]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elfxx-mips.c
* arm-dis.c (arm_opcodes): Remove superflous escapes of percent operators.
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3db64b00 3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
cd123cb7 16 the Free Software Foundation; either version 3 of the License, or
ae9a127f 17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
cd123cb7
NC
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
b49e97c9
TS
29
30/* This file handles functionality common to the different MIPS ABI's. */
31
b49e97c9 32#include "sysdep.h"
3db64b00 33#include "bfd.h"
b49e97c9 34#include "libbfd.h"
64543e1a 35#include "libiberty.h"
b49e97c9
TS
36#include "elf-bfd.h"
37#include "elfxx-mips.h"
38#include "elf/mips.h"
0a44bf69 39#include "elf-vxworks.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
ead49a57
RS
49/* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
82struct mips_got_entry
83{
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
f4416af6
AO
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
0f20cc35
DJ
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
b15e6682 109 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
b15e6682
AO
113};
114
f0abc2a1 115/* This structure is used to hold .got information when linking. */
b49e97c9
TS
116
117struct mips_got_info
118{
119 /* The global symbol in the GOT with the lowest index in the dynamic
120 symbol table. */
121 struct elf_link_hash_entry *global_gotsym;
122 /* The number of global .got entries. */
123 unsigned int global_gotno;
0f20cc35
DJ
124 /* The number of .got slots used for TLS. */
125 unsigned int tls_gotno;
126 /* The first unused TLS .got entry. Used only during
127 mips_elf_initialize_tls_index. */
128 unsigned int tls_assigned_gotno;
b49e97c9
TS
129 /* The number of local .got entries. */
130 unsigned int local_gotno;
131 /* The number of local .got entries we have used. */
132 unsigned int assigned_gotno;
b15e6682
AO
133 /* A hash table holding members of the got. */
134 struct htab *got_entries;
f4416af6
AO
135 /* A hash table mapping input bfds to other mips_got_info. NULL
136 unless multi-got was necessary. */
137 struct htab *bfd2got;
138 /* In multi-got links, a pointer to the next got (err, rather, most
139 of the time, it points to the previous got). */
140 struct mips_got_info *next;
0f20cc35
DJ
141 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
142 for none, or MINUS_TWO for not yet assigned. This is needed
143 because a single-GOT link may have multiple hash table entries
144 for the LDM. It does not get initialized in multi-GOT mode. */
145 bfd_vma tls_ldm_offset;
f4416af6
AO
146};
147
148/* Map an input bfd to a got in a multi-got link. */
149
150struct mips_elf_bfd2got_hash {
151 bfd *bfd;
152 struct mips_got_info *g;
153};
154
155/* Structure passed when traversing the bfd2got hash table, used to
156 create and merge bfd's gots. */
157
158struct mips_elf_got_per_bfd_arg
159{
160 /* A hashtable that maps bfds to gots. */
161 htab_t bfd2got;
162 /* The output bfd. */
163 bfd *obfd;
164 /* The link information. */
165 struct bfd_link_info *info;
166 /* A pointer to the primary got, i.e., the one that's going to get
167 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
168 DT_MIPS_GOTSYM. */
169 struct mips_got_info *primary;
170 /* A non-primary got we're trying to merge with other input bfd's
171 gots. */
172 struct mips_got_info *current;
173 /* The maximum number of got entries that can be addressed with a
174 16-bit offset. */
175 unsigned int max_count;
176 /* The number of local and global entries in the primary got. */
177 unsigned int primary_count;
178 /* The number of local and global entries in the current got. */
179 unsigned int current_count;
0f20cc35
DJ
180 /* The total number of global entries which will live in the
181 primary got and be automatically relocated. This includes
182 those not referenced by the primary GOT but included in
183 the "master" GOT. */
184 unsigned int global_count;
f4416af6
AO
185};
186
187/* Another structure used to pass arguments for got entries traversal. */
188
189struct mips_elf_set_global_got_offset_arg
190{
191 struct mips_got_info *g;
192 int value;
193 unsigned int needed_relocs;
194 struct bfd_link_info *info;
b49e97c9
TS
195};
196
0f20cc35
DJ
197/* A structure used to count TLS relocations or GOT entries, for GOT
198 entry or ELF symbol table traversal. */
199
200struct mips_elf_count_tls_arg
201{
202 struct bfd_link_info *info;
203 unsigned int needed;
204};
205
f0abc2a1
AM
206struct _mips_elf_section_data
207{
208 struct bfd_elf_section_data elf;
209 union
210 {
211 struct mips_got_info *got_info;
212 bfd_byte *tdata;
213 } u;
214};
215
216#define mips_elf_section_data(sec) \
68bfbfcc 217 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 218
b49e97c9
TS
219/* This structure is passed to mips_elf_sort_hash_table_f when sorting
220 the dynamic symbols. */
221
222struct mips_elf_hash_sort_data
223{
224 /* The symbol in the global GOT with the lowest dynamic symbol table
225 index. */
226 struct elf_link_hash_entry *low;
0f20cc35
DJ
227 /* The least dynamic symbol table index corresponding to a non-TLS
228 symbol with a GOT entry. */
b49e97c9 229 long min_got_dynindx;
f4416af6
AO
230 /* The greatest dynamic symbol table index corresponding to a symbol
231 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 232 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 233 long max_unref_got_dynindx;
b49e97c9
TS
234 /* The greatest dynamic symbol table index not corresponding to a
235 symbol without a GOT entry. */
236 long max_non_got_dynindx;
237};
238
239/* The MIPS ELF linker needs additional information for each symbol in
240 the global hash table. */
241
242struct mips_elf_link_hash_entry
243{
244 struct elf_link_hash_entry root;
245
246 /* External symbol information. */
247 EXTR esym;
248
249 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
250 this symbol. */
251 unsigned int possibly_dynamic_relocs;
252
253 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
254 a readonly section. */
b34976b6 255 bfd_boolean readonly_reloc;
b49e97c9 256
b49e97c9
TS
257 /* We must not create a stub for a symbol that has relocations
258 related to taking the function's address, i.e. any but
259 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
260 p. 4-20. */
b34976b6 261 bfd_boolean no_fn_stub;
b49e97c9
TS
262
263 /* If there is a stub that 32 bit functions should use to call this
264 16 bit function, this points to the section containing the stub. */
265 asection *fn_stub;
266
267 /* Whether we need the fn_stub; this is set if this symbol appears
268 in any relocs other than a 16 bit call. */
b34976b6 269 bfd_boolean need_fn_stub;
b49e97c9
TS
270
271 /* If there is a stub that 16 bit functions should use to call this
272 32 bit function, this points to the section containing the stub. */
273 asection *call_stub;
274
275 /* This is like the call_stub field, but it is used if the function
276 being called returns a floating point value. */
277 asection *call_fp_stub;
7c5fcef7 278
a008ac03
DJ
279 /* Are we forced local? This will only be set if we have converted
280 the initial global GOT entry to a local GOT entry. */
b34976b6 281 bfd_boolean forced_local;
0f20cc35 282
0a44bf69
RS
283 /* Are we referenced by some kind of relocation? */
284 bfd_boolean is_relocation_target;
285
286 /* Are we referenced by branch relocations? */
287 bfd_boolean is_branch_target;
288
0f20cc35
DJ
289#define GOT_NORMAL 0
290#define GOT_TLS_GD 1
291#define GOT_TLS_LDM 2
292#define GOT_TLS_IE 4
293#define GOT_TLS_OFFSET_DONE 0x40
294#define GOT_TLS_DONE 0x80
295 unsigned char tls_type;
296 /* This is only used in single-GOT mode; in multi-GOT mode there
297 is one mips_got_entry per GOT entry, so the offset is stored
298 there. In single-GOT mode there may be many mips_got_entry
299 structures all referring to the same GOT slot. It might be
300 possible to use root.got.offset instead, but that field is
301 overloaded already. */
302 bfd_vma tls_got_offset;
b49e97c9
TS
303};
304
305/* MIPS ELF linker hash table. */
306
307struct mips_elf_link_hash_table
308{
309 struct elf_link_hash_table root;
310#if 0
311 /* We no longer use this. */
312 /* String section indices for the dynamic section symbols. */
313 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
314#endif
315 /* The number of .rtproc entries. */
316 bfd_size_type procedure_count;
317 /* The size of the .compact_rel section (if SGI_COMPAT). */
318 bfd_size_type compact_rel_size;
319 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 320 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 321 bfd_boolean use_rld_obj_head;
b49e97c9
TS
322 /* This is the value of the __rld_map or __rld_obj_head symbol. */
323 bfd_vma rld_value;
324 /* This is set if we see any mips16 stub sections. */
b34976b6 325 bfd_boolean mips16_stubs_seen;
8275b357
RS
326 /* True if we've computed the size of the GOT. */
327 bfd_boolean computed_got_sizes;
0a44bf69
RS
328 /* True if we're generating code for VxWorks. */
329 bfd_boolean is_vxworks;
0e53d9da
AN
330 /* True if we already reported the small-data section overflow. */
331 bfd_boolean small_data_overflow_reported;
0a44bf69
RS
332 /* Shortcuts to some dynamic sections, or NULL if they are not
333 being used. */
334 asection *srelbss;
335 asection *sdynbss;
336 asection *srelplt;
337 asection *srelplt2;
338 asection *sgotplt;
339 asection *splt;
340 /* The size of the PLT header in bytes (VxWorks only). */
341 bfd_vma plt_header_size;
342 /* The size of a PLT entry in bytes (VxWorks only). */
343 bfd_vma plt_entry_size;
5108fc1b
RS
344 /* The size of a function stub entry in bytes. */
345 bfd_vma function_stub_size;
b49e97c9
TS
346};
347
0f20cc35
DJ
348#define TLS_RELOC_P(r_type) \
349 (r_type == R_MIPS_TLS_DTPMOD32 \
350 || r_type == R_MIPS_TLS_DTPMOD64 \
351 || r_type == R_MIPS_TLS_DTPREL32 \
352 || r_type == R_MIPS_TLS_DTPREL64 \
353 || r_type == R_MIPS_TLS_GD \
354 || r_type == R_MIPS_TLS_LDM \
355 || r_type == R_MIPS_TLS_DTPREL_HI16 \
356 || r_type == R_MIPS_TLS_DTPREL_LO16 \
357 || r_type == R_MIPS_TLS_GOTTPREL \
358 || r_type == R_MIPS_TLS_TPREL32 \
359 || r_type == R_MIPS_TLS_TPREL64 \
360 || r_type == R_MIPS_TLS_TPREL_HI16 \
361 || r_type == R_MIPS_TLS_TPREL_LO16)
362
b49e97c9
TS
363/* Structure used to pass information to mips_elf_output_extsym. */
364
365struct extsym_info
366{
9e4aeb93
RS
367 bfd *abfd;
368 struct bfd_link_info *info;
b49e97c9
TS
369 struct ecoff_debug_info *debug;
370 const struct ecoff_debug_swap *swap;
b34976b6 371 bfd_boolean failed;
b49e97c9
TS
372};
373
8dc1a139 374/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
375
376static const char * const mips_elf_dynsym_rtproc_names[] =
377{
378 "_procedure_table",
379 "_procedure_string_table",
380 "_procedure_table_size",
381 NULL
382};
383
384/* These structures are used to generate the .compact_rel section on
8dc1a139 385 IRIX5. */
b49e97c9
TS
386
387typedef struct
388{
389 unsigned long id1; /* Always one? */
390 unsigned long num; /* Number of compact relocation entries. */
391 unsigned long id2; /* Always two? */
392 unsigned long offset; /* The file offset of the first relocation. */
393 unsigned long reserved0; /* Zero? */
394 unsigned long reserved1; /* Zero? */
395} Elf32_compact_rel;
396
397typedef struct
398{
399 bfd_byte id1[4];
400 bfd_byte num[4];
401 bfd_byte id2[4];
402 bfd_byte offset[4];
403 bfd_byte reserved0[4];
404 bfd_byte reserved1[4];
405} Elf32_External_compact_rel;
406
407typedef struct
408{
409 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
410 unsigned int rtype : 4; /* Relocation types. See below. */
411 unsigned int dist2to : 8;
412 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
413 unsigned long konst; /* KONST field. See below. */
414 unsigned long vaddr; /* VADDR to be relocated. */
415} Elf32_crinfo;
416
417typedef struct
418{
419 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
420 unsigned int rtype : 4; /* Relocation types. See below. */
421 unsigned int dist2to : 8;
422 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
423 unsigned long konst; /* KONST field. See below. */
424} Elf32_crinfo2;
425
426typedef struct
427{
428 bfd_byte info[4];
429 bfd_byte konst[4];
430 bfd_byte vaddr[4];
431} Elf32_External_crinfo;
432
433typedef struct
434{
435 bfd_byte info[4];
436 bfd_byte konst[4];
437} Elf32_External_crinfo2;
438
439/* These are the constants used to swap the bitfields in a crinfo. */
440
441#define CRINFO_CTYPE (0x1)
442#define CRINFO_CTYPE_SH (31)
443#define CRINFO_RTYPE (0xf)
444#define CRINFO_RTYPE_SH (27)
445#define CRINFO_DIST2TO (0xff)
446#define CRINFO_DIST2TO_SH (19)
447#define CRINFO_RELVADDR (0x7ffff)
448#define CRINFO_RELVADDR_SH (0)
449
450/* A compact relocation info has long (3 words) or short (2 words)
451 formats. A short format doesn't have VADDR field and relvaddr
452 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
453#define CRF_MIPS_LONG 1
454#define CRF_MIPS_SHORT 0
455
456/* There are 4 types of compact relocation at least. The value KONST
457 has different meaning for each type:
458
459 (type) (konst)
460 CT_MIPS_REL32 Address in data
461 CT_MIPS_WORD Address in word (XXX)
462 CT_MIPS_GPHI_LO GP - vaddr
463 CT_MIPS_JMPAD Address to jump
464 */
465
466#define CRT_MIPS_REL32 0xa
467#define CRT_MIPS_WORD 0xb
468#define CRT_MIPS_GPHI_LO 0xc
469#define CRT_MIPS_JMPAD 0xd
470
471#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
472#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
473#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
474#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
475\f
476/* The structure of the runtime procedure descriptor created by the
477 loader for use by the static exception system. */
478
479typedef struct runtime_pdr {
ae9a127f
NC
480 bfd_vma adr; /* Memory address of start of procedure. */
481 long regmask; /* Save register mask. */
482 long regoffset; /* Save register offset. */
483 long fregmask; /* Save floating point register mask. */
484 long fregoffset; /* Save floating point register offset. */
485 long frameoffset; /* Frame size. */
486 short framereg; /* Frame pointer register. */
487 short pcreg; /* Offset or reg of return pc. */
488 long irpss; /* Index into the runtime string table. */
b49e97c9 489 long reserved;
ae9a127f 490 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
491} RPDR, *pRPDR;
492#define cbRPDR sizeof (RPDR)
493#define rpdNil ((pRPDR) 0)
494\f
b15e6682 495static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69 496 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
5c18022e 497 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 498static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 499 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
500static bfd_vma mips_elf_high
501 (bfd_vma);
b9d58d71 502static bfd_boolean mips16_stub_section_p
9719ad41 503 (bfd *, asection *);
b34976b6 504static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
505 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
506 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
507 bfd_vma *, asection *);
9719ad41
RS
508static hashval_t mips_elf_got_entry_hash
509 (const void *);
f4416af6 510static bfd_vma mips_elf_adjust_gp
9719ad41 511 (bfd *, struct mips_got_info *, bfd *);
f4416af6 512static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 513 (struct mips_got_info *, bfd *);
f4416af6 514
b49e97c9
TS
515/* This will be used when we sort the dynamic relocation records. */
516static bfd *reldyn_sorting_bfd;
517
518/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
519#define ABI_N32_P(abfd) \
520 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
521
4a14403c 522/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 523#define ABI_64_P(abfd) \
141ff970 524 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 525
4a14403c
TS
526/* Nonzero if ABFD is using NewABI conventions. */
527#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
528
529/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
530#define IRIX_COMPAT(abfd) \
531 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
532
b49e97c9
TS
533/* Whether we are trying to be compatible with IRIX at all. */
534#define SGI_COMPAT(abfd) \
535 (IRIX_COMPAT (abfd) != ict_none)
536
537/* The name of the options section. */
538#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 539 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 540
cc2e31b9
RS
541/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
542 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
543#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
544 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
545
943284cc
DJ
546/* Whether the section is readonly. */
547#define MIPS_ELF_READONLY_SECTION(sec) \
548 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
549 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
550
b49e97c9 551/* The name of the stub section. */
ca07892d 552#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
553
554/* The size of an external REL relocation. */
555#define MIPS_ELF_REL_SIZE(abfd) \
556 (get_elf_backend_data (abfd)->s->sizeof_rel)
557
0a44bf69
RS
558/* The size of an external RELA relocation. */
559#define MIPS_ELF_RELA_SIZE(abfd) \
560 (get_elf_backend_data (abfd)->s->sizeof_rela)
561
b49e97c9
TS
562/* The size of an external dynamic table entry. */
563#define MIPS_ELF_DYN_SIZE(abfd) \
564 (get_elf_backend_data (abfd)->s->sizeof_dyn)
565
566/* The size of a GOT entry. */
567#define MIPS_ELF_GOT_SIZE(abfd) \
568 (get_elf_backend_data (abfd)->s->arch_size / 8)
569
570/* The size of a symbol-table entry. */
571#define MIPS_ELF_SYM_SIZE(abfd) \
572 (get_elf_backend_data (abfd)->s->sizeof_sym)
573
574/* The default alignment for sections, as a power of two. */
575#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 576 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
577
578/* Get word-sized data. */
579#define MIPS_ELF_GET_WORD(abfd, ptr) \
580 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
581
582/* Put out word-sized data. */
583#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
584 (ABI_64_P (abfd) \
585 ? bfd_put_64 (abfd, val, ptr) \
586 : bfd_put_32 (abfd, val, ptr))
587
588/* Add a dynamic symbol table-entry. */
9719ad41 589#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 590 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
591
592#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
593 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
594
4ffba85c
AO
595/* Determine whether the internal relocation of index REL_IDX is REL
596 (zero) or RELA (non-zero). The assumption is that, if there are
597 two relocation sections for this section, one of them is REL and
598 the other is RELA. If the index of the relocation we're testing is
599 in range for the first relocation section, check that the external
600 relocation size is that for RELA. It is also assumed that, if
601 rel_idx is not in range for the first section, and this first
602 section contains REL relocs, then the relocation is in the second
603 section, that is RELA. */
604#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
605 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
606 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
607 > (bfd_vma)(rel_idx)) \
608 == (elf_section_data (sec)->rel_hdr.sh_entsize \
609 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
610 : sizeof (Elf32_External_Rela))))
611
0a44bf69
RS
612/* The name of the dynamic relocation section. */
613#define MIPS_ELF_REL_DYN_NAME(INFO) \
614 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
615
b49e97c9
TS
616/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
617 from smaller values. Start with zero, widen, *then* decrement. */
618#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 619#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
620
621/* The number of local .got entries we reserve. */
0a44bf69
RS
622#define MIPS_RESERVED_GOTNO(INFO) \
623 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 624
f4416af6 625/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
626#define ELF_MIPS_GP_OFFSET(INFO) \
627 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
628
629/* The maximum size of the GOT for it to be addressable using 16-bit
630 offsets from $gp. */
0a44bf69 631#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 632
6a691779 633/* Instructions which appear in a stub. */
3d6746ca
DD
634#define STUB_LW(abfd) \
635 ((ABI_64_P (abfd) \
636 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
637 : 0x8f998010)) /* lw t9,0x8010(gp) */
638#define STUB_MOVE(abfd) \
639 ((ABI_64_P (abfd) \
640 ? 0x03e0782d /* daddu t7,ra */ \
641 : 0x03e07821)) /* addu t7,ra */
642#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
643#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
644#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
645#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
646#define STUB_LI16S(abfd, VAL) \
647 ((ABI_64_P (abfd) \
648 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
649 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
650
5108fc1b
RS
651#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
652#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
653
654/* The name of the dynamic interpreter. This is put in the .interp
655 section. */
656
657#define ELF_DYNAMIC_INTERPRETER(abfd) \
658 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
659 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
660 : "/usr/lib/libc.so.1")
661
662#ifdef BFD64
ee6423ed
AO
663#define MNAME(bfd,pre,pos) \
664 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
665#define ELF_R_SYM(bfd, i) \
666 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
667#define ELF_R_TYPE(bfd, i) \
668 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
669#define ELF_R_INFO(bfd, s, t) \
670 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
671#else
ee6423ed 672#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
673#define ELF_R_SYM(bfd, i) \
674 (ELF32_R_SYM (i))
675#define ELF_R_TYPE(bfd, i) \
676 (ELF32_R_TYPE (i))
677#define ELF_R_INFO(bfd, s, t) \
678 (ELF32_R_INFO (s, t))
679#endif
680\f
681 /* The mips16 compiler uses a couple of special sections to handle
682 floating point arguments.
