3008 in_attr = elf_known_obj_attributes_proc (ibfd);
3009 out_attr = elf_known_obj_attributes_proc (obfd);
3010
3011 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
3012 {
3013 switch (i)
3014 {
3015 case Tag_RISCV_arch:
3016 if (!out_attr[Tag_RISCV_arch].s)
3017 out_attr[Tag_RISCV_arch].s = in_attr[Tag_RISCV_arch].s;
3018 else if (in_attr[Tag_RISCV_arch].s
3019 && out_attr[Tag_RISCV_arch].s)
3020 {
3021 /* Check arch compatible. */
3022 char *merged_arch =
3023 riscv_merge_arch_attr_info (ibfd,
3024 in_attr[Tag_RISCV_arch].s,
3025 out_attr[Tag_RISCV_arch].s);
3026 if (merged_arch == NULL)
3027 {
3028 result = FALSE;
3029 out_attr[Tag_RISCV_arch].s = "";
3030 }
3031 else
3032 out_attr[Tag_RISCV_arch].s = merged_arch;
3033 }
3034 break;
3035 case Tag_RISCV_priv_spec:
3036 case Tag_RISCV_priv_spec_minor:
3037 case Tag_RISCV_priv_spec_revision:
3038 if (out_attr[i].i != in_attr[i].i)
3039 {
3040 _bfd_error_handler
3041 (_("error: %pB: conflicting priv spec version "
3042 "(major/minor/revision)."), ibfd);
3043 result = FALSE;
3044 }
3045 break;
3046 case Tag_RISCV_unaligned_access:
3047 out_attr[i].i |= in_attr[i].i;
3048 break;
3049 case Tag_RISCV_stack_align:
3050 if (out_attr[i].i == 0)
3051 out_attr[i].i = in_attr[i].i;
3052 else if (in_attr[i].i != 0
3053 && out_attr[i].i != 0
3054 && out_attr[i].i != in_attr[i].i)
3055 {
3056 _bfd_error_handler
3057 (_("error: %pB use %u-byte stack aligned but the output "
3058 "use %u-byte stack aligned."),
3059 ibfd, in_attr[i].i, out_attr[i].i);
3060 result = FALSE;
3061 }
3062 break;
3063 default:
3064 result &= _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
3065 }
3066
3067 /* If out_attr was copied from in_attr then it won't have a type yet. */
3068 if (in_attr[i].type && !out_attr[i].type)
3069 out_attr[i].type = in_attr[i].type;
3070 }
3071
3072 /* Merge Tag_compatibility attributes and any common GNU ones. */
3073 if (!_bfd_elf_merge_object_attributes (ibfd, info))
3074 return FALSE;
3075
3076 /* Check for any attributes not known on RISC-V. */
3077 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
3078
3079 return result;
3080}
3081
e23eba97
NC
3082/* Merge backend specific data from an object file to the output
3083 object file when linking. */
3084
3085static bfd_boolean
3086_bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3087{
3088 bfd *obfd = info->output_bfd;
3089 flagword new_flags = elf_elfheader (ibfd)->e_flags;
3090 flagword old_flags = elf_elfheader (obfd)->e_flags;
3091
3092 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
3093 return TRUE;
3094
3095 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
3096 {
3097 (*_bfd_error_handler)
871b3ab2 3098 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
96b0927d
PD
3099 " target emulation `%s' does not match `%s'"),
3100 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
e23eba97
NC
3101 return FALSE;
3102 }
3103
3104 if (!_bfd_elf_merge_object_attributes (ibfd, info))
3105 return FALSE;
3106
7d7a7d7c
JW
3107 if (!riscv_merge_attributes (ibfd, info))
3108 return FALSE;
3109
e23eba97
NC
3110 if (! elf_flags_init (obfd))
3111 {
3112 elf_flags_init (obfd) = TRUE;
3113 elf_elfheader (obfd)->e_flags = new_flags;
3114 return TRUE;
3115 }
3116
2922d21d
AW
3117 /* Disallow linking different float ABIs. */
3118 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
e23eba97
NC
3119 {
3120 (*_bfd_error_handler)
0242af40
JW
3121 (_("%pB: can't link %s modules with %s modules"), ibfd,
3122 riscv_float_abi_string (new_flags),
3123 riscv_float_abi_string (old_flags));
e23eba97
NC
3124 goto fail;
3125 }
3126
7f999549
JW
3127 /* Disallow linking RVE and non-RVE. */
3128 if ((old_flags ^ new_flags) & EF_RISCV_RVE)
3129 {
3130 (*_bfd_error_handler)
3131 (_("%pB: can't link RVE with other target"), ibfd);
3132 goto fail;
3133 }
3134
e23eba97
NC
3135 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
3136 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
3137
3138 return TRUE;
3139
3140fail:
3141 bfd_set_error (bfd_error_bad_value);
3142 return FALSE;
3143}
3144
3145/* Delete some bytes from a section while relaxing. */
3146
3147static bfd_boolean
7f02625e
JW
3148riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count,
3149 struct bfd_link_info *link_info)
e23eba97
NC
3150{
3151 unsigned int i, symcount;
3152 bfd_vma toaddr = sec->size;
3153 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
3154 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3155 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
3156 struct bfd_elf_section_data *data = elf_section_data (sec);
3157 bfd_byte *contents = data->this_hdr.contents;
3158
3159 /* Actually delete the bytes. */
3160 sec->size -= count;
3161 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
3162
3163 /* Adjust the location of all of the relocs. Note that we need not
3164 adjust the addends, since all PC-relative references must be against
3165 symbols, which we will adjust below. */
