]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elfnn-riscv.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / bfd / elfnn-riscv.c
CommitLineData
e23eba97 1/* RISC-V-specific support for NN-bit ELF.
2571583a 2 Copyright (C) 2011-2017 Free Software Foundation, Inc.
e23eba97
NC
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23/* This file handles RISC-V ELF targets. */
24
25#include "sysdep.h"
26#include "bfd.h"
27#include "libbfd.h"
28#include "bfdlink.h"
29#include "genlink.h"
30#include "elf-bfd.h"
31#include "elfxx-riscv.h"
32#include "elf/riscv.h"
33#include "opcode/riscv.h"
34
35#define ARCH_SIZE NN
36
37#define MINUS_ONE ((bfd_vma)0 - 1)
38
39#define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
40
41#define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
42
43/* The name of the dynamic interpreter. This is put in the .interp
44 section. */
45
46#define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
47#define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
48
49#define ELF_ARCH bfd_arch_riscv
50#define ELF_TARGET_ID RISCV_ELF_DATA
51#define ELF_MACHINE_CODE EM_RISCV
52#define ELF_MAXPAGESIZE 0x1000
53#define ELF_COMMONPAGESIZE 0x1000
54
55/* The RISC-V linker needs to keep track of the number of relocs that it
56 decides to copy as dynamic relocs in check_relocs for each symbol.
57 This is so that it can later discard them if they are found to be
58 unnecessary. We store the information in a field extending the
59 regular ELF linker hash table. */
60
61struct riscv_elf_dyn_relocs
62{
63 struct riscv_elf_dyn_relocs *next;
64
65 /* The input section of the reloc. */
66 asection *sec;
67
68 /* Total number of relocs copied for the input section. */
69 bfd_size_type count;
70
71 /* Number of pc-relative relocs copied for the input section. */
72 bfd_size_type pc_count;
73};
74
75/* RISC-V ELF linker hash entry. */
76
77struct riscv_elf_link_hash_entry
78{
79 struct elf_link_hash_entry elf;
80
81 /* Track dynamic relocs copied for this symbol. */
82 struct riscv_elf_dyn_relocs *dyn_relocs;
83
84#define GOT_UNKNOWN 0
85#define GOT_NORMAL 1
86#define GOT_TLS_GD 2
87#define GOT_TLS_IE 4
88#define GOT_TLS_LE 8
89 char tls_type;
90};
91
92#define riscv_elf_hash_entry(ent) \
93 ((struct riscv_elf_link_hash_entry *)(ent))
94
95struct _bfd_riscv_elf_obj_tdata
96{
97 struct elf_obj_tdata root;
98
99 /* tls_type for each local got entry. */
100 char *local_got_tls_type;
101};
102
103#define _bfd_riscv_elf_tdata(abfd) \
104 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
105
106#define _bfd_riscv_elf_local_got_tls_type(abfd) \
107 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
108
109#define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
110 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
111 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
112
113#define is_riscv_elf(bfd) \
114 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
115 && elf_tdata (bfd) != NULL \
116 && elf_object_id (bfd) == RISCV_ELF_DATA)
117
118#include "elf/common.h"
119#include "elf/internal.h"
120
121struct riscv_elf_link_hash_table
122{
123 struct elf_link_hash_table elf;
124
125 /* Short-cuts to get to dynamic linker sections. */
e23eba97
NC
126 asection *sdyntdata;
127
128 /* Small local sym to section mapping cache. */
129 struct sym_cache sym_cache;
130};
131
132
133/* Get the RISC-V ELF linker hash table from a link_info structure. */
134#define riscv_elf_hash_table(p) \
135 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
136 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
137
138static void
139riscv_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
140 arelent *cache_ptr,
141 Elf_Internal_Rela *dst)
142{
143 cache_ptr->howto = riscv_elf_rtype_to_howto (ELFNN_R_TYPE (dst->r_info));
144}
145
146static void
147riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
148{
149 const struct elf_backend_data *bed;
150 bfd_byte *loc;
151
152 bed = get_elf_backend_data (abfd);
153 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
154 bed->s->swap_reloca_out (abfd, rel, loc);
155}
156
157/* PLT/GOT stuff. */
158
159#define PLT_HEADER_INSNS 8
160#define PLT_ENTRY_INSNS 4
161#define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
162#define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
163
164#define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
165
166#define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
167
168#define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
169
170static bfd_vma
171riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
172{
173 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
174 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
175}
176
177#if ARCH_SIZE == 32
178# define MATCH_LREG MATCH_LW
179#else
180# define MATCH_LREG MATCH_LD
181#endif
182
183/* Generate a PLT header. */
184
185static void
186riscv_make_plt_header (bfd_vma gotplt_addr, bfd_vma addr, uint32_t *entry)
187{
188 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
189 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
190
191 /* auipc t2, %hi(.got.plt)
192 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
193 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
194 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
195 addi t0, t2, %lo(.got.plt) # &.got.plt
196 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
197 l[w|d] t0, PTRSIZE(t0) # link map
198 jr t3 */
199
200 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
201 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
202 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
203 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
204 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
205 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
206 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
207 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
208}
209
210/* Generate a PLT entry. */
211
212static void
213riscv_make_plt_entry (bfd_vma got, bfd_vma addr, uint32_t *entry)
214{
215 /* auipc t3, %hi(.got.plt entry)
216 l[w|d] t3, %lo(.got.plt entry)(t3)
217 jalr t1, t3
218 nop */
219
220 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
1d65abb5 221 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
e23eba97
NC
222 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
223 entry[3] = RISCV_NOP;
224}
225
226/* Create an entry in an RISC-V ELF linker hash table. */
227
228static struct bfd_hash_entry *
229link_hash_newfunc (struct bfd_hash_entry *entry,
230 struct bfd_hash_table *table, const char *string)
231{
232 /* Allocate the structure if it has not already been allocated by a
233 subclass. */
234 if (entry == NULL)
235 {
236 entry =
237 bfd_hash_allocate (table,
238 sizeof (struct riscv_elf_link_hash_entry));
239 if (entry == NULL)
240 return entry;
241 }
242
243 /* Call the allocation method of the superclass. */
244 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
245 if (entry != NULL)
246 {
247 struct riscv_elf_link_hash_entry *eh;
248
249 eh = (struct riscv_elf_link_hash_entry *) entry;
250 eh->dyn_relocs = NULL;
251 eh->tls_type = GOT_UNKNOWN;
252 }
253
254 return entry;
255}
256
257/* Create a RISC-V ELF linker hash table. */
258
259static struct bfd_link_hash_table *
260riscv_elf_link_hash_table_create (bfd *abfd)
261{
262 struct riscv_elf_link_hash_table *ret;
263 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
264
265 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
266 if (ret == NULL)
267 return NULL;
268
269 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
270 sizeof (struct riscv_elf_link_hash_entry),
271 RISCV_ELF_DATA))
272 {
273 free (ret);
274 return NULL;
275 }
276
277 return &ret->elf.root;
278}
279
280/* Create the .got section. */
281
282static bfd_boolean
283riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
284{
285 flagword flags;
286 asection *s, *s_got;
287 struct elf_link_hash_entry *h;
288 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
289 struct elf_link_hash_table *htab = elf_hash_table (info);
290
291 /* This function may be called more than once. */
ce558b89 292 if (htab->sgot != NULL)
e23eba97
NC
293 return TRUE;
294
295 flags = bed->dynamic_sec_flags;
296
297 s = bfd_make_section_anyway_with_flags (abfd,
298 (bed->rela_plts_and_copies_p
299 ? ".rela.got" : ".rel.got"),
300 (bed->dynamic_sec_flags
301 | SEC_READONLY));
302 if (s == NULL
303 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
304 return FALSE;
305 htab->srelgot = s;
306
307 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
308 if (s == NULL
309 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
310 return FALSE;
311 htab->sgot = s;
312
313 /* The first bit of the global offset table is the header. */
314 s->size += bed->got_header_size;
315
316 if (bed->want_got_plt)
317 {
318 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
319 if (s == NULL
320 || !bfd_set_section_alignment (abfd, s,
321 bed->s->log_file_align))
322 return FALSE;
323 htab->sgotplt = s;
324
325 /* Reserve room for the header. */
326 s->size += GOTPLT_HEADER_SIZE;
327 }
328
329 if (bed->want_got_sym)
330 {
331 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
332 section. We don't do this in the linker script because we don't want
333 to define the symbol if we are not creating a global offset
334 table. */
335 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
336 "_GLOBAL_OFFSET_TABLE_");
337 elf_hash_table (info)->hgot = h;
338 if (h == NULL)
339 return FALSE;
340 }
341
342 return TRUE;
343}
344
345/* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
346 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
347 hash table. */
348
349static bfd_boolean
350riscv_elf_create_dynamic_sections (bfd *dynobj,
351 struct bfd_link_info *info)
352{
353 struct riscv_elf_link_hash_table *htab;
354
355 htab = riscv_elf_hash_table (info);
356 BFD_ASSERT (htab != NULL);
357
358 if (!riscv_elf_create_got_section (dynobj, info))
359 return FALSE;
360
361 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
362 return FALSE;
363
e23eba97
NC
364 if (!bfd_link_pic (info))
365 {
e23eba97
NC
366 htab->sdyntdata =
367 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
368 SEC_ALLOC | SEC_THREAD_LOCAL);
369 }
370
9d19e4fd
AM
371 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
372 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
e23eba97
NC
373 abort ();
374
375 return TRUE;
376}
377
378/* Copy the extra info we tack onto an elf_link_hash_entry. */
379
380static void
381riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
382 struct elf_link_hash_entry *dir,
383 struct elf_link_hash_entry *ind)
384{
385 struct riscv_elf_link_hash_entry *edir, *eind;
386
387 edir = (struct riscv_elf_link_hash_entry *) dir;
388 eind = (struct riscv_elf_link_hash_entry *) ind;
389
390 if (eind->dyn_relocs != NULL)
391 {
392 if (edir->dyn_relocs != NULL)
393 {
394 struct riscv_elf_dyn_relocs **pp;
395 struct riscv_elf_dyn_relocs *p;
396
397 /* Add reloc counts against the indirect sym to the direct sym
398 list. Merge any entries against the same section. */
399 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
400 {
401 struct riscv_elf_dyn_relocs *q;
402
403 for (q = edir->dyn_relocs; q != NULL; q = q->next)
404 if (q->sec == p->sec)
405 {
406 q->pc_count += p->pc_count;
407 q->count += p->count;
408 *pp = p->next;
409 break;
410 }
411 if (q == NULL)
412 pp = &p->next;
413 }
414 *pp = edir->dyn_relocs;
415 }
416
417 edir->dyn_relocs = eind->dyn_relocs;
418 eind->dyn_relocs = NULL;
419 }
420
421 if (ind->root.type == bfd_link_hash_indirect
422 && dir->got.refcount <= 0)
423 {
424 edir->tls_type = eind->tls_type;
425 eind->tls_type = GOT_UNKNOWN;
426 }
427 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
428}
429
430static bfd_boolean
431riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
432 unsigned long symndx, char tls_type)
433{
434 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
435
436 *new_tls_type |= tls_type;
437 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
438 {
439 (*_bfd_error_handler)
440 (_("%B: `%s' accessed both as normal and thread local symbol"),
441 abfd, h ? h->root.root.string : "<local>");
442 return FALSE;
443 }
444 return TRUE;
445}
446
447static bfd_boolean
448riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
449 struct elf_link_hash_entry *h, long symndx)
450{
451 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
452 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
453
454 if (htab->elf.sgot == NULL)
455 {
456 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
457 return FALSE;
458 }
459
460 if (h != NULL)
461 {
462 h->got.refcount += 1;
463 return TRUE;
464 }
465
466 /* This is a global offset table entry for a local symbol. */
467 if (elf_local_got_refcounts (abfd) == NULL)
468 {
469 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
470 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
