]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elfxx-mips.c
* aout-adobe.c: Don't compare against "true" or "false.
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9
TS
1/* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12This file is part of BFD, the Binary File Descriptor library.
13
14This program is free software; you can redistribute it and/or modify
15it under the terms of the GNU General Public License as published by
16the Free Software Foundation; either version 2 of the License, or
17(at your option) any later version.
18
19This program is distributed in the hope that it will be useful,
20but WITHOUT ANY WARRANTY; without even the implied warranty of
21MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22GNU General Public License for more details.
23
24You should have received a copy of the GNU General Public License
25along with this program; if not, write to the Free Software
26Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
33#include "elf-bfd.h"
34#include "elfxx-mips.h"
35#include "elf/mips.h"
36
37/* Get the ECOFF swapping routines. */
38#include "coff/sym.h"
39#include "coff/symconst.h"
40#include "coff/ecoff.h"
41#include "coff/mips.h"
42
43/* This structure is used to hold .got information when linking. It
44 is stored in the tdata field of the bfd_elf_section_data structure. */
45
46struct mips_got_info
47{
48 /* The global symbol in the GOT with the lowest index in the dynamic
49 symbol table. */
50 struct elf_link_hash_entry *global_gotsym;
51 /* The number of global .got entries. */
52 unsigned int global_gotno;
53 /* The number of local .got entries. */
54 unsigned int local_gotno;
55 /* The number of local .got entries we have used. */
56 unsigned int assigned_gotno;
57};
58
59/* This structure is passed to mips_elf_sort_hash_table_f when sorting
60 the dynamic symbols. */
61
62struct mips_elf_hash_sort_data
63{
64 /* The symbol in the global GOT with the lowest dynamic symbol table
65 index. */
66 struct elf_link_hash_entry *low;
67 /* The least dynamic symbol table index corresponding to a symbol
68 with a GOT entry. */
69 long min_got_dynindx;
70 /* The greatest dynamic symbol table index not corresponding to a
71 symbol without a GOT entry. */
72 long max_non_got_dynindx;
73};
74
75/* The MIPS ELF linker needs additional information for each symbol in
76 the global hash table. */
77
78struct mips_elf_link_hash_entry
79{
80 struct elf_link_hash_entry root;
81
82 /* External symbol information. */
83 EXTR esym;
84
85 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
86 this symbol. */
87 unsigned int possibly_dynamic_relocs;
88
89 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
90 a readonly section. */
91 boolean readonly_reloc;
92
93 /* The index of the first dynamic relocation (in the .rel.dyn
94 section) against this symbol. */
95 unsigned int min_dyn_reloc_index;
96
97 /* We must not create a stub for a symbol that has relocations
98 related to taking the function's address, i.e. any but
99 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
100 p. 4-20. */
101 boolean no_fn_stub;
102
103 /* If there is a stub that 32 bit functions should use to call this
104 16 bit function, this points to the section containing the stub. */
105 asection *fn_stub;
106
107 /* Whether we need the fn_stub; this is set if this symbol appears
108 in any relocs other than a 16 bit call. */
109 boolean need_fn_stub;
110
111 /* If there is a stub that 16 bit functions should use to call this
112 32 bit function, this points to the section containing the stub. */
113 asection *call_stub;
114
115 /* This is like the call_stub field, but it is used if the function
116 being called returns a floating point value. */
117 asection *call_fp_stub;
7c5fcef7
L
118
119 /* Are we forced local? .*/
120 boolean forced_local;
b49e97c9
TS
121};
122
123/* MIPS ELF linker hash table. */
124
125struct mips_elf_link_hash_table
126{
127 struct elf_link_hash_table root;
128#if 0
129 /* We no longer use this. */
130 /* String section indices for the dynamic section symbols. */
131 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
132#endif
133 /* The number of .rtproc entries. */
134 bfd_size_type procedure_count;
135 /* The size of the .compact_rel section (if SGI_COMPAT). */
136 bfd_size_type compact_rel_size;
137 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 138 entry is set to the address of __rld_obj_head as in IRIX5. */
b49e97c9
TS
139 boolean use_rld_obj_head;
140 /* This is the value of the __rld_map or __rld_obj_head symbol. */
141 bfd_vma rld_value;
142 /* This is set if we see any mips16 stub sections. */
143 boolean mips16_stubs_seen;
144};
145
146/* Structure used to pass information to mips_elf_output_extsym. */
147
148struct extsym_info
149{
150 bfd *abfd;
151 struct bfd_link_info *info;
152 struct ecoff_debug_info *debug;
153 const struct ecoff_debug_swap *swap;
154 boolean failed;
155};
156
8dc1a139 157/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
158
159static const char * const mips_elf_dynsym_rtproc_names[] =
160{
161 "_procedure_table",
162 "_procedure_string_table",
163 "_procedure_table_size",
164 NULL
165};
166
167/* These structures are used to generate the .compact_rel section on
8dc1a139 168 IRIX5. */
b49e97c9
TS
169
170typedef struct
171{
172 unsigned long id1; /* Always one? */
173 unsigned long num; /* Number of compact relocation entries. */
174 unsigned long id2; /* Always two? */
175 unsigned long offset; /* The file offset of the first relocation. */
176 unsigned long reserved0; /* Zero? */
177 unsigned long reserved1; /* Zero? */
178} Elf32_compact_rel;
179
180typedef struct
181{
182 bfd_byte id1[4];
183 bfd_byte num[4];
184 bfd_byte id2[4];
185 bfd_byte offset[4];
186 bfd_byte reserved0[4];
187 bfd_byte reserved1[4];
188} Elf32_External_compact_rel;
189
190typedef struct
191{
192 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
193 unsigned int rtype : 4; /* Relocation types. See below. */
194 unsigned int dist2to : 8;
195 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
196 unsigned long konst; /* KONST field. See below. */
197 unsigned long vaddr; /* VADDR to be relocated. */
198} Elf32_crinfo;
199
200typedef struct
201{
202 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
203 unsigned int rtype : 4; /* Relocation types. See below. */
204 unsigned int dist2to : 8;
205 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
206 unsigned long konst; /* KONST field. See below. */
207} Elf32_crinfo2;
208
209typedef struct
210{
211 bfd_byte info[4];
212 bfd_byte konst[4];
213 bfd_byte vaddr[4];
214} Elf32_External_crinfo;
215
216typedef struct
217{
218 bfd_byte info[4];
219 bfd_byte konst[4];
220} Elf32_External_crinfo2;
221
222/* These are the constants used to swap the bitfields in a crinfo. */
223
224#define CRINFO_CTYPE (0x1)
225#define CRINFO_CTYPE_SH (31)
226#define CRINFO_RTYPE (0xf)
227#define CRINFO_RTYPE_SH (27)
228#define CRINFO_DIST2TO (0xff)
229#define CRINFO_DIST2TO_SH (19)
230#define CRINFO_RELVADDR (0x7ffff)
231#define CRINFO_RELVADDR_SH (0)
232
233/* A compact relocation info has long (3 words) or short (2 words)
234 formats. A short format doesn't have VADDR field and relvaddr
235 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
236#define CRF_MIPS_LONG 1
237#define CRF_MIPS_SHORT 0
238
239/* There are 4 types of compact relocation at least. The value KONST
240 has different meaning for each type:
241
242 (type) (konst)
243 CT_MIPS_REL32 Address in data
244 CT_MIPS_WORD Address in word (XXX)
245 CT_MIPS_GPHI_LO GP - vaddr
246 CT_MIPS_JMPAD Address to jump
247 */
248
249#define CRT_MIPS_REL32 0xa
250#define CRT_MIPS_WORD 0xb
251#define CRT_MIPS_GPHI_LO 0xc
252#define CRT_MIPS_JMPAD 0xd
253
254#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
255#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
256#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
257#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
258\f
259/* The structure of the runtime procedure descriptor created by the
260 loader for use by the static exception system. */
261
262typedef struct runtime_pdr {
263 bfd_vma adr; /* memory address of start of procedure */
264 long regmask; /* save register mask */
265 long regoffset; /* save register offset */
266 long fregmask; /* save floating point register mask */
267 long fregoffset; /* save floating point register offset */
268 long frameoffset; /* frame size */
269 short framereg; /* frame pointer register */
270 short pcreg; /* offset or reg of return pc */
271 long irpss; /* index into the runtime string table */
272 long reserved;
273 struct exception_info *exception_info;/* pointer to exception array */
274} RPDR, *pRPDR;
275#define cbRPDR sizeof (RPDR)
276#define rpdNil ((pRPDR) 0)
277\f
278static struct bfd_hash_entry *mips_elf_link_hash_newfunc
279 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
280static void ecoff_swap_rpdr_out
281 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
282static boolean mips_elf_create_procedure_table
283 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
284 struct ecoff_debug_info *));
285static boolean mips_elf_check_mips16_stubs
286 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
287static void bfd_mips_elf32_swap_gptab_in
288 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
289static void bfd_mips_elf32_swap_gptab_out
290 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
291static void bfd_elf32_swap_compact_rel_out
292 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
293static void bfd_elf32_swap_crinfo_out
294 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
295#if 0
296static void bfd_mips_elf_swap_msym_in
297 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
298#endif
299static void bfd_mips_elf_swap_msym_out
300 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
301static int sort_dynamic_relocs
302 PARAMS ((const void *, const void *));
303static boolean mips_elf_output_extsym
304 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
305static int gptab_compare PARAMS ((const void *, const void *));
306static asection * mips_elf_got_section PARAMS ((bfd *));
307static struct mips_got_info *mips_elf_got_info
308 PARAMS ((bfd *, asection **));
309static bfd_vma mips_elf_local_got_index
310 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
311static bfd_vma mips_elf_global_got_index
312 PARAMS ((bfd *, struct elf_link_hash_entry *));
313static bfd_vma mips_elf_got_page
314 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
315static bfd_vma mips_elf_got16_entry
316 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
317static bfd_vma mips_elf_got_offset_from_index
318 PARAMS ((bfd *, bfd *, bfd_vma));
319static bfd_vma mips_elf_create_local_got_entry
320 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
321static boolean mips_elf_sort_hash_table
322 PARAMS ((struct bfd_link_info *, unsigned long));
323static boolean mips_elf_sort_hash_table_f
324 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
325static boolean mips_elf_record_global_got_symbol
326 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
327 struct mips_got_info *));
328static const Elf_Internal_Rela *mips_elf_next_relocation
329 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
330 const Elf_Internal_Rela *));
331static boolean mips_elf_local_relocation_p
332 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
333static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
334static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
335static bfd_vma mips_elf_high PARAMS ((bfd_vma));
336static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
337static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
338static boolean mips_elf_create_compact_rel_section
339 PARAMS ((bfd *, struct bfd_link_info *));
340static boolean mips_elf_create_got_section
341 PARAMS ((bfd *, struct bfd_link_info *));
342static asection *mips_elf_create_msym_section
343 PARAMS ((bfd *));
344static bfd_reloc_status_type mips_elf_calculate_relocation
345 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
346 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
347 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
348 boolean *));
349static bfd_vma mips_elf_obtain_contents
350 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
351static boolean mips_elf_perform_relocation
352 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
353 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
354 boolean));
355static boolean mips_elf_stub_section_p
356 PARAMS ((bfd *, asection *));
357static void mips_elf_allocate_dynamic_relocations
358 PARAMS ((bfd *, unsigned int));
359static boolean mips_elf_create_dynamic_relocation
360 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
361 struct mips_elf_link_hash_entry *, asection *,
362 bfd_vma, bfd_vma *, asection *));
363static INLINE int elf_mips_isa PARAMS ((flagword));
364static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
365static void mips_elf_irix6_finish_dynamic_symbol
366 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
367
368/* This will be used when we sort the dynamic relocation records. */
369static bfd *reldyn_sorting_bfd;
370
371/* Nonzero if ABFD is using the N32 ABI. */
372
373#define ABI_N32_P(abfd) \
374 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
375
376/* Nonzero if ABFD is using the 64-bit ABI. */
377#define ABI_64_P(abfd) \
cf6fb9ce 378 ((get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) != 0)
b49e97c9
TS
379
380#define IRIX_COMPAT(abfd) \
381 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
382
383#define NEWABI_P(abfd) (ABI_N32_P(abfd) || ABI_64_P(abfd))
384
385/* Whether we are trying to be compatible with IRIX at all. */
386#define SGI_COMPAT(abfd) \
387 (IRIX_COMPAT (abfd) != ict_none)
388
389/* The name of the options section. */
390#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
391 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
392
393/* The name of the stub section. */
394#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
395 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
396
397/* The size of an external REL relocation. */
398#define MIPS_ELF_REL_SIZE(abfd) \
399 (get_elf_backend_data (abfd)->s->sizeof_rel)
400
401/* The size of an external dynamic table entry. */
402#define MIPS_ELF_DYN_SIZE(abfd) \
403 (get_elf_backend_data (abfd)->s->sizeof_dyn)
404
405/* The size of a GOT entry. */
406#define MIPS_ELF_GOT_SIZE(abfd) \
407 (get_elf_backend_data (abfd)->s->arch_size / 8)
408
409/* The size of a symbol-table entry. */
410#define MIPS_ELF_SYM_SIZE(abfd) \
411 (get_elf_backend_data (abfd)->s->sizeof_sym)
412
413/* The default alignment for sections, as a power of two. */
414#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
415 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
416
417/* Get word-sized data. */
418#define MIPS_ELF_GET_WORD(abfd, ptr) \
419 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
420
421/* Put out word-sized data. */
422#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
423 (ABI_64_P (abfd) \
424 ? bfd_put_64 (abfd, val, ptr) \
425 : bfd_put_32 (abfd, val, ptr))
426
427/* Add a dynamic symbol table-entry. */
428#ifdef BFD64
429#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
430 (ABI_64_P (elf_hash_table (info)->dynobj) \
431 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
432 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
433#else
434#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
435 (ABI_64_P (elf_hash_table (info)->dynobj) \
436 ? (boolean) (abort (), false) \
437 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
438#endif
439
440#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
441 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
442
443/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
444 from smaller values. Start with zero, widen, *then* decrement. */
445#define MINUS_ONE (((bfd_vma)0) - 1)
446
447/* The number of local .got entries we reserve. */
448#define MIPS_RESERVED_GOTNO (2)
449
450/* Instructions which appear in a stub. For some reason the stub is
451 slightly different on an SGI system. */
452#define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
453#define STUB_LW(abfd) \
454 (SGI_COMPAT (abfd) \
455 ? (ABI_64_P (abfd) \
456 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
457 : 0x8f998010) /* lw t9,0x8010(gp) */ \
458 : 0x8f998010) /* lw t9,0x8000(gp) */
459#define STUB_MOVE(abfd) \
460 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
461#define STUB_JALR 0x0320f809 /* jal t9 */
462#define STUB_LI16(abfd) \
463 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
464#define MIPS_FUNCTION_STUB_SIZE (16)
465
466/* The name of the dynamic interpreter. This is put in the .interp
467 section. */
468
469#define ELF_DYNAMIC_INTERPRETER(abfd) \
470 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
471 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
472 : "/usr/lib/libc.so.1")
473
474#ifdef BFD64
475#define ELF_R_SYM(bfd, i) \
476 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
477#define ELF_R_TYPE(bfd, i) \
478 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
479#define ELF_R_INFO(bfd, s, t) \
480 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
481#else
482#define ELF_R_SYM(bfd, i) \
483 (ELF32_R_SYM (i))
484#define ELF_R_TYPE(bfd, i) \
485 (ELF32_R_TYPE (i))
486#define ELF_R_INFO(bfd, s, t) \
487 (ELF32_R_INFO (s, t))
488#endif
489\f
490 /* The mips16 compiler uses a couple of special sections to handle
491 floating point arguments.
492
493 Section names that look like .mips16.fn.FNNAME contain stubs that
494 copy floating point arguments from the fp regs to the gp regs and
495 then jump to FNNAME. If any 32 bit function calls FNNAME, the
496 call should be redirected to the stub instead. If no 32 bit
497 function calls FNNAME, the stub should be discarded. We need to
498 consider any reference to the function, not just a call, because
499 if the address of the function is taken we will need the stub,
500 since the address might be passed to a 32 bit function.
501
502 Section names that look like .mips16.call.FNNAME contain stubs
503 that copy floating point arguments from the gp regs to the fp
504 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
505 then any 16 bit function that calls FNNAME should be redirected
506 to the stub instead. If FNNAME is not a 32 bit function, the
507 stub should be discarded.
508
509 .mips16.call.fp.FNNAME sections are similar, but contain stubs
510 which call FNNAME and then copy the return value from the fp regs
511 to the gp regs. These stubs store the return value in $18 while
512 calling FNNAME; any function which might call one of these stubs
513 must arrange to save $18 around the call. (This case is not
514 needed for 32 bit functions that call 16 bit functions, because
515 16 bit functions always return floating point values in both
516 $f0/$f1 and $2/$3.)
517
518 Note that in all cases FNNAME might be defined statically.
519 Therefore, FNNAME is not used literally. Instead, the relocation
520 information will indicate which symbol the section is for.
521
522 We record any stubs that we find in the symbol table. */
523
524#define FN_STUB ".mips16.fn."
525#define CALL_STUB ".mips16.call."
526#define CALL_FP_STUB ".mips16.call.fp."
527\f
528/* Look up an entry in a MIPS ELF linker hash table. */
529
530#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
531 ((struct mips_elf_link_hash_entry *) \
532 elf_link_hash_lookup (&(table)->root, (string), (create), \
533 (copy), (follow)))
534
535/* Traverse a MIPS ELF linker hash table. */
536
537#define mips_elf_link_hash_traverse(table, func, info) \
538 (elf_link_hash_traverse \
539 (&(table)->root, \
540 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
541 (info)))
542
543/* Get the MIPS ELF linker hash table from a link_info structure. */
544
545#define mips_elf_hash_table(p) \
546 ((struct mips_elf_link_hash_table *) ((p)->hash))
547
548/* Create an entry in a MIPS ELF linker hash table. */
549
550static struct bfd_hash_entry *
551mips_elf_link_hash_newfunc (entry, table, string)
552 struct bfd_hash_entry *entry;
553 struct bfd_hash_table *table;
554 const char *string;
555{
556 struct mips_elf_link_hash_entry *ret =
557 (struct mips_elf_link_hash_entry *) entry;
558
559 /* Allocate the structure if it has not already been allocated by a
560 subclass. */
561 if (ret == (struct mips_elf_link_hash_entry *) NULL)
562 ret = ((struct mips_elf_link_hash_entry *)
563 bfd_hash_allocate (table,
564 sizeof (struct mips_elf_link_hash_entry)));
565 if (ret == (struct mips_elf_link_hash_entry *) NULL)
566 return (struct bfd_hash_entry *) ret;
567
568 /* Call the allocation method of the superclass. */
569 ret = ((struct mips_elf_link_hash_entry *)
570 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
571 table, string));
572 if (ret != (struct mips_elf_link_hash_entry *) NULL)
573 {
574 /* Set local fields. */
575 memset (&ret->esym, 0, sizeof (EXTR));
576 /* We use -2 as a marker to indicate that the information has
577 not been set. -1 means there is no associated ifd. */
578 ret->esym.ifd = -2;
579 ret->possibly_dynamic_relocs = 0;
580 ret->readonly_reloc = false;
581 ret->min_dyn_reloc_index = 0;
582 ret->no_fn_stub = false;
583 ret->fn_stub = NULL;
584 ret->need_fn_stub = false;
585 ret->call_stub = NULL;
586 ret->call_fp_stub = NULL;
7c5fcef7 587 ret->forced_local = false;
b49e97c9
TS
588 }
589
590 return (struct bfd_hash_entry *) ret;
591}
592\f
593/* Read ECOFF debugging information from a .mdebug section into a
594 ecoff_debug_info structure. */
595
596boolean
597_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
598 bfd *abfd;
599 asection *section;
600 struct ecoff_debug_info *debug;
601{
602 HDRR *symhdr;
603 const struct ecoff_debug_swap *swap;
604 char *ext_hdr = NULL;
605
606 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
607 memset (debug, 0, sizeof (*debug));
608
609 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
610 if (ext_hdr == NULL && swap->external_hdr_size != 0)
611 goto error_return;
612
82e51918
AM
613 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
614 swap->external_hdr_size))
b49e97c9
TS
615 goto error_return;
616
617 symhdr = &debug->symbolic_header;
618 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
619
620 /* The symbolic header contains absolute file offsets and sizes to
621 read. */
622#define READ(ptr, offset, count, size, type) \
623 if (symhdr->count == 0) \
624 debug->ptr = NULL; \
625 else \
626 { \
627 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
628 debug->ptr = (type) bfd_malloc (amt); \
629 if (debug->ptr == NULL) \
630 goto error_return; \
631 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
632 || bfd_bread (debug->ptr, amt, abfd) != amt) \
633 goto error_return; \
634 }
635
636 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
637 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
638 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
639 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
640 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
641 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
642 union aux_ext *);
643 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
644 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
645 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
646 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
647 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
648#undef READ
649
650 debug->fdr = NULL;
651 debug->adjust = NULL;
652
653 return true;
654
655 error_return:
656 if (ext_hdr != NULL)
657 free (ext_hdr);
658 if (debug->line != NULL)
659 free (debug->line);
660 if (debug->external_dnr != NULL)
661 free (debug->external_dnr);
662 if (debug->external_pdr != NULL)
663 free (debug->external_pdr);
664 if (debug->external_sym != NULL)
665 free (debug->external_sym);
666 if (debug->external_opt != NULL)
667 free (debug->external_opt);
668 if (debug->external_aux != NULL)
669 free (debug->external_aux);
670 if (debug->ss != NULL)
671 free (debug->ss);
672 if (debug->ssext != NULL)
673 free (debug->ssext);
674 if (debug->external_fdr != NULL)
675 free (debug->external_fdr);
676 if (debug->external_rfd != NULL)
677 free (debug->external_rfd);
678 if (debug->external_ext != NULL)
679 free (debug->external_ext);
680 return false;
681}
682\f
683/* Swap RPDR (runtime procedure table entry) for output. */
684
685static void
686ecoff_swap_rpdr_out (abfd, in, ex)
687 bfd *abfd;
688 const RPDR *in;
689 struct rpdr_ext *ex;
690{
691 H_PUT_S32 (abfd, in->adr, ex->p_adr);
692 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
693 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
694 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
695 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
696 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
697
698 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
699 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
700
701 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
702#if 0 /* FIXME */
703 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
704#endif
705}
706
707/* Create a runtime procedure table from the .mdebug section. */
708
709static boolean
710mips_elf_create_procedure_table (handle, abfd, info, s, debug)
711 PTR handle;
712 bfd *abfd;
713 struct bfd_link_info *info;
714 asection *s;
715 struct ecoff_debug_info *debug;
716{
717 const struct ecoff_debug_swap *swap;
718 HDRR *hdr = &debug->symbolic_header;
719 RPDR *rpdr, *rp;
720 struct rpdr_ext *erp;
721 PTR rtproc;
722 struct pdr_ext *epdr;
723 struct sym_ext *esym;
724 char *ss, **sv;
725 char *str;
726 bfd_size_type size;
727 bfd_size_type count;
728 unsigned long sindex;
729 unsigned long i;
730 PDR pdr;
731 SYMR sym;
732 const char *no_name_func = _("static procedure (no name)");
733
734 epdr = NULL;
735 rpdr = NULL;
736 esym = NULL;
737 ss = NULL;
738 sv = NULL;
739
740 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
741
742 sindex = strlen (no_name_func) + 1;
743 count = hdr->ipdMax;
744 if (count > 0)
745 {
746 size = swap->external_pdr_size;
747
748 epdr = (struct pdr_ext *) bfd_malloc (size * count);
749 if (epdr == NULL)
750 goto error_return;
751
752 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
753 goto error_return;
754
755 size = sizeof (RPDR);
756 rp = rpdr = (RPDR *) bfd_malloc (size * count);
757 if (rpdr == NULL)
758 goto error_return;
759
760 size = sizeof (char *);
761 sv = (char **) bfd_malloc (size * count);
762 if (sv == NULL)
763 goto error_return;
764
765 count = hdr->isymMax;
766 size = swap->external_sym_size;
767 esym = (struct sym_ext *) bfd_malloc (size * count);
768 if (esym == NULL)
769 goto error_return;
770
771 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
772 goto error_return;
773
774 count = hdr->issMax;
775 ss = (char *) bfd_malloc (count);
776 if (ss == NULL)
777 goto error_return;
778 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
779 goto error_return;
780
781 count = hdr->ipdMax;
782 for (i = 0; i < (unsigned long) count; i++, rp++)
783 {
784 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
785 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
786 rp->adr = sym.value;
787 rp->regmask = pdr.regmask;
788 rp->regoffset = pdr.regoffset;
789 rp->fregmask = pdr.fregmask;
790 rp->fregoffset = pdr.fregoffset;
791 rp->frameoffset = pdr.frameoffset;
792 rp->framereg = pdr.framereg;
793 rp->pcreg = pdr.pcreg;
794 rp->irpss = sindex;
795 sv[i] = ss + sym.iss;
796 sindex += strlen (sv[i]) + 1;
797 }
798 }
799
800 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
801 size = BFD_ALIGN (size, 16);
802 rtproc = (PTR) bfd_alloc (abfd, size);
803 if (rtproc == NULL)
804 {
805 mips_elf_hash_table (info)->procedure_count = 0;
806 goto error_return;
807 }
808
809 mips_elf_hash_table (info)->procedure_count = count + 2;
810
811 erp = (struct rpdr_ext *) rtproc;
812 memset (erp, 0, sizeof (struct rpdr_ext));
813 erp++;
814 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
815 strcpy (str, no_name_func);
816 str += strlen (no_name_func) + 1;
817 for (i = 0; i < count; i++)
818 {
819 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
820 strcpy (str, sv[i]);
821 str += strlen (sv[i]) + 1;
822 }
823 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
824
825 /* Set the size and contents of .rtproc section. */
826 s->_raw_size = size;
827 s->contents = (bfd_byte *) rtproc;
828
829 /* Skip this section later on (I don't think this currently
830 matters, but someday it might). */
831 s->link_order_head = (struct bfd_link_order *) NULL;
832
833 if (epdr != NULL)
834 free (epdr);
835 if (rpdr != NULL)
836 free (rpdr);
837 if (esym != NULL)
838 free (esym);
839 if (ss != NULL)
840 free (ss);
841 if (sv != NULL)
842 free (sv);
843
844 return true;
845
846 error_return:
847 if (epdr != NULL)
848 free (epdr);
849 if (rpdr != NULL)
850 free (rpdr);
851 if (esym != NULL)
852 free (esym);
853 if (ss != NULL)
854 free (ss);
855 if (sv != NULL)
856 free (sv);
857 return false;
858}
859
860/* Check the mips16 stubs for a particular symbol, and see if we can
861 discard them. */
862
863static boolean
864mips_elf_check_mips16_stubs (h, data)
865 struct mips_elf_link_hash_entry *h;
866 PTR data ATTRIBUTE_UNUSED;
867{
868 if (h->root.root.type == bfd_link_hash_warning)
869 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
870
871 if (h->fn_stub != NULL
872 && ! h->need_fn_stub)
873 {
874 /* We don't need the fn_stub; the only references to this symbol
875 are 16 bit calls. Clobber the size to 0 to prevent it from
876 being included in the link. */
877 h->fn_stub->_raw_size = 0;
878 h->fn_stub->_cooked_size = 0;
879 h->fn_stub->flags &= ~SEC_RELOC;
880 h->fn_stub->reloc_count = 0;
881 h->fn_stub->flags |= SEC_EXCLUDE;
882 }
883
884 if (h->call_stub != NULL
885 && h->root.other == STO_MIPS16)
886 {
887 /* We don't need the call_stub; this is a 16 bit function, so
888 calls from other 16 bit functions are OK. Clobber the size
889 to 0 to prevent it from being included in the link. */
890 h->call_stub->_raw_size = 0;
891 h->call_stub->_cooked_size = 0;
892 h->call_stub->flags &= ~SEC_RELOC;
893 h->call_stub->reloc_count = 0;
894 h->call_stub->flags |= SEC_EXCLUDE;
895 }
896
897 if (h->call_fp_stub != NULL
898 && h->root.other == STO_MIPS16)
899 {
900 /* We don't need the call_stub; this is a 16 bit function, so
901 calls from other 16 bit functions are OK. Clobber the size
902 to 0 to prevent it from being included in the link. */
903 h->call_fp_stub->_raw_size = 0;
904 h->call_fp_stub->_cooked_size = 0;
905 h->call_fp_stub->flags &= ~SEC_RELOC;
906 h->call_fp_stub->reloc_count = 0;
907 h->call_fp_stub->flags |= SEC_EXCLUDE;
908 }
909
910 return true;
911}
912\f
913bfd_reloc_status_type
914_bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
915 relocateable, data, gp)
916 bfd *abfd;
917 asymbol *symbol;
918 arelent *reloc_entry;
919 asection *input_section;
920 boolean relocateable;
921 PTR data;
922 bfd_vma gp;
923{
924 bfd_vma relocation;
925 unsigned long insn;
926 unsigned long val;
927
928 if (bfd_is_com_section (symbol->section))
929 relocation = 0;
930 else
931 relocation = symbol->value;
932
933 relocation += symbol->section->output_section->vma;
934 relocation += symbol->section->output_offset;
935
936 if (reloc_entry->address > input_section->_cooked_size)
937 return bfd_reloc_outofrange;
938
939 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
940
941 /* Set val to the offset into the section or symbol. */
942 if (reloc_entry->howto->src_mask == 0)
943 {
944 /* This case occurs with the 64-bit MIPS ELF ABI. */
945 val = reloc_entry->addend;
946 }
947 else
948 {
949 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
950 if (val & 0x8000)
951 val -= 0x10000;
952 }
953
954 /* Adjust val for the final section location and GP value. If we
955 are producing relocateable output, we don't want to do this for
956 an external symbol. */
957 if (! relocateable
958 || (symbol->flags & BSF_SECTION_SYM) != 0)
959 val += relocation - gp;
960
961 insn = (insn & ~0xffff) | (val & 0xffff);
962 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
963
964 if (relocateable)
965 reloc_entry->address += input_section->output_offset;
966
967 else if ((long) val >= 0x8000 || (long) val < -0x8000)
968 return bfd_reloc_overflow;
969
970 return bfd_reloc_ok;
971}
972\f
973/* Swap an entry in a .gptab section. Note that these routines rely
974 on the equivalence of the two elements of the union. */
975
976static void
977bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
978 bfd *abfd;
979 const Elf32_External_gptab *ex;
980 Elf32_gptab *in;
981{
982 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
983 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
984}
985
986static void
987bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
988 bfd *abfd;
989 const Elf32_gptab *in;
990 Elf32_External_gptab *ex;
991{
992 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
993 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
994}
995
996static void
997bfd_elf32_swap_compact_rel_out (abfd, in, ex)
998 bfd *abfd;
999 const Elf32_compact_rel *in;
1000 Elf32_External_compact_rel *ex;
1001{
1002 H_PUT_32 (abfd, in->id1, ex->id1);
1003 H_PUT_32 (abfd, in->num, ex->num);
1004 H_PUT_32 (abfd, in->id2, ex->id2);
1005 H_PUT_32 (abfd, in->offset, ex->offset);
1006 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1007 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1008}
1009
1010static void
1011bfd_elf32_swap_crinfo_out (abfd, in, ex)
1012 bfd *abfd;
1013 const Elf32_crinfo *in;
1014 Elf32_External_crinfo *ex;
1015{
1016 unsigned long l;
1017
1018 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1019 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1020 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1021 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1022 H_PUT_32 (abfd, l, ex->info);
1023 H_PUT_32 (abfd, in->konst, ex->konst);
1024 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1025}
1026
1027#if 0
1028/* Swap in an MSYM entry. */
1029
1030static void
1031bfd_mips_elf_swap_msym_in (abfd, ex, in)
1032 bfd *abfd;
1033 const Elf32_External_Msym *ex;
1034 Elf32_Internal_Msym *in;
1035{
1036 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1037 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1038}
1039#endif
1040/* Swap out an MSYM entry. */
1041
1042static void
1043bfd_mips_elf_swap_msym_out (abfd, in, ex)
1044 bfd *abfd;
1045 const Elf32_Internal_Msym *in;
1046 Elf32_External_Msym *ex;
1047{
1048 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1049 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1050}
1051\f
1052/* A .reginfo section holds a single Elf32_RegInfo structure. These
1053 routines swap this structure in and out. They are used outside of
1054 BFD, so they are globally visible. */
1055
1056void
1057bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1058 bfd *abfd;
1059 const Elf32_External_RegInfo *ex;
1060 Elf32_RegInfo *in;
1061{
1062 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1063 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1064 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1065 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1066 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1067 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1068}
1069
1070void
1071bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1072 bfd *abfd;
1073 const Elf32_RegInfo *in;
1074 Elf32_External_RegInfo *ex;
1075{
1076 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1077 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1078 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1079 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1080 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1081 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1082}
1083
1084/* In the 64 bit ABI, the .MIPS.options section holds register
1085 information in an Elf64_Reginfo structure. These routines swap
1086 them in and out. They are globally visible because they are used
1087 outside of BFD. These routines are here so that gas can call them
1088 without worrying about whether the 64 bit ABI has been included. */
1089
1090void
1091bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1092 bfd *abfd;
1093 const Elf64_External_RegInfo *ex;
1094 Elf64_Internal_RegInfo *in;
1095{
1096 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1097 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1098 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1099 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1100 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1101 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1102 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1103}
1104
1105void
1106bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1107 bfd *abfd;
1108 const Elf64_Internal_RegInfo *in;
1109 Elf64_External_RegInfo *ex;
1110{
1111 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1112 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1113 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1114 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1115 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1116 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1117 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1118}
1119
1120/* Swap in an options header. */
1121
1122void
1123bfd_mips_elf_swap_options_in (abfd, ex, in)
1124 bfd *abfd;
1125 const Elf_External_Options *ex;
1126 Elf_Internal_Options *in;
1127{
1128 in->kind = H_GET_8 (abfd, ex->kind);
1129 in->size = H_GET_8 (abfd, ex->size);
1130 in->section = H_GET_16 (abfd, ex->section);
1131 in->info = H_GET_32 (abfd, ex->info);
1132}
1133
1134/* Swap out an options header. */
1135
1136void
1137bfd_mips_elf_swap_options_out (abfd, in, ex)
1138 bfd *abfd;
1139 const Elf_Internal_Options *in;
1140 Elf_External_Options *ex;
1141{
1142 H_PUT_8 (abfd, in->kind, ex->kind);
1143 H_PUT_8 (abfd, in->size, ex->size);
1144 H_PUT_16 (abfd, in->section, ex->section);
1145 H_PUT_32 (abfd, in->info, ex->info);
1146}
1147\f
1148/* This function is called via qsort() to sort the dynamic relocation
1149 entries by increasing r_symndx value. */
1150
1151static int
1152sort_dynamic_relocs (arg1, arg2)
1153 const PTR arg1;
1154 const PTR arg2;
1155{
1156 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
1157 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
1158
1159 Elf_Internal_Rel int_reloc1;
1160 Elf_Internal_Rel int_reloc2;
1161
1162 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
1163 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
1164
1165 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
1166}
1167
1168/* This routine is used to write out ECOFF debugging external symbol
1169 information. It is called via mips_elf_link_hash_traverse. The
1170 ECOFF external symbol information must match the ELF external
1171 symbol information. Unfortunately, at this point we don't know
1172 whether a symbol is required by reloc information, so the two
1173 tables may wind up being different. We must sort out the external
1174 symbol information before we can set the final size of the .mdebug
1175 section, and we must set the size of the .mdebug section before we
1176 can relocate any sections, and we can't know which symbols are
1177 required by relocation until we relocate the sections.