683
684 Section names that look like .mips16.fn.FNNAME contain stubs that
685 copy floating point arguments from the fp regs to the gp regs and
686 then jump to FNNAME. If any 32 bit function calls FNNAME, the
687 call should be redirected to the stub instead. If no 32 bit
688 function calls FNNAME, the stub should be discarded. We need to
689 consider any reference to the function, not just a call, because
690 if the address of the function is taken we will need the stub,
691 since the address might be passed to a 32 bit function.
692
693 Section names that look like .mips16.call.FNNAME contain stubs
694 that copy floating point arguments from the gp regs to the fp
695 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
696 then any 16 bit function that calls FNNAME should be redirected
697 to the stub instead. If FNNAME is not a 32 bit function, the
698 stub should be discarded.
699
700 .mips16.call.fp.FNNAME sections are similar, but contain stubs
701 which call FNNAME and then copy the return value from the fp regs
702 to the gp regs. These stubs store the return value in $18 while
703 calling FNNAME; any function which might call one of these stubs
704 must arrange to save $18 around the call. (This case is not
705 needed for 32 bit functions that call 16 bit functions, because
706 16 bit functions always return floating point values in both
707 $f0/$f1 and $2/$3.)
708
709 Note that in all cases FNNAME might be defined statically.
710 Therefore, FNNAME is not used literally. Instead, the relocation
711 information will indicate which symbol the section is for.
712
713 We record any stubs that we find in the symbol table. */
714
715#define FN_STUB ".mips16.fn."
716#define CALL_STUB ".mips16.call."
717#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
718
719#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
720#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
721#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 722\f
0a44bf69
RS
723/* The format of the first PLT entry in a VxWorks executable. */
724static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
725 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
726 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
727 0x8f390008, /* lw t9, 8(t9) */
728 0x00000000, /* nop */
729 0x03200008, /* jr t9 */
730 0x00000000 /* nop */
731};
732
733/* The format of subsequent PLT entries. */
734static const bfd_vma mips_vxworks_exec_plt_entry[] = {
735 0x10000000, /* b .PLT_resolver */
736 0x24180000, /* li t8, <pltindex> */
737 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
738 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
739 0x8f390000, /* lw t9, 0(t9) */
740 0x00000000, /* nop */
741 0x03200008, /* jr t9 */
742 0x00000000 /* nop */
743};
744
745/* The format of the first PLT entry in a VxWorks shared object. */
746static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
747 0x8f990008, /* lw t9, 8(gp) */
748 0x00000000, /* nop */
749 0x03200008, /* jr t9 */
750 0x00000000, /* nop */
751 0x00000000, /* nop */
752 0x00000000 /* nop */
753};
754
755/* The format of subsequent PLT entries. */
756static const bfd_vma mips_vxworks_shared_plt_entry[] = {
757 0x10000000, /* b .PLT_resolver */
758 0x24180000 /* li t8, <pltindex> */
759};
760\f
b49e97c9
TS
761/* Look up an entry in a MIPS ELF linker hash table. */
762
763#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
764 ((struct mips_elf_link_hash_entry *) \
765 elf_link_hash_lookup (&(table)->root, (string), (create), \
766 (copy), (follow)))
767
768/* Traverse a MIPS ELF linker hash table. */
769
770#define mips_elf_link_hash_traverse(table, func, info) \
771 (elf_link_hash_traverse \
772 (&(table)->root, \
9719ad41 773 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
774 (info)))
775
776/* Get the MIPS ELF linker hash table from a link_info structure. */
777
778#define mips_elf_hash_table(p) \
779 ((struct mips_elf_link_hash_table *) ((p)->hash))
780
0f20cc35
DJ
781/* Find the base offsets for thread-local storage in this object,
782 for GD/LD and IE/LE respectively. */
783
784#define TP_OFFSET 0x7000
785#define DTP_OFFSET 0x8000
786
787static bfd_vma
788dtprel_base (struct bfd_link_info *info)
789{
790 /* If tls_sec is NULL, we should have signalled an error already. */
791 if (elf_hash_table (info)->tls_sec == NULL)
792 return 0;
793 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
794}
795
796static bfd_vma
797tprel_base (struct bfd_link_info *info)
798{
799 /* If tls_sec is NULL, we should have signalled an error already. */
800 if (elf_hash_table (info)->tls_sec == NULL)
801 return 0;
802 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
803}
804
b49e97c9
TS
805/* Create an entry in a MIPS ELF linker hash table. */
806
807static struct bfd_hash_entry *
9719ad41
RS
808mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
809 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
810{
811 struct mips_elf_link_hash_entry *ret =
812 (struct mips_elf_link_hash_entry *) entry;
813
814 /* Allocate the structure if it has not already been allocated by a
815 subclass. */
9719ad41
RS
816 if (ret == NULL)
817 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
818 if (ret == NULL)
b49e97c9
TS
819 return (struct bfd_hash_entry *) ret;
820
821 /* Call the allocation method of the superclass. */
822 ret = ((struct mips_elf_link_hash_entry *)
823 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
824 table, string));
9719ad41 825 if (ret != NULL)
b49e97c9
TS
826 {
827 /* Set local fields. */
828 memset (&ret->esym, 0, sizeof (EXTR));
829 /* We use -2 as a marker to indicate that the information has
830 not been set. -1 means there is no associated ifd. */
831 ret->esym.ifd = -2;
832 ret->possibly_dynamic_relocs = 0;
b34976b6 833 ret->readonly_reloc = FALSE;
b34976b6 834 ret->no_fn_stub = FALSE;
b49e97c9 835 ret->fn_stub = NULL;
b34976b6 836 ret->need_fn_stub = FALSE;
b49e97c9
TS
837 ret->call_stub = NULL;
838 ret->call_fp_stub = NULL;
b34976b6 839 ret->forced_local = FALSE;
0a44bf69
RS
840 ret->is_branch_target = FALSE;
841 ret->is_relocation_target = FALSE;
0f20cc35 842 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
843 }
844
845 return (struct bfd_hash_entry *) ret;
846}
f0abc2a1
AM
847
848bfd_boolean
9719ad41 849_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 850{
f592407e
AM
851 if (!sec->used_by_bfd)
852 {
853 struct _mips_elf_section_data *sdata;
854 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 855
f592407e
AM
856 sdata = bfd_zalloc (abfd, amt);
857 if (sdata == NULL)
858 return FALSE;
859 sec->used_by_bfd = sdata;
860 }
f0abc2a1
AM
861
862 return _bfd_elf_new_section_hook (abfd, sec);
863}
b49e97c9
TS
864\f
865/* Read ECOFF debugging information from a .mdebug section into a
866 ecoff_debug_info structure. */
867
b34976b6 868bfd_boolean
9719ad41
RS
869_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
870 struct ecoff_debug_info *debug)
b49e97c9
TS
871{
872 HDRR *symhdr;
873 const struct ecoff_debug_swap *swap;
9719ad41 874 char *ext_hdr;
b49e97c9
TS
875
876 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
877 memset (debug, 0, sizeof (*debug));
878
9719ad41 879 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
880 if (ext_hdr == NULL && swap->external_hdr_size != 0)
881 goto error_return;
882
9719ad41 883 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 884 swap->external_hdr_size))
b49e97c9
TS
885 goto error_return;
886
887 symhdr = &debug->symbolic_header;
888 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
889
890 /* The symbolic header contains absolute file offsets and sizes to
891 read. */
892#define READ(ptr, offset, count, size, type) \
893 if (symhdr->count == 0) \
894 debug->ptr = NULL; \
895 else \
896 { \
897 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 898 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
899 if (debug->ptr == NULL) \
900 goto error_return; \
9719ad41 901 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
902 || bfd_bread (debug->ptr, amt, abfd) != amt) \
903 goto error_return; \
904 }
905
906 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
907 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
908 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
909 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
910 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
911 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
912 union aux_ext *);
913 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
914 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
915 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
916 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
917 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
918#undef READ
919
920 debug->fdr = NULL;
b49e97c9 921
b34976b6 922 return TRUE;
b49e97c9
TS
923
924 error_return:
925 if (ext_hdr != NULL)
926 free (ext_hdr);
927 if (debug->line != NULL)
928 free (debug->line);
929 if (debug->external_dnr != NULL)
930 free (debug->external_dnr);
931 if (debug->external_pdr != NULL)
932 free (debug->external_pdr);
933 if (debug->external_sym != NULL)
934 free (debug->external_sym);
935 if (debug->external_opt != NULL)
936 free (debug->external_opt);
937 if (debug->external_aux != NULL)
938 free (debug->external_aux);
939 if (debug->ss != NULL)
940 free (debug->ss);
941 if (debug->ssext != NULL)
942 free (debug->ssext);
943 if (debug->external_fdr != NULL)
944 free (debug->external_fdr);
945 if (debug->external_rfd != NULL)
946 free (debug->external_rfd);
947 if (debug->external_ext != NULL)
948 free (debug->external_ext);
b34976b6 949 return FALSE;
b49e97c9
TS
950}
951\f
952/* Swap RPDR (runtime procedure table entry) for output. */
953
954static void
9719ad41 955ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
956{
957 H_PUT_S32 (abfd, in->adr, ex->p_adr);
958 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
959 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
960 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
961 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
962 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
963
964 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
965 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
966
967 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
968}
969
970/* Create a runtime procedure table from the .mdebug section. */
971
b34976b6 972static bfd_boolean
9719ad41
RS
973mips_elf_create_procedure_table (void *handle, bfd *abfd,
974 struct bfd_link_info *info, asection *s,
975 struct ecoff_debug_info *debug)
b49e97c9
TS
976{
977 const struct ecoff_debug_swap *swap;
978 HDRR *hdr = &debug->symbolic_header;
979 RPDR *rpdr, *rp;
980 struct rpdr_ext *erp;
9719ad41 981 void *rtproc;
b49e97c9
TS
982 struct pdr_ext *epdr;
983 struct sym_ext *esym;
984 char *ss, **sv;
985 char *str;
986 bfd_size_type size;
987 bfd_size_type count;
988 unsigned long sindex;
989 unsigned long i;
990 PDR pdr;
991 SYMR sym;
992 const char *no_name_func = _("static procedure (no name)");
993
994 epdr = NULL;
995 rpdr = NULL;
996 esym = NULL;
997 ss = NULL;
998 sv = NULL;
999
1000 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1001
1002 sindex = strlen (no_name_func) + 1;
1003 count = hdr->ipdMax;
1004 if (count > 0)
1005 {
1006 size = swap->external_pdr_size;
1007
9719ad41 1008 epdr = bfd_malloc (size * count);
b49e97c9
TS
1009 if (epdr == NULL)
1010 goto error_return;
1011
9719ad41 1012 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1013 goto error_return;
1014
1015 size = sizeof (RPDR);
9719ad41 1016 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1017 if (rpdr == NULL)
1018 goto error_return;
1019
1020 size = sizeof (char *);
9719ad41 1021 sv = bfd_malloc (size * count);
b49e97c9
TS
1022 if (sv == NULL)
1023 goto error_return;
1024
1025 count = hdr->isymMax;
1026 size = swap->external_sym_size;
9719ad41 1027 esym = bfd_malloc (size * count);
b49e97c9
TS
1028 if (esym == NULL)
1029 goto error_return;
1030
9719ad41 1031 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1032 goto error_return;
1033
1034 count = hdr->issMax;
9719ad41 1035 ss = bfd_malloc (count);
b49e97c9
TS
1036 if (ss == NULL)
1037 goto error_return;
f075ee0c 1038 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1039 goto error_return;
1040
1041 count = hdr->ipdMax;
1042 for (i = 0; i < (unsigned long) count; i++, rp++)
1043 {
9719ad41
RS
1044 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1045 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1046 rp->adr = sym.value;
1047 rp->regmask = pdr.regmask;
1048 rp->regoffset = pdr.regoffset;
1049 rp->fregmask = pdr.fregmask;
1050 rp->fregoffset = pdr.fregoffset;
1051 rp->frameoffset = pdr.frameoffset;
1052 rp->framereg = pdr.framereg;
1053 rp->pcreg = pdr.pcreg;
1054 rp->irpss = sindex;
1055 sv[i] = ss + sym.iss;
1056 sindex += strlen (sv[i]) + 1;
1057 }
1058 }
1059
1060 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1061 size = BFD_ALIGN (size, 16);
9719ad41 1062 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1063 if (rtproc == NULL)
1064 {
1065 mips_elf_hash_table (info)->procedure_count = 0;
1066 goto error_return;
1067 }
1068
1069 mips_elf_hash_table (info)->procedure_count = count + 2;
1070
9719ad41 1071 erp = rtproc;
b49e97c9
TS
1072 memset (erp, 0, sizeof (struct rpdr_ext));
1073 erp++;
1074 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1075 strcpy (str, no_name_func);
1076 str += strlen (no_name_func) + 1;
1077 for (i = 0; i < count; i++)
1078 {
1079 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1080 strcpy (str, sv[i]);
1081 str += strlen (sv[i]) + 1;
1082 }
1083 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1084
1085 /* Set the size and contents of .rtproc section. */
eea6121a 1086 s->size = size;
9719ad41 1087 s->contents = rtproc;
b49e97c9
TS
1088
1089 /* Skip this section later on (I don't think this currently
1090 matters, but someday it might). */
8423293d 1091 s->map_head.link_order = NULL;
b49e97c9
TS
1092
1093 if (epdr != NULL)
1094 free (epdr);
1095 if (rpdr != NULL)
1096 free (rpdr);
1097 if (esym != NULL)
1098 free (esym);
1099 if (ss != NULL)
1100 free (ss);
1101 if (sv != NULL)
1102 free (sv);
1103
b34976b6 1104 return TRUE;
b49e97c9
TS
1105
1106 error_return:
1107 if (epdr != NULL)
1108 free (epdr);
1109 if (rpdr != NULL)
1110 free (rpdr);
1111 if (esym != NULL)
1112 free (esym);
1113 if (ss != NULL)
1114 free (ss);
1115 if (sv != NULL)
1116 free (sv);
b34976b6 1117 return FALSE;
b49e97c9
TS
1118}
1119
1120/* Check the mips16 stubs for a particular symbol, and see if we can
1121 discard them. */
1122
b34976b6 1123static bfd_boolean
9719ad41
RS
1124mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1125 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1126{
1127 if (h->root.root.type == bfd_link_hash_warning)
1128 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1129
1130 if (h->fn_stub != NULL
1131 && ! h->need_fn_stub)
1132 {
1133 /* We don't need the fn_stub; the only references to this symbol
1134 are 16 bit calls. Clobber the size to 0 to prevent it from
1135 being included in the link. */
eea6121a 1136 h->fn_stub->size = 0;
b49e97c9
TS
1137 h->fn_stub->flags &= ~SEC_RELOC;
1138 h->fn_stub->reloc_count = 0;
1139 h->fn_stub->flags |= SEC_EXCLUDE;
1140 }
1141
1142 if (h->call_stub != NULL
1143 && h->root.other == STO_MIPS16)
1144 {
1145 /* We don't need the call_stub; this is a 16 bit function, so
1146 calls from other 16 bit functions are OK. Clobber the size
1147 to 0 to prevent it from being included in the link. */
eea6121a 1148 h->call_stub->size = 0;
b49e97c9
TS
1149 h->call_stub->flags &= ~SEC_RELOC;
1150 h->call_stub->reloc_count = 0;
1151 h->call_stub->flags |= SEC_EXCLUDE;
1152 }
1153
1154 if (h->call_fp_stub != NULL
1155 && h->root.other == STO_MIPS16)
1156 {
1157 /* We don't need the call_stub; this is a 16 bit function, so
1158 calls from other 16 bit functions are OK. Clobber the size
1159 to 0 to prevent it from being included in the link. */
eea6121a 1160 h->call_fp_stub->size = 0;
b49e97c9
TS
1161 h->call_fp_stub->flags &= ~SEC_RELOC;
1162 h->call_fp_stub->reloc_count = 0;
1163 h->call_fp_stub->flags |= SEC_EXCLUDE;
1164 }
1165
b34976b6 1166 return TRUE;
b49e97c9
TS
1167}
1168\f
d6f16593
MR
1169/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1170 Most mips16 instructions are 16 bits, but these instructions
1171 are 32 bits.