3166 for (i = 0; i < sec->reloc_count; i++)
3167 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
3168 data->relocs[i].r_offset -= count;
3169
3170 /* Adjust the local symbols defined in this section. */
3171 for (i = 0; i < symtab_hdr->sh_info; i++)
3172 {
3173 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
3174 if (sym->st_shndx == sec_shndx)
3175 {
3176 /* If the symbol is in the range of memory we just moved, we
3177 have to adjust its value. */
3178 if (sym->st_value > addr && sym->st_value <= toaddr)
3179 sym->st_value -= count;
3180
3181 /* If the symbol *spans* the bytes we just deleted (i.e. its
3182 *end* is in the moved bytes but its *start* isn't), then we
788af978
JW
3183 must adjust its size.
3184
3185 This test needs to use the original value of st_value, otherwise
3186 we might accidentally decrease size when deleting bytes right
3187 before the symbol. But since deleted relocs can't span across
3188 symbols, we can't have both a st_value and a st_size decrease,
3189 so it is simpler to just use an else. */
3190 else if (sym->st_value <= addr
3191 && sym->st_value + sym->st_size > addr
3192 && sym->st_value + sym->st_size <= toaddr)
e23eba97
NC
3193 sym->st_size -= count;
3194 }
3195 }
3196
3197 /* Now adjust the global symbols defined in this section. */
3198 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
3199 - symtab_hdr->sh_info);
3200
3201 for (i = 0; i < symcount; i++)
3202 {
3203 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
3204
7f02625e
JW
3205 /* The '--wrap SYMBOL' option is causing a pain when the object file,
3206 containing the definition of __wrap_SYMBOL, includes a direct
3207 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
3208 the same symbol (which is __wrap_SYMBOL), but still exist as two
3209 different symbols in 'sym_hashes', we don't want to adjust
137b5cbd
JW
3210 the global symbol __wrap_SYMBOL twice. */
3211 /* The same problem occurs with symbols that are versioned_hidden, as
3212 foo becomes an alias for foo@BAR, and hence they need the same
3213 treatment. */
3214 if (link_info->wrap_hash != NULL
3215 || sym_hash->versioned == versioned_hidden)
7f02625e
JW
3216 {
3217 struct elf_link_hash_entry **cur_sym_hashes;
3218
3219 /* Loop only over the symbols which have already been checked. */
3220 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
3221 cur_sym_hashes++)
3222 {
3223 /* If the current symbol is identical to 'sym_hash', that means
3224 the symbol was already adjusted (or at least checked). */
3225 if (*cur_sym_hashes == sym_hash)
3226 break;
3227 }
3228 /* Don't adjust the symbol again. */
3229 if (cur_sym_hashes < &sym_hashes[i])
3230 continue;
3231 }
3232
e23eba97
NC
3233 if ((sym_hash->root.type == bfd_link_hash_defined
3234 || sym_hash->root.type == bfd_link_hash_defweak)
3235 && sym_hash->root.u.def.section == sec)
3236 {
3237 /* As above, adjust the value if needed. */
3238 if (sym_hash->root.u.def.value > addr
3239 && sym_hash->root.u.def.value <= toaddr)
3240 sym_hash->root.u.def.value -= count;
3241
3242 /* As above, adjust the size if needed. */
788af978
JW
3243 else if (sym_hash->root.u.def.value <= addr
3244 && sym_hash->root.u.def.value + sym_hash->size > addr
3245 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
e23eba97
NC
3246 sym_hash->size -= count;
3247 }
3248 }
3249
3250 return TRUE;
3251}
3252
9d06997a
PD
3253/* A second format for recording PC-relative hi relocations. This stores the
3254 information required to relax them to GP-relative addresses. */
3255
3256typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
3257struct riscv_pcgp_hi_reloc
3258{
3259 bfd_vma hi_sec_off;
3260 bfd_vma hi_addend;
3261 bfd_vma hi_addr;
3262 unsigned hi_sym;
3263 asection *sym_sec;
3264 riscv_pcgp_hi_reloc *next;
3265};
3266
3267typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
3268struct riscv_pcgp_lo_reloc
3269{
3270 bfd_vma hi_sec_off;
3271 riscv_pcgp_lo_reloc *next;
3272};
3273
3274typedef struct
3275{
3276 riscv_pcgp_hi_reloc *hi;
3277 riscv_pcgp_lo_reloc *lo;
3278} riscv_pcgp_relocs;
3279
5f9aecea
JW
3280/* Initialize the pcgp reloc info in P. */
3281
9d06997a
PD
3282static bfd_boolean
3283riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
3284{
3285 p->hi = NULL;
3286 p->lo = NULL;
3287 return TRUE;
3288}
3289
5f9aecea
JW
3290/* Free the pcgp reloc info in P. */
3291
9d06997a
PD
3292static void
3293riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
3294 bfd *abfd ATTRIBUTE_UNUSED,
3295 asection *sec ATTRIBUTE_UNUSED)
3296{
3297 riscv_pcgp_hi_reloc *c;
3298 riscv_pcgp_lo_reloc *l;
3299
3300 for (c = p->hi; c != NULL;)
3301 {
3302 riscv_pcgp_hi_reloc *next = c->next;
3303 free (c);
3304 c = next;
3305 }
3306
3307 for (l = p->lo; l != NULL;)
3308 {
3309 riscv_pcgp_lo_reloc *next = l->next;
3310 free (l);
3311 l = next;
3312 }
3313}
3314
5f9aecea
JW
3315/* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index.
