]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elfnn-riscv.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / bfd / elfnn-riscv.c
CommitLineData
e23eba97 1/* RISC-V-specific support for NN-bit ELF.
219d1afa 2 Copyright (C) 2011-2018 Free Software Foundation, Inc.
e23eba97
NC
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23/* This file handles RISC-V ELF targets. */
24
25#include "sysdep.h"
26#include "bfd.h"
27#include "libbfd.h"
28#include "bfdlink.h"
29#include "genlink.h"
30#include "elf-bfd.h"
31#include "elfxx-riscv.h"
32#include "elf/riscv.h"
33#include "opcode/riscv.h"
34
ff6f4d9b
PD
35/* Internal relocations used exclusively by the relaxation pass. */
36#define R_RISCV_DELETE (R_RISCV_max + 1)
37
e23eba97
NC
38#define ARCH_SIZE NN
39
40#define MINUS_ONE ((bfd_vma)0 - 1)
41
42#define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
43
44#define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
45
46/* The name of the dynamic interpreter. This is put in the .interp
47 section. */
48
49#define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50#define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
51
52#define ELF_ARCH bfd_arch_riscv
53#define ELF_TARGET_ID RISCV_ELF_DATA
54#define ELF_MACHINE_CODE EM_RISCV
55#define ELF_MAXPAGESIZE 0x1000
56#define ELF_COMMONPAGESIZE 0x1000
57
e23eba97
NC
58/* RISC-V ELF linker hash entry. */
59
60struct riscv_elf_link_hash_entry
61{
62 struct elf_link_hash_entry elf;
63
64 /* Track dynamic relocs copied for this symbol. */
3bf083ed 65 struct elf_dyn_relocs *dyn_relocs;
e23eba97
NC
66
67#define GOT_UNKNOWN 0
68#define GOT_NORMAL 1
69#define GOT_TLS_GD 2
70#define GOT_TLS_IE 4
71#define GOT_TLS_LE 8
72 char tls_type;
73};
74
75#define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
77
78struct _bfd_riscv_elf_obj_tdata
79{
80 struct elf_obj_tdata root;
81
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
84};
85
86#define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
88
89#define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
91
92#define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
95
96#define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
100
101#include "elf/common.h"
102#include "elf/internal.h"
103
104struct riscv_elf_link_hash_table
105{
106 struct elf_link_hash_table elf;
107
108 /* Short-cuts to get to dynamic linker sections. */
e23eba97
NC
109 asection *sdyntdata;
110
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
fc3c5343
L
113
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
e23eba97
NC
116};
117
118
119/* Get the RISC-V ELF linker hash table from a link_info structure. */
120#define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
123
f3185997 124static bfd_boolean
0aa13fee 125riscv_info_to_howto_rela (bfd *abfd,
e23eba97
NC
126 arelent *cache_ptr,
127 Elf_Internal_Rela *dst)
128{
0aa13fee 129 cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info));
f3185997 130 return cache_ptr->howto != NULL;
e23eba97
NC
131}
132
133static void
134riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
135{
136 const struct elf_backend_data *bed;
137 bfd_byte *loc;
138
139 bed = get_elf_backend_data (abfd);
140 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
141 bed->s->swap_reloca_out (abfd, rel, loc);
142}
143
144/* PLT/GOT stuff. */
145
146#define PLT_HEADER_INSNS 8
147#define PLT_ENTRY_INSNS 4
148#define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
149#define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
150
151#define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
152
153#define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
154
155#define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
156
157static bfd_vma
158riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
159{
160 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
161 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
162}
163
164#if ARCH_SIZE == 32
165# define MATCH_LREG MATCH_LW
166#else
167# define MATCH_LREG MATCH_LD
168#endif
169
170/* Generate a PLT header. */
171
5ef23793
JW
172static bfd_boolean
173riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr,
174 uint32_t *entry)
e23eba97
NC
175{
176 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
177 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
178
5ef23793
JW
179 /* RVE has no t3 register, so this won't work, and is not supported. */
180 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
181 {
182 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
183 output_bfd);
184 return FALSE;
185 }
186
e23eba97 187 /* auipc t2, %hi(.got.plt)
07d6d2b8 188 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
e23eba97
NC
189 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
190 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
191 addi t0, t2, %lo(.got.plt) # &.got.plt
192 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
07d6d2b8
AM
193 l[w|d] t0, PTRSIZE(t0) # link map
194 jr t3 */
e23eba97
NC
195
196 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
197 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
198 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
199 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
200 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
201 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
202 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
203 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
5ef23793
JW
204
205 return TRUE;
e23eba97
NC
206}
207
208/* Generate a PLT entry. */
209
5ef23793
JW
210static bfd_boolean
211riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr,
212 uint32_t *entry)
e23eba97 213{
5ef23793
JW
214 /* RVE has no t3 register, so this won't work, and is not supported. */
215 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
216 {
217 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
218 output_bfd);
219 return FALSE;
220 }
221
e23eba97
NC
222 /* auipc t3, %hi(.got.plt entry)
223 l[w|d] t3, %lo(.got.plt entry)(t3)
224 jalr t1, t3
225 nop */
226
227 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
1d65abb5 228 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
e23eba97
NC
229 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
230 entry[3] = RISCV_NOP;
5ef23793
JW
231
232 return TRUE;
e23eba97
NC
233}
234
235/* Create an entry in an RISC-V ELF linker hash table. */
236
237static struct bfd_hash_entry *
238link_hash_newfunc (struct bfd_hash_entry *entry,
239 struct bfd_hash_table *table, const char *string)
240{
241 /* Allocate the structure if it has not already been allocated by a
242 subclass. */
243 if (entry == NULL)
244 {
245 entry =
246 bfd_hash_allocate (table,
247 sizeof (struct riscv_elf_link_hash_entry));
248 if (entry == NULL)
249 return entry;
250 }
251
252 /* Call the allocation method of the superclass. */
253 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
254 if (entry != NULL)
255 {
256 struct riscv_elf_link_hash_entry *eh;
257
258 eh = (struct riscv_elf_link_hash_entry *) entry;
259 eh->dyn_relocs = NULL;
260 eh->tls_type = GOT_UNKNOWN;
261 }
262
263 return entry;
264}
265
266/* Create a RISC-V ELF linker hash table. */
267
268static struct bfd_link_hash_table *
269riscv_elf_link_hash_table_create (bfd *abfd)
270{
271 struct riscv_elf_link_hash_table *ret;
272 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
273
274 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
275 if (ret == NULL)
276 return NULL;
277
278 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
279 sizeof (struct riscv_elf_link_hash_entry),
280 RISCV_ELF_DATA))
281 {
282 free (ret);
283 return NULL;
284 }
285
fc3c5343 286 ret->max_alignment = (bfd_vma) -1;
e23eba97
NC
287 return &ret->elf.root;
288}
289
290/* Create the .got section. */
291
292static bfd_boolean
293riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
294{
295 flagword flags;
296 asection *s, *s_got;
297 struct elf_link_hash_entry *h;
298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
299 struct elf_link_hash_table *htab = elf_hash_table (info);
300
301 /* This function may be called more than once. */
ce558b89 302 if (htab->sgot != NULL)
e23eba97
NC
303 return TRUE;
304
305 flags = bed->dynamic_sec_flags;
306
307 s = bfd_make_section_anyway_with_flags (abfd,
308 (bed->rela_plts_and_copies_p
309 ? ".rela.got" : ".rel.got"),
310 (bed->dynamic_sec_flags
311 | SEC_READONLY));
312 if (s == NULL
313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
314 return FALSE;
315 htab->srelgot = s;
316
317 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
318 if (s == NULL
319 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
320 return FALSE;
321 htab->sgot = s;
322
323 /* The first bit of the global offset table is the header. */
324 s->size += bed->got_header_size;
325
326 if (bed->want_got_plt)
327 {
328 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
329 if (s == NULL
330 || !bfd_set_section_alignment (abfd, s,
331 bed->s->log_file_align))
332 return FALSE;
333 htab->sgotplt = s;
334
335 /* Reserve room for the header. */
336 s->size += GOTPLT_HEADER_SIZE;
337 }
338
339 if (bed->want_got_sym)
340 {
341 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
342 section. We don't do this in the linker script because we don't want
343 to define the symbol if we are not creating a global offset
344 table. */
345 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
346 "_GLOBAL_OFFSET_TABLE_");
347 elf_hash_table (info)->hgot = h;
348 if (h == NULL)
349 return FALSE;
350 }
351
352 return TRUE;
353}
354
355/* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
356 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
357 hash table. */
358
359static bfd_boolean
360riscv_elf_create_dynamic_sections (bfd *dynobj,
361 struct bfd_link_info *info)
362{
363 struct riscv_elf_link_hash_table *htab;
364
365 htab = riscv_elf_hash_table (info);
366 BFD_ASSERT (htab != NULL);
367
368 if (!riscv_elf_create_got_section (dynobj, info))
369 return FALSE;
370
371 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
372 return FALSE;
373
e23eba97
NC
374 if (!bfd_link_pic (info))
375 {
e23eba97
NC
376 htab->sdyntdata =
377 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
13755f40
JW
378 (SEC_ALLOC | SEC_THREAD_LOCAL
379 | SEC_LINKER_CREATED));
e23eba97
NC
380 }
381
9d19e4fd
AM
382 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
383 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
e23eba97
NC
384 abort ();
385
386 return TRUE;
387}
388
389/* Copy the extra info we tack onto an elf_link_hash_entry. */
390
391static void
392riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
393 struct elf_link_hash_entry *dir,
394 struct elf_link_hash_entry *ind)
395{
396 struct riscv_elf_link_hash_entry *edir, *eind;
397
398 edir = (struct riscv_elf_link_hash_entry *) dir;
399 eind = (struct riscv_elf_link_hash_entry *) ind;
400
401 if (eind->dyn_relocs != NULL)
402 {
403 if (edir->dyn_relocs != NULL)
404 {
3bf083ed
AM
405 struct elf_dyn_relocs **pp;
406 struct elf_dyn_relocs *p;
e23eba97
NC
407
408 /* Add reloc counts against the indirect sym to the direct sym
409 list. Merge any entries against the same section. */
410 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
411 {
3bf083ed 412 struct elf_dyn_relocs *q;
e23eba97
NC
413
414 for (q = edir->dyn_relocs; q != NULL; q = q->next)
415 if (q->sec == p->sec)
416 {
417 q->pc_count += p->pc_count;
418 q->count += p->count;
419 *pp = p->next;
420 break;
421 }
422 if (q == NULL)
423 pp = &p->next;
424 }
425 *pp = edir->dyn_relocs;
426 }
427
428 edir->dyn_relocs = eind->dyn_relocs;
429 eind->dyn_relocs = NULL;
430 }
431
432 if (ind->root.type == bfd_link_hash_indirect
433 && dir->got.refcount <= 0)
434 {
435 edir->tls_type = eind->tls_type;
436 eind->tls_type = GOT_UNKNOWN;
437 }
438 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
439}
440
441static bfd_boolean
442riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
443 unsigned long symndx, char tls_type)
444{
445 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
446
447 *new_tls_type |= tls_type;
448 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
449 {
450 (*_bfd_error_handler)
871b3ab2 451 (_("%pB: `%s' accessed both as normal and thread local symbol"),
e23eba97
NC
452 abfd, h ? h->root.root.string : "<local>");
453 return FALSE;
454 }
455 return TRUE;
456}
457
458static bfd_boolean
459riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
460 struct elf_link_hash_entry *h, long symndx)
461{
462 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
463 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
464
465 if (htab->elf.sgot == NULL)
466 {
467 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
468 return FALSE;
469 }
470
471 if (h != NULL)
472 {
473 h->got.refcount += 1;
474 return TRUE;
475 }
476
477 /* This is a global offset table entry for a local symbol. */
478 if (elf_local_got_refcounts (abfd) == NULL)
479 {
480 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
481 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
482 return FALSE;
483 _bfd_riscv_elf_local_got_tls_type (abfd)
484 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
485 }
486 elf_local_got_refcounts (abfd) [symndx] += 1;
487
488 return TRUE;
489}
490
491static bfd_boolean
492bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
493{
f3185997
NC
494 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
495
e23eba97 496 (*_bfd_error_handler)
871b3ab2 497 (_("%pB: relocation %s against `%s' can not be used when making a shared "
e23eba97 498 "object; recompile with -fPIC"),
f3185997
NC
499 abfd, r ? r->name : _("<unknown>"),
500 h != NULL ? h->root.root.string : "a local symbol");
e23eba97
NC
501 bfd_set_error (bfd_error_bad_value);
502 return FALSE;
503}
504/* Look through the relocs for a section during the first phase, and
505 allocate space in the global offset table or procedure linkage
506 table. */
507
508static bfd_boolean
509riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
510 asection *sec, const Elf_Internal_Rela *relocs)
511{
512 struct riscv_elf_link_hash_table *htab;
513 Elf_Internal_Shdr *symtab_hdr;
514 struct elf_link_hash_entry **sym_hashes;
515 const Elf_Internal_Rela *rel;
516 asection *sreloc = NULL;
517
518 if (bfd_link_relocatable (info))
519 return TRUE;
520
521 htab = riscv_elf_hash_table (info);
522 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
523 sym_hashes = elf_sym_hashes (abfd);
524
525 if (htab->elf.dynobj == NULL)
526 htab->elf.dynobj = abfd;
527
528 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
529 {
530 unsigned int r_type;
d42c267e 531 unsigned int r_symndx;
e23eba97
NC
532 struct elf_link_hash_entry *h;
533
534 r_symndx = ELFNN_R_SYM (rel->r_info);
535 r_type = ELFNN_R_TYPE (rel->r_info);
536
537 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
538 {
871b3ab2 539 (*_bfd_error_handler) (_("%pB: bad symbol index: %d"),
e23eba97
NC
540 abfd, r_symndx);
541 return FALSE;
542 }
543
544 if (r_symndx < symtab_hdr->sh_info)
545 h = NULL;
546 else
547 {
548 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
549 while (h->root.type == bfd_link_hash_indirect
550 || h->root.type == bfd_link_hash_warning)
551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
e23eba97
NC
552 }
553
554 switch (r_type)
555 {
556 case R_RISCV_TLS_GD_HI20:
557 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
558 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
559 return FALSE;
560 break;
561
562 case R_RISCV_TLS_GOT_HI20:
563 if (bfd_link_pic (info))
564 info->flags |= DF_STATIC_TLS;
565 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
566 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
567 return FALSE;
568 break;
569
570 case R_RISCV_GOT_HI20:
571 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
572 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
573 return FALSE;
574 break;
575
576 case R_RISCV_CALL_PLT:
577 /* This symbol requires a procedure linkage table entry. We
578 actually build the entry in adjust_dynamic_symbol,
579 because this might be a case of linking PIC code without
580 linking in any dynamic objects, in which case we don't
581 need to generate a procedure linkage table after all. */
582
583 if (h != NULL)
584 {
585 h->needs_plt = 1;
586 h->plt.refcount += 1;
587 }
588 break;
589
590 case R_RISCV_CALL:
591 case R_RISCV_JAL:
592 case R_RISCV_BRANCH:
593 case R_RISCV_RVC_BRANCH:
594 case R_RISCV_RVC_JUMP:
595 case R_RISCV_PCREL_HI20:
596 /* In shared libraries, these relocs are known to bind locally. */
597 if (bfd_link_pic (info))
598 break;
599 goto static_reloc;
600
601 case R_RISCV_TPREL_HI20:
602 if (!bfd_link_executable (info))
603 return bad_static_reloc (abfd, r_type, h);
604 if (h != NULL)
605 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
606 goto static_reloc;
607
608 case R_RISCV_HI20:
609 if (bfd_link_pic (info))
610 return bad_static_reloc (abfd, r_type, h);
611 /* Fall through. */
612
613 case R_RISCV_COPY:
614 case R_RISCV_JUMP_SLOT:
615 case R_RISCV_RELATIVE:
616 case R_RISCV_64:
617 case R_RISCV_32:
618 /* Fall through. */
619
620 static_reloc:
621 /* This reloc might not bind locally. */
622 if (h != NULL)
623 h->non_got_ref = 1;
624
625 if (h != NULL && !bfd_link_pic (info))
626 {
627 /* We may need a .plt entry if the function this reloc
628 refers to is in a shared lib. */
629 h->plt.refcount += 1;
630 }
631
632 /* If we are creating a shared library, and this is a reloc
633 against a global symbol, or a non PC relative reloc
634 against a local symbol, then we need to copy the reloc
635 into the shared library. However, if we are linking with
636 -Bsymbolic, we do not need to copy a reloc against a
637 global symbol which is defined in an object we are
638 including in the link (i.e., DEF_REGULAR is set). At
639 this point we have not seen all the input files, so it is
640 possible that DEF_REGULAR is not set now but will be set
641 later (it is never cleared). In case of a weak definition,
642 DEF_REGULAR may be cleared later by a strong definition in
643 a shared library. We account for that possibility below by
644 storing information in the relocs_copied field of the hash
645 table entry. A similar situation occurs when creating
646 shared libraries and symbol visibility changes render the
647 symbol local.