1172
1173 The format of these instructions is:
1174
1175 +--------------+--------------------------------+
1176 | JALX | X| Imm 20:16 | Imm 25:21 |
1177 +--------------+--------------------------------+
1178 | Immediate 15:0 |
1179 +-----------------------------------------------+
1180
1181 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1182 Note that the immediate value in the first word is swapped.
1183
1184 When producing a relocatable object file, R_MIPS16_26 is
1185 handled mostly like R_MIPS_26. In particular, the addend is
1186 stored as a straight 26-bit value in a 32-bit instruction.
1187 (gas makes life simpler for itself by never adjusting a
1188 R_MIPS16_26 reloc to be against a section, so the addend is
1189 always zero). However, the 32 bit instruction is stored as 2
1190 16-bit values, rather than a single 32-bit value. In a
1191 big-endian file, the result is the same; in a little-endian
1192 file, the two 16-bit halves of the 32 bit value are swapped.
1193 This is so that a disassembler can recognize the jal
1194 instruction.
1195
1196 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1197 instruction stored as two 16-bit values. The addend A is the
1198 contents of the targ26 field. The calculation is the same as
1199 R_MIPS_26. When storing the calculated value, reorder the
1200 immediate value as shown above, and don't forget to store the
1201 value as two 16-bit values.
1202
1203 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1204 defined as
1205
1206 big-endian:
1207 +--------+----------------------+
1208 | | |
1209 | | targ26-16 |
1210 |31 26|25 0|
1211 +--------+----------------------+
1212
1213 little-endian:
1214 +----------+------+-------------+
1215 | | | |
1216 | sub1 | | sub2 |
1217 |0 9|10 15|16 31|
1218 +----------+--------------------+
1219 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1220 ((sub1 << 16) | sub2)).
1221
1222 When producing a relocatable object file, the calculation is
1223 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1224 When producing a fully linked file, the calculation is
1225 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1226 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1227
1228 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1229 mode. A typical instruction will have a format like this:
1230
1231 +--------------+--------------------------------+
1232 | EXTEND | Imm 10:5 | Imm 15:11 |
1233 +--------------+--------------------------------+
1234 | Major | rx | ry | Imm 4:0 |
1235 +--------------+--------------------------------+
1236
1237 EXTEND is the five bit value 11110. Major is the instruction
1238 opcode.
1239
1240 This is handled exactly like R_MIPS_GPREL16, except that the
1241 addend is retrieved and stored as shown in this diagram; that
1242 is, the Imm fields above replace the V-rel16 field.
1243
1244 All we need to do here is shuffle the bits appropriately. As
1245 above, the two 16-bit halves must be swapped on a
1246 little-endian system.
1247
1248 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1249 access data when neither GP-relative nor PC-relative addressing
1250 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1251 except that the addend is retrieved and stored as shown above
1252 for R_MIPS16_GPREL.
1253 */
1254void
1255_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1256 bfd_boolean jal_shuffle, bfd_byte *data)
1257{
1258 bfd_vma extend, insn, val;
1259
1260 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1261 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1262 return;
1263
1264 /* Pick up the mips16 extend instruction and the real instruction. */
1265 extend = bfd_get_16 (abfd, data);
1266 insn = bfd_get_16 (abfd, data + 2);
1267 if (r_type == R_MIPS16_26)
1268 {
1269 if (jal_shuffle)
1270 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1271 | ((extend & 0x1f) << 21) | insn;
1272 else
1273 val = extend << 16 | insn;
1274 }
1275 else
1276 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1277 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1278 bfd_put_32 (abfd, val, data);
1279}
1280
1281void
1282_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1283 bfd_boolean jal_shuffle, bfd_byte *data)
1284{
1285 bfd_vma extend, insn, val;
1286
1287 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1288 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1289 return;
1290
1291 val = bfd_get_32 (abfd, data);
1292 if (r_type == R_MIPS16_26)
1293 {
1294 if (jal_shuffle)
1295 {
1296 insn = val & 0xffff;
1297 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1298 | ((val >> 21) & 0x1f);
1299 }
1300 else
1301 {
1302 insn = val & 0xffff;
1303 extend = val >> 16;
1304 }
1305 }
1306 else
1307 {
1308 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1309 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1310 }
1311 bfd_put_16 (abfd, insn, data + 2);
1312 bfd_put_16 (abfd, extend, data);
1313}
1314
b49e97c9 1315bfd_reloc_status_type
9719ad41
RS
1316_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1317 arelent *reloc_entry, asection *input_section,
1318 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1319{
1320 bfd_vma relocation;
a7ebbfdf 1321 bfd_signed_vma val;
30ac9238 1322 bfd_reloc_status_type status;
b49e97c9
TS
1323
1324 if (bfd_is_com_section (symbol->section))
1325 relocation = 0;
1326 else
1327 relocation = symbol->value;
1328
1329 relocation += symbol->section->output_section->vma;
1330 relocation += symbol->section->output_offset;
1331
07515404 1332 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1333 return bfd_reloc_outofrange;
1334
b49e97c9 1335 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1336 val = reloc_entry->addend;
1337
30ac9238 1338 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1339
b49e97c9 1340 /* Adjust val for the final section location and GP value. If we
1049f94e 1341 are producing relocatable output, we don't want to do this for
b49e97c9 1342 an external symbol. */
1049f94e 1343 if (! relocatable
b49e97c9
TS
1344 || (symbol->flags & BSF_SECTION_SYM) != 0)
1345 val += relocation - gp;
1346
a7ebbfdf
TS
1347 if (reloc_entry->howto->partial_inplace)
1348 {
30ac9238
RS
1349 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1350 (bfd_byte *) data
1351 + reloc_entry->address);
1352 if (status != bfd_reloc_ok)
1353 return status;
a7ebbfdf
TS
1354 }
1355 else
1356 reloc_entry->addend = val;
b49e97c9 1357
1049f94e 1358 if (relocatable)
b49e97c9 1359 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1360
1361 return bfd_reloc_ok;
1362}
1363
1364/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1365 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1366 that contains the relocation field and DATA points to the start of
1367 INPUT_SECTION. */
1368
1369struct mips_hi16
1370{
1371 struct mips_hi16 *next;
1372 bfd_byte *data;
1373 asection *input_section;
1374 arelent rel;
1375};
1376
1377/* FIXME: This should not be a static variable. */
1378
1379static struct mips_hi16 *mips_hi16_list;
1380
1381/* A howto special_function for REL *HI16 relocations. We can only
1382 calculate the correct value once we've seen the partnering
1383 *LO16 relocation, so just save the information for later.
1384
1385 The ABI requires that the *LO16 immediately follow the *HI16.
1386 However, as a GNU extension, we permit an arbitrary number of
1387 *HI16s to be associated with a single *LO16. This significantly
1388 simplies the relocation handling in gcc. */
1389
1390bfd_reloc_status_type
1391_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1392 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1393 asection *input_section, bfd *output_bfd,
1394 char **error_message ATTRIBUTE_UNUSED)
1395{
1396 struct mips_hi16 *n;
1397
07515404 1398 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1399 return bfd_reloc_outofrange;
1400
1401 n = bfd_malloc (sizeof *n);
1402 if (n == NULL)
1403 return bfd_reloc_outofrange;
1404
1405 n->next = mips_hi16_list;
1406 n->data = data;
1407 n->input_section = input_section;
1408 n->rel = *reloc_entry;
1409 mips_hi16_list = n;
1410
1411 if (output_bfd != NULL)
1412 reloc_entry->address += input_section->output_offset;
1413
1414 return bfd_reloc_ok;
1415}
1416
1417/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1418 like any other 16-bit relocation when applied to global symbols, but is
1419 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1420
1421bfd_reloc_status_type
1422_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1423 void *data, asection *input_section,
1424 bfd *output_bfd, char **error_message)
1425{
1426 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1427 || bfd_is_und_section (bfd_get_section (symbol))
1428 || bfd_is_com_section (bfd_get_section (symbol)))
1429 /* The relocation is against a global symbol. */
1430 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1431 input_section, output_bfd,
1432 error_message);
1433
1434 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1435 input_section, output_bfd, error_message);
1436}
1437
1438/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1439 is a straightforward 16 bit inplace relocation, but we must deal with
1440 any partnering high-part relocations as well. */
1441
1442bfd_reloc_status_type
1443_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1444 void *data, asection *input_section,
1445 bfd *output_bfd, char **error_message)
1446{
1447 bfd_vma vallo;
d6f16593 1448 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1449
07515404 1450 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1451 return bfd_reloc_outofrange;
1452
d6f16593
MR
1453 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1454 location);
1455 vallo = bfd_get_32 (abfd, location);
1456 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1457 location);
1458
30ac9238
RS
1459 while (mips_hi16_list != NULL)
1460 {
1461 bfd_reloc_status_type ret;
1462 struct mips_hi16 *hi;
1463
1464 hi = mips_hi16_list;
1465
1466 /* R_MIPS_GOT16 relocations are something of a special case. We
1467 want to install the addend in the same way as for a R_MIPS_HI16
1468 relocation (with a rightshift of 16). However, since GOT16
1469 relocations can also be used with global symbols, their howto
1470 has a rightshift of 0. */
1471 if (hi->rel.howto->type == R_MIPS_GOT16)
1472 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1473
1474 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1475 carry or borrow will induce a change of +1 or -1 in the high part. */
1476 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1477
30ac9238
RS
1478 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1479 hi->input_section, output_bfd,
1480 error_message);
1481 if (ret != bfd_reloc_ok)
1482 return ret;
1483
1484 mips_hi16_list = hi->next;
1485 free (hi);
1486 }
1487
1488 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1489 input_section, output_bfd,
1490 error_message);
1491}
1492
1493/* A generic howto special_function. This calculates and installs the
1494 relocation itself, thus avoiding the oft-discussed problems in
1495 bfd_perform_relocation and bfd_install_relocation. */
1496
1497bfd_reloc_status_type
1498_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1499 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1500 asection *input_section, bfd *output_bfd,
1501 char **error_message ATTRIBUTE_UNUSED)
1502{
1503 bfd_signed_vma val;
1504 bfd_reloc_status_type status;
1505 bfd_boolean relocatable;
1506
1507 relocatable = (output_bfd != NULL);
1508
07515404 1509 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1510 return bfd_reloc_outofrange;
1511
1512 /* Build up the field adjustment in VAL. */
1513 val = 0;
1514 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1515 {
1516 /* Either we're calculating the final field value or we have a
1517 relocation against a section symbol. Add in the section's
1518 offset or address. */
1519 val += symbol->section->output_section->vma;
1520 val += symbol->section->output_offset;
1521 }
1522
1523 if (!relocatable)
1524 {
1525 /* We're calculating the final field value. Add in the symbol's value
1526 and, if pc-relative, subtract the address of the field itself. */
1527 val += symbol->value;
1528 if (reloc_entry->howto->pc_relative)
1529 {
1530 val -= input_section->output_section->vma;
1531 val -= input_section->output_offset;
1532 val -= reloc_entry->address;
1533 }
1534 }
1535
1536 /* VAL is now the final adjustment. If we're keeping this relocation
1537 in the output file, and if the relocation uses a separate addend,
1538 we just need to add VAL to that addend. Otherwise we need to add
1539 VAL to the relocation field itself. */
1540 if (relocatable && !reloc_entry->howto->partial_inplace)
1541 reloc_entry->addend += val;
1542 else
1543 {
d6f16593
MR
1544 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1545
30ac9238
RS
1546 /* Add in the separate addend, if any. */
1547 val += reloc_entry->addend;
1548
1549 /* Add VAL to the relocation field. */
d6f16593
MR
1550 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1551 location);
30ac9238 1552 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1553 location);
1554 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1555 location);
1556
30ac9238
RS
1557 if (status != bfd_reloc_ok)
1558 return status;
1559 }
1560
1561 if (relocatable)
1562 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1563
1564 return bfd_reloc_ok;
1565}
1566\f
1567/* Swap an entry in a .gptab section. Note that these routines rely
1568 on the equivalence of the two elements of the union. */
1569
1570static void
9719ad41
RS
1571bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1572 Elf32_gptab *in)
b49e97c9
TS
1573{
1574 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1575 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1576}
1577
1578static void
9719ad41
RS
1579bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1580 Elf32_External_gptab *ex)
b49e97c9
TS
1581{
1582 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1583 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1584}
1585
1586static void
9719ad41
RS
1587bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1588 Elf32_External_compact_rel *ex)
b49e97c9
TS
1589{
1590 H_PUT_32 (abfd, in->id1, ex->id1);
1591 H_PUT_32 (abfd, in->num, ex->num);
1592 H_PUT_32 (abfd, in->id2, ex->id2);
1593 H_PUT_32 (abfd, in->offset, ex->offset);
1594 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1595 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1596}
1597
1598static void
9719ad41
RS
1599bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1600 Elf32_External_crinfo *ex)
b49e97c9
TS
1601{
1602 unsigned long l;
1603
1604 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1605 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1606 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1607 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1608 H_PUT_32 (abfd, l, ex->info);
1609 H_PUT_32 (abfd, in->konst, ex->konst);
1610 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1611}
b49e97c9
TS
1612\f
1613/* A .reginfo section holds a single Elf32_RegInfo structure. These
1614 routines swap this structure in and out. They are used outside of
1615 BFD, so they are globally visible. */
1616
1617void
9719ad41
RS
1618bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1619 Elf32_RegInfo *in)
b49e97c9
TS
1620{
1621 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1622 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1623 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1624 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1625 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1626 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1627}
1628
1629void
9719ad41
RS
1630bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1631 Elf32_External_RegInfo *ex)
b49e97c9
TS
1632{
1633 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1634 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1635 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1636 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1637 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1638 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1639}
1640
1641/* In the 64 bit ABI, the .MIPS.options section holds register
1642 information in an Elf64_Reginfo structure. These routines swap
1643 them in and out. They are globally visible because they are used
1644 outside of BFD. These routines are here so that gas can call them
1645 without worrying about whether the 64 bit ABI has been included. */
1646
1647void
9719ad41
RS
1648bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1649 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1650{
1651 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1652 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1653 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1654 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1655 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1656 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1657 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1658}
1659
1660void
9719ad41
RS
1661bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1662 Elf64_External_RegInfo *ex)
b49e97c9
TS
1663{
1664 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1665 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1666 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1667 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1668 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1669 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1670 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1671}
1672
1673/* Swap in an options header. */
1674
1675void
9719ad41
RS
1676bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1677 Elf_Internal_Options *in)
b49e97c9
TS
1678{
1679 in->kind = H_GET_8 (abfd, ex->kind);
1680 in->size = H_GET_8 (abfd, ex->size);
1681 in->section = H_GET_16 (abfd, ex->section);
1682 in->info = H_GET_32 (abfd, ex->info);
1683}
1684
1685/* Swap out an options header. */
1686
1687void
9719ad41
RS
1688bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1689 Elf_External_Options *ex)
b49e97c9
TS
1690{
1691 H_PUT_8 (abfd, in->kind, ex->kind);
1692 H_PUT_8 (abfd, in->size, ex->size);
1693 H_PUT_16 (abfd, in->section, ex->section);
1694 H_PUT_32 (abfd, in->info, ex->info);
1695}
1696\f
1697/* This function is called via qsort() to sort the dynamic relocation
1698 entries by increasing r_symndx value. */
1699
1700static int
9719ad41 1701sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1702{
947216bf
AM
1703 Elf_Internal_Rela int_reloc1;
1704 Elf_Internal_Rela int_reloc2;
6870500c 1705 int diff;
b49e97c9 1706
947216bf
AM
1707 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1708 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1709
6870500c
RS
1710 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1711 if (diff != 0)
1712 return diff;
1713
1714 if (int_reloc1.r_offset < int_reloc2.r_offset)
1715 return -1;
1716 if (int_reloc1.r_offset > int_reloc2.r_offset)
1717 return 1;
1718 return 0;
b49e97c9
TS
1719}
1720
f4416af6
AO
1721/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1722
1723static int
7e3102a7
AM
1724sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1725 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1726{
7e3102a7 1727#ifdef BFD64
f4416af6
AO
1728 Elf_Internal_Rela int_reloc1[3];
1729 Elf_Internal_Rela int_reloc2[3];
1730
1731 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1732 (reldyn_sorting_bfd, arg1, int_reloc1);
1733 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1734 (reldyn_sorting_bfd, arg2, int_reloc2);
1735
6870500c
RS
1736 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1737 return -1;
1738 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1739 return 1;
1740
1741 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1742 return -1;
1743 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1744 return 1;
1745 return 0;
7e3102a7
AM
1746#else
1747 abort ();
1748#endif
f4416af6
AO
1749}
1750
1751
b49e97c9
TS
1752/* This routine is used to write out ECOFF debugging external symbol
1753 information. It is called via mips_elf_link_hash_traverse. The
1754 ECOFF external symbol information must match the ELF external
1755 symbol information. Unfortunately, at this point we don't know
1756 whether a symbol is required by reloc information, so the two
1757 tables may wind up being different. We must sort out the external
1758 symbol information before we can set the final size of the .mdebug
1759 section, and we must set the size of the .mdebug section before we
1760 can relocate any sections, and we can't know which symbols are
1761 required by relocation until we relocate the sections.