471 return FALSE;
472 _bfd_riscv_elf_local_got_tls_type (abfd)
473 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
474 }
475 elf_local_got_refcounts (abfd) [symndx] += 1;
476
477 return TRUE;
478}
479
480static bfd_boolean
481bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
482{
483 (*_bfd_error_handler)
484 (_("%B: relocation %s against `%s' can not be used when making a shared "
485 "object; recompile with -fPIC"),
486 abfd, riscv_elf_rtype_to_howto (r_type)->name,
487 h != NULL ? h->root.root.string : "a local symbol");
488 bfd_set_error (bfd_error_bad_value);
489 return FALSE;
490}
491/* Look through the relocs for a section during the first phase, and
492 allocate space in the global offset table or procedure linkage
493 table. */
494
495static bfd_boolean
496riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
497 asection *sec, const Elf_Internal_Rela *relocs)
498{
499 struct riscv_elf_link_hash_table *htab;
500 Elf_Internal_Shdr *symtab_hdr;
501 struct elf_link_hash_entry **sym_hashes;
502 const Elf_Internal_Rela *rel;
503 asection *sreloc = NULL;
504
505 if (bfd_link_relocatable (info))
506 return TRUE;
507
508 htab = riscv_elf_hash_table (info);
509 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
510 sym_hashes = elf_sym_hashes (abfd);
511
512 if (htab->elf.dynobj == NULL)
513 htab->elf.dynobj = abfd;
514
515 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
516 {
517 unsigned int r_type;
518 unsigned long r_symndx;
519 struct elf_link_hash_entry *h;
520
521 r_symndx = ELFNN_R_SYM (rel->r_info);
522 r_type = ELFNN_R_TYPE (rel->r_info);
523
524 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
525 {
526 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
527 abfd, r_symndx);
528 return FALSE;
529 }
530
531 if (r_symndx < symtab_hdr->sh_info)
532 h = NULL;
533 else
534 {
535 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
536 while (h->root.type == bfd_link_hash_indirect
537 || h->root.type == bfd_link_hash_warning)
538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
539
540 /* PR15323, ref flags aren't set for references in the same
541 object. */
bc4e12de 542 h->root.non_ir_ref_regular = 1;
e23eba97
NC
543 }
544
545 switch (r_type)
546 {
547 case R_RISCV_TLS_GD_HI20:
548 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
549 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
550 return FALSE;
551 break;
552
553 case R_RISCV_TLS_GOT_HI20:
554 if (bfd_link_pic (info))
555 info->flags |= DF_STATIC_TLS;
556 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
557 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
558 return FALSE;
559 break;
560
561 case R_RISCV_GOT_HI20:
562 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
563 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
564 return FALSE;
565 break;
566
567 case R_RISCV_CALL_PLT:
568 /* This symbol requires a procedure linkage table entry. We
569 actually build the entry in adjust_dynamic_symbol,
570 because this might be a case of linking PIC code without
571 linking in any dynamic objects, in which case we don't
572 need to generate a procedure linkage table after all. */
573
574 if (h != NULL)
575 {
576 h->needs_plt = 1;
577 h->plt.refcount += 1;
578 }
579 break;
580
581 case R_RISCV_CALL:
582 case R_RISCV_JAL:
583 case R_RISCV_BRANCH:
584 case R_RISCV_RVC_BRANCH:
585 case R_RISCV_RVC_JUMP:
586 case R_RISCV_PCREL_HI20:
587 /* In shared libraries, these relocs are known to bind locally. */
588 if (bfd_link_pic (info))
589 break;
590 goto static_reloc;
591
592 case R_RISCV_TPREL_HI20:
593 if (!bfd_link_executable (info))
594 return bad_static_reloc (abfd, r_type, h);
595 if (h != NULL)
596 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
597 goto static_reloc;
598
599 case R_RISCV_HI20:
600 if (bfd_link_pic (info))
601 return bad_static_reloc (abfd, r_type, h);
602 /* Fall through. */
603
604 case R_RISCV_COPY:
605 case R_RISCV_JUMP_SLOT:
606 case R_RISCV_RELATIVE:
607 case R_RISCV_64:
608 case R_RISCV_32:
609 /* Fall through. */
610
611 static_reloc:
612 /* This reloc might not bind locally. */
613 if (h != NULL)
614 h->non_got_ref = 1;
615
616 if (h != NULL && !bfd_link_pic (info))
617 {
618 /* We may need a .plt entry if the function this reloc
619 refers to is in a shared lib. */
620 h->plt.refcount += 1;
621 }
622
623 /* If we are creating a shared library, and this is a reloc
624 against a global symbol, or a non PC relative reloc
625 against a local symbol, then we need to copy the reloc
626 into the shared library. However, if we are linking with
627 -Bsymbolic, we do not need to copy a reloc against a
628 global symbol which is defined in an object we are
629 including in the link (i.e., DEF_REGULAR is set). At
630 this point we have not seen all the input files, so it is
631 possible that DEF_REGULAR is not set now but will be set
632 later (it is never cleared). In case of a weak definition,
633 DEF_REGULAR may be cleared later by a strong definition in
634 a shared library. We account for that possibility below by
635 storing information in the relocs_copied field of the hash
636 table entry. A similar situation occurs when creating
637 shared libraries and symbol visibility changes render the
638 symbol local.
639
640 If on the other hand, we are creating an executable, we
641 may need to keep relocations for symbols satisfied by a
642 dynamic library if we manage to avoid copy relocs for the
643 symbol. */
644 if ((bfd_link_pic (info)
645 && (sec->flags & SEC_ALLOC) != 0
646 && (! riscv_elf_rtype_to_howto (r_type)->pc_relative
647 || (h != NULL
648 && (! info->symbolic
649 || h->root.type == bfd_link_hash_defweak
650 || !h->def_regular))))
651 || (!bfd_link_pic (info)
652 && (sec->flags & SEC_ALLOC) != 0
653 && h != NULL
654 && (h->root.type == bfd_link_hash_defweak
655 || !h->def_regular)))
656 {
657 struct riscv_elf_dyn_relocs *p;
658 struct riscv_elf_dyn_relocs **head;
659
660 /* When creating a shared object, we must copy these
661 relocs into the output file. We create a reloc
662 section in dynobj and make room for the reloc. */
663 if (sreloc == NULL)
664 {
665 sreloc = _bfd_elf_make_dynamic_reloc_section
666 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
667 abfd, /*rela?*/ TRUE);
668
669 if (sreloc == NULL)
670 return FALSE;
671 }
672
673 /* If this is a global symbol, we count the number of
674 relocations we need for this symbol. */
675 if (h != NULL)
676 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
677 else
678 {
679 /* Track dynamic relocs needed for local syms too.
680 We really need local syms available to do this
681 easily. Oh well. */
682
683 asection *s;
684 void *vpp;
685 Elf_Internal_Sym *isym;
686
687 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
688 abfd, r_symndx);
689 if (isym == NULL)
690 return FALSE;
691
692 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
693 if (s == NULL)
694 s = sec;
695
696 vpp = &elf_section_data (s)->local_dynrel;
697 head = (struct riscv_elf_dyn_relocs **) vpp;
698 }
699
700 p = *head;
701 if (p == NULL || p->sec != sec)
702 {
703 bfd_size_type amt = sizeof *p;
704 p = ((struct riscv_elf_dyn_relocs *)
705 bfd_alloc (htab->elf.dynobj, amt));
706 if (p == NULL)
707 return FALSE;
708 p->next = *head;
709 *head = p;
710 p->sec = sec;
711 p->count = 0;
712 p->pc_count = 0;
713 }
714
715 p->count += 1;
716 p->pc_count += riscv_elf_rtype_to_howto (r_type)->pc_relative;
717 }
718
719 break;
720
721 case R_RISCV_GNU_VTINHERIT:
722 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
723 return FALSE;
724 break;
725
726 case R_RISCV_GNU_VTENTRY:
727 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
728 return FALSE;
729 break;
730
731 default:
732 break;
733 }
734 }
735
736 return TRUE;
737}
738
739static asection *
740riscv_elf_gc_mark_hook (asection *sec,
741 struct bfd_link_info *info,
742 Elf_Internal_Rela *rel,
743 struct elf_link_hash_entry *h,
744 Elf_Internal_Sym *sym)
745{
746 if (h != NULL)
747 switch (ELFNN_R_TYPE (rel->r_info))
748 {
749 case R_RISCV_GNU_VTINHERIT:
750 case R_RISCV_GNU_VTENTRY:
751 return NULL;
752 }
753
754 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
755}
756
757/* Update the got entry reference counts for the section being removed. */
758
759static bfd_boolean
760riscv_elf_gc_sweep_hook (bfd *abfd,
761 struct bfd_link_info *info,
762 asection *sec,
763 const Elf_Internal_Rela *relocs)
764{
765 const Elf_Internal_Rela *rel, *relend;
766 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
767 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
768 bfd_signed_vma *local_got_refcounts = elf_local_got_refcounts (abfd);
769
770 if (bfd_link_relocatable (info))
771 return TRUE;
772
773 elf_section_data (sec)->local_dynrel = NULL;
774
775 for (rel = relocs, relend = relocs + sec->reloc_count; rel < relend; rel++)
776 {
777 unsigned long r_symndx;
778 struct elf_link_hash_entry *h = NULL;
779
780 r_symndx = ELFNN_R_SYM (rel->r_info);
781 if (r_symndx >= symtab_hdr->sh_info)
782 {
783 struct riscv_elf_link_hash_entry *eh;
784 struct riscv_elf_dyn_relocs **pp;
785 struct riscv_elf_dyn_relocs *p;
786
787 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
788 while (h->root.type == bfd_link_hash_indirect
789 || h->root.type == bfd_link_hash_warning)
790 h = (struct elf_link_hash_entry *) h->root.u.i.link;
791 eh = (struct riscv_elf_link_hash_entry *) h;
792 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
793 if (p->sec == sec)
794 {
795 /* Everything must go for SEC. */
796 *pp = p->next;
797 break;
798 }
799 }
800
801 switch (ELFNN_R_TYPE (rel->r_info))
802 {
803 case R_RISCV_GOT_HI20:
804 case R_RISCV_TLS_GOT_HI20:
805 case R_RISCV_TLS_GD_HI20:
806 if (h != NULL)
807 {
808 if (h->got.refcount > 0)
809 h->got.refcount--;
810 }
811 else
812 {
813 if (local_got_refcounts &&
814 local_got_refcounts[r_symndx] > 0)
815 local_got_refcounts[r_symndx]--;
816 }
817 break;
818
819 case R_RISCV_HI20:
820 case R_RISCV_PCREL_HI20:
821 case R_RISCV_COPY:
822 case R_RISCV_JUMP_SLOT:
823 case R_RISCV_RELATIVE:
824 case R_RISCV_64:
825 case R_RISCV_32:
826 case R_RISCV_BRANCH:
827 case R_RISCV_CALL:
828 case R_RISCV_JAL:
829 case R_RISCV_RVC_BRANCH:
830 case R_RISCV_RVC_JUMP:
831 if (bfd_link_pic (info))
832 break;
833 /* Fall through. */
834
835 case R_RISCV_CALL_PLT:
836 if (h != NULL)
837 {
838 if (h->plt.refcount > 0)
839 h->plt.refcount--;
840 }
841 break;
842
843 default:
844 break;
845 }
846 }
847
848 return TRUE;
849}
850
851/* Adjust a symbol defined by a dynamic object and referenced by a
852 regular object. The current definition is in some section of the
853 dynamic object, but we're not including those sections. We have to
854 change the definition to something the rest of the link can
855 understand. */
856
857static bfd_boolean
858riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
859 struct elf_link_hash_entry *h)
860{
861 struct riscv_elf_link_hash_table *htab;
862 struct riscv_elf_link_hash_entry * eh;
863 struct riscv_elf_dyn_relocs *p;
864 bfd *dynobj;
5474d94f 865 asection *s, *srel;
e23eba97
NC
866
867 htab = riscv_elf_hash_table (info);
868 BFD_ASSERT (htab != NULL);
869
870 dynobj = htab->elf.dynobj;
871
872 /* Make sure we know what is going on here. */
873 BFD_ASSERT (dynobj != NULL
874 && (h->needs_plt
875 || h->type == STT_GNU_IFUNC
876 || h->u.weakdef != NULL
877 || (h->def_dynamic
878 && h->ref_regular
879 && !h->def_regular)));
880
881 /* If this is a function, put it in the procedure linkage table. We
882 will fill in the contents of the procedure linkage table later
883 (although we could actually do it here). */
884 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
885 {
886 if (h->plt.refcount <= 0
887 || SYMBOL_CALLS_LOCAL (info, h)
888 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
889 && h->root.type == bfd_link_hash_undefweak))
890 {
891 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
892 input file, but the symbol was never referred to by a dynamic
893 object, or if all references were garbage collected. In such
894 a case, we don't actually need to build a PLT entry. */
895 h->plt.offset = (bfd_vma) -1;
896 h->needs_plt = 0;
897 }
898
899 return TRUE;
900 }
901 else
902 h->plt.offset = (bfd_vma) -1;
903
904 /* If this is a weak symbol, and there is a real definition, the
905 processor independent code will have arranged for us to see the
906 real definition first, and we can just use the same value. */
907 if (h->u.weakdef != NULL)
908 {
909 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
910 || h->u.weakdef->root.type == bfd_link_hash_defweak);
911 h->root.u.def.section = h->u.weakdef->root.u.def.section;
912 h->root.u.def.value = h->u.weakdef->root.u.def.value;
913 return TRUE;
914 }
915
916 /* This is a reference to a symbol defined by a dynamic object which
917 is not a function. */
918
919 /* If we are creating a shared library, we must presume that the
920 only references to the symbol are via the global offset table.