648
649 If on the other hand, we are creating an executable, we
650 may need to keep relocations for symbols satisfied by a
651 dynamic library if we manage to avoid copy relocs for the
652 symbol. */
f3185997
NC
653 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
654
e23eba97
NC
655 if ((bfd_link_pic (info)
656 && (sec->flags & SEC_ALLOC) != 0
f3185997 657 && ((r != NULL && ! r->pc_relative)
e23eba97
NC
658 || (h != NULL
659 && (! info->symbolic
660 || h->root.type == bfd_link_hash_defweak
661 || !h->def_regular))))
662 || (!bfd_link_pic (info)
663 && (sec->flags & SEC_ALLOC) != 0
664 && h != NULL
665 && (h->root.type == bfd_link_hash_defweak
666 || !h->def_regular)))
667 {
3bf083ed
AM
668 struct elf_dyn_relocs *p;
669 struct elf_dyn_relocs **head;
e23eba97
NC
670
671 /* When creating a shared object, we must copy these
672 relocs into the output file. We create a reloc
673 section in dynobj and make room for the reloc. */
674 if (sreloc == NULL)
675 {
676 sreloc = _bfd_elf_make_dynamic_reloc_section
677 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
678 abfd, /*rela?*/ TRUE);
679
680 if (sreloc == NULL)
681 return FALSE;
682 }
683
684 /* If this is a global symbol, we count the number of
685 relocations we need for this symbol. */
686 if (h != NULL)
687 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
688 else
689 {
690 /* Track dynamic relocs needed for local syms too.
691 We really need local syms available to do this
692 easily. Oh well. */
693
694 asection *s;
695 void *vpp;
696 Elf_Internal_Sym *isym;
697
698 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
699 abfd, r_symndx);
700 if (isym == NULL)
701 return FALSE;
702
703 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
704 if (s == NULL)
705 s = sec;
706
707 vpp = &elf_section_data (s)->local_dynrel;
3bf083ed 708 head = (struct elf_dyn_relocs **) vpp;
e23eba97
NC
709 }
710
711 p = *head;
712 if (p == NULL || p->sec != sec)
713 {
714 bfd_size_type amt = sizeof *p;
3bf083ed 715 p = ((struct elf_dyn_relocs *)
e23eba97
NC
716 bfd_alloc (htab->elf.dynobj, amt));
717 if (p == NULL)
718 return FALSE;
719 p->next = *head;
720 *head = p;
721 p->sec = sec;
722 p->count = 0;
723 p->pc_count = 0;
724 }
725
726 p->count += 1;
f3185997 727 p->pc_count += r == NULL ? 0 : r->pc_relative;
e23eba97
NC
728 }
729
730 break;
731
732 case R_RISCV_GNU_VTINHERIT:
733 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
734 return FALSE;
735 break;
736
737 case R_RISCV_GNU_VTENTRY:
738 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
739 return FALSE;
740 break;
741
742 default:
743 break;
744 }
745 }
746
747 return TRUE;
748}
749
750static asection *
751riscv_elf_gc_mark_hook (asection *sec,
752 struct bfd_link_info *info,
753 Elf_Internal_Rela *rel,
754 struct elf_link_hash_entry *h,
755 Elf_Internal_Sym *sym)
756{
757 if (h != NULL)
758 switch (ELFNN_R_TYPE (rel->r_info))
759 {
760 case R_RISCV_GNU_VTINHERIT:
761 case R_RISCV_GNU_VTENTRY:
762 return NULL;
763 }
764
765 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
766}
767
63c1f59d
AM
768/* Find dynamic relocs for H that apply to read-only sections. */
769
770static asection *
771readonly_dynrelocs (struct elf_link_hash_entry *h)
772{
3bf083ed 773 struct elf_dyn_relocs *p;
63c1f59d
AM
774
775 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
776 {
777 asection *s = p->sec->output_section;
778
779 if (s != NULL && (s->flags & SEC_READONLY) != 0)
780 return p->sec;
781 }
782 return NULL;
783}
784
e23eba97
NC
785/* Adjust a symbol defined by a dynamic object and referenced by a
786 regular object. The current definition is in some section of the
787 dynamic object, but we're not including those sections. We have to
788 change the definition to something the rest of the link can
789 understand. */
790
791static bfd_boolean
792riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
793 struct elf_link_hash_entry *h)
794{
795 struct riscv_elf_link_hash_table *htab;
796 struct riscv_elf_link_hash_entry * eh;
e23eba97 797 bfd *dynobj;
5474d94f 798 asection *s, *srel;
e23eba97
NC
799
800 htab = riscv_elf_hash_table (info);
801 BFD_ASSERT (htab != NULL);
802
803 dynobj = htab->elf.dynobj;
804
805 /* Make sure we know what is going on here. */
806 BFD_ASSERT (dynobj != NULL
807 && (h->needs_plt
808 || h->type == STT_GNU_IFUNC
60d67dc8 809 || h->is_weakalias
e23eba97
NC
810 || (h->def_dynamic
811 && h->ref_regular
812 && !h->def_regular)));
813
814 /* If this is a function, put it in the procedure linkage table. We
815 will fill in the contents of the procedure linkage table later
816 (although we could actually do it here). */
817 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
818 {
819 if (h->plt.refcount <= 0
820 || SYMBOL_CALLS_LOCAL (info, h)
821 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
822 && h->root.type == bfd_link_hash_undefweak))
823 {
824 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
825 input file, but the symbol was never referred to by a dynamic
826 object, or if all references were garbage collected. In such
827 a case, we don't actually need to build a PLT entry. */
828 h->plt.offset = (bfd_vma) -1;
829 h->needs_plt = 0;
830 }
831
832 return TRUE;
833 }
834 else
835 h->plt.offset = (bfd_vma) -1;
836
837 /* If this is a weak symbol, and there is a real definition, the
838 processor independent code will have arranged for us to see the
839 real definition first, and we can just use the same value. */
60d67dc8 840 if (h->is_weakalias)
e23eba97 841 {
60d67dc8
AM
842 struct elf_link_hash_entry *def = weakdef (h);
843 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
844 h->root.u.def.section = def->root.u.def.section;
845 h->root.u.def.value = def->root.u.def.value;
e23eba97
NC
846 return TRUE;
847 }
848
849 /* This is a reference to a symbol defined by a dynamic object which
850 is not a function. */
851
852 /* If we are creating a shared library, we must presume that the
853 only references to the symbol are via the global offset table.
854 For such cases we need not do anything here; the relocations will
855 be handled correctly by relocate_section. */
856 if (bfd_link_pic (info))
857 return TRUE;
858
859 /* If there are no references to this symbol that do not use the
860 GOT, we don't need to generate a copy reloc. */
861 if (!h->non_got_ref)
862 return TRUE;
863
864 /* If -z nocopyreloc was given, we won't generate them either. */
865 if (info->nocopyreloc)
866 {
867 h->non_got_ref = 0;
868 return TRUE;
869 }
870
3bf083ed 871 /* If we don't find any dynamic relocs in read-only sections, then
e23eba97 872 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
3bf083ed 873 if (!readonly_dynrelocs (h))
e23eba97
NC
874 {
875 h->non_got_ref = 0;
876 return TRUE;
877 }
878
879 /* We must allocate the symbol in our .dynbss section, which will
880 become part of the .bss section of the executable. There will be
881 an entry for this symbol in the .dynsym section. The dynamic
882 object will contain position independent code, so all references
883 from the dynamic object to this symbol will go through the global
884 offset table. The dynamic linker will use the .dynsym entry to
885 determine the address it must put in the global offset table, so
886 both the dynamic object and the regular object will refer to the
887 same memory location for the variable. */
888
889 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
890 to copy the initial value out of the dynamic object and into the
891 runtime process image. We need to remember the offset into the
892 .rel.bss section we are going to use. */
3bf083ed 893 eh = (struct riscv_elf_link_hash_entry *) h;
3df5cd13
AW
894 if (eh->tls_type & ~GOT_NORMAL)
895 {
896 s = htab->sdyntdata;
897 srel = htab->elf.srelbss;
898 }
899 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
5474d94f
AM
900 {
901 s = htab->elf.sdynrelro;
902 srel = htab->elf.sreldynrelro;
903 }
904 else
905 {
906 s = htab->elf.sdynbss;
907 srel = htab->elf.srelbss;
908 }
e23eba97
NC
909 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
910 {
5474d94f 911 srel->size += sizeof (ElfNN_External_Rela);
e23eba97
NC
912 h->needs_copy = 1;
913 }
914
5474d94f 915 return _bfd_elf_adjust_dynamic_copy (info, h, s);
e23eba97
NC
916}
917
918/* Allocate space in .plt, .got and associated reloc sections for
919 dynamic relocs. */
920
921static bfd_boolean
922allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
923{
924 struct bfd_link_info *info;
925 struct riscv_elf_link_hash_table *htab;
926 struct riscv_elf_link_hash_entry *eh;
3bf083ed 927 struct elf_dyn_relocs *p;
e23eba97
NC
928
929 if (h->root.type == bfd_link_hash_indirect)
930 return TRUE;
931
932 info = (struct bfd_link_info *) inf;
933 htab = riscv_elf_hash_table (info);
934 BFD_ASSERT (htab != NULL);
935
936 if (htab->elf.dynamic_sections_created
937 && h->plt.refcount > 0)
938 {
939 /* Make sure this symbol is output as a dynamic symbol.
940 Undefined weak syms won't yet be marked as dynamic. */
941 if (h->dynindx == -1
942 && !h->forced_local)
943 {
944 if (! bfd_elf_link_record_dynamic_symbol (info, h))
945 return FALSE;
946 }
947
948 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
949 {
950 asection *s = htab->elf.splt;
951
952 if (s->size == 0)
953 s->size = PLT_HEADER_SIZE;
954
955 h->plt.offset = s->size;
956
957 /* Make room for this entry. */
958 s->size += PLT_ENTRY_SIZE;
959
960 /* We also need to make an entry in the .got.plt section. */
961 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
962
963 /* We also need to make an entry in the .rela.plt section. */
964 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
965
966 /* If this symbol is not defined in a regular file, and we are
967 not generating a shared library, then set the symbol to this
968 location in the .plt. This is required to make function
969 pointers compare as equal between the normal executable and
970 the shared library. */
971 if (! bfd_link_pic (info)
972 && !h->def_regular)
973 {
974 h->root.u.def.section = s;
975 h->root.u.def.value = h->plt.offset;
976 }
977 }
978 else
979 {
980 h->plt.offset = (bfd_vma) -1;
981 h->needs_plt = 0;
982 }
983 }
984 else
985 {
986 h->plt.offset = (bfd_vma) -1;
987 h->needs_plt = 0;
988 }
989
990 if (h->got.refcount > 0)
991 {
992 asection *s;
993 bfd_boolean dyn;
994 int tls_type = riscv_elf_hash_entry (h)->tls_type;
995
996 /* Make sure this symbol is output as a dynamic symbol.