1178 Fortunately, it is relatively unlikely that any symbol will be
1179 stripped but required by a reloc. In particular, it can not happen
1180 when generating a final executable. */
1181
1182static boolean
1183mips_elf_output_extsym (h, data)
1184 struct mips_elf_link_hash_entry *h;
1185 PTR data;
1186{
1187 struct extsym_info *einfo = (struct extsym_info *) data;
1188 boolean strip;
1189 asection *sec, *output_section;
1190
1191 if (h->root.root.type == bfd_link_hash_warning)
1192 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1193
1194 if (h->root.indx == -2)
1195 strip = false;
1196 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1197 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1198 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1199 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1200 strip = true;
1201 else if (einfo->info->strip == strip_all
1202 || (einfo->info->strip == strip_some
1203 && bfd_hash_lookup (einfo->info->keep_hash,
1204 h->root.root.root.string,
1205 false, false) == NULL))
1206 strip = true;
1207 else
1208 strip = false;
1209
1210 if (strip)
1211 return true;
1212
1213 if (h->esym.ifd == -2)
1214 {
1215 h->esym.jmptbl = 0;
1216 h->esym.cobol_main = 0;
1217 h->esym.weakext = 0;
1218 h->esym.reserved = 0;
1219 h->esym.ifd = ifdNil;
1220 h->esym.asym.value = 0;
1221 h->esym.asym.st = stGlobal;
1222
1223 if (h->root.root.type == bfd_link_hash_undefined
1224 || h->root.root.type == bfd_link_hash_undefweak)
1225 {
1226 const char *name;
1227
1228 /* Use undefined class. Also, set class and type for some
1229 special symbols. */
1230 name = h->root.root.root.string;
1231 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1232 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1233 {
1234 h->esym.asym.sc = scData;
1235 h->esym.asym.st = stLabel;
1236 h->esym.asym.value = 0;
1237 }
1238 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1239 {
1240 h->esym.asym.sc = scAbs;
1241 h->esym.asym.st = stLabel;
1242 h->esym.asym.value =
1243 mips_elf_hash_table (einfo->info)->procedure_count;
1244 }
1245 else if (strcmp (name, "_gp_disp") == 0)
1246 {
1247 h->esym.asym.sc = scAbs;
1248 h->esym.asym.st = stLabel;
1249 h->esym.asym.value = elf_gp (einfo->abfd);
1250 }
1251 else
1252 h->esym.asym.sc = scUndefined;
1253 }
1254 else if (h->root.root.type != bfd_link_hash_defined
1255 && h->root.root.type != bfd_link_hash_defweak)
1256 h->esym.asym.sc = scAbs;
1257 else
1258 {
1259 const char *name;
1260
1261 sec = h->root.root.u.def.section;
1262 output_section = sec->output_section;
1263
1264 /* When making a shared library and symbol h is the one from
1265 the another shared library, OUTPUT_SECTION may be null. */
1266 if (output_section == NULL)
1267 h->esym.asym.sc = scUndefined;
1268 else
1269 {
1270 name = bfd_section_name (output_section->owner, output_section);
1271
1272 if (strcmp (name, ".text") == 0)
1273 h->esym.asym.sc = scText;
1274 else if (strcmp (name, ".data") == 0)
1275 h->esym.asym.sc = scData;
1276 else if (strcmp (name, ".sdata") == 0)
1277 h->esym.asym.sc = scSData;
1278 else if (strcmp (name, ".rodata") == 0
1279 || strcmp (name, ".rdata") == 0)
1280 h->esym.asym.sc = scRData;
1281 else if (strcmp (name, ".bss") == 0)
1282 h->esym.asym.sc = scBss;
1283 else if (strcmp (name, ".sbss") == 0)
1284 h->esym.asym.sc = scSBss;
1285 else if (strcmp (name, ".init") == 0)
1286 h->esym.asym.sc = scInit;
1287 else if (strcmp (name, ".fini") == 0)
1288 h->esym.asym.sc = scFini;
1289 else
1290 h->esym.asym.sc = scAbs;
1291 }
1292 }
1293
1294 h->esym.asym.reserved = 0;
1295 h->esym.asym.index = indexNil;
1296 }
1297
1298 if (h->root.root.type == bfd_link_hash_common)
1299 h->esym.asym.value = h->root.root.u.c.size;
1300 else if (h->root.root.type == bfd_link_hash_defined
1301 || h->root.root.type == bfd_link_hash_defweak)
1302 {
1303 if (h->esym.asym.sc == scCommon)
1304 h->esym.asym.sc = scBss;
1305 else if (h->esym.asym.sc == scSCommon)
1306 h->esym.asym.sc = scSBss;
1307
1308 sec = h->root.root.u.def.section;
1309 output_section = sec->output_section;
1310 if (output_section != NULL)
1311 h->esym.asym.value = (h->root.root.u.def.value
1312 + sec->output_offset
1313 + output_section->vma);
1314 else
1315 h->esym.asym.value = 0;
1316 }
1317 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1318 {
1319 struct mips_elf_link_hash_entry *hd = h;
1320 boolean no_fn_stub = h->no_fn_stub;
1321
1322 while (hd->root.root.type == bfd_link_hash_indirect)
1323 {
1324 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1325 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1326 }
1327
1328 if (!no_fn_stub)
1329 {
1330 /* Set type and value for a symbol with a function stub. */
1331 h->esym.asym.st = stProc;
1332 sec = hd->root.root.u.def.section;
1333 if (sec == NULL)
1334 h->esym.asym.value = 0;
1335 else
1336 {
1337 output_section = sec->output_section;
1338 if (output_section != NULL)
1339 h->esym.asym.value = (hd->root.plt.offset
1340 + sec->output_offset
1341 + output_section->vma);
1342 else
1343 h->esym.asym.value = 0;
1344 }
1345#if 0 /* FIXME? */
1346 h->esym.ifd = 0;
1347#endif
1348 }
1349 }
1350
1351 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1352 h->root.root.root.string,
1353 &h->esym))
1354 {
1355 einfo->failed = true;
1356 return false;
1357 }
1358
1359 return true;
1360}
1361
1362/* A comparison routine used to sort .gptab entries. */
1363
1364static int
1365gptab_compare (p1, p2)
1366 const PTR p1;
1367 const PTR p2;
1368{
1369 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1370 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1371
1372 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1373}
1374\f
1375/* Returns the GOT section for ABFD. */
1376
1377static asection *
1378mips_elf_got_section (abfd)
1379 bfd *abfd;
1380{
1381 return bfd_get_section_by_name (abfd, ".got");
1382}
1383
1384/* Returns the GOT information associated with the link indicated by
1385 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1386 section. */
1387
1388static struct mips_got_info *
1389mips_elf_got_info (abfd, sgotp)
1390 bfd *abfd;
1391 asection **sgotp;
1392{
1393 asection *sgot;
1394 struct mips_got_info *g;
1395
1396 sgot = mips_elf_got_section (abfd);
1397 BFD_ASSERT (sgot != NULL);
1398 BFD_ASSERT (elf_section_data (sgot) != NULL);
1399 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
1400 BFD_ASSERT (g != NULL);
1401
1402 if (sgotp)
1403 *sgotp = sgot;
1404 return g;
1405}
1406
1407/* Returns the GOT offset at which the indicated address can be found.
1408 If there is not yet a GOT entry for this value, create one. Returns
1409 -1 if no satisfactory GOT offset can be found. */
1410
1411static bfd_vma
1412mips_elf_local_got_index (abfd, info, value)
1413 bfd *abfd;
1414 struct bfd_link_info *info;
1415 bfd_vma value;
1416{
1417 asection *sgot;
1418 struct mips_got_info *g;
1419 bfd_byte *entry;
1420
1421 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1422
1423 /* Look to see if we already have an appropriate entry. */
1424 for (entry = (sgot->contents
1425 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
1426 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
1427 entry += MIPS_ELF_GOT_SIZE (abfd))
1428 {
1429 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
1430 if (address == value)
1431 return entry - sgot->contents;
1432 }
1433
1434 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
1435}
1436
1437/* Returns the GOT index for the global symbol indicated by H. */
1438
1439static bfd_vma
1440mips_elf_global_got_index (abfd, h)
1441 bfd *abfd;
1442 struct elf_link_hash_entry *h;
1443{
1444 bfd_vma index;
1445 asection *sgot;
1446 struct mips_got_info *g;
1447
1448 g = mips_elf_got_info (abfd, &sgot);
1449
1450 /* Once we determine the global GOT entry with the lowest dynamic
1451 symbol table index, we must put all dynamic symbols with greater
1452 indices into the GOT. That makes it easy to calculate the GOT
1453 offset. */
1454 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
1455 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
1456 * MIPS_ELF_GOT_SIZE (abfd));
1457 BFD_ASSERT (index < sgot->_raw_size);
1458
1459 return index;
1460}
1461
1462/* Find a GOT entry that is within 32KB of the VALUE. These entries
1463 are supposed to be placed at small offsets in the GOT, i.e.,
1464 within 32KB of GP. Return the index into the GOT for this page,
1465 and store the offset from this entry to the desired address in
1466 OFFSETP, if it is non-NULL. */
1467
1468static bfd_vma
1469mips_elf_got_page (abfd, info, value, offsetp)
1470 bfd *abfd;
1471 struct bfd_link_info *info;
1472 bfd_vma value;
1473 bfd_vma *offsetp;
1474{
1475 asection *sgot;
1476 struct mips_got_info *g;
1477 bfd_byte *entry;
1478 bfd_byte *last_entry;
1479 bfd_vma index = 0;
1480 bfd_vma address;
1481
1482 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1483
1484 /* Look to see if we aleady have an appropriate entry. */
1485 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
1486 for (entry = (sgot->contents
1487 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
1488 entry != last_entry;
1489 entry += MIPS_ELF_GOT_SIZE (abfd))
1490 {
1491 address = MIPS_ELF_GET_WORD (abfd, entry);
1492
1493 if (!mips_elf_overflow_p (value - address, 16))
1494 {
1495 /* This entry will serve as the page pointer. We can add a
1496 16-bit number to it to get the actual address. */
1497 index = entry - sgot->contents;
1498 break;
1499 }
1500 }
1501
1502 /* If we didn't have an appropriate entry, we create one now. */
1503 if (entry == last_entry)
1504 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
1505
1506 if (offsetp)
1507 {
1508 address = MIPS_ELF_GET_WORD (abfd, entry);
1509 *offsetp = value - address;
1510 }
1511
1512 return index;
1513}
1514
1515/* Find a GOT entry whose higher-order 16 bits are the same as those
1516 for value. Return the index into the GOT for this entry. */
1517
1518static bfd_vma
1519mips_elf_got16_entry (abfd, info, value, external)
1520 bfd *abfd;
1521 struct bfd_link_info *info;
1522 bfd_vma value;
1523 boolean external;
1524{
1525 asection *sgot;
1526 struct mips_got_info *g;
1527 bfd_byte *entry;
1528 bfd_byte *last_entry;
1529 bfd_vma index = 0;
1530 bfd_vma address;
1531
1532 if (! external)
1533 {
1534 /* Although the ABI says that it is "the high-order 16 bits" that we
1535 want, it is really the %high value. The complete value is
1536 calculated with a `addiu' of a LO16 relocation, just as with a
1537 HI16/LO16 pair. */
1538 value = mips_elf_high (value) << 16;
1539 }
1540
1541 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1542
1543 /* Look to see if we already have an appropriate entry. */
1544 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
1545 for (entry = (sgot->contents
1546 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
1547 entry != last_entry;
1548 entry += MIPS_ELF_GOT_SIZE (abfd))
1549 {
1550 address = MIPS_ELF_GET_WORD (abfd, entry);
1551 if (address == value)
1552 {
1553 /* This entry has the right high-order 16 bits, and the low-order
1554 16 bits are set to zero. */
1555 index = entry - sgot->contents;
1556 break;
1557 }
1558 }
1559
1560 /* If we didn't have an appropriate entry, we create one now. */
1561 if (entry == last_entry)
1562 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
1563
1564 return index;
1565}
1566
1567/* Returns the offset for the entry at the INDEXth position
1568 in the GOT. */
1569
1570static bfd_vma
1571mips_elf_got_offset_from_index (dynobj, output_bfd, index)
1572 bfd *dynobj;
1573 bfd *output_bfd;
1574 bfd_vma index;
1575{
1576 asection *sgot;
1577 bfd_vma gp;
1578
1579 sgot = mips_elf_got_section (dynobj);
1580 gp = _bfd_get_gp_value (output_bfd);
1581 return (sgot->output_section->vma + sgot->output_offset + index -
1582 gp);
1583}
1584
1585/* Create a local GOT entry for VALUE. Return the index of the entry,
1586 or -1 if it could not be created. */
1587
1588static bfd_vma
1589mips_elf_create_local_got_entry (abfd, g, sgot, value)
1590 bfd *abfd;
1591 struct mips_got_info *g;
1592 asection *sgot;
1593 bfd_vma value;
1594{
1595 if (g->assigned_gotno >= g->local_gotno)
1596 {
1597 /* We didn't allocate enough space in the GOT. */
1598 (*_bfd_error_handler)
1599 (_("not enough GOT space for local GOT entries"));
1600 bfd_set_error (bfd_error_bad_value);
1601 return (bfd_vma) -1;
1602 }
1603
1604 MIPS_ELF_PUT_WORD (abfd, value,
1605 (sgot->contents
1606 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
1607 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1608}
1609
1610/* Sort the dynamic symbol table so that symbols that need GOT entries
1611 appear towards the end. This reduces the amount of GOT space
1612 required. MAX_LOCAL is used to set the number of local symbols
1613 known to be in the dynamic symbol table. During
1614 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1615 section symbols are added and the count is higher. */
1616
1617static boolean
1618mips_elf_sort_hash_table (info, max_local)
1619 struct bfd_link_info *info;
1620 unsigned long max_local;
1621{
1622 struct mips_elf_hash_sort_data hsd;
1623 struct mips_got_info *g;
1624 bfd *dynobj;
1625
1626 dynobj = elf_hash_table (info)->dynobj;
1627
1628 hsd.low = NULL;
1629 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
1630 hsd.max_non_got_dynindx = max_local;
1631 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1632 elf_hash_table (info)),
1633 mips_elf_sort_hash_table_f,
1634 &hsd);
1635
1636 /* There should have been enough room in the symbol table to
1637 accomodate both the GOT and non-GOT symbols. */
1638 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
1639
1640 /* Now we know which dynamic symbol has the lowest dynamic symbol
1641 table index in the GOT. */
1642 g = mips_elf_got_info (dynobj, NULL);
1643 g->global_gotsym = hsd.low;
1644
1645 return true;
1646}
1647
1648/* If H needs a GOT entry, assign it the highest available dynamic
1649 index. Otherwise, assign it the lowest available dynamic
1650 index. */
1651
1652static boolean
1653mips_elf_sort_hash_table_f (h, data)
1654 struct mips_elf_link_hash_entry *h;
1655 PTR data;
1656{
1657 struct mips_elf_hash_sort_data *hsd
1658 = (struct mips_elf_hash_sort_data *) data;
1659
1660 if (h->root.root.type == bfd_link_hash_warning)
1661 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1662
1663 /* Symbols without dynamic symbol table entries aren't interesting
1664 at all. */
1665 if (h->root.dynindx == -1)
1666 return true;
1667
1668 if (h->root.got.offset != 1)
1669 h->root.dynindx = hsd->max_non_got_dynindx++;
1670 else
1671 {
1672 h->root.dynindx = --hsd->min_got_dynindx;
1673 hsd->low = (struct elf_link_hash_entry *) h;
1674 }
1675
1676 return true;
1677}
1678
1679/* If H is a symbol that needs a global GOT entry, but has a dynamic
1680 symbol table index lower than any we've seen to date, record it for
1681 posterity. */
1682
1683static boolean
1684mips_elf_record_global_got_symbol (h, info, g)
1685 struct elf_link_hash_entry *h;
1686 struct bfd_link_info *info;
1687 struct mips_got_info *g ATTRIBUTE_UNUSED;
1688{
1689 /* A global symbol in the GOT must also be in the dynamic symbol
1690 table. */
7c5fcef7
L
1691 if (h->dynindx == -1)
1692 {
1693 switch (ELF_ST_VISIBILITY (h->other))
1694 {
1695 case STV_INTERNAL:
1696 case STV_HIDDEN:
1697 _bfd_mips_elf_hide_symbol (info, h, true);
1698 break;
1699 }
1700 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
1701 return false;
1702 }
b49e97c9
TS
1703
1704 /* If we've already marked this entry as needing GOT space, we don't
1705 need to do it again. */
1706 if (h->got.offset != MINUS_ONE)
1707 return true;
1708
1709 /* By setting this to a value other than -1, we are indicating that
1710 there needs to be a GOT entry for H. Avoid using zero, as the
1711 generic ELF copy_indirect_symbol tests for <= 0. */
1712 h->got.offset = 1;
1713
1714 return true;
1715}
1716\f
1717/* Returns the first relocation of type r_type found, beginning with
1718 RELOCATION. RELEND is one-past-the-end of the relocation table. */
1719
1720static const Elf_Internal_Rela *
1721mips_elf_next_relocation (abfd, r_type, relocation, relend)
1722 bfd *abfd ATTRIBUTE_UNUSED;
1723 unsigned int r_type;
1724 const Elf_Internal_Rela *relocation;
1725 const Elf_Internal_Rela *relend;
1726{
1727 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
1728 immediately following. However, for the IRIX6 ABI, the next
1729 relocation may be a composed relocation consisting of several
1730 relocations for the same address. In that case, the R_MIPS_LO16
1731 relocation may occur as one of these. We permit a similar
1732 extension in general, as that is useful for GCC. */
1733 while (relocation < relend)
1734 {
1735 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
1736 return relocation;
1737
1738 ++relocation;
1739 }
1740
1741 /* We didn't find it. */
1742 bfd_set_error (bfd_error_bad_value);
1743 return NULL;
1744}
1745
1746/* Return whether a relocation is against a local symbol. */
1747
1748static boolean
1749mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
1750 check_forced)
1751 bfd *input_bfd;
1752 const Elf_Internal_Rela *relocation;
1753 asection **local_sections;
1754 boolean check_forced;
1755{
1756 unsigned long r_symndx;
1757 Elf_Internal_Shdr *symtab_hdr;
1758 struct mips_elf_link_hash_entry *h;
1759 size_t extsymoff;
1760
1761 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
1762 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1763 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
1764
1765 if (r_symndx < extsymoff)
1766 return true;
1767 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
1768 return true;
1769
1770 if (check_forced)
1771 {
1772 /* Look up the hash table to check whether the symbol
1773 was forced local. */
1774 h = (struct mips_elf_link_hash_entry *)
1775 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
1776 /* Find the real hash-table entry for this symbol. */
1777 while (h->root.root.type == bfd_link_hash_indirect
1778 || h->root.root.type == bfd_link_hash_warning)
1779 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1780 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
1781 return true;
1782 }
1783
1784 return false;
1785}
1786\f
1787/* Sign-extend VALUE, which has the indicated number of BITS. */
1788
1789static bfd_vma
1790mips_elf_sign_extend (value, bits)
1791 bfd_vma value;
1792 int bits;
1793{
1794 if (value & ((bfd_vma) 1 << (bits - 1)))
1795 /* VALUE is negative. */
1796 value |= ((bfd_vma) - 1) << bits;
1797
1798 return value;
1799}
1800
1801/* Return non-zero if the indicated VALUE has overflowed the maximum
1802 range expressable by a signed number with the indicated number of
1803 BITS. */
1804
1805static boolean
1806mips_elf_overflow_p (value, bits)
1807 bfd_vma value;
1808 int bits;
1809{
1810 bfd_signed_vma svalue = (bfd_signed_vma) value;
1811
1812 if (svalue > (1 << (bits - 1)) - 1)
1813 /* The value is too big. */
1814 return true;
1815 else if (svalue < -(1 << (bits - 1)))
1816 /* The value is too small. */
1817 return true;
1818
1819 /* All is well. */
1820 return false;
1821}
1822
1823/* Calculate the %high function. */
1824
1825static bfd_vma
1826mips_elf_high (value)
1827 bfd_vma value;
1828{
1829 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
1830}
1831
1832/* Calculate the %higher function. */
1833
1834static bfd_vma
1835mips_elf_higher (value)
1836 bfd_vma value ATTRIBUTE_UNUSED;
1837{
1838#ifdef BFD64
1839 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
1840#else
1841 abort ();
1842 return (bfd_vma) -1;
1843#endif
1844}
1845
1846/* Calculate the %highest function. */
1847
1848static bfd_vma
1849mips_elf_highest (value)
1850 bfd_vma value ATTRIBUTE_UNUSED;
1851{
1852#ifdef BFD64
1853 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
1854#else
1855 abort ();
1856 return (bfd_vma) -1;
1857#endif
1858}
1859\f
1860/* Create the .compact_rel section. */
1861
1862static boolean
1863mips_elf_create_compact_rel_section (abfd, info)
1864 bfd *abfd;
1865 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1866{
1867 flagword flags;
1868 register asection *s;
1869
1870 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
1871 {
1872 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
1873 | SEC_READONLY);
1874
1875 s = bfd_make_section (abfd, ".compact_rel");
1876 if (s == NULL
1877 || ! bfd_set_section_flags (abfd, s, flags)
1878 || ! bfd_set_section_alignment (abfd, s,
1879 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
1880 return false;
1881
1882 s->_raw_size = sizeof (Elf32_External_compact_rel);
1883 }
1884
1885 return true;
1886}
1887
1888/* Create the .got section to hold the global offset table. */
1889
1890static boolean
1891mips_elf_create_got_section (abfd, info)
1892 bfd *abfd;
1893 struct bfd_link_info *info;
1894{
1895 flagword flags;
1896 register asection *s;
1897 struct elf_link_hash_entry *h;
1898 struct mips_got_info *g;
1899 bfd_size_type amt;
1900
1901 /* This function may be called more than once. */
1902 if (mips_elf_got_section (abfd))
1903 return true;
1904
1905 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1906 | SEC_LINKER_CREATED);
1907
1908 s = bfd_make_section (abfd, ".got");
1909 if (s == NULL
1910 || ! bfd_set_section_flags (abfd, s, flags)
1911 || ! bfd_set_section_alignment (abfd, s, 4))
1912 return false;
1913
1914 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
1915 linker script because we don't want to define the symbol if we
1916 are not creating a global offset table. */
1917 h = NULL;
1918 if (! (_bfd_generic_link_add_one_symbol
1919 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
1920 (bfd_vma) 0, (const char *) NULL, false,
1921 get_elf_backend_data (abfd)->collect,
1922 (struct bfd_link_hash_entry **) &h)))
1923 return false;
1924 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
1925 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1926 h->type = STT_OBJECT;
1927
1928 if (info->shared
1929 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
1930 return false;
1931
1932 /* The first several global offset table entries are reserved. */
1933 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
1934
1935 amt = sizeof (struct mips_got_info);
1936 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
1937 if (g == NULL)
1938 return false;
1939 g->global_gotsym = NULL;
1940 g->local_gotno = MIPS_RESERVED_GOTNO;
1941 g->assigned_gotno = MIPS_RESERVED_GOTNO;
1942 if (elf_section_data (s) == NULL)
1943 {
1944 amt = sizeof (struct bfd_elf_section_data);
1945 s->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
1946 if (elf_section_data (s) == NULL)
1947 return false;
1948 }
1949 elf_section_data (s)->tdata = (PTR) g;
1950 elf_section_data (s)->this_hdr.sh_flags
1951 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
1952
1953 return true;
1954}
1955
1956/* Returns the .msym section for ABFD, creating it if it does not
1957 already exist. Returns NULL to indicate error. */
1958
1959static asection *
1960mips_elf_create_msym_section (abfd)
1961 bfd *abfd;
1962{
1963 asection *s;
1964
1965 s = bfd_get_section_by_name (abfd, ".msym");
1966 if (!s)
1967 {
1968 s = bfd_make_section (abfd, ".msym");
1969 if (!s
1970 || !bfd_set_section_flags (abfd, s,
1971 SEC_ALLOC
1972 | SEC_LOAD
1973 | SEC_HAS_CONTENTS
1974 | SEC_LINKER_CREATED
1975 | SEC_READONLY)
1976 || !bfd_set_section_alignment (abfd, s,
1977 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
1978 return NULL;
1979 }
1980
1981 return s;
1982}
1983\f
1984/* Calculate the value produced by the RELOCATION (which comes from
1985 the INPUT_BFD). The ADDEND is the addend to use for this
1986 RELOCATION; RELOCATION->R_ADDEND is ignored.
1987
1988 The result of the relocation calculation is stored in VALUEP.
1989 REQUIRE_JALXP indicates whether or not the opcode used with this
1990 relocation must be JALX.