1762 Fortunately, it is relatively unlikely that any symbol will be
1763 stripped but required by a reloc. In particular, it can not happen
1764 when generating a final executable. */
1765
b34976b6 1766static bfd_boolean
9719ad41 1767mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1768{
9719ad41 1769 struct extsym_info *einfo = data;
b34976b6 1770 bfd_boolean strip;
b49e97c9
TS
1771 asection *sec, *output_section;
1772
1773 if (h->root.root.type == bfd_link_hash_warning)
1774 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1775
1776 if (h->root.indx == -2)
b34976b6 1777 strip = FALSE;
f5385ebf 1778 else if ((h->root.def_dynamic
77cfaee6
AM
1779 || h->root.ref_dynamic
1780 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1781 && !h->root.def_regular
1782 && !h->root.ref_regular)
b34976b6 1783 strip = TRUE;
b49e97c9
TS
1784 else if (einfo->info->strip == strip_all
1785 || (einfo->info->strip == strip_some
1786 && bfd_hash_lookup (einfo->info->keep_hash,
1787 h->root.root.root.string,
b34976b6
AM
1788 FALSE, FALSE) == NULL))
1789 strip = TRUE;
b49e97c9 1790 else
b34976b6 1791 strip = FALSE;
b49e97c9
TS
1792
1793 if (strip)
b34976b6 1794 return TRUE;
b49e97c9
TS
1795
1796 if (h->esym.ifd == -2)
1797 {
1798 h->esym.jmptbl = 0;
1799 h->esym.cobol_main = 0;
1800 h->esym.weakext = 0;
1801 h->esym.reserved = 0;
1802 h->esym.ifd = ifdNil;
1803 h->esym.asym.value = 0;
1804 h->esym.asym.st = stGlobal;
1805
1806 if (h->root.root.type == bfd_link_hash_undefined
1807 || h->root.root.type == bfd_link_hash_undefweak)
1808 {
1809 const char *name;
1810
1811 /* Use undefined class. Also, set class and type for some
1812 special symbols. */
1813 name = h->root.root.root.string;
1814 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1815 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1816 {
1817 h->esym.asym.sc = scData;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value = 0;
1820 }
1821 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1822 {
1823 h->esym.asym.sc = scAbs;
1824 h->esym.asym.st = stLabel;
1825 h->esym.asym.value =
1826 mips_elf_hash_table (einfo->info)->procedure_count;
1827 }
4a14403c 1828 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1829 {
1830 h->esym.asym.sc = scAbs;
1831 h->esym.asym.st = stLabel;
1832 h->esym.asym.value = elf_gp (einfo->abfd);
1833 }
1834 else
1835 h->esym.asym.sc = scUndefined;
1836 }
1837 else if (h->root.root.type != bfd_link_hash_defined
1838 && h->root.root.type != bfd_link_hash_defweak)
1839 h->esym.asym.sc = scAbs;
1840 else
1841 {
1842 const char *name;
1843
1844 sec = h->root.root.u.def.section;
1845 output_section = sec->output_section;
1846
1847 /* When making a shared library and symbol h is the one from
1848 the another shared library, OUTPUT_SECTION may be null. */
1849 if (output_section == NULL)
1850 h->esym.asym.sc = scUndefined;
1851 else
1852 {
1853 name = bfd_section_name (output_section->owner, output_section);
1854
1855 if (strcmp (name, ".text") == 0)
1856 h->esym.asym.sc = scText;
1857 else if (strcmp (name, ".data") == 0)
1858 h->esym.asym.sc = scData;
1859 else if (strcmp (name, ".sdata") == 0)
1860 h->esym.asym.sc = scSData;
1861 else if (strcmp (name, ".rodata") == 0
1862 || strcmp (name, ".rdata") == 0)
1863 h->esym.asym.sc = scRData;
1864 else if (strcmp (name, ".bss") == 0)
1865 h->esym.asym.sc = scBss;
1866 else if (strcmp (name, ".sbss") == 0)
1867 h->esym.asym.sc = scSBss;
1868 else if (strcmp (name, ".init") == 0)
1869 h->esym.asym.sc = scInit;
1870 else if (strcmp (name, ".fini") == 0)
1871 h->esym.asym.sc = scFini;
1872 else
1873 h->esym.asym.sc = scAbs;
1874 }
1875 }
1876
1877 h->esym.asym.reserved = 0;
1878 h->esym.asym.index = indexNil;
1879 }
1880
1881 if (h->root.root.type == bfd_link_hash_common)
1882 h->esym.asym.value = h->root.root.u.c.size;
1883 else if (h->root.root.type == bfd_link_hash_defined
1884 || h->root.root.type == bfd_link_hash_defweak)
1885 {
1886 if (h->esym.asym.sc == scCommon)
1887 h->esym.asym.sc = scBss;
1888 else if (h->esym.asym.sc == scSCommon)
1889 h->esym.asym.sc = scSBss;
1890
1891 sec = h->root.root.u.def.section;
1892 output_section = sec->output_section;
1893 if (output_section != NULL)
1894 h->esym.asym.value = (h->root.root.u.def.value
1895 + sec->output_offset
1896 + output_section->vma);
1897 else
1898 h->esym.asym.value = 0;
1899 }
f5385ebf 1900 else if (h->root.needs_plt)
b49e97c9
TS
1901 {
1902 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1903 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1904
1905 while (hd->root.root.type == bfd_link_hash_indirect)
1906 {
1907 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1908 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1909 }
1910
1911 if (!no_fn_stub)
1912 {
1913 /* Set type and value for a symbol with a function stub. */
1914 h->esym.asym.st = stProc;
1915 sec = hd->root.root.u.def.section;
1916 if (sec == NULL)
1917 h->esym.asym.value = 0;
1918 else
1919 {
1920 output_section = sec->output_section;
1921 if (output_section != NULL)
1922 h->esym.asym.value = (hd->root.plt.offset
1923 + sec->output_offset
1924 + output_section->vma);
1925 else
1926 h->esym.asym.value = 0;
1927 }
b49e97c9
TS
1928 }
1929 }
1930
1931 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1932 h->root.root.root.string,
1933 &h->esym))
1934 {
b34976b6
AM
1935 einfo->failed = TRUE;
1936 return FALSE;
b49e97c9
TS
1937 }
1938
b34976b6 1939 return TRUE;
b49e97c9
TS
1940}
1941
1942/* A comparison routine used to sort .gptab entries. */
1943
1944static int
9719ad41 1945gptab_compare (const void *p1, const void *p2)
b49e97c9 1946{
9719ad41
RS
1947 const Elf32_gptab *a1 = p1;
1948 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1949
1950 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1951}
1952\f
b15e6682 1953/* Functions to manage the got entry hash table. */
f4416af6
AO
1954
1955/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1956 hash number. */
1957
1958static INLINE hashval_t
9719ad41 1959mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1960{
1961#ifdef BFD64
1962 return addr + (addr >> 32);
1963#else
1964 return addr;
1965#endif
1966}
1967
1968/* got_entries only match if they're identical, except for gotidx, so
1969 use all fields to compute the hash, and compare the appropriate
1970 union members. */
1971
b15e6682 1972static hashval_t
9719ad41 1973mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1974{
1975 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1976
38985a1c 1977 return entry->symndx
0f20cc35 1978 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1979 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1980 : entry->abfd->id
1981 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1982 : entry->d.h->root.root.root.hash));
b15e6682
AO
1983}
1984
1985static int
9719ad41 1986mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1987{
1988 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1989 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1990
0f20cc35
DJ
1991 /* An LDM entry can only match another LDM entry. */
1992 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1993 return 0;
1994
b15e6682 1995 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1996 && (! e1->abfd ? e1->d.address == e2->d.address
1997 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1998 : e1->d.h == e2->d.h);
1999}
2000
2001/* multi_got_entries are still a match in the case of global objects,
2002 even if the input bfd in which they're referenced differs, so the
2003 hash computation and compare functions are adjusted
2004 accordingly. */
2005
2006static hashval_t
9719ad41 2007mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2008{
2009 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2010
2011 return entry->symndx
2012 + (! entry->abfd
2013 ? mips_elf_hash_bfd_vma (entry->d.address)
2014 : entry->symndx >= 0
0f20cc35
DJ
2015 ? ((entry->tls_type & GOT_TLS_LDM)
2016 ? (GOT_TLS_LDM << 17)
2017 : (entry->abfd->id
2018 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2019 : entry->d.h->root.root.root.hash);
2020}
2021
2022static int
9719ad41 2023mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2024{
2025 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2026 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2027
0f20cc35
DJ
2028 /* Any two LDM entries match. */
2029 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2030 return 1;
2031
2032 /* Nothing else matches an LDM entry. */
2033 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2034 return 0;
2035
f4416af6
AO
2036 return e1->symndx == e2->symndx
2037 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2038 : e1->abfd == NULL || e2->abfd == NULL
2039 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2040 : e1->d.h == e2->d.h);
b15e6682
AO
2041}
2042\f
0a44bf69
RS
2043/* Return the dynamic relocation section. If it doesn't exist, try to
2044 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2045 if creation fails. */
f4416af6
AO
2046
2047static asection *
0a44bf69 2048mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2049{
0a44bf69 2050 const char *dname;
f4416af6 2051 asection *sreloc;
0a44bf69 2052 bfd *dynobj;
f4416af6 2053
0a44bf69
RS
2054 dname = MIPS_ELF_REL_DYN_NAME (info);
2055 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2056 sreloc = bfd_get_section_by_name (dynobj, dname);
2057 if (sreloc == NULL && create_p)
2058 {
3496cb2a
L
2059 sreloc = bfd_make_section_with_flags (dynobj, dname,
2060 (SEC_ALLOC
2061 | SEC_LOAD
2062 | SEC_HAS_CONTENTS
2063 | SEC_IN_MEMORY
2064 | SEC_LINKER_CREATED
2065 | SEC_READONLY));
f4416af6 2066 if (sreloc == NULL
f4416af6 2067 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2068 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2069 return NULL;
2070 }
2071 return sreloc;
2072}
2073
b49e97c9
TS
2074/* Returns the GOT section for ABFD. */
2075
2076static asection *
9719ad41 2077mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2078{
f4416af6
AO
2079 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2080 if (sgot == NULL
2081 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2082 return NULL;
2083 return sgot;
b49e97c9
TS
2084}
2085
2086/* Returns the GOT information associated with the link indicated by
2087 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2088 section. */
2089
2090static struct mips_got_info *
9719ad41 2091mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2092{
2093 asection *sgot;
2094 struct mips_got_info *g;
2095
f4416af6 2096 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2097 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2098 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2099 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2100 BFD_ASSERT (g != NULL);
2101
2102 if (sgotp)
f4416af6
AO
2103 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2104
b49e97c9
TS
2105 return g;
2106}
2107
0f20cc35
DJ
2108/* Count the number of relocations needed for a TLS GOT entry, with
2109 access types from TLS_TYPE, and symbol H (or a local symbol if H
2110 is NULL). */
2111
2112static int
2113mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2114 struct elf_link_hash_entry *h)
2115{
2116 int indx = 0;
2117 int ret = 0;
2118 bfd_boolean need_relocs = FALSE;
2119 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2120
2121 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2122 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2123 indx = h->dynindx;
2124
2125 if ((info->shared || indx != 0)
2126 && (h == NULL
2127 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2128 || h->root.type != bfd_link_hash_undefweak))
2129 need_relocs = TRUE;
2130
2131 if (!need_relocs)
2132 return FALSE;
2133
2134 if (tls_type & GOT_TLS_GD)
2135 {
2136 ret++;
2137 if (indx != 0)
2138 ret++;
2139 }
2140
2141 if (tls_type & GOT_TLS_IE)
2142 ret++;
2143
2144 if ((tls_type & GOT_TLS_LDM) && info->shared)
2145 ret++;
2146
2147 return ret;
2148}
2149
2150/* Count the number of TLS relocations required for the GOT entry in
2151 ARG1, if it describes a local symbol. */
2152
2153static int
2154mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2155{
2156 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2157 struct mips_elf_count_tls_arg *arg = arg2;
2158
2159 if (entry->abfd != NULL && entry->symndx != -1)
2160 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2161
2162 return 1;
2163}
2164
2165/* Count the number of TLS GOT entries required for the global (or
2166 forced-local) symbol in ARG1. */
2167
2168static int
2169mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2170{
2171 struct mips_elf_link_hash_entry *hm
2172 = (struct mips_elf_link_hash_entry *) arg1;
2173 struct mips_elf_count_tls_arg *arg = arg2;
2174
2175 if (hm->tls_type & GOT_TLS_GD)
2176 arg->needed += 2;
2177 if (hm->tls_type & GOT_TLS_IE)
2178 arg->needed += 1;
2179
2180 return 1;
2181}
2182
2183/* Count the number of TLS relocations required for the global (or
2184 forced-local) symbol in ARG1. */
2185
2186static int
2187mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2188{
2189 struct mips_elf_link_hash_entry *hm
2190 = (struct mips_elf_link_hash_entry *) arg1;
2191 struct mips_elf_count_tls_arg *arg = arg2;
2192
2193 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2194
2195 return 1;
2196}
2197
2198/* Output a simple dynamic relocation into SRELOC. */
2199
2200static void
2201mips_elf_output_dynamic_relocation (bfd *output_bfd,
2202 asection *sreloc,
2203 unsigned long indx,
2204 int r_type,
2205 bfd_vma offset)
2206{
2207 Elf_Internal_Rela rel[3];
2208
2209 memset (rel, 0, sizeof (rel));
2210
2211 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2212 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2213
2214 if (ABI_64_P (output_bfd))
2215 {
2216 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2220 }
2221 else
2222 bfd_elf32_swap_reloc_out
2223 (output_bfd, &rel[0],
2224 (sreloc->contents
2225 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2226 ++sreloc->reloc_count;
2227}
2228
2229/* Initialize a set of TLS GOT entries for one symbol. */
2230
2231static void
2232mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2233 unsigned char *tls_type_p,
2234 struct bfd_link_info *info,
2235 struct mips_elf_link_hash_entry *h,
2236 bfd_vma value)
2237{
2238 int indx;
2239 asection *sreloc, *sgot;
2240 bfd_vma offset, offset2;
2241 bfd *dynobj;
2242 bfd_boolean need_relocs = FALSE;
2243
2244 dynobj = elf_hash_table (info)->dynobj;
2245 sgot = mips_elf_got_section (dynobj, FALSE);
2246
2247 indx = 0;
2248 if (h != NULL)
2249 {
2250 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2251
2252 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2253 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2254 indx = h->root.dynindx;
2255 }
2256
2257 if (*tls_type_p & GOT_TLS_DONE)
2258 return;
2259
2260 if ((info->shared || indx != 0)
2261 && (h == NULL
2262 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2263 || h->root.type != bfd_link_hash_undefweak))
2264 need_relocs = TRUE;
2265
2266 /* MINUS_ONE means the symbol is not defined in this object. It may not
2267 be defined at all; assume that the value doesn't matter in that
2268 case. Otherwise complain if we would use the value. */
2269 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2270 || h->root.root.type == bfd_link_hash_undefweak);
2271
2272 /* Emit necessary relocations. */
0a44bf69 2273 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2274
2275 /* General Dynamic. */
2276 if (*tls_type_p & GOT_TLS_GD)
2277 {
2278 offset = got_offset;
2279 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2280
2281 if (need_relocs)
2282 {
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2286 sgot->output_offset + sgot->output_section->vma + offset);
2287
2288 if (indx)
2289 mips_elf_output_dynamic_relocation
2290 (abfd, sreloc, indx,
2291 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2292 sgot->output_offset + sgot->output_section->vma + offset2);
2293 else
2294 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2295 sgot->contents + offset2);
2296 }
2297 else
2298 {
2299 MIPS_ELF_PUT_WORD (abfd, 1,
2300 sgot->contents + offset);
2301 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2302 sgot->contents + offset2);
2303 }
2304
2305 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2306 }
2307
2308 /* Initial Exec model. */
2309 if (*tls_type_p & GOT_TLS_IE)
2310 {
2311 offset = got_offset;
2312
2313 if (need_relocs)
2314 {
2315 if (indx == 0)
2316 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2317 sgot->contents + offset);
2318 else
2319 MIPS_ELF_PUT_WORD (abfd, 0,
2320 sgot->contents + offset);
2321
2322 mips_elf_output_dynamic_relocation
2323 (abfd, sreloc, indx,
2324 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2325 sgot->output_offset + sgot->output_section->vma + offset);
2326 }
2327 else
2328 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2329 sgot->contents + offset);
2330 }
2331
2332 if (*tls_type_p & GOT_TLS_LDM)
2333 {
2334 /* The initial offset is zero, and the LD offsets will include the
2335 bias by DTP_OFFSET. */
2336 MIPS_ELF_PUT_WORD (abfd, 0,
2337 sgot->contents + got_offset
2338 + MIPS_ELF_GOT_SIZE (abfd));
2339
2340 if (!info->shared)
2341 MIPS_ELF_PUT_WORD (abfd, 1,
2342 sgot->contents + got_offset);
2343 else
2344 mips_elf_output_dynamic_relocation
2345 (abfd, sreloc, indx,
2346 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2347 sgot->output_offset + sgot->output_section->vma + got_offset);
2348 }
2349
2350 *tls_type_p |= GOT_TLS_DONE;
2351}
2352
2353/* Return the GOT index to use for a relocation of type R_TYPE against
2354 a symbol accessed using TLS_TYPE models. The GOT entries for this