997 Undefined weak syms won't yet be marked as dynamic. */
998 if (h->dynindx == -1
999 && !h->forced_local)
1000 {
1001 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1002 return FALSE;
1003 }
1004
1005 s = htab->elf.sgot;
1006 h->got.offset = s->size;
1007 dyn = htab->elf.dynamic_sections_created;
1008 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
1009 {
1010 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1011 if (tls_type & GOT_TLS_GD)
1012 {
1013 s->size += 2 * RISCV_ELF_WORD_BYTES;
1014 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
1015 }
1016
1017 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1018 if (tls_type & GOT_TLS_IE)
1019 {
1020 s->size += RISCV_ELF_WORD_BYTES;
1021 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1022 }
1023 }
1024 else
1025 {
1026 s->size += RISCV_ELF_WORD_BYTES;
6487709f
JW
1027 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
1028 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
e23eba97
NC
1029 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1030 }
1031 }
1032 else
1033 h->got.offset = (bfd_vma) -1;
1034
1035 eh = (struct riscv_elf_link_hash_entry *) h;
1036 if (eh->dyn_relocs == NULL)
1037 return TRUE;
1038
1039 /* In the shared -Bsymbolic case, discard space allocated for
1040 dynamic pc-relative relocs against symbols which turn out to be
1041 defined in regular objects. For the normal shared case, discard
1042 space for pc-relative relocs that have become local due to symbol
1043 visibility changes. */
1044
1045 if (bfd_link_pic (info))
1046 {
1047 if (SYMBOL_CALLS_LOCAL (info, h))
1048 {
3bf083ed 1049 struct elf_dyn_relocs **pp;
e23eba97
NC
1050
1051 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1052 {
1053 p->count -= p->pc_count;
1054 p->pc_count = 0;
1055 if (p->count == 0)
1056 *pp = p->next;
1057 else
1058 pp = &p->next;
1059 }
1060 }
1061
1062 /* Also discard relocs on undefined weak syms with non-default
1063 visibility. */
1064 if (eh->dyn_relocs != NULL
1065 && h->root.type == bfd_link_hash_undefweak)
1066 {
6487709f
JW
1067 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1068 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
e23eba97
NC
1069 eh->dyn_relocs = NULL;
1070
1071 /* Make sure undefined weak symbols are output as a dynamic
1072 symbol in PIEs. */
1073 else if (h->dynindx == -1
1074 && !h->forced_local)
1075 {
1076 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1077 return FALSE;
1078 }
1079 }
1080 }
1081 else
1082 {
1083 /* For the non-shared case, discard space for relocs against
1084 symbols which turn out to need copy relocs or are not
1085 dynamic. */
1086
1087 if (!h->non_got_ref
1088 && ((h->def_dynamic
1089 && !h->def_regular)
1090 || (htab->elf.dynamic_sections_created
1091 && (h->root.type == bfd_link_hash_undefweak
1092 || h->root.type == bfd_link_hash_undefined))))
1093 {
1094 /* Make sure this symbol is output as a dynamic symbol.
1095 Undefined weak syms won't yet be marked as dynamic. */
1096 if (h->dynindx == -1
1097 && !h->forced_local)
1098 {
1099 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1100 return FALSE;
1101 }
1102
1103 /* If that succeeded, we know we'll be keeping all the
1104 relocs. */
1105 if (h->dynindx != -1)
1106 goto keep;
1107 }
1108
1109 eh->dyn_relocs = NULL;
1110
1111 keep: ;
1112 }
1113
1114 /* Finally, allocate space. */
1115 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1116 {
1117 asection *sreloc = elf_section_data (p->sec)->sreloc;
1118 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1119 }
1120
1121 return TRUE;
1122}
1123
63c1f59d
AM
1124/* Set DF_TEXTREL if we find any dynamic relocs that apply to
1125 read-only sections. */
e23eba97
NC
1126
1127static bfd_boolean
63c1f59d 1128maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
e23eba97 1129{
63c1f59d 1130 asection *sec;
e23eba97 1131
63c1f59d
AM
1132 if (h->root.type == bfd_link_hash_indirect)
1133 return TRUE;
1134
1135 sec = readonly_dynrelocs (h);
1136 if (sec != NULL)
e23eba97 1137 {
63c1f59d 1138 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
e23eba97 1139
63c1f59d
AM
1140 info->flags |= DF_TEXTREL;
1141 info->callbacks->minfo
c1c8c1ef 1142 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
63c1f59d
AM
1143 sec->owner, h->root.root.string, sec);
1144
1145 /* Not an error, just cut short the traversal. */
1146 return FALSE;
e23eba97
NC
1147 }
1148 return TRUE;
1149}
1150
1151static bfd_boolean
1152riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1153{
1154 struct riscv_elf_link_hash_table *htab;
1155 bfd *dynobj;
1156 asection *s;
1157 bfd *ibfd;
1158
1159 htab = riscv_elf_hash_table (info);
1160 BFD_ASSERT (htab != NULL);
1161 dynobj = htab->elf.dynobj;
1162 BFD_ASSERT (dynobj != NULL);
1163
1164 if (elf_hash_table (info)->dynamic_sections_created)
1165 {
1166 /* Set the contents of the .interp section to the interpreter. */
1167 if (bfd_link_executable (info) && !info->nointerp)
1168 {
1169 s = bfd_get_linker_section (dynobj, ".interp");
1170 BFD_ASSERT (s != NULL);
1171 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1172 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1173 }
1174 }
1175
1176 /* Set up .got offsets for local syms, and space for local dynamic
1177 relocs. */
1178 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1179 {
1180 bfd_signed_vma *local_got;
1181 bfd_signed_vma *end_local_got;
1182 char *local_tls_type;
1183 bfd_size_type locsymcount;
1184 Elf_Internal_Shdr *symtab_hdr;
1185 asection *srel;
1186
1187 if (! is_riscv_elf (ibfd))
1188 continue;
1189
1190 for (s = ibfd->sections; s != NULL; s = s->next)
1191 {
3bf083ed 1192 struct elf_dyn_relocs *p;
e23eba97
NC
1193
1194 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1195 {
1196 if (!bfd_is_abs_section (p->sec)
1197 && bfd_is_abs_section (p->sec->output_section))
1198 {
1199 /* Input section has been discarded, either because
1200 it is a copy of a linkonce section or due to
1201 linker script /DISCARD/, so we'll be discarding
1202 the relocs too. */
1203 }
1204 else if (p->count != 0)
1205 {
1206 srel = elf_section_data (p->sec)->sreloc;
1207 srel->size += p->count * sizeof (ElfNN_External_Rela);
1208 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1209 info->flags |= DF_TEXTREL;
1210 }
1211 }
1212 }
1213
1214 local_got = elf_local_got_refcounts (ibfd);
1215 if (!local_got)
1216 continue;
1217
1218 symtab_hdr = &elf_symtab_hdr (ibfd);
1219 locsymcount = symtab_hdr->sh_info;
1220 end_local_got = local_got + locsymcount;
1221 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1222 s = htab->elf.sgot;
1223 srel = htab->elf.srelgot;
1224 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1225 {
1226 if (*local_got > 0)
1227 {
1228 *local_got = s->size;
1229 s->size += RISCV_ELF_WORD_BYTES;
1230 if (*local_tls_type & GOT_TLS_GD)
1231 s->size += RISCV_ELF_WORD_BYTES;
1232 if (bfd_link_pic (info)
1233 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1234 srel->size += sizeof (ElfNN_External_Rela);
1235 }
1236 else
1237 *local_got = (bfd_vma) -1;
1238 }
1239 }
1240
1241 /* Allocate global sym .plt and .got entries, and space for global
1242 sym dynamic relocs. */
1243 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1244
1245 if (htab->elf.sgotplt)
1246 {
1247 struct elf_link_hash_entry *got;
1248 got = elf_link_hash_lookup (elf_hash_table (info),
1249 "_GLOBAL_OFFSET_TABLE_",
1250 FALSE, FALSE, FALSE);
1251
1252 /* Don't allocate .got.plt section if there are no GOT nor PLT
1253 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1254 if ((got == NULL
1255 || !got->ref_regular_nonweak)
1256 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1257 && (htab->elf.splt == NULL
1258 || htab->elf.splt->size == 0)
1259 && (htab->elf.sgot == NULL
1260 || (htab->elf.sgot->size
1261 == get_elf_backend_data (output_bfd)->got_header_size)))
1262 htab->elf.sgotplt->size = 0;
1263 }
1264
1265 /* The check_relocs and adjust_dynamic_symbol entry points have
1266 determined the sizes of the various dynamic sections. Allocate
1267 memory for them. */
1268 for (s = dynobj->sections; s != NULL; s = s->next)
1269 {
1270 if ((s->flags & SEC_LINKER_CREATED) == 0)
1271 continue;
1272
1273 if (s == htab->elf.splt
1274 || s == htab->elf.sgot
1275 || s == htab->elf.sgotplt
5474d94f
AM
1276 || s == htab->elf.sdynbss
1277 || s == htab->elf.sdynrelro)
e23eba97
NC
1278 {
1279 /* Strip this section if we don't need it; see the
1280 comment below. */
1281 }
1282 else if (strncmp (s->name, ".rela", 5) == 0)
1283 {
1284 if (s->size != 0)
1285 {
1286 /* We use the reloc_count field as a counter if we need
1287 to copy relocs into the output file. */
1288 s->reloc_count = 0;
1289 }
1290 }
1291 else
1292 {
1293 /* It's not one of our sections. */
1294 continue;
1295 }
1296
1297 if (s->size == 0)
1298 {
1299 /* If we don't need this section, strip it from the
1300 output file. This is mostly to handle .rela.bss and
1301 .rela.plt. We must create both sections in
1302 create_dynamic_sections, because they must be created
1303 before the linker maps input sections to output
1304 sections. The linker does that before
1305 adjust_dynamic_symbol is called, and it is that
1306 function which decides whether anything needs to go
1307 into these sections. */
1308 s->flags |= SEC_EXCLUDE;
1309 continue;
1310 }
1311
1312 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1313 continue;
1314
1315 /* Allocate memory for the section contents. Zero the memory
1316 for the benefit of .rela.plt, which has 4 unused entries
1317 at the beginning, and we don't want garbage. */
1318 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1319 if (s->contents == NULL)
1320 return FALSE;
1321 }
1322
1323 if (elf_hash_table (info)->dynamic_sections_created)
1324 {
1325 /* Add some entries to the .dynamic section. We fill in the
1326 values later, in riscv_elf_finish_dynamic_sections, but we
1327 must add the entries now so that we get the correct size for
1328 the .dynamic section. The DT_DEBUG entry is filled in by the
1329 dynamic linker and used by the debugger. */
1330#define add_dynamic_entry(TAG, VAL) \
1331 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1332
1333 if (bfd_link_executable (info))
1334 {
1335 if (!add_dynamic_entry (DT_DEBUG, 0))
1336 return FALSE;
1337 }
1338
1339 if (htab->elf.srelplt->size != 0)
1340 {
1341 if (!add_dynamic_entry (DT_PLTGOT, 0)
1342 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1343 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1344 || !add_dynamic_entry (DT_JMPREL, 0))
1345 return FALSE;
1346 }
1347
1348 if (!add_dynamic_entry (DT_RELA, 0)
1349 || !add_dynamic_entry (DT_RELASZ, 0)
1350 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1351 return FALSE;
1352
1353 /* If any dynamic relocs apply to a read-only section,
1354 then we need a DT_TEXTREL entry. */
1355 if ((info->flags & DF_TEXTREL) == 0)
63c1f59d 1356 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
e23eba97
NC
1357
1358 if (info->flags & DF_TEXTREL)
1359 {
1360 if (!add_dynamic_entry (DT_TEXTREL, 0))
1361 return FALSE;
1362 }
1363 }
1364#undef add_dynamic_entry
1365
1366 return TRUE;
1367}
1368
1369#define TP_OFFSET 0
1370#define DTP_OFFSET 0x800
1371
1372/* Return the relocation value for a TLS dtp-relative reloc. */
1373
1374static bfd_vma
1375dtpoff (struct bfd_link_info *info, bfd_vma address)
1376{
1377 /* If tls_sec is NULL, we should have signalled an error already. */
1378 if (elf_hash_table (info)->tls_sec == NULL)
1379 return 0;
1380 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1381}
1382
1383/* Return the relocation value for a static TLS tp-relative relocation. */
1384
1385static bfd_vma
1386tpoff (struct bfd_link_info *info, bfd_vma address)
1387{
1388 /* If tls_sec is NULL, we should have signalled an error already. */
1389 if (elf_hash_table (info)->tls_sec == NULL)
1390 return 0;
1391 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1392}
1393
1394/* Return the global pointer's value, or 0 if it is not in use. */
1395
1396static bfd_vma
1397riscv_global_pointer_value (struct bfd_link_info *info)
1398{
1399 struct bfd_link_hash_entry *h;
1400
b5292032 1401 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
e23eba97
NC
1402 if (h == NULL || h->type != bfd_link_hash_defined)
1403 return 0;
1404
1405 return h->u.def.value + sec_addr (h->u.def.section);
1406}
1407
1408/* Emplace a static relocation. */
1409
1410static bfd_reloc_status_type
1411perform_relocation (const reloc_howto_type *howto,
1412 const Elf_Internal_Rela *rel,
1413 bfd_vma value,
1414 asection *input_section,
1415 bfd *input_bfd,
1416 bfd_byte *contents)
1417{
1418 if (howto->pc_relative)
1419 value -= sec_addr (input_section) + rel->r_offset;
1420 value += rel->r_addend;
1421
1422 switch (ELFNN_R_TYPE (rel->r_info))
1423 {
1424 case R_RISCV_HI20:
1425 case R_RISCV_TPREL_HI20:
1426 case R_RISCV_PCREL_HI20:
1427 case R_RISCV_GOT_HI20:
1428 case R_RISCV_TLS_GOT_HI20:
1429 case R_RISCV_TLS_GD_HI20:
1430 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1431 return bfd_reloc_overflow;
1432 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1433 break;
1434
1435 case R_RISCV_LO12_I:
1436 case R_RISCV_GPREL_I:
1437 case R_RISCV_TPREL_LO12_I:
45f76423 1438 case R_RISCV_TPREL_I:
e23eba97
NC
1439 case R_RISCV_PCREL_LO12_I:
1440 value = ENCODE_ITYPE_IMM (value);
1441 break;
1442
1443 case R_RISCV_LO12_S:
1444 case R_RISCV_GPREL_S:
1445 case R_RISCV_TPREL_LO12_S:
45f76423 1446 case R_RISCV_TPREL_S:
e23eba97
NC
1447 case R_RISCV_PCREL_LO12_S:
1448 value = ENCODE_STYPE_IMM (value);
1449 break;
1450
1451 case R_RISCV_CALL:
1452 case R_RISCV_CALL_PLT:
1453 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1454 return bfd_reloc_overflow;
1455 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1456 | (ENCODE_ITYPE_IMM (value) << 32);
1457 break;
1458
1459 case R_RISCV_JAL:
1460 if (!VALID_UJTYPE_IMM (value))
1461 return bfd_reloc_overflow;
1462 value = ENCODE_UJTYPE_IMM (value);
1463 break;
1464
1465 case R_RISCV_BRANCH:
1466 if (!VALID_SBTYPE_IMM (value))
1467 return bfd_reloc_overflow;
1468 value = ENCODE_SBTYPE_IMM (value);
1469 break;
1470
1471 case R_RISCV_RVC_BRANCH:
1472 if (!VALID_RVC_B_IMM (value))
1473 return bfd_reloc_overflow;
1474 value = ENCODE_RVC_B_IMM (value);
1475 break;
1476
1477 case R_RISCV_RVC_JUMP:
1478 if (!VALID_RVC_J_IMM (value))
1479 return bfd_reloc_overflow;
1480 value = ENCODE_RVC_J_IMM (value);
1481 break;
1482
1483 case R_RISCV_RVC_LUI:
1484 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1485 return bfd_reloc_overflow;
1486 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1487 break;
1488
1489 case R_RISCV_32:
1490 case R_RISCV_64:
1491 case R_RISCV_ADD8:
1492 case R_RISCV_ADD16:
1493 case R_RISCV_ADD32:
1494 case R_RISCV_ADD64:
45f76423 1495 case R_RISCV_SUB6:
e23eba97
NC
1496 case R_RISCV_SUB8:
1497 case R_RISCV_SUB16:
1498 case R_RISCV_SUB32:
1499 case R_RISCV_SUB64:
45f76423
AW
1500 case R_RISCV_SET6:
1501 case R_RISCV_SET8:
1502 case R_RISCV_SET16:
1503 case R_RISCV_SET32:
a6cbf936 1504 case R_RISCV_32_PCREL:
e23eba97
NC
1505 case R_RISCV_TLS_DTPREL32:
1506 case R_RISCV_TLS_DTPREL64:
1507 break;
1508
ff6f4d9b
PD
1509 case R_RISCV_DELETE:
1510 return bfd_reloc_ok;
1511
e23eba97
NC
1512 default:
1513 return bfd_reloc_notsupported;
1514 }
1515
1516 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1517 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1518 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1519
1520 return bfd_reloc_ok;
1521}
1522
1523/* Remember all PC-relative high-part relocs we've encountered to help us
1524 later resolve the corresponding low-part relocs. */
1525
1526typedef struct
1527{
1528 bfd_vma address;
1529 bfd_vma value;
1530} riscv_pcrel_hi_reloc;
1531
1532typedef struct riscv_pcrel_lo_reloc
1533{
07d6d2b8
AM
1534 asection * input_section;
1535 struct bfd_link_info * info;
1536 reloc_howto_type * howto;
1537 const Elf_Internal_Rela * reloc;
1538 bfd_vma addr;
1539 const char * name;
1540 bfd_byte * contents;
1541 struct riscv_pcrel_lo_reloc * next;
e23eba97
NC
1542} riscv_pcrel_lo_reloc;
1543
1544typedef struct
1545{
1546 htab_t hi_relocs;
1547 riscv_pcrel_lo_reloc *lo_relocs;
1548} riscv_pcrel_relocs;
1549
1550static hashval_t
1551riscv_pcrel_reloc_hash (const void *entry)
1552{
1553 const riscv_pcrel_hi_reloc *e = entry;
1554 return (hashval_t)(e->address >> 2);
1555}
1556
1557static bfd_boolean
1558riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1559{
1560 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1561 return e1->address == e2->address;
1562}
1563
1564static bfd_boolean
1565riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1566{
1567
1568 p->lo_relocs = NULL;
1569 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1570 riscv_pcrel_reloc_eq, free);
1571 return p->hi_relocs != NULL;
1572}
1573
1574static void
1575riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1576{
1577 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1578
1579 while (cur != NULL)
1580 {
1581 riscv_pcrel_lo_reloc *next = cur->next;
1582 free (cur);
1583 cur = next;
1584 }
1585
1586 htab_delete (p->hi_relocs);
1587}
1588
1589static bfd_boolean
b1308d2c
PD
1590riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1591 struct bfd_link_info *info,
1592 bfd_vma pc,
1593 bfd_vma addr,
1594 bfd_byte *contents,
1595 const reloc_howto_type *howto,
1596 bfd *input_bfd)
e23eba97 1597{
b1308d2c
PD
1598 /* We may need to reference low addreses in PC-relative modes even when the
1599 * PC is far away from these addresses. For example, undefweak references
1600 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1601 * addresses that we can link PC-relative programs at, the linker can't
1602 * actually relocate references to those symbols. In order to allow these
1603 * programs to work we simply convert the PC-relative auipc sequences to
1604 * 0-relative lui sequences. */
1605 if (bfd_link_pic (info))
1606 return FALSE;
1607
1608 /* If it's possible to reference the symbol using auipc we do so, as that's
1609 * more in the spirit of the PC-relative relocations we're processing. */
1610 bfd_vma offset = addr - pc;
1611 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1612 return FALSE;
1613
1614 /* If it's impossible to reference this with a LUI-based offset then don't
1615 * bother to convert it at all so users still see the PC-relative relocation
1616 * in the truncation message. */
1617 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1618 return FALSE;
1619
1620 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1621
1622 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1623 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1624 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1625 return TRUE;
1626}
1627
1628static bfd_boolean
1629riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1630 bfd_vma value, bfd_boolean absolute)
1631{
1632 bfd_vma offset = absolute ? value : value - addr;
1633 riscv_pcrel_hi_reloc entry = {addr, offset};
e23eba97
NC
1634 riscv_pcrel_hi_reloc **slot =
1635 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1636
1637 BFD_ASSERT (*slot == NULL);
1638 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1639 if (*slot == NULL)
1640 return FALSE;
1641 **slot = entry;
1642 return TRUE;
1643}
1644
1645static bfd_boolean
1646riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1647 asection *input_section,
1648 struct bfd_link_info *info,
1649 reloc_howto_type *howto,
1650 const Elf_Internal_Rela *reloc,
1651 bfd_vma addr,
1652 const char *name,
1653 bfd_byte *contents)
1654{
1655 riscv_pcrel_lo_reloc *entry;
1656 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1657 if (entry == NULL)
1658 return FALSE;
1659 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1660 name, contents, p->lo_relocs};
1661 p->lo_relocs = entry;
1662 return TRUE;
1663}
1664
1665static bfd_boolean
1666riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1667{
1668 riscv_pcrel_lo_reloc *r;
1669
1670 for (r = p->lo_relocs; r != NULL; r = r->next)
1671 {
1672 bfd *input_bfd = r->input_section->owner;
1673
1674 riscv_pcrel_hi_reloc search = {r->addr, 0};
1675 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
551703cf
JW
1676 if (entry == NULL
1677 /* Check for overflow into bit 11 when adding reloc addend. */
1678 || (! (entry->value & 0x800)
1679 && ((entry->value + r->reloc->r_addend) & 0x800)))
07d6d2b8 1680 {
551703cf
JW
1681 char *string = (entry == NULL
1682 ? "%pcrel_lo missing matching %pcrel_hi"
1683 : "%pcrel_lo overflow with an addend");
1684 (*r->info->callbacks->reloc_dangerous)
1685 (r->info, string, input_bfd, r->input_section, r->reloc->r_offset);
e23eba97 1686 return TRUE;
07d6d2b8 1687 }
e23eba97
NC
1688
1689 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1690 input_bfd, r->contents);
1691 }
1692
1693 return TRUE;
1694}
1695
1696/* Relocate a RISC-V ELF section.
1697
1698 The RELOCATE_SECTION function is called by the new ELF backend linker
1699 to handle the relocations for a section.
1700
1701 The relocs are always passed as Rela structures.
1702
1703 This function is responsible for adjusting the section contents as
1704 necessary, and (if generating a relocatable output file) adjusting
1705 the reloc addend as necessary.
1706
1707 This function does not have to worry about setting the reloc
1708 address or the reloc symbol index.
1709
1710 LOCAL_SYMS is a pointer to the swapped in local symbols.
1711
1712 LOCAL_SECTIONS is an array giving the section in the input file
1713 corresponding to the st_shndx field of each local symbol.
1714
1715 The global hash table entry for the global symbols can be found
1716 via elf_sym_hashes (input_bfd).
1717
1718 When generating relocatable output, this function must handle
1719 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1720 going to be the section symbol corresponding to the output
1721 section, which means that the addend must be adjusted
1722 accordingly. */
1723
1724static bfd_boolean
1725riscv_elf_relocate_section (bfd *output_bfd,
1726 struct bfd_link_info *info,
1727 bfd *input_bfd,
1728 asection *input_section,
1729 bfd_byte *contents,
1730 Elf_Internal_Rela *relocs,
1731 Elf_Internal_Sym *local_syms,
1732 asection **local_sections)
1733{
1734 Elf_Internal_Rela *rel;
1735 Elf_Internal_Rela *relend;
1736 riscv_pcrel_relocs pcrel_relocs;
1737 bfd_boolean ret = FALSE;
1738 asection *sreloc = elf_section_data (input_section)->sreloc;
1739 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1740 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1741 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1742 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
b1308d2c 1743 bfd_boolean absolute;
e23eba97
NC
1744
1745 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1746 return FALSE;
1747
1748 relend = relocs + input_section->reloc_count;
1749 for (rel = relocs; rel < relend; rel++)
1750 {
1751 unsigned long r_symndx;
1752 struct elf_link_hash_entry *h;
1753 Elf_Internal_Sym *sym;
1754 asection *sec;
1755 bfd_vma relocation;
1756 bfd_reloc_status_type r = bfd_reloc_ok;
1757 const char *name;
1758 bfd_vma off, ie_off;
1759 bfd_boolean unresolved_reloc, is_ie = FALSE;
1760 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1761 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
0aa13fee 1762 reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
e23eba97 1763 const char *msg = NULL;
6487709f 1764 bfd_boolean resolved_to_zero;
e23eba97 1765
f3185997
NC
1766 if (howto == NULL
1767 || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
e23eba97
NC
1768 continue;
1769
1770 /* This is a final link. */
1771 r_symndx = ELFNN_R_SYM (rel->r_info);
1772 h = NULL;
1773 sym = NULL;
1774 sec = NULL;
1775 unresolved_reloc = FALSE;
1776 if (r_symndx < symtab_hdr->sh_info)
1777 {
1778 sym = local_syms + r_symndx;
1779 sec = local_sections[r_symndx];
1780 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1781 }
1782 else
1783 {
1784 bfd_boolean warned, ignored;
1785
1786 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1787 r_symndx, symtab_hdr, sym_hashes,
1788 h, sec, relocation,
1789 unresolved_reloc, warned, ignored);
1790 if (warned)
1791 {
1792 /* To avoid generating warning messages about truncated
1793 relocations, set the relocation's address to be the same as
1794 the start of this section. */
1795 if (input_section->output_section != NULL)
1796 relocation = input_section->output_section->vma;
1797 else
1798 relocation = 0;
1799 }
1800 }
1801
1802 if (sec != NULL && discarded_section (sec))
1803 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1804 rel, 1, relend, howto, 0, contents);
1805
1806 if (bfd_link_relocatable (info))
1807 continue;
1808
1809 if (h != NULL)
1810 name = h->root.root.string;
1811 else
1812 {
1813 name = (bfd_elf_string_from_elf_section
1814 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1815 if (name == NULL || *name == '\0')
1816 name = bfd_section_name (input_bfd, sec);
1817 }
1818
6487709f
JW
1819 resolved_to_zero = (h != NULL
1820 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
1821
e23eba97
NC
1822 switch (r_type)
1823 {
1824 case R_RISCV_NONE:
45f76423 1825 case R_RISCV_RELAX:
e23eba97
NC
1826 case R_RISCV_TPREL_ADD:
1827 case R_RISCV_COPY:
1828 case R_RISCV_JUMP_SLOT:
1829 case R_RISCV_RELATIVE:
1830 /* These require nothing of us at all. */
1831 continue;
1832
1833 case R_RISCV_HI20:
1834 case R_RISCV_BRANCH:
1835 case R_RISCV_RVC_BRANCH:
1836 case R_RISCV_RVC_LUI:
1837 case R_RISCV_LO12_I:
1838 case R_RISCV_LO12_S:
45f76423
AW
1839 case R_RISCV_SET6:
1840 case R_RISCV_SET8:
1841 case R_RISCV_SET16:
1842 case R_RISCV_SET32:
a6cbf936 1843 case R_RISCV_32_PCREL:
ff6f4d9b 1844 case R_RISCV_DELETE:
e23eba97
NC
1845 /* These require no special handling beyond perform_relocation. */
1846 break;
1847
1848 case R_RISCV_GOT_HI20:
1849 if (h != NULL)
1850 {
1851 bfd_boolean dyn, pic;
1852
1853 off = h->got.offset;
1854 BFD_ASSERT (off != (bfd_vma) -1);
1855 dyn = elf_hash_table (info)->dynamic_sections_created;
1856 pic = bfd_link_pic (info);
1857
1858 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1859 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1860 {
1861 /* This is actually a static link, or it is a
1862 -Bsymbolic link and the symbol is defined
1863 locally, or the symbol was forced to be local
1864 because of a version file. We must initialize
1865 this entry in the global offset table. Since the
1866 offset must always be a multiple of the word size,
1867 we use the least significant bit to record whether
1868 we have initialized it already.
1869
1870 When doing a dynamic link, we create a .rela.got
1871 relocation entry to initialize the value. This
1872 is done in the finish_dynamic_symbol routine. */
1873 if ((off & 1) != 0)
1874 off &= ~1;
1875 else
1876 {
1877 bfd_put_NN (output_bfd, relocation,
1878 htab->elf.sgot->contents + off);
1879 h->got.offset |= 1;
1880 }
1881 }
1882 else
1883 unresolved_reloc = FALSE;
1884 }
1885 else
1886 {
1887 BFD_ASSERT (local_got_offsets != NULL
1888 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1889
1890 off = local_got_offsets[r_symndx];
1891
1892 /* The offset must always be a multiple of the word size.