1991
1992 This function returns bfd_reloc_continue if the caller need take no
1993 further action regarding this relocation, bfd_reloc_notsupported if
1994 something goes dramatically wrong, bfd_reloc_overflow if an
1995 overflow occurs, and bfd_reloc_ok to indicate success. */
1996
1997static bfd_reloc_status_type
1998mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
1999 relocation, addend, howto, local_syms,
2000 local_sections, valuep, namep,
2001 require_jalxp)
2002 bfd *abfd;
2003 bfd *input_bfd;
2004 asection *input_section;
2005 struct bfd_link_info *info;
2006 const Elf_Internal_Rela *relocation;
2007 bfd_vma addend;
2008 reloc_howto_type *howto;
2009 Elf_Internal_Sym *local_syms;
2010 asection **local_sections;
2011 bfd_vma *valuep;
2012 const char **namep;
2013 boolean *require_jalxp;
2014{
2015 /* The eventual value we will return. */
2016 bfd_vma value;
2017 /* The address of the symbol against which the relocation is
2018 occurring. */
2019 bfd_vma symbol = 0;
2020 /* The final GP value to be used for the relocatable, executable, or
2021 shared object file being produced. */
2022 bfd_vma gp = MINUS_ONE;
2023 /* The place (section offset or address) of the storage unit being
2024 relocated. */
2025 bfd_vma p;
2026 /* The value of GP used to create the relocatable object. */
2027 bfd_vma gp0 = MINUS_ONE;
2028 /* The offset into the global offset table at which the address of
2029 the relocation entry symbol, adjusted by the addend, resides
2030 during execution. */
2031 bfd_vma g = MINUS_ONE;
2032 /* The section in which the symbol referenced by the relocation is
2033 located. */
2034 asection *sec = NULL;
2035 struct mips_elf_link_hash_entry *h = NULL;
2036 /* True if the symbol referred to by this relocation is a local
2037 symbol. */
2038 boolean local_p;
2039 /* True if the symbol referred to by this relocation is "_gp_disp". */
2040 boolean gp_disp_p = false;
2041 Elf_Internal_Shdr *symtab_hdr;
2042 size_t extsymoff;
2043 unsigned long r_symndx;
2044 int r_type;
2045 /* True if overflow occurred during the calculation of the
2046 relocation value. */
2047 boolean overflowed_p;
2048 /* True if this relocation refers to a MIPS16 function. */
2049 boolean target_is_16_bit_code_p = false;
2050
2051 /* Parse the relocation. */
2052 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2053 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
2054 p = (input_section->output_section->vma
2055 + input_section->output_offset
2056 + relocation->r_offset);
2057
2058 /* Assume that there will be no overflow. */
2059 overflowed_p = false;
2060
2061 /* Figure out whether or not the symbol is local, and get the offset
2062 used in the array of hash table entries. */
2063 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2064 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
2065 local_sections, false);
2066 if (! elf_bad_symtab (input_bfd))
2067 extsymoff = symtab_hdr->sh_info;
2068 else
2069 {
2070 /* The symbol table does not follow the rule that local symbols
2071 must come before globals. */
2072 extsymoff = 0;
2073 }
2074
2075 /* Figure out the value of the symbol. */
2076 if (local_p)
2077 {
2078 Elf_Internal_Sym *sym;
2079
2080 sym = local_syms + r_symndx;
2081 sec = local_sections[r_symndx];
2082
2083 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
2084 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
2085 || (sec->flags & SEC_MERGE))
b49e97c9 2086 symbol += sym->st_value;
d4df96e6
L
2087 if ((sec->flags & SEC_MERGE)
2088 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2089 {
2090 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
2091 addend -= symbol;
2092 addend += sec->output_section->vma + sec->output_offset;
2093 }
b49e97c9
TS
2094
2095 /* MIPS16 text labels should be treated as odd. */
2096 if (sym->st_other == STO_MIPS16)
2097 ++symbol;
2098
2099 /* Record the name of this symbol, for our caller. */
2100 *namep = bfd_elf_string_from_elf_section (input_bfd,
2101 symtab_hdr->sh_link,
2102 sym->st_name);
2103 if (*namep == '\0')
2104 *namep = bfd_section_name (input_bfd, sec);
2105
2106 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
2107 }
2108 else
2109 {
2110 /* For global symbols we look up the symbol in the hash-table. */
2111 h = ((struct mips_elf_link_hash_entry *)
2112 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
2113 /* Find the real hash-table entry for this symbol. */
2114 while (h->root.root.type == bfd_link_hash_indirect
2115 || h->root.root.type == bfd_link_hash_warning)
2116 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2117
2118 /* Record the name of this symbol, for our caller. */
2119 *namep = h->root.root.root.string;
2120
2121 /* See if this is the special _gp_disp symbol. Note that such a
2122 symbol must always be a global symbol. */
2123 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
2124 && ! NEWABI_P (input_bfd))
2125 {
2126 /* Relocations against _gp_disp are permitted only with
2127 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
2128 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
2129 return bfd_reloc_notsupported;
2130
2131 gp_disp_p = true;
2132 }
2133 /* If this symbol is defined, calculate its address. Note that
2134 _gp_disp is a magic symbol, always implicitly defined by the
2135 linker, so it's inappropriate to check to see whether or not
2136 its defined. */
2137 else if ((h->root.root.type == bfd_link_hash_defined
2138 || h->root.root.type == bfd_link_hash_defweak)
2139 && h->root.root.u.def.section)
2140 {
2141 sec = h->root.root.u.def.section;
2142 if (sec->output_section)
2143 symbol = (h->root.root.u.def.value
2144 + sec->output_section->vma
2145 + sec->output_offset);
2146 else
2147 symbol = h->root.root.u.def.value;
2148 }
2149 else if (h->root.root.type == bfd_link_hash_undefweak)
2150 /* We allow relocations against undefined weak symbols, giving
2151 it the value zero, so that you can undefined weak functions
2152 and check to see if they exist by looking at their
2153 addresses. */
2154 symbol = 0;
2155 else if (info->shared
2156 && (!info->symbolic || info->allow_shlib_undefined)
2157 && !info->no_undefined
2158 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
2159 symbol = 0;
2160 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
2161 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
2162 {
2163 /* If this is a dynamic link, we should have created a
2164 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
2165 in in _bfd_mips_elf_create_dynamic_sections.
2166 Otherwise, we should define the symbol with a value of 0.
2167 FIXME: It should probably get into the symbol table
2168 somehow as well. */
2169 BFD_ASSERT (! info->shared);
2170 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
2171 symbol = 0;
2172 }
2173 else
2174 {
2175 if (! ((*info->callbacks->undefined_symbol)
2176 (info, h->root.root.root.string, input_bfd,
2177 input_section, relocation->r_offset,
2178 (!info->shared || info->no_undefined
2179 || ELF_ST_VISIBILITY (h->root.other)))))
2180 return bfd_reloc_undefined;
2181 symbol = 0;
2182 }
2183
2184 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
2185 }
2186
2187 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
2188 need to redirect the call to the stub, unless we're already *in*
2189 a stub. */
2190 if (r_type != R_MIPS16_26 && !info->relocateable
2191 && ((h != NULL && h->fn_stub != NULL)
2192 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
2193 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
2194 && !mips_elf_stub_section_p (input_bfd, input_section))
2195 {
2196 /* This is a 32- or 64-bit call to a 16-bit function. We should
2197 have already noticed that we were going to need the
2198 stub. */
2199 if (local_p)
2200 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
2201 else
2202 {
2203 BFD_ASSERT (h->need_fn_stub);
2204 sec = h->fn_stub;
2205 }
2206
2207 symbol = sec->output_section->vma + sec->output_offset;
2208 }
2209 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
2210 need to redirect the call to the stub. */
2211 else if (r_type == R_MIPS16_26 && !info->relocateable
2212 && h != NULL
2213 && (h->call_stub != NULL || h->call_fp_stub != NULL)
2214 && !target_is_16_bit_code_p)
2215 {
2216 /* If both call_stub and call_fp_stub are defined, we can figure
2217 out which one to use by seeing which one appears in the input
2218 file. */
2219 if (h->call_stub != NULL && h->call_fp_stub != NULL)
2220 {
2221 asection *o;
2222
2223 sec = NULL;
2224 for (o = input_bfd->sections; o != NULL; o = o->next)
2225 {
2226 if (strncmp (bfd_get_section_name (input_bfd, o),
2227 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
2228 {
2229 sec = h->call_fp_stub;
2230 break;
2231 }
2232 }
2233 if (sec == NULL)
2234 sec = h->call_stub;
2235 }
2236 else if (h->call_stub != NULL)
2237 sec = h->call_stub;
2238 else
2239 sec = h->call_fp_stub;
2240
2241 BFD_ASSERT (sec->_raw_size > 0);
2242 symbol = sec->output_section->vma + sec->output_offset;
2243 }
2244
2245 /* Calls from 16-bit code to 32-bit code and vice versa require the
2246 special jalx instruction. */
2247 *require_jalxp = (!info->relocateable
2248 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
2249 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
2250
2251 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
2252 local_sections, true);
2253
2254 /* If we haven't already determined the GOT offset, or the GP value,
2255 and we're going to need it, get it now. */
2256 switch (r_type)
2257 {
2258 case R_MIPS_CALL16:
2259 case R_MIPS_GOT16:
2260 case R_MIPS_GOT_DISP:
2261 case R_MIPS_GOT_HI16:
2262 case R_MIPS_CALL_HI16:
2263 case R_MIPS_GOT_LO16:
2264 case R_MIPS_CALL_LO16:
2265 /* Find the index into the GOT where this value is located. */
2266 if (!local_p)
2267 {
2268 BFD_ASSERT (addend == 0);
2269 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
2270 (struct elf_link_hash_entry *) h);
2271 if (! elf_hash_table(info)->dynamic_sections_created
2272 || (info->shared
2273 && (info->symbolic || h->root.dynindx == -1)
2274 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2275 {
2276 /* This is a static link or a -Bsymbolic link. The
2277 symbol is defined locally, or was forced to be local.
2278 We must initialize this entry in the GOT. */
2279 bfd *tmpbfd = elf_hash_table (info)->dynobj;
2280 asection *sgot = mips_elf_got_section(tmpbfd);
2281 MIPS_ELF_PUT_WORD (tmpbfd, symbol + addend, sgot->contents + g);
2282 }
2283 }
2284 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
2285 /* There's no need to create a local GOT entry here; the
2286 calculation for a local GOT16 entry does not involve G. */
2287 break;
2288 else
2289 {
2290 g = mips_elf_local_got_index (abfd, info, symbol + addend);
2291 if (g == MINUS_ONE)
2292 return bfd_reloc_outofrange;
2293 }
2294
2295 /* Convert GOT indices to actual offsets. */
2296 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
2297 abfd, g);
2298 break;
2299
2300 case R_MIPS_HI16:
2301 case R_MIPS_LO16:
2302 case R_MIPS16_GPREL:
2303 case R_MIPS_GPREL16:
2304 case R_MIPS_GPREL32:
2305 case R_MIPS_LITERAL:
2306 gp0 = _bfd_get_gp_value (input_bfd);
2307 gp = _bfd_get_gp_value (abfd);
2308 break;
2309
2310 default:
2311 break;
2312 }
2313
2314 /* Figure out what kind of relocation is being performed. */
2315 switch (r_type)
2316 {
2317 case R_MIPS_NONE:
2318 return bfd_reloc_continue;
2319
2320 case R_MIPS_16:
2321 value = symbol + mips_elf_sign_extend (addend, 16);
2322 overflowed_p = mips_elf_overflow_p (value, 16);
2323 break;
2324
2325 case R_MIPS_32:
2326 case R_MIPS_REL32:
2327 case R_MIPS_64:
2328 if ((info->shared
2329 || (elf_hash_table (info)->dynamic_sections_created
2330 && h != NULL
2331 && ((h->root.elf_link_hash_flags
2332 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2333 && ((h->root.elf_link_hash_flags
2334 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2335 && r_symndx != 0
2336 && (input_section->flags & SEC_ALLOC) != 0)
2337 {
2338 /* If we're creating a shared library, or this relocation is
2339 against a symbol in a shared library, then we can't know
2340 where the symbol will end up. So, we create a relocation
2341 record in the output, and leave the job up to the dynamic
2342 linker. */
2343 value = addend;
2344 if (!mips_elf_create_dynamic_relocation (abfd,
2345 info,
2346 relocation,
2347 h,
2348 sec,
2349 symbol,
2350 &value,
2351 input_section))
2352 return bfd_reloc_undefined;
2353 }
2354 else
2355 {
2356 if (r_type != R_MIPS_REL32)
2357 value = symbol + addend;
2358 else
2359 value = addend;
2360 }
2361 value &= howto->dst_mask;
2362 break;
2363
2364 case R_MIPS_PC32:
2365 case R_MIPS_PC64:
2366 case R_MIPS_GNU_REL_LO16:
2367 value = symbol + addend - p;
2368 value &= howto->dst_mask;
2369 break;
2370
2371 case R_MIPS_GNU_REL16_S2:
2372 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
2373 overflowed_p = mips_elf_overflow_p (value, 18);
2374 value = (value >> 2) & howto->dst_mask;
2375 break;
2376
2377 case R_MIPS_GNU_REL_HI16:
2378 /* Instead of subtracting 'p' here, we should be subtracting the
2379 equivalent value for the LO part of the reloc, since the value
2380 here is relative to that address. Because that's not easy to do,
2381 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
2382 the comment there for more information. */
2383 value = mips_elf_high (addend + symbol - p);
2384 value &= howto->dst_mask;
2385 break;
2386
2387 case R_MIPS16_26:
2388 /* The calculation for R_MIPS16_26 is just the same as for an
2389 R_MIPS_26. It's only the storage of the relocated field into
2390 the output file that's different. That's handled in
2391 mips_elf_perform_relocation. So, we just fall through to the
2392 R_MIPS_26 case here. */
2393 case R_MIPS_26:
2394 if (local_p)
2395 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
2396 else
2397 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
2398 value &= howto->dst_mask;
2399 break;
2400
2401 case R_MIPS_HI16:
2402 if (!gp_disp_p)
2403 {
2404 value = mips_elf_high (addend + symbol);
2405 value &= howto->dst_mask;
2406 }
2407 else
2408 {
2409 value = mips_elf_high (addend + gp - p);
2410 overflowed_p = mips_elf_overflow_p (value, 16);
2411 }
2412 break;
2413
2414 case R_MIPS_LO16:
2415 if (!gp_disp_p)
2416 value = (symbol + addend) & howto->dst_mask;
2417 else
2418 {
2419 value = addend + gp - p + 4;
2420 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 2421 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
2422 _gp_disp are normally generated from the .cpload
2423 pseudo-op. It generates code that normally looks like
2424 this:
2425
2426 lui $gp,%hi(_gp_disp)
2427 addiu $gp,$gp,%lo(_gp_disp)
2428 addu $gp,$gp,$t9
2429
2430 Here $t9 holds the address of the function being called,
2431 as required by the MIPS ELF ABI. The R_MIPS_LO16
2432 relocation can easily overflow in this situation, but the
2433 R_MIPS_HI16 relocation will handle the overflow.
2434 Therefore, we consider this a bug in the MIPS ABI, and do
2435 not check for overflow here. */
2436 }
2437 break;
2438
2439 case R_MIPS_LITERAL:
2440 /* Because we don't merge literal sections, we can handle this
2441 just like R_MIPS_GPREL16. In the long run, we should merge
2442 shared literals, and then we will need to additional work
2443 here. */
2444
2445 /* Fall through. */
2446
2447 case R_MIPS16_GPREL:
2448 /* The R_MIPS16_GPREL performs the same calculation as
2449 R_MIPS_GPREL16, but stores the relocated bits in a different
2450 order. We don't need to do anything special here; the
2451 differences are handled in mips_elf_perform_relocation. */
2452 case R_MIPS_GPREL16:
2453 if (local_p)
2454 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
2455 else
2456 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
2457 overflowed_p = mips_elf_overflow_p (value, 16);
2458 break;
2459
2460 case R_MIPS_GOT16:
2461 case R_MIPS_CALL16:
2462 if (local_p)
2463 {
2464 boolean forced;
2465
2466 /* The special case is when the symbol is forced to be local. We
2467 need the full address in the GOT since no R_MIPS_LO16 relocation
2468 follows. */
2469 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
2470 local_sections, false);
2471 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
2472 if (value == MINUS_ONE)
2473 return bfd_reloc_outofrange;
2474 value
2475 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
2476 abfd,
2477 value);
2478 overflowed_p = mips_elf_overflow_p (value, 16);
2479 break;
2480 }
2481
2482 /* Fall through. */
2483
2484 case R_MIPS_GOT_DISP:
2485 value = g;
2486 overflowed_p = mips_elf_overflow_p (value, 16);
2487 break;
2488
2489 case R_MIPS_GPREL32:
2490 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
2491 break;
2492
2493 case R_MIPS_PC16:
2494 value = mips_elf_sign_extend (addend, 16) + symbol - p;
2495 overflowed_p = mips_elf_overflow_p (value, 16);
2496 value = (bfd_vma) ((bfd_signed_vma) value / 4);
2497 break;
2498
2499 case R_MIPS_GOT_HI16:
2500 case R_MIPS_CALL_HI16:
2501 /* We're allowed to handle these two relocations identically.
2502 The dynamic linker is allowed to handle the CALL relocations
2503 differently by creating a lazy evaluation stub. */
2504 value = g;
2505 value = mips_elf_high (value);
2506 value &= howto->dst_mask;
2507 break;
2508
2509 case R_MIPS_GOT_LO16:
2510 case R_MIPS_CALL_LO16:
2511 value = g & howto->dst_mask;
2512 break;
2513
2514 case R_MIPS_GOT_PAGE:
2515 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
2516 if (value == MINUS_ONE)
2517 return bfd_reloc_outofrange;
2518 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
2519 abfd,
2520 value);
2521 overflowed_p = mips_elf_overflow_p (value, 16);
2522 break;
2523
2524 case R_MIPS_GOT_OFST:
2525 mips_elf_got_page (abfd, info, symbol + addend, &value);
2526 overflowed_p = mips_elf_overflow_p (value, 16);
2527 break;
2528
2529 case R_MIPS_SUB:
2530 value = symbol - addend;
2531 value &= howto->dst_mask;
2532 break;
2533
2534 case R_MIPS_HIGHER:
2535 value = mips_elf_higher (addend + symbol);
2536 value &= howto->dst_mask;
2537 break;
2538
2539 case R_MIPS_HIGHEST:
2540 value = mips_elf_highest (addend + symbol);
2541 value &= howto->dst_mask;
2542 break;
2543
2544 case R_MIPS_SCN_DISP:
2545 value = symbol + addend - sec->output_offset;
2546 value &= howto->dst_mask;
2547 break;
2548
2549 case R_MIPS_PJUMP:
2550 case R_MIPS_JALR:
2551 /* Both of these may be ignored. R_MIPS_JALR is an optimization
2552 hint; we could improve performance by honoring that hint. */
2553 return bfd_reloc_continue;
2554
2555 case R_MIPS_GNU_VTINHERIT:
2556 case R_MIPS_GNU_VTENTRY:
2557 /* We don't do anything with these at present. */
2558 return bfd_reloc_continue;
2559
2560 default:
2561 /* An unrecognized relocation type. */
2562 return bfd_reloc_notsupported;
2563 }
2564
2565 /* Store the VALUE for our caller. */
2566 *valuep = value;
2567 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
2568}
2569
2570/* Obtain the field relocated by RELOCATION. */
2571
2572static bfd_vma
2573mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
2574 reloc_howto_type *howto;
2575 const Elf_Internal_Rela *relocation;
2576 bfd *input_bfd;
2577 bfd_byte *contents;
2578{
2579 bfd_vma x;
2580 bfd_byte *location = contents + relocation->r_offset;
2581
2582 /* Obtain the bytes. */
2583 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
2584
2585 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
2586 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
2587 && bfd_little_endian (input_bfd))
2588 /* The two 16-bit words will be reversed on a little-endian system.
2589 See mips_elf_perform_relocation for more details. */
2590 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
2591
2592 return x;
2593}
2594
2595/* It has been determined that the result of the RELOCATION is the
2596 VALUE. Use HOWTO to place VALUE into the output file at the
2597 appropriate position. The SECTION is the section to which the
2598 relocation applies. If REQUIRE_JALX is true, then the opcode used
2599 for the relocation must be either JAL or JALX, and it is
2600 unconditionally converted to JALX.
2601
2602 Returns false if anything goes wrong. */
2603
2604static boolean
2605mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
2606 input_section, contents, require_jalx)
2607 struct bfd_link_info *info;
2608 reloc_howto_type *howto;
2609 const Elf_Internal_Rela *relocation;
2610 bfd_vma value;
2611 bfd *input_bfd;
2612 asection *input_section;
2613 bfd_byte *contents;
2614 boolean require_jalx;
2615{
2616 bfd_vma x;
2617 bfd_byte *location;
2618 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
2619
2620 /* Figure out where the relocation is occurring. */
2621 location = contents + relocation->r_offset;
2622
2623 /* Obtain the current value. */
2624 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
2625
2626 /* Clear the field we are setting. */
2627 x &= ~howto->dst_mask;
2628
2629 /* If this is the R_MIPS16_26 relocation, we must store the
2630 value in a funny way. */
2631 if (r_type == R_MIPS16_26)
2632 {
2633 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2634 Most mips16 instructions are 16 bits, but these instructions
2635 are 32 bits.
2636
2637 The format of these instructions is:
2638
2639 +--------------+--------------------------------+
2640 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
2641 +--------------+--------------------------------+
2642 ! Immediate 15:0 !
2643 +-----------------------------------------------+
2644
2645 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2646 Note that the immediate value in the first word is swapped.
2647
2648 When producing a relocateable object file, R_MIPS16_26 is
2649 handled mostly like R_MIPS_26. In particular, the addend is
2650 stored as a straight 26-bit value in a 32-bit instruction.
2651 (gas makes life simpler for itself by never adjusting a
2652 R_MIPS16_26 reloc to be against a section, so the addend is
2653 always zero). However, the 32 bit instruction is stored as 2
2654 16-bit values, rather than a single 32-bit value. In a
2655 big-endian file, the result is the same; in a little-endian
2656 file, the two 16-bit halves of the 32 bit value are swapped.
2657 This is so that a disassembler can recognize the jal
2658 instruction.
2659
2660 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2661 instruction stored as two 16-bit values. The addend A is the
2662 contents of the targ26 field. The calculation is the same as
2663 R_MIPS_26. When storing the calculated value, reorder the
2664 immediate value as shown above, and don't forget to store the
2665 value as two 16-bit values.
2666
2667 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2668 defined as
2669
2670 big-endian:
2671 +--------+----------------------+
2672 | | |
2673 | | targ26-16 |
2674 |31 26|25 0|
2675 +--------+----------------------+
2676
2677 little-endian:
2678 +----------+------+-------------+
2679 | | | |
2680 | sub1 | | sub2 |
2681 |0 9|10 15|16 31|
2682 +----------+--------------------+
2683 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2684 ((sub1 << 16) | sub2)).
2685
2686 When producing a relocateable object file, the calculation is
2687 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2688 When producing a fully linked file, the calculation is
2689 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2690 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
2691
2692 if (!info->relocateable)
2693 /* Shuffle the bits according to the formula above. */
2694 value = (((value & 0x1f0000) << 5)
2695 | ((value & 0x3e00000) >> 5)
2696 | (value & 0xffff));
2697 }
2698 else if (r_type == R_MIPS16_GPREL)
2699 {
2700 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
2701 mode. A typical instruction will have a format like this:
2702
2703 +--------------+--------------------------------+
2704 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
2705 +--------------+--------------------------------+
2706 ! Major ! rx ! ry ! Imm 4:0 !
2707 +--------------+--------------------------------+
2708
2709 EXTEND is the five bit value 11110. Major is the instruction
2710 opcode.
2711
2712 This is handled exactly like R_MIPS_GPREL16, except that the
2713 addend is retrieved and stored as shown in this diagram; that
2714 is, the Imm fields above replace the V-rel16 field.
2715
2716 All we need to do here is shuffle the bits appropriately. As
2717 above, the two 16-bit halves must be swapped on a
2718 little-endian system. */
2719 value = (((value & 0x7e0) << 16)
2720 | ((value & 0xf800) << 5)
2721 | (value & 0x1f));
2722 }
2723
2724 /* Set the field. */
2725 x |= (value & howto->dst_mask);
2726
2727 /* If required, turn JAL into JALX. */
2728 if (require_jalx)
2729 {
2730 boolean ok;
2731 bfd_vma opcode = x >> 26;
2732 bfd_vma jalx_opcode;
2733
2734 /* Check to see if the opcode is already JAL or JALX. */
2735 if (r_type == R_MIPS16_26)
2736 {
2737 ok = ((opcode == 0x6) || (opcode == 0x7));
2738 jalx_opcode = 0x7;
2739 }
2740 else
2741 {
2742 ok = ((opcode == 0x3) || (opcode == 0x1d));
2743 jalx_opcode = 0x1d;
2744 }
2745
2746 /* If the opcode is not JAL or JALX, there's a problem. */
2747 if (!ok)
2748 {
2749 (*_bfd_error_handler)
2750 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
2751 bfd_archive_filename (input_bfd),
2752 input_section->name,
2753 (unsigned long) relocation->r_offset);
2754 bfd_set_error (bfd_error_bad_value);
2755 return false;
2756 }
2757
2758 /* Make this the JALX opcode. */
2759 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
2760 }
2761
2762 /* Swap the high- and low-order 16 bits on little-endian systems
2763 when doing a MIPS16 relocation. */
2764 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
2765 && bfd_little_endian (input_bfd))
2766 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
2767
2768 /* Put the value into the output. */
2769 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
2770 return true;
2771}
2772
2773/* Returns true if SECTION is a MIPS16 stub section. */
2774
2775static boolean
2776mips_elf_stub_section_p (abfd, section)
2777 bfd *abfd ATTRIBUTE_UNUSED;
2778 asection *section;
2779{
2780 const char *name = bfd_get_section_name (abfd, section);
2781
2782 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
2783 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
2784 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
2785}
2786\f
2787/* Add room for N relocations to the .rel.dyn section in ABFD. */
2788
2789static void
2790mips_elf_allocate_dynamic_relocations (abfd, n)
2791 bfd *abfd;
2792 unsigned int n;
2793{
2794 asection *s;
2795
2796 s = bfd_get_section_by_name (abfd, ".rel.dyn");
2797 BFD_ASSERT (s != NULL);
2798
2799 if (s->_raw_size == 0)
2800 {
2801 /* Make room for a null element. */
2802 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
2803 ++s->reloc_count;
2804 }
2805 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
2806}
2807
2808/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
2809 is the original relocation, which is now being transformed into a
2810 dynamic relocation. The ADDENDP is adjusted if necessary; the
2811 caller should store the result in place of the original addend. */
2812
2813static boolean
2814mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
2815 symbol, addendp, input_section)
2816 bfd *output_bfd;
2817 struct bfd_link_info *info;
2818 const Elf_Internal_Rela *rel;
2819 struct mips_elf_link_hash_entry *h;
2820 asection *sec;
2821 bfd_vma symbol;
2822 bfd_vma *addendp;
2823 asection *input_section;
2824{
2825 Elf_Internal_Rel outrel[3];
2826 boolean skip;
2827 asection *sreloc;
2828 bfd *dynobj;
2829 int r_type;
2830
2831 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
2832 dynobj = elf_hash_table (info)->dynobj;
2833 sreloc
2834 = bfd_get_section_by_name (dynobj, ".rel.dyn");
2835 BFD_ASSERT (sreloc != NULL);
2836 BFD_ASSERT (sreloc->contents != NULL);
2837 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
2838 < sreloc->_raw_size);
2839
2840 skip = false;
2841 outrel[0].r_offset =
2842 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
2843 outrel[1].r_offset =
2844 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
2845 outrel[2].r_offset =
2846 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
2847
2848#if 0
2849 /* We begin by assuming that the offset for the dynamic relocation
2850 is the same as for the original relocation. We'll adjust this
2851 later to reflect the correct output offsets. */
2852 if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS)
2853 {
2854 outrel[1].r_offset = rel[1].r_offset;
2855 outrel[2].r_offset = rel[2].r_offset;
2856 }
2857 else
2858 {
2859 /* Except that in a stab section things are more complex.
2860 Because we compress stab information, the offset given in the
2861 relocation may not be the one we want; we must let the stabs
2862 machinery tell us the offset. */
2863 outrel[1].r_offset = outrel[0].r_offset;
2864 outrel[2].r_offset = outrel[0].r_offset;
2865 /* If we didn't need the relocation at all, this value will be
2866 -1. */
2867 if (outrel[0].r_offset == (bfd_vma) -1)
2868 skip = true;
2869 }
2870#endif
2871
2872 if (outrel[0].r_offset == (bfd_vma) -1)
2873 skip = true;
2874 /* FIXME: For -2 runtime relocation needs to be skipped, but
2875 properly resolved statically and installed. */
2876 BFD_ASSERT (outrel[0].r_offset != (bfd_vma) -2);
2877
2878 /* If we've decided to skip this relocation, just output an empty
2879 record. Note that R_MIPS_NONE == 0, so that this call to memset
2880 is a way of setting R_TYPE to R_MIPS_NONE. */
2881 if (skip)
2882 memset (outrel, 0, sizeof (Elf_Internal_Rel) * 3);
2883 else
2884 {
2885 long indx;
2886 bfd_vma section_offset;
2887
2888 /* We must now calculate the dynamic symbol table index to use
2889 in the relocation. */
2890 if (h != NULL
2891 && (! info->symbolic || (h->root.elf_link_hash_flags
2892 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2893 {
2894 indx = h->root.dynindx;
2895 /* h->root.dynindx may be -1 if this symbol was marked to
2896 become local. */
2897 if (indx == -1)
2898 indx = 0;
2899 }
2900 else
2901 {
2902 if (sec != NULL && bfd_is_abs_section (sec))
2903 indx = 0;
2904 else if (sec == NULL || sec->owner == NULL)
2905 {
2906 bfd_set_error (bfd_error_bad_value);
2907 return false;
2908 }
2909 else
2910 {
2911 indx = elf_section_data (sec->output_section)->dynindx;
2912 if (indx == 0)
2913 abort ();
2914 }
2915
2916 /* Figure out how far the target of the relocation is from
2917 the beginning of its section. */
2918 section_offset = symbol - sec->output_section->vma;
2919 /* The relocation we're building is section-relative.
2920 Therefore, the original addend must be adjusted by the
2921 section offset. */
2922 *addendp += section_offset;
2923 /* Now, the relocation is just against the section. */
2924 symbol = sec->output_section->vma;
2925 }
2926
2927 /* If the relocation was previously an absolute relocation and
2928 this symbol will not be referred to by the relocation, we must
2929 adjust it by the value we give it in the dynamic symbol table.