3316 The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to
3317 relax the corresponding lo part reloc. */
3318
9d06997a
PD
3319static bfd_boolean
3320riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
3321 bfd_vma hi_addend, bfd_vma hi_addr,
3322 unsigned hi_sym, asection *sym_sec)
3323{
3324 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
3325 if (!new)
3326 return FALSE;
3327 new->hi_sec_off = hi_sec_off;
3328 new->hi_addend = hi_addend;
3329 new->hi_addr = hi_addr;
3330 new->hi_sym = hi_sym;
3331 new->sym_sec = sym_sec;
3332 new->next = p->hi;
3333 p->hi = new;
3334 return TRUE;
3335}
3336
5f9aecea
JW
3337/* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3338 This is used by a lo part reloc to find the corresponding hi part reloc. */
3339
9d06997a
PD
3340static riscv_pcgp_hi_reloc *
3341riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3342{
3343 riscv_pcgp_hi_reloc *c;
3344
3345 for (c = p->hi; c != NULL; c = c->next)
3346 if (c->hi_sec_off == hi_sec_off)
3347 return c;
3348 return NULL;
3349}
3350
5f9aecea
JW
3351/* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info.
3352 This is used to record relocs that can't be relaxed. */
9d06997a
PD
3353
3354static bfd_boolean
3355riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3356{
3357 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
3358 if (!new)
3359 return FALSE;
3360 new->hi_sec_off = hi_sec_off;
3361 new->next = p->lo;
3362 p->lo = new;
3363 return TRUE;
3364}
3365
5f9aecea
JW
3366/* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3367 This is used by a hi part reloc to find the corresponding lo part reloc. */
3368
9d06997a
PD
3369static bfd_boolean
3370riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3371{
3372 riscv_pcgp_lo_reloc *c;
3373
3374 for (c = p->lo; c != NULL; c = c->next)
3375 if (c->hi_sec_off == hi_sec_off)
3376 return TRUE;
3377 return FALSE;
3378}
3379
45f76423
AW
3380typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
3381 struct bfd_link_info *,
3382 Elf_Internal_Rela *,
9d06997a
PD
3383 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
3384 riscv_pcgp_relocs *);
45f76423 3385
e23eba97
NC
3386/* Relax AUIPC + JALR into JAL. */
3387
3388static bfd_boolean
3389_bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
3390 struct bfd_link_info *link_info,
3391 Elf_Internal_Rela *rel,
3392 bfd_vma symval,
45f76423
AW
3393 bfd_vma max_alignment,
3394 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3395 bfd_boolean *again,
3396 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3397{
3398 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3399 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
3400 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
3401 bfd_vma auipc, jalr;
3402 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3403
3404 /* If the call crosses section boundaries, an alignment directive could
3405 cause the PC-relative offset to later increase. */
3406 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
3407 foff += (foff < 0 ? -max_alignment : max_alignment);
3408
3409 /* See if this function call can be shortened. */
3410 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
3411 return TRUE;
3412
3413 /* Shorten the function call. */
3414 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
3415
3416 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
3417 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
3418 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
3419 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32;
3420
3421 if (rvc && (rd == 0 || rd == X_RA))
3422 {
3423 /* Relax to C.J[AL] rd, addr. */
3424 r_type = R_RISCV_RVC_JUMP;
3425 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
3426 len = 2;
3427 }
3428 else if (VALID_UJTYPE_IMM (foff))
3429 {
3430 /* Relax to JAL rd, addr. */
3431 r_type = R_RISCV_JAL;
3432 auipc = MATCH_JAL | (rd << OP_SH_RD);
3433 }
3434 else /* near_zero */
3435 {
3436 /* Relax to JALR rd, x0, addr. */
3437 r_type = R_RISCV_LO12_I;
3438 auipc = MATCH_JALR | (rd << OP_SH_RD);
3439 }
3440
3441 /* Replace the R_RISCV_CALL reloc. */
3442 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
3443 /* Replace the AUIPC. */
3444 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
3445
3446 /* Delete unnecessary JALR. */
3447 *again = TRUE;
7f02625e
JW
3448 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
3449 link_info);
e23eba97
NC
3450}
3451
3452/* Traverse all output sections and return the max alignment. */
3453
1d61f794 3454static bfd_vma
e23eba97
NC
3455_bfd_riscv_get_max_alignment (asection *sec)
3456{
3457 unsigned int max_alignment_power = 0;
3458 asection *o;
3459