1893 So, we can use the least significant bit to record
1894 whether we have already processed this entry. */
1895 if ((off & 1) != 0)
1896 off &= ~1;
1897 else
1898 {
1899 if (bfd_link_pic (info))
1900 {
1901 asection *s;
1902 Elf_Internal_Rela outrel;
1903
1904 /* We need to generate a R_RISCV_RELATIVE reloc
1905 for the dynamic linker. */
1906 s = htab->elf.srelgot;
1907 BFD_ASSERT (s != NULL);
1908
1909 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1910 outrel.r_info =
1911 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1912 outrel.r_addend = relocation;
1913 relocation = 0;
1914 riscv_elf_append_rela (output_bfd, s, &outrel);
1915 }
1916
1917 bfd_put_NN (output_bfd, relocation,
1918 htab->elf.sgot->contents + off);
1919 local_got_offsets[r_symndx] |= 1;
1920 }
1921 }
1922 relocation = sec_addr (htab->elf.sgot) + off;
b1308d2c
PD
1923 absolute = riscv_zero_pcrel_hi_reloc (rel,
1924 info,
1925 pc,
1926 relocation,
1927 contents,
1928 howto,
1929 input_bfd);
1930 r_type = ELFNN_R_TYPE (rel->r_info);
0aa13fee 1931 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
f3185997
NC
1932 if (howto == NULL)
1933 r = bfd_reloc_notsupported;
1934 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1935 relocation, absolute))
e23eba97
NC
1936 r = bfd_reloc_overflow;
1937 break;
1938
1939 case R_RISCV_ADD8:
1940 case R_RISCV_ADD16:
1941 case R_RISCV_ADD32:
1942 case R_RISCV_ADD64:
1943 {
1944 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1945 contents + rel->r_offset);
1946 relocation = old_value + relocation;
1947 }
1948 break;
1949
45f76423 1950 case R_RISCV_SUB6:
e23eba97
NC
1951 case R_RISCV_SUB8:
1952 case R_RISCV_SUB16:
1953 case R_RISCV_SUB32:
1954 case R_RISCV_SUB64:
1955 {
1956 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1957 contents + rel->r_offset);
1958 relocation = old_value - relocation;
1959 }
1960 break;
1961
e23eba97 1962 case R_RISCV_CALL:
cf7a5066
JW
1963 /* Handle a call to an undefined weak function. This won't be
1964 relaxed, so we have to handle it here. */
1965 if (h != NULL && h->root.type == bfd_link_hash_undefweak
1966 && h->plt.offset == MINUS_ONE)
1967 {
1968 /* We can use x0 as the base register. */
1969 bfd_vma insn = bfd_get_32 (input_bfd,
1970 contents + rel->r_offset + 4);
1971 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1972 bfd_put_32 (input_bfd, insn, contents + rel->r_offset + 4);
1973 /* Set the relocation value so that we get 0 after the pc
1974 relative adjustment. */
1975 relocation = sec_addr (input_section) + rel->r_offset;
1976 }
1977 /* Fall through. */
1978
1979 case R_RISCV_CALL_PLT:
e23eba97
NC
1980 case R_RISCV_JAL:
1981 case R_RISCV_RVC_JUMP:
1982 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
1983 {
1984 /* Refer to the PLT entry. */
1985 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
1986 unresolved_reloc = FALSE;
1987 }
1988 break;
1989
1990 case R_RISCV_TPREL_HI20:
1991 relocation = tpoff (info, relocation);
1992 break;
1993
1994 case R_RISCV_TPREL_LO12_I:
1995 case R_RISCV_TPREL_LO12_S:
45f76423
AW
1996 relocation = tpoff (info, relocation);
1997 break;
1998
1999 case R_RISCV_TPREL_I:
2000 case R_RISCV_TPREL_S:
e23eba97
NC
2001 relocation = tpoff (info, relocation);
2002 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
2003 {
2004 /* We can use tp as the base register. */
2005 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2006 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2007 insn |= X_TP << OP_SH_RS1;
2008 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2009 }
45f76423
AW
2010 else
2011 r = bfd_reloc_overflow;
e23eba97
NC
2012 break;
2013
2014 case R_RISCV_GPREL_I:
2015 case R_RISCV_GPREL_S:
2016 {
2017 bfd_vma gp = riscv_global_pointer_value (info);
2018 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
2019 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
2020 {
2021 /* We can use x0 or gp as the base register. */
2022 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2023 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2024 if (!x0_base)
2025 {
2026 rel->r_addend -= gp;
2027 insn |= X_GP << OP_SH_RS1;
2028 }
2029 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2030 }
2031 else
2032 r = bfd_reloc_overflow;
2033 break;
2034 }
2035
2036 case R_RISCV_PCREL_HI20:
b1308d2c
PD
2037 absolute = riscv_zero_pcrel_hi_reloc (rel,
2038 info,
2039 pc,
2040 relocation,
2041 contents,
2042 howto,
2043 input_bfd);
2044 r_type = ELFNN_R_TYPE (rel->r_info);
0aa13fee 2045 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
f3185997
NC
2046 if (howto == NULL)
2047 r = bfd_reloc_notsupported;
2048 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2049 relocation + rel->r_addend,
2050 absolute))
e23eba97
NC
2051 r = bfd_reloc_overflow;
2052 break;
2053
2054 case R_RISCV_PCREL_LO12_I:
2055 case R_RISCV_PCREL_LO12_S:
551703cf
JW
2056 /* We don't allow section symbols plus addends as the auipc address,
2057 because then riscv_relax_delete_bytes would have to search through
2058 all relocs to update these addends. This is also ambiguous, as
2059 we do allow offsets to be added to the target address, which are
2060 not to be used to find the auipc address. */
2061 if ((ELF_ST_TYPE (sym->st_info) == STT_SECTION) && rel->r_addend)
2a0d9853
JW
2062 {
2063 r = bfd_reloc_dangerous;
2064 break;
2065 }
2066
e23eba97
NC
2067 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2068 howto, rel, relocation, name,
2069 contents))
2070 continue;
2071 r = bfd_reloc_overflow;
2072 break;
2073
2074 case R_RISCV_TLS_DTPREL32:
2075 case R_RISCV_TLS_DTPREL64:
2076 relocation = dtpoff (info, relocation);
2077 break;
2078
2079 case R_RISCV_32:
2080 case R_RISCV_64:
2081 if ((input_section->flags & SEC_ALLOC) == 0)
2082 break;
2083
2084 if ((bfd_link_pic (info)
2085 && (h == NULL
6487709f
JW
2086 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2087 && !resolved_to_zero)
e23eba97
NC
2088 || h->root.type != bfd_link_hash_undefweak)
2089 && (! howto->pc_relative
2090 || !SYMBOL_CALLS_LOCAL (info, h)))
2091 || (!bfd_link_pic (info)
2092 && h != NULL
2093 && h->dynindx != -1
2094 && !h->non_got_ref
2095 && ((h->def_dynamic
2096 && !h->def_regular)
2097 || h->root.type == bfd_link_hash_undefweak
2098 || h->root.type == bfd_link_hash_undefined)))
2099 {
2100 Elf_Internal_Rela outrel;
2101 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2102
2103 /* When generating a shared object, these relocations
2104 are copied into the output file to be resolved at run
2105 time. */
2106
2107 outrel.r_offset =
2108 _bfd_elf_section_offset (output_bfd, info, input_section,
2109 rel->r_offset);
2110 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2111 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2112 outrel.r_offset += sec_addr (input_section);
2113
2114 if (skip_dynamic_relocation)
2115 memset (&outrel, 0, sizeof outrel);
2116 else if (h != NULL && h->dynindx != -1
2117 && !(bfd_link_pic (info)
2118 && SYMBOLIC_BIND (info, h)
2119 && h->def_regular))
2120 {
2121 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2122 outrel.r_addend = rel->r_addend;
2123 }
2124 else
2125 {
2126 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2127 outrel.r_addend = relocation + rel->r_addend;
2128 }
2129
2130 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2131 if (skip_static_relocation)
2132 continue;
2133 }
2134 break;
2135
2136 case R_RISCV_TLS_GOT_HI20:
2137 is_ie = TRUE;
2138 /* Fall through. */
2139
2140 case R_RISCV_TLS_GD_HI20:
2141 if (h != NULL)
2142 {
2143 off = h->got.offset;
2144 h->got.offset |= 1;
2145 }
2146 else
2147 {
2148 off = local_got_offsets[r_symndx];
2149 local_got_offsets[r_symndx] |= 1;
2150 }
2151
2152 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2153 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2154 /* If this symbol is referenced by both GD and IE TLS, the IE
2155 reference's GOT slot follows the GD reference's slots. */
2156 ie_off = 0;
2157 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2158 ie_off = 2 * GOT_ENTRY_SIZE;
2159
2160 if ((off & 1) != 0)
2161 off &= ~1;
2162 else
2163 {
2164 Elf_Internal_Rela outrel;
2165 int indx = 0;
2166 bfd_boolean need_relocs = FALSE;
2167
2168 if (htab->elf.srelgot == NULL)
2169 abort ();
2170
2171 if (h != NULL)
2172 {
2173 bfd_boolean dyn, pic;
2174 dyn = htab->elf.dynamic_sections_created;
2175 pic = bfd_link_pic (info);
2176
2177 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2178 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2179 indx = h->dynindx;
2180 }
2181
2182 /* The GOT entries have not been initialized yet. Do it
07d6d2b8 2183 now, and emit any relocations. */
e23eba97
NC
2184 if ((bfd_link_pic (info) || indx != 0)
2185 && (h == NULL
2186 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2187 || h->root.type != bfd_link_hash_undefweak))
2188 need_relocs = TRUE;
2189
2190 if (tls_type & GOT_TLS_GD)
2191 {
2192 if (need_relocs)
2193 {
2194 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2195 outrel.r_addend = 0;
2196 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2197 bfd_put_NN (output_bfd, 0,
2198 htab->elf.sgot->contents + off);
2199 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2200 if (indx == 0)
2201 {
2202 BFD_ASSERT (! unresolved_reloc);
2203 bfd_put_NN (output_bfd,
2204 dtpoff (info, relocation),
2205 (htab->elf.sgot->contents + off +
2206 RISCV_ELF_WORD_BYTES));
2207 }
2208 else
2209 {
2210 bfd_put_NN (output_bfd, 0,
2211 (htab->elf.sgot->contents + off +
2212 RISCV_ELF_WORD_BYTES));
2213 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2214 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2215 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2216 }
2217 }
2218 else
2219 {
2220 /* If we are not emitting relocations for a
2221 general dynamic reference, then we must be in a
2222 static link or an executable link with the
2223 symbol binding locally. Mark it as belonging
2224 to module 1, the executable. */
2225 bfd_put_NN (output_bfd, 1,
2226 htab->elf.sgot->contents + off);
2227 bfd_put_NN (output_bfd,
2228 dtpoff (info, relocation),
2229 (htab->elf.sgot->contents + off +
2230 RISCV_ELF_WORD_BYTES));
2231 }
2232 }
2233
2234 if (tls_type & GOT_TLS_IE)
2235 {
2236 if (need_relocs)
2237 {
2238 bfd_put_NN (output_bfd, 0,
2239 htab->elf.sgot->contents + off + ie_off);
2240 outrel.r_offset = sec_addr (htab->elf.sgot)
2241 + off + ie_off;
2242 outrel.r_addend = 0;
2243 if (indx == 0)
2244 outrel.r_addend = tpoff (info, relocation);
2245 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2246 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2247 }
2248 else
2249 {
2250 bfd_put_NN (output_bfd, tpoff (info, relocation),
2251 htab->elf.sgot->contents + off + ie_off);
2252 }
2253 }
2254 }
2255
2256 BFD_ASSERT (off < (bfd_vma) -2);
2257 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
b1308d2c
PD
2258 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2259 relocation, FALSE))
e23eba97
NC
2260 r = bfd_reloc_overflow;
2261 unresolved_reloc = FALSE;
2262 break;
2263
2264 default:
2265 r = bfd_reloc_notsupported;
2266 }
2267
2268 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2269 because such sections are not SEC_ALLOC and thus ld.so will
2270 not process them. */
2271 if (unresolved_reloc
2272 && !((input_section->flags & SEC_DEBUGGING) != 0
2273 && h->def_dynamic)
2274 && _bfd_elf_section_offset (output_bfd, info, input_section,
2275 rel->r_offset) != (bfd_vma) -1)
2276 {
2277 (*_bfd_error_handler)
2dcf00ce
AM
2278 (_("%pB(%pA+%#" PRIx64 "): "
2279 "unresolvable %s relocation against symbol `%s'"),
e23eba97
NC
2280 input_bfd,
2281 input_section,
2dcf00ce 2282 (uint64_t) rel->r_offset,
e23eba97
NC
2283 howto->name,
2284 h->root.root.string);
2285 continue;
2286 }
2287
2288 if (r == bfd_reloc_ok)
2289 r = perform_relocation (howto, rel, relocation, input_section,
2290 input_bfd, contents);
2291
2292 switch (r)
2293 {
2294 case bfd_reloc_ok:
2295 continue;
2296
2297 case bfd_reloc_overflow:
2298 info->callbacks->reloc_overflow
2299 (info, (h ? &h->root : NULL), name, howto->name,
2300 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2301 break;
2302
2303 case bfd_reloc_undefined:
2304 info->callbacks->undefined_symbol
2305 (info, name, input_bfd, input_section, rel->r_offset,
2306 TRUE);
2307 break;
2308
2309 case bfd_reloc_outofrange:
2a0d9853 2310 msg = _("%X%P: internal error: out of range error\n");
e23eba97
NC
2311 break;
2312
2313 case bfd_reloc_notsupported:
2a0d9853 2314 msg = _("%X%P: internal error: unsupported relocation error\n");
e23eba97
NC
2315 break;
2316
2317 case bfd_reloc_dangerous:
2a0d9853 2318 info->callbacks->reloc_dangerous
551703cf
JW
2319 (info, "%pcrel_lo section symbol with an addend", input_bfd,
2320 input_section, rel->r_offset);
e23eba97
NC
2321 break;
2322
2323 default:
2a0d9853 2324 msg = _("%X%P: internal error: unknown error\n");
e23eba97
NC
2325 break;
2326 }
2327
2328 if (msg)
2a0d9853
JW
2329 info->callbacks->einfo (msg);
2330
3f48fe4a
JW
2331 /* We already reported the error via a callback, so don't try to report
2332 it again by returning false. That leads to spurious errors. */
ed01220c 2333 ret = TRUE;
e23eba97
NC
2334 goto out;
2335 }
2336
2337 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2338out:
2339 riscv_free_pcrel_relocs (&pcrel_relocs);
2340 return ret;
2341}
2342
2343/* Finish up dynamic symbol handling. We set the contents of various
2344 dynamic sections here. */
2345
2346static bfd_boolean
2347riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2348 struct bfd_link_info *info,
2349 struct elf_link_hash_entry *h,
2350 Elf_Internal_Sym *sym)
2351{
2352 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2353 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2354
2355 if (h->plt.offset != (bfd_vma) -1)
2356 {
2357 /* We've decided to create a PLT entry for this symbol. */
2358 bfd_byte *loc;
2359 bfd_vma i, header_address, plt_idx, got_address;
2360 uint32_t plt_entry[PLT_ENTRY_INSNS];
2361 Elf_Internal_Rela rela;
2362
2363 BFD_ASSERT (h->dynindx != -1);
2364
2365 /* Calculate the address of the PLT header. */
2366 header_address = sec_addr (htab->elf.splt);
2367
2368 /* Calculate the index of the entry. */
2369 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2370
2371 /* Calculate the address of the .got.plt entry. */
2372 got_address = riscv_elf_got_plt_val (plt_idx, info);
2373
2374 /* Find out where the .plt entry should go. */
2375 loc = htab->elf.splt->contents + h->plt.offset;
2376
2377 /* Fill in the PLT entry itself. */
5ef23793
JW
2378 if (! riscv_make_plt_entry (output_bfd, got_address,
2379 header_address + h->plt.offset,
2380 plt_entry))
2381 return FALSE;
2382
e23eba97
NC
2383 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2384 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2385
2386 /* Fill in the initial value of the .got.plt entry. */
2387 loc = htab->elf.sgotplt->contents
2388 + (got_address - sec_addr (htab->elf.sgotplt));
2389 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2390
2391 /* Fill in the entry in the .rela.plt section. */
2392 rela.r_offset = got_address;
2393 rela.r_addend = 0;
2394 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2395
2396 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2397 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2398
2399 if (!h->def_regular)
2400 {
2401 /* Mark the symbol as undefined, rather than as defined in
2402 the .plt section. Leave the value alone. */
2403 sym->st_shndx = SHN_UNDEF;
2404 /* If the symbol is weak, we do need to clear the value.