921 For such cases we need not do anything here; the relocations will
922 be handled correctly by relocate_section. */
923 if (bfd_link_pic (info))
924 return TRUE;
925
926 /* If there are no references to this symbol that do not use the
927 GOT, we don't need to generate a copy reloc. */
928 if (!h->non_got_ref)
929 return TRUE;
930
931 /* If -z nocopyreloc was given, we won't generate them either. */
932 if (info->nocopyreloc)
933 {
934 h->non_got_ref = 0;
935 return TRUE;
936 }
937
938 eh = (struct riscv_elf_link_hash_entry *) h;
939 for (p = eh->dyn_relocs; p != NULL; p = p->next)
940 {
941 s = p->sec->output_section;
942 if (s != NULL && (s->flags & SEC_READONLY) != 0)
943 break;
944 }
945
946 /* If we didn't find any dynamic relocs in read-only sections, then
947 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
948 if (p == NULL)
949 {
950 h->non_got_ref = 0;
951 return TRUE;
952 }
953
954 /* We must allocate the symbol in our .dynbss section, which will
955 become part of the .bss section of the executable. There will be
956 an entry for this symbol in the .dynsym section. The dynamic
957 object will contain position independent code, so all references
958 from the dynamic object to this symbol will go through the global
959 offset table. The dynamic linker will use the .dynsym entry to
960 determine the address it must put in the global offset table, so
961 both the dynamic object and the regular object will refer to the
962 same memory location for the variable. */
963
964 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
965 to copy the initial value out of the dynamic object and into the
966 runtime process image. We need to remember the offset into the
967 .rel.bss section we are going to use. */
3df5cd13
AW
968 if (eh->tls_type & ~GOT_NORMAL)
969 {
970 s = htab->sdyntdata;
971 srel = htab->elf.srelbss;
972 }
973 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
5474d94f
AM
974 {
975 s = htab->elf.sdynrelro;
976 srel = htab->elf.sreldynrelro;
977 }
978 else
979 {
980 s = htab->elf.sdynbss;
981 srel = htab->elf.srelbss;
982 }
e23eba97
NC
983 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
984 {
5474d94f 985 srel->size += sizeof (ElfNN_External_Rela);
e23eba97
NC
986 h->needs_copy = 1;
987 }
988
5474d94f 989 return _bfd_elf_adjust_dynamic_copy (info, h, s);
e23eba97
NC
990}
991
992/* Allocate space in .plt, .got and associated reloc sections for
993 dynamic relocs. */
994
995static bfd_boolean
996allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
997{
998 struct bfd_link_info *info;
999 struct riscv_elf_link_hash_table *htab;
1000 struct riscv_elf_link_hash_entry *eh;
1001 struct riscv_elf_dyn_relocs *p;
1002
1003 if (h->root.type == bfd_link_hash_indirect)
1004 return TRUE;
1005
1006 info = (struct bfd_link_info *) inf;
1007 htab = riscv_elf_hash_table (info);
1008 BFD_ASSERT (htab != NULL);
1009
1010 if (htab->elf.dynamic_sections_created
1011 && h->plt.refcount > 0)
1012 {
1013 /* Make sure this symbol is output as a dynamic symbol.
1014 Undefined weak syms won't yet be marked as dynamic. */
1015 if (h->dynindx == -1
1016 && !h->forced_local)
1017 {
1018 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1019 return FALSE;
1020 }
1021
1022 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
1023 {
1024 asection *s = htab->elf.splt;
1025
1026 if (s->size == 0)
1027 s->size = PLT_HEADER_SIZE;
1028
1029 h->plt.offset = s->size;
1030
1031 /* Make room for this entry. */
1032 s->size += PLT_ENTRY_SIZE;
1033
1034 /* We also need to make an entry in the .got.plt section. */
1035 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
1036
1037 /* We also need to make an entry in the .rela.plt section. */
1038 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
1039
1040 /* If this symbol is not defined in a regular file, and we are
1041 not generating a shared library, then set the symbol to this
1042 location in the .plt. This is required to make function
1043 pointers compare as equal between the normal executable and
1044 the shared library. */
1045 if (! bfd_link_pic (info)
1046 && !h->def_regular)
1047 {
1048 h->root.u.def.section = s;
1049 h->root.u.def.value = h->plt.offset;
1050 }
1051 }
1052 else
1053 {
1054 h->plt.offset = (bfd_vma) -1;
1055 h->needs_plt = 0;
1056 }
1057 }
1058 else
1059 {
1060 h->plt.offset = (bfd_vma) -1;
1061 h->needs_plt = 0;
1062 }
1063
1064 if (h->got.refcount > 0)
1065 {
1066 asection *s;
1067 bfd_boolean dyn;
1068 int tls_type = riscv_elf_hash_entry (h)->tls_type;
1069
1070 /* Make sure this symbol is output as a dynamic symbol.
1071 Undefined weak syms won't yet be marked as dynamic. */
1072 if (h->dynindx == -1
1073 && !h->forced_local)
1074 {
1075 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1076 return FALSE;
1077 }
1078
1079 s = htab->elf.sgot;
1080 h->got.offset = s->size;
1081 dyn = htab->elf.dynamic_sections_created;
1082 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
1083 {
1084 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1085 if (tls_type & GOT_TLS_GD)
1086 {
1087 s->size += 2 * RISCV_ELF_WORD_BYTES;
1088 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
1089 }
1090
1091 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1092 if (tls_type & GOT_TLS_IE)
1093 {
1094 s->size += RISCV_ELF_WORD_BYTES;
1095 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1096 }
1097 }
1098 else
1099 {
1100 s->size += RISCV_ELF_WORD_BYTES;
1101 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h))
1102 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1103 }
1104 }
1105 else
1106 h->got.offset = (bfd_vma) -1;
1107
1108 eh = (struct riscv_elf_link_hash_entry *) h;
1109 if (eh->dyn_relocs == NULL)
1110 return TRUE;
1111
1112 /* In the shared -Bsymbolic case, discard space allocated for
1113 dynamic pc-relative relocs against symbols which turn out to be
1114 defined in regular objects. For the normal shared case, discard
1115 space for pc-relative relocs that have become local due to symbol
1116 visibility changes. */
1117
1118 if (bfd_link_pic (info))
1119 {
1120 if (SYMBOL_CALLS_LOCAL (info, h))
1121 {
1122 struct riscv_elf_dyn_relocs **pp;
1123
1124 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1125 {
1126 p->count -= p->pc_count;
1127 p->pc_count = 0;
1128 if (p->count == 0)
1129 *pp = p->next;
1130 else
1131 pp = &p->next;
1132 }
1133 }
1134
1135 /* Also discard relocs on undefined weak syms with non-default
1136 visibility. */
1137 if (eh->dyn_relocs != NULL
1138 && h->root.type == bfd_link_hash_undefweak)
1139 {
1140 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1141 eh->dyn_relocs = NULL;
1142
1143 /* Make sure undefined weak symbols are output as a dynamic
1144 symbol in PIEs. */
1145 else if (h->dynindx == -1
1146 && !h->forced_local)
1147 {
1148 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1149 return FALSE;
1150 }
1151 }
1152 }
1153 else
1154 {
1155 /* For the non-shared case, discard space for relocs against
1156 symbols which turn out to need copy relocs or are not
1157 dynamic. */
1158
1159 if (!h->non_got_ref
1160 && ((h->def_dynamic
1161 && !h->def_regular)
1162 || (htab->elf.dynamic_sections_created
1163 && (h->root.type == bfd_link_hash_undefweak
1164 || h->root.type == bfd_link_hash_undefined))))
1165 {
1166 /* Make sure this symbol is output as a dynamic symbol.
1167 Undefined weak syms won't yet be marked as dynamic. */
1168 if (h->dynindx == -1
1169 && !h->forced_local)
1170 {
1171 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1172 return FALSE;
1173 }
1174
1175 /* If that succeeded, we know we'll be keeping all the
1176 relocs. */
1177 if (h->dynindx != -1)
1178 goto keep;
1179 }
1180
1181 eh->dyn_relocs = NULL;
1182
1183 keep: ;
1184 }
1185
1186 /* Finally, allocate space. */
1187 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1188 {
1189 asection *sreloc = elf_section_data (p->sec)->sreloc;
1190 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1191 }
1192
1193 return TRUE;
1194}
1195
1196/* Find any dynamic relocs that apply to read-only sections. */
1197
1198static bfd_boolean
1199readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1200{
1201 struct riscv_elf_link_hash_entry *eh;
1202 struct riscv_elf_dyn_relocs *p;
1203
1204 eh = (struct riscv_elf_link_hash_entry *) h;
1205 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1206 {
1207 asection *s = p->sec->output_section;
1208
1209 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1210 {
1211 ((struct bfd_link_info *) inf)->flags |= DF_TEXTREL;
1212 return FALSE;
1213 }
1214 }
1215 return TRUE;
1216}
1217
1218static bfd_boolean
1219riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1220{
1221 struct riscv_elf_link_hash_table *htab;
1222 bfd *dynobj;
1223 asection *s;
1224 bfd *ibfd;
1225
1226 htab = riscv_elf_hash_table (info);
1227 BFD_ASSERT (htab != NULL);
1228 dynobj = htab->elf.dynobj;
1229 BFD_ASSERT (dynobj != NULL);
1230
1231 if (elf_hash_table (info)->dynamic_sections_created)
1232 {
1233 /* Set the contents of the .interp section to the interpreter. */
1234 if (bfd_link_executable (info) && !info->nointerp)
1235 {
1236 s = bfd_get_linker_section (dynobj, ".interp");
1237 BFD_ASSERT (s != NULL);
1238 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1239 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1240 }
1241 }
1242
1243 /* Set up .got offsets for local syms, and space for local dynamic
1244 relocs. */
1245 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1246 {
1247 bfd_signed_vma *local_got;
1248 bfd_signed_vma *end_local_got;
1249 char *local_tls_type;
1250 bfd_size_type locsymcount;
1251 Elf_Internal_Shdr *symtab_hdr;
1252 asection *srel;
1253
1254 if (! is_riscv_elf (ibfd))
1255 continue;
1256
1257 for (s = ibfd->sections; s != NULL; s = s->next)
1258 {
1259 struct riscv_elf_dyn_relocs *p;
1260
1261 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1262 {
1263 if (!bfd_is_abs_section (p->sec)
1264 && bfd_is_abs_section (p->sec->output_section))
1265 {
1266 /* Input section has been discarded, either because
1267 it is a copy of a linkonce section or due to
1268 linker script /DISCARD/, so we'll be discarding
1269 the relocs too. */
1270 }
1271 else if (p->count != 0)
1272 {
1273 srel = elf_section_data (p->sec)->sreloc;
1274 srel->size += p->count * sizeof (ElfNN_External_Rela);
1275 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1276 info->flags |= DF_TEXTREL;
1277 }
1278 }
1279 }
1280
1281 local_got = elf_local_got_refcounts (ibfd);
1282 if (!local_got)
1283 continue;
1284
1285 symtab_hdr = &elf_symtab_hdr (ibfd);
1286 locsymcount = symtab_hdr->sh_info;
1287 end_local_got = local_got + locsymcount;
1288 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1289 s = htab->elf.sgot;
1290 srel = htab->elf.srelgot;
1291 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1292 {
1293 if (*local_got > 0)
1294 {
1295 *local_got = s->size;
1296 s->size += RISCV_ELF_WORD_BYTES;
1297 if (*local_tls_type & GOT_TLS_GD)
1298 s->size += RISCV_ELF_WORD_BYTES;
1299 if (bfd_link_pic (info)
1300 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1301 srel->size += sizeof (ElfNN_External_Rela);
1302 }
1303 else
1304 *local_got = (bfd_vma) -1;
1305 }
1306 }
1307
1308 /* Allocate global sym .plt and .got entries, and space for global
1309 sym dynamic relocs. */
1310 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1311
1312 if (htab->elf.sgotplt)
1313 {
1314 struct elf_link_hash_entry *got;