2930 Otherwise leave the job up to the dynamic linker. */
2931 if (!indx && r_type != R_MIPS_REL32)
2932 *addendp += symbol;
2933
2934 /* The relocation is always an REL32 relocation because we don't
2935 know where the shared library will wind up at load-time. */
2936 outrel[0].r_info = ELF_R_INFO (output_bfd, indx, R_MIPS_REL32);
2937
2938 /* Adjust the output offset of the relocation to reference the
2939 correct location in the output file. */
2940 outrel[0].r_offset += (input_section->output_section->vma
2941 + input_section->output_offset);
2942 outrel[1].r_offset += (input_section->output_section->vma
2943 + input_section->output_offset);
2944 outrel[2].r_offset += (input_section->output_section->vma
2945 + input_section->output_offset);
2946 }
2947
2948 /* Put the relocation back out. We have to use the special
2949 relocation outputter in the 64-bit case since the 64-bit
2950 relocation format is non-standard. */
2951 if (ABI_64_P (output_bfd))
2952 {
2953 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2954 (output_bfd, &outrel[0],
2955 (sreloc->contents
2956 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2957 }
2958 else
2959 bfd_elf32_swap_reloc_out (output_bfd, &outrel[0],
2960 (((Elf32_External_Rel *)
2961 sreloc->contents)
2962 + sreloc->reloc_count));
2963
2964 /* Record the index of the first relocation referencing H. This
2965 information is later emitted in the .msym section. */
2966 if (h != NULL
2967 && (h->min_dyn_reloc_index == 0
2968 || sreloc->reloc_count < h->min_dyn_reloc_index))
2969 h->min_dyn_reloc_index = sreloc->reloc_count;
2970
2971 /* We've now added another relocation. */
2972 ++sreloc->reloc_count;
2973
2974 /* Make sure the output section is writable. The dynamic linker
2975 will be writing to it. */
2976 elf_section_data (input_section->output_section)->this_hdr.sh_flags
2977 |= SHF_WRITE;
2978
2979 /* On IRIX5, make an entry of compact relocation info. */
2980 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
2981 {
2982 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
2983 bfd_byte *cr;
2984
2985 if (scpt)
2986 {
2987 Elf32_crinfo cptrel;
2988
2989 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
2990 cptrel.vaddr = (rel->r_offset
2991 + input_section->output_section->vma
2992 + input_section->output_offset);
2993 if (r_type == R_MIPS_REL32)
2994 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
2995 else
2996 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
2997 mips_elf_set_cr_dist2to (cptrel, 0);
2998 cptrel.konst = *addendp;
2999
3000 cr = (scpt->contents
3001 + sizeof (Elf32_External_compact_rel));
3002 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3003 ((Elf32_External_crinfo *) cr
3004 + scpt->reloc_count));
3005 ++scpt->reloc_count;
3006 }
3007 }
3008
3009 return true;
3010}
3011\f
3012/* Return the ISA for a MIPS e_flags value. */
3013
3014static INLINE int
3015elf_mips_isa (flags)
3016 flagword flags;
3017{
3018 switch (flags & EF_MIPS_ARCH)
3019 {
3020 case E_MIPS_ARCH_1:
3021 return 1;
3022 case E_MIPS_ARCH_2:
3023 return 2;
3024 case E_MIPS_ARCH_3:
3025 return 3;
3026 case E_MIPS_ARCH_4:
3027 return 4;
3028 case E_MIPS_ARCH_5:
3029 return 5;
3030 case E_MIPS_ARCH_32:
3031 return 32;
3032 case E_MIPS_ARCH_64:
3033 return 64;
3034 }
3035 return 4;
3036}
3037
3038/* Return the MACH for a MIPS e_flags value. */
3039
3040unsigned long
3041_bfd_elf_mips_mach (flags)
3042 flagword flags;
3043{
3044 switch (flags & EF_MIPS_MACH)
3045 {
3046 case E_MIPS_MACH_3900:
3047 return bfd_mach_mips3900;
3048
3049 case E_MIPS_MACH_4010:
3050 return bfd_mach_mips4010;
3051
3052 case E_MIPS_MACH_4100:
3053 return bfd_mach_mips4100;
3054
3055 case E_MIPS_MACH_4111:
3056 return bfd_mach_mips4111;
3057
3058 case E_MIPS_MACH_4650:
3059 return bfd_mach_mips4650;
3060
3061 case E_MIPS_MACH_SB1:
3062 return bfd_mach_mips_sb1;
3063
3064 default:
3065 switch (flags & EF_MIPS_ARCH)
3066 {
3067 default:
3068 case E_MIPS_ARCH_1:
3069 return bfd_mach_mips3000;
3070 break;
3071
3072 case E_MIPS_ARCH_2:
3073 return bfd_mach_mips6000;
3074 break;
3075
3076 case E_MIPS_ARCH_3:
3077 return bfd_mach_mips4000;
3078 break;
3079
3080 case E_MIPS_ARCH_4:
3081 return bfd_mach_mips8000;
3082 break;
3083
3084 case E_MIPS_ARCH_5:
3085 return bfd_mach_mips5;
3086 break;
3087
3088 case E_MIPS_ARCH_32:
3089 return bfd_mach_mipsisa32;
3090 break;
3091
3092 case E_MIPS_ARCH_64:
3093 return bfd_mach_mipsisa64;
3094 break;
3095 }
3096 }
3097
3098 return 0;
3099}
3100
3101/* Return printable name for ABI. */
3102
3103static INLINE char *
3104elf_mips_abi_name (abfd)
3105 bfd *abfd;
3106{
3107 flagword flags;
3108
3109 flags = elf_elfheader (abfd)->e_flags;
3110 switch (flags & EF_MIPS_ABI)
3111 {
3112 case 0:
3113 if (ABI_N32_P (abfd))
3114 return "N32";
3115 else if (ABI_64_P (abfd))
3116 return "64";
3117 else
3118 return "none";
3119 case E_MIPS_ABI_O32:
3120 return "O32";
3121 case E_MIPS_ABI_O64:
3122 return "O64";
3123 case E_MIPS_ABI_EABI32:
3124 return "EABI32";
3125 case E_MIPS_ABI_EABI64:
3126 return "EABI64";
3127 default:
3128 return "unknown abi";
3129 }
3130}
3131\f
3132/* MIPS ELF uses two common sections. One is the usual one, and the
3133 other is for small objects. All the small objects are kept
3134 together, and then referenced via the gp pointer, which yields
3135 faster assembler code. This is what we use for the small common
3136 section. This approach is copied from ecoff.c. */
3137static asection mips_elf_scom_section;
3138static asymbol mips_elf_scom_symbol;
3139static asymbol *mips_elf_scom_symbol_ptr;
3140
3141/* MIPS ELF also uses an acommon section, which represents an
3142 allocated common symbol which may be overridden by a
3143 definition in a shared library. */
3144static asection mips_elf_acom_section;
3145static asymbol mips_elf_acom_symbol;
3146static asymbol *mips_elf_acom_symbol_ptr;
3147
3148/* Handle the special MIPS section numbers that a symbol may use.
3149 This is used for both the 32-bit and the 64-bit ABI. */
3150
3151void
3152_bfd_mips_elf_symbol_processing (abfd, asym)
3153 bfd *abfd;
3154 asymbol *asym;
3155{
3156 elf_symbol_type *elfsym;
3157
3158 elfsym = (elf_symbol_type *) asym;
3159 switch (elfsym->internal_elf_sym.st_shndx)
3160 {
3161 case SHN_MIPS_ACOMMON:
3162 /* This section is used in a dynamically linked executable file.
3163 It is an allocated common section. The dynamic linker can
3164 either resolve these symbols to something in a shared
3165 library, or it can just leave them here. For our purposes,
3166 we can consider these symbols to be in a new section. */
3167 if (mips_elf_acom_section.name == NULL)
3168 {
3169 /* Initialize the acommon section. */
3170 mips_elf_acom_section.name = ".acommon";
3171 mips_elf_acom_section.flags = SEC_ALLOC;
3172 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3173 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3174 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3175 mips_elf_acom_symbol.name = ".acommon";
3176 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3177 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3178 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3179 }
3180 asym->section = &mips_elf_acom_section;
3181 break;
3182
3183 case SHN_COMMON:
3184 /* Common symbols less than the GP size are automatically
3185 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3186 if (asym->value > elf_gp_size (abfd)
3187 || IRIX_COMPAT (abfd) == ict_irix6)
3188 break;
3189 /* Fall through. */
3190 case SHN_MIPS_SCOMMON:
3191 if (mips_elf_scom_section.name == NULL)
3192 {
3193 /* Initialize the small common section. */
3194 mips_elf_scom_section.name = ".scommon";
3195 mips_elf_scom_section.flags = SEC_IS_COMMON;
3196 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3197 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3198 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3199 mips_elf_scom_symbol.name = ".scommon";
3200 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3201 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3202 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3203 }
3204 asym->section = &mips_elf_scom_section;
3205 asym->value = elfsym->internal_elf_sym.st_size;
3206 break;
3207
3208 case SHN_MIPS_SUNDEFINED:
3209 asym->section = bfd_und_section_ptr;
3210 break;
3211
3212#if 0 /* for SGI_COMPAT */
3213 case SHN_MIPS_TEXT:
3214 asym->section = mips_elf_text_section_ptr;
3215 break;
3216
3217 case SHN_MIPS_DATA:
3218 asym->section = mips_elf_data_section_ptr;
3219 break;
3220#endif
3221 }
3222}
3223\f
3224/* Work over a section just before writing it out. This routine is
3225 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3226 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3227 a better way. */
3228
3229boolean
3230_bfd_mips_elf_section_processing (abfd, hdr)
3231 bfd *abfd;
3232 Elf_Internal_Shdr *hdr;
3233{
3234 if (hdr->sh_type == SHT_MIPS_REGINFO
3235 && hdr->sh_size > 0)
3236 {
3237 bfd_byte buf[4];
3238
3239 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3240 BFD_ASSERT (hdr->contents == NULL);
3241
3242 if (bfd_seek (abfd,
3243 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3244 SEEK_SET) != 0)
3245 return false;
3246 H_PUT_32 (abfd, elf_gp (abfd), buf);
3247 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
3248 return false;
3249 }
3250
3251 if (hdr->sh_type == SHT_MIPS_OPTIONS
3252 && hdr->bfd_section != NULL
3253 && elf_section_data (hdr->bfd_section) != NULL
3254 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3255 {
3256 bfd_byte *contents, *l, *lend;
3257
3258 /* We stored the section contents in the elf_section_data tdata
3259 field in the set_section_contents routine. We save the
3260 section contents so that we don't have to read them again.
3261 At this point we know that elf_gp is set, so we can look
3262 through the section contents to see if there is an
3263 ODK_REGINFO structure. */
3264
3265 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3266 l = contents;
3267 lend = contents + hdr->sh_size;
3268 while (l + sizeof (Elf_External_Options) <= lend)
3269 {
3270 Elf_Internal_Options intopt;
3271
3272 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3273 &intopt);
3274 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3275 {
3276 bfd_byte buf[8];
3277
3278 if (bfd_seek (abfd,
3279 (hdr->sh_offset
3280 + (l - contents)
3281 + sizeof (Elf_External_Options)
3282 + (sizeof (Elf64_External_RegInfo) - 8)),
3283 SEEK_SET) != 0)
3284 return false;
3285 H_PUT_64 (abfd, elf_gp (abfd), buf);
3286 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
3287 return false;
3288 }
3289 else if (intopt.kind == ODK_REGINFO)
3290 {
3291 bfd_byte buf[4];
3292
3293 if (bfd_seek (abfd,
3294 (hdr->sh_offset
3295 + (l - contents)
3296 + sizeof (Elf_External_Options)
3297 + (sizeof (Elf32_External_RegInfo) - 4)),
3298 SEEK_SET) != 0)
3299 return false;
3300 H_PUT_32 (abfd, elf_gp (abfd), buf);
3301 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
3302 return false;
3303 }
3304 l += intopt.size;
3305 }
3306 }
3307
3308 if (hdr->bfd_section != NULL)
3309 {
3310 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3311
3312 if (strcmp (name, ".sdata") == 0
3313 || strcmp (name, ".lit8") == 0
3314 || strcmp (name, ".lit4") == 0)
3315 {
3316 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3317 hdr->sh_type = SHT_PROGBITS;
3318 }
3319 else if (strcmp (name, ".sbss") == 0)
3320 {
3321 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3322 hdr->sh_type = SHT_NOBITS;
3323 }
3324 else if (strcmp (name, ".srdata") == 0)
3325 {
3326 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3327 hdr->sh_type = SHT_PROGBITS;
3328 }
3329 else if (strcmp (name, ".compact_rel") == 0)
3330 {
3331 hdr->sh_flags = 0;
3332 hdr->sh_type = SHT_PROGBITS;
3333 }
3334 else if (strcmp (name, ".rtproc") == 0)
3335 {
3336 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3337 {
3338 unsigned int adjust;
3339
3340 adjust = hdr->sh_size % hdr->sh_addralign;
3341 if (adjust != 0)
3342 hdr->sh_size += hdr->sh_addralign - adjust;
3343 }
3344 }
3345 }
3346
3347 return true;
3348}
3349
3350/* Handle a MIPS specific section when reading an object file. This
3351 is called when elfcode.h finds a section with an unknown type.
3352 This routine supports both the 32-bit and 64-bit ELF ABI.
3353
3354 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
3355 how to. */
3356
3357boolean
3358_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
3359 bfd *abfd;
3360 Elf_Internal_Shdr *hdr;
90937f86 3361 const char *name;
b49e97c9
TS
3362{
3363 flagword flags = 0;
3364
3365 /* There ought to be a place to keep ELF backend specific flags, but
3366 at the moment there isn't one. We just keep track of the
3367 sections by their name, instead. Fortunately, the ABI gives
3368 suggested names for all the MIPS specific sections, so we will
3369 probably get away with this. */
3370 switch (hdr->sh_type)
3371 {
3372 case SHT_MIPS_LIBLIST:
3373 if (strcmp (name, ".liblist") != 0)
3374 return false;
3375 break;
3376 case SHT_MIPS_MSYM:
3377 if (strcmp (name, ".msym") != 0)
3378 return false;
3379 break;
3380 case SHT_MIPS_CONFLICT:
3381 if (strcmp (name, ".conflict") != 0)
3382 return false;
3383 break;
3384 case SHT_MIPS_GPTAB:
3385 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
3386 return false;
3387 break;
3388 case SHT_MIPS_UCODE:
3389 if (strcmp (name, ".ucode") != 0)
3390 return false;
3391 break;
3392 case SHT_MIPS_DEBUG:
3393 if (strcmp (name, ".mdebug") != 0)
3394 return false;
3395 flags = SEC_DEBUGGING;
3396 break;
3397 case SHT_MIPS_REGINFO:
3398 if (strcmp (name, ".reginfo") != 0
3399 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
3400 return false;
3401 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
3402 break;
3403 case SHT_MIPS_IFACE:
3404 if (strcmp (name, ".MIPS.interfaces") != 0)
3405 return false;
3406 break;
3407 case SHT_MIPS_CONTENT:
3408 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
3409 return false;
3410 break;
3411 case SHT_MIPS_OPTIONS:
3412 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
3413 return false;
3414 break;
3415 case SHT_MIPS_DWARF:
3416 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
3417 return false;
3418 break;
3419 case SHT_MIPS_SYMBOL_LIB:
3420 if (strcmp (name, ".MIPS.symlib") != 0)
3421 return false;
3422 break;
3423 case SHT_MIPS_EVENTS:
3424 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
3425 && strncmp (name, ".MIPS.post_rel",
3426 sizeof ".MIPS.post_rel" - 1) != 0)
3427 return false;
3428 break;
3429 default:
3430 return false;
3431 }
3432
3433 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
3434 return false;
3435
3436 if (flags)
3437 {
3438 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
3439 (bfd_get_section_flags (abfd,
3440 hdr->bfd_section)
3441 | flags)))
3442 return false;
3443 }
3444
3445 /* FIXME: We should record sh_info for a .gptab section. */
3446
3447 /* For a .reginfo section, set the gp value in the tdata information
3448 from the contents of this section. We need the gp value while
3449 processing relocs, so we just get it now. The .reginfo section
3450 is not used in the 64-bit MIPS ELF ABI. */
3451 if (hdr->sh_type == SHT_MIPS_REGINFO)
3452 {
3453 Elf32_External_RegInfo ext;
3454 Elf32_RegInfo s;
3455
3456 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
3457 (file_ptr) 0,
3458 (bfd_size_type) sizeof ext))
3459 return false;
3460 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
3461 elf_gp (abfd) = s.ri_gp_value;
3462 }
3463
3464 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
3465 set the gp value based on what we find. We may see both
3466 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
3467 they should agree. */
3468 if (hdr->sh_type == SHT_MIPS_OPTIONS)
3469 {
3470 bfd_byte *contents, *l, *lend;
3471
3472 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
3473 if (contents == NULL)
3474 return false;
3475 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
3476 (file_ptr) 0, hdr->sh_size))
3477 {
3478 free (contents);
3479 return false;
3480 }
3481 l = contents;
3482 lend = contents + hdr->sh_size;
3483 while (l + sizeof (Elf_External_Options) <= lend)
3484 {
3485 Elf_Internal_Options intopt;
3486
3487 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3488 &intopt);
3489 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3490 {
3491 Elf64_Internal_RegInfo intreg;
3492
3493 bfd_mips_elf64_swap_reginfo_in
3494 (abfd,
3495 ((Elf64_External_RegInfo *)
3496 (l + sizeof (Elf_External_Options))),
3497 &intreg);
3498 elf_gp (abfd) = intreg.ri_gp_value;
3499 }
3500 else if (intopt.kind == ODK_REGINFO)
3501 {
3502 Elf32_RegInfo intreg;
3503
3504 bfd_mips_elf32_swap_reginfo_in
3505 (abfd,
3506 ((Elf32_External_RegInfo *)
3507 (l + sizeof (Elf_External_Options))),
3508 &intreg);
3509 elf_gp (abfd) = intreg.ri_gp_value;
3510 }
3511 l += intopt.size;
3512 }
3513 free (contents);
3514 }
3515
3516 return true;
3517}
3518
3519/* Set the correct type for a MIPS ELF section. We do this by the
3520 section name, which is a hack, but ought to work. This routine is
3521 used by both the 32-bit and the 64-bit ABI. */
3522
3523boolean
3524_bfd_mips_elf_fake_sections (abfd, hdr, sec)
3525 bfd *abfd;
3526 Elf32_Internal_Shdr *hdr;
3527 asection *sec;
3528{
3529 register const char *name;
3530
3531 name = bfd_get_section_name (abfd, sec);
3532
3533 if (strcmp (name, ".liblist") == 0)
3534 {
3535 hdr->sh_type = SHT_MIPS_LIBLIST;
3536 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
3537 /* The sh_link field is set in final_write_processing. */
3538 }
3539 else if (strcmp (name, ".conflict") == 0)
3540 hdr->sh_type = SHT_MIPS_CONFLICT;
3541 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
3542 {
3543 hdr->sh_type = SHT_MIPS_GPTAB;
3544 hdr->sh_entsize = sizeof (Elf32_External_gptab);
3545 /* The sh_info field is set in final_write_processing. */
3546 }
3547 else if (strcmp (name, ".ucode") == 0)
3548 hdr->sh_type = SHT_MIPS_UCODE;
3549 else if (strcmp (name, ".mdebug") == 0)
3550 {
3551 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 3552 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
3553 entsize of 0. FIXME: Does this matter? */
3554 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
3555 hdr->sh_entsize = 0;
3556 else
3557 hdr->sh_entsize = 1;
3558 }
3559 else if (strcmp (name, ".reginfo") == 0)
3560 {
3561 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 3562 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
3563 entsize of 0x18. FIXME: Does this matter? */
3564 if (SGI_COMPAT (abfd))
3565 {
3566 if ((abfd->flags & DYNAMIC) != 0)
3567 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
3568 else
3569 hdr->sh_entsize = 1;
3570 }
3571 else
3572 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
3573 }
3574 else if (SGI_COMPAT (abfd)
3575 && (strcmp (name, ".hash") == 0
3576 || strcmp (name, ".dynamic") == 0
3577 || strcmp (name, ".dynstr") == 0))
3578 {
3579 if (SGI_COMPAT (abfd))
3580 hdr->sh_entsize = 0;
3581#if 0
8dc1a139 3582 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
3583 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
3584#endif
3585 }
3586 else if (strcmp (name, ".got") == 0
3587 || strcmp (name, ".srdata") == 0
3588 || strcmp (name, ".sdata") == 0
3589 || strcmp (name, ".sbss") == 0
3590 || strcmp (name, ".lit4") == 0
3591 || strcmp (name, ".lit8") == 0)
3592 hdr->sh_flags |= SHF_MIPS_GPREL;
3593 else if (strcmp (name, ".MIPS.interfaces") == 0)
3594 {
3595 hdr->sh_type = SHT_MIPS_IFACE;
3596 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3597 }
3598 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
3599 {
3600 hdr->sh_type = SHT_MIPS_CONTENT;
3601 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3602 /* The sh_info field is set in final_write_processing. */
3603 }
3604 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3605 {
3606 hdr->sh_type = SHT_MIPS_OPTIONS;
3607 hdr->sh_entsize = 1;
3608 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3609 }
3610 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3611 hdr->sh_type = SHT_MIPS_DWARF;
3612 else if (strcmp (name, ".MIPS.symlib") == 0)
3613 {
3614 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3615 /* The sh_link and sh_info fields are set in
3616 final_write_processing. */
3617 }
3618 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3619 || strncmp (name, ".MIPS.post_rel",
3620 sizeof ".MIPS.post_rel" - 1) == 0)
3621 {
3622 hdr->sh_type = SHT_MIPS_EVENTS;
3623 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3624 /* The sh_link field is set in final_write_processing. */
3625 }
3626 else if (strcmp (name, ".msym") == 0)
3627 {
3628 hdr->sh_type = SHT_MIPS_MSYM;
3629 hdr->sh_flags |= SHF_ALLOC;
3630 hdr->sh_entsize = 8;
3631 }
3632
3633 /* The generic elf_fake_sections will set up REL_HDR using the
3634 default kind of relocations. But, we may actually need both
3635 kinds of relocations, so we set up the second header here.
3636
3637 This is not necessary for the O32 ABI since that only uses Elf32_Rel
3638 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
3639 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
3640 of the resulting empty .rela.<section> sections starts with
3641 sh_offset == object size, and ld doesn't allow that. While the check
3642 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
3643 avoided by not emitting those useless sections in the first place. */
3644 if (IRIX_COMPAT (abfd) != ict_irix5 && (sec->flags & SEC_RELOC) != 0)
3645 {
3646 struct bfd_elf_section_data *esd;
3647 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
3648
3649 esd = elf_section_data (sec);
3650 BFD_ASSERT (esd->rel_hdr2 == NULL);
3651 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
3652 if (!esd->rel_hdr2)
3653 return false;
3654 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3655 !elf_section_data (sec)->use_rela_p);
3656 }
3657
3658 return true;
3659}
3660
3661/* Given a BFD section, try to locate the corresponding ELF section
3662 index. This is used by both the 32-bit and the 64-bit ABI.