2405 Otherwise, the PLT entry would provide a definition for
2406 the symbol even if the symbol wasn't defined anywhere,
2407 and so the symbol would never be NULL. */
2408 if (!h->ref_regular_nonweak)
2409 sym->st_value = 0;
2410 }
2411 }
2412
2413 if (h->got.offset != (bfd_vma) -1
6487709f
JW
2414 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE))
2415 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
e23eba97
NC
2416 {
2417 asection *sgot;
2418 asection *srela;
2419 Elf_Internal_Rela rela;
2420
2421 /* This symbol has an entry in the GOT. Set it up. */
2422
2423 sgot = htab->elf.sgot;
2424 srela = htab->elf.srelgot;
2425 BFD_ASSERT (sgot != NULL && srela != NULL);
2426
2427 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2428
25eb8346
JW
2429 /* If this is a local symbol reference, we just want to emit a RELATIVE
2430 reloc. This can happen if it is a -Bsymbolic link, or a pie link, or
e23eba97
NC
2431 the symbol was forced to be local because of a version file.
2432 The entry in the global offset table will already have been
2433 initialized in the relocate_section function. */
2434 if (bfd_link_pic (info)
25eb8346 2435 && SYMBOL_REFERENCES_LOCAL (info, h))
e23eba97 2436 {
25eb8346 2437 BFD_ASSERT((h->got.offset & 1) != 0);
e23eba97
NC
2438 asection *sec = h->root.u.def.section;
2439 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2440 rela.r_addend = (h->root.u.def.value
2441 + sec->output_section->vma
2442 + sec->output_offset);
2443 }
2444 else
2445 {
25eb8346 2446 BFD_ASSERT((h->got.offset & 1) == 0);
e23eba97
NC
2447 BFD_ASSERT (h->dynindx != -1);
2448 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2449 rela.r_addend = 0;
2450 }
2451
2452 bfd_put_NN (output_bfd, 0,
2453 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2454 riscv_elf_append_rela (output_bfd, srela, &rela);
2455 }
2456
2457 if (h->needs_copy)
2458 {
2459 Elf_Internal_Rela rela;
5474d94f 2460 asection *s;
e23eba97
NC
2461
2462 /* This symbols needs a copy reloc. Set it up. */
2463 BFD_ASSERT (h->dynindx != -1);
2464
2465 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2466 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2467 rela.r_addend = 0;
afbf7e8e 2468 if (h->root.u.def.section == htab->elf.sdynrelro)
5474d94f
AM
2469 s = htab->elf.sreldynrelro;
2470 else
2471 s = htab->elf.srelbss;
2472 riscv_elf_append_rela (output_bfd, s, &rela);
e23eba97
NC
2473 }
2474
2475 /* Mark some specially defined symbols as absolute. */
2476 if (h == htab->elf.hdynamic
2477 || (h == htab->elf.hgot || h == htab->elf.hplt))
2478 sym->st_shndx = SHN_ABS;
2479
2480 return TRUE;
2481}
2482
2483/* Finish up the dynamic sections. */
2484
2485static bfd_boolean
2486riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2487 bfd *dynobj, asection *sdyn)
2488{
2489 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2490 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2491 size_t dynsize = bed->s->sizeof_dyn;
2492 bfd_byte *dyncon, *dynconend;
2493
2494 dynconend = sdyn->contents + sdyn->size;
2495 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2496 {
2497 Elf_Internal_Dyn dyn;
2498 asection *s;
2499
2500 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2501
2502 switch (dyn.d_tag)
2503 {
2504 case DT_PLTGOT:
2505 s = htab->elf.sgotplt;
2506 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2507 break;
2508 case DT_JMPREL:
2509 s = htab->elf.srelplt;
2510 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2511 break;
2512 case DT_PLTRELSZ:
2513 s = htab->elf.srelplt;
2514 dyn.d_un.d_val = s->size;
2515 break;
2516 default:
2517 continue;
2518 }
2519
2520 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2521 }
2522 return TRUE;
2523}
2524
2525static bfd_boolean
2526riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2527 struct bfd_link_info *info)
2528{
2529 bfd *dynobj;
2530 asection *sdyn;
2531 struct riscv_elf_link_hash_table *htab;
2532
2533 htab = riscv_elf_hash_table (info);
2534 BFD_ASSERT (htab != NULL);
2535 dynobj = htab->elf.dynobj;
2536
2537 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2538
2539 if (elf_hash_table (info)->dynamic_sections_created)
2540 {
2541 asection *splt;
2542 bfd_boolean ret;
2543
2544 splt = htab->elf.splt;
2545 BFD_ASSERT (splt != NULL && sdyn != NULL);
2546
2547 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2548
535b785f 2549 if (!ret)
e23eba97
NC
2550 return ret;
2551
2552 /* Fill in the head and tail entries in the procedure linkage table. */
2553 if (splt->size > 0)
2554 {
2555 int i;
2556 uint32_t plt_header[PLT_HEADER_INSNS];
5ef23793
JW
2557 ret = riscv_make_plt_header (output_bfd,
2558 sec_addr (htab->elf.sgotplt),
2559 sec_addr (splt), plt_header);
2560 if (!ret)
2561 return ret;
e23eba97
NC
2562
2563 for (i = 0; i < PLT_HEADER_INSNS; i++)
2564 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
e23eba97 2565
cc162427
AW
2566 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2567 = PLT_ENTRY_SIZE;
2568 }
e23eba97
NC
2569 }
2570
2571 if (htab->elf.sgotplt)
2572 {
2573 asection *output_section = htab->elf.sgotplt->output_section;
2574
2575 if (bfd_is_abs_section (output_section))
2576 {
2577 (*_bfd_error_handler)
871b3ab2 2578 (_("discarded output section: `%pA'"), htab->elf.sgotplt);
e23eba97
NC
2579 return FALSE;
2580 }
2581
2582 if (htab->elf.sgotplt->size > 0)
2583 {
2584 /* Write the first two entries in .got.plt, needed for the dynamic
2585 linker. */
2586 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2587 bfd_put_NN (output_bfd, (bfd_vma) 0,
2588 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2589 }
2590
2591 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2592 }
2593
2594 if (htab->elf.sgot)
2595 {
2596 asection *output_section = htab->elf.sgot->output_section;
2597
2598 if (htab->elf.sgot->size > 0)
2599 {
2600 /* Set the first entry in the global offset table to the address of
2601 the dynamic section. */
2602 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2603 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2604 }
2605
2606 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2607 }
2608
2609 return TRUE;
2610}
2611
2612/* Return address for Ith PLT stub in section PLT, for relocation REL
2613 or (bfd_vma) -1 if it should not be included. */
2614
2615static bfd_vma
2616riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2617 const arelent *rel ATTRIBUTE_UNUSED)
2618{
2619 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2620}
2621
2622static enum elf_reloc_type_class
2623riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2624 const asection *rel_sec ATTRIBUTE_UNUSED,
2625 const Elf_Internal_Rela *rela)
2626{
2627 switch (ELFNN_R_TYPE (rela->r_info))
2628 {
2629 case R_RISCV_RELATIVE:
2630 return reloc_class_relative;
2631 case R_RISCV_JUMP_SLOT:
2632 return reloc_class_plt;
2633 case R_RISCV_COPY:
2634 return reloc_class_copy;
2635 default:
2636 return reloc_class_normal;
2637 }
2638}
2639
2640/* Merge backend specific data from an object file to the output
2641 object file when linking. */
2642
2643static bfd_boolean
2644_bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2645{
2646 bfd *obfd = info->output_bfd;
2647 flagword new_flags = elf_elfheader (ibfd)->e_flags;
2648 flagword old_flags = elf_elfheader (obfd)->e_flags;
2649
2650 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
2651 return TRUE;
2652
2653 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
2654 {
2655 (*_bfd_error_handler)
871b3ab2 2656 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
96b0927d
PD
2657 " target emulation `%s' does not match `%s'"),
2658 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
e23eba97
NC
2659 return FALSE;
2660 }
2661
2662 if (!_bfd_elf_merge_object_attributes (ibfd, info))
2663 return FALSE;
2664
2665 if (! elf_flags_init (obfd))
2666 {
2667 elf_flags_init (obfd) = TRUE;
2668 elf_elfheader (obfd)->e_flags = new_flags;
2669 return TRUE;
2670 }
2671
2922d21d
AW
2672 /* Disallow linking different float ABIs. */
2673 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
e23eba97
NC
2674 {
2675 (*_bfd_error_handler)
871b3ab2 2676 (_("%pB: can't link hard-float modules with soft-float modules"), ibfd);
e23eba97
NC
2677 goto fail;
2678 }
2679
7f999549
JW
2680 /* Disallow linking RVE and non-RVE. */
2681 if ((old_flags ^ new_flags) & EF_RISCV_RVE)
2682 {
2683 (*_bfd_error_handler)
2684 (_("%pB: can't link RVE with other target"), ibfd);
2685 goto fail;
2686 }
2687
e23eba97
NC
2688 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
2689 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
2690
2691 return TRUE;
2692
2693fail:
2694 bfd_set_error (bfd_error_bad_value);
2695 return FALSE;
2696}
2697
2698/* Delete some bytes from a section while relaxing. */
2699
2700static bfd_boolean
7f02625e
JW
2701riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count,
2702 struct bfd_link_info *link_info)
e23eba97
NC
2703{
2704 unsigned int i, symcount;
2705 bfd_vma toaddr = sec->size;
2706 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
2707 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2708 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2709 struct bfd_elf_section_data *data = elf_section_data (sec);
2710 bfd_byte *contents = data->this_hdr.contents;
2711
2712 /* Actually delete the bytes. */
2713 sec->size -= count;
2714 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
2715
2716 /* Adjust the location of all of the relocs. Note that we need not
2717 adjust the addends, since all PC-relative references must be against
2718 symbols, which we will adjust below. */
2719 for (i = 0; i < sec->reloc_count; i++)
2720 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
2721 data->relocs[i].r_offset -= count;
2722
2723 /* Adjust the local symbols defined in this section. */
2724 for (i = 0; i < symtab_hdr->sh_info; i++)
2725 {
2726 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
2727 if (sym->st_shndx == sec_shndx)
2728 {
2729 /* If the symbol is in the range of memory we just moved, we
2730 have to adjust its value. */
2731 if (sym->st_value > addr && sym->st_value <= toaddr)
2732 sym->st_value -= count;
2733
2734 /* If the symbol *spans* the bytes we just deleted (i.e. its
2735 *end* is in the moved bytes but its *start* isn't), then we
788af978
JW
2736 must adjust its size.