1315 got = elf_link_hash_lookup (elf_hash_table (info),
1316 "_GLOBAL_OFFSET_TABLE_",
1317 FALSE, FALSE, FALSE);
1318
1319 /* Don't allocate .got.plt section if there are no GOT nor PLT
1320 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1321 if ((got == NULL
1322 || !got->ref_regular_nonweak)
1323 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1324 && (htab->elf.splt == NULL
1325 || htab->elf.splt->size == 0)
1326 && (htab->elf.sgot == NULL
1327 || (htab->elf.sgot->size
1328 == get_elf_backend_data (output_bfd)->got_header_size)))
1329 htab->elf.sgotplt->size = 0;
1330 }
1331
1332 /* The check_relocs and adjust_dynamic_symbol entry points have
1333 determined the sizes of the various dynamic sections. Allocate
1334 memory for them. */
1335 for (s = dynobj->sections; s != NULL; s = s->next)
1336 {
1337 if ((s->flags & SEC_LINKER_CREATED) == 0)
1338 continue;
1339
1340 if (s == htab->elf.splt
1341 || s == htab->elf.sgot
1342 || s == htab->elf.sgotplt
5474d94f
AM
1343 || s == htab->elf.sdynbss
1344 || s == htab->elf.sdynrelro)
e23eba97
NC
1345 {
1346 /* Strip this section if we don't need it; see the
1347 comment below. */
1348 }
1349 else if (strncmp (s->name, ".rela", 5) == 0)
1350 {
1351 if (s->size != 0)
1352 {
1353 /* We use the reloc_count field as a counter if we need
1354 to copy relocs into the output file. */
1355 s->reloc_count = 0;
1356 }
1357 }
1358 else
1359 {
1360 /* It's not one of our sections. */
1361 continue;
1362 }
1363
1364 if (s->size == 0)
1365 {
1366 /* If we don't need this section, strip it from the
1367 output file. This is mostly to handle .rela.bss and
1368 .rela.plt. We must create both sections in
1369 create_dynamic_sections, because they must be created
1370 before the linker maps input sections to output
1371 sections. The linker does that before
1372 adjust_dynamic_symbol is called, and it is that
1373 function which decides whether anything needs to go
1374 into these sections. */
1375 s->flags |= SEC_EXCLUDE;
1376 continue;
1377 }
1378
1379 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1380 continue;
1381
1382 /* Allocate memory for the section contents. Zero the memory
1383 for the benefit of .rela.plt, which has 4 unused entries
1384 at the beginning, and we don't want garbage. */
1385 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1386 if (s->contents == NULL)
1387 return FALSE;
1388 }
1389
1390 if (elf_hash_table (info)->dynamic_sections_created)
1391 {
1392 /* Add some entries to the .dynamic section. We fill in the
1393 values later, in riscv_elf_finish_dynamic_sections, but we
1394 must add the entries now so that we get the correct size for
1395 the .dynamic section. The DT_DEBUG entry is filled in by the
1396 dynamic linker and used by the debugger. */
1397#define add_dynamic_entry(TAG, VAL) \
1398 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1399
1400 if (bfd_link_executable (info))
1401 {
1402 if (!add_dynamic_entry (DT_DEBUG, 0))
1403 return FALSE;
1404 }
1405
1406 if (htab->elf.srelplt->size != 0)
1407 {
1408 if (!add_dynamic_entry (DT_PLTGOT, 0)
1409 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1410 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1411 || !add_dynamic_entry (DT_JMPREL, 0))
1412 return FALSE;
1413 }
1414
1415 if (!add_dynamic_entry (DT_RELA, 0)
1416 || !add_dynamic_entry (DT_RELASZ, 0)
1417 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1418 return FALSE;
1419
1420 /* If any dynamic relocs apply to a read-only section,
1421 then we need a DT_TEXTREL entry. */
1422 if ((info->flags & DF_TEXTREL) == 0)
1423 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
1424
1425 if (info->flags & DF_TEXTREL)
1426 {
1427 if (!add_dynamic_entry (DT_TEXTREL, 0))
1428 return FALSE;
1429 }
1430 }
1431#undef add_dynamic_entry
1432
1433 return TRUE;
1434}
1435
1436#define TP_OFFSET 0
1437#define DTP_OFFSET 0x800
1438
1439/* Return the relocation value for a TLS dtp-relative reloc. */
1440
1441static bfd_vma
1442dtpoff (struct bfd_link_info *info, bfd_vma address)
1443{
1444 /* If tls_sec is NULL, we should have signalled an error already. */
1445 if (elf_hash_table (info)->tls_sec == NULL)
1446 return 0;
1447 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1448}
1449
1450/* Return the relocation value for a static TLS tp-relative relocation. */
1451
1452static bfd_vma
1453tpoff (struct bfd_link_info *info, bfd_vma address)
1454{
1455 /* If tls_sec is NULL, we should have signalled an error already. */
1456 if (elf_hash_table (info)->tls_sec == NULL)
1457 return 0;
1458 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1459}
1460
1461/* Return the global pointer's value, or 0 if it is not in use. */
1462
1463static bfd_vma
1464riscv_global_pointer_value (struct bfd_link_info *info)
1465{
1466 struct bfd_link_hash_entry *h;
1467
b5292032 1468 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
e23eba97
NC
1469 if (h == NULL || h->type != bfd_link_hash_defined)
1470 return 0;
1471
1472 return h->u.def.value + sec_addr (h->u.def.section);
1473}
1474
1475/* Emplace a static relocation. */
1476
1477static bfd_reloc_status_type
1478perform_relocation (const reloc_howto_type *howto,
1479 const Elf_Internal_Rela *rel,
1480 bfd_vma value,
1481 asection *input_section,
1482 bfd *input_bfd,
1483 bfd_byte *contents)
1484{
1485 if (howto->pc_relative)
1486 value -= sec_addr (input_section) + rel->r_offset;
1487 value += rel->r_addend;
1488
1489 switch (ELFNN_R_TYPE (rel->r_info))
1490 {
1491 case R_RISCV_HI20:
1492 case R_RISCV_TPREL_HI20:
1493 case R_RISCV_PCREL_HI20:
1494 case R_RISCV_GOT_HI20:
1495 case R_RISCV_TLS_GOT_HI20:
1496 case R_RISCV_TLS_GD_HI20:
1497 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1498 return bfd_reloc_overflow;
1499 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1500 break;
1501
1502 case R_RISCV_LO12_I:
1503 case R_RISCV_GPREL_I:
1504 case R_RISCV_TPREL_LO12_I:
45f76423 1505 case R_RISCV_TPREL_I:
e23eba97
NC
1506 case R_RISCV_PCREL_LO12_I:
1507 value = ENCODE_ITYPE_IMM (value);
1508 break;
1509
1510 case R_RISCV_LO12_S:
1511 case R_RISCV_GPREL_S:
1512 case R_RISCV_TPREL_LO12_S:
45f76423 1513 case R_RISCV_TPREL_S:
e23eba97
NC
1514 case R_RISCV_PCREL_LO12_S:
1515 value = ENCODE_STYPE_IMM (value);
1516 break;
1517
1518 case R_RISCV_CALL:
1519 case R_RISCV_CALL_PLT:
1520 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1521 return bfd_reloc_overflow;
1522 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1523 | (ENCODE_ITYPE_IMM (value) << 32);
1524 break;
1525
1526 case R_RISCV_JAL:
1527 if (!VALID_UJTYPE_IMM (value))
1528 return bfd_reloc_overflow;
1529 value = ENCODE_UJTYPE_IMM (value);
1530 break;
1531
1532 case R_RISCV_BRANCH:
1533 if (!VALID_SBTYPE_IMM (value))
1534 return bfd_reloc_overflow;
1535 value = ENCODE_SBTYPE_IMM (value);
1536 break;
1537
1538 case R_RISCV_RVC_BRANCH:
1539 if (!VALID_RVC_B_IMM (value))
1540 return bfd_reloc_overflow;
1541 value = ENCODE_RVC_B_IMM (value);
1542 break;
1543
1544 case R_RISCV_RVC_JUMP:
1545 if (!VALID_RVC_J_IMM (value))
1546 return bfd_reloc_overflow;
1547 value = ENCODE_RVC_J_IMM (value);
1548 break;
1549
1550 case R_RISCV_RVC_LUI:
1551 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1552 return bfd_reloc_overflow;
1553 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1554 break;
1555
1556 case R_RISCV_32:
1557 case R_RISCV_64:
1558 case R_RISCV_ADD8:
1559 case R_RISCV_ADD16:
1560 case R_RISCV_ADD32:
1561 case R_RISCV_ADD64:
45f76423 1562 case R_RISCV_SUB6:
e23eba97
NC
1563 case R_RISCV_SUB8:
1564 case R_RISCV_SUB16:
1565 case R_RISCV_SUB32:
1566 case R_RISCV_SUB64:
45f76423
AW
1567 case R_RISCV_SET6:
1568 case R_RISCV_SET8:
1569 case R_RISCV_SET16:
1570 case R_RISCV_SET32:
a6cbf936 1571 case R_RISCV_32_PCREL:
e23eba97
NC
1572 case R_RISCV_TLS_DTPREL32:
1573 case R_RISCV_TLS_DTPREL64:
1574 break;
1575
1576 default:
1577 return bfd_reloc_notsupported;
1578 }
1579
1580 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1581 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1582 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1583
1584 return bfd_reloc_ok;
1585}
1586
1587/* Remember all PC-relative high-part relocs we've encountered to help us
1588 later resolve the corresponding low-part relocs. */
1589
1590typedef struct
1591{
1592 bfd_vma address;
1593 bfd_vma value;
1594} riscv_pcrel_hi_reloc;
1595
1596typedef struct riscv_pcrel_lo_reloc
1597{
1598 asection * input_section;
1599 struct bfd_link_info * info;
1600 reloc_howto_type * howto;
1601 const Elf_Internal_Rela * reloc;
1602 bfd_vma addr;
1603 const char * name;
1604 bfd_byte * contents;
1605 struct riscv_pcrel_lo_reloc * next;
1606} riscv_pcrel_lo_reloc;
1607
1608typedef struct
1609{
1610 htab_t hi_relocs;
1611 riscv_pcrel_lo_reloc *lo_relocs;
1612} riscv_pcrel_relocs;
1613
1614static hashval_t
1615riscv_pcrel_reloc_hash (const void *entry)
1616{
1617 const riscv_pcrel_hi_reloc *e = entry;
1618 return (hashval_t)(e->address >> 2);
1619}
1620
1621static bfd_boolean
1622riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1623{
1624 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1625 return e1->address == e2->address;
1626}
1627
1628static bfd_boolean
1629riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1630{
1631
1632 p->lo_relocs = NULL;
1633 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1634 riscv_pcrel_reloc_eq, free);
1635 return p->hi_relocs != NULL;
1636}
1637
1638static void
1639riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1640{
1641 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1642
1643 while (cur != NULL)
1644 {
1645 riscv_pcrel_lo_reloc *next = cur->next;
1646 free (cur);
1647 cur = next;
1648 }
1649
1650 htab_delete (p->hi_relocs);
1651}
1652
1653static bfd_boolean
1654riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr, bfd_vma value)
1655{
1656 riscv_pcrel_hi_reloc entry = {addr, value - addr};
1657 riscv_pcrel_hi_reloc **slot =
1658 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1659
1660 BFD_ASSERT (*slot == NULL);
1661 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1662 if (*slot == NULL)
1663 return FALSE;
1664 **slot = entry;
1665 return TRUE;
1666}
1667
1668static bfd_boolean
1669riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1670 asection *input_section,
1671 struct bfd_link_info *info,
1672 reloc_howto_type *howto,
1673 const Elf_Internal_Rela *reloc,
1674 bfd_vma addr,
1675 const char *name,
1676 bfd_byte *contents)
1677{
1678 riscv_pcrel_lo_reloc *entry;
1679 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1680 if (entry == NULL)
1681 return FALSE;
1682 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1683 name, contents, p->lo_relocs};
1684 p->lo_relocs = entry;
1685 return TRUE;
1686}
1687
1688static bfd_boolean
1689riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1690{
1691 riscv_pcrel_lo_reloc *r;
1692
1693 for (r = p->lo_relocs; r != NULL; r = r->next)
1694 {
1695 bfd *input_bfd = r->input_section->owner;
1696
1697 riscv_pcrel_hi_reloc search = {r->addr, 0};
1698 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1699 if (entry == NULL)
1700 {
1701 ((*r->info->callbacks->reloc_overflow)
1702 (r->info, NULL, r->name, r->howto->name, (bfd_vma) 0,
1703 input_bfd, r->input_section, r->reloc->r_offset));
1704 return TRUE;
1705 }
1706
1707 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1708 input_bfd, r->contents);
1709 }
1710
1711 return TRUE;
1712}
1713
1714/* Relocate a RISC-V ELF section.