3663 Actually, it's not clear to me that the 64-bit ABI supports these,
3664 but for non-PIC objects we will certainly want support for at least
3665 the .scommon section. */
3666
3667boolean
3668_bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
3669 bfd *abfd ATTRIBUTE_UNUSED;
3670 asection *sec;
3671 int *retval;
3672{
3673 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3674 {
3675 *retval = SHN_MIPS_SCOMMON;
3676 return true;
3677 }
3678 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3679 {
3680 *retval = SHN_MIPS_ACOMMON;
3681 return true;
3682 }
3683 return false;
3684}
3685\f
3686/* Hook called by the linker routine which adds symbols from an object
3687 file. We must handle the special MIPS section numbers here. */
3688
3689boolean
3690_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
3691 bfd *abfd;
3692 struct bfd_link_info *info;
3693 const Elf_Internal_Sym *sym;
3694 const char **namep;
3695 flagword *flagsp ATTRIBUTE_UNUSED;
3696 asection **secp;
3697 bfd_vma *valp;
3698{
3699 if (SGI_COMPAT (abfd)
3700 && (abfd->flags & DYNAMIC) != 0
3701 && strcmp (*namep, "_rld_new_interface") == 0)
3702 {
8dc1a139 3703 /* Skip IRIX5 rld entry name. */
b49e97c9
TS
3704 *namep = NULL;
3705 return true;
3706 }
3707
3708 switch (sym->st_shndx)
3709 {
3710 case SHN_COMMON:
3711 /* Common symbols less than the GP size are automatically
3712 treated as SHN_MIPS_SCOMMON symbols. */
3713 if (sym->st_size > elf_gp_size (abfd)
3714 || IRIX_COMPAT (abfd) == ict_irix6)
3715 break;
3716 /* Fall through. */
3717 case SHN_MIPS_SCOMMON:
3718 *secp = bfd_make_section_old_way (abfd, ".scommon");
3719 (*secp)->flags |= SEC_IS_COMMON;
3720 *valp = sym->st_size;
3721 break;
3722
3723 case SHN_MIPS_TEXT:
3724 /* This section is used in a shared object. */
3725 if (elf_tdata (abfd)->elf_text_section == NULL)
3726 {
3727 asymbol *elf_text_symbol;
3728 asection *elf_text_section;
3729 bfd_size_type amt = sizeof (asection);
3730
3731 elf_text_section = bfd_zalloc (abfd, amt);
3732 if (elf_text_section == NULL)
3733 return false;
3734
3735 amt = sizeof (asymbol);
3736 elf_text_symbol = bfd_zalloc (abfd, amt);
3737 if (elf_text_symbol == NULL)
3738 return false;
3739
3740 /* Initialize the section. */
3741
3742 elf_tdata (abfd)->elf_text_section = elf_text_section;
3743 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
3744
3745 elf_text_section->symbol = elf_text_symbol;
3746 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
3747
3748 elf_text_section->name = ".text";
3749 elf_text_section->flags = SEC_NO_FLAGS;
3750 elf_text_section->output_section = NULL;
3751 elf_text_section->owner = abfd;
3752 elf_text_symbol->name = ".text";
3753 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
3754 elf_text_symbol->section = elf_text_section;
3755 }
3756 /* This code used to do *secp = bfd_und_section_ptr if
3757 info->shared. I don't know why, and that doesn't make sense,
3758 so I took it out. */
3759 *secp = elf_tdata (abfd)->elf_text_section;
3760 break;
3761
3762 case SHN_MIPS_ACOMMON:
3763 /* Fall through. XXX Can we treat this as allocated data? */
3764 case SHN_MIPS_DATA:
3765 /* This section is used in a shared object. */
3766 if (elf_tdata (abfd)->elf_data_section == NULL)
3767 {
3768 asymbol *elf_data_symbol;
3769 asection *elf_data_section;
3770 bfd_size_type amt = sizeof (asection);
3771
3772 elf_data_section = bfd_zalloc (abfd, amt);
3773 if (elf_data_section == NULL)
3774 return false;
3775
3776 amt = sizeof (asymbol);
3777 elf_data_symbol = bfd_zalloc (abfd, amt);
3778 if (elf_data_symbol == NULL)
3779 return false;
3780
3781 /* Initialize the section. */
3782
3783 elf_tdata (abfd)->elf_data_section = elf_data_section;
3784 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
3785
3786 elf_data_section->symbol = elf_data_symbol;
3787 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
3788
3789 elf_data_section->name = ".data";
3790 elf_data_section->flags = SEC_NO_FLAGS;
3791 elf_data_section->output_section = NULL;
3792 elf_data_section->owner = abfd;
3793 elf_data_symbol->name = ".data";
3794 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
3795 elf_data_symbol->section = elf_data_section;
3796 }
3797 /* This code used to do *secp = bfd_und_section_ptr if
3798 info->shared. I don't know why, and that doesn't make sense,
3799 so I took it out. */
3800 *secp = elf_tdata (abfd)->elf_data_section;
3801 break;
3802
3803 case SHN_MIPS_SUNDEFINED:
3804 *secp = bfd_und_section_ptr;
3805 break;
3806 }
3807
3808 if (SGI_COMPAT (abfd)
3809 && ! info->shared
3810 && info->hash->creator == abfd->xvec
3811 && strcmp (*namep, "__rld_obj_head") == 0)
3812 {
3813 struct elf_link_hash_entry *h;
3814
3815 /* Mark __rld_obj_head as dynamic. */
3816 h = NULL;
3817 if (! (_bfd_generic_link_add_one_symbol
3818 (info, abfd, *namep, BSF_GLOBAL, *secp,
3819 (bfd_vma) *valp, (const char *) NULL, false,
3820 get_elf_backend_data (abfd)->collect,
3821 (struct bfd_link_hash_entry **) &h)))
3822 return false;
3823 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
3824 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3825 h->type = STT_OBJECT;
3826
3827 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3828 return false;
3829
3830 mips_elf_hash_table (info)->use_rld_obj_head = true;
3831 }
3832
3833 /* If this is a mips16 text symbol, add 1 to the value to make it
3834 odd. This will cause something like .word SYM to come up with
3835 the right value when it is loaded into the PC. */
3836 if (sym->st_other == STO_MIPS16)
3837 ++*valp;
3838
3839 return true;
3840}
3841
3842/* This hook function is called before the linker writes out a global
3843 symbol. We mark symbols as small common if appropriate. This is
3844 also where we undo the increment of the value for a mips16 symbol. */
3845
3846boolean
3847_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
3848 bfd *abfd ATTRIBUTE_UNUSED;
3849 struct bfd_link_info *info ATTRIBUTE_UNUSED;
3850 const char *name ATTRIBUTE_UNUSED;
3851 Elf_Internal_Sym *sym;
3852 asection *input_sec;
3853{
3854 /* If we see a common symbol, which implies a relocatable link, then
3855 if a symbol was small common in an input file, mark it as small
3856 common in the output file. */
3857 if (sym->st_shndx == SHN_COMMON
3858 && strcmp (input_sec->name, ".scommon") == 0)
3859 sym->st_shndx = SHN_MIPS_SCOMMON;
3860
3861 if (sym->st_other == STO_MIPS16
3862 && (sym->st_value & 1) != 0)
3863 --sym->st_value;
3864
3865 return true;
3866}
3867\f
3868/* Functions for the dynamic linker. */
3869
3870/* Create dynamic sections when linking against a dynamic object. */
3871
3872boolean
3873_bfd_mips_elf_create_dynamic_sections (abfd, info)
3874 bfd *abfd;
3875 struct bfd_link_info *info;
3876{
3877 struct elf_link_hash_entry *h;
3878 flagword flags;
3879 register asection *s;
3880 const char * const *namep;
3881
3882 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3883 | SEC_LINKER_CREATED | SEC_READONLY);
3884
3885 /* Mips ABI requests the .dynamic section to be read only. */
3886 s = bfd_get_section_by_name (abfd, ".dynamic");
3887 if (s != NULL)
3888 {
3889 if (! bfd_set_section_flags (abfd, s, flags))
3890 return false;
3891 }
3892
3893 /* We need to create .got section. */
3894 if (! mips_elf_create_got_section (abfd, info))
3895 return false;
3896
3897 /* Create the .msym section on IRIX6. It is used by the dynamic
3898 linker to speed up dynamic relocations, and to avoid computing
3899 the ELF hash for symbols. */
3900 if (IRIX_COMPAT (abfd) == ict_irix6
3901 && !mips_elf_create_msym_section (abfd))
3902 return false;
3903
3904 /* Create .stub section. */
3905 if (bfd_get_section_by_name (abfd,
3906 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
3907 {
3908 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
3909 if (s == NULL
3910 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
3911 || ! bfd_set_section_alignment (abfd, s,
3912 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3913 return false;
3914 }
3915
3916 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
3917 && !info->shared
3918 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
3919 {
3920 s = bfd_make_section (abfd, ".rld_map");
3921 if (s == NULL
3922 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
3923 || ! bfd_set_section_alignment (abfd, s,
3924 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3925 return false;
3926 }
3927
3928 /* On IRIX5, we adjust add some additional symbols and change the
3929 alignments of several sections. There is no ABI documentation
3930 indicating that this is necessary on IRIX6, nor any evidence that
3931 the linker takes such action. */
3932 if (IRIX_COMPAT (abfd) == ict_irix5)
3933 {
3934 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
3935 {
3936 h = NULL;
3937 if (! (_bfd_generic_link_add_one_symbol
3938 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
3939 (bfd_vma) 0, (const char *) NULL, false,
3940 get_elf_backend_data (abfd)->collect,
3941 (struct bfd_link_hash_entry **) &h)))
3942 return false;
3943 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
3944 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3945 h->type = STT_SECTION;
3946
3947 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3948 return false;
3949 }
3950
3951 /* We need to create a .compact_rel section. */
3952 if (SGI_COMPAT (abfd))
3953 {
3954 if (!mips_elf_create_compact_rel_section (abfd, info))
3955 return false;
3956 }
3957
3958 /* Change aligments of some sections. */
3959 s = bfd_get_section_by_name (abfd, ".hash");
3960 if (s != NULL)
3961 bfd_set_section_alignment (abfd, s, 4);
3962 s = bfd_get_section_by_name (abfd, ".dynsym");
3963 if (s != NULL)
3964 bfd_set_section_alignment (abfd, s, 4);
3965 s = bfd_get_section_by_name (abfd, ".dynstr");
3966 if (s != NULL)
3967 bfd_set_section_alignment (abfd, s, 4);
3968 s = bfd_get_section_by_name (abfd, ".reginfo");
3969 if (s != NULL)
3970 bfd_set_section_alignment (abfd, s, 4);
3971 s = bfd_get_section_by_name (abfd, ".dynamic");
3972 if (s != NULL)
3973 bfd_set_section_alignment (abfd, s, 4);
3974 }
3975
3976 if (!info->shared)
3977 {
3978 h = NULL;
3979 if (SGI_COMPAT (abfd))
3980 {
3981 if (!(_bfd_generic_link_add_one_symbol
3982 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
3983 (bfd_vma) 0, (const char *) NULL, false,
3984 get_elf_backend_data (abfd)->collect,
3985 (struct bfd_link_hash_entry **) &h)))
3986 return false;
3987 }
3988 else
3989 {
3990 /* For normal mips it is _DYNAMIC_LINKING. */
3991 if (!(_bfd_generic_link_add_one_symbol
3992 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
3993 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
3994 get_elf_backend_data (abfd)->collect,
3995 (struct bfd_link_hash_entry **) &h)))
3996 return false;
3997 }
3998 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
3999 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4000 h->type = STT_SECTION;
4001
4002 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4003 return false;
4004
4005 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4006 {
4007 /* __rld_map is a four byte word located in the .data section
4008 and is filled in by the rtld to contain a pointer to
4009 the _r_debug structure. Its symbol value will be set in
4010 _bfd_mips_elf_finish_dynamic_symbol. */
4011 s = bfd_get_section_by_name (abfd, ".rld_map");
4012 BFD_ASSERT (s != NULL);
4013
4014 h = NULL;
4015 if (SGI_COMPAT (abfd))
4016 {
4017 if (!(_bfd_generic_link_add_one_symbol
4018 (info, abfd, "__rld_map", BSF_GLOBAL, s,
4019 (bfd_vma) 0, (const char *) NULL, false,
4020 get_elf_backend_data (abfd)->collect,
4021 (struct bfd_link_hash_entry **) &h)))
4022 return false;
4023 }
4024 else
4025 {
4026 /* For normal mips the symbol is __RLD_MAP. */
4027 if (!(_bfd_generic_link_add_one_symbol
4028 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
4029 (bfd_vma) 0, (const char *) NULL, false,
4030 get_elf_backend_data (abfd)->collect,
4031 (struct bfd_link_hash_entry **) &h)))
4032 return false;
4033 }
4034 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4035 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4036 h->type = STT_OBJECT;
4037
4038 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4039 return false;
4040 }
4041 }
4042
4043 return true;
4044}
4045\f
4046/* Look through the relocs for a section during the first phase, and
4047 allocate space in the global offset table. */
4048
4049boolean
4050_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
4051 bfd *abfd;
4052 struct bfd_link_info *info;
4053 asection *sec;
4054 const Elf_Internal_Rela *relocs;
4055{
4056 const char *name;
4057 bfd *dynobj;
4058 Elf_Internal_Shdr *symtab_hdr;
4059 struct elf_link_hash_entry **sym_hashes;
4060 struct mips_got_info *g;
4061 size_t extsymoff;
4062 const Elf_Internal_Rela *rel;
4063 const Elf_Internal_Rela *rel_end;
4064 asection *sgot;
4065 asection *sreloc;
4066 struct elf_backend_data *bed;
4067
4068 if (info->relocateable)
4069 return true;
4070
4071 dynobj = elf_hash_table (info)->dynobj;
4072 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4073 sym_hashes = elf_sym_hashes (abfd);
4074 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
4075
4076 /* Check for the mips16 stub sections. */
4077
4078 name = bfd_get_section_name (abfd, sec);
4079 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
4080 {
4081 unsigned long r_symndx;
4082
4083 /* Look at the relocation information to figure out which symbol
4084 this is for. */
4085
4086 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
4087
4088 if (r_symndx < extsymoff
4089 || sym_hashes[r_symndx - extsymoff] == NULL)
4090 {
4091 asection *o;
4092
4093 /* This stub is for a local symbol. This stub will only be
4094 needed if there is some relocation in this BFD, other
4095 than a 16 bit function call, which refers to this symbol. */
4096 for (o = abfd->sections; o != NULL; o = o->next)
4097 {
4098 Elf_Internal_Rela *sec_relocs;
4099 const Elf_Internal_Rela *r, *rend;
4100
4101 /* We can ignore stub sections when looking for relocs. */
4102 if ((o->flags & SEC_RELOC) == 0
4103 || o->reloc_count == 0
4104 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
4105 sizeof FN_STUB - 1) == 0
4106 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
4107 sizeof CALL_STUB - 1) == 0
4108 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
4109 sizeof CALL_FP_STUB - 1) == 0)
4110 continue;
4111
4112 sec_relocs = (_bfd_elf32_link_read_relocs
4113 (abfd, o, (PTR) NULL,
4114 (Elf_Internal_Rela *) NULL,
4115 info->keep_memory));
4116 if (sec_relocs == NULL)
4117 return false;
4118
4119 rend = sec_relocs + o->reloc_count;
4120 for (r = sec_relocs; r < rend; r++)
4121 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
4122 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
4123 break;
4124
4125 if (! info->keep_memory)
4126 free (sec_relocs);
4127
4128 if (r < rend)
4129 break;
4130 }
4131
4132 if (o == NULL)
4133 {
4134 /* There is no non-call reloc for this stub, so we do
4135 not need it. Since this function is called before
4136 the linker maps input sections to output sections, we
4137 can easily discard it by setting the SEC_EXCLUDE
4138 flag. */
4139 sec->flags |= SEC_EXCLUDE;
4140 return true;
4141 }
4142
4143 /* Record this stub in an array of local symbol stubs for
4144 this BFD. */
4145 if (elf_tdata (abfd)->local_stubs == NULL)
4146 {
4147 unsigned long symcount;
4148 asection **n;
4149 bfd_size_type amt;
4150
4151 if (elf_bad_symtab (abfd))
4152 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
4153 else
4154 symcount = symtab_hdr->sh_info;
4155 amt = symcount * sizeof (asection *);
4156 n = (asection **) bfd_zalloc (abfd, amt);
4157 if (n == NULL)
4158 return false;
4159 elf_tdata (abfd)->local_stubs = n;
4160 }
4161
4162 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
4163
4164 /* We don't need to set mips16_stubs_seen in this case.
4165 That flag is used to see whether we need to look through
4166 the global symbol table for stubs. We don't need to set
4167 it here, because we just have a local stub. */
4168 }
4169 else
4170 {
4171 struct mips_elf_link_hash_entry *h;
4172
4173 h = ((struct mips_elf_link_hash_entry *)
4174 sym_hashes[r_symndx - extsymoff]);
4175
4176 /* H is the symbol this stub is for. */
4177
4178 h->fn_stub = sec;
4179 mips_elf_hash_table (info)->mips16_stubs_seen = true;
4180 }
4181 }
4182 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4183 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4184 {
4185 unsigned long r_symndx;
4186 struct mips_elf_link_hash_entry *h;
4187 asection **loc;
4188
4189 /* Look at the relocation information to figure out which symbol
4190 this is for. */
4191
4192 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
4193
4194 if (r_symndx < extsymoff
4195 || sym_hashes[r_symndx - extsymoff] == NULL)
4196 {
4197 /* This stub was actually built for a static symbol defined
4198 in the same file. We assume that all static symbols in
4199 mips16 code are themselves mips16, so we can simply
4200 discard this stub. Since this function is called before
4201 the linker maps input sections to output sections, we can
4202 easily discard it by setting the SEC_EXCLUDE flag. */
4203 sec->flags |= SEC_EXCLUDE;
4204 return true;
4205 }
4206
4207 h = ((struct mips_elf_link_hash_entry *)
4208 sym_hashes[r_symndx - extsymoff]);
4209
4210 /* H is the symbol this stub is for. */
4211
4212 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4213 loc = &h->call_fp_stub;
4214 else
4215 loc = &h->call_stub;
4216
4217 /* If we already have an appropriate stub for this function, we
4218 don't need another one, so we can discard this one. Since
4219 this function is called before the linker maps input sections
4220 to output sections, we can easily discard it by setting the
4221 SEC_EXCLUDE flag. We can also discard this section if we
4222 happen to already know that this is a mips16 function; it is
4223 not necessary to check this here, as it is checked later, but
4224 it is slightly faster to check now. */
4225 if (*loc != NULL || h->root.other == STO_MIPS16)
4226 {
4227 sec->flags |= SEC_EXCLUDE;
4228 return true;
4229 }
4230
4231 *loc = sec;
4232 mips_elf_hash_table (info)->mips16_stubs_seen = true;
4233 }
4234
4235 if (dynobj == NULL)
4236 {
4237 sgot = NULL;
4238 g = NULL;
4239 }
4240 else
4241 {
4242 sgot = mips_elf_got_section (dynobj);
4243 if (sgot == NULL)
4244 g = NULL;
4245 else
4246 {
4247 BFD_ASSERT (elf_section_data (sgot) != NULL);
4248 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
4249 BFD_ASSERT (g != NULL);
4250 }
4251 }
4252
4253 sreloc = NULL;
4254 bed = get_elf_backend_data (abfd);
4255 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
4256 for (rel = relocs; rel < rel_end; ++rel)
4257 {
4258 unsigned long r_symndx;
4259 unsigned int r_type;
4260 struct elf_link_hash_entry *h;
4261
4262 r_symndx = ELF_R_SYM (abfd, rel->r_info);
4263 r_type = ELF_R_TYPE (abfd, rel->r_info);
4264
4265 if (r_symndx < extsymoff)
4266 h = NULL;
4267 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
4268 {
4269 (*_bfd_error_handler)
4270 (_("%s: Malformed reloc detected for section %s"),
4271 bfd_archive_filename (abfd), name);
4272 bfd_set_error (bfd_error_bad_value);
4273 return false;
4274 }
4275 else
4276 {
4277 h = sym_hashes[r_symndx - extsymoff];
4278
4279 /* This may be an indirect symbol created because of a version. */
4280 if (h != NULL)
4281 {
4282 while (h->root.type == bfd_link_hash_indirect)
4283 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4284 }
4285 }
4286
4287 /* Some relocs require a global offset table. */
4288 if (dynobj == NULL || sgot == NULL)
4289 {
4290 switch (r_type)
4291 {
4292 case R_MIPS_GOT16:
4293 case R_MIPS_CALL16:
4294 case R_MIPS_CALL_HI16:
4295 case R_MIPS_CALL_LO16:
4296 case R_MIPS_GOT_HI16:
4297 case R_MIPS_GOT_LO16:
4298 case R_MIPS_GOT_PAGE:
4299 case R_MIPS_GOT_OFST:
4300 case R_MIPS_GOT_DISP:
4301 if (dynobj == NULL)
4302 elf_hash_table (info)->dynobj = dynobj = abfd;
4303 if (! mips_elf_create_got_section (dynobj, info))
4304 return false;
4305 g = mips_elf_got_info (dynobj, &sgot);
4306 break;
4307
4308 case R_MIPS_32:
4309 case R_MIPS_REL32:
4310 case R_MIPS_64:
4311 if (dynobj == NULL
4312 && (info->shared || h != NULL)
4313 && (sec->flags & SEC_ALLOC) != 0)
4314 elf_hash_table (info)->dynobj = dynobj = abfd;
4315 break;
4316
4317 default:
4318 break;
4319 }
4320 }
4321
4322 if (!h && (r_type == R_MIPS_CALL_LO16
4323 || r_type == R_MIPS_GOT_LO16
4324 || r_type == R_MIPS_GOT_DISP))
4325 {
4326 /* We may need a local GOT entry for this relocation. We
4327 don't count R_MIPS_GOT_PAGE because we can estimate the
4328 maximum number of pages needed by looking at the size of
4329 the segment. Similar comments apply to R_MIPS_GOT16 and
4330 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
4331 R_MIPS_CALL_HI16 because these are always followed by an
4332 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
4333
4334 This estimation is very conservative since we can merge
4335 duplicate entries in the GOT. In order to be less
4336 conservative, we could actually build the GOT here,
4337 rather than in relocate_section. */
4338 g->local_gotno++;
4339 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
4340 }
4341
4342 switch (r_type)
4343 {
4344 case R_MIPS_CALL16:
4345 if (h == NULL)
4346 {
4347 (*_bfd_error_handler)
4348 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
4349 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
4350 bfd_set_error (bfd_error_bad_value);
4351 return false;
4352 }
4353 /* Fall through. */
4354
4355 case R_MIPS_CALL_HI16:
4356 case R_MIPS_CALL_LO16:
4357 if (h != NULL)
4358 {
4359 /* This symbol requires a global offset table entry. */
4360 if (! mips_elf_record_global_got_symbol (h, info, g))
4361 return false;
4362
4363 /* We need a stub, not a plt entry for the undefined
4364 function. But we record it as if it needs plt. See
4365 elf_adjust_dynamic_symbol in elflink.h. */
4366 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
4367 h->type = STT_FUNC;
4368 }
4369 break;
4370
4371 case R_MIPS_GOT16:
4372 case R_MIPS_GOT_HI16:
4373 case R_MIPS_GOT_LO16:
4374 case R_MIPS_GOT_DISP:
4375 /* This symbol requires a global offset table entry. */
4376 if (h && ! mips_elf_record_global_got_symbol (h, info, g))
4377 return false;
4378 break;
4379
4380 case R_MIPS_32:
4381 case R_MIPS_REL32:
4382 case R_MIPS_64:
4383 if ((info->shared || h != NULL)
4384 && (sec->flags & SEC_ALLOC) != 0)
4385 {
4386 if (sreloc == NULL)
4387 {
4388 const char *dname = ".rel.dyn";
4389
4390 sreloc = bfd_get_section_by_name (dynobj, dname);
4391 if (sreloc == NULL)
4392 {
4393 sreloc = bfd_make_section (dynobj, dname);
4394 if (sreloc == NULL
4395 || ! bfd_set_section_flags (dynobj, sreloc,
4396 (SEC_ALLOC
4397 | SEC_LOAD
4398 | SEC_HAS_CONTENTS
4399 | SEC_IN_MEMORY
4400 | SEC_LINKER_CREATED
4401 | SEC_READONLY))
4402 || ! bfd_set_section_alignment (dynobj, sreloc,
4403 4))
4404 return false;
4405 }
4406 }
4407#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
4408 if (info->shared)
4409 {
4410 /* When creating a shared object, we must copy these
4411 reloc types into the output file as R_MIPS_REL32
4412 relocs. We make room for this reloc in the
4413 .rel.dyn reloc section. */
4414 mips_elf_allocate_dynamic_relocations (dynobj, 1);
4415 if ((sec->flags & MIPS_READONLY_SECTION)
4416 == MIPS_READONLY_SECTION)
4417 /* We tell the dynamic linker that there are
4418 relocations against the text segment. */
4419 info->flags |= DF_TEXTREL;
4420 }
4421 else
4422 {
4423 struct mips_elf_link_hash_entry *hmips;
4424
4425 /* We only need to copy this reloc if the symbol is
4426 defined in a dynamic object. */
4427 hmips = (struct mips_elf_link_hash_entry *) h;
4428 ++hmips->possibly_dynamic_relocs;
4429 if ((sec->flags & MIPS_READONLY_SECTION)
4430 == MIPS_READONLY_SECTION)
4431 /* We need it to tell the dynamic linker if there
4432 are relocations against the text segment. */
4433 hmips->readonly_reloc = true;
4434 }
4435
4436 /* Even though we don't directly need a GOT entry for
4437 this symbol, a symbol must have a dynamic symbol
4438 table index greater that DT_MIPS_GOTSYM if there are
4439 dynamic relocations against it. */
4440 if (h != NULL
4441 && ! mips_elf_record_global_got_symbol (h, info, g))
4442 return false;
4443 }
4444
4445 if (SGI_COMPAT (abfd))
4446 mips_elf_hash_table (info)->compact_rel_size +=
4447 sizeof (Elf32_External_crinfo);
4448 break;
4449
4450 case R_MIPS_26:
4451 case R_MIPS_GPREL16:
4452 case R_MIPS_LITERAL:
4453 case R_MIPS_GPREL32:
4454 if (SGI_COMPAT (abfd))
4455 mips_elf_hash_table (info)->compact_rel_size +=
4456 sizeof (Elf32_External_crinfo);
4457 break;
4458
4459 /* This relocation describes the C++ object vtable hierarchy.
4460 Reconstruct it for later use during GC. */
4461 case R_MIPS_GNU_VTINHERIT:
4462 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4463 return false;
4464 break;
4465
4466 /* This relocation describes which C++ vtable entries are actually
4467 used. Record for later use during GC. */
4468 case R_MIPS_GNU_VTENTRY:
4469 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
4470 return false;
4471 break;
4472
4473 default:
4474 break;
4475 }
4476
4477 /* We must not create a stub for a symbol that has relocations
4478 related to taking the function's address. */
4479 switch (r_type)
4480 {
4481 default:
4482 if (h != NULL)
4483 {
4484 struct mips_elf_link_hash_entry *mh;
4485
4486 mh = (struct mips_elf_link_hash_entry *) h;
4487 mh->no_fn_stub = true;
4488 }
4489 break;
4490 case R_MIPS_CALL16:
4491 case R_MIPS_CALL_HI16:
4492 case R_MIPS_CALL_LO16:
4493 break;
4494 }
4495
4496 /* If this reloc is not a 16 bit call, and it has a global
4497 symbol, then we will need the fn_stub if there is one.
4498 References from a stub section do not count. */
4499 if (h != NULL
4500 && r_type != R_MIPS16_26
4501 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
4502 sizeof FN_STUB - 1) != 0
4503 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
4504 sizeof CALL_STUB - 1) != 0
4505 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
4506 sizeof CALL_FP_STUB - 1) != 0)
4507 {
4508 struct mips_elf_link_hash_entry *mh;
4509
4510 mh = (struct mips_elf_link_hash_entry *) h;
4511 mh->need_fn_stub = true;
4512 }
4513 }
4514
4515 return true;
4516}
4517\f
4518/* Adjust a symbol defined by a dynamic object and referenced by a
4519 regular object. The current definition is in some section of the
4520 dynamic object, but we're not including those sections. We have to
4521 change the definition to something the rest of the link can
4522 understand. */
4523
4524boolean
4525_bfd_mips_elf_adjust_dynamic_symbol (info, h)
4526 struct bfd_link_info *info;
4527 struct elf_link_hash_entry *h;
4528{
4529 bfd *dynobj;
4530 struct mips_elf_link_hash_entry *hmips;
4531 asection *s;
4532
4533 dynobj = elf_hash_table (info)->dynobj;
4534
4535 /* Make sure we know what is going on here. */
4536 BFD_ASSERT (dynobj != NULL
4537 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
4538 || h->weakdef != NULL
4539 || ((h->elf_link_hash_flags
4540 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4541 && (h->elf_link_hash_flags
4542 & ELF_LINK_HASH_REF_REGULAR) != 0
4543 && (h->elf_link_hash_flags
4544 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
4545
4546 /* If this symbol is defined in a dynamic object, we need to copy
4547 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
4548 file. */
4549 hmips = (struct mips_elf_link_hash_entry *) h;
4550 if (! info->relocateable
4551 && hmips->possibly_dynamic_relocs != 0
4552 && (h->root.type == bfd_link_hash_defweak
4553 || (h->elf_link_hash_flags
4554 & ELF_LINK_HASH_DEF_REGULAR) == 0))
4555 {
4556 mips_elf_allocate_dynamic_relocations (dynobj,
4557 hmips->possibly_dynamic_relocs);
4558 if (hmips->readonly_reloc)
4559 /* We tell the dynamic linker that there are relocations
4560 against the text segment. */
4561 info->flags |= DF_TEXTREL;
4562 }
4563
4564 /* For a function, create a stub, if allowed. */
4565 if (! hmips->no_fn_stub
4566 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4567 {
4568 if (! elf_hash_table (info)->dynamic_sections_created)
4569 return true;
4570
4571 /* If this symbol is not defined in a regular file, then set
4572 the symbol to the stub location. This is required to make
4573 function pointers compare as equal between the normal
4574 executable and the shared library. */
4575 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4576 {
4577 /* We need .stub section. */
4578 s = bfd_get_section_by_name (dynobj,
4579 MIPS_ELF_STUB_SECTION_NAME (dynobj));
4580 BFD_ASSERT (s != NULL);
4581
4582 h->root.u.def.section = s;
4583 h->root.u.def.value = s->_raw_size;
4584
4585 /* XXX Write this stub address somewhere. */
4586 h->plt.offset = s->_raw_size;
4587
4588 /* Make room for this stub code. */
4589 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
4590
4591 /* The last half word of the stub will be filled with the index
4592 of this symbol in .dynsym section. */
4593 return true;
4594 }
4595 }
4596 else if ((h->type == STT_FUNC)
4597 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4598 {
4599 /* This will set the entry for this symbol in the GOT to 0, and
4600 the dynamic linker will take care of this. */
4601 h->root.u.def.value = 0;
4602 return true;
4603 }
4604
4605 /* If this is a weak symbol, and there is a real definition, the
4606 processor independent code will have arranged for us to see the
4607 real definition first, and we can just use the same value. */
4608 if (h->weakdef != NULL)
4609 {
4610 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
4611 || h->weakdef->root.type == bfd_link_hash_defweak);
4612 h->root.u.def.section = h->weakdef->root.u.def.section;
4613 h->root.u.def.value = h->weakdef->root.u.def.value;
4614 return true;
4615 }
4616
4617 /* This is a reference to a symbol defined by a dynamic object which
4618 is not a function. */
4619
4620 return true;
4621}
4622\f
4623/* This function is called after all the input files have been read,
4624 and the input sections have been assigned to output sections. We
4625 check for any mips16 stub sections that we can discard. */
4626
4627boolean
4628_bfd_mips_elf_always_size_sections (output_bfd, info)
4629 bfd *output_bfd;
4630 struct bfd_link_info *info;
4631{
4632 asection *ri;
4633
4634 /* The .reginfo section has a fixed size. */
4635 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
4636 if (ri != NULL)
4637 bfd_set_section_size (output_bfd, ri,
4638 (bfd_size_type) sizeof (Elf32_External_RegInfo));
4639
4640 if (info->relocateable
4641 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
4642 return true;
4643
4644 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4645 mips_elf_check_mips16_stubs,
4646 (PTR) NULL);
4647
4648 return true;
4649}
4650
4651/* Set the sizes of the dynamic sections. */
4652
4653boolean
4654_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
4655 bfd *output_bfd;
4656 struct bfd_link_info *info;
4657{
4658 bfd *dynobj;
4659 asection *s;
4660 boolean reltext;
4661 struct mips_got_info *g = NULL;
4662
4663 dynobj = elf_hash_table (info)->dynobj;
4664 BFD_ASSERT (dynobj != NULL);
4665
4666 if (elf_hash_table (info)->dynamic_sections_created)
4667 {
4668 /* Set the contents of the .interp section to the interpreter. */
4669 if (! info->shared)
4670 {
4671 s = bfd_get_section_by_name (dynobj, ".interp");
4672 BFD_ASSERT (s != NULL);
4673 s->_raw_size
4674 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
4675 s->contents
4676 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
4677 }
4678 }
4679
4680 /* The check_relocs and adjust_dynamic_symbol entry points have
4681 determined the sizes of the various dynamic sections. Allocate
4682 memory for them. */
4683 reltext = false;
4684 for (s = dynobj->sections; s != NULL; s = s->next)
4685 {
4686 const char *name;
4687 boolean strip;
4688
4689 /* It's OK to base decisions on the section name, because none
4690 of the dynobj section names depend upon the input files. */
4691 name = bfd_get_section_name (dynobj, s);
4692
4693 if ((s->flags & SEC_LINKER_CREATED) == 0)
4694 continue;
4695
4696 strip = false;
4697
4698 if (strncmp (name, ".rel", 4) == 0)
4699 {
4700 if (s->_raw_size == 0)
4701 {
4702 /* We only strip the section if the output section name
4703 has the same name. Otherwise, there might be several
4704 input sections for this output section. FIXME: This
4705 code is probably not needed these days anyhow, since
4706 the linker now does not create empty output sections. */
4707 if (s->output_section != NULL
4708 && strcmp (name,
4709 bfd_get_section_name (s->output_section->owner,
4710 s->output_section)) == 0)
4711 strip = true;
4712 }
4713 else
4714 {
4715 const char *outname;
4716 asection *target;
4717
4718 /* If this relocation section applies to a read only
4719 section, then we probably need a DT_TEXTREL entry.