2355 symbol in this GOT start at GOT_INDEX. This function initializes the
2356 GOT entries and corresponding relocations. */
2357
2358static bfd_vma
2359mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2360 int r_type, struct bfd_link_info *info,
2361 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2362{
2363 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2364 || r_type == R_MIPS_TLS_LDM);
2365
2366 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2367
2368 if (r_type == R_MIPS_TLS_GOTTPREL)
2369 {
2370 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2371 if (*tls_type & GOT_TLS_GD)
2372 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2373 else
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_GD)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2380 return got_index;
2381 }
2382
2383 if (r_type == R_MIPS_TLS_LDM)
2384 {
2385 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2386 return got_index;
2387 }
2388
2389 return got_index;
2390}
2391
0a44bf69
RS
2392/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2393 for global symbol H. .got.plt comes before the GOT, so the offset
2394 will be negative. */
2395
2396static bfd_vma
2397mips_elf_gotplt_index (struct bfd_link_info *info,
2398 struct elf_link_hash_entry *h)
2399{
2400 bfd_vma plt_index, got_address, got_value;
2401 struct mips_elf_link_hash_table *htab;
2402
2403 htab = mips_elf_hash_table (info);
2404 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2405
2406 /* Calculate the index of the symbol's PLT entry. */
2407 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2408
2409 /* Calculate the address of the associated .got.plt entry. */
2410 got_address = (htab->sgotplt->output_section->vma
2411 + htab->sgotplt->output_offset
2412 + plt_index * 4);
2413
2414 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2415 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2416 + htab->root.hgot->root.u.def.section->output_offset
2417 + htab->root.hgot->root.u.def.value);
2418
2419 return got_address - got_value;
2420}
2421
5c18022e 2422/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
2423 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2424 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2425 offset can be found. */
b49e97c9
TS
2426
2427static bfd_vma
9719ad41 2428mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2429 bfd_vma value, unsigned long r_symndx,
0f20cc35 2430 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2431{
2432 asection *sgot;
2433 struct mips_got_info *g;
b15e6682 2434 struct mips_got_entry *entry;
b49e97c9
TS
2435
2436 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2437
0a44bf69 2438 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2439 value, r_symndx, h, r_type);
0f20cc35 2440 if (!entry)
b15e6682 2441 return MINUS_ONE;
0f20cc35
DJ
2442
2443 if (TLS_RELOC_P (r_type))
ead49a57
RS
2444 {
2445 if (entry->symndx == -1 && g->next == NULL)
2446 /* A type (3) entry in the single-GOT case. We use the symbol's
2447 hash table entry to track the index. */
2448 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2449 r_type, info, h, value);
2450 else
2451 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2452 r_type, info, h, value);
2453 }
0f20cc35
DJ
2454 else
2455 return entry->gotidx;
b49e97c9
TS
2456}
2457
2458/* Returns the GOT index for the global symbol indicated by H. */
2459
2460static bfd_vma
0f20cc35
DJ
2461mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2462 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2463{
2464 bfd_vma index;
2465 asection *sgot;
f4416af6 2466 struct mips_got_info *g, *gg;
d0c7ff07 2467 long global_got_dynindx = 0;
b49e97c9 2468
f4416af6
AO
2469 gg = g = mips_elf_got_info (abfd, &sgot);
2470 if (g->bfd2got && ibfd)
2471 {
2472 struct mips_got_entry e, *p;
143d77c5 2473
f4416af6
AO
2474 BFD_ASSERT (h->dynindx >= 0);
2475
2476 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2477 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2478 {
2479 e.abfd = ibfd;
2480 e.symndx = -1;
2481 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2482 e.tls_type = 0;
f4416af6 2483
9719ad41 2484 p = htab_find (g->got_entries, &e);
f4416af6
AO
2485
2486 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2487
2488 if (TLS_RELOC_P (r_type))
2489 {
2490 bfd_vma value = MINUS_ONE;
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && h->root.u.def.section->output_section)
2494 value = (h->root.u.def.value
2495 + h->root.u.def.section->output_offset
2496 + h->root.u.def.section->output_section->vma);
2497
2498 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2499 info, e.d.h, value);
2500 }
2501 else
2502 return p->gotidx;
f4416af6
AO
2503 }
2504 }
2505
2506 if (gg->global_gotsym != NULL)
2507 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2508
0f20cc35
DJ
2509 if (TLS_RELOC_P (r_type))
2510 {
2511 struct mips_elf_link_hash_entry *hm
2512 = (struct mips_elf_link_hash_entry *) h;
2513 bfd_vma value = MINUS_ONE;
2514
2515 if ((h->root.type == bfd_link_hash_defined
2516 || h->root.type == bfd_link_hash_defweak)
2517 && h->root.u.def.section->output_section)
2518 value = (h->root.u.def.value
2519 + h->root.u.def.section->output_offset
2520 + h->root.u.def.section->output_section->vma);
2521
2522 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2523 r_type, info, hm, value);
2524 }
2525 else
2526 {
2527 /* Once we determine the global GOT entry with the lowest dynamic
2528 symbol table index, we must put all dynamic symbols with greater
2529 indices into the GOT. That makes it easy to calculate the GOT
2530 offset. */
2531 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2532 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2533 * MIPS_ELF_GOT_SIZE (abfd));
2534 }
eea6121a 2535 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2536
2537 return index;
2538}
2539
5c18022e
RS
2540/* Find a GOT page entry that points to within 32KB of VALUE. These
2541 entries are supposed to be placed at small offsets in the GOT, i.e.,
2542 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2543 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 2544 offset of the GOT entry from VALUE. */
b49e97c9
TS
2545
2546static bfd_vma
9719ad41 2547mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2548 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2549{
2550 asection *sgot;
2551 struct mips_got_info *g;
0a44bf69 2552 bfd_vma page, index;
b15e6682 2553 struct mips_got_entry *entry;
b49e97c9
TS
2554
2555 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2556
0a44bf69
RS
2557 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2558 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2559 page, 0, NULL, R_MIPS_GOT_PAGE);
b49e97c9 2560
b15e6682
AO
2561 if (!entry)
2562 return MINUS_ONE;
143d77c5 2563
b15e6682 2564 index = entry->gotidx;
b49e97c9
TS
2565
2566 if (offsetp)
f4416af6 2567 *offsetp = value - entry->d.address;
b49e97c9
TS
2568
2569 return index;
2570}
2571
5c18022e 2572/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
0a44bf69
RS
2573 EXTERNAL is true if the relocation was against a global symbol
2574 that has been forced local. */
b49e97c9
TS
2575
2576static bfd_vma
9719ad41 2577mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2578 bfd_vma value, bfd_boolean external)
b49e97c9
TS
2579{
2580 asection *sgot;
2581 struct mips_got_info *g;
b15e6682 2582 struct mips_got_entry *entry;
b49e97c9 2583
0a44bf69
RS
2584 /* GOT16 relocations against local symbols are followed by a LO16
2585 relocation; those against global symbols are not. Thus if the
2586 symbol was originally local, the GOT16 relocation should load the
2587 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2588 if (! external)
0a44bf69 2589 value = mips_elf_high (value) << 16;
b49e97c9
TS
2590
2591 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2592
0a44bf69 2593 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2594 value, 0, NULL, R_MIPS_GOT16);
b15e6682
AO
2595 if (entry)
2596 return entry->gotidx;
2597 else
2598 return MINUS_ONE;
b49e97c9
TS
2599}
2600
2601/* Returns the offset for the entry at the INDEXth position
2602 in the GOT. */
2603
2604static bfd_vma
9719ad41
RS
2605mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2606 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2607{
2608 asection *sgot;
2609 bfd_vma gp;
f4416af6 2610 struct mips_got_info *g;
b49e97c9 2611
f4416af6
AO
2612 g = mips_elf_got_info (dynobj, &sgot);
2613 gp = _bfd_get_gp_value (output_bfd)
2614 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2615
f4416af6 2616 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2617}
2618
0a44bf69
RS
2619/* Create and return a local GOT entry for VALUE, which was calculated
2620 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2621 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2622 instead. */
b49e97c9 2623
b15e6682 2624static struct mips_got_entry *
0a44bf69
RS
2625mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2626 bfd *ibfd, struct mips_got_info *gg,
5c18022e
RS
2627 asection *sgot, bfd_vma value,
2628 unsigned long r_symndx,
0f20cc35
DJ
2629 struct mips_elf_link_hash_entry *h,
2630 int r_type)
b49e97c9 2631{
b15e6682 2632 struct mips_got_entry entry, **loc;
f4416af6 2633 struct mips_got_info *g;
0a44bf69
RS
2634 struct mips_elf_link_hash_table *htab;
2635
2636 htab = mips_elf_hash_table (info);
b15e6682 2637
f4416af6
AO
2638 entry.abfd = NULL;
2639 entry.symndx = -1;
2640 entry.d.address = value;
0f20cc35 2641 entry.tls_type = 0;
f4416af6
AO
2642
2643 g = mips_elf_got_for_ibfd (gg, ibfd);
2644 if (g == NULL)
2645 {
2646 g = mips_elf_got_for_ibfd (gg, abfd);
2647 BFD_ASSERT (g != NULL);
2648 }
b15e6682 2649
0f20cc35
DJ
2650 /* We might have a symbol, H, if it has been forced local. Use the
2651 global entry then. It doesn't matter whether an entry is local
2652 or global for TLS, since the dynamic linker does not
2653 automatically relocate TLS GOT entries. */
a008ac03 2654 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2655 if (TLS_RELOC_P (r_type))
2656 {
2657 struct mips_got_entry *p;
2658
2659 entry.abfd = ibfd;
2660 if (r_type == R_MIPS_TLS_LDM)
2661 {
2662 entry.tls_type = GOT_TLS_LDM;
2663 entry.symndx = 0;
2664 entry.d.addend = 0;
2665 }
2666 else if (h == NULL)
2667 {
2668 entry.symndx = r_symndx;
2669 entry.d.addend = 0;
2670 }
2671 else
2672 entry.d.h = h;
2673
2674 p = (struct mips_got_entry *)
2675 htab_find (g->got_entries, &entry);
2676
2677 BFD_ASSERT (p);
2678 return p;
2679 }
2680
b15e6682
AO
2681 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2682 INSERT);
2683 if (*loc)
2684 return *loc;
143d77c5 2685
b15e6682 2686 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2687 entry.tls_type = 0;
b15e6682
AO
2688
2689 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2690
2691 if (! *loc)
2692 return NULL;
143d77c5 2693
b15e6682
AO
2694 memcpy (*loc, &entry, sizeof entry);
2695
8275b357 2696 if (g->assigned_gotno > g->local_gotno)
b49e97c9 2697 {
f4416af6 2698 (*loc)->gotidx = -1;
b49e97c9
TS
2699 /* We didn't allocate enough space in the GOT. */
2700 (*_bfd_error_handler)
2701 (_("not enough GOT space for local GOT entries"));
2702 bfd_set_error (bfd_error_bad_value);
b15e6682 2703 return NULL;
b49e97c9
TS
2704 }
2705
2706 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2707 (sgot->contents + entry.gotidx));
2708
5c18022e 2709 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
2710 if (htab->is_vxworks)
2711 {
2712 Elf_Internal_Rela outrel;
5c18022e 2713 asection *s;
0a44bf69
RS
2714 bfd_byte *loc;
2715 bfd_vma got_address;
0a44bf69
RS
2716
2717 s = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69
RS
2718 got_address = (sgot->output_section->vma
2719 + sgot->output_offset
2720 + entry.gotidx);
2721
2722 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2723 outrel.r_offset = got_address;
5c18022e
RS
2724 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2725 outrel.r_addend = value;
0a44bf69
RS
2726 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2727 }
2728
b15e6682 2729 return *loc;
b49e97c9
TS
2730}
2731
2732/* Sort the dynamic symbol table so that symbols that need GOT entries
2733 appear towards the end. This reduces the amount of GOT space
2734 required. MAX_LOCAL is used to set the number of local symbols
2735 known to be in the dynamic symbol table. During
2736 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2737 section symbols are added and the count is higher. */
2738
b34976b6 2739static bfd_boolean
9719ad41 2740mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2741{
2742 struct mips_elf_hash_sort_data hsd;
2743 struct mips_got_info *g;
2744 bfd *dynobj;
2745
2746 dynobj = elf_hash_table (info)->dynobj;
2747
f4416af6
AO
2748 g = mips_elf_got_info (dynobj, NULL);
2749
b49e97c9 2750 hsd.low = NULL;
143d77c5 2751 hsd.max_unref_got_dynindx =
f4416af6
AO
2752 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2753 /* In the multi-got case, assigned_gotno of the master got_info
2754 indicate the number of entries that aren't referenced in the
2755 primary GOT, but that must have entries because there are
2756 dynamic relocations that reference it. Since they aren't
2757 referenced, we move them to the end of the GOT, so that they
2758 don't prevent other entries that are referenced from getting
2759 too large offsets. */
2760 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2761 hsd.max_non_got_dynindx = max_local;
2762 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2763 elf_hash_table (info)),
2764 mips_elf_sort_hash_table_f,
2765 &hsd);
2766
2767 /* There should have been enough room in the symbol table to
44c410de 2768 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2769 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2770 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2771 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2772
2773 /* Now we know which dynamic symbol has the lowest dynamic symbol
2774 table index in the GOT. */
b49e97c9
TS
2775 g->global_gotsym = hsd.low;
2776
b34976b6 2777 return TRUE;
b49e97c9
TS
2778}
2779
2780/* If H needs a GOT entry, assign it the highest available dynamic
2781 index. Otherwise, assign it the lowest available dynamic
2782 index. */
2783
b34976b6 2784static bfd_boolean
9719ad41 2785mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2786{
9719ad41 2787 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2788
2789 if (h->root.root.type == bfd_link_hash_warning)
2790 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2791
2792 /* Symbols without dynamic symbol table entries aren't interesting
2793 at all. */
2794 if (h->root.dynindx == -1)
b34976b6 2795 return TRUE;
b49e97c9 2796
f4416af6
AO
2797 /* Global symbols that need GOT entries that are not explicitly
2798 referenced are marked with got offset 2. Those that are
2799 referenced get a 1, and those that don't need GOT entries get
720199d6
DJ
2800 -1. Forced local symbols may also be marked with got offset 1,
2801 but are never given global GOT entries. */
f4416af6
AO
2802 if (h->root.got.offset == 2)
2803 {
0f20cc35
DJ
2804 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2805
f4416af6
AO
2806 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2807 hsd->low = (struct elf_link_hash_entry *) h;
2808 h->root.dynindx = hsd->max_unref_got_dynindx++;
2809 }
720199d6 2810 else if (h->root.got.offset != 1 || h->forced_local)
b49e97c9
TS
2811 h->root.dynindx = hsd->max_non_got_dynindx++;
2812 else
2813 {
0f20cc35
DJ
2814 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2815
b49e97c9
TS
2816 h->root.dynindx = --hsd->min_got_dynindx;
2817 hsd->low = (struct elf_link_hash_entry *) h;
2818 }
2819
b34976b6 2820 return TRUE;
b49e97c9
TS
2821}
2822
2823/* If H is a symbol that needs a global GOT entry, but has a dynamic
2824 symbol table index lower than any we've seen to date, record it for
2825 posterity. */
2826
b34976b6 2827static bfd_boolean
9719ad41
RS
2828mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2829 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2830 struct mips_got_info *g,
2831 unsigned char tls_flag)
b49e97c9 2832{
f4416af6
AO
2833 struct mips_got_entry entry, **loc;
2834
b49e97c9
TS
2835 /* A global symbol in the GOT must also be in the dynamic symbol
2836 table. */
7c5fcef7
L
2837 if (h->dynindx == -1)
2838 {
2839 switch (ELF_ST_VISIBILITY (h->other))
2840 {
2841 case STV_INTERNAL:
2842 case STV_HIDDEN:
b34976b6 2843 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2844 break;
2845 }
c152c796 2846 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2847 return FALSE;
7c5fcef7 2848 }
b49e97c9 2849
86324f90
EC
2850 /* Make sure we have a GOT to put this entry into. */
2851 BFD_ASSERT (g != NULL);
2852
f4416af6
AO
2853 entry.abfd = abfd;
2854 entry.symndx = -1;
2855 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2856 entry.tls_type = 0;
f4416af6
AO
2857
2858 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2859 INSERT);
2860
b49e97c9
TS
2861 /* If we've already marked this entry as needing GOT space, we don't
2862 need to do it again. */
f4416af6 2863 if (*loc)
0f20cc35
DJ
2864 {
2865 (*loc)->tls_type |= tls_flag;
2866 return TRUE;
2867 }
f4416af6
AO
2868
2869 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2870
2871 if (! *loc)
2872 return FALSE;
143d77c5 2873
f4416af6 2874 entry.gotidx = -1;
0f20cc35
DJ
2875 entry.tls_type = tls_flag;
2876
f4416af6
AO
2877 memcpy (*loc, &entry, sizeof entry);
2878
b49e97c9 2879 if (h->got.offset != MINUS_ONE)
b34976b6 2880 return TRUE;
b49e97c9 2881
0f20cc35 2882 if (tls_flag == 0)
8275b357
RS
2883 {
2884 /* By setting this to a value other than -1, we are indicating that
2885 there needs to be a GOT entry for H. Avoid using zero, as the