2737
2738 This test needs to use the original value of st_value, otherwise
2739 we might accidentally decrease size when deleting bytes right
2740 before the symbol. But since deleted relocs can't span across
2741 symbols, we can't have both a st_value and a st_size decrease,
2742 so it is simpler to just use an else. */
2743 else if (sym->st_value <= addr
2744 && sym->st_value + sym->st_size > addr
2745 && sym->st_value + sym->st_size <= toaddr)
e23eba97
NC
2746 sym->st_size -= count;
2747 }
2748 }
2749
2750 /* Now adjust the global symbols defined in this section. */
2751 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
2752 - symtab_hdr->sh_info);
2753
2754 for (i = 0; i < symcount; i++)
2755 {
2756 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
2757
7f02625e
JW
2758 /* The '--wrap SYMBOL' option is causing a pain when the object file,
2759 containing the definition of __wrap_SYMBOL, includes a direct
2760 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
2761 the same symbol (which is __wrap_SYMBOL), but still exist as two
2762 different symbols in 'sym_hashes', we don't want to adjust
137b5cbd
JW
2763 the global symbol __wrap_SYMBOL twice. */
2764 /* The same problem occurs with symbols that are versioned_hidden, as
2765 foo becomes an alias for foo@BAR, and hence they need the same
2766 treatment. */
2767 if (link_info->wrap_hash != NULL
2768 || sym_hash->versioned == versioned_hidden)
7f02625e
JW
2769 {
2770 struct elf_link_hash_entry **cur_sym_hashes;
2771
2772 /* Loop only over the symbols which have already been checked. */
2773 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
2774 cur_sym_hashes++)
2775 {
2776 /* If the current symbol is identical to 'sym_hash', that means
2777 the symbol was already adjusted (or at least checked). */
2778 if (*cur_sym_hashes == sym_hash)
2779 break;
2780 }
2781 /* Don't adjust the symbol again. */
2782 if (cur_sym_hashes < &sym_hashes[i])
2783 continue;
2784 }
2785
e23eba97
NC
2786 if ((sym_hash->root.type == bfd_link_hash_defined
2787 || sym_hash->root.type == bfd_link_hash_defweak)
2788 && sym_hash->root.u.def.section == sec)
2789 {
2790 /* As above, adjust the value if needed. */
2791 if (sym_hash->root.u.def.value > addr
2792 && sym_hash->root.u.def.value <= toaddr)
2793 sym_hash->root.u.def.value -= count;
2794
2795 /* As above, adjust the size if needed. */
788af978
JW
2796 else if (sym_hash->root.u.def.value <= addr
2797 && sym_hash->root.u.def.value + sym_hash->size > addr
2798 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
e23eba97
NC
2799 sym_hash->size -= count;
2800 }
2801 }
2802
2803 return TRUE;
2804}
2805
9d06997a
PD
2806/* A second format for recording PC-relative hi relocations. This stores the
2807 information required to relax them to GP-relative addresses. */
2808
2809typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
2810struct riscv_pcgp_hi_reloc
2811{
2812 bfd_vma hi_sec_off;
2813 bfd_vma hi_addend;
2814 bfd_vma hi_addr;
2815 unsigned hi_sym;
2816 asection *sym_sec;
2817 riscv_pcgp_hi_reloc *next;
2818};
2819
2820typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
2821struct riscv_pcgp_lo_reloc
2822{
2823 bfd_vma hi_sec_off;
2824 riscv_pcgp_lo_reloc *next;
2825};
2826
2827typedef struct
2828{
2829 riscv_pcgp_hi_reloc *hi;
2830 riscv_pcgp_lo_reloc *lo;
2831} riscv_pcgp_relocs;
2832
2833static bfd_boolean
2834riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
2835{
2836 p->hi = NULL;
2837 p->lo = NULL;
2838 return TRUE;
2839}
2840
2841static void
2842riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
2843 bfd *abfd ATTRIBUTE_UNUSED,
2844 asection *sec ATTRIBUTE_UNUSED)
2845{
2846 riscv_pcgp_hi_reloc *c;
2847 riscv_pcgp_lo_reloc *l;
2848
2849 for (c = p->hi; c != NULL;)
2850 {
2851 riscv_pcgp_hi_reloc *next = c->next;
2852 free (c);
2853 c = next;
2854 }
2855
2856 for (l = p->lo; l != NULL;)
2857 {
2858 riscv_pcgp_lo_reloc *next = l->next;
2859 free (l);
2860 l = next;
2861 }
2862}
2863
2864static bfd_boolean
2865riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
2866 bfd_vma hi_addend, bfd_vma hi_addr,
2867 unsigned hi_sym, asection *sym_sec)
2868{
2869 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
2870 if (!new)
2871 return FALSE;
2872 new->hi_sec_off = hi_sec_off;
2873 new->hi_addend = hi_addend;
2874 new->hi_addr = hi_addr;
2875 new->hi_sym = hi_sym;
2876 new->sym_sec = sym_sec;
2877 new->next = p->hi;
2878 p->hi = new;
2879 return TRUE;
2880}
2881
2882static riscv_pcgp_hi_reloc *
2883riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2884{
2885 riscv_pcgp_hi_reloc *c;
2886
2887 for (c = p->hi; c != NULL; c = c->next)
2888 if (c->hi_sec_off == hi_sec_off)
2889 return c;
2890 return NULL;
2891}
2892
2893static bfd_boolean
2894riscv_delete_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2895{
2896 bfd_boolean out = FALSE;
2897 riscv_pcgp_hi_reloc *c;
2898
2899 for (c = p->hi; c != NULL; c = c->next)
2900 if (c->hi_sec_off == hi_sec_off)
2901 out = TRUE;
2902
2903 return out;
2904}
2905
2906static bfd_boolean
2907riscv_use_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2908{
2909 bfd_boolean out = FALSE;
2910 riscv_pcgp_hi_reloc *c;
2911
2912 for (c = p->hi; c != NULL; c = c->next)
2913 if (c->hi_sec_off == hi_sec_off)
2914 out = TRUE;
2915
2916 return out;
2917}
2918
2919static bfd_boolean
2920riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2921{
2922 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
2923 if (!new)
2924 return FALSE;
2925 new->hi_sec_off = hi_sec_off;
2926 new->next = p->lo;
2927 p->lo = new;
2928 return TRUE;
2929}
2930
2931static bfd_boolean
2932riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2933{
2934 riscv_pcgp_lo_reloc *c;
2935
2936 for (c = p->lo; c != NULL; c = c->next)
2937 if (c->hi_sec_off == hi_sec_off)
2938 return TRUE;
2939 return FALSE;
2940}
2941
2942static bfd_boolean
2943riscv_delete_pcgp_lo_reloc (riscv_pcgp_relocs *p ATTRIBUTE_UNUSED,
2944 bfd_vma lo_sec_off ATTRIBUTE_UNUSED,
2945 size_t bytes ATTRIBUTE_UNUSED)
2946{
2947 return TRUE;
2948}
2949
45f76423
AW
2950typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
2951 struct bfd_link_info *,
2952 Elf_Internal_Rela *,
9d06997a
PD
2953 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
2954 riscv_pcgp_relocs *);
45f76423 2955
e23eba97
NC
2956/* Relax AUIPC + JALR into JAL. */
2957
2958static bfd_boolean
2959_bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
2960 struct bfd_link_info *link_info,
2961 Elf_Internal_Rela *rel,
2962 bfd_vma symval,
45f76423
AW
2963 bfd_vma max_alignment,
2964 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
2965 bfd_boolean *again,
2966 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
2967{
2968 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2969 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
2970 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
2971 bfd_vma auipc, jalr;
2972 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2973
2974 /* If the call crosses section boundaries, an alignment directive could
2975 cause the PC-relative offset to later increase. */
2976 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
2977 foff += (foff < 0 ? -max_alignment : max_alignment);
2978
2979 /* See if this function call can be shortened. */
2980 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
2981 return TRUE;
2982
2983 /* Shorten the function call. */
2984 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
2985
2986 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
2987 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
2988 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
2989 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32;
2990
2991 if (rvc && (rd == 0 || rd == X_RA))
2992 {
2993 /* Relax to C.J[AL] rd, addr. */
2994 r_type = R_RISCV_RVC_JUMP;
2995 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
2996 len = 2;
2997 }
2998 else if (VALID_UJTYPE_IMM (foff))
2999 {
3000 /* Relax to JAL rd, addr. */
3001 r_type = R_RISCV_JAL;
3002 auipc = MATCH_JAL | (rd << OP_SH_RD);
3003 }
3004 else /* near_zero */
3005 {
3006 /* Relax to JALR rd, x0, addr. */
3007 r_type = R_RISCV_LO12_I;
3008 auipc = MATCH_JALR | (rd << OP_SH_RD);
3009 }
3010
3011 /* Replace the R_RISCV_CALL reloc. */
3012 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
3013 /* Replace the AUIPC. */
3014 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
3015
3016 /* Delete unnecessary JALR. */
3017 *again = TRUE;
7f02625e
JW
3018 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
3019 link_info);
e23eba97
NC
3020}
3021
3022/* Traverse all output sections and return the max alignment. */
3023
1d61f794 3024static bfd_vma
e23eba97
NC
3025_bfd_riscv_get_max_alignment (asection *sec)
3026{
3027 unsigned int max_alignment_power = 0;
3028 asection *o;
3029
3030 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
3031 {
3032 if (o->alignment_power > max_alignment_power)
3033 max_alignment_power = o->alignment_power;
3034 }
3035
1d61f794 3036 return (bfd_vma) 1 << max_alignment_power;
e23eba97
NC
3037}
3038
3039/* Relax non-PIC global variable references. */
3040
3041static bfd_boolean
3042_bfd_riscv_relax_lui (bfd *abfd,
3043 asection *sec,
3044 asection *sym_sec,
3045 struct bfd_link_info *link_info,
3046 Elf_Internal_Rela *rel,
3047 bfd_vma symval,
45f76423
AW
3048 bfd_vma max_alignment,
3049 bfd_vma reserve_size,
9d06997a
PD
3050 bfd_boolean *again,
3051 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3052{
3053 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3054 bfd_vma gp = riscv_global_pointer_value (link_info);
3055 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3056
3057 /* Mergeable symbols and code might later move out of range. */
3058 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3059 return TRUE;
3060
3061 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3062
d0f744f9
AW
3063 if (gp)
3064 {
3065 /* If gp and the symbol are in the same output section, then
3066 consider only that section's alignment. */
3067 struct bfd_link_hash_entry *h =
b5292032
PD
3068 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
3069 TRUE);
d0f744f9
AW
3070 if (h->u.def.section->output_section == sym_sec->output_section)
3071 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3072 }
3073
e23eba97
NC
3074 /* Is the reference in range of x0 or gp?
3075 Valid gp range conservatively because of alignment issue. */
3076 if (VALID_ITYPE_IMM (symval)
45f76423
AW
3077 || (symval >= gp
3078 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3079 || (symval < gp
3080 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
e23eba97
NC
3081 {
3082 unsigned sym = ELFNN_R_SYM (rel->r_info);
3083 switch (ELFNN_R_TYPE (rel->r_info))
3084 {
3085 case R_RISCV_LO12_I:
3086 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3087 return TRUE;
3088
3089 case R_RISCV_LO12_S:
3090 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3091 return TRUE;
3092
3093 case R_RISCV_HI20:
3094 /* We can delete the unnecessary LUI and reloc. */
3095 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3096 *again = TRUE;
7f02625e
JW
3097 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
3098 link_info);
e23eba97
NC
3099
3100 default:
3101 abort ();
3102 }
3103 }
3104
3105 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3106 account for this assuming page alignment at worst. */
3107 if (use_rvc
3108 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
3109 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
3110 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
3111 {
3342be5d 3112 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
e23eba97 3113 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
3342be5d
AW
3114 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
3115 if (rd == 0 || rd == X_SP)
e23eba97
NC
3116 return TRUE;
3117
3118 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
3119 bfd_put_32 (abfd, lui, contents + rel->r_offset);
3120
3121 /* Replace the R_RISCV_HI20 reloc. */
3122 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
3123
3124 *again = TRUE;
7f02625e
JW
3125 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
3126 link_info);
e23eba97
NC
3127 }
3128
3129 return TRUE;
3130}
3131
3132/* Relax non-PIC TLS references. */
3133
3134static bfd_boolean
3135_bfd_riscv_relax_tls_le (bfd *abfd,
3136 asection *sec,
3137 asection *sym_sec ATTRIBUTE_UNUSED,
3138 struct bfd_link_info *link_info,
3139 Elf_Internal_Rela *rel,
3140 bfd_vma symval,
45f76423
AW
3141 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3142 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3143 bfd_boolean *again,
3144 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3145{
3146 /* See if this symbol is in range of tp. */
3147 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3148 return TRUE;
3149
e23eba97 3150 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
45f76423
AW
3151 switch (ELFNN_R_TYPE (rel->r_info))
3152 {
3153 case R_RISCV_TPREL_LO12_I:
3154 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3155 return TRUE;
e23eba97 3156
45f76423
AW
3157 case R_RISCV_TPREL_LO12_S:
3158 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3159 return TRUE;
3160
3161 case R_RISCV_TPREL_HI20:
3162 case R_RISCV_TPREL_ADD:
3163 /* We can delete the unnecessary instruction and reloc. */
3164 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3165 *again = TRUE;
7f02625e 3166 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info);
45f76423
AW
3167
3168 default:
3169 abort ();
3170 }
e23eba97
NC
3171}
3172
3173/* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3174
3175static bfd_boolean
3176_bfd_riscv_relax_align (bfd *abfd, asection *sec,
9eb7b0ac 3177 asection *sym_sec,
7f02625e 3178 struct bfd_link_info *link_info,
e23eba97
NC
3179 Elf_Internal_Rela *rel,
3180 bfd_vma symval,
45f76423
AW
3181 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3182 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3183 bfd_boolean *again ATTRIBUTE_UNUSED,
3184 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3185{
3186 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3187 bfd_vma alignment = 1, pos;
3188 while (alignment <= rel->r_addend)
3189 alignment *= 2;
3190
3191 symval -= rel->r_addend;
3192 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3193 bfd_vma nop_bytes = aligned_addr - symval;
3194
3195 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3196 sec->sec_flg0 = TRUE;
3197
3198 /* Make sure there are enough NOPs to actually achieve the alignment. */
3199 if (rel->r_addend < nop_bytes)
9eb7b0ac 3200 {
f2b740ac
AM
3201 _bfd_error_handler
3202 (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment "
3203 "to %" PRId64 "-byte boundary, but only %" PRId64 " present"),
3204 abfd, sym_sec, (uint64_t) rel->r_offset,
3205 (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend);
9eb7b0ac
PD
3206 bfd_set_error (bfd_error_bad_value);
3207 return FALSE;
3208 }
e23eba97
NC
3209
3210 /* Delete the reloc. */
3211 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3212
3213 /* If the number of NOPs is already correct, there's nothing to do. */
3214 if (nop_bytes == rel->r_addend)
3215 return TRUE;
3216
3217 /* Write as many RISC-V NOPs as we need. */
3218 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3219 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3220
3221 /* Write a final RVC NOP if need be. */
3222 if (nop_bytes % 4 != 0)
3223 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3224
3225 /* Delete the excess bytes. */
3226 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
7f02625e 3227 rel->r_addend - nop_bytes, link_info);
e23eba97
NC
3228}
3229
ff6f4d9b
PD
3230/* Relax PC-relative references to GP-relative references. */
3231
9d06997a
PD
3232static bfd_boolean
3233_bfd_riscv_relax_pc (bfd *abfd,
3234 asection *sec,
3235 asection *sym_sec,
3236 struct bfd_link_info *link_info,
3237 Elf_Internal_Rela *rel,
3238 bfd_vma symval,
3239 bfd_vma max_alignment,
3240 bfd_vma reserve_size,
3241 bfd_boolean *again ATTRIBUTE_UNUSED,
3242 riscv_pcgp_relocs *pcgp_relocs)
3243{
3244 bfd_vma gp = riscv_global_pointer_value (link_info);
3245
3246 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3247
3248 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3249 * actual target address. */
e65b1a78
MR
3250 riscv_pcgp_hi_reloc hi_reloc;
3251 memset (&hi_reloc, 0, sizeof (hi_reloc));
9d06997a
PD
3252 switch (ELFNN_R_TYPE (rel->r_info))
3253 {
3254 case R_RISCV_PCREL_LO12_I:
3255 case R_RISCV_PCREL_LO12_S:
3256 {
a05f27b6
JW
3257 /* If the %lo has an addend, it isn't for the label pointing at the
3258 hi part instruction, but rather for the symbol pointed at by the
3259 hi part instruction. So we must subtract it here for the lookup.