1715
1716 The RELOCATE_SECTION function is called by the new ELF backend linker
1717 to handle the relocations for a section.
1718
1719 The relocs are always passed as Rela structures.
1720
1721 This function is responsible for adjusting the section contents as
1722 necessary, and (if generating a relocatable output file) adjusting
1723 the reloc addend as necessary.
1724
1725 This function does not have to worry about setting the reloc
1726 address or the reloc symbol index.
1727
1728 LOCAL_SYMS is a pointer to the swapped in local symbols.
1729
1730 LOCAL_SECTIONS is an array giving the section in the input file
1731 corresponding to the st_shndx field of each local symbol.
1732
1733 The global hash table entry for the global symbols can be found
1734 via elf_sym_hashes (input_bfd).
1735
1736 When generating relocatable output, this function must handle
1737 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1738 going to be the section symbol corresponding to the output
1739 section, which means that the addend must be adjusted
1740 accordingly. */
1741
1742static bfd_boolean
1743riscv_elf_relocate_section (bfd *output_bfd,
1744 struct bfd_link_info *info,
1745 bfd *input_bfd,
1746 asection *input_section,
1747 bfd_byte *contents,
1748 Elf_Internal_Rela *relocs,
1749 Elf_Internal_Sym *local_syms,
1750 asection **local_sections)
1751{
1752 Elf_Internal_Rela *rel;
1753 Elf_Internal_Rela *relend;
1754 riscv_pcrel_relocs pcrel_relocs;
1755 bfd_boolean ret = FALSE;
1756 asection *sreloc = elf_section_data (input_section)->sreloc;
1757 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1758 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1759 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1760 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
1761
1762 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1763 return FALSE;
1764
1765 relend = relocs + input_section->reloc_count;
1766 for (rel = relocs; rel < relend; rel++)
1767 {
1768 unsigned long r_symndx;
1769 struct elf_link_hash_entry *h;
1770 Elf_Internal_Sym *sym;
1771 asection *sec;
1772 bfd_vma relocation;
1773 bfd_reloc_status_type r = bfd_reloc_ok;
1774 const char *name;
1775 bfd_vma off, ie_off;
1776 bfd_boolean unresolved_reloc, is_ie = FALSE;
1777 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1778 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1779 reloc_howto_type *howto = riscv_elf_rtype_to_howto (r_type);
1780 const char *msg = NULL;
1781
1782 if (r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1783 continue;
1784
1785 /* This is a final link. */
1786 r_symndx = ELFNN_R_SYM (rel->r_info);
1787 h = NULL;
1788 sym = NULL;
1789 sec = NULL;
1790 unresolved_reloc = FALSE;
1791 if (r_symndx < symtab_hdr->sh_info)
1792 {
1793 sym = local_syms + r_symndx;
1794 sec = local_sections[r_symndx];
1795 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1796 }
1797 else
1798 {
1799 bfd_boolean warned, ignored;
1800
1801 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1802 r_symndx, symtab_hdr, sym_hashes,
1803 h, sec, relocation,
1804 unresolved_reloc, warned, ignored);
1805 if (warned)
1806 {
1807 /* To avoid generating warning messages about truncated
1808 relocations, set the relocation's address to be the same as
1809 the start of this section. */
1810 if (input_section->output_section != NULL)
1811 relocation = input_section->output_section->vma;
1812 else
1813 relocation = 0;
1814 }
1815 }
1816
1817 if (sec != NULL && discarded_section (sec))
1818 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1819 rel, 1, relend, howto, 0, contents);
1820
1821 if (bfd_link_relocatable (info))
1822 continue;
1823
1824 if (h != NULL)
1825 name = h->root.root.string;
1826 else
1827 {
1828 name = (bfd_elf_string_from_elf_section
1829 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1830 if (name == NULL || *name == '\0')
1831 name = bfd_section_name (input_bfd, sec);
1832 }
1833
1834 switch (r_type)
1835 {
1836 case R_RISCV_NONE:
45f76423 1837 case R_RISCV_RELAX:
e23eba97
NC
1838 case R_RISCV_TPREL_ADD:
1839 case R_RISCV_COPY:
1840 case R_RISCV_JUMP_SLOT:
1841 case R_RISCV_RELATIVE:
1842 /* These require nothing of us at all. */
1843 continue;
1844
1845 case R_RISCV_HI20:
1846 case R_RISCV_BRANCH:
1847 case R_RISCV_RVC_BRANCH:
1848 case R_RISCV_RVC_LUI:
1849 case R_RISCV_LO12_I:
1850 case R_RISCV_LO12_S:
45f76423
AW
1851 case R_RISCV_SET6:
1852 case R_RISCV_SET8:
1853 case R_RISCV_SET16:
1854 case R_RISCV_SET32:
a6cbf936 1855 case R_RISCV_32_PCREL:
e23eba97
NC
1856 /* These require no special handling beyond perform_relocation. */
1857 break;
1858
1859 case R_RISCV_GOT_HI20:
1860 if (h != NULL)
1861 {
1862 bfd_boolean dyn, pic;
1863
1864 off = h->got.offset;
1865 BFD_ASSERT (off != (bfd_vma) -1);
1866 dyn = elf_hash_table (info)->dynamic_sections_created;
1867 pic = bfd_link_pic (info);
1868
1869 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1870 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1871 {
1872 /* This is actually a static link, or it is a
1873 -Bsymbolic link and the symbol is defined
1874 locally, or the symbol was forced to be local
1875 because of a version file. We must initialize
1876 this entry in the global offset table. Since the
1877 offset must always be a multiple of the word size,
1878 we use the least significant bit to record whether
1879 we have initialized it already.
1880
1881 When doing a dynamic link, we create a .rela.got
1882 relocation entry to initialize the value. This
1883 is done in the finish_dynamic_symbol routine. */
1884 if ((off & 1) != 0)
1885 off &= ~1;
1886 else
1887 {
1888 bfd_put_NN (output_bfd, relocation,
1889 htab->elf.sgot->contents + off);
1890 h->got.offset |= 1;
1891 }
1892 }
1893 else
1894 unresolved_reloc = FALSE;
1895 }
1896 else
1897 {
1898 BFD_ASSERT (local_got_offsets != NULL
1899 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1900
1901 off = local_got_offsets[r_symndx];
1902
1903 /* The offset must always be a multiple of the word size.
1904 So, we can use the least significant bit to record
1905 whether we have already processed this entry. */
1906 if ((off & 1) != 0)
1907 off &= ~1;
1908 else
1909 {
1910 if (bfd_link_pic (info))
1911 {
1912 asection *s;
1913 Elf_Internal_Rela outrel;
1914
1915 /* We need to generate a R_RISCV_RELATIVE reloc
1916 for the dynamic linker. */
1917 s = htab->elf.srelgot;
1918 BFD_ASSERT (s != NULL);
1919
1920 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1921 outrel.r_info =
1922 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1923 outrel.r_addend = relocation;
1924 relocation = 0;
1925 riscv_elf_append_rela (output_bfd, s, &outrel);
1926 }
1927
1928 bfd_put_NN (output_bfd, relocation,
1929 htab->elf.sgot->contents + off);
1930 local_got_offsets[r_symndx] |= 1;
1931 }
1932 }
1933 relocation = sec_addr (htab->elf.sgot) + off;
1934 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, relocation))
1935 r = bfd_reloc_overflow;
1936 break;
1937
1938 case R_RISCV_ADD8:
1939 case R_RISCV_ADD16:
1940 case R_RISCV_ADD32:
1941 case R_RISCV_ADD64:
1942 {
1943 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1944 contents + rel->r_offset);
1945 relocation = old_value + relocation;
1946 }
1947 break;
1948
45f76423 1949 case R_RISCV_SUB6:
e23eba97
NC
1950 case R_RISCV_SUB8:
1951 case R_RISCV_SUB16:
1952 case R_RISCV_SUB32:
1953 case R_RISCV_SUB64:
1954 {
1955 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1956 contents + rel->r_offset);
1957 relocation = old_value - relocation;
1958 }
1959 break;
1960
1961 case R_RISCV_CALL_PLT:
1962 case R_RISCV_CALL:
1963 case R_RISCV_JAL:
1964 case R_RISCV_RVC_JUMP:
1965 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
1966 {
1967 /* Refer to the PLT entry. */
1968 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
1969 unresolved_reloc = FALSE;
1970 }
1971 break;
1972
1973 case R_RISCV_TPREL_HI20:
1974 relocation = tpoff (info, relocation);
1975 break;
1976
1977 case R_RISCV_TPREL_LO12_I:
1978 case R_RISCV_TPREL_LO12_S:
45f76423
AW
1979 relocation = tpoff (info, relocation);
1980 break;
1981
1982 case R_RISCV_TPREL_I:
1983 case R_RISCV_TPREL_S:
e23eba97
NC
1984 relocation = tpoff (info, relocation);
1985 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
1986 {
1987 /* We can use tp as the base register. */
1988 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1989 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1990 insn |= X_TP << OP_SH_RS1;
1991 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1992 }
45f76423
AW
1993 else
1994 r = bfd_reloc_overflow;
e23eba97
NC
1995 break;
1996
1997 case R_RISCV_GPREL_I:
1998 case R_RISCV_GPREL_S:
1999 {
2000 bfd_vma gp = riscv_global_pointer_value (info);
2001 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
2002 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
2003 {
2004 /* We can use x0 or gp as the base register. */
2005 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2006 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2007 if (!x0_base)
2008 {
2009 rel->r_addend -= gp;
2010 insn |= X_GP << OP_SH_RS1;
2011 }
2012 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2013 }
2014 else
2015 r = bfd_reloc_overflow;
2016 break;
2017 }
2018
2019 case R_RISCV_PCREL_HI20:
2020 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2021 relocation + rel->r_addend))
2022 r = bfd_reloc_overflow;
2023 break;
2024
2025 case R_RISCV_PCREL_LO12_I:
2026 case R_RISCV_PCREL_LO12_S:
2027 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2028 howto, rel, relocation, name,
2029 contents))
2030 continue;
2031 r = bfd_reloc_overflow;
2032 break;
2033
2034 case R_RISCV_TLS_DTPREL32:
2035 case R_RISCV_TLS_DTPREL64:
2036 relocation = dtpoff (info, relocation);
2037 break;
2038
2039 case R_RISCV_32:
2040 case R_RISCV_64:
2041 if ((input_section->flags & SEC_ALLOC) == 0)
2042 break;
2043
2044 if ((bfd_link_pic (info)
2045 && (h == NULL
2046 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2047 || h->root.type != bfd_link_hash_undefweak)