4720 If the relocation section is .rel.dyn, we always
4721 assert a DT_TEXTREL entry rather than testing whether
4722 there exists a relocation to a read only section or
4723 not. */
4724 outname = bfd_get_section_name (output_bfd,
4725 s->output_section);
4726 target = bfd_get_section_by_name (output_bfd, outname + 4);
4727 if ((target != NULL
4728 && (target->flags & SEC_READONLY) != 0
4729 && (target->flags & SEC_ALLOC) != 0)
4730 || strcmp (outname, ".rel.dyn") == 0)
4731 reltext = true;
4732
4733 /* We use the reloc_count field as a counter if we need
4734 to copy relocs into the output file. */
4735 if (strcmp (name, ".rel.dyn") != 0)
4736 s->reloc_count = 0;
4737 }
4738 }
4739 else if (strncmp (name, ".got", 4) == 0)
4740 {
4741 int i;
4742 bfd_size_type loadable_size = 0;
4743 bfd_size_type local_gotno;
4744 bfd *sub;
4745
4746 BFD_ASSERT (elf_section_data (s) != NULL);
4747 g = (struct mips_got_info *) elf_section_data (s)->tdata;
4748 BFD_ASSERT (g != NULL);
4749
4750 /* Calculate the total loadable size of the output. That
4751 will give us the maximum number of GOT_PAGE entries
4752 required. */
4753 for (sub = info->input_bfds; sub; sub = sub->link_next)
4754 {
4755 asection *subsection;
4756
4757 for (subsection = sub->sections;
4758 subsection;
4759 subsection = subsection->next)
4760 {
4761 if ((subsection->flags & SEC_ALLOC) == 0)
4762 continue;
4763 loadable_size += ((subsection->_raw_size + 0xf)
4764 &~ (bfd_size_type) 0xf);
4765 }
4766 }
4767 loadable_size += MIPS_FUNCTION_STUB_SIZE;
4768
4769 /* Assume there are two loadable segments consisting of
4770 contiguous sections. Is 5 enough? */
4771 local_gotno = (loadable_size >> 16) + 5;
4772 if (IRIX_COMPAT (output_bfd) == ict_irix6)
4773 /* It's possible we will need GOT_PAGE entries as well as
4774 GOT16 entries. Often, these will be able to share GOT
4775 entries, but not always. */
4776 local_gotno *= 2;
4777
4778 g->local_gotno += local_gotno;
4779 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
4780
4781 /* There has to be a global GOT entry for every symbol with
4782 a dynamic symbol table index of DT_MIPS_GOTSYM or
4783 higher. Therefore, it make sense to put those symbols
4784 that need GOT entries at the end of the symbol table. We
4785 do that here. */
4786 if (! mips_elf_sort_hash_table (info, 1))
4787 return false;
4788
4789 if (g->global_gotsym != NULL)
4790 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
4791 else
4792 /* If there are no global symbols, or none requiring
4793 relocations, then GLOBAL_GOTSYM will be NULL. */
4794 i = 0;
4795 g->global_gotno = i;
4796 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
4797 }
4798 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
4799 {
8dc1a139 4800 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9
TS
4801 of .text section. So put a dummy. XXX */
4802 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
4803 }
4804 else if (! info->shared
4805 && ! mips_elf_hash_table (info)->use_rld_obj_head
4806 && strncmp (name, ".rld_map", 8) == 0)
4807 {
4808 /* We add a room for __rld_map. It will be filled in by the
4809 rtld to contain a pointer to the _r_debug structure. */
4810 s->_raw_size += 4;
4811 }
4812 else if (SGI_COMPAT (output_bfd)
4813 && strncmp (name, ".compact_rel", 12) == 0)
4814 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
4815 else if (strcmp (name, ".msym") == 0)
4816 s->_raw_size = (sizeof (Elf32_External_Msym)
4817 * (elf_hash_table (info)->dynsymcount
4818 + bfd_count_sections (output_bfd)));
4819 else if (strncmp (name, ".init", 5) != 0)
4820 {
4821 /* It's not one of our sections, so don't allocate space. */
4822 continue;
4823 }
4824
4825 if (strip)
4826 {
4827 _bfd_strip_section_from_output (info, s);
4828 continue;
4829 }
4830
4831 /* Allocate memory for the section contents. */
4832 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
4833 if (s->contents == NULL && s->_raw_size != 0)
4834 {
4835 bfd_set_error (bfd_error_no_memory);
4836 return false;
4837 }
4838 }
4839
4840 if (elf_hash_table (info)->dynamic_sections_created)
4841 {
4842 /* Add some entries to the .dynamic section. We fill in the
4843 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
4844 must add the entries now so that we get the correct size for
4845 the .dynamic section. The DT_DEBUG entry is filled in by the
4846 dynamic linker and used by the debugger. */
4847 if (! info->shared)
4848 {
4849 /* SGI object has the equivalence of DT_DEBUG in the
4850 DT_MIPS_RLD_MAP entry. */
4851 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
4852 return false;
4853 if (!SGI_COMPAT (output_bfd))
4854 {
4855 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
4856 return false;
4857 }
4858 }
4859 else
4860 {
4861 /* Shared libraries on traditional mips have DT_DEBUG. */
4862 if (!SGI_COMPAT (output_bfd))
4863 {
4864 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
4865 return false;
4866 }
4867 }
4868
4869 if (reltext && SGI_COMPAT (output_bfd))
4870 info->flags |= DF_TEXTREL;
4871
4872 if ((info->flags & DF_TEXTREL) != 0)
4873 {
4874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
4875 return false;
4876 }
4877
4878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
4879 return false;
4880
4881 if (bfd_get_section_by_name (dynobj, ".rel.dyn"))
4882 {
4883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
4884 return false;
4885
4886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
4887 return false;
4888
4889 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
4890 return false;
4891 }
4892
4893 if (SGI_COMPAT (output_bfd))
4894 {
4895 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
4896 return false;
4897 }
4898
4899 if (SGI_COMPAT (output_bfd))
4900 {
4901 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
4902 return false;
4903 }
4904
4905 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
4906 {
4907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
4908 return false;
4909
4910 s = bfd_get_section_by_name (dynobj, ".liblist");
4911 BFD_ASSERT (s != NULL);
4912
4913 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
4914 return false;
4915 }
4916
4917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
4918 return false;
4919
4920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
4921 return false;
4922
4923#if 0
4924 /* Time stamps in executable files are a bad idea. */
4925 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
4926 return false;
4927#endif
4928
4929#if 0 /* FIXME */
4930 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
4931 return false;
4932#endif
4933
4934#if 0 /* FIXME */
4935 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
4936 return false;
4937#endif
4938
4939 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
4940 return false;
4941
4942 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
4943 return false;
4944
4945 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
4946 return false;
4947
4948 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
4949 return false;
4950
4951 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
4952 return false;
4953
4954 if (IRIX_COMPAT (dynobj) == ict_irix5
4955 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
4956 return false;
4957
4958 if (IRIX_COMPAT (dynobj) == ict_irix6
4959 && (bfd_get_section_by_name
4960 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
4961 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
4962 return false;
4963
4964 if (bfd_get_section_by_name (dynobj, ".msym")
4965 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
4966 return false;
4967 }
4968
4969 return true;
4970}
4971\f
4972/* Relocate a MIPS ELF section. */
4973
4974boolean
4975_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
4976 contents, relocs, local_syms, local_sections)
4977 bfd *output_bfd;
4978 struct bfd_link_info *info;
4979 bfd *input_bfd;
4980 asection *input_section;
4981 bfd_byte *contents;
4982 Elf_Internal_Rela *relocs;
4983 Elf_Internal_Sym *local_syms;
4984 asection **local_sections;
4985{
4986 Elf_Internal_Rela *rel;
4987 const Elf_Internal_Rela *relend;
4988 bfd_vma addend = 0;
4989 boolean use_saved_addend_p = false;
4990 struct elf_backend_data *bed;
4991
4992 bed = get_elf_backend_data (output_bfd);
4993 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
4994 for (rel = relocs; rel < relend; ++rel)
4995 {
4996 const char *name;
4997 bfd_vma value;
4998 reloc_howto_type *howto;
4999 boolean require_jalx;
5000 /* True if the relocation is a RELA relocation, rather than a
5001 REL relocation. */
5002 boolean rela_relocation_p = true;
5003 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5004 const char * msg = (const char *) NULL;
5005
5006 /* Find the relocation howto for this relocation. */
5007 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
5008 {
5009 /* Some 32-bit code uses R_MIPS_64. In particular, people use
5010 64-bit code, but make sure all their addresses are in the
5011 lowermost or uppermost 32-bit section of the 64-bit address
5012 space. Thus, when they use an R_MIPS_64 they mean what is
5013 usually meant by R_MIPS_32, with the exception that the
5014 stored value is sign-extended to 64 bits. */
5a659663 5015 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false);
b49e97c9
TS
5016
5017 /* On big-endian systems, we need to lie about the position
5018 of the reloc. */
5019 if (bfd_big_endian (input_bfd))
5020 rel->r_offset += 4;
5021 }
5022 else
5023 /* NewABI defaults to RELA relocations. */
5024 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
5025 NEWABI_P (input_bfd));
5026
5027 if (!use_saved_addend_p)
5028 {
5029 Elf_Internal_Shdr *rel_hdr;
5030
5031 /* If these relocations were originally of the REL variety,
5032 we must pull the addend out of the field that will be
5033 relocated. Otherwise, we simply use the contents of the
5034 RELA relocation. To determine which flavor or relocation
5035 this is, we depend on the fact that the INPUT_SECTION's
5036 REL_HDR is read before its REL_HDR2. */
5037 rel_hdr = &elf_section_data (input_section)->rel_hdr;
5038 if ((size_t) (rel - relocs)
5039 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
5040 rel_hdr = elf_section_data (input_section)->rel_hdr2;
5041 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
5042 {
5043 /* Note that this is a REL relocation. */
5044 rela_relocation_p = false;
5045
5046 /* Get the addend, which is stored in the input file. */
5047 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
5048 contents);
5049 addend &= howto->src_mask;
5a659663 5050 addend <<= howto->rightshift;
b49e97c9
TS
5051
5052 /* For some kinds of relocations, the ADDEND is a
5053 combination of the addend stored in two different
5054 relocations. */
5055 if (r_type == R_MIPS_HI16
5056 || r_type == R_MIPS_GNU_REL_HI16
5057 || (r_type == R_MIPS_GOT16
5058 && mips_elf_local_relocation_p (input_bfd, rel,
5059 local_sections, false)))
5060 {
5061 bfd_vma l;
5062 const Elf_Internal_Rela *lo16_relocation;
5063 reloc_howto_type *lo16_howto;
5064 unsigned int lo;
5065
5066 /* The combined value is the sum of the HI16 addend,
5067 left-shifted by sixteen bits, and the LO16
5068 addend, sign extended. (Usually, the code does
5069 a `lui' of the HI16 value, and then an `addiu' of
5070 the LO16 value.)
5071
5072 Scan ahead to find a matching LO16 relocation. */
5073 if (r_type == R_MIPS_GNU_REL_HI16)
5074 lo = R_MIPS_GNU_REL_LO16;
5075 else
5076 lo = R_MIPS_LO16;
5077 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
5078 rel, relend);
5079 if (lo16_relocation == NULL)
5080 return false;
5081
5082 /* Obtain the addend kept there. */
5a659663 5083 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, false);
b49e97c9
TS
5084 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
5085 input_bfd, contents);
5086 l &= lo16_howto->src_mask;
5a659663 5087 l <<= lo16_howto->rightshift;
b49e97c9
TS
5088 l = mips_elf_sign_extend (l, 16);
5089
5090 addend <<= 16;
5091
5092 /* Compute the combined addend. */
5093 addend += l;
5094
5095 /* If PC-relative, subtract the difference between the
5096 address of the LO part of the reloc and the address of
5097 the HI part. The relocation is relative to the LO
5098 part, but mips_elf_calculate_relocation() doesn't
5099 know its address or the difference from the HI part, so
5100 we subtract that difference here. See also the
5101 comment in mips_elf_calculate_relocation(). */
5102 if (r_type == R_MIPS_GNU_REL_HI16)
5103 addend -= (lo16_relocation->r_offset - rel->r_offset);
5104 }
5105 else if (r_type == R_MIPS16_GPREL)
5106 {
5107 /* The addend is scrambled in the object file. See
5108 mips_elf_perform_relocation for details on the
5109 format. */
5110 addend = (((addend & 0x1f0000) >> 5)
5111 | ((addend & 0x7e00000) >> 16)
5112 | (addend & 0x1f));
5113 }
5114 }
5115 else
5116 addend = rel->r_addend;
5117 }
5118
5119 if (info->relocateable)
5120 {
5121 Elf_Internal_Sym *sym;
5122 unsigned long r_symndx;
5123
5124 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
5125 && bfd_big_endian (input_bfd))
5126 rel->r_offset -= 4;
5127
5128 /* Since we're just relocating, all we need to do is copy
5129 the relocations back out to the object file, unless
5130 they're against a section symbol, in which case we need
5131 to adjust by the section offset, or unless they're GP
5132 relative in which case we need to adjust by the amount
5133 that we're adjusting GP in this relocateable object. */
5134
5135 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
5136 false))
5137 /* There's nothing to do for non-local relocations. */
5138 continue;
5139
5140 if (r_type == R_MIPS16_GPREL
5141 || r_type == R_MIPS_GPREL16
5142 || r_type == R_MIPS_GPREL32
5143 || r_type == R_MIPS_LITERAL)
5144 addend -= (_bfd_get_gp_value (output_bfd)
5145 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
5146
5147 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
5148 sym = local_syms + r_symndx;
5149 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5150 /* Adjust the addend appropriately. */
5151 addend += local_sections[r_symndx]->output_offset;
5152
5a659663
TS
5153 if (howto->partial_inplace)
5154 {
5155 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
5156 then we only want to write out the high-order 16 bits.
5157 The subsequent R_MIPS_LO16 will handle the low-order bits.
5158 */
5159 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
5160 || r_type == R_MIPS_GNU_REL_HI16)
5161 addend = mips_elf_high (addend);
5162 else if (r_type == R_MIPS_HIGHER)
5163 addend = mips_elf_higher (addend);
5164 else if (r_type == R_MIPS_HIGHEST)
5165 addend = mips_elf_highest (addend);
5166 }
b49e97c9
TS
5167
5168 if (rela_relocation_p)
5169 /* If this is a RELA relocation, just update the addend.
5170 We have to cast away constness for REL. */
5171 rel->r_addend = addend;
5172 else
5173 {
5174 /* Otherwise, we have to write the value back out. Note
5175 that we use the source mask, rather than the
5176 destination mask because the place to which we are
5177 writing will be source of the addend in the final
5178 link. */
5a659663 5179 addend >>= howto->rightshift;
b49e97c9
TS
5180 addend &= howto->src_mask;
5181
5a659663 5182 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
5183 /* See the comment above about using R_MIPS_64 in the 32-bit
5184 ABI. Here, we need to update the addend. It would be
5185 possible to get away with just using the R_MIPS_32 reloc
5186 but for endianness. */
5187 {
5188 bfd_vma sign_bits;
5189 bfd_vma low_bits;
5190 bfd_vma high_bits;
5191
5192 if (addend & ((bfd_vma) 1 << 31))
5193#ifdef BFD64
5194 sign_bits = ((bfd_vma) 1 << 32) - 1;
5195#else
5196 sign_bits = -1;
5197#endif
5198 else
5199 sign_bits = 0;
5200
5201 /* If we don't know that we have a 64-bit type,
5202 do two separate stores. */
5203 if (bfd_big_endian (input_bfd))
5204 {
5205 /* Store the sign-bits (which are most significant)
5206 first. */
5207 low_bits = sign_bits;
5208 high_bits = addend;
5209 }
5210 else
5211 {
5212 low_bits = addend;
5213 high_bits = sign_bits;
5214 }
5215 bfd_put_32 (input_bfd, low_bits,
5216 contents + rel->r_offset);
5217 bfd_put_32 (input_bfd, high_bits,
5218 contents + rel->r_offset + 4);
5219 continue;
5220 }
5221
5222 if (! mips_elf_perform_relocation (info, howto, rel, addend,
5223 input_bfd, input_section,
5224 contents, false))
5225 return false;
5226 }
5227
5228 /* Go on to the next relocation. */
5229 continue;
5230 }
5231
5232 /* In the N32 and 64-bit ABIs there may be multiple consecutive
5233 relocations for the same offset. In that case we are
5234 supposed to treat the output of each relocation as the addend
5235 for the next. */
5236 if (rel + 1 < relend
5237 && rel->r_offset == rel[1].r_offset
5238 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
5239 use_saved_addend_p = true;
5240 else
5241 use_saved_addend_p = false;
5242
5a659663
TS
5243 addend >>= howto->rightshift;
5244
b49e97c9
TS
5245 /* Figure out what value we are supposed to relocate. */
5246 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
5247 input_section, info, rel,
5248 addend, howto, local_syms,
5249 local_sections, &value,
5250 &name, &require_jalx))
5251 {
5252 case bfd_reloc_continue:
5253 /* There's nothing to do. */
5254 continue;
5255
5256 case bfd_reloc_undefined:
5257 /* mips_elf_calculate_relocation already called the
5258 undefined_symbol callback. There's no real point in
5259 trying to perform the relocation at this point, so we
5260 just skip ahead to the next relocation. */
5261 continue;
5262
5263 case bfd_reloc_notsupported:
5264 msg = _("internal error: unsupported relocation error");
5265 info->callbacks->warning
5266 (info, msg, name, input_bfd, input_section, rel->r_offset);
5267 return false;
5268
5269 case bfd_reloc_overflow:
5270 if (use_saved_addend_p)
5271 /* Ignore overflow until we reach the last relocation for
5272 a given location. */
5273 ;
5274 else
5275 {
5276 BFD_ASSERT (name != NULL);
5277 if (! ((*info->callbacks->reloc_overflow)
5278 (info, name, howto->name, (bfd_vma) 0,
5279 input_bfd, input_section, rel->r_offset)))
5280 return false;
5281 }
5282 break;
5283
5284 case bfd_reloc_ok:
5285 break;
5286
5287 default:
5288 abort ();
5289 break;
5290 }
5291
5292 /* If we've got another relocation for the address, keep going
5293 until we reach the last one. */
5294 if (use_saved_addend_p)
5295 {
5296 addend = value;
5297 continue;
5298 }
5299
5300 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
5301 /* See the comment above about using R_MIPS_64 in the 32-bit
5302 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
5303 that calculated the right value. Now, however, we
5304 sign-extend the 32-bit result to 64-bits, and store it as a
5305 64-bit value. We are especially generous here in that we
5306 go to extreme lengths to support this usage on systems with
5307 only a 32-bit VMA. */
5308 {
5309 bfd_vma sign_bits;
5310 bfd_vma low_bits;
5311 bfd_vma high_bits;
5312
5313 if (value & ((bfd_vma) 1 << 31))
5314#ifdef BFD64
5315 sign_bits = ((bfd_vma) 1 << 32) - 1;
5316#else
5317 sign_bits = -1;
5318#endif
5319 else
5320 sign_bits = 0;
5321
5322 /* If we don't know that we have a 64-bit type,
5323 do two separate stores. */
5324 if (bfd_big_endian (input_bfd))
5325 {
5326 /* Undo what we did above. */
5327 rel->r_offset -= 4;
5328 /* Store the sign-bits (which are most significant)
5329 first. */
5330 low_bits = sign_bits;
5331 high_bits = value;
5332 }
5333 else
5334 {
5335 low_bits = value;
5336 high_bits = sign_bits;
5337 }
5338 bfd_put_32 (input_bfd, low_bits,
5339 contents + rel->r_offset);
5340 bfd_put_32 (input_bfd, high_bits,
5341 contents + rel->r_offset + 4);
5342 continue;
5343 }
5344
5345 /* Actually perform the relocation. */
5346 if (! mips_elf_perform_relocation (info, howto, rel, value,
5347 input_bfd, input_section,
5348 contents, require_jalx))
5349 return false;
5350 }
5351
5352 return true;
5353}
5354\f
5355/* If NAME is one of the special IRIX6 symbols defined by the linker,
5356 adjust it appropriately now. */
5357
5358static void
5359mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
5360 bfd *abfd ATTRIBUTE_UNUSED;
5361 const char *name;
5362 Elf_Internal_Sym *sym;
5363{
5364 /* The linker script takes care of providing names and values for
5365 these, but we must place them into the right sections. */
5366 static const char* const text_section_symbols[] = {
5367 "_ftext",
5368 "_etext",
5369 "__dso_displacement",
5370 "__elf_header",
5371 "__program_header_table",
5372 NULL
5373 };
5374
5375 static const char* const data_section_symbols[] = {
5376 "_fdata",
5377 "_edata",
5378 "_end",
5379 "_fbss",
5380 NULL
5381 };
5382
5383 const char* const *p;
5384 int i;
5385
5386 for (i = 0; i < 2; ++i)
5387 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
5388 *p;
5389 ++p)
5390 if (strcmp (*p, name) == 0)
5391 {
5392 /* All of these symbols are given type STT_SECTION by the
5393 IRIX6 linker. */
5394 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5395
5396 /* The IRIX linker puts these symbols in special sections. */
5397 if (i == 0)
5398 sym->st_shndx = SHN_MIPS_TEXT;
5399 else
5400 sym->st_shndx = SHN_MIPS_DATA;
5401
5402 break;
5403 }
5404}
5405
5406/* Finish up dynamic symbol handling. We set the contents of various
5407 dynamic sections here. */
5408
5409boolean
5410_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
5411 bfd *output_bfd;
5412 struct bfd_link_info *info;
5413 struct elf_link_hash_entry *h;
5414 Elf_Internal_Sym *sym;
5415{
5416 bfd *dynobj;
5417 bfd_vma gval;
5418 asection *sgot;
5419 asection *smsym;
5420 struct mips_got_info *g;
5421 const char *name;
5422 struct mips_elf_link_hash_entry *mh;
5423
5424 dynobj = elf_hash_table (info)->dynobj;
5425 gval = sym->st_value;
5426 mh = (struct mips_elf_link_hash_entry *) h;
5427
5428 if (h->plt.offset != (bfd_vma) -1)
5429 {
5430 asection *s;
5431 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
5432
5433 /* This symbol has a stub. Set it up. */
5434
5435 BFD_ASSERT (h->dynindx != -1);
5436
5437 s = bfd_get_section_by_name (dynobj,
5438 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5439 BFD_ASSERT (s != NULL);
5440
5441 /* FIXME: Can h->dynindex be more than 64K? */
5442 if (h->dynindx & 0xffff0000)
5443 return false;
5444
5445 /* Fill the stub. */
5446 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
5447 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
5448 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
5449 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
5450
5451 BFD_ASSERT (h->plt.offset <= s->_raw_size);
5452 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
5453
5454 /* Mark the symbol as undefined. plt.offset != -1 occurs
5455 only for the referenced symbol. */
5456 sym->st_shndx = SHN_UNDEF;
5457
5458 /* The run-time linker uses the st_value field of the symbol
5459 to reset the global offset table entry for this external
5460 to its stub address when unlinking a shared object. */
5461 gval = s->output_section->vma + s->output_offset + h->plt.offset;
5462 sym->st_value = gval;
5463 }
5464
5465 BFD_ASSERT (h->dynindx != -1
5466 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
5467
5468 sgot = mips_elf_got_section (dynobj);
5469 BFD_ASSERT (sgot != NULL);
5470 BFD_ASSERT (elf_section_data (sgot) != NULL);
5471 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5472 BFD_ASSERT (g != NULL);
5473
5474 /* Run through the global symbol table, creating GOT entries for all
5475 the symbols that need them. */
5476 if (g->global_gotsym != NULL
5477 && h->dynindx >= g->global_gotsym->dynindx)
5478 {
5479 bfd_vma offset;
5480 bfd_vma value;
5481
5482 if (sym->st_value)
5483 value = sym->st_value;
5484 else
5485 {
5486 /* For an entity defined in a shared object, this will be
5487 NULL. (For functions in shared objects for
5488 which we have created stubs, ST_VALUE will be non-NULL.
5489 That's because such the functions are now no longer defined
5490 in a shared object.) */
5491
5492 if (info->shared && h->root.type == bfd_link_hash_undefined)
5493 value = 0;
5494 else
5495 value = h->root.u.def.value;
5496 }
5497 offset = mips_elf_global_got_index (dynobj, h);
5498 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
5499 }
5500
5501 /* Create a .msym entry, if appropriate. */
5502 smsym = bfd_get_section_by_name (dynobj, ".msym");
5503 if (smsym)
5504 {
5505 Elf32_Internal_Msym msym;
5506
5507 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
5508 /* It is undocumented what the `1' indicates, but IRIX6 uses
5509 this value. */
5510 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
5511 bfd_mips_elf_swap_msym_out
5512 (dynobj, &msym,
5513 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
5514 }
5515
5516 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
5517 name = h->root.root.string;
5518 if (strcmp (name, "_DYNAMIC") == 0
5519 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
5520 sym->st_shndx = SHN_ABS;
5521 else if (strcmp (name, "_DYNAMIC_LINK") == 0
5522 || strcmp (name, "_DYNAMIC_LINKING") == 0)
5523 {
5524 sym->st_shndx = SHN_ABS;
5525 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5526 sym->st_value = 1;
5527 }
5528 else if (strcmp (name, "_gp_disp") == 0)
5529 {
5530 sym->st_shndx = SHN_ABS;
5531 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5532 sym->st_value = elf_gp (output_bfd);
5533 }
5534 else if (SGI_COMPAT (output_bfd))
5535 {
5536 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
5537 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
5538 {
5539 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5540 sym->st_other = STO_PROTECTED;
5541 sym->st_value = 0;
5542 sym->st_shndx = SHN_MIPS_DATA;
5543 }
5544 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
5545 {
5546 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5547 sym->st_other = STO_PROTECTED;
5548 sym->st_value = mips_elf_hash_table (info)->procedure_count;
5549 sym->st_shndx = SHN_ABS;
5550 }
5551 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
5552 {
5553 if (h->type == STT_FUNC)
5554 sym->st_shndx = SHN_MIPS_TEXT;
5555 else if (h->type == STT_OBJECT)
5556 sym->st_shndx = SHN_MIPS_DATA;
5557 }
5558 }
5559
5560 /* Handle the IRIX6-specific symbols. */
5561 if (IRIX_COMPAT (output_bfd) == ict_irix6)
5562 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
5563
5564 if (! info->shared)
5565 {
5566 if (! mips_elf_hash_table (info)->use_rld_obj_head
5567 && (strcmp (name, "__rld_map") == 0
5568 || strcmp (name, "__RLD_MAP") == 0))
5569 {
5570 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
5571 BFD_ASSERT (s != NULL);
5572 sym->st_value = s->output_section->vma + s->output_offset;
5573 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
5574 if (mips_elf_hash_table (info)->rld_value == 0)
5575 mips_elf_hash_table (info)->rld_value = sym->st_value;
5576 }
5577 else if (mips_elf_hash_table (info)->use_rld_obj_head
5578 && strcmp (name, "__rld_obj_head") == 0)
5579 {
5580 /* IRIX6 does not use a .rld_map section. */
5581 if (IRIX_COMPAT (output_bfd) == ict_irix5
5582 || IRIX_COMPAT (output_bfd) == ict_none)
5583 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
5584 != NULL);
5585 mips_elf_hash_table (info)->rld_value = sym->st_value;
5586 }
5587 }
5588
5589 /* If this is a mips16 symbol, force the value to be even. */
5590 if (sym->st_other == STO_MIPS16
5591 && (sym->st_value & 1) != 0)
5592 --sym->st_value;
5593
5594 return true;
5595}
5596
5597/* Finish up the dynamic sections. */
5598
5599boolean
5600_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
5601 bfd *output_bfd;
5602 struct bfd_link_info *info;
5603{
5604 bfd *dynobj;
5605 asection *sdyn;
5606 asection *sgot;
5607 struct mips_got_info *g;
5608
5609 dynobj = elf_hash_table (info)->dynobj;
5610
5611 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
5612
5613 sgot = bfd_get_section_by_name (dynobj, ".got");
5614 if (sgot == NULL)
5615 g = NULL;
5616 else
5617 {
5618 BFD_ASSERT (elf_section_data (sgot) != NULL);
5619 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5620 BFD_ASSERT (g != NULL);
5621 }
5622
5623 if (elf_hash_table (info)->dynamic_sections_created)
5624 {
5625 bfd_byte *b;
5626
5627 BFD_ASSERT (sdyn != NULL);
5628 BFD_ASSERT (g != NULL);
5629
5630 for (b = sdyn->contents;
5631 b < sdyn->contents + sdyn->_raw_size;
5632 b += MIPS_ELF_DYN_SIZE (dynobj))
5633 {
5634 Elf_Internal_Dyn dyn;
5635 const char *name;
5636 size_t elemsize;
5637 asection *s;
5638 boolean swap_out_p;
5639
5640 /* Read in the current dynamic entry. */
5641 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
5642
5643 /* Assume that we're going to modify it and write it out. */
5644 swap_out_p = true;
5645
5646 switch (dyn.d_tag)
5647 {
5648 case DT_RELENT:
5649 s = (bfd_get_section_by_name (dynobj, ".rel.dyn"));
5650 BFD_ASSERT (s != NULL);
5651 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
5652 break;
5653
5654 case DT_STRSZ:
5655 /* Rewrite DT_STRSZ. */
5656 dyn.d_un.d_val =
5657 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5658 break;
5659
5660 case DT_PLTGOT:
5661 name = ".got";
5662 goto get_vma;
5663 case DT_MIPS_CONFLICT:
5664 name = ".conflict";
5665 goto get_vma;
5666 case DT_MIPS_LIBLIST:
5667 name = ".liblist";
5668 get_vma:
5669 s = bfd_get_section_by_name (output_bfd, name);
5670 BFD_ASSERT (s != NULL);
5671 dyn.d_un.d_ptr = s->vma;
5672 break;
5673
5674 case DT_MIPS_RLD_VERSION:
5675 dyn.d_un.d_val = 1; /* XXX */
5676 break;
5677
5678 case DT_MIPS_FLAGS:
5679 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
5680 break;
5681
5682 case DT_MIPS_CONFLICTNO:
5683 name = ".conflict";
5684 elemsize = sizeof (Elf32_Conflict);
5685 goto set_elemno;
5686
5687 case DT_MIPS_LIBLISTNO:
5688 name = ".liblist";
5689 elemsize = sizeof (Elf32_Lib);
5690 set_elemno:
5691 s = bfd_get_section_by_name (output_bfd, name);
5692 if (s != NULL)
5693 {
5694 if (s->_cooked_size != 0)
5695 dyn.d_un.d_val = s->_cooked_size / elemsize;
5696 else
5697 dyn.d_un.d_val = s->_raw_size / elemsize;
5698 }
5699 else
5700 dyn.d_un.d_val = 0;
5701 break;
5702
5703 case DT_MIPS_TIME_STAMP:
5704 time ((time_t *) &dyn.d_un.d_val);
5705 break;
5706
5707 case DT_MIPS_ICHECKSUM:
5708 /* XXX FIXME: */
5709 swap_out_p = false;
5710 break;
5711
5712 case DT_MIPS_IVERSION:
5713 /* XXX FIXME: */
5714 swap_out_p = false;
5715 break;
5716
5717 case DT_MIPS_BASE_ADDRESS:
5718 s = output_bfd->sections;
5719 BFD_ASSERT (s != NULL);
5720 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
5721 break;
5722
5723 case DT_MIPS_LOCAL_GOTNO:
5724 dyn.d_un.d_val = g->local_gotno;
5725 break;
5726
5727 case DT_MIPS_UNREFEXTNO:
5728 /* The index into the dynamic symbol table which is the
5729 entry of the first external symbol that is not
5730 referenced within the same object. */
5731 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
5732 break;
5733
5734 case DT_MIPS_GOTSYM:
5735 if (g->global_gotsym)
5736 {
5737 dyn.d_un.d_val = g->global_gotsym->dynindx;
5738 break;
5739 }
5740 /* In case if we don't have global got symbols we default
5741 to setting DT_MIPS_GOTSYM to the same value as
5742 DT_MIPS_SYMTABNO, so we just fall through. */
5743
5744 case DT_MIPS_SYMTABNO:
5745 name = ".dynsym";
5746 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
5747 s = bfd_get_section_by_name (output_bfd, name);
5748 BFD_ASSERT (s != NULL);
5749
5750 if (s->_cooked_size != 0)
5751 dyn.d_un.d_val = s->_cooked_size / elemsize;
5752 else
5753 dyn.d_un.d_val = s->_raw_size / elemsize;
5754 break;
5755
5756 case DT_MIPS_HIPAGENO:
5757 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
5758 break;
5759
5760 case DT_MIPS_RLD_MAP:
5761 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
5762 break;
5763
5764 case DT_MIPS_OPTIONS:
5765 s = (bfd_get_section_by_name
5766 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
5767 dyn.d_un.d_ptr = s->vma;
5768 break;
5769
5770 case DT_MIPS_MSYM:
5771 s = (bfd_get_section_by_name (output_bfd, ".msym"));
5772 dyn.d_un.d_ptr = s->vma;
5773 break;
5774
5775 default:
5776 swap_out_p = false;
5777 break;
5778 }
5779
5780 if (swap_out_p)
5781 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
5782 (dynobj, &dyn, b);
5783 }
5784 }
5785
5786 /* The first entry of the global offset table will be filled at
5787 runtime. The second entry will be used by some runtime loaders.