3260 It is still used below in the final symbol address. */
3261 bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend;
9d06997a 3262 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
a05f27b6 3263 hi_sec_off);
9d06997a
PD
3264 if (hi == NULL)
3265 {
a05f27b6 3266 riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off);
9d06997a
PD
3267 return TRUE;
3268 }
3269
3270 hi_reloc = *hi;
3271 symval = hi_reloc.hi_addr;
3272 sym_sec = hi_reloc.sym_sec;
3273 if (!riscv_use_pcgp_hi_reloc(pcgp_relocs, hi->hi_sec_off))
f2b740ac
AM
3274 _bfd_error_handler
3275 (_("%pB(%pA+%#" PRIx64 "): Unable to clear RISCV_PCREL_HI20 reloc "
3276 "for corresponding RISCV_PCREL_LO12 reloc"),
3277 abfd, sec, (uint64_t) rel->r_offset);
9d06997a
PD
3278 }
3279 break;
3280
3281 case R_RISCV_PCREL_HI20:
3282 /* Mergeable symbols and code might later move out of range. */
3283 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3284 return TRUE;
3285
3286 /* If the cooresponding lo relocation has already been seen then it's not
3287 * safe to relax this relocation. */
3288 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
07d6d2b8 3289 return TRUE;
9d06997a
PD
3290
3291 break;
3292
3293 default:
3294 abort ();
3295 }
3296
3297 if (gp)
3298 {
3299 /* If gp and the symbol are in the same output section, then
3300 consider only that section's alignment. */
3301 struct bfd_link_hash_entry *h =
3302 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
3303 if (h->u.def.section->output_section == sym_sec->output_section)
3304 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3305 }
3306
3307 /* Is the reference in range of x0 or gp?
3308 Valid gp range conservatively because of alignment issue. */
3309 if (VALID_ITYPE_IMM (symval)
3310 || (symval >= gp
3311 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3312 || (symval < gp
3313 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3314 {
3315 unsigned sym = hi_reloc.hi_sym;
3316 switch (ELFNN_R_TYPE (rel->r_info))
3317 {
3318 case R_RISCV_PCREL_LO12_I:
3319 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3320 rel->r_addend += hi_reloc.hi_addend;
3321 return riscv_delete_pcgp_lo_reloc (pcgp_relocs, rel->r_offset, 4);
3322
3323 case R_RISCV_PCREL_LO12_S:
3324 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3325 rel->r_addend += hi_reloc.hi_addend;
3326 return riscv_delete_pcgp_lo_reloc (pcgp_relocs, rel->r_offset, 4);
3327
3328 case R_RISCV_PCREL_HI20:
07d6d2b8 3329 riscv_record_pcgp_hi_reloc (pcgp_relocs,
9d06997a
PD
3330 rel->r_offset,
3331 rel->r_addend,
3332 symval,
3333 ELFNN_R_SYM(rel->r_info),
3334 sym_sec);
3335 /* We can delete the unnecessary AUIPC and reloc. */
3336 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3337 rel->r_addend = 4;
3338 return riscv_delete_pcgp_hi_reloc (pcgp_relocs, rel->r_offset);
3339
3340 default:
3341 abort ();
3342 }
3343 }
3344
3345 return TRUE;
3346}
3347
3348/* Relax PC-relative references to GP-relative references. */
3349
ff6f4d9b
PD
3350static bfd_boolean
3351_bfd_riscv_relax_delete (bfd *abfd,
3352 asection *sec,
3353 asection *sym_sec ATTRIBUTE_UNUSED,
7f02625e 3354 struct bfd_link_info *link_info,
ff6f4d9b
PD
3355 Elf_Internal_Rela *rel,
3356 bfd_vma symval ATTRIBUTE_UNUSED,
3357 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3358 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3359 bfd_boolean *again ATTRIBUTE_UNUSED,
3360 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
ff6f4d9b 3361{
7f02625e
JW
3362 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend,
3363 link_info))
ff6f4d9b
PD
3364 return FALSE;
3365 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3366 return TRUE;
3367}
3368
3369/* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3370 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3371 disabled, handles code alignment directives. */
e23eba97
NC
3372
3373static bfd_boolean
3374_bfd_riscv_relax_section (bfd *abfd, asection *sec,
3375 struct bfd_link_info *info,
3376 bfd_boolean *again)
3377{
3378 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3379 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3380 struct bfd_elf_section_data *data = elf_section_data (sec);
3381 Elf_Internal_Rela *relocs;
3382 bfd_boolean ret = FALSE;
3383 unsigned int i;
45f76423 3384 bfd_vma max_alignment, reserve_size = 0;
9d06997a 3385 riscv_pcgp_relocs pcgp_relocs;
e23eba97
NC
3386
3387 *again = FALSE;
3388
3389 if (bfd_link_relocatable (info)
3390 || sec->sec_flg0
3391 || (sec->flags & SEC_RELOC) == 0
3392 || sec->reloc_count == 0
3393 || (info->disable_target_specific_optimizations
3394 && info->relax_pass == 0))
3395 return TRUE;
3396
9d06997a
PD
3397 riscv_init_pcgp_relocs (&pcgp_relocs);
3398
e23eba97
NC
3399 /* Read this BFD's relocs if we haven't done so already. */
3400 if (data->relocs)
3401 relocs = data->relocs;
3402 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3403 info->keep_memory)))
3404 goto fail;
3405
fc3c5343
L
3406 if (htab)
3407 {
3408 max_alignment = htab->max_alignment;
3409 if (max_alignment == (bfd_vma) -1)
3410 {
3411 max_alignment = _bfd_riscv_get_max_alignment (sec);
3412 htab->max_alignment = max_alignment;
3413 }
3414 }
3415 else
3416 max_alignment = _bfd_riscv_get_max_alignment (sec);
e23eba97
NC
3417
3418 /* Examine and consider relaxing each reloc. */
3419 for (i = 0; i < sec->reloc_count; i++)
3420 {
3421 asection *sym_sec;
3422 Elf_Internal_Rela *rel = relocs + i;
45f76423 3423 relax_func_t relax_func;
e23eba97
NC
3424 int type = ELFNN_R_TYPE (rel->r_info);
3425 bfd_vma symval;
3426
ff6f4d9b 3427 relax_func = NULL;
e23eba97
NC
3428 if (info->relax_pass == 0)
3429 {
3430 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3431 relax_func = _bfd_riscv_relax_call;
3432 else if (type == R_RISCV_HI20
3433 || type == R_RISCV_LO12_I
3434 || type == R_RISCV_LO12_S)
3435 relax_func = _bfd_riscv_relax_lui;
9d06997a
PD
3436 else if (!bfd_link_pic(info)
3437 && (type == R_RISCV_PCREL_HI20
3438 || type == R_RISCV_PCREL_LO12_I
3439 || type == R_RISCV_PCREL_LO12_S))
3440 relax_func = _bfd_riscv_relax_pc;
45f76423
AW
3441 else if (type == R_RISCV_TPREL_HI20
3442 || type == R_RISCV_TPREL_ADD
3443 || type == R_RISCV_TPREL_LO12_I
3444 || type == R_RISCV_TPREL_LO12_S)
e23eba97 3445 relax_func = _bfd_riscv_relax_tls_le;
45f76423
AW
3446 else
3447 continue;
3448
3449 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3450 if (i == sec->reloc_count - 1
3451 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3452 || rel->r_offset != (rel + 1)->r_offset)
3453 continue;
3454
3455 /* Skip over the R_RISCV_RELAX. */
3456 i++;
e23eba97 3457 }
ff6f4d9b 3458 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
07d6d2b8 3459 relax_func = _bfd_riscv_relax_delete;
ff6f4d9b 3460 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
e23eba97 3461 relax_func = _bfd_riscv_relax_align;
45f76423 3462 else
e23eba97
NC
3463 continue;
3464
3465 data->relocs = relocs;
3466
3467 /* Read this BFD's contents if we haven't done so already. */
3468 if (!data->this_hdr.contents
3469 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3470 goto fail;
3471
3472 /* Read this BFD's symbols if we haven't done so already. */
3473 if (symtab_hdr->sh_info != 0
3474 && !symtab_hdr->contents
3475 && !(symtab_hdr->contents =
3476 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3477 symtab_hdr->sh_info,
3478 0, NULL, NULL, NULL)))
3479 goto fail;
3480
3481 /* Get the value of the symbol referred to by the reloc. */
3482 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3483 {
3484 /* A local symbol. */
3485 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3486 + ELFNN_R_SYM (rel->r_info));
45f76423
AW
3487 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3488 ? 0 : isym->st_size - rel->r_addend;
e23eba97
NC
3489
3490 if (isym->st_shndx == SHN_UNDEF)
3491 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
3492 else
3493 {
3494 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3495 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
09ca4b9d
JW
3496#if 0
3497 /* The purpose of this code is unknown. It breaks linker scripts
3498 for embedded development that place sections at address zero.
3499 This code is believed to be unnecessary. Disabling it but not
3500 yet removing it, in case something breaks. */
e23eba97
NC
3501 if (sec_addr (sym_sec) == 0)
3502 continue;
09ca4b9d 3503#endif
e23eba97
NC
3504 symval = sec_addr (sym_sec) + isym->st_value;
3505 }
3506 }
3507 else
3508 {
3509 unsigned long indx;
3510 struct elf_link_hash_entry *h;
3511
3512 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
3513 h = elf_sym_hashes (abfd)[indx];
3514
3515 while (h->root.type == bfd_link_hash_indirect
3516 || h->root.type == bfd_link_hash_warning)
3517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3518
3519 if (h->plt.offset != MINUS_ONE)
3520 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3521 else if (h->root.u.def.section->output_section == NULL
3522 || (h->root.type != bfd_link_hash_defined
3523 && h->root.type != bfd_link_hash_defweak))
3524 continue;
3525 else
3526 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3527
45f76423
AW
3528 if (h->type != STT_FUNC)
3529 reserve_size =
3530 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
e23eba97
NC
3531 sym_sec = h->root.u.def.section;
3532 }
3533
3534 symval += rel->r_addend;
3535
3536 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
9d06997a
PD
3537 max_alignment, reserve_size, again,
3538 &pcgp_relocs))
e23eba97
NC
3539 goto fail;
3540 }
3541
3542 ret = TRUE;
3543
3544fail:
3545 if (relocs != data->relocs)
3546 free (relocs);
9d06997a 3547 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
e23eba97
NC
3548
3549 return ret;
3550}
3551
3552#if ARCH_SIZE == 32
3553# define PRSTATUS_SIZE 0 /* FIXME */
3554# define PRSTATUS_OFFSET_PR_CURSIG 12
3555# define PRSTATUS_OFFSET_PR_PID 24
3556# define PRSTATUS_OFFSET_PR_REG 72
3557# define ELF_GREGSET_T_SIZE 128
3558# define PRPSINFO_SIZE 128
3559# define PRPSINFO_OFFSET_PR_PID 16
3560# define PRPSINFO_OFFSET_PR_FNAME 32
3561# define PRPSINFO_OFFSET_PR_PSARGS 48
3562#else
3563# define PRSTATUS_SIZE 376
3564# define PRSTATUS_OFFSET_PR_CURSIG 12
3565# define PRSTATUS_OFFSET_PR_PID 32
3566# define PRSTATUS_OFFSET_PR_REG 112
3567# define ELF_GREGSET_T_SIZE 256
3568# define PRPSINFO_SIZE 136
3569# define PRPSINFO_OFFSET_PR_PID 24
3570# define PRPSINFO_OFFSET_PR_FNAME 40
3571# define PRPSINFO_OFFSET_PR_PSARGS 56
3572#endif
3573
3574/* Support for core dump NOTE sections. */
3575
3576static bfd_boolean
3577riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3578{
3579 switch (note->descsz)
3580 {
3581 default:
3582 return FALSE;
3583
3584 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
3585 /* pr_cursig */
3586 elf_tdata (abfd)->core->signal
3587 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
3588
3589 /* pr_pid */
3590 elf_tdata (abfd)->core->lwpid
3591 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
3592 break;
3593 }
3594
3595 /* Make a ".reg/999" section. */
3596 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
3597 note->descpos + PRSTATUS_OFFSET_PR_REG);
3598}
3599
3600static bfd_boolean
3601riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3602{
3603 switch (note->descsz)
3604 {
3605 default:
3606 return FALSE;
3607
3608 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
3609 /* pr_pid */
3610 elf_tdata (abfd)->core->pid
3611 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
3612
3613 /* pr_fname */
3614 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
3615 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
3616
3617 /* pr_psargs */
3618 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
3619 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
3620 break;
3621 }
3622
3623 /* Note that for some reason, a spurious space is tacked
3624 onto the end of the args in some (at least one anyway)
3625 implementations, so strip it off if it exists. */
3626
3627 {
3628 char *command = elf_tdata (abfd)->core->command;
3629 int n = strlen (command);
3630
3631 if (0 < n && command[n - 1] == ' ')
3632 command[n - 1] = '\0';
3633 }
3634
3635 return TRUE;
3636}
3637
640d6bfd
KLC
3638/* Set the right mach type. */
3639static bfd_boolean
3640riscv_elf_object_p (bfd *abfd)
3641{
3642 /* There are only two mach types in RISCV currently. */
3643 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
3644 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
3645 else
3646 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
3647
3648 return TRUE;
3649}
3650
e23eba97
NC
3651
3652#define TARGET_LITTLE_SYM riscv_elfNN_vec
3653#define TARGET_LITTLE_NAME "elfNN-littleriscv"
3654
3655#define elf_backend_reloc_type_class riscv_reloc_type_class
3656
3657#define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
3658#define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
3659#define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
3660#define bfd_elfNN_bfd_merge_private_bfd_data \
3661 _bfd_riscv_elf_merge_private_bfd_data
3662
3663#define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
3664#define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
3665#define elf_backend_check_relocs riscv_elf_check_relocs
3666#define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
3667#define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
3668#define elf_backend_relocate_section riscv_elf_relocate_section
3669#define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
3670#define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
3671#define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
e23eba97 3672#define elf_backend_plt_sym_val riscv_elf_plt_sym_val
07d6d2b8
AM
3673#define elf_backend_grok_prstatus riscv_elf_grok_prstatus
3674#define elf_backend_grok_psinfo riscv_elf_grok_psinfo
3675#define elf_backend_object_p riscv_elf_object_p
e23eba97
NC
3676#define elf_info_to_howto_rel NULL
3677#define elf_info_to_howto riscv_info_to_howto_rela
3678#define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
3679
3680#define elf_backend_init_index_section _bfd_elf_init_1_index_section
3681
3682#define elf_backend_can_gc_sections 1
3683#define elf_backend_can_refcount 1
3684#define elf_backend_want_got_plt 1
3685#define elf_backend_plt_readonly 1
3686#define elf_backend_plt_alignment 4
3687#define elf_backend_want_plt_sym 1
3688#define elf_backend_got_header_size (ARCH_SIZE / 8)
5474d94f 3689#define elf_backend_want_dynrelro 1
e23eba97
NC
3690#define elf_backend_rela_normal 1
3691#define elf_backend_default_execstack 0
3692
3693#include "elfNN-target.h"