3460 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
3461 {
3462 if (o->alignment_power > max_alignment_power)
3463 max_alignment_power = o->alignment_power;
3464 }
3465
1d61f794 3466 return (bfd_vma) 1 << max_alignment_power;
e23eba97
NC
3467}
3468
3469/* Relax non-PIC global variable references. */
3470
3471static bfd_boolean
3472_bfd_riscv_relax_lui (bfd *abfd,
3473 asection *sec,
3474 asection *sym_sec,
3475 struct bfd_link_info *link_info,
3476 Elf_Internal_Rela *rel,
3477 bfd_vma symval,
45f76423
AW
3478 bfd_vma max_alignment,
3479 bfd_vma reserve_size,
9d06997a
PD
3480 bfd_boolean *again,
3481 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3482{
3483 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3484 bfd_vma gp = riscv_global_pointer_value (link_info);
3485 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3486
3487 /* Mergeable symbols and code might later move out of range. */
3488 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3489 return TRUE;
3490
3491 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3492
d0f744f9
AW
3493 if (gp)
3494 {
3495 /* If gp and the symbol are in the same output section, then
3496 consider only that section's alignment. */
3497 struct bfd_link_hash_entry *h =
b5292032
PD
3498 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
3499 TRUE);
d0f744f9
AW
3500 if (h->u.def.section->output_section == sym_sec->output_section)
3501 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3502 }
3503
e23eba97
NC
3504 /* Is the reference in range of x0 or gp?
3505 Valid gp range conservatively because of alignment issue. */
3506 if (VALID_ITYPE_IMM (symval)
45f76423
AW
3507 || (symval >= gp
3508 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3509 || (symval < gp
3510 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
e23eba97
NC
3511 {
3512 unsigned sym = ELFNN_R_SYM (rel->r_info);
3513 switch (ELFNN_R_TYPE (rel->r_info))
3514 {
3515 case R_RISCV_LO12_I:
3516 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3517 return TRUE;
3518
3519 case R_RISCV_LO12_S:
3520 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3521 return TRUE;
3522
3523 case R_RISCV_HI20:
3524 /* We can delete the unnecessary LUI and reloc. */
3525 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3526 *again = TRUE;
7f02625e
JW
3527 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
3528 link_info);
e23eba97
NC
3529
3530 default:
3531 abort ();
3532 }
3533 }
3534
3535 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3536 account for this assuming page alignment at worst. */
3537 if (use_rvc
3538 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
3539 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
3540 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
3541 {
3342be5d 3542 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
e23eba97 3543 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
3342be5d
AW
3544 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
3545 if (rd == 0 || rd == X_SP)
e23eba97
NC
3546 return TRUE;
3547
3548 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
3549 bfd_put_32 (abfd, lui, contents + rel->r_offset);
3550
3551 /* Replace the R_RISCV_HI20 reloc. */
3552 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
3553
3554 *again = TRUE;
7f02625e
JW
3555 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
3556 link_info);
e23eba97
NC
3557 }
3558
3559 return TRUE;
3560}
3561
3562/* Relax non-PIC TLS references. */
3563
3564static bfd_boolean
3565_bfd_riscv_relax_tls_le (bfd *abfd,
3566 asection *sec,
3567 asection *sym_sec ATTRIBUTE_UNUSED,
3568 struct bfd_link_info *link_info,
3569 Elf_Internal_Rela *rel,
3570 bfd_vma symval,
45f76423
AW
3571 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3572 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3573 bfd_boolean *again,
3574 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3575{
3576 /* See if this symbol is in range of tp. */
3577 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3578 return TRUE;
3579
e23eba97 3580 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
45f76423
AW
3581 switch (ELFNN_R_TYPE (rel->r_info))
3582 {
3583 case R_RISCV_TPREL_LO12_I:
3584 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3585 return TRUE;
e23eba97 3586
45f76423
AW
3587 case R_RISCV_TPREL_LO12_S:
3588 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3589 return TRUE;
3590
3591 case R_RISCV_TPREL_HI20:
3592 case R_RISCV_TPREL_ADD:
3593 /* We can delete the unnecessary instruction and reloc. */
3594 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3595 *again = TRUE;
7f02625e 3596 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info);
45f76423
AW
3597