2886 generic ELF copy_indirect_symbol tests for <= 0. */
2887 h->got.offset = 1;
2888 if (h->forced_local)
2889 g->local_gotno++;
2890 }
b49e97c9 2891
b34976b6 2892 return TRUE;
b49e97c9 2893}
f4416af6
AO
2894
2895/* Reserve space in G for a GOT entry containing the value of symbol
2896 SYMNDX in input bfd ABDF, plus ADDEND. */
2897
2898static bfd_boolean
9719ad41 2899mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2900 struct mips_got_info *g,
2901 unsigned char tls_flag)
f4416af6
AO
2902{
2903 struct mips_got_entry entry, **loc;
2904
2905 entry.abfd = abfd;
2906 entry.symndx = symndx;
2907 entry.d.addend = addend;
0f20cc35 2908 entry.tls_type = tls_flag;
f4416af6
AO
2909 loc = (struct mips_got_entry **)
2910 htab_find_slot (g->got_entries, &entry, INSERT);
2911
2912 if (*loc)
0f20cc35
DJ
2913 {
2914 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2915 {
2916 g->tls_gotno += 2;
2917 (*loc)->tls_type |= tls_flag;
2918 }
2919 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2920 {
2921 g->tls_gotno += 1;
2922 (*loc)->tls_type |= tls_flag;
2923 }
2924 return TRUE;
2925 }
f4416af6 2926
0f20cc35
DJ
2927 if (tls_flag != 0)
2928 {
2929 entry.gotidx = -1;
2930 entry.tls_type = tls_flag;
2931 if (tls_flag == GOT_TLS_IE)
2932 g->tls_gotno += 1;
2933 else if (tls_flag == GOT_TLS_GD)
2934 g->tls_gotno += 2;
2935 else if (g->tls_ldm_offset == MINUS_ONE)
2936 {
2937 g->tls_ldm_offset = MINUS_TWO;
2938 g->tls_gotno += 2;
2939 }
2940 }
2941 else
2942 {
2943 entry.gotidx = g->local_gotno++;
2944 entry.tls_type = 0;
2945 }
f4416af6
AO
2946
2947 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2948
2949 if (! *loc)
2950 return FALSE;
143d77c5 2951
f4416af6
AO
2952 memcpy (*loc, &entry, sizeof entry);
2953
2954 return TRUE;
2955}
2956\f
2957/* Compute the hash value of the bfd in a bfd2got hash entry. */
2958
2959static hashval_t
9719ad41 2960mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2961{
2962 const struct mips_elf_bfd2got_hash *entry
2963 = (struct mips_elf_bfd2got_hash *)entry_;
2964
2965 return entry->bfd->id;
2966}
2967
2968/* Check whether two hash entries have the same bfd. */
2969
2970static int
9719ad41 2971mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2972{
2973 const struct mips_elf_bfd2got_hash *e1
2974 = (const struct mips_elf_bfd2got_hash *)entry1;
2975 const struct mips_elf_bfd2got_hash *e2
2976 = (const struct mips_elf_bfd2got_hash *)entry2;
2977
2978 return e1->bfd == e2->bfd;
2979}
2980
bad36eac 2981/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2982 be the master GOT data. */
2983
2984static struct mips_got_info *
9719ad41 2985mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2986{
2987 struct mips_elf_bfd2got_hash e, *p;
2988
2989 if (! g->bfd2got)
2990 return g;
2991
2992 e.bfd = ibfd;
9719ad41 2993 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2994 return p ? p->g : NULL;
2995}
2996
2997/* Create one separate got for each bfd that has entries in the global
2998 got, such that we can tell how many local and global entries each
2999 bfd requires. */
3000
3001static int
9719ad41 3002mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
3003{
3004 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3005 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3006 htab_t bfd2got = arg->bfd2got;
3007 struct mips_got_info *g;
3008 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3009 void **bfdgotp;
143d77c5 3010
f4416af6
AO
3011 /* Find the got_info for this GOT entry's input bfd. Create one if
3012 none exists. */
3013 bfdgot_entry.bfd = entry->abfd;
3014 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3015 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3016
3017 if (bfdgot != NULL)
3018 g = bfdgot->g;
3019 else
3020 {
3021 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3022 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3023
3024 if (bfdgot == NULL)
3025 {
3026 arg->obfd = 0;
3027 return 0;
3028 }
3029
3030 *bfdgotp = bfdgot;
3031
3032 bfdgot->bfd = entry->abfd;
3033 bfdgot->g = g = (struct mips_got_info *)
3034 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3035 if (g == NULL)
3036 {
3037 arg->obfd = 0;
3038 return 0;
3039 }
3040
3041 g->global_gotsym = NULL;
3042 g->global_gotno = 0;
3043 g->local_gotno = 0;
3044 g->assigned_gotno = -1;
0f20cc35
DJ
3045 g->tls_gotno = 0;
3046 g->tls_assigned_gotno = 0;
3047 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3048 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3049 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
3050 if (g->got_entries == NULL)
3051 {
3052 arg->obfd = 0;
3053 return 0;
3054 }
3055
3056 g->bfd2got = NULL;
3057 g->next = NULL;
3058 }
3059
3060 /* Insert the GOT entry in the bfd's got entry hash table. */
3061 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3062 if (*entryp != NULL)
3063 return 1;
143d77c5 3064
f4416af6
AO
3065 *entryp = entry;
3066
0f20cc35
DJ
3067 if (entry->tls_type)
3068 {
3069 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3070 g->tls_gotno += 2;
3071 if (entry->tls_type & GOT_TLS_IE)
3072 g->tls_gotno += 1;
3073 }
3074 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3075 ++g->local_gotno;
3076 else
3077 ++g->global_gotno;
3078
3079 return 1;
3080}
3081
3082/* Attempt to merge gots of different input bfds. Try to use as much
3083 as possible of the primary got, since it doesn't require explicit
3084 dynamic relocations, but don't use bfds that would reference global
3085 symbols out of the addressable range. Failing the primary got,
3086 attempt to merge with the current got, or finish the current got
3087 and then make make the new got current. */
3088
3089static int
9719ad41 3090mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3091{
3092 struct mips_elf_bfd2got_hash *bfd2got
3093 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3094 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3095 unsigned int lcount = bfd2got->g->local_gotno;
3096 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 3097 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 3098 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
3099 bfd_boolean too_many_for_tls = FALSE;
3100
3101 /* We place TLS GOT entries after both locals and globals. The globals
3102 for the primary GOT may overflow the normal GOT size limit, so be
3103 sure not to merge a GOT which requires TLS with the primary GOT in that
3104 case. This doesn't affect non-primary GOTs. */
3105 if (tcount > 0)
3106 {
3107 unsigned int primary_total = lcount + tcount + arg->global_count;
3110dbc9 3108 if (primary_total > maxcnt)
0f20cc35
DJ
3109 too_many_for_tls = TRUE;
3110 }
143d77c5 3111
f4416af6
AO
3112 /* If we don't have a primary GOT and this is not too big, use it as
3113 a starting point for the primary GOT. */
0f20cc35
DJ
3114 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3115 && ! too_many_for_tls)
f4416af6
AO
3116 {
3117 arg->primary = bfd2got->g;
3118 arg->primary_count = lcount + gcount;
3119 }
3120 /* If it looks like we can merge this bfd's entries with those of
3121 the primary, merge them. The heuristics is conservative, but we
3122 don't have to squeeze it too hard. */
0f20cc35
DJ
3123 else if (arg->primary && ! too_many_for_tls
3124 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
3125 {
3126 struct mips_got_info *g = bfd2got->g;
3127 int old_lcount = arg->primary->local_gotno;
3128 int old_gcount = arg->primary->global_gotno;
0f20cc35 3129 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
3130
3131 bfd2got->g = arg->primary;
3132
3133 htab_traverse (g->got_entries,
3134 mips_elf_make_got_per_bfd,
3135 arg);
3136 if (arg->obfd == NULL)
3137 return 0;
3138
3139 htab_delete (g->got_entries);
3140 /* We don't have to worry about releasing memory of the actual
3141 got entries, since they're all in the master got_entries hash
3142 table anyway. */
3143
caec41ff 3144 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 3145 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 3146 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
3147
3148 arg->primary_count = arg->primary->local_gotno
0f20cc35 3149 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
3150 }
3151 /* If we can merge with the last-created got, do it. */
3152 else if (arg->current
0f20cc35 3153 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
3154 {
3155 struct mips_got_info *g = bfd2got->g;
3156 int old_lcount = arg->current->local_gotno;
3157 int old_gcount = arg->current->global_gotno;
0f20cc35 3158 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
3159
3160 bfd2got->g = arg->current;
3161
3162 htab_traverse (g->got_entries,
3163 mips_elf_make_got_per_bfd,
3164 arg);
3165 if (arg->obfd == NULL)
3166 return 0;
3167
3168 htab_delete (g->got_entries);
3169
caec41ff 3170 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 3171 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 3172 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
3173
3174 arg->current_count = arg->current->local_gotno
0f20cc35 3175 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
3176 }
3177 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3178 fits; if it turns out that it doesn't, we'll get relocation
3179 overflows anyway. */
3180 else
3181 {
3182 bfd2got->g->next = arg->current;
3183 arg->current = bfd2got->g;
143d77c5 3184
0f20cc35
DJ
3185 arg->current_count = lcount + gcount + 2 * tcount;
3186 }
3187
3188 return 1;
3189}
3190
ead49a57
RS
3191/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3192 is null iff there is just a single GOT. */
0f20cc35
DJ
3193
3194static int
3195mips_elf_initialize_tls_index (void **entryp, void *p)
3196{
3197 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3198 struct mips_got_info *g = p;
ead49a57 3199 bfd_vma next_index;
cbf2cba4 3200 unsigned char tls_type;
0f20cc35
DJ
3201
3202 /* We're only interested in TLS symbols. */
3203 if (entry->tls_type == 0)
3204 return 1;
3205
ead49a57
RS
3206 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3207
3208 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3209 {
ead49a57
RS
3210 /* A type (3) got entry in the single-GOT case. We use the symbol's
3211 hash table entry to track its index. */
3212 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3213 return 1;
3214 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3215 entry->d.h->tls_got_offset = next_index;
cbf2cba4 3216 tls_type = entry->d.h->tls_type;
ead49a57
RS
3217 }
3218 else
3219 {
3220 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3221 {
ead49a57
RS
3222 /* There are separate mips_got_entry objects for each input bfd
3223 that requires an LDM entry. Make sure that all LDM entries in
3224 a GOT resolve to the same index. */
3225 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3226 {
ead49a57 3227 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3228 return 1;
3229 }
ead49a57 3230 g->tls_ldm_offset = next_index;
0f20cc35 3231 }
ead49a57 3232 entry->gotidx = next_index;
cbf2cba4 3233 tls_type = entry->tls_type;
f4416af6
AO
3234 }
3235
ead49a57 3236 /* Account for the entries we've just allocated. */
cbf2cba4 3237 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 3238 g->tls_assigned_gotno += 2;
cbf2cba4 3239 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
3240 g->tls_assigned_gotno += 1;
3241
f4416af6
AO
3242 return 1;
3243}
3244
3245/* If passed a NULL mips_got_info in the argument, set the marker used
3246 to tell whether a global symbol needs a got entry (in the primary
3247 got) to the given VALUE.
3248
3249 If passed a pointer G to a mips_got_info in the argument (it must
3250 not be the primary GOT), compute the offset from the beginning of
3251 the (primary) GOT section to the entry in G corresponding to the
3252 global symbol. G's assigned_gotno must contain the index of the
3253 first available global GOT entry in G. VALUE must contain the size
3254 of a GOT entry in bytes. For each global GOT entry that requires a
3255 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3256 marked as not eligible for lazy resolution through a function
f4416af6
AO
3257 stub. */
3258static int
9719ad41 3259mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3260{
3261 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3262 struct mips_elf_set_global_got_offset_arg *arg
3263 = (struct mips_elf_set_global_got_offset_arg *)p;
3264 struct mips_got_info *g = arg->g;
3265
0f20cc35
DJ
3266 if (g && entry->tls_type != GOT_NORMAL)
3267 arg->needed_relocs +=
3268 mips_tls_got_relocs (arg->info, entry->tls_type,
3269 entry->symndx == -1 ? &entry->d.h->root : NULL);
3270
f4416af6 3271 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35 3272 && entry->d.h->root.dynindx != -1
720199d6 3273 && !entry->d.h->forced_local
0f20cc35 3274 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3275 {
3276 if (g)
3277 {
3278 BFD_ASSERT (g->global_gotsym == NULL);
3279
3280 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3281 if (arg->info->shared
3282 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3283 && entry->d.h->root.def_dynamic
3284 && !entry->d.h->root.def_regular))
f4416af6
AO
3285 ++arg->needed_relocs;
3286 }
3287 else
3288 entry->d.h->root.got.offset = arg->value;
3289 }
3290
3291 return 1;
3292}
3293
0626d451
RS
3294/* Mark any global symbols referenced in the GOT we are iterating over
3295 as inelligible for lazy resolution stubs. */
3296static int
9719ad41 3297mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3298{
3299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3300
3301 if (entry->abfd != NULL
3302 && entry->symndx == -1
3303 && entry->d.h->root.dynindx != -1)
3304 entry->d.h->no_fn_stub = TRUE;
3305
3306 return 1;
3307}
3308
f4416af6
AO
3309/* Follow indirect and warning hash entries so that each got entry
3310 points to the final symbol definition. P must point to a pointer
3311 to the hash table we're traversing. Since this traversal may
3312 modify the hash table, we set this pointer to NULL to indicate
3313 we've made a potentially-destructive change to the hash table, so
3314 the traversal must be restarted. */
3315static int
9719ad41 3316mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3317{
3318 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3319 htab_t got_entries = *(htab_t *)p;
3320
3321 if (entry->abfd != NULL && entry->symndx == -1)
3322 {
3323 struct mips_elf_link_hash_entry *h = entry->d.h;
3324
3325 while (h->root.root.type == bfd_link_hash_indirect
3326 || h->root.root.type == bfd_link_hash_warning)
3327 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3328
3329 if (entry->d.h == h)
3330 return 1;
143d77c5 3331
f4416af6
AO
3332 entry->d.h = h;
3333
3334 /* If we can't find this entry with the new bfd hash, re-insert
3335 it, and get the traversal restarted. */
3336 if (! htab_find (got_entries, entry))
3337 {
3338 htab_clear_slot (got_entries, entryp);
3339 entryp = htab_find_slot (got_entries, entry, INSERT);
3340 if (! *entryp)
3341 *entryp = entry;
3342 /* Abort the traversal, since the whole table may have
3343 moved, and leave it up to the parent to restart the
3344 process. */
3345 *(htab_t *)p = NULL;
3346 return 0;
3347 }
3348 /* We might want to decrement the global_gotno count, but it's
3349 either too early or too late for that at this point. */
3350 }
143d77c5 3351
f4416af6
AO
3352 return 1;
3353}
3354
3355/* Turn indirect got entries in a got_entries table into their final
3356 locations. */
3357static void
9719ad41 3358mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3359{
3360 htab_t got_entries;
3361
3362 do
3363 {
3364 got_entries = g->got_entries;
3365
3366 htab_traverse (got_entries,
3367 mips_elf_resolve_final_got_entry,
3368 &got_entries);
3369 }
3370 while (got_entries == NULL);
3371}
3372
3373/* Return the offset of an input bfd IBFD's GOT from the beginning of
3374 the primary GOT. */
3375static bfd_vma
9719ad41 3376mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3377{
3378 if (g->bfd2got == NULL)
3379 return 0;
3380
3381 g = mips_elf_got_for_ibfd (g, ibfd);
3382 if (! g)
3383 return 0;
3384
3385 BFD_ASSERT (g->next);
3386
3387 g = g->next;
143d77c5 3388
0f20cc35
DJ
3389 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3390 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3391}
3392
3393/* Turn a single GOT that is too big for 16-bit addressing into
3394 a sequence of GOTs, each one 16-bit addressable. */
3395
3396static bfd_boolean
9719ad41
RS
3397mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3398 struct mips_got_info *g, asection *got,
3399 bfd_size_type pages)
f4416af6
AO
3400{
3401 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3402 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3403 struct mips_got_info *gg;
3404 unsigned int assign;
3405
3406 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3407 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3408 if (g->bfd2got == NULL)
3409 return FALSE;
3410
3411 got_per_bfd_arg.bfd2got = g->bfd2got;
3412 got_per_bfd_arg.obfd = abfd;
3413 got_per_bfd_arg.info = info;
3414
3415 /* Count how many GOT entries each input bfd requires, creating a
3416 map from bfd to got info while at that. */
f4416af6
AO
3417 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 got_per_bfd_arg.current = NULL;
3422 got_per_bfd_arg.primary = NULL;
3423 /* Taking out PAGES entries is a worst-case estimate. We could
3424 compute the maximum number of pages that each separate input bfd
3425 uses, but it's probably not worth it. */
0a44bf69 3426 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3427 / MIPS_ELF_GOT_SIZE (abfd))
0a44bf69 3428 - MIPS_RESERVED_GOTNO (info) - pages);
0f20cc35
DJ
3429 /* The number of globals that will be included in the primary GOT.