8dc1a139 5788 This isn't the case of IRIX rld. */
b49e97c9
TS
5789 if (sgot != NULL && sgot->_raw_size > 0)
5790 {
5791 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
5792 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
5793 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
5794 }
5795
5796 if (sgot != NULL)
5797 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
5798 = MIPS_ELF_GOT_SIZE (output_bfd);
5799
5800 {
5801 asection *smsym;
5802 asection *s;
5803 Elf32_compact_rel cpt;
5804
5805 /* ??? The section symbols for the output sections were set up in
5806 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
5807 symbols. Should we do so? */
5808
5809 smsym = bfd_get_section_by_name (dynobj, ".msym");
5810 if (smsym != NULL)
5811 {
5812 Elf32_Internal_Msym msym;
5813
5814 msym.ms_hash_value = 0;
5815 msym.ms_info = ELF32_MS_INFO (0, 1);
5816
5817 for (s = output_bfd->sections; s != NULL; s = s->next)
5818 {
5819 long dynindx = elf_section_data (s)->dynindx;
5820
5821 bfd_mips_elf_swap_msym_out
5822 (output_bfd, &msym,
5823 (((Elf32_External_Msym *) smsym->contents)
5824 + dynindx));
5825 }
5826 }
5827
5828 if (SGI_COMPAT (output_bfd))
5829 {
5830 /* Write .compact_rel section out. */
5831 s = bfd_get_section_by_name (dynobj, ".compact_rel");
5832 if (s != NULL)
5833 {
5834 cpt.id1 = 1;
5835 cpt.num = s->reloc_count;
5836 cpt.id2 = 2;
5837 cpt.offset = (s->output_section->filepos
5838 + sizeof (Elf32_External_compact_rel));
5839 cpt.reserved0 = 0;
5840 cpt.reserved1 = 0;
5841 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
5842 ((Elf32_External_compact_rel *)
5843 s->contents));
5844
5845 /* Clean up a dummy stub function entry in .text. */
5846 s = bfd_get_section_by_name (dynobj,
5847 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5848 if (s != NULL)
5849 {
5850 file_ptr dummy_offset;
5851
5852 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
5853 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
5854 memset (s->contents + dummy_offset, 0,
5855 MIPS_FUNCTION_STUB_SIZE);
5856 }
5857 }
5858 }
5859
5860 /* We need to sort the entries of the dynamic relocation section. */
5861
5862 if (!ABI_64_P (output_bfd))
5863 {
5864 asection *reldyn;
5865
5866 reldyn = bfd_get_section_by_name (dynobj, ".rel.dyn");
5867 if (reldyn != NULL && reldyn->reloc_count > 2)
5868 {
5869 reldyn_sorting_bfd = output_bfd;
5870 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
5871 (size_t) reldyn->reloc_count - 1,
5872 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
5873 }
5874 }
5875
5876 /* Clean up a first relocation in .rel.dyn. */
5877 s = bfd_get_section_by_name (dynobj, ".rel.dyn");
5878 if (s != NULL && s->_raw_size > 0)
5879 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
5880 }
5881
5882 return true;
5883}
5884
5885/* The final processing done just before writing out a MIPS ELF object
5886 file. This gets the MIPS architecture right based on the machine
5887 number. This is used by both the 32-bit and the 64-bit ABI. */
5888
5889void
5890_bfd_mips_elf_final_write_processing (abfd, linker)
5891 bfd *abfd;
5892 boolean linker ATTRIBUTE_UNUSED;
5893{
5894 unsigned long val;
5895 unsigned int i;
5896 Elf_Internal_Shdr **hdrpp;
5897 const char *name;
5898 asection *sec;
5899
5900 switch (bfd_get_mach (abfd))
5901 {
5902 default:
5903 case bfd_mach_mips3000:
5904 val = E_MIPS_ARCH_1;
5905 break;
5906
5907 case bfd_mach_mips3900:
5908 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
5909 break;
5910
5911 case bfd_mach_mips6000:
5912 val = E_MIPS_ARCH_2;
5913 break;
5914
5915 case bfd_mach_mips4000:
5916 case bfd_mach_mips4300:
5917 case bfd_mach_mips4400:
5918 case bfd_mach_mips4600:
5919 val = E_MIPS_ARCH_3;
5920 break;
5921
5922 case bfd_mach_mips4010:
5923 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
5924 break;
5925
5926 case bfd_mach_mips4100:
5927 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
5928 break;
5929
5930 case bfd_mach_mips4111:
5931 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
5932 break;
5933
5934 case bfd_mach_mips4650:
5935 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
5936 break;
5937
5938 case bfd_mach_mips5000:
5939 case bfd_mach_mips8000:
5940 case bfd_mach_mips10000:
5941 case bfd_mach_mips12000:
5942 val = E_MIPS_ARCH_4;
5943 break;
5944
5945 case bfd_mach_mips5:
5946 val = E_MIPS_ARCH_5;
5947 break;
5948
5949 case bfd_mach_mips_sb1:
5950 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
5951 break;
5952
5953 case bfd_mach_mipsisa32:
5954 val = E_MIPS_ARCH_32;
5955 break;
5956
5957 case bfd_mach_mipsisa64:
5958 val = E_MIPS_ARCH_64;
5959 }
5960
5961 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
5962 elf_elfheader (abfd)->e_flags |= val;
5963
5964 /* Set the sh_info field for .gptab sections and other appropriate
5965 info for each special section. */
5966 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
5967 i < elf_numsections (abfd);
5968 i++, hdrpp++)
5969 {
5970 switch ((*hdrpp)->sh_type)
5971 {
5972 case SHT_MIPS_MSYM:
5973 case SHT_MIPS_LIBLIST:
5974 sec = bfd_get_section_by_name (abfd, ".dynstr");
5975 if (sec != NULL)
5976 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
5977 break;
5978
5979 case SHT_MIPS_GPTAB:
5980 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
5981 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
5982 BFD_ASSERT (name != NULL
5983 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
5984 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
5985 BFD_ASSERT (sec != NULL);
5986 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
5987 break;
5988
5989 case SHT_MIPS_CONTENT:
5990 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
5991 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
5992 BFD_ASSERT (name != NULL
5993 && strncmp (name, ".MIPS.content",
5994 sizeof ".MIPS.content" - 1) == 0);
5995 sec = bfd_get_section_by_name (abfd,
5996 name + sizeof ".MIPS.content" - 1);
5997 BFD_ASSERT (sec != NULL);
5998 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
5999 break;
6000
6001 case SHT_MIPS_SYMBOL_LIB:
6002 sec = bfd_get_section_by_name (abfd, ".dynsym");
6003 if (sec != NULL)
6004 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
6005 sec = bfd_get_section_by_name (abfd, ".liblist");
6006 if (sec != NULL)
6007 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
6008 break;
6009
6010 case SHT_MIPS_EVENTS:
6011 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
6012 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
6013 BFD_ASSERT (name != NULL);
6014 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
6015 sec = bfd_get_section_by_name (abfd,
6016 name + sizeof ".MIPS.events" - 1);
6017 else
6018 {
6019 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
6020 sizeof ".MIPS.post_rel" - 1) == 0);
6021 sec = bfd_get_section_by_name (abfd,
6022 (name
6023 + sizeof ".MIPS.post_rel" - 1));
6024 }
6025 BFD_ASSERT (sec != NULL);
6026 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
6027 break;
6028
6029 }
6030 }
6031}
6032\f
8dc1a139 6033/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
6034 segments. */
6035
6036int
6037_bfd_mips_elf_additional_program_headers (abfd)
6038 bfd *abfd;
6039{
6040 asection *s;
6041 int ret = 0;
6042
6043 /* See if we need a PT_MIPS_REGINFO segment. */
6044 s = bfd_get_section_by_name (abfd, ".reginfo");
6045 if (s && (s->flags & SEC_LOAD))
6046 ++ret;
6047
6048 /* See if we need a PT_MIPS_OPTIONS segment. */
6049 if (IRIX_COMPAT (abfd) == ict_irix6
6050 && bfd_get_section_by_name (abfd,
6051 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
6052 ++ret;
6053
6054 /* See if we need a PT_MIPS_RTPROC segment. */
6055 if (IRIX_COMPAT (abfd) == ict_irix5
6056 && bfd_get_section_by_name (abfd, ".dynamic")
6057 && bfd_get_section_by_name (abfd, ".mdebug"))
6058 ++ret;
6059
6060 return ret;
6061}
6062
8dc1a139 6063/* Modify the segment map for an IRIX5 executable. */
b49e97c9
TS
6064
6065boolean
6066_bfd_mips_elf_modify_segment_map (abfd)
6067 bfd *abfd;
6068{
6069 asection *s;
6070 struct elf_segment_map *m, **pm;
6071 bfd_size_type amt;
6072
6073 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
6074 segment. */
6075 s = bfd_get_section_by_name (abfd, ".reginfo");
6076 if (s != NULL && (s->flags & SEC_LOAD) != 0)
6077 {
6078 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
6079 if (m->p_type == PT_MIPS_REGINFO)
6080 break;
6081 if (m == NULL)
6082 {
6083 amt = sizeof *m;
6084 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
6085 if (m == NULL)
6086 return false;
6087
6088 m->p_type = PT_MIPS_REGINFO;
6089 m->count = 1;
6090 m->sections[0] = s;
6091
6092 /* We want to put it after the PHDR and INTERP segments. */
6093 pm = &elf_tdata (abfd)->segment_map;
6094 while (*pm != NULL
6095 && ((*pm)->p_type == PT_PHDR
6096 || (*pm)->p_type == PT_INTERP))
6097 pm = &(*pm)->next;
6098
6099 m->next = *pm;
6100 *pm = m;
6101 }
6102 }
6103
6104 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
6105 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
6106 PT_OPTIONS segement immediately following the program header
6107 table. */
6108 if (IRIX_COMPAT (abfd) == ict_irix6)
6109 {
6110 for (s = abfd->sections; s; s = s->next)
6111 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
6112 break;
6113
6114 if (s)
6115 {
6116 struct elf_segment_map *options_segment;
6117
6118 /* Usually, there's a program header table. But, sometimes
6119 there's not (like when running the `ld' testsuite). So,
6120 if there's no program header table, we just put the
6121 options segement at the end. */
6122 for (pm = &elf_tdata (abfd)->segment_map;
6123 *pm != NULL;
6124 pm = &(*pm)->next)
6125 if ((*pm)->p_type == PT_PHDR)
6126 break;
6127
6128 amt = sizeof (struct elf_segment_map);
6129 options_segment = bfd_zalloc (abfd, amt);
6130 options_segment->next = *pm;
6131 options_segment->p_type = PT_MIPS_OPTIONS;
6132 options_segment->p_flags = PF_R;
6133 options_segment->p_flags_valid = true;
6134 options_segment->count = 1;
6135 options_segment->sections[0] = s;
6136 *pm = options_segment;
6137 }
6138 }
6139 else
6140 {
6141 if (IRIX_COMPAT (abfd) == ict_irix5)
6142 {
6143 /* If there are .dynamic and .mdebug sections, we make a room
6144 for the RTPROC header. FIXME: Rewrite without section names. */
6145 if (bfd_get_section_by_name (abfd, ".interp") == NULL
6146 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
6147 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
6148 {
6149 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
6150 if (m->p_type == PT_MIPS_RTPROC)
6151 break;
6152 if (m == NULL)
6153 {
6154 amt = sizeof *m;
6155 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
6156 if (m == NULL)
6157 return false;
6158
6159 m->p_type = PT_MIPS_RTPROC;
6160
6161 s = bfd_get_section_by_name (abfd, ".rtproc");
6162 if (s == NULL)
6163 {
6164 m->count = 0;
6165 m->p_flags = 0;
6166 m->p_flags_valid = 1;
6167 }
6168 else
6169 {
6170 m->count = 1;
6171 m->sections[0] = s;
6172 }
6173
6174 /* We want to put it after the DYNAMIC segment. */
6175 pm = &elf_tdata (abfd)->segment_map;
6176 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
6177 pm = &(*pm)->next;
6178 if (*pm != NULL)
6179 pm = &(*pm)->next;
6180
6181 m->next = *pm;
6182 *pm = m;
6183 }
6184 }
6185 }
8dc1a139 6186 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
6187 .dynstr, .dynsym, and .hash sections, and everything in
6188 between. */
6189 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
6190 pm = &(*pm)->next)
6191 if ((*pm)->p_type == PT_DYNAMIC)
6192 break;
6193 m = *pm;
6194 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
6195 {
6196 /* For a normal mips executable the permissions for the PT_DYNAMIC
6197 segment are read, write and execute. We do that here since
6198 the code in elf.c sets only the read permission. This matters
6199 sometimes for the dynamic linker. */
6200 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
6201 {
6202 m->p_flags = PF_R | PF_W | PF_X;
6203 m->p_flags_valid = 1;
6204 }
6205 }
6206 if (m != NULL
6207 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
6208 {
6209 static const char *sec_names[] =
6210 {
6211 ".dynamic", ".dynstr", ".dynsym", ".hash"
6212 };
6213 bfd_vma low, high;
6214 unsigned int i, c;
6215 struct elf_segment_map *n;
6216
6217 low = 0xffffffff;
6218 high = 0;
6219 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
6220 {
6221 s = bfd_get_section_by_name (abfd, sec_names[i]);
6222 if (s != NULL && (s->flags & SEC_LOAD) != 0)
6223 {
6224 bfd_size_type sz;
6225
6226 if (low > s->vma)
6227 low = s->vma;
6228 sz = s->_cooked_size;
6229 if (sz == 0)
6230 sz = s->_raw_size;
6231 if (high < s->vma + sz)
6232 high = s->vma + sz;
6233 }
6234 }
6235
6236 c = 0;
6237 for (s = abfd->sections; s != NULL; s = s->next)
6238 if ((s->flags & SEC_LOAD) != 0
6239 && s->vma >= low
6240 && ((s->vma
6241 + (s->_cooked_size !=
6242 0 ? s->_cooked_size : s->_raw_size)) <= high))
6243 ++c;
6244
6245 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
6246 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
6247 if (n == NULL)
6248 return false;
6249 *n = *m;
6250 n->count = c;
6251
6252 i = 0;
6253 for (s = abfd->sections; s != NULL; s = s->next)
6254 {
6255 if ((s->flags & SEC_LOAD) != 0
6256 && s->vma >= low
6257 && ((s->vma
6258 + (s->_cooked_size != 0 ?
6259 s->_cooked_size : s->_raw_size)) <= high))
6260 {
6261 n->sections[i] = s;
6262 ++i;
6263 }
6264 }
6265
6266 *pm = n;
6267 }
6268 }
6269
6270 return true;
6271}
6272\f
6273/* Return the section that should be marked against GC for a given
6274 relocation. */
6275
6276asection *
6277_bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
6278 bfd *abfd;
6279 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6280 Elf_Internal_Rela *rel;
6281 struct elf_link_hash_entry *h;
6282 Elf_Internal_Sym *sym;
6283{
6284 /* ??? Do mips16 stub sections need to be handled special? */
6285
6286 if (h != NULL)
6287 {
6288 switch (ELF_R_TYPE (abfd, rel->r_info))
6289 {
6290 case R_MIPS_GNU_VTINHERIT:
6291 case R_MIPS_GNU_VTENTRY:
6292 break;
6293
6294 default:
6295 switch (h->root.type)
6296 {
6297 case bfd_link_hash_defined:
6298 case bfd_link_hash_defweak:
6299 return h->root.u.def.section;
6300
6301 case bfd_link_hash_common:
6302 return h->root.u.c.p->section;
6303
6304 default:
6305 break;
6306 }
6307 }
6308 }
6309 else
6310 {
6311 return bfd_section_from_elf_index (abfd, sym->st_shndx);
6312 }
6313
6314 return NULL;
6315}
6316
6317/* Update the got entry reference counts for the section being removed. */
6318
6319boolean
6320_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
6321 bfd *abfd ATTRIBUTE_UNUSED;
6322 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6323 asection *sec ATTRIBUTE_UNUSED;
6324 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
6325{
6326#if 0
6327 Elf_Internal_Shdr *symtab_hdr;
6328 struct elf_link_hash_entry **sym_hashes;
6329 bfd_signed_vma *local_got_refcounts;
6330 const Elf_Internal_Rela *rel, *relend;
6331 unsigned long r_symndx;
6332 struct elf_link_hash_entry *h;
6333
6334 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6335 sym_hashes = elf_sym_hashes (abfd);
6336 local_got_refcounts = elf_local_got_refcounts (abfd);
6337
6338 relend = relocs + sec->reloc_count;
6339 for (rel = relocs; rel < relend; rel++)
6340 switch (ELF_R_TYPE (abfd, rel->r_info))
6341 {
6342 case R_MIPS_GOT16:
6343 case R_MIPS_CALL16:
6344 case R_MIPS_CALL_HI16:
6345 case R_MIPS_CALL_LO16:
6346 case R_MIPS_GOT_HI16:
6347 case R_MIPS_GOT_LO16:
6348 /* ??? It would seem that the existing MIPS code does no sort
6349 of reference counting or whatnot on its GOT and PLT entries,
6350 so it is not possible to garbage collect them at this time. */
6351 break;
6352
6353 default:
6354 break;
6355 }
6356#endif
6357
6358 return true;
6359}
6360\f
6361/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
6362 hiding the old indirect symbol. Process additional relocation
6363 information. Also called for weakdefs, in which case we just let
6364 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
6365
6366void
6367_bfd_mips_elf_copy_indirect_symbol (dir, ind)
6368 struct elf_link_hash_entry *dir, *ind;
6369{
6370 struct mips_elf_link_hash_entry *dirmips, *indmips;
6371
6372 _bfd_elf_link_hash_copy_indirect (dir, ind);
6373
6374 if (ind->root.type != bfd_link_hash_indirect)
6375 return;
6376
6377 dirmips = (struct mips_elf_link_hash_entry *) dir;
6378 indmips = (struct mips_elf_link_hash_entry *) ind;
6379 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
6380 if (indmips->readonly_reloc)
6381 dirmips->readonly_reloc = true;
6382 if (dirmips->min_dyn_reloc_index == 0
6383 || (indmips->min_dyn_reloc_index != 0
6384 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
6385 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
6386 if (indmips->no_fn_stub)
6387 dirmips->no_fn_stub = true;
6388}
6389
6390void
6391_bfd_mips_elf_hide_symbol (info, entry, force_local)
6392 struct bfd_link_info *info;
6393 struct elf_link_hash_entry *entry;
6394 boolean force_local;
6395{
6396 bfd *dynobj;
6397 asection *got;
6398 struct mips_got_info *g;
6399 struct mips_elf_link_hash_entry *h;
7c5fcef7 6400
b49e97c9 6401 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
6402 if (h->forced_local)
6403 return;
6404 h->forced_local = true;
6405
b49e97c9
TS
6406 dynobj = elf_hash_table (info)->dynobj;
6407 got = bfd_get_section_by_name (dynobj, ".got");
6408 g = (struct mips_got_info *) elf_section_data (got)->tdata;
6409
6410 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
6411
6412 /* FIXME: Do we allocate too much GOT space here? */
6413 g->local_gotno++;
6414 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
6415}
6416\f
53bfd6b4
MR
6417boolean
6418_bfd_mips_elf_ignore_discarded_relocs (sec)
6419 asection *sec;
6420{
6421 if (strcmp (sec->name, ".pdr") == 0)
6422 return true;
6423 return false;
6424}
6425\f
b49e97c9
TS
6426/* MIPS ELF uses a special find_nearest_line routine in order the
6427 handle the ECOFF debugging information. */
6428
6429struct mips_elf_find_line
6430{
6431 struct ecoff_debug_info d;
6432 struct ecoff_find_line i;
6433};
6434
6435boolean
6436_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
6437 functionname_ptr, line_ptr)
6438 bfd *abfd;
6439 asection *section;
6440 asymbol **symbols;
6441 bfd_vma offset;
6442 const char **filename_ptr;
6443 const char **functionname_ptr;
6444 unsigned int *line_ptr;
6445{
6446 asection *msec;
6447
6448 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6449 filename_ptr, functionname_ptr,
6450 line_ptr))
6451 return true;
6452
6453 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6454 filename_ptr, functionname_ptr,
6455 line_ptr,
6456 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
6457 &elf_tdata (abfd)->dwarf2_find_line_info))
6458 return true;
6459
6460 msec = bfd_get_section_by_name (abfd, ".mdebug");
6461 if (msec != NULL)
6462 {
6463 flagword origflags;
6464 struct mips_elf_find_line *fi;
6465 const struct ecoff_debug_swap * const swap =
6466 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
6467
6468 /* If we are called during a link, mips_elf_final_link may have
6469 cleared the SEC_HAS_CONTENTS field. We force it back on here
6470 if appropriate (which it normally will be). */
6471 origflags = msec->flags;
6472 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
6473 msec->flags |= SEC_HAS_CONTENTS;
6474
6475 fi = elf_tdata (abfd)->find_line_info;
6476 if (fi == NULL)
6477 {
6478 bfd_size_type external_fdr_size;
6479 char *fraw_src;
6480 char *fraw_end;
6481 struct fdr *fdr_ptr;
6482 bfd_size_type amt = sizeof (struct mips_elf_find_line);
6483
6484 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
6485 if (fi == NULL)
6486 {
6487 msec->flags = origflags;
6488 return false;
6489 }
6490
6491 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
6492 {
6493 msec->flags = origflags;
6494 return false;
6495 }
6496
6497 /* Swap in the FDR information. */
6498 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
6499 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
6500 if (fi->d.fdr == NULL)
6501 {
6502 msec->flags = origflags;
6503 return false;
6504 }
6505 external_fdr_size = swap->external_fdr_size;
6506 fdr_ptr = fi->d.fdr;
6507 fraw_src = (char *) fi->d.external_fdr;
6508 fraw_end = (fraw_src
6509 + fi->d.symbolic_header.ifdMax * external_fdr_size);
6510 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
6511 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
6512
6513 elf_tdata (abfd)->find_line_info = fi;
6514
6515 /* Note that we don't bother to ever free this information.
6516 find_nearest_line is either called all the time, as in
6517 objdump -l, so the information should be saved, or it is
6518 rarely called, as in ld error messages, so the memory
6519 wasted is unimportant. Still, it would probably be a
6520 good idea for free_cached_info to throw it away. */
6521 }
6522
6523 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
6524 &fi->i, filename_ptr, functionname_ptr,
6525 line_ptr))
6526 {
6527 msec->flags = origflags;
6528 return true;
6529 }
6530
6531 msec->flags = origflags;
6532 }
6533
6534 /* Fall back on the generic ELF find_nearest_line routine. */
6535
6536 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
6537 filename_ptr, functionname_ptr,
6538 line_ptr);
6539}
6540\f
6541/* When are writing out the .options or .MIPS.options section,
6542 remember the bytes we are writing out, so that we can install the
6543 GP value in the section_processing routine. */
6544
6545boolean
6546_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
6547 bfd *abfd;
6548 sec_ptr section;
6549 PTR location;
6550 file_ptr offset;
6551 bfd_size_type count;
6552{
6553 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
6554 {
6555 bfd_byte *c;
6556
6557 if (elf_section_data (section) == NULL)
6558 {
6559 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
6560 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
6561 if (elf_section_data (section) == NULL)
6562 return false;
6563 }
6564 c = (bfd_byte *) elf_section_data (section)->tdata;
6565 if (c == NULL)
6566 {
6567 bfd_size_type size;
6568
6569 if (section->_cooked_size != 0)
6570 size = section->_cooked_size;
6571 else
6572 size = section->_raw_size;
6573 c = (bfd_byte *) bfd_zalloc (abfd, size);
6574 if (c == NULL)
6575 return false;
6576 elf_section_data (section)->tdata = (PTR) c;
6577 }
6578
6579 memcpy (c + offset, location, (size_t) count);
6580 }
6581
6582 return _bfd_elf_set_section_contents (abfd, section, location, offset,
6583 count);
6584}
6585
6586/* This is almost identical to bfd_generic_get_... except that some
6587 MIPS relocations need to be handled specially. Sigh. */
6588
6589bfd_byte *
6590_bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
6591 data, relocateable, symbols)
6592 bfd *abfd;
6593 struct bfd_link_info *link_info;
6594 struct bfd_link_order *link_order;
6595 bfd_byte *data;
6596 boolean relocateable;
6597 asymbol **symbols;
6598{
6599 /* Get enough memory to hold the stuff */
6600 bfd *input_bfd = link_order->u.indirect.section->owner;
6601 asection *input_section = link_order->u.indirect.section;
6602
6603 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
6604 arelent **reloc_vector = NULL;
6605 long reloc_count;
6606
6607 if (reloc_size < 0)
6608 goto error_return;
6609
6610 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
6611 if (reloc_vector == NULL && reloc_size != 0)
6612 goto error_return;
6613
6614 /* read in the section */
6615 if (!bfd_get_section_contents (input_bfd,
6616 input_section,
6617 (PTR) data,
6618 (file_ptr) 0,
6619 input_section->_raw_size))
6620 goto error_return;
6621
6622 /* We're not relaxing the section, so just copy the size info */
6623 input_section->_cooked_size = input_section->_raw_size;
6624 input_section->reloc_done = true;
6625
6626 reloc_count = bfd_canonicalize_reloc (input_bfd,
6627 input_section,
6628 reloc_vector,
6629 symbols);
6630 if (reloc_count < 0)
6631 goto error_return;
6632
6633 if (reloc_count > 0)
6634 {
6635 arelent **parent;
6636 /* for mips */
6637 int gp_found;
6638 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
6639
6640 {
6641 struct bfd_hash_entry *h;
6642 struct bfd_link_hash_entry *lh;
6643 /* Skip all this stuff if we aren't mixing formats. */
6644 if (abfd && input_bfd
6645 && abfd->xvec == input_bfd->xvec)
6646 lh = 0;
6647 else
6648 {
6649 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
6650 lh = (struct bfd_link_hash_entry *) h;
6651 }
6652 lookup:
6653 if (lh)
6654 {
6655 switch (lh->type)
6656 {
6657 case bfd_link_hash_undefined:
6658 case bfd_link_hash_undefweak:
6659 case bfd_link_hash_common:
6660 gp_found = 0;
6661 break;
6662 case bfd_link_hash_defined:
6663 case bfd_link_hash_defweak:
6664 gp_found = 1;
6665 gp = lh->u.def.value;
6666 break;
6667 case bfd_link_hash_indirect:
6668 case bfd_link_hash_warning:
6669 lh = lh->u.i.link;
6670 /* @@FIXME ignoring warning for now */
6671 goto lookup;
6672 case bfd_link_hash_new:
6673 default:
6674 abort ();
6675 }
6676 }
6677 else
6678 gp_found = 0;
6679 }
6680 /* end mips */
6681 for (parent = reloc_vector; *parent != (arelent *) NULL;
6682 parent++)
6683 {
6684 char *error_message = (char *) NULL;
6685 bfd_reloc_status_type r;
6686
6687 /* Specific to MIPS: Deal with relocation types that require
6688 knowing the gp of the output bfd. */
6689 asymbol *sym = *(*parent)->sym_ptr_ptr;
6690 if (bfd_is_abs_section (sym->section) && abfd)
6691 {
6692 /* The special_function wouldn't get called anyways. */
6693 }
6694 else if (!gp_found)
6695 {
6696 /* The gp isn't there; let the special function code
6697 fall over on its own. */
6698 }
6699 else if ((*parent)->howto->special_function
6700 == _bfd_mips_elf32_gprel16_reloc)
6701 {
6702 /* bypass special_function call */
6703 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
6704 input_section, relocateable,
6705 (PTR) data, gp);
6706 goto skip_bfd_perform_relocation;
6707 }
6708 /* end mips specific stuff */
6709
6710 r = bfd_perform_relocation (input_bfd,
6711 *parent,
6712 (PTR) data,
6713 input_section,
6714 relocateable ? abfd : (bfd *) NULL,
6715 &error_message);
6716 skip_bfd_perform_relocation:
6717
6718 if (relocateable)
6719 {
6720 asection *os = input_section->output_section;
6721
6722 /* A partial link, so keep the relocs */
6723 os->orelocation[os->reloc_count] = *parent;
6724 os->reloc_count++;
6725 }
6726
6727 if (r != bfd_reloc_ok)
6728 {
6729 switch (r)
6730 {
6731 case bfd_reloc_undefined:
6732 if (!((*link_info->callbacks->undefined_symbol)
6733 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
6734 input_bfd, input_section, (*parent)->address,
6735 true)))
6736 goto error_return;
6737 break;
6738 case bfd_reloc_dangerous:
6739 BFD_ASSERT (error_message != (char *) NULL);
6740 if (!((*link_info->callbacks->reloc_dangerous)
6741 (link_info, error_message, input_bfd, input_section,
6742 (*parent)->address)))
6743 goto error_return;
6744 break;
6745 case bfd_reloc_overflow:
6746 if (!((*link_info->callbacks->reloc_overflow)
6747 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
6748 (*parent)->howto->name, (*parent)->addend,
6749 input_bfd, input_section, (*parent)->address)))
6750 goto error_return;
6751 break;
6752 case bfd_reloc_outofrange:
6753 default:
6754 abort ();
6755 break;
6756 }
6757
6758 }
6759 }
6760 }
6761 if (reloc_vector != NULL)
6762 free (reloc_vector);
6763 return data;
6764
6765error_return:
6766 if (reloc_vector != NULL)
6767 free (reloc_vector);
6768 return NULL;
6769}
6770\f
6771/* Create a MIPS ELF linker hash table. */
6772
6773struct bfd_link_hash_table *
6774_bfd_mips_elf_link_hash_table_create (abfd)
6775 bfd *abfd;
6776{
6777 struct mips_elf_link_hash_table *ret;
6778 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
6779
e2d34d7d 6780 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
b49e97c9
TS
6781 if (ret == (struct mips_elf_link_hash_table *) NULL)
6782 return NULL;
6783
6784 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
6785 mips_elf_link_hash_newfunc))
6786 {
e2d34d7d 6787 free (ret);
b49e97c9
TS
6788 return NULL;
6789 }
6790
6791#if 0
6792 /* We no longer use this. */
6793 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
6794 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
6795#endif
6796 ret->procedure_count = 0;
6797 ret->compact_rel_size = 0;
6798 ret->use_rld_obj_head = false;
6799 ret->rld_value = 0;
6800 ret->mips16_stubs_seen = false;
6801
6802 return &ret->root.root;
6803}
6804\f
6805/* We need to use a special link routine to handle the .reginfo and
6806 the .mdebug sections. We need to merge all instances of these
6807 sections together, not write them all out sequentially. */
6808
6809boolean
6810_bfd_mips_elf_final_link (abfd, info)
6811 bfd *abfd;
6812 struct bfd_link_info *info;
6813{
6814 asection **secpp;
6815 asection *o;
6816 struct bfd_link_order *p;
6817 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
6818 asection *rtproc_sec;
6819 Elf32_RegInfo reginfo;
6820 struct ecoff_debug_info debug;
6821 const struct ecoff_debug_swap *swap
6822 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
6823 HDRR *symhdr = &debug.symbolic_header;
6824 PTR mdebug_handle = NULL;
6825 asection *s;
6826 EXTR esym;
6827 unsigned int i;
6828 bfd_size_type amt;
6829
6830 static const char * const secname[] =
6831 {
6832 ".text", ".init", ".fini", ".data",
6833 ".rodata", ".sdata", ".sbss", ".bss"
6834 };
6835 static const int sc[] =
6836 {
6837 scText, scInit, scFini, scData,
6838 scRData, scSData, scSBss, scBss
6839 };
6840
6841 /* If all the things we linked together were PIC, but we're
6842 producing an executable (rather than a shared object), then the
6843 resulting file is CPIC (i.e., it calls PIC code.) */
6844 if (!info->shared
6845 && !info->relocateable
6846 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
6847 {
6848 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
6849 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
6850 }
6851
6852 /* We'd carefully arranged the dynamic symbol indices, and then the
6853 generic size_dynamic_sections renumbered them out from under us.