3598 default:
3599 abort ();
3600 }
e23eba97
NC
3601}
3602
3603/* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3604
3605static bfd_boolean
3606_bfd_riscv_relax_align (bfd *abfd, asection *sec,
9eb7b0ac 3607 asection *sym_sec,
7f02625e 3608 struct bfd_link_info *link_info,
e23eba97
NC
3609 Elf_Internal_Rela *rel,
3610 bfd_vma symval,
45f76423
AW
3611 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3612 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3613 bfd_boolean *again ATTRIBUTE_UNUSED,
3614 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3615{
3616 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3617 bfd_vma alignment = 1, pos;
3618 while (alignment <= rel->r_addend)
3619 alignment *= 2;
3620
3621 symval -= rel->r_addend;
3622 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3623 bfd_vma nop_bytes = aligned_addr - symval;
3624
3625 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3626 sec->sec_flg0 = TRUE;
3627
3628 /* Make sure there are enough NOPs to actually achieve the alignment. */
3629 if (rel->r_addend < nop_bytes)
9eb7b0ac 3630 {
f2b740ac
AM
3631 _bfd_error_handler
3632 (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment "
3633 "to %" PRId64 "-byte boundary, but only %" PRId64 " present"),
3634 abfd, sym_sec, (uint64_t) rel->r_offset,
3635 (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend);
9eb7b0ac
PD
3636 bfd_set_error (bfd_error_bad_value);
3637 return FALSE;
3638 }
e23eba97
NC
3639
3640 /* Delete the reloc. */
3641 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3642
3643 /* If the number of NOPs is already correct, there's nothing to do. */
3644 if (nop_bytes == rel->r_addend)
3645 return TRUE;
3646
3647 /* Write as many RISC-V NOPs as we need. */
3648 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3649 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3650
3651 /* Write a final RVC NOP if need be. */
3652 if (nop_bytes % 4 != 0)
3653 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3654
3655 /* Delete the excess bytes. */
3656 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
7f02625e 3657 rel->r_addend - nop_bytes, link_info);
e23eba97
NC
3658}
3659
ff6f4d9b
PD
3660/* Relax PC-relative references to GP-relative references. */
3661
9d06997a 3662static bfd_boolean
5f9aecea 3663_bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED,
9d06997a
PD
3664 asection *sec,
3665 asection *sym_sec,
3666 struct bfd_link_info *link_info,
3667 Elf_Internal_Rela *rel,
3668 bfd_vma symval,
3669 bfd_vma max_alignment,
3670 bfd_vma reserve_size,
3671 bfd_boolean *again ATTRIBUTE_UNUSED,
3672 riscv_pcgp_relocs *pcgp_relocs)
3673{
3674 bfd_vma gp = riscv_global_pointer_value (link_info);
3675
3676 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3677
3678 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3679 * actual target address. */
e65b1a78
MR
3680 riscv_pcgp_hi_reloc hi_reloc;
3681 memset (&hi_reloc, 0, sizeof (hi_reloc));
9d06997a
PD
3682 switch (ELFNN_R_TYPE (rel->r_info))
3683 {
3684 case R_RISCV_PCREL_LO12_I:
3685 case R_RISCV_PCREL_LO12_S:
3686 {
a05f27b6
JW
3687 /* If the %lo has an addend, it isn't for the label pointing at the
3688 hi part instruction, but rather for the symbol pointed at by the
3689 hi part instruction. So we must subtract it here for the lookup.
3690 It is still used below in the final symbol address. */
3691 bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend;
9d06997a 3692 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
a05f27b6 3693 hi_sec_off);
9d06997a
PD
3694 if (hi == NULL)
3695 {
a05f27b6 3696 riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off);
9d06997a
PD
3697 return TRUE;
3698 }
3699
3700 hi_reloc = *hi;
3701 symval = hi_reloc.hi_addr;
3702 sym_sec = hi_reloc.sym_sec;
9d06997a
PD
3703 }
3704 break;
3705
3706 case R_RISCV_PCREL_HI20:
3707 /* Mergeable symbols and code might later move out of range. */
3708 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3709 return TRUE;
3710
3711 /* If the cooresponding lo relocation has already been seen then it's not
3712 * safe to relax this relocation. */
3713 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
07d6d2b8 3714 return TRUE;
9d06997a
PD
3715
3716 break;
3717
3718 default:
3719 abort ();
3720 }
3721
3722 if (gp)
3723 {
3724 /* If gp and the symbol are in the same output section, then
3725 consider only that section's alignment. */
3726 struct bfd_link_hash_entry *h =
3727 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
3728 if (h->u.def.section->output_section == sym_sec->output_section)
3729 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3730 }
3731
3732 /* Is the reference in range of x0 or gp?