2048 && (! howto->pc_relative
2049 || !SYMBOL_CALLS_LOCAL (info, h)))
2050 || (!bfd_link_pic (info)
2051 && h != NULL
2052 && h->dynindx != -1
2053 && !h->non_got_ref
2054 && ((h->def_dynamic
2055 && !h->def_regular)
2056 || h->root.type == bfd_link_hash_undefweak
2057 || h->root.type == bfd_link_hash_undefined)))
2058 {
2059 Elf_Internal_Rela outrel;
2060 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2061
2062 /* When generating a shared object, these relocations
2063 are copied into the output file to be resolved at run
2064 time. */
2065
2066 outrel.r_offset =
2067 _bfd_elf_section_offset (output_bfd, info, input_section,
2068 rel->r_offset);
2069 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2070 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2071 outrel.r_offset += sec_addr (input_section);
2072
2073 if (skip_dynamic_relocation)
2074 memset (&outrel, 0, sizeof outrel);
2075 else if (h != NULL && h->dynindx != -1
2076 && !(bfd_link_pic (info)
2077 && SYMBOLIC_BIND (info, h)
2078 && h->def_regular))
2079 {
2080 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2081 outrel.r_addend = rel->r_addend;
2082 }
2083 else
2084 {
2085 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2086 outrel.r_addend = relocation + rel->r_addend;
2087 }
2088
2089 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2090 if (skip_static_relocation)
2091 continue;
2092 }
2093 break;
2094
2095 case R_RISCV_TLS_GOT_HI20:
2096 is_ie = TRUE;
2097 /* Fall through. */
2098
2099 case R_RISCV_TLS_GD_HI20:
2100 if (h != NULL)
2101 {
2102 off = h->got.offset;
2103 h->got.offset |= 1;
2104 }
2105 else
2106 {
2107 off = local_got_offsets[r_symndx];
2108 local_got_offsets[r_symndx] |= 1;
2109 }
2110
2111 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2112 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2113 /* If this symbol is referenced by both GD and IE TLS, the IE
2114 reference's GOT slot follows the GD reference's slots. */
2115 ie_off = 0;
2116 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2117 ie_off = 2 * GOT_ENTRY_SIZE;
2118
2119 if ((off & 1) != 0)
2120 off &= ~1;
2121 else
2122 {
2123 Elf_Internal_Rela outrel;
2124 int indx = 0;
2125 bfd_boolean need_relocs = FALSE;
2126
2127 if (htab->elf.srelgot == NULL)
2128 abort ();
2129
2130 if (h != NULL)
2131 {
2132 bfd_boolean dyn, pic;
2133 dyn = htab->elf.dynamic_sections_created;
2134 pic = bfd_link_pic (info);
2135
2136 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2137 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2138 indx = h->dynindx;
2139 }
2140
2141 /* The GOT entries have not been initialized yet. Do it
2142 now, and emit any relocations. */
2143 if ((bfd_link_pic (info) || indx != 0)
2144 && (h == NULL
2145 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2146 || h->root.type != bfd_link_hash_undefweak))
2147 need_relocs = TRUE;
2148
2149 if (tls_type & GOT_TLS_GD)
2150 {
2151 if (need_relocs)
2152 {
2153 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2154 outrel.r_addend = 0;
2155 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2156 bfd_put_NN (output_bfd, 0,
2157 htab->elf.sgot->contents + off);
2158 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2159 if (indx == 0)
2160 {
2161 BFD_ASSERT (! unresolved_reloc);
2162 bfd_put_NN (output_bfd,
2163 dtpoff (info, relocation),
2164 (htab->elf.sgot->contents + off +
2165 RISCV_ELF_WORD_BYTES));
2166 }
2167 else
2168 {
2169 bfd_put_NN (output_bfd, 0,
2170 (htab->elf.sgot->contents + off +
2171 RISCV_ELF_WORD_BYTES));
2172 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2173 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2174 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2175 }
2176 }
2177 else
2178 {
2179 /* If we are not emitting relocations for a
2180 general dynamic reference, then we must be in a
2181 static link or an executable link with the
2182 symbol binding locally. Mark it as belonging
2183 to module 1, the executable. */
2184 bfd_put_NN (output_bfd, 1,
2185 htab->elf.sgot->contents + off);
2186 bfd_put_NN (output_bfd,
2187 dtpoff (info, relocation),
2188 (htab->elf.sgot->contents + off +
2189 RISCV_ELF_WORD_BYTES));
2190 }
2191 }
2192
2193 if (tls_type & GOT_TLS_IE)
2194 {
2195 if (need_relocs)
2196 {
2197 bfd_put_NN (output_bfd, 0,
2198 htab->elf.sgot->contents + off + ie_off);
2199 outrel.r_offset = sec_addr (htab->elf.sgot)
2200 + off + ie_off;
2201 outrel.r_addend = 0;
2202 if (indx == 0)
2203 outrel.r_addend = tpoff (info, relocation);
2204 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2205 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2206 }
2207 else
2208 {
2209 bfd_put_NN (output_bfd, tpoff (info, relocation),
2210 htab->elf.sgot->contents + off + ie_off);
2211 }
2212 }
2213 }
2214
2215 BFD_ASSERT (off < (bfd_vma) -2);
2216 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
2217 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, relocation))
2218 r = bfd_reloc_overflow;
2219 unresolved_reloc = FALSE;
2220 break;
2221
2222 default:
2223 r = bfd_reloc_notsupported;
2224 }
2225
2226 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2227 because such sections are not SEC_ALLOC and thus ld.so will
2228 not process them. */
2229 if (unresolved_reloc
2230 && !((input_section->flags & SEC_DEBUGGING) != 0
2231 && h->def_dynamic)
2232 && _bfd_elf_section_offset (output_bfd, info, input_section,
2233 rel->r_offset) != (bfd_vma) -1)
2234 {
2235 (*_bfd_error_handler)
2236 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2237 input_bfd,
2238 input_section,
2239 (long) rel->r_offset,
2240 howto->name,
2241 h->root.root.string);
2242 continue;
2243 }
2244
2245 if (r == bfd_reloc_ok)
2246 r = perform_relocation (howto, rel, relocation, input_section,
2247 input_bfd, contents);
2248
2249 switch (r)
2250 {
2251 case bfd_reloc_ok:
2252 continue;
2253
2254 case bfd_reloc_overflow:
2255 info->callbacks->reloc_overflow
2256 (info, (h ? &h->root : NULL), name, howto->name,
2257 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2258 break;
2259
2260 case bfd_reloc_undefined:
2261 info->callbacks->undefined_symbol
2262 (info, name, input_bfd, input_section, rel->r_offset,
2263 TRUE);
2264 break;
2265
2266 case bfd_reloc_outofrange:
2267 msg = _("internal error: out of range error");
2268 break;
2269
2270 case bfd_reloc_notsupported:
2271 msg = _("internal error: unsupported relocation error");
2272 break;
2273
2274 case bfd_reloc_dangerous:
2275 msg = _("internal error: dangerous relocation");
2276 break;
2277
2278 default:
2279 msg = _("internal error: unknown error");
2280 break;
2281 }
2282
2283 if (msg)
2284 info->callbacks->warning
2285 (info, msg, name, input_bfd, input_section, rel->r_offset);
2286 goto out;
2287 }
2288
2289 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2290out:
2291 riscv_free_pcrel_relocs (&pcrel_relocs);
2292 return ret;
2293}
2294
2295/* Finish up dynamic symbol handling. We set the contents of various
2296 dynamic sections here. */
2297
2298static bfd_boolean
2299riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2300 struct bfd_link_info *info,
2301 struct elf_link_hash_entry *h,
2302 Elf_Internal_Sym *sym)
2303{
2304 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2305 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2306
2307 if (h->plt.offset != (bfd_vma) -1)
2308 {
2309 /* We've decided to create a PLT entry for this symbol. */
2310 bfd_byte *loc;
2311 bfd_vma i, header_address, plt_idx, got_address;
2312 uint32_t plt_entry[PLT_ENTRY_INSNS];
2313 Elf_Internal_Rela rela;
2314
2315 BFD_ASSERT (h->dynindx != -1);
2316
2317 /* Calculate the address of the PLT header. */
2318 header_address = sec_addr (htab->elf.splt);
2319
2320 /* Calculate the index of the entry. */
2321 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2322
2323 /* Calculate the address of the .got.plt entry. */
2324 got_address = riscv_elf_got_plt_val (plt_idx, info);
2325
2326 /* Find out where the .plt entry should go. */
2327 loc = htab->elf.splt->contents + h->plt.offset;
2328
2329 /* Fill in the PLT entry itself. */
2330 riscv_make_plt_entry (got_address, header_address + h->plt.offset,
2331 plt_entry);
2332 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2333 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2334
2335 /* Fill in the initial value of the .got.plt entry. */
2336 loc = htab->elf.sgotplt->contents
2337 + (got_address - sec_addr (htab->elf.sgotplt));
2338 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2339
2340 /* Fill in the entry in the .rela.plt section. */
2341 rela.r_offset = got_address;
2342 rela.r_addend = 0;
2343 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2344
2345 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2346 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2347
2348 if (!h->def_regular)
2349 {
2350 /* Mark the symbol as undefined, rather than as defined in
2351 the .plt section. Leave the value alone. */
2352 sym->st_shndx = SHN_UNDEF;
2353 /* If the symbol is weak, we do need to clear the value.
2354 Otherwise, the PLT entry would provide a definition for
2355 the symbol even if the symbol wasn't defined anywhere,
2356 and so the symbol would never be NULL. */
2357 if (!h->ref_regular_nonweak)
2358 sym->st_value = 0;
2359 }
2360 }
2361
2362 if (h->got.offset != (bfd_vma) -1
1d65abb5 2363 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
e23eba97
NC
2364 {
2365 asection *sgot;
2366 asection *srela;
2367 Elf_Internal_Rela rela;
2368
2369 /* This symbol has an entry in the GOT. Set it up. */
2370
2371 sgot = htab->elf.sgot;
2372 srela = htab->elf.srelgot;
2373 BFD_ASSERT (sgot != NULL && srela != NULL);
2374
2375 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2376
2377 /* If this is a -Bsymbolic link, and the symbol is defined
2378 locally, we just want to emit a RELATIVE reloc. Likewise if
2379 the symbol was forced to be local because of a version file.