3430 See the calls to mips_elf_set_global_got_offset below for more
3431 information. */
3432 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3433
3434 /* Try to merge the GOTs of input bfds together, as long as they
3435 don't seem to exceed the maximum GOT size, choosing one of them
3436 to be the primary GOT. */
3437 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3438 if (got_per_bfd_arg.obfd == NULL)
3439 return FALSE;
3440
0f20cc35 3441 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3442 if (got_per_bfd_arg.primary == NULL)
3443 {
3444 g->next = (struct mips_got_info *)
3445 bfd_alloc (abfd, sizeof (struct mips_got_info));
3446 if (g->next == NULL)
3447 return FALSE;
3448
3449 g->next->global_gotsym = NULL;
3450 g->next->global_gotno = 0;
3451 g->next->local_gotno = 0;
0f20cc35 3452 g->next->tls_gotno = 0;
f4416af6 3453 g->next->assigned_gotno = 0;
0f20cc35
DJ
3454 g->next->tls_assigned_gotno = 0;
3455 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3456 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3457 mips_elf_multi_got_entry_eq,
9719ad41 3458 NULL);
f4416af6
AO
3459 if (g->next->got_entries == NULL)
3460 return FALSE;
3461 g->next->bfd2got = NULL;
3462 }
3463 else
3464 g->next = got_per_bfd_arg.primary;
3465 g->next->next = got_per_bfd_arg.current;
3466
3467 /* GG is now the master GOT, and G is the primary GOT. */
3468 gg = g;
3469 g = g->next;
3470
3471 /* Map the output bfd to the primary got. That's what we're going
3472 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3473 didn't mark in check_relocs, and we want a quick way to find it.
3474 We can't just use gg->next because we're going to reverse the
3475 list. */
3476 {
3477 struct mips_elf_bfd2got_hash *bfdgot;
3478 void **bfdgotp;
143d77c5 3479
f4416af6
AO
3480 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3481 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3482
3483 if (bfdgot == NULL)
3484 return FALSE;
3485
3486 bfdgot->bfd = abfd;
3487 bfdgot->g = g;
3488 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3489
3490 BFD_ASSERT (*bfdgotp == NULL);
3491 *bfdgotp = bfdgot;
3492 }
3493
3494 /* The IRIX dynamic linker requires every symbol that is referenced
3495 in a dynamic relocation to be present in the primary GOT, so
3496 arrange for them to appear after those that are actually
3497 referenced.
3498
3499 GNU/Linux could very well do without it, but it would slow down
3500 the dynamic linker, since it would have to resolve every dynamic
3501 symbol referenced in other GOTs more than once, without help from
3502 the cache. Also, knowing that every external symbol has a GOT
3503 helps speed up the resolution of local symbols too, so GNU/Linux
3504 follows IRIX's practice.
143d77c5 3505
f4416af6
AO
3506 The number 2 is used by mips_elf_sort_hash_table_f to count
3507 global GOT symbols that are unreferenced in the primary GOT, with
3508 an initial dynamic index computed from gg->assigned_gotno, where
3509 the number of unreferenced global entries in the primary GOT is
3510 preserved. */
3511 if (1)
3512 {
3513 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3514 g->global_gotno = gg->global_gotno;
3515 set_got_offset_arg.value = 2;
3516 }
3517 else
3518 {
3519 /* This could be used for dynamic linkers that don't optimize
3520 symbol resolution while applying relocations so as to use
3521 primary GOT entries or assuming the symbol is locally-defined.
3522 With this code, we assign lower dynamic indices to global
3523 symbols that are not referenced in the primary GOT, so that
3524 their entries can be omitted. */
3525 gg->assigned_gotno = 0;
3526 set_got_offset_arg.value = -1;
3527 }
3528
3529 /* Reorder dynamic symbols as described above (which behavior
3530 depends on the setting of VALUE). */
3531 set_got_offset_arg.g = NULL;
3532 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3533 &set_got_offset_arg);
3534 set_got_offset_arg.value = 1;
3535 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3536 &set_got_offset_arg);
3537 if (! mips_elf_sort_hash_table (info, 1))
3538 return FALSE;
3539
3540 /* Now go through the GOTs assigning them offset ranges.
3541 [assigned_gotno, local_gotno[ will be set to the range of local
3542 entries in each GOT. We can then compute the end of a GOT by
3543 adding local_gotno to global_gotno. We reverse the list and make
3544 it circular since then we'll be able to quickly compute the
3545 beginning of a GOT, by computing the end of its predecessor. To
3546 avoid special cases for the primary GOT, while still preserving
3547 assertions that are valid for both single- and multi-got links,
3548 we arrange for the main got struct to have the right number of
3549 global entries, but set its local_gotno such that the initial
3550 offset of the primary GOT is zero. Remember that the primary GOT
3551 will become the last item in the circular linked list, so it
3552 points back to the master GOT. */
3553 gg->local_gotno = -g->global_gotno;
3554 gg->global_gotno = g->global_gotno;
0f20cc35 3555 gg->tls_gotno = 0;
f4416af6
AO
3556 assign = 0;
3557 gg->next = gg;
3558
3559 do
3560 {
3561 struct mips_got_info *gn;
3562
0a44bf69 3563 assign += MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3564 g->assigned_gotno = assign;
3565 g->local_gotno += assign + pages;
0f20cc35
DJ
3566 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3567
ead49a57
RS
3568 /* Take g out of the direct list, and push it onto the reversed
3569 list that gg points to. g->next is guaranteed to be nonnull after
3570 this operation, as required by mips_elf_initialize_tls_index. */
3571 gn = g->next;
3572 g->next = gg->next;
3573 gg->next = g;
3574
0f20cc35
DJ
3575 /* Set up any TLS entries. We always place the TLS entries after
3576 all non-TLS entries. */
3577 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3578 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3579
ead49a57 3580 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3581 g = gn;
0626d451
RS
3582
3583 /* Mark global symbols in every non-primary GOT as ineligible for
3584 stubs. */
3585 if (g)
3586 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3587 }
3588 while (g);
3589
eea6121a 3590 got->size = (gg->next->local_gotno
0f20cc35
DJ
3591 + gg->next->global_gotno
3592 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3593
f4416af6
AO
3594 return TRUE;
3595}
143d77c5 3596
b49e97c9
TS
3597\f
3598/* Returns the first relocation of type r_type found, beginning with
3599 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3600
3601static const Elf_Internal_Rela *
9719ad41
RS
3602mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3603 const Elf_Internal_Rela *relocation,
3604 const Elf_Internal_Rela *relend)
b49e97c9 3605{
c000e262
TS
3606 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3607
b49e97c9
TS
3608 while (relocation < relend)
3609 {
c000e262
TS
3610 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3611 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
3612 return relocation;
3613
3614 ++relocation;
3615 }
3616
3617 /* We didn't find it. */
b49e97c9
TS
3618 return NULL;
3619}
3620
3621/* Return whether a relocation is against a local symbol. */
3622
b34976b6 3623static bfd_boolean
9719ad41
RS
3624mips_elf_local_relocation_p (bfd *input_bfd,
3625 const Elf_Internal_Rela *relocation,
3626 asection **local_sections,
3627 bfd_boolean check_forced)
b49e97c9
TS
3628{
3629 unsigned long r_symndx;
3630 Elf_Internal_Shdr *symtab_hdr;
3631 struct mips_elf_link_hash_entry *h;
3632 size_t extsymoff;
3633
3634 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3635 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3636 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3637
3638 if (r_symndx < extsymoff)
b34976b6 3639 return TRUE;
b49e97c9 3640 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3641 return TRUE;
b49e97c9
TS
3642
3643 if (check_forced)
3644 {
3645 /* Look up the hash table to check whether the symbol
3646 was forced local. */
3647 h = (struct mips_elf_link_hash_entry *)
3648 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3649 /* Find the real hash-table entry for this symbol. */
3650 while (h->root.root.type == bfd_link_hash_indirect
3651 || h->root.root.type == bfd_link_hash_warning)
3652 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3653 if (h->root.forced_local)
b34976b6 3654 return TRUE;
b49e97c9
TS
3655 }
3656
b34976b6 3657 return FALSE;
b49e97c9
TS
3658}
3659\f
3660/* Sign-extend VALUE, which has the indicated number of BITS. */
3661
a7ebbfdf 3662bfd_vma
9719ad41 3663_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3664{
3665 if (value & ((bfd_vma) 1 << (bits - 1)))
3666 /* VALUE is negative. */
3667 value |= ((bfd_vma) - 1) << bits;
3668
3669 return value;
3670}
3671
3672/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3673 range expressible by a signed number with the indicated number of
b49e97c9
TS
3674 BITS. */
3675
b34976b6 3676static bfd_boolean
9719ad41 3677mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3678{
3679 bfd_signed_vma svalue = (bfd_signed_vma) value;
3680
3681 if (svalue > (1 << (bits - 1)) - 1)
3682 /* The value is too big. */
b34976b6 3683 return TRUE;
b49e97c9
TS
3684 else if (svalue < -(1 << (bits - 1)))
3685 /* The value is too small. */
b34976b6 3686 return TRUE;
b49e97c9
TS
3687
3688 /* All is well. */
b34976b6 3689 return FALSE;
b49e97c9
TS
3690}
3691
3692/* Calculate the %high function. */
3693
3694static bfd_vma
9719ad41 3695mips_elf_high (bfd_vma value)
b49e97c9
TS
3696{
3697 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3698}
3699
3700/* Calculate the %higher function. */
3701
3702static bfd_vma
9719ad41 3703mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3704{
3705#ifdef BFD64
3706 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3707#else
3708 abort ();
c5ae1840 3709 return MINUS_ONE;
b49e97c9
TS
3710#endif
3711}
3712
3713/* Calculate the %highest function. */
3714
3715static bfd_vma
9719ad41 3716mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3717{
3718#ifdef BFD64
b15e6682 3719 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3720#else
3721 abort ();
c5ae1840 3722 return MINUS_ONE;
b49e97c9
TS
3723#endif
3724}
3725\f
3726/* Create the .compact_rel section. */
3727
b34976b6 3728static bfd_boolean
9719ad41
RS
3729mips_elf_create_compact_rel_section
3730 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3731{
3732 flagword flags;
3733 register asection *s;
3734
3735 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3736 {
3737 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3738 | SEC_READONLY);
3739
3496cb2a 3740 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3741 if (s == NULL
b49e97c9
TS
3742 || ! bfd_set_section_alignment (abfd, s,
3743 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3744 return FALSE;
b49e97c9 3745
eea6121a 3746 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3747 }
3748
b34976b6 3749 return TRUE;
b49e97c9
TS
3750}
3751
3752/* Create the .got section to hold the global offset table. */
3753
b34976b6 3754static bfd_boolean
9719ad41
RS
3755mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3756 bfd_boolean maybe_exclude)
b49e97c9
TS
3757{
3758 flagword flags;
3759 register asection *s;
3760 struct elf_link_hash_entry *h;
14a793b2 3761 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3762 struct mips_got_info *g;
3763 bfd_size_type amt;
0a44bf69
RS
3764 struct mips_elf_link_hash_table *htab;
3765
3766 htab = mips_elf_hash_table (info);
b49e97c9
TS
3767
3768 /* This function may be called more than once. */
f4416af6
AO
3769 s = mips_elf_got_section (abfd, TRUE);
3770 if (s)
3771 {
3772 if (! maybe_exclude)
3773 s->flags &= ~SEC_EXCLUDE;
3774 return TRUE;
3775 }
b49e97c9
TS
3776
3777 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3778 | SEC_LINKER_CREATED);
3779
f4416af6
AO
3780 if (maybe_exclude)
3781 flags |= SEC_EXCLUDE;
3782
72b4917c
TS
3783 /* We have to use an alignment of 2**4 here because this is hardcoded
3784 in the function stub generation and in the linker script. */
3496cb2a 3785 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3786 if (s == NULL
72b4917c 3787 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3788 return FALSE;
b49e97c9
TS
3789
3790 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3791 linker script because we don't want to define the symbol if we
3792 are not creating a global offset table. */
14a793b2 3793 bh = NULL;
b49e97c9
TS
3794 if (! (_bfd_generic_link_add_one_symbol
3795 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3796 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3797 return FALSE;
14a793b2
AM
3798
3799 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3800 h->non_elf = 0;
3801 h->def_regular = 1;
b49e97c9 3802 h->type = STT_OBJECT;
d329bcd1 3803 elf_hash_table (info)->hgot = h;
b49e97c9
TS
3804
3805 if (info->shared
c152c796 3806 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3807 return FALSE;
b49e97c9 3808
b49e97c9 3809 amt = sizeof (struct mips_got_info);
9719ad41 3810 g = bfd_alloc (abfd, amt);
b49e97c9 3811 if (g == NULL)
b34976b6 3812 return FALSE;
b49e97c9 3813 g->global_gotsym = NULL;
e3d54347 3814 g->global_gotno = 0;
0f20cc35 3815 g->tls_gotno = 0;
0a44bf69
RS
3816 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3817 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3818 g->bfd2got = NULL;
3819 g->next = NULL;
0f20cc35 3820 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3821 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3822 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3823 if (g->got_entries == NULL)
3824 return FALSE;
f0abc2a1
AM
3825 mips_elf_section_data (s)->u.got_info = g;
3826 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3827 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3828
0a44bf69
RS
3829 /* VxWorks also needs a .got.plt section. */
3830 if (htab->is_vxworks)
3831 {
3832 s = bfd_make_section_with_flags (abfd, ".got.plt",
3833 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3834 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3835 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3836 return FALSE;
3837
3838 htab->sgotplt = s;
3839 }
b34976b6 3840 return TRUE;
b49e97c9 3841}
b49e97c9 3842\f
0a44bf69
RS
3843/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3844 __GOTT_INDEX__ symbols. These symbols are only special for
3845 shared objects; they are not used in executables. */
3846
3847static bfd_boolean
3848is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3849{
3850 return (mips_elf_hash_table (info)->is_vxworks
3851 && info->shared
3852 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3853 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3854}
3855\f
b49e97c9
TS
3856/* Calculate the value produced by the RELOCATION (which comes from
3857 the INPUT_BFD). The ADDEND is the addend to use for this
3858 RELOCATION; RELOCATION->R_ADDEND is ignored.
3859
3860 The result of the relocation calculation is stored in VALUEP.
3861 REQUIRE_JALXP indicates whether or not the opcode used with this
3862 relocation must be JALX.
3863
3864 This function returns bfd_reloc_continue if the caller need take no
3865 further action regarding this relocation, bfd_reloc_notsupported if
3866 something goes dramatically wrong, bfd_reloc_overflow if an
3867 overflow occurs, and bfd_reloc_ok to indicate success. */
3868
3869static bfd_reloc_status_type
9719ad41
RS
3870mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3871 asection *input_section,
3872 struct bfd_link_info *info,
3873 const Elf_Internal_Rela *relocation,
3874 bfd_vma addend, reloc_howto_type *howto,
3875 Elf_Internal_Sym *local_syms,
3876 asection **local_sections, bfd_vma *valuep,
3877 const char **namep, bfd_boolean *require_jalxp,
3878 bfd_boolean save_addend)
b49e97c9
TS
3879{
3880 /* The eventual value we will return. */
3881 bfd_vma value;
3882 /* The address of the symbol against which the relocation is
3883 occurring. */
3884 bfd_vma symbol = 0;
3885 /* The final GP value to be used for the relocatable, executable, or
3886 shared object file being produced. */
3887 bfd_vma gp = MINUS_ONE;
3888 /* The place (section offset or address) of the storage unit being
3889 relocated. */
3890 bfd_vma p;
3891 /* The value of GP used to create the relocatable object. */
3892 bfd_vma gp0 = MINUS_ONE;
3893 /* The offset into the global offset table at which the address of
3894 the relocation entry symbol, adjusted by the addend, resides
3895 during execution. */
3896 bfd_vma g = MINUS_ONE;
3897 /* The section in which the symbol referenced by the relocation is
3898 located. */
3899 asection *sec = NULL;
3900 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3901 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3902 symbol. */
b34976b6
AM
3903 bfd_boolean local_p, was_local_p;
3904 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3905 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3906 /* TRUE if the symbol referred to by this relocation is
3907 "__gnu_local_gp". */
3908 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3909 Elf_Internal_Shdr *symtab_hdr;
3910 size_t extsymoff;
3911 unsigned long r_symndx;
3912 int r_type;
b34976b6 3913 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3914 relocation value. */
b34976b6
AM
3915 bfd_boolean overflowed_p;
3916 /* TRUE if this relocation refers to a MIPS16 function. */
3917 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
3918 struct mips_elf_link_hash_table *htab;
3919 bfd *dynobj;
3920
3921 dynobj = elf_hash_table (info)->dynobj;
3922 htab = mips_elf_hash_table (info);
b49e97c9
TS
3923
3924 /* Parse the relocation. */
3925 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3926 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3927 p = (input_section->output_section->vma
3928 + input_section->output_offset
3929 + relocation->r_offset);
3930
3931 /* Assume that there will be no overflow. */
b34976b6 3932 overflowed_p = FALSE;
b49e97c9
TS
3933
3934 /* Figure out whether or not the symbol is local, and get the offset
3935 used in the array of hash table entries. */
3936 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3937 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3938 local_sections, FALSE);
bce03d3d 3939 was_local_p = local_p;
b49e97c9
TS
3940 if (! elf_bad_symtab (input_bfd))
3941 extsymoff = symtab_hdr->sh_info;
3942 else
3943 {
3944 /* The symbol table does not follow the rule that local symbols
3945 must come before globals. */
3946 extsymoff = 0;
3947 }
3948
3949 /* Figure out the value of the symbol. */
3950 if (local_p)
3951 {
3952 Elf_Internal_Sym *sym;
3953
3954 sym = local_syms + r_symndx;
3955 sec = local_sections[r_symndx];
3956
3957 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3958 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3959 || (sec->flags & SEC_MERGE))
b49e97c9 3960 symbol += sym->st_value;
d4df96e6
L
3961 if ((sec->flags & SEC_MERGE)
3962 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3963 {
3964 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3965 addend -= symbol;
3966 addend += sec->output_section->vma + sec->output_offset;
3967 }
b49e97c9
TS
3968
3969 /* MIPS16 text labels should be treated as odd. */
3970 if (sym->st_other == STO_MIPS16)
3971 ++symbol;
3972
3973 /* Record the name of this symbol, for our caller. */
3974 *namep = bfd_elf_string_from_elf_section (input_bfd,
3975 symtab_hdr->sh_link,
3976 sym->st_name);
3977 if (*namep == '\0')
3978 *namep = bfd_section_name (input_bfd, sec);
3979
3980 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3981 }
3982 else
3983 {
560e09e9
NC
3984 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3985
b49e97c9
TS
3986 /* For global symbols we look up the symbol in the hash-table. */
3987 h = ((struct mips_elf_link_hash_entry *)
3988 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3989 /* Find the real hash-table entry for this symbol. */
3990 while (h->root.root.type == bfd_link_hash_indirect
3991 || h->root.root.type == bfd_link_hash_warning)
3992 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3993
3994 /* Record the name of this symbol, for our caller. */
3995 *namep = h->root.root.root.string;
3996
3997 /* See if this is the special _gp_disp symbol. Note that such a
3998 symbol must always be a global symbol. */
560e09e9 3999 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
4000 && ! NEWABI_P (input_bfd))
4001 {
4002 /* Relocations against _gp_disp are permitted only with
4003 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
4004 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4005 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
4006 return bfd_reloc_notsupported;
4007
b34976b6 4008 gp_disp_p = TRUE;
b49e97c9 4009 }
bbe506e8
TS
4010 /* See if this is the special _gp symbol. Note that such a
4011 symbol must always be a global symbol. */
4012 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4013 gnu_local_gp_p = TRUE;
4014
4015
b49e97c9
TS
4016 /* If this symbol is defined, calculate its address. Note that
4017 _gp_disp is a magic symbol, always implicitly defined by the
4018 linker, so it's inappropriate to check to see whether or not
4019 its defined. */
4020 else if ((h->root.root.type == bfd_link_hash_defined
4021 || h->root.root.type == bfd_link_hash_defweak)
4022 && h->root.root.u.def.section)
4023 {
4024 sec = h->root.root.u.def.section;
4025 if (sec->output_section)
4026 symbol = (h->root.root.u.def.value
4027 + sec->output_section->vma
4028 + sec->output_offset);
4029 else
4030 symbol = h->root.root.u.def.value;
4031 }
4032 else if (h->root.root.type == bfd_link_hash_undefweak)
4033 /* We allow relocations against undefined weak symbols, giving
4034 it the value zero, so that you can undefined weak functions
4035 and check to see if they exist by looking at their
4036 addresses. */
4037 symbol = 0;
59c2e50f 4038 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4039 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4040 symbol = 0;
a4d0f181
TS
4041 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4042 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4043 {
4044 /* If this is a dynamic link, we should have created a
4045 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4046 in in _bfd_mips_elf_create_dynamic_sections.