3733 Valid gp range conservatively because of alignment issue. */
3734 if (VALID_ITYPE_IMM (symval)
3735 || (symval >= gp
3736 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3737 || (symval < gp
3738 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3739 {
3740 unsigned sym = hi_reloc.hi_sym;
3741 switch (ELFNN_R_TYPE (rel->r_info))
3742 {
3743 case R_RISCV_PCREL_LO12_I:
3744 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3745 rel->r_addend += hi_reloc.hi_addend;
5f9aecea 3746 return TRUE;
9d06997a
PD
3747
3748 case R_RISCV_PCREL_LO12_S:
3749 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3750 rel->r_addend += hi_reloc.hi_addend;
5f9aecea 3751 return TRUE;
9d06997a
PD
3752
3753 case R_RISCV_PCREL_HI20:
07d6d2b8 3754 riscv_record_pcgp_hi_reloc (pcgp_relocs,
9d06997a
PD
3755 rel->r_offset,
3756 rel->r_addend,
3757 symval,
3758 ELFNN_R_SYM(rel->r_info),
3759 sym_sec);
3760 /* We can delete the unnecessary AUIPC and reloc. */
3761 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3762 rel->r_addend = 4;
5f9aecea 3763 return TRUE;
9d06997a
PD
3764
3765 default:
3766 abort ();
3767 }
3768 }
3769
3770 return TRUE;
3771}
3772
3773/* Relax PC-relative references to GP-relative references. */
3774
ff6f4d9b
PD
3775static bfd_boolean
3776_bfd_riscv_relax_delete (bfd *abfd,
3777 asection *sec,
3778 asection *sym_sec ATTRIBUTE_UNUSED,
7f02625e 3779 struct bfd_link_info *link_info,
ff6f4d9b
PD
3780 Elf_Internal_Rela *rel,
3781 bfd_vma symval ATTRIBUTE_UNUSED,
3782 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3783 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3784 bfd_boolean *again ATTRIBUTE_UNUSED,
3785 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
ff6f4d9b 3786{
7f02625e
JW
3787 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend,
3788 link_info))
ff6f4d9b
PD
3789 return FALSE;
3790 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3791 return TRUE;
3792}
3793
3794/* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3795 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3796 disabled, handles code alignment directives. */
e23eba97
NC
3797
3798static bfd_boolean
3799_bfd_riscv_relax_section (bfd *abfd, asection *sec,
3800 struct bfd_link_info *info,
3801 bfd_boolean *again)
3802{
3803 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3804 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3805 struct bfd_elf_section_data *data = elf_section_data (sec);
3806 Elf_Internal_Rela *relocs;
3807 bfd_boolean ret = FALSE;
3808 unsigned int i;
45f76423 3809 bfd_vma max_alignment, reserve_size = 0;
9d06997a 3810 riscv_pcgp_relocs pcgp_relocs;
e23eba97
NC
3811
3812 *again = FALSE;
3813
3814 if (bfd_link_relocatable (info)
3815 || sec->sec_flg0
3816 || (sec->flags & SEC_RELOC) == 0
3817 || sec->reloc_count == 0
3818 || (info->disable_target_specific_optimizations
3819 && info->relax_pass == 0))
3820 return TRUE;
3821
9d06997a
PD
3822 riscv_init_pcgp_relocs (&pcgp_relocs);
3823
e23eba97
NC
3824 /* Read this BFD's relocs if we haven't done so already. */
3825 if (data->relocs)
3826 relocs = data->relocs;
3827 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3828 info->keep_memory)))
3829 goto fail;
3830
fc3c5343
L
3831 if (htab)
3832 {
3833 max_alignment = htab->max_alignment;
3834 if (max_alignment == (bfd_vma) -1)
3835 {
3836 max_alignment = _bfd_riscv_get_max_alignment (sec);
3837 htab->max_alignment = max_alignment;
3838 }
3839 }
3840 else
3841 max_alignment = _bfd_riscv_get_max_alignment (sec);
e23eba97
NC
3842
3843 /* Examine and consider relaxing each reloc. */
3844 for (i = 0; i < sec->reloc_count; i++)
3845 {
3846 asection *sym_sec;
3847 Elf_Internal_Rela *rel = relocs + i;
45f76423 3848 relax_func_t relax_func;
e23eba97
NC
3849 int type = ELFNN_R_TYPE (rel->r_info);
3850 bfd_vma symval;
3851
ff6f4d9b 3852 relax_func = NULL;
e23eba97
NC
3853 if (info->relax_pass == 0)
3854 {
3855 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3856 relax_func = _bfd_riscv_relax_call;
3857 else if (type == R_RISCV_HI20
3858 || type == R_RISCV_LO12_I
3859 || type == R_RISCV_LO12_S)
3860 relax_func = _bfd_riscv_relax_lui;
9d06997a
PD
3861 else if (!bfd_link_pic(info)
3862 && (type == R_RISCV_PCREL_HI20
3863 || type == R_RISCV_PCREL_LO12_I
3864 || type == R_RISCV_PCREL_LO12_S))
3865 relax_func = _bfd_riscv_relax_pc;
45f76423
AW
3866 else if (type == R_RISCV_TPREL_HI20
3867 || type == R_RISCV_TPREL_ADD
3868 || type == R_RISCV_TPREL_LO12_I
3869 || type == R_RISCV_TPREL_LO12_S)
e23eba97 3870 relax_func = _bfd_riscv_relax_tls_le;