2380 The entry in the global offset table will already have been
2381 initialized in the relocate_section function. */
2382 if (bfd_link_pic (info)
2383 && (info->symbolic || h->dynindx == -1)
2384 && h->def_regular)
2385 {
2386 asection *sec = h->root.u.def.section;
2387 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2388 rela.r_addend = (h->root.u.def.value
2389 + sec->output_section->vma
2390 + sec->output_offset);
2391 }
2392 else
2393 {
2394 BFD_ASSERT (h->dynindx != -1);
2395 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2396 rela.r_addend = 0;
2397 }
2398
2399 bfd_put_NN (output_bfd, 0,
2400 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2401 riscv_elf_append_rela (output_bfd, srela, &rela);
2402 }
2403
2404 if (h->needs_copy)
2405 {
2406 Elf_Internal_Rela rela;
5474d94f 2407 asection *s;
e23eba97
NC
2408
2409 /* This symbols needs a copy reloc. Set it up. */
2410 BFD_ASSERT (h->dynindx != -1);
2411
2412 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2413 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2414 rela.r_addend = 0;
afbf7e8e 2415 if (h->root.u.def.section == htab->elf.sdynrelro)
5474d94f
AM
2416 s = htab->elf.sreldynrelro;
2417 else
2418 s = htab->elf.srelbss;
2419 riscv_elf_append_rela (output_bfd, s, &rela);
e23eba97
NC
2420 }
2421
2422 /* Mark some specially defined symbols as absolute. */
2423 if (h == htab->elf.hdynamic
2424 || (h == htab->elf.hgot || h == htab->elf.hplt))
2425 sym->st_shndx = SHN_ABS;
2426
2427 return TRUE;
2428}
2429
2430/* Finish up the dynamic sections. */
2431
2432static bfd_boolean
2433riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2434 bfd *dynobj, asection *sdyn)
2435{
2436 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2437 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2438 size_t dynsize = bed->s->sizeof_dyn;
2439 bfd_byte *dyncon, *dynconend;
2440
2441 dynconend = sdyn->contents + sdyn->size;
2442 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2443 {
2444 Elf_Internal_Dyn dyn;
2445 asection *s;
2446
2447 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2448
2449 switch (dyn.d_tag)
2450 {
2451 case DT_PLTGOT:
2452 s = htab->elf.sgotplt;
2453 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2454 break;
2455 case DT_JMPREL:
2456 s = htab->elf.srelplt;
2457 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2458 break;
2459 case DT_PLTRELSZ:
2460 s = htab->elf.srelplt;
2461 dyn.d_un.d_val = s->size;
2462 break;
2463 default:
2464 continue;
2465 }
2466
2467 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2468 }
2469 return TRUE;
2470}
2471
2472static bfd_boolean
2473riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2474 struct bfd_link_info *info)
2475{
2476 bfd *dynobj;
2477 asection *sdyn;
2478 struct riscv_elf_link_hash_table *htab;
2479
2480 htab = riscv_elf_hash_table (info);
2481 BFD_ASSERT (htab != NULL);
2482 dynobj = htab->elf.dynobj;
2483
2484 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2485
2486 if (elf_hash_table (info)->dynamic_sections_created)
2487 {
2488 asection *splt;
2489 bfd_boolean ret;
2490
2491 splt = htab->elf.splt;
2492 BFD_ASSERT (splt != NULL && sdyn != NULL);
2493
2494 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2495
535b785f 2496 if (!ret)
e23eba97
NC
2497 return ret;
2498
2499 /* Fill in the head and tail entries in the procedure linkage table. */
2500 if (splt->size > 0)
2501 {
2502 int i;
2503 uint32_t plt_header[PLT_HEADER_INSNS];
2504 riscv_make_plt_header (sec_addr (htab->elf.sgotplt),
2505 sec_addr (splt), plt_header);
2506
2507 for (i = 0; i < PLT_HEADER_INSNS; i++)
2508 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
e23eba97 2509
cc162427
AW
2510 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2511 = PLT_ENTRY_SIZE;
2512 }
e23eba97
NC
2513 }
2514
2515 if (htab->elf.sgotplt)
2516 {
2517 asection *output_section = htab->elf.sgotplt->output_section;
2518
2519 if (bfd_is_abs_section (output_section))
2520 {
2521 (*_bfd_error_handler)
2522 (_("discarded output section: `%A'"), htab->elf.sgotplt);
2523 return FALSE;
2524 }
2525
2526 if (htab->elf.sgotplt->size > 0)
2527 {
2528 /* Write the first two entries in .got.plt, needed for the dynamic
2529 linker. */
2530 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2531 bfd_put_NN (output_bfd, (bfd_vma) 0,
2532 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2533 }
2534
2535 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2536 }
2537
2538 if (htab->elf.sgot)
2539 {
2540 asection *output_section = htab->elf.sgot->output_section;
2541
2542 if (htab->elf.sgot->size > 0)
2543 {
2544 /* Set the first entry in the global offset table to the address of
2545 the dynamic section. */
2546 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2547 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2548 }
2549
2550 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2551 }
2552
2553 return TRUE;
2554}
2555
2556/* Return address for Ith PLT stub in section PLT, for relocation REL
2557 or (bfd_vma) -1 if it should not be included. */
2558
2559static bfd_vma
2560riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2561 const arelent *rel ATTRIBUTE_UNUSED)
2562{
2563 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2564}
2565
2566static enum elf_reloc_type_class
2567riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2568 const asection *rel_sec ATTRIBUTE_UNUSED,
2569 const Elf_Internal_Rela *rela)
2570{
2571 switch (ELFNN_R_TYPE (rela->r_info))
2572 {
2573 case R_RISCV_RELATIVE:
2574 return reloc_class_relative;
2575 case R_RISCV_JUMP_SLOT:
2576 return reloc_class_plt;
2577 case R_RISCV_COPY:
2578 return reloc_class_copy;
2579 default:
2580 return reloc_class_normal;
2581 }
2582}
2583
2584/* Merge backend specific data from an object file to the output
2585 object file when linking. */
2586
2587static bfd_boolean
2588_bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2589{
2590 bfd *obfd = info->output_bfd;
2591 flagword new_flags = elf_elfheader (ibfd)->e_flags;
2592 flagword old_flags = elf_elfheader (obfd)->e_flags;
2593
2594 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
2595 return TRUE;
2596
2597 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
2598 {
2599 (*_bfd_error_handler)
96b0927d
PD
2600 (_("%B: ABI is incompatible with that of the selected emulation:\n"
2601 " target emulation `%s' does not match `%s'"),
2602 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
e23eba97
NC
2603 return FALSE;
2604 }
2605
2606 if (!_bfd_elf_merge_object_attributes (ibfd, info))
2607 return FALSE;
2608
2609 if (! elf_flags_init (obfd))
2610 {
2611 elf_flags_init (obfd) = TRUE;
2612 elf_elfheader (obfd)->e_flags = new_flags;
2613 return TRUE;
2614 }
2615
2922d21d
AW
2616 /* Disallow linking different float ABIs. */
2617 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
e23eba97
NC
2618 {
2619 (*_bfd_error_handler)
2620 (_("%B: can't link hard-float modules with soft-float modules"), ibfd);
2621 goto fail;
2622 }
2623
2624 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
2625 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
2626
2627 return TRUE;
2628
2629fail:
2630 bfd_set_error (bfd_error_bad_value);
2631 return FALSE;
2632}
2633
2634/* Delete some bytes from a section while relaxing. */
2635
2636static bfd_boolean
2637riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count)
2638{
2639 unsigned int i, symcount;
2640 bfd_vma toaddr = sec->size;
2641 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
2642 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2643 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2644 struct bfd_elf_section_data *data = elf_section_data (sec);
2645 bfd_byte *contents = data->this_hdr.contents;
2646
2647 /* Actually delete the bytes. */
2648 sec->size -= count;
2649 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
2650
2651 /* Adjust the location of all of the relocs. Note that we need not
2652 adjust the addends, since all PC-relative references must be against
2653 symbols, which we will adjust below. */
2654 for (i = 0; i < sec->reloc_count; i++)
2655 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
2656 data->relocs[i].r_offset -= count;
2657
2658 /* Adjust the local symbols defined in this section. */
2659 for (i = 0; i < symtab_hdr->sh_info; i++)
2660 {
2661 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
2662 if (sym->st_shndx == sec_shndx)
2663 {
2664 /* If the symbol is in the range of memory we just moved, we
2665 have to adjust its value. */
2666 if (sym->st_value > addr && sym->st_value <= toaddr)
2667 sym->st_value -= count;
2668
2669 /* If the symbol *spans* the bytes we just deleted (i.e. its
2670 *end* is in the moved bytes but its *start* isn't), then we
2671 must adjust its size. */
2672 if (sym->st_value <= addr
2673 && sym->st_value + sym->st_size > addr
2674 && sym->st_value + sym->st_size <= toaddr)
2675 sym->st_size -= count;
2676 }
2677 }
2678
2679 /* Now adjust the global symbols defined in this section. */
2680 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
2681 - symtab_hdr->sh_info);
2682
2683 for (i = 0; i < symcount; i++)
2684 {
2685 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
2686
2687 if ((sym_hash->root.type == bfd_link_hash_defined
2688 || sym_hash->root.type == bfd_link_hash_defweak)
2689 && sym_hash->root.u.def.section == sec)
2690 {
2691 /* As above, adjust the value if needed. */
2692 if (sym_hash->root.u.def.value > addr
2693 && sym_hash->root.u.def.value <= toaddr)
2694 sym_hash->root.u.def.value -= count;
2695
2696 /* As above, adjust the size if needed. */
2697 if (sym_hash->root.u.def.value <= addr
2698 && sym_hash->root.u.def.value + sym_hash->size > addr
2699 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
2700 sym_hash->size -= count;
2701 }
2702 }
2703
2704 return TRUE;
2705}
2706
45f76423
AW
2707typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
2708 struct bfd_link_info *,
2709 Elf_Internal_Rela *,
2710 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *);
2711
e23eba97
NC
2712/* Relax AUIPC + JALR into JAL. */
2713
2714static bfd_boolean
2715_bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
2716 struct bfd_link_info *link_info,
2717 Elf_Internal_Rela *rel,
2718 bfd_vma symval,
45f76423
AW
2719 bfd_vma max_alignment,
2720 bfd_vma reserve_size ATTRIBUTE_UNUSED,
e23eba97
NC
2721 bfd_boolean *again)
2722{
2723 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2724 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
2725 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
2726 bfd_vma auipc, jalr;
2727 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2728
2729 /* If the call crosses section boundaries, an alignment directive could
2730 cause the PC-relative offset to later increase. */
2731 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
2732 foff += (foff < 0 ? -max_alignment : max_alignment);
2733
2734 /* See if this function call can be shortened. */
2735 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
2736 return TRUE;
2737
2738 /* Shorten the function call. */
2739 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
2740
2741 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
2742 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
2743 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
2744 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32;
2745
2746 if (rvc && (rd == 0 || rd == X_RA))
2747 {
2748 /* Relax to C.J[AL] rd, addr. */
2749 r_type = R_RISCV_RVC_JUMP;
2750 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
2751 len = 2;
2752 }
2753 else if (VALID_UJTYPE_IMM (foff))
2754 {
2755 /* Relax to JAL rd, addr. */
2756 r_type = R_RISCV_JAL;
2757 auipc = MATCH_JAL | (rd << OP_SH_RD);
2758 }
2759 else /* near_zero */
2760 {
2761 /* Relax to JALR rd, x0, addr. */
2762 r_type = R_RISCV_LO12_I;
2763 auipc = MATCH_JALR | (rd << OP_SH_RD);
2764 }
2765
2766 /* Replace the R_RISCV_CALL reloc. */
2767 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
2768 /* Replace the AUIPC. */
2769 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
2770
2771 /* Delete unnecessary JALR. */
2772 *again = TRUE;
2773 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len);
2774}
2775
2776/* Traverse all output sections and return the max alignment. */
2777
1d61f794 2778static bfd_vma
e23eba97
NC
2779_bfd_riscv_get_max_alignment (asection *sec)
2780{
2781 unsigned int max_alignment_power = 0;
2782 asection *o;
2783
2784 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
2785 {
2786 if (o->alignment_power > max_alignment_power)
2787 max_alignment_power = o->alignment_power;
2788 }
2789
1d61f794 2790 return (bfd_vma) 1 << max_alignment_power;
e23eba97
NC
2791}
2792
2793/* Relax non-PIC global variable references. */
2794
2795static bfd_boolean
2796_bfd_riscv_relax_lui (bfd *abfd,
2797 asection *sec,
2798 asection *sym_sec,
2799 struct bfd_link_info *link_info,
2800 Elf_Internal_Rela *rel,
2801 bfd_vma symval,
45f76423
AW
2802 bfd_vma max_alignment,
2803 bfd_vma reserve_size,
e23eba97
NC
2804 bfd_boolean *again)
2805{
2806 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2807 bfd_vma gp = riscv_global_pointer_value (link_info);
2808 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2809
2810 /* Mergeable symbols and code might later move out of range. */
2811 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
2812 return TRUE;
2813
2814 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
2815
d0f744f9
AW
2816 if (gp)
2817 {
2818 /* If gp and the symbol are in the same output section, then
2819 consider only that section's alignment. */
2820 struct bfd_link_hash_entry *h =
b5292032
PD
2821 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
2822 TRUE);
d0f744f9
AW
2823 if (h->u.def.section->output_section == sym_sec->output_section)
2824 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
2825 }
2826
e23eba97
NC
2827 /* Is the reference in range of x0 or gp?