4047 Otherwise, we should define the symbol with a value of 0.
4048 FIXME: It should probably get into the symbol table
4049 somehow as well. */
4050 BFD_ASSERT (! info->shared);
4051 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4052 symbol = 0;
4053 }
5e2b0d47
NC
4054 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4055 {
4056 /* This is an optional symbol - an Irix specific extension to the
4057 ELF spec. Ignore it for now.
4058 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4059 than simply ignoring them, but we do not handle this for now.
4060 For information see the "64-bit ELF Object File Specification"
4061 which is available from here:
4062 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4063 symbol = 0;
4064 }
b49e97c9
TS
4065 else
4066 {
4067 if (! ((*info->callbacks->undefined_symbol)
4068 (info, h->root.root.root.string, input_bfd,
4069 input_section, relocation->r_offset,
59c2e50f
L
4070 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4071 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4072 return bfd_reloc_undefined;
4073 symbol = 0;
4074 }
4075
4076 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4077 }
4078
4079 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4080 need to redirect the call to the stub, unless we're already *in*
4081 a stub. */
1049f94e 4082 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9 4083 && ((h != NULL && h->fn_stub != NULL)
b9d58d71
TS
4084 || (local_p
4085 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 4086 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
b9d58d71 4087 && !mips16_stub_section_p (input_bfd, input_section))
b49e97c9
TS
4088 {
4089 /* This is a 32- or 64-bit call to a 16-bit function. We should
4090 have already noticed that we were going to need the
4091 stub. */
4092 if (local_p)
4093 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4094 else
4095 {
4096 BFD_ASSERT (h->need_fn_stub);
4097 sec = h->fn_stub;
4098 }
4099
4100 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4101 /* The target is 16-bit, but the stub isn't. */
4102 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4103 }
4104 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4105 need to redirect the call to the stub. */
1049f94e 4106 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 4107 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
4108 || (local_p
4109 && elf_tdata (input_bfd)->local_call_stubs != NULL
4110 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
4111 && !target_is_16_bit_code_p)
4112 {
b9d58d71
TS
4113 if (local_p)
4114 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4115 else
b49e97c9 4116 {
b9d58d71
TS
4117 /* If both call_stub and call_fp_stub are defined, we can figure
4118 out which one to use by checking which one appears in the input
4119 file. */
4120 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 4121 {
b9d58d71
TS
4122 asection *o;
4123
4124 sec = NULL;
4125 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 4126 {
b9d58d71
TS
4127 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4128 {
4129 sec = h->call_fp_stub;
4130 break;
4131 }
b49e97c9 4132 }
b9d58d71
TS
4133 if (sec == NULL)
4134 sec = h->call_stub;
b49e97c9 4135 }
b9d58d71 4136 else if (h->call_stub != NULL)
b49e97c9 4137 sec = h->call_stub;
b9d58d71
TS
4138 else
4139 sec = h->call_fp_stub;
4140 }
b49e97c9 4141
eea6121a 4142 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4143 symbol = sec->output_section->vma + sec->output_offset;
4144 }
4145
4146 /* Calls from 16-bit code to 32-bit code and vice versa require the
4147 special jalx instruction. */
1049f94e 4148 *require_jalxp = (!info->relocatable
b49e97c9
TS
4149 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4150 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4151
4152 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4153 local_sections, TRUE);
b49e97c9
TS
4154
4155 /* If we haven't already determined the GOT offset, or the GP value,
4156 and we're going to need it, get it now. */
4157 switch (r_type)
4158 {
0fdc1bf1 4159 case R_MIPS_GOT_PAGE:
93a2b7ae 4160 case R_MIPS_GOT_OFST:
d25aed71
RS
4161 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4162 bind locally. */
4163 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4164 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4165 break;
4166 /* Fall through. */
4167
b49e97c9
TS
4168 case R_MIPS_CALL16:
4169 case R_MIPS_GOT16:
4170 case R_MIPS_GOT_DISP:
4171 case R_MIPS_GOT_HI16:
4172 case R_MIPS_CALL_HI16:
4173 case R_MIPS_GOT_LO16:
4174 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4175 case R_MIPS_TLS_GD:
4176 case R_MIPS_TLS_GOTTPREL:
4177 case R_MIPS_TLS_LDM:
b49e97c9 4178 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4179 if (r_type == R_MIPS_TLS_LDM)
4180 {
0a44bf69 4181 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 4182 0, 0, NULL, r_type);
0f20cc35
DJ
4183 if (g == MINUS_ONE)
4184 return bfd_reloc_outofrange;
4185 }
4186 else if (!local_p)
b49e97c9 4187 {
0a44bf69
RS
4188 /* On VxWorks, CALL relocations should refer to the .got.plt
4189 entry, which is initialized to point at the PLT stub. */
4190 if (htab->is_vxworks
4191 && (r_type == R_MIPS_CALL_HI16
4192 || r_type == R_MIPS_CALL_LO16
4193 || r_type == R_MIPS_CALL16))
4194 {
4195 BFD_ASSERT (addend == 0);
4196 BFD_ASSERT (h->root.needs_plt);
4197 g = mips_elf_gotplt_index (info, &h->root);
4198 }
4199 else
b49e97c9 4200 {
0a44bf69
RS
4201 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4202 GOT_PAGE relocation that decays to GOT_DISP because the
4203 symbol turns out to be global. The addend is then added
4204 as GOT_OFST. */
4205 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4206 g = mips_elf_global_got_index (dynobj, input_bfd,
4207 &h->root, r_type, info);
4208 if (h->tls_type == GOT_NORMAL
4209 && (! elf_hash_table(info)->dynamic_sections_created
4210 || (info->shared
4211 && (info->symbolic || h->root.forced_local)
4212 && h->root.def_regular)))
4213 {
4214 /* This is a static link or a -Bsymbolic link. The
4215 symbol is defined locally, or was forced to be local.
4216 We must initialize this entry in the GOT. */
4217 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4218 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4219 }
b49e97c9
TS
4220 }
4221 }
0a44bf69
RS
4222 else if (!htab->is_vxworks
4223 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4224 /* The calculation below does not involve "g". */
b49e97c9
TS
4225 break;
4226 else
4227 {
5c18022e 4228 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 4229 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4230 if (g == MINUS_ONE)
4231 return bfd_reloc_outofrange;
4232 }
4233
4234 /* Convert GOT indices to actual offsets. */
0a44bf69 4235 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4236 break;
4237
4238 case R_MIPS_HI16:
4239 case R_MIPS_LO16:
b49e97c9
TS
4240 case R_MIPS_GPREL16:
4241 case R_MIPS_GPREL32:
4242 case R_MIPS_LITERAL:
d6f16593
MR
4243 case R_MIPS16_HI16:
4244 case R_MIPS16_LO16:
4245 case R_MIPS16_GPREL:
b49e97c9
TS
4246 gp0 = _bfd_get_gp_value (input_bfd);
4247 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4248 if (dynobj)
4249 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4250 input_bfd);
b49e97c9
TS
4251 break;
4252
4253 default:
4254 break;
4255 }
4256
bbe506e8
TS
4257 if (gnu_local_gp_p)
4258 symbol = gp;
86324f90 4259
0a44bf69
RS
4260 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4261 symbols are resolved by the loader. Add them to .rela.dyn. */
4262 if (h != NULL && is_gott_symbol (info, &h->root))
4263 {
4264 Elf_Internal_Rela outrel;
4265 bfd_byte *loc;
4266 asection *s;
4267
4268 s = mips_elf_rel_dyn_section (info, FALSE);
4269 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4270
4271 outrel.r_offset = (input_section->output_section->vma
4272 + input_section->output_offset
4273 + relocation->r_offset);
4274 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4275 outrel.r_addend = addend;
4276 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
4277
4278 /* If we've written this relocation for a readonly section,
4279 we need to set DF_TEXTREL again, so that we do not delete the
4280 DT_TEXTREL tag. */
4281 if (MIPS_ELF_READONLY_SECTION (input_section))
4282 info->flags |= DF_TEXTREL;
4283
0a44bf69
RS
4284 *valuep = 0;
4285 return bfd_reloc_ok;
4286 }
4287
b49e97c9
TS
4288 /* Figure out what kind of relocation is being performed. */
4289 switch (r_type)
4290 {
4291 case R_MIPS_NONE:
4292 return bfd_reloc_continue;
4293
4294 case R_MIPS_16:
a7ebbfdf 4295 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4296 overflowed_p = mips_elf_overflow_p (value, 16);
4297 break;
4298
4299 case R_MIPS_32:
4300 case R_MIPS_REL32:
4301 case R_MIPS_64:
4302 if ((info->shared
0a44bf69
RS
4303 || (!htab->is_vxworks
4304 && htab->root.dynamic_sections_created
b49e97c9 4305 && h != NULL
f5385ebf
AM
4306 && h->root.def_dynamic
4307 && !h->root.def_regular))
b49e97c9
TS
4308 && r_symndx != 0
4309 && (input_section->flags & SEC_ALLOC) != 0)
4310 {
4311 /* If we're creating a shared library, or this relocation is
4312 against a symbol in a shared library, then we can't know
4313 where the symbol will end up. So, we create a relocation
4314 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4315 linker.
4316
4317 In VxWorks executables, references to external symbols
4318 are handled using copy relocs or PLT stubs, so there's
4319 no need to add a dynamic relocation here. */
b49e97c9
TS
4320 value = addend;
4321 if (!mips_elf_create_dynamic_relocation (abfd,
4322 info,
4323 relocation,
4324 h,
4325 sec,
4326 symbol,
4327 &value,
4328 input_section))
4329 return bfd_reloc_undefined;
4330 }
4331 else
4332 {
4333 if (r_type != R_MIPS_REL32)
4334 value = symbol + addend;
4335 else
4336 value = addend;
4337 }
4338 value &= howto->dst_mask;
092dcd75
CD
4339 break;
4340
4341 case R_MIPS_PC32:
4342 value = symbol + addend - p;
4343 value &= howto->dst_mask;
b49e97c9
TS
4344 break;
4345
b49e97c9
TS
4346 case R_MIPS16_26:
4347 /* The calculation for R_MIPS16_26 is just the same as for an
4348 R_MIPS_26. It's only the storage of the relocated field into
4349 the output file that's different. That's handled in
4350 mips_elf_perform_relocation. So, we just fall through to the
4351 R_MIPS_26 case here. */
4352 case R_MIPS_26:
4353 if (local_p)
30ac9238 4354 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4355 else
728b2f21
ILT
4356 {
4357 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4358 if (h->root.root.type != bfd_link_hash_undefweak)
4359 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4360 }
b49e97c9
TS
4361 value &= howto->dst_mask;
4362 break;
4363
0f20cc35
DJ
4364 case R_MIPS_TLS_DTPREL_HI16:
4365 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4366 & howto->dst_mask);
4367 break;
4368
4369 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
4370 case R_MIPS_TLS_DTPREL32:
4371 case R_MIPS_TLS_DTPREL64:
0f20cc35
DJ
4372 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4373 break;
4374
4375 case R_MIPS_TLS_TPREL_HI16:
4376 value = (mips_elf_high (addend + symbol - tprel_base (info))
4377 & howto->dst_mask);
4378 break;
4379
4380 case R_MIPS_TLS_TPREL_LO16:
4381 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4382 break;
4383
b49e97c9 4384 case R_MIPS_HI16:
d6f16593 4385 case R_MIPS16_HI16:
b49e97c9
TS
4386 if (!gp_disp_p)
4387 {
4388 value = mips_elf_high (addend + symbol);
4389 value &= howto->dst_mask;
4390 }
4391 else
4392 {
d6f16593
MR
4393 /* For MIPS16 ABI code we generate this sequence
4394 0: li $v0,%hi(_gp_disp)
4395 4: addiupc $v1,%lo(_gp_disp)
4396 8: sll $v0,16
4397 12: addu $v0,$v1
4398 14: move $gp,$v0
4399 So the offsets of hi and lo relocs are the same, but the
4400 $pc is four higher than $t9 would be, so reduce
4401 both reloc addends by 4. */
4402 if (r_type == R_MIPS16_HI16)
4403 value = mips_elf_high (addend + gp - p - 4);
4404 else
4405 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4406 overflowed_p = mips_elf_overflow_p (value, 16);
4407 }
4408 break;
4409
4410 case R_MIPS_LO16:
d6f16593 4411 case R_MIPS16_LO16:
b49e97c9
TS
4412 if (!gp_disp_p)
4413 value = (symbol + addend) & howto->dst_mask;
4414 else
4415 {
d6f16593
MR
4416 /* See the comment for R_MIPS16_HI16 above for the reason
4417 for this conditional. */
4418 if (r_type == R_MIPS16_LO16)
4419 value = addend + gp - p;
4420 else
4421 value = addend + gp - p + 4;
b49e97c9 4422 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4423 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4424 _gp_disp are normally generated from the .cpload
4425 pseudo-op. It generates code that normally looks like
4426 this:
4427
4428 lui $gp,%hi(_gp_disp)
4429 addiu $gp,$gp,%lo(_gp_disp)
4430 addu $gp,$gp,$t9
4431
4432 Here $t9 holds the address of the function being called,
4433 as required by the MIPS ELF ABI. The R_MIPS_LO16
4434 relocation can easily overflow in this situation, but the
4435 R_MIPS_HI16 relocation will handle the overflow.
4436 Therefore, we consider this a bug in the MIPS ABI, and do
4437 not check for overflow here. */
4438 }
4439 break;
4440
4441 case R_MIPS_LITERAL:
4442 /* Because we don't merge literal sections, we can handle this
4443 just like R_MIPS_GPREL16. In the long run, we should merge
4444 shared literals, and then we will need to additional work
4445 here. */
4446
4447 /* Fall through. */
4448
4449 case R_MIPS16_GPREL:
4450 /* The R_MIPS16_GPREL performs the same calculation as
4451 R_MIPS_GPREL16, but stores the relocated bits in a different
4452 order. We don't need to do anything special here; the
4453 differences are handled in mips_elf_perform_relocation. */
4454 case R_MIPS_GPREL16:
bce03d3d
AO
4455 /* Only sign-extend the addend if it was extracted from the
4456 instruction. If the addend was separate, leave it alone,
4457 otherwise we may lose significant bits. */
4458 if (howto->partial_inplace)
a7ebbfdf 4459 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4460 value = symbol + addend - gp;
4461 /* If the symbol was local, any earlier relocatable links will
4462 have adjusted its addend with the gp offset, so compensate
4463 for that now. Don't do it for symbols forced local in this
4464 link, though, since they won't have had the gp offset applied
4465 to them before. */
4466 if (was_local_p)
4467 value += gp0;
b49e97c9
TS
4468 overflowed_p = mips_elf_overflow_p (value, 16);
4469 break;
4470
4471 case R_MIPS_GOT16:
4472 case R_MIPS_CALL16:
0a44bf69
RS
4473 /* VxWorks does not