45f76423
AW
3871 else
3872 continue;
3873
3874 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3875 if (i == sec->reloc_count - 1
3876 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3877 || rel->r_offset != (rel + 1)->r_offset)
3878 continue;
3879
3880 /* Skip over the R_RISCV_RELAX. */
3881 i++;
e23eba97 3882 }
ff6f4d9b 3883 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
07d6d2b8 3884 relax_func = _bfd_riscv_relax_delete;
ff6f4d9b 3885 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
e23eba97 3886 relax_func = _bfd_riscv_relax_align;
45f76423 3887 else
e23eba97
NC
3888 continue;
3889
3890 data->relocs = relocs;
3891
3892 /* Read this BFD's contents if we haven't done so already. */
3893 if (!data->this_hdr.contents
3894 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3895 goto fail;
3896
3897 /* Read this BFD's symbols if we haven't done so already. */
3898 if (symtab_hdr->sh_info != 0
3899 && !symtab_hdr->contents
3900 && !(symtab_hdr->contents =
3901 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3902 symtab_hdr->sh_info,
3903 0, NULL, NULL, NULL)))
3904 goto fail;
3905
3906 /* Get the value of the symbol referred to by the reloc. */
3907 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3908 {
3909 /* A local symbol. */
3910 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3911 + ELFNN_R_SYM (rel->r_info));
45f76423
AW
3912 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3913 ? 0 : isym->st_size - rel->r_addend;
e23eba97
NC
3914
3915 if (isym->st_shndx == SHN_UNDEF)
3916 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
3917 else
3918 {
3919 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3920 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
09ca4b9d
JW
3921#if 0
3922 /* The purpose of this code is unknown. It breaks linker scripts
3923 for embedded development that place sections at address zero.
3924 This code is believed to be unnecessary. Disabling it but not
3925 yet removing it, in case something breaks. */
e23eba97
NC
3926 if (sec_addr (sym_sec) == 0)
3927 continue;
09ca4b9d 3928#endif
e23eba97
NC
3929 symval = sec_addr (sym_sec) + isym->st_value;
3930 }
3931 }
3932 else
3933 {
3934 unsigned long indx;
3935 struct elf_link_hash_entry *h;
3936
3937 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
3938 h = elf_sym_hashes (abfd)[indx];
3939
3940 while (h->root.type == bfd_link_hash_indirect
3941 || h->root.type == bfd_link_hash_warning)
3942 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3943
3944 if (h->plt.offset != MINUS_ONE)
3945 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3946 else if (h->root.u.def.section->output_section == NULL
3947 || (h->root.type != bfd_link_hash_defined
3948 && h->root.type != bfd_link_hash_defweak))
3949 continue;
3950 else
3951 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3952
45f76423
AW
3953 if (h->type != STT_FUNC)
3954 reserve_size =
3955 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
e23eba97
NC
3956 sym_sec = h->root.u.def.section;
3957 }
3958
3959 symval += rel->r_addend;
3960
3961 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
9d06997a
PD
3962 max_alignment, reserve_size, again,
3963 &pcgp_relocs))
e23eba97
NC
3964 goto fail;
3965 }
3966
3967 ret = TRUE;
3968
3969fail:
3970 if (relocs != data->relocs)
3971 free (relocs);
9d06997a 3972 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
e23eba97
NC
3973
3974 return ret;
3975}
3976
3977#if ARCH_SIZE == 32
3978# define PRSTATUS_SIZE 0 /* FIXME */
3979# define PRSTATUS_OFFSET_PR_CURSIG 12
3980# define PRSTATUS_OFFSET_PR_PID 24
3981# define PRSTATUS_OFFSET_PR_REG 72
3982# define ELF_GREGSET_T_SIZE 128
3983# define PRPSINFO_SIZE 128
3984# define PRPSINFO_OFFSET_PR_PID 16
3985# define PRPSINFO_OFFSET_PR_FNAME 32
3986# define PRPSINFO_OFFSET_PR_PSARGS 48
3987#else
3988# define PRSTATUS_SIZE 376
3989# define PRSTATUS_OFFSET_PR_CURSIG 12
3990# define PRSTATUS_OFFSET_PR_PID 32
3991# define PRSTATUS_OFFSET_PR_REG 112
3992# define ELF_GREGSET_T_SIZE 256
3993# define PRPSINFO_SIZE 136
3994# define PRPSINFO_OFFSET_PR_PID 24
3995# define PRPSINFO_OFFSET_PR_FNAME 40
3996# define PRPSINFO_OFFSET_PR_PSARGS 56
3997#endif
3998
3999/* Support for core dump NOTE sections. */
4000
4001static bfd_boolean
4002riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4003{
4004 switch (note->descsz)
4005 {
4006 default:
4007 return FALSE;
4008
4009 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
4010 /* pr_cursig */