2828 Valid gp range conservatively because of alignment issue. */
2829 if (VALID_ITYPE_IMM (symval)
45f76423
AW
2830 || (symval >= gp
2831 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
2832 || (symval < gp
2833 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
e23eba97
NC
2834 {
2835 unsigned sym = ELFNN_R_SYM (rel->r_info);
2836 switch (ELFNN_R_TYPE (rel->r_info))
2837 {
2838 case R_RISCV_LO12_I:
2839 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
2840 return TRUE;
2841
2842 case R_RISCV_LO12_S:
2843 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
2844 return TRUE;
2845
2846 case R_RISCV_HI20:
2847 /* We can delete the unnecessary LUI and reloc. */
2848 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
2849 *again = TRUE;
2850 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4);
2851
2852 default:
2853 abort ();
2854 }
2855 }
2856
2857 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
2858 account for this assuming page alignment at worst. */
2859 if (use_rvc
2860 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
2861 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
2862 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
2863 {
2864 /* Replace LUI with C.LUI if legal (i.e., rd != x2/sp). */
2865 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
2866 if (((lui >> OP_SH_RD) & OP_MASK_RD) == X_SP)
2867 return TRUE;
2868
2869 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
2870 bfd_put_32 (abfd, lui, contents + rel->r_offset);
2871
2872 /* Replace the R_RISCV_HI20 reloc. */
2873 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
2874
2875 *again = TRUE;
2876 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2);
2877 }
2878
2879 return TRUE;
2880}
2881
2882/* Relax non-PIC TLS references. */
2883
2884static bfd_boolean
2885_bfd_riscv_relax_tls_le (bfd *abfd,
2886 asection *sec,
2887 asection *sym_sec ATTRIBUTE_UNUSED,
2888 struct bfd_link_info *link_info,
2889 Elf_Internal_Rela *rel,
2890 bfd_vma symval,
45f76423
AW
2891 bfd_vma max_alignment ATTRIBUTE_UNUSED,
2892 bfd_vma reserve_size ATTRIBUTE_UNUSED,
e23eba97
NC
2893 bfd_boolean *again)
2894{
2895 /* See if this symbol is in range of tp. */
2896 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
2897 return TRUE;
2898
e23eba97 2899 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
45f76423
AW
2900 switch (ELFNN_R_TYPE (rel->r_info))
2901 {
2902 case R_RISCV_TPREL_LO12_I:
2903 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
2904 return TRUE;
e23eba97 2905
45f76423
AW
2906 case R_RISCV_TPREL_LO12_S:
2907 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
2908 return TRUE;
2909
2910 case R_RISCV_TPREL_HI20:
2911 case R_RISCV_TPREL_ADD:
2912 /* We can delete the unnecessary instruction and reloc. */
2913 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
2914 *again = TRUE;
2915 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4);
2916
2917 default:
2918 abort ();
2919 }
e23eba97
NC
2920}
2921
2922/* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
2923
2924static bfd_boolean
2925_bfd_riscv_relax_align (bfd *abfd, asection *sec,
2926 asection *sym_sec ATTRIBUTE_UNUSED,
2927 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
2928 Elf_Internal_Rela *rel,
2929 bfd_vma symval,
45f76423
AW
2930 bfd_vma max_alignment ATTRIBUTE_UNUSED,
2931 bfd_vma reserve_size ATTRIBUTE_UNUSED,
e23eba97
NC
2932 bfd_boolean *again ATTRIBUTE_UNUSED)
2933{
2934 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2935 bfd_vma alignment = 1, pos;
2936 while (alignment <= rel->r_addend)
2937 alignment *= 2;
2938
2939 symval -= rel->r_addend;
2940 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
2941 bfd_vma nop_bytes = aligned_addr - symval;
2942
2943 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
2944 sec->sec_flg0 = TRUE;
2945
2946 /* Make sure there are enough NOPs to actually achieve the alignment. */
2947 if (rel->r_addend < nop_bytes)
2948 return FALSE;
2949
2950 /* Delete the reloc. */
2951 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
2952
2953 /* If the number of NOPs is already correct, there's nothing to do. */
2954 if (nop_bytes == rel->r_addend)
2955 return TRUE;
2956
2957 /* Write as many RISC-V NOPs as we need. */
2958 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
2959 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
2960
2961 /* Write a final RVC NOP if need be. */
2962 if (nop_bytes % 4 != 0)
2963 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
2964
2965 /* Delete the excess bytes. */
2966 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
2967 rel->r_addend - nop_bytes);
2968}
2969
2970/* Relax a section. Pass 0 shortens code sequences unless disabled.
2971 Pass 1, which cannot be disabled, handles code alignment directives. */
2972
2973static bfd_boolean
2974_bfd_riscv_relax_section (bfd *abfd, asection *sec,
2975 struct bfd_link_info *info,
2976 bfd_boolean *again)
2977{
2978 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
2979 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2980 struct bfd_elf_section_data *data = elf_section_data (sec);
2981 Elf_Internal_Rela *relocs;
2982 bfd_boolean ret = FALSE;
2983 unsigned int i;
45f76423 2984 bfd_vma max_alignment, reserve_size = 0;
e23eba97
NC
2985
2986 *again = FALSE;
2987
2988 if (bfd_link_relocatable (info)
2989 || sec->sec_flg0
2990 || (sec->flags & SEC_RELOC) == 0
2991 || sec->reloc_count == 0
2992 || (info->disable_target_specific_optimizations
2993 && info->relax_pass == 0))
2994 return TRUE;
2995
2996 /* Read this BFD's relocs if we haven't done so already. */
2997 if (data->relocs)
2998 relocs = data->relocs;
2999 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3000 info->keep_memory)))
3001 goto fail;
3002
3003 max_alignment = _bfd_riscv_get_max_alignment (sec);
3004
3005 /* Examine and consider relaxing each reloc. */
3006 for (i = 0; i < sec->reloc_count; i++)
3007 {
3008 asection *sym_sec;
3009 Elf_Internal_Rela *rel = relocs + i;
45f76423 3010 relax_func_t relax_func;
e23eba97
NC
3011 int type = ELFNN_R_TYPE (rel->r_info);
3012 bfd_vma symval;
3013
3014 if (info->relax_pass == 0)
3015 {
3016 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3017 relax_func = _bfd_riscv_relax_call;
3018 else if (type == R_RISCV_HI20
3019 || type == R_RISCV_LO12_I
3020 || type == R_RISCV_LO12_S)
3021 relax_func = _bfd_riscv_relax_lui;
45f76423
AW
3022 else if (type == R_RISCV_TPREL_HI20
3023 || type == R_RISCV_TPREL_ADD
3024 || type == R_RISCV_TPREL_LO12_I
3025 || type == R_RISCV_TPREL_LO12_S)
e23eba97 3026 relax_func = _bfd_riscv_relax_tls_le;
45f76423
AW
3027 else
3028 continue;
3029
3030 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3031 if (i == sec->reloc_count - 1
3032 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3033 || rel->r_offset != (rel + 1)->r_offset)
3034 continue;
3035
3036 /* Skip over the R_RISCV_RELAX. */
3037 i++;
e23eba97
NC
3038 }
3039 else if (type == R_RISCV_ALIGN)
3040 relax_func = _bfd_riscv_relax_align;
45f76423 3041 else
e23eba97
NC
3042 continue;
3043
3044 data->relocs = relocs;
3045
3046 /* Read this BFD's contents if we haven't done so already. */
3047 if (!data->this_hdr.contents
3048 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3049 goto fail;
3050
3051 /* Read this BFD's symbols if we haven't done so already. */
3052 if (symtab_hdr->sh_info != 0
3053 && !symtab_hdr->contents
3054 && !(symtab_hdr->contents =
3055 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3056 symtab_hdr->sh_info,
3057 0, NULL, NULL, NULL)))
3058 goto fail;
3059
3060 /* Get the value of the symbol referred to by the reloc. */
3061 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3062 {
3063 /* A local symbol. */
3064 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3065 + ELFNN_R_SYM (rel->r_info));
45f76423
AW
3066 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3067 ? 0 : isym->st_size - rel->r_addend;
e23eba97
NC
3068
3069 if (isym->st_shndx == SHN_UNDEF)
3070 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
3071 else
3072 {
3073 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3074 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
3075 if (sec_addr (sym_sec) == 0)
3076 continue;
3077 symval = sec_addr (sym_sec) + isym->st_value;
3078 }
3079 }
3080 else
3081 {
3082 unsigned long indx;
3083 struct elf_link_hash_entry *h;
3084
3085 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
3086 h = elf_sym_hashes (abfd)[indx];
3087
3088 while (h->root.type == bfd_link_hash_indirect
3089 || h->root.type == bfd_link_hash_warning)
3090 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3091
3092 if (h->plt.offset != MINUS_ONE)
3093 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3094 else if (h->root.u.def.section->output_section == NULL
3095 || (h->root.type != bfd_link_hash_defined
3096 && h->root.type != bfd_link_hash_defweak))
3097 continue;
3098 else
3099 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3100
45f76423
AW
3101 if (h->type != STT_FUNC)
3102 reserve_size =
3103 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
e23eba97
NC
3104 sym_sec = h->root.u.def.section;
3105 }
3106
3107 symval += rel->r_addend;
3108
3109 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
45f76423 3110 max_alignment, reserve_size, again))
e23eba97
NC
3111 goto fail;
3112 }
3113
3114 ret = TRUE;
3115
3116fail:
3117 if (relocs != data->relocs)
3118 free (relocs);
3119
3120 return ret;
3121}
3122
3123#if ARCH_SIZE == 32
3124# define PRSTATUS_SIZE 0 /* FIXME */
3125# define PRSTATUS_OFFSET_PR_CURSIG 12
3126# define PRSTATUS_OFFSET_PR_PID 24
3127# define PRSTATUS_OFFSET_PR_REG 72
3128# define ELF_GREGSET_T_SIZE 128
3129# define PRPSINFO_SIZE 128
3130# define PRPSINFO_OFFSET_PR_PID 16
3131# define PRPSINFO_OFFSET_PR_FNAME 32
3132# define PRPSINFO_OFFSET_PR_PSARGS 48
3133#else
3134# define PRSTATUS_SIZE 376
3135# define PRSTATUS_OFFSET_PR_CURSIG 12
3136# define PRSTATUS_OFFSET_PR_PID 32
3137# define PRSTATUS_OFFSET_PR_REG 112
3138# define ELF_GREGSET_T_SIZE 256
3139# define PRPSINFO_SIZE 136
3140# define PRPSINFO_OFFSET_PR_PID 24
3141# define PRPSINFO_OFFSET_PR_FNAME 40
3142# define PRPSINFO_OFFSET_PR_PSARGS 56
3143#endif
3144
3145/* Support for core dump NOTE sections. */
3146
3147static bfd_boolean
3148riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3149{
3150 switch (note->descsz)
3151 {
3152 default:
3153 return FALSE;
3154
3155 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
3156 /* pr_cursig */
3157 elf_tdata (abfd)->core->signal
3158 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
3159
3160 /* pr_pid */
3161 elf_tdata (abfd)->core->lwpid
3162 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
3163 break;
3164 }
3165
3166 /* Make a ".reg/999" section. */
3167 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
3168 note->descpos + PRSTATUS_OFFSET_PR_REG);
3169}
3170
3171static bfd_boolean
3172riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3173{
3174 switch (note->descsz)
3175 {
3176 default:
3177 return FALSE;
3178
3179 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
3180 /* pr_pid */
3181 elf_tdata (abfd)->core->pid
3182 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
3183
3184 /* pr_fname */
3185 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
3186 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
3187
3188 /* pr_psargs */
3189 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
3190 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
3191 break;
3192 }
3193
3194 /* Note that for some reason, a spurious space is tacked
3195 onto the end of the args in some (at least one anyway)
3196 implementations, so strip it off if it exists. */
3197
3198 {
3199 char *command = elf_tdata (abfd)->core->command;
3200 int n = strlen (command);
3201
3202 if (0 < n && command[n - 1] == ' ')
3203 command[n - 1] = '\0';
3204 }
3205
3206 return TRUE;
3207}
3208
640d6bfd
KLC
3209/* Set the right mach type. */
3210static bfd_boolean
3211riscv_elf_object_p (bfd *abfd)
3212{
3213 /* There are only two mach types in RISCV currently. */
3214 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
3215 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
3216 else
3217 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
3218
3219 return TRUE;
3220}
3221
e23eba97
NC
3222
3223#define TARGET_LITTLE_SYM riscv_elfNN_vec
3224#define TARGET_LITTLE_NAME "elfNN-littleriscv"
3225
3226#define elf_backend_reloc_type_class riscv_reloc_type_class
3227
3228#define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
3229#define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
3230#define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
3231#define bfd_elfNN_bfd_merge_private_bfd_data \
3232 _bfd_riscv_elf_merge_private_bfd_data
3233
3234#define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
3235#define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
3236#define elf_backend_check_relocs riscv_elf_check_relocs
3237#define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
3238#define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
3239#define elf_backend_relocate_section riscv_elf_relocate_section
3240#define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
3241#define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
3242#define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
3243#define elf_backend_gc_sweep_hook riscv_elf_gc_sweep_hook
3244#define elf_backend_plt_sym_val riscv_elf_plt_sym_val
3245#define elf_backend_grok_prstatus riscv_elf_grok_prstatus
3246#define elf_backend_grok_psinfo riscv_elf_grok_psinfo
640d6bfd 3247#define elf_backend_object_p riscv_elf_object_p
e23eba97
NC
3248#define elf_info_to_howto_rel NULL
3249#define elf_info_to_howto riscv_info_to_howto_rela
3250#define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
3251
3252#define elf_backend_init_index_section _bfd_elf_init_1_index_section
3253
3254#define elf_backend_can_gc_sections 1
3255#define elf_backend_can_refcount 1
3256#define elf_backend_want_got_plt 1
3257#define elf_backend_plt_readonly 1
3258#define elf_backend_plt_alignment 4
3259#define elf_backend_want_plt_sym 1
3260#define elf_backend_got_header_size (ARCH_SIZE / 8)
5474d94f 3261#define elf_backend_want_dynrelro 1
e23eba97
NC
3262#define elf_backend_rela_normal 1
3263#define elf_backend_default_execstack 0
3264
3265#include "elfNN-target.h"