6854 Rather than trying somehow to prevent the renumbering, just do
6855 the sort again. */
6856 if (elf_hash_table (info)->dynamic_sections_created)
6857 {
6858 bfd *dynobj;
6859 asection *got;
6860 struct mips_got_info *g;
6861
6862 /* When we resort, we must tell mips_elf_sort_hash_table what
6863 the lowest index it may use is. That's the number of section
6864 symbols we're going to add. The generic ELF linker only
6865 adds these symbols when building a shared object. Note that
6866 we count the sections after (possibly) removing the .options
6867 section above. */
6868 if (! mips_elf_sort_hash_table (info, (info->shared
6869 ? bfd_count_sections (abfd) + 1
6870 : 1)))
6871 return false;
6872
6873 /* Make sure we didn't grow the global .got region. */
6874 dynobj = elf_hash_table (info)->dynobj;
6875 got = bfd_get_section_by_name (dynobj, ".got");
6876 g = (struct mips_got_info *) elf_section_data (got)->tdata;
6877
6878 if (g->global_gotsym != NULL)
6879 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
6880 - g->global_gotsym->dynindx)
6881 <= g->global_gotno);
6882 }
6883
6884 /* On IRIX5, we omit the .options section. On IRIX6, however, we
6885 include it, even though we don't process it quite right. (Some
6886 entries are supposed to be merged.) Empirically, we seem to be
6887 better off including it then not. */
6888 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6889 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
6890 {
6891 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
6892 {
6893 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
6894 if (p->type == bfd_indirect_link_order)
6895 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
6896 (*secpp)->link_order_head = NULL;
6897 bfd_section_list_remove (abfd, secpp);
6898 --abfd->section_count;
6899
6900 break;
6901 }
6902 }
6903
6904 /* We include .MIPS.options, even though we don't process it quite right.
6905 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
6906 to be better off including it than not. */
6907 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
6908 {
6909 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
6910 {
6911 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
6912 if (p->type == bfd_indirect_link_order)
6913 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
6914 (*secpp)->link_order_head = NULL;
6915 bfd_section_list_remove (abfd, secpp);
6916 --abfd->section_count;
6917
6918 break;
6919 }
6920 }
6921
6922 /* Get a value for the GP register. */
6923 if (elf_gp (abfd) == 0)
6924 {
6925 struct bfd_link_hash_entry *h;
6926
6927 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
6928 if (h != (struct bfd_link_hash_entry *) NULL
6929 && h->type == bfd_link_hash_defined)
6930 elf_gp (abfd) = (h->u.def.value
6931 + h->u.def.section->output_section->vma
6932 + h->u.def.section->output_offset);
6933 else if (info->relocateable)
6934 {
6935 bfd_vma lo = MINUS_ONE;
6936
6937 /* Find the GP-relative section with the lowest offset. */
6938 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
6939 if (o->vma < lo
6940 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
6941 lo = o->vma;
6942
6943 /* And calculate GP relative to that. */
6944 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
6945 }
6946 else
6947 {
6948 /* If the relocate_section function needs to do a reloc
6949 involving the GP value, it should make a reloc_dangerous
6950 callback to warn that GP is not defined. */
6951 }
6952 }
6953
6954 /* Go through the sections and collect the .reginfo and .mdebug
6955 information. */
6956 reginfo_sec = NULL;
6957 mdebug_sec = NULL;
6958 gptab_data_sec = NULL;
6959 gptab_bss_sec = NULL;
6960 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
6961 {
6962 if (strcmp (o->name, ".reginfo") == 0)
6963 {
6964 memset (&reginfo, 0, sizeof reginfo);
6965
6966 /* We have found the .reginfo section in the output file.
6967 Look through all the link_orders comprising it and merge
6968 the information together. */
6969 for (p = o->link_order_head;
6970 p != (struct bfd_link_order *) NULL;
6971 p = p->next)
6972 {
6973 asection *input_section;
6974 bfd *input_bfd;
6975 Elf32_External_RegInfo ext;
6976 Elf32_RegInfo sub;
6977
6978 if (p->type != bfd_indirect_link_order)
6979 {
6980 if (p->type == bfd_data_link_order)
6981 continue;
6982 abort ();
6983 }
6984
6985 input_section = p->u.indirect.section;
6986 input_bfd = input_section->owner;
6987
6988 /* The linker emulation code has probably clobbered the
6989 size to be zero bytes. */
6990 if (input_section->_raw_size == 0)
6991 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
6992
6993 if (! bfd_get_section_contents (input_bfd, input_section,
6994 (PTR) &ext,
6995 (file_ptr) 0,
6996 (bfd_size_type) sizeof ext))
6997 return false;
6998
6999 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
7000
7001 reginfo.ri_gprmask |= sub.ri_gprmask;
7002 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
7003 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
7004 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
7005 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
7006
7007 /* ri_gp_value is set by the function
7008 mips_elf32_section_processing when the section is
7009 finally written out. */
7010
7011 /* Hack: reset the SEC_HAS_CONTENTS flag so that
7012 elf_link_input_bfd ignores this section. */
7013 input_section->flags &= ~SEC_HAS_CONTENTS;
7014 }
7015
7016 /* Size has been set in _bfd_mips_elf_always_size_sections. */
7017 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
7018
7019 /* Skip this section later on (I don't think this currently
7020 matters, but someday it might). */
7021 o->link_order_head = (struct bfd_link_order *) NULL;
7022
7023 reginfo_sec = o;
7024 }
7025
7026 if (strcmp (o->name, ".mdebug") == 0)
7027 {
7028 struct extsym_info einfo;
7029 bfd_vma last;
7030
7031 /* We have found the .mdebug section in the output file.
7032 Look through all the link_orders comprising it and merge
7033 the information together. */
7034 symhdr->magic = swap->sym_magic;
7035 /* FIXME: What should the version stamp be? */
7036 symhdr->vstamp = 0;
7037 symhdr->ilineMax = 0;
7038 symhdr->cbLine = 0;
7039 symhdr->idnMax = 0;
7040 symhdr->ipdMax = 0;
7041 symhdr->isymMax = 0;
7042 symhdr->ioptMax = 0;
7043 symhdr->iauxMax = 0;
7044 symhdr->issMax = 0;
7045 symhdr->issExtMax = 0;
7046 symhdr->ifdMax = 0;
7047 symhdr->crfd = 0;
7048 symhdr->iextMax = 0;
7049
7050 /* We accumulate the debugging information itself in the
7051 debug_info structure. */
7052 debug.line = NULL;
7053 debug.external_dnr = NULL;
7054 debug.external_pdr = NULL;
7055 debug.external_sym = NULL;
7056 debug.external_opt = NULL;
7057 debug.external_aux = NULL;
7058 debug.ss = NULL;
7059 debug.ssext = debug.ssext_end = NULL;
7060 debug.external_fdr = NULL;
7061 debug.external_rfd = NULL;
7062 debug.external_ext = debug.external_ext_end = NULL;
7063
7064 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
7065 if (mdebug_handle == (PTR) NULL)
7066 return false;
7067
7068 esym.jmptbl = 0;
7069 esym.cobol_main = 0;
7070 esym.weakext = 0;
7071 esym.reserved = 0;
7072 esym.ifd = ifdNil;
7073 esym.asym.iss = issNil;
7074 esym.asym.st = stLocal;
7075 esym.asym.reserved = 0;
7076 esym.asym.index = indexNil;
7077 last = 0;
7078 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
7079 {
7080 esym.asym.sc = sc[i];
7081 s = bfd_get_section_by_name (abfd, secname[i]);
7082 if (s != NULL)
7083 {
7084 esym.asym.value = s->vma;
7085 last = s->vma + s->_raw_size;
7086 }
7087 else
7088 esym.asym.value = last;
7089 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
7090 secname[i], &esym))
7091 return false;
7092 }
7093
7094 for (p = o->link_order_head;
7095 p != (struct bfd_link_order *) NULL;
7096 p = p->next)
7097 {
7098 asection *input_section;
7099 bfd *input_bfd;
7100 const struct ecoff_debug_swap *input_swap;
7101 struct ecoff_debug_info input_debug;
7102 char *eraw_src;
7103 char *eraw_end;
7104
7105 if (p->type != bfd_indirect_link_order)
7106 {
7107 if (p->type == bfd_data_link_order)
7108 continue;
7109 abort ();
7110 }
7111
7112 input_section = p->u.indirect.section;
7113 input_bfd = input_section->owner;
7114
7115 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
7116 || (get_elf_backend_data (input_bfd)
7117 ->elf_backend_ecoff_debug_swap) == NULL)
7118 {
7119 /* I don't know what a non MIPS ELF bfd would be
7120 doing with a .mdebug section, but I don't really
7121 want to deal with it. */
7122 continue;
7123 }
7124
7125 input_swap = (get_elf_backend_data (input_bfd)
7126 ->elf_backend_ecoff_debug_swap);
7127
7128 BFD_ASSERT (p->size == input_section->_raw_size);
7129
7130 /* The ECOFF linking code expects that we have already
7131 read in the debugging information and set up an
7132 ecoff_debug_info structure, so we do that now. */
7133 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
7134 &input_debug))
7135 return false;
7136
7137 if (! (bfd_ecoff_debug_accumulate
7138 (mdebug_handle, abfd, &debug, swap, input_bfd,
7139 &input_debug, input_swap, info)))
7140 return false;
7141
7142 /* Loop through the external symbols. For each one with
7143 interesting information, try to find the symbol in
7144 the linker global hash table and save the information
7145 for the output external symbols. */
7146 eraw_src = input_debug.external_ext;
7147 eraw_end = (eraw_src
7148 + (input_debug.symbolic_header.iextMax
7149 * input_swap->external_ext_size));
7150 for (;
7151 eraw_src < eraw_end;
7152 eraw_src += input_swap->external_ext_size)
7153 {
7154 EXTR ext;
7155 const char *name;
7156 struct mips_elf_link_hash_entry *h;
7157
7158 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
7159 if (ext.asym.sc == scNil
7160 || ext.asym.sc == scUndefined
7161 || ext.asym.sc == scSUndefined)
7162 continue;
7163
7164 name = input_debug.ssext + ext.asym.iss;
7165 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
7166 name, false, false, true);
7167 if (h == NULL || h->esym.ifd != -2)
7168 continue;
7169
7170 if (ext.ifd != -1)
7171 {
7172 BFD_ASSERT (ext.ifd
7173 < input_debug.symbolic_header.ifdMax);
7174 ext.ifd = input_debug.ifdmap[ext.ifd];
7175 }
7176
7177 h->esym = ext;
7178 }
7179
7180 /* Free up the information we just read. */
7181 free (input_debug.line);
7182 free (input_debug.external_dnr);
7183 free (input_debug.external_pdr);
7184 free (input_debug.external_sym);
7185 free (input_debug.external_opt);
7186 free (input_debug.external_aux);
7187 free (input_debug.ss);
7188 free (input_debug.ssext);
7189 free (input_debug.external_fdr);
7190 free (input_debug.external_rfd);
7191 free (input_debug.external_ext);
7192
7193 /* Hack: reset the SEC_HAS_CONTENTS flag so that
7194 elf_link_input_bfd ignores this section. */
7195 input_section->flags &= ~SEC_HAS_CONTENTS;
7196 }
7197
7198 if (SGI_COMPAT (abfd) && info->shared)
7199 {
7200 /* Create .rtproc section. */
7201 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
7202 if (rtproc_sec == NULL)
7203 {
7204 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
7205 | SEC_LINKER_CREATED | SEC_READONLY);
7206
7207 rtproc_sec = bfd_make_section (abfd, ".rtproc");
7208 if (rtproc_sec == NULL
7209 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
7210 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
7211 return false;
7212 }
7213
7214 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
7215 info, rtproc_sec,
7216 &debug))
7217 return false;
7218 }
7219
7220 /* Build the external symbol information. */
7221 einfo.abfd = abfd;
7222 einfo.info = info;
7223 einfo.debug = &debug;
7224 einfo.swap = swap;
7225 einfo.failed = false;
7226 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7227 mips_elf_output_extsym,
7228 (PTR) &einfo);
7229 if (einfo.failed)
7230 return false;
7231
7232 /* Set the size of the .mdebug section. */
7233 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
7234
7235 /* Skip this section later on (I don't think this currently
7236 matters, but someday it might). */
7237 o->link_order_head = (struct bfd_link_order *) NULL;
7238
7239 mdebug_sec = o;
7240 }
7241
7242 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
7243 {
7244 const char *subname;
7245 unsigned int c;
7246 Elf32_gptab *tab;
7247 Elf32_External_gptab *ext_tab;
7248 unsigned int j;
7249
7250 /* The .gptab.sdata and .gptab.sbss sections hold
7251 information describing how the small data area would
7252 change depending upon the -G switch. These sections
7253 not used in executables files. */
7254 if (! info->relocateable)
7255 {
7256 for (p = o->link_order_head;
7257 p != (struct bfd_link_order *) NULL;
7258 p = p->next)
7259 {
7260 asection *input_section;
7261
7262 if (p->type != bfd_indirect_link_order)
7263 {
7264 if (p->type == bfd_data_link_order)
7265 continue;
7266 abort ();
7267 }
7268
7269 input_section = p->u.indirect.section;
7270
7271 /* Hack: reset the SEC_HAS_CONTENTS flag so that
7272 elf_link_input_bfd ignores this section. */
7273 input_section->flags &= ~SEC_HAS_CONTENTS;
7274 }
7275
7276 /* Skip this section later on (I don't think this
7277 currently matters, but someday it might). */
7278 o->link_order_head = (struct bfd_link_order *) NULL;
7279
7280 /* Really remove the section. */
7281 for (secpp = &abfd->sections;
7282 *secpp != o;
7283 secpp = &(*secpp)->next)
7284 ;
7285 bfd_section_list_remove (abfd, secpp);
7286 --abfd->section_count;
7287
7288 continue;
7289 }
7290
7291 /* There is one gptab for initialized data, and one for
7292 uninitialized data. */
7293 if (strcmp (o->name, ".gptab.sdata") == 0)
7294 gptab_data_sec = o;
7295 else if (strcmp (o->name, ".gptab.sbss") == 0)
7296 gptab_bss_sec = o;
7297 else
7298 {
7299 (*_bfd_error_handler)
7300 (_("%s: illegal section name `%s'"),
7301 bfd_get_filename (abfd), o->name);
7302 bfd_set_error (bfd_error_nonrepresentable_section);
7303 return false;
7304 }
7305
7306 /* The linker script always combines .gptab.data and
7307 .gptab.sdata into .gptab.sdata, and likewise for
7308 .gptab.bss and .gptab.sbss. It is possible that there is
7309 no .sdata or .sbss section in the output file, in which
7310 case we must change the name of the output section. */
7311 subname = o->name + sizeof ".gptab" - 1;
7312 if (bfd_get_section_by_name (abfd, subname) == NULL)
7313 {
7314 if (o == gptab_data_sec)
7315 o->name = ".gptab.data";
7316 else
7317 o->name = ".gptab.bss";
7318 subname = o->name + sizeof ".gptab" - 1;
7319 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
7320 }
7321
7322 /* Set up the first entry. */
7323 c = 1;
7324 amt = c * sizeof (Elf32_gptab);
7325 tab = (Elf32_gptab *) bfd_malloc (amt);
7326 if (tab == NULL)
7327 return false;
7328 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
7329 tab[0].gt_header.gt_unused = 0;
7330
7331 /* Combine the input sections. */
7332 for (p = o->link_order_head;
7333 p != (struct bfd_link_order *) NULL;
7334 p = p->next)
7335 {
7336 asection *input_section;
7337 bfd *input_bfd;
7338 bfd_size_type size;
7339 unsigned long last;
7340 bfd_size_type gpentry;
7341
7342 if (p->type != bfd_indirect_link_order)
7343 {
7344 if (p->type == bfd_data_link_order)
7345 continue;
7346 abort ();
7347 }
7348
7349 input_section = p->u.indirect.section;
7350 input_bfd = input_section->owner;
7351
7352 /* Combine the gptab entries for this input section one
7353 by one. We know that the input gptab entries are
7354 sorted by ascending -G value. */
7355 size = bfd_section_size (input_bfd, input_section);
7356 last = 0;
7357 for (gpentry = sizeof (Elf32_External_gptab);
7358 gpentry < size;
7359 gpentry += sizeof (Elf32_External_gptab))
7360 {
7361 Elf32_External_gptab ext_gptab;
7362 Elf32_gptab int_gptab;
7363 unsigned long val;
7364 unsigned long add;
7365 boolean exact;
7366 unsigned int look;
7367
7368 if (! (bfd_get_section_contents
7369 (input_bfd, input_section, (PTR) &ext_gptab,
7370 (file_ptr) gpentry,
7371 (bfd_size_type) sizeof (Elf32_External_gptab))))
7372 {
7373 free (tab);
7374 return false;
7375 }
7376
7377 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
7378 &int_gptab);
7379 val = int_gptab.gt_entry.gt_g_value;
7380 add = int_gptab.gt_entry.gt_bytes - last;
7381
7382 exact = false;
7383 for (look = 1; look < c; look++)
7384 {
7385 if (tab[look].gt_entry.gt_g_value >= val)
7386 tab[look].gt_entry.gt_bytes += add;
7387
7388 if (tab[look].gt_entry.gt_g_value == val)
7389 exact = true;
7390 }
7391
7392 if (! exact)
7393 {
7394 Elf32_gptab *new_tab;
7395 unsigned int max;
7396
7397 /* We need a new table entry. */
7398 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
7399 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
7400 if (new_tab == NULL)
7401 {
7402 free (tab);
7403 return false;
7404 }
7405 tab = new_tab;
7406 tab[c].gt_entry.gt_g_value = val;
7407 tab[c].gt_entry.gt_bytes = add;
7408
7409 /* Merge in the size for the next smallest -G
7410 value, since that will be implied by this new
7411 value. */
7412 max = 0;
7413 for (look = 1; look < c; look++)
7414 {
7415 if (tab[look].gt_entry.gt_g_value < val
7416 && (max == 0
7417 || (tab[look].gt_entry.gt_g_value
7418 > tab[max].gt_entry.gt_g_value)))
7419 max = look;
7420 }
7421 if (max != 0)
7422 tab[c].gt_entry.gt_bytes +=
7423 tab[max].gt_entry.gt_bytes;
7424
7425 ++c;
7426 }
7427
7428 last = int_gptab.gt_entry.gt_bytes;
7429 }
7430
7431 /* Hack: reset the SEC_HAS_CONTENTS flag so that
7432 elf_link_input_bfd ignores this section. */
7433 input_section->flags &= ~SEC_HAS_CONTENTS;
7434 }
7435
7436 /* The table must be sorted by -G value. */
7437 if (c > 2)
7438 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
7439
7440 /* Swap out the table. */
7441 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
7442 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
7443 if (ext_tab == NULL)
7444 {
7445 free (tab);
7446 return false;
7447 }
7448
7449 for (j = 0; j < c; j++)
7450 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
7451 free (tab);
7452
7453 o->_raw_size = c * sizeof (Elf32_External_gptab);
7454 o->contents = (bfd_byte *) ext_tab;
7455
7456 /* Skip this section later on (I don't think this currently
7457 matters, but someday it might). */
7458 o->link_order_head = (struct bfd_link_order *) NULL;
7459 }
7460 }
7461
7462 /* Invoke the regular ELF backend linker to do all the work. */
7463 if (ABI_64_P (abfd))
7464 {
7465#ifdef BFD64
7466 if (!bfd_elf64_bfd_final_link (abfd, info))
7467 return false;
7468#else
7469 abort ();
7470 return false;
7471#endif /* BFD64 */
7472 }
7473 else if (!bfd_elf32_bfd_final_link (abfd, info))
7474 return false;
7475
7476 /* Now write out the computed sections. */
7477
7478 if (reginfo_sec != (asection *) NULL)
7479 {
7480 Elf32_External_RegInfo ext;
7481
7482 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
7483 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
7484 (file_ptr) 0,
7485 (bfd_size_type) sizeof ext))
7486 return false;
7487 }
7488
7489 if (mdebug_sec != (asection *) NULL)
7490 {
7491 BFD_ASSERT (abfd->output_has_begun);
7492 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
7493 swap, info,
7494 mdebug_sec->filepos))
7495 return false;
7496
7497 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
7498 }
7499
7500 if (gptab_data_sec != (asection *) NULL)
7501 {
7502 if (! bfd_set_section_contents (abfd, gptab_data_sec,
7503 gptab_data_sec->contents,
7504 (file_ptr) 0,
7505 gptab_data_sec->_raw_size))
7506 return false;
7507 }
7508
7509 if (gptab_bss_sec != (asection *) NULL)
7510 {
7511 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
7512 gptab_bss_sec->contents,
7513 (file_ptr) 0,
7514 gptab_bss_sec->_raw_size))
7515 return false;
7516 }
7517
7518 if (SGI_COMPAT (abfd))
7519 {
7520 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
7521 if (rtproc_sec != NULL)
7522 {
7523 if (! bfd_set_section_contents (abfd, rtproc_sec,
7524 rtproc_sec->contents,
7525 (file_ptr) 0,
7526 rtproc_sec->_raw_size))
7527 return false;
7528 }
7529 }
7530
7531 return true;
7532}
7533\f
7534/* Merge backend specific data from an object file to the output
7535 object file when linking. */
7536
7537boolean
7538_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
7539 bfd *ibfd;
7540 bfd *obfd;
7541{
7542 flagword old_flags;
7543 flagword new_flags;
7544 boolean ok;
7545 boolean null_input_bfd = true;
7546 asection *sec;
7547
7548 /* Check if we have the same endianess */
82e51918 7549 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
b49e97c9
TS
7550 return false;
7551
7552 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7553 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7554 return true;
7555
7556 new_flags = elf_elfheader (ibfd)->e_flags;
7557 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
7558 old_flags = elf_elfheader (obfd)->e_flags;
7559
7560 if (! elf_flags_init (obfd))
7561 {
7562 elf_flags_init (obfd) = true;
7563 elf_elfheader (obfd)->e_flags = new_flags;
7564 elf_elfheader (obfd)->e_ident[EI_CLASS]
7565 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
7566
7567 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7568 && bfd_get_arch_info (obfd)->the_default)
7569 {
7570 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7571 bfd_get_mach (ibfd)))
7572 return false;
7573 }
7574
7575 return true;
7576 }
7577
7578 /* Check flag compatibility. */
7579
7580 new_flags &= ~EF_MIPS_NOREORDER;
7581 old_flags &= ~EF_MIPS_NOREORDER;
7582
7583 if (new_flags == old_flags)
7584 return true;
7585
7586 /* Check to see if the input BFD actually contains any sections.
7587 If not, its flags may not have been initialised either, but it cannot
7588 actually cause any incompatibility. */
7589 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7590 {
7591 /* Ignore synthetic sections and empty .text, .data and .bss sections
7592 which are automatically generated by gas. */
7593 if (strcmp (sec->name, ".reginfo")
7594 && strcmp (sec->name, ".mdebug")
7595 && ((!strcmp (sec->name, ".text")
7596 || !strcmp (sec->name, ".data")
7597 || !strcmp (sec->name, ".bss"))
7598 && sec->_raw_size != 0))
7599 {
7600 null_input_bfd = false;
7601 break;
7602 }
7603 }
7604 if (null_input_bfd)
7605 return true;
7606
7607 ok = true;
7608
7609 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
7610 {
7611 new_flags &= ~EF_MIPS_PIC;
7612 old_flags &= ~EF_MIPS_PIC;
7613 (*_bfd_error_handler)
7614 (_("%s: linking PIC files with non-PIC files"),
7615 bfd_archive_filename (ibfd));
7616 ok = false;
7617 }
7618
7619 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
7620 {
7621 new_flags &= ~EF_MIPS_CPIC;
7622 old_flags &= ~EF_MIPS_CPIC;
7623 (*_bfd_error_handler)
7624 (_("%s: linking abicalls files with non-abicalls files"),
7625 bfd_archive_filename (ibfd));
7626 ok = false;
7627 }
7628
7629 /* Compare the ISA's. */
7630 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
7631 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
7632 {
7633 int new_mach = new_flags & EF_MIPS_MACH;
7634 int old_mach = old_flags & EF_MIPS_MACH;
7635 int new_isa = elf_mips_isa (new_flags);
7636 int old_isa = elf_mips_isa (old_flags);
7637
7638 /* If either has no machine specified, just compare the general isa's.
7639 Some combinations of machines are ok, if the isa's match. */
7640 if (! new_mach
7641 || ! old_mach
7642 || new_mach == old_mach
7643 )
7644 {
7645 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
7646 using 64-bit ISAs. They will normally use the same data sizes
7647 and calling conventions. */
7648
7649 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
7650 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
7651 {
7652 (*_bfd_error_handler)
7653 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
7654 bfd_archive_filename (ibfd), new_isa, old_isa);
7655 ok = false;
7656 }
7657 else
7658 {
7659 /* Do we need to update the mach field? */
7660 if (old_mach == 0 && new_mach != 0)
7661 elf_elfheader (obfd)->e_flags |= new_mach;
7662
7663 /* Do we need to update the ISA field? */
7664 if (new_isa > old_isa)
7665 {
7666 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_ARCH;
7667 elf_elfheader (obfd)->e_flags
7668 |= new_flags & EF_MIPS_ARCH;
7669 }
7670 }
7671 }
7672 else
7673 {
7674 (*_bfd_error_handler)
7675 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
7676 bfd_archive_filename (ibfd),
7677 _bfd_elf_mips_mach (new_flags),
7678 _bfd_elf_mips_mach (old_flags));
7679 ok = false;
7680 }
7681
7682 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7683 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7684 }
7685
7686 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
7687 does set EI_CLASS differently from any 32-bit ABI. */
7688 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
7689 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7690 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
7691 {
7692 /* Only error if both are set (to different values). */
7693 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
7694 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7695 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
7696 {
7697 (*_bfd_error_handler)
7698 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
7699 bfd_archive_filename (ibfd),
7700 elf_mips_abi_name (ibfd),
7701 elf_mips_abi_name (obfd));
7702 ok = false;
7703 }
7704 new_flags &= ~EF_MIPS_ABI;
7705 old_flags &= ~EF_MIPS_ABI;
7706 }
7707
7708 /* Warn about any other mismatches */
7709 if (new_flags != old_flags)
7710 {
7711 (*_bfd_error_handler)
7712 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
7713 bfd_archive_filename (ibfd), (unsigned long) new_flags,
7714 (unsigned long) old_flags);
7715 ok = false;
7716 }
7717
7718 if (! ok)
7719 {
7720 bfd_set_error (bfd_error_bad_value);
7721 return false;
7722 }
7723
7724 return true;
7725}
7726
7727/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
7728
7729boolean
7730_bfd_mips_elf_set_private_flags (abfd, flags)
7731 bfd *abfd;
7732 flagword flags;
7733{
7734 BFD_ASSERT (!elf_flags_init (abfd)
7735 || elf_elfheader (abfd)->e_flags == flags);
7736
7737 elf_elfheader (abfd)->e_flags = flags;
7738 elf_flags_init (abfd) = true;
7739 return true;
7740}
7741
7742boolean
7743_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
7744 bfd *abfd;
7745 PTR ptr;
7746{
7747 FILE *file = (FILE *) ptr;
7748
7749 BFD_ASSERT (abfd != NULL && ptr != NULL);
7750
7751 /* Print normal ELF private data. */
7752 _bfd_elf_print_private_bfd_data (abfd, ptr);
7753
7754 /* xgettext:c-format */
7755 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7756
7757 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
7758 fprintf (file, _(" [abi=O32]"));
7759 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
7760 fprintf (file, _(" [abi=O64]"));
7761 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
7762 fprintf (file, _(" [abi=EABI32]"));
7763 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7764 fprintf (file, _(" [abi=EABI64]"));
7765 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
7766 fprintf (file, _(" [abi unknown]"));
7767 else if (ABI_N32_P (abfd))
7768 fprintf (file, _(" [abi=N32]"));
7769 else if (ABI_64_P (abfd))
7770 fprintf (file, _(" [abi=64]"));
7771 else
7772 fprintf (file, _(" [no abi set]"));
7773
7774 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
7775 fprintf (file, _(" [mips1]"));
7776 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
7777 fprintf (file, _(" [mips2]"));
7778 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
7779 fprintf (file, _(" [mips3]"));
7780 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
7781 fprintf (file, _(" [mips4]"));
7782 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
7783 fprintf (file, _(" [mips5]"));
7784 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
7785 fprintf (file, _(" [mips32]"));
7786 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
7787 fprintf (file, _(" [mips64]"));
7788 else
7789 fprintf (file, _(" [unknown ISA]"));
7790
40d32fc6
CD
7791 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
7792 fprintf (file, _(" [mdmx]"));
7793
7794 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
7795 fprintf (file, _(" [mips16]"));
7796
b49e97c9
TS
7797 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
7798 fprintf (file, _(" [32bitmode]"));
7799 else
7800 fprintf (file, _(" [not 32bitmode]"));
7801
7802 fputc ('\n', file);
7803
7804 return true;
7805}