4011 elf_tdata (abfd)->core->signal
4012 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
4013
4014 /* pr_pid */
4015 elf_tdata (abfd)->core->lwpid
4016 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
4017 break;
4018 }
4019
4020 /* Make a ".reg/999" section. */
4021 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
4022 note->descpos + PRSTATUS_OFFSET_PR_REG);
4023}
4024
4025static bfd_boolean
4026riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4027{
4028 switch (note->descsz)
4029 {
4030 default:
4031 return FALSE;
4032
4033 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
4034 /* pr_pid */
4035 elf_tdata (abfd)->core->pid
4036 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
4037
4038 /* pr_fname */
4039 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
4040 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
4041
4042 /* pr_psargs */
4043 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
4044 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
4045 break;
4046 }
4047
4048 /* Note that for some reason, a spurious space is tacked
4049 onto the end of the args in some (at least one anyway)
4050 implementations, so strip it off if it exists. */
4051
4052 {
4053 char *command = elf_tdata (abfd)->core->command;
4054 int n = strlen (command);
4055
4056 if (0 < n && command[n - 1] == ' ')
4057 command[n - 1] = '\0';
4058 }
4059
4060 return TRUE;
4061}
4062
640d6bfd
KLC
4063/* Set the right mach type. */
4064static bfd_boolean
4065riscv_elf_object_p (bfd *abfd)
4066{
4067 /* There are only two mach types in RISCV currently. */
4068 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
4069 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
4070 else
4071 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
4072
4073 return TRUE;
4074}
4075
2dc8dd17
JW
4076/* Determine whether an object attribute tag takes an integer, a
4077 string or both. */
4078
4079static int
4080riscv_elf_obj_attrs_arg_type (int tag)
4081{
4082 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
4083}
e23eba97
NC
4084
4085#define TARGET_LITTLE_SYM riscv_elfNN_vec
4086#define TARGET_LITTLE_NAME "elfNN-littleriscv"
4087
4088#define elf_backend_reloc_type_class riscv_reloc_type_class
4089
4090#define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
4091#define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
4092#define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
4093#define bfd_elfNN_bfd_merge_private_bfd_data \
4094 _bfd_riscv_elf_merge_private_bfd_data
4095
4096#define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
4097#define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
4098#define elf_backend_check_relocs riscv_elf_check_relocs
4099#define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
4100#define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
4101#define elf_backend_relocate_section riscv_elf_relocate_section
4102#define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
4103#define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
4104#define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
e23eba97 4105#define elf_backend_plt_sym_val riscv_elf_plt_sym_val
07d6d2b8
AM
4106#define elf_backend_grok_prstatus riscv_elf_grok_prstatus
4107#define elf_backend_grok_psinfo riscv_elf_grok_psinfo
4108#define elf_backend_object_p riscv_elf_object_p
e23eba97
NC
4109#define elf_info_to_howto_rel NULL
4110#define elf_info_to_howto riscv_info_to_howto_rela
4111#define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
4112
4113#define elf_backend_init_index_section _bfd_elf_init_1_index_section
4114
4115#define elf_backend_can_gc_sections 1
4116#define elf_backend_can_refcount 1
4117#define elf_backend_want_got_plt 1
4118#define elf_backend_plt_readonly 1
4119#define elf_backend_plt_alignment 4
4120#define elf_backend_want_plt_sym 1
4121#define elf_backend_got_header_size (ARCH_SIZE / 8)
5474d94f 4122#define elf_backend_want_dynrelro 1
e23eba97
NC
4123#define elf_backend_rela_normal 1
4124#define elf_backend_default_execstack 0
4125
2dc8dd17
JW
4126#undef elf_backend_obj_attrs_vendor
4127#define elf_backend_obj_attrs_vendor "riscv"
4128#undef elf_backend_obj_attrs_arg_type
4129#define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type
4130#undef elf_backend_obj_attrs_section_type
4131#define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES
4132#undef elf_backend_obj_attrs_section
4133#define elf_backend_obj_attrs_section ".riscv.attributes"
4134
e23eba97 4135#include "elfNN-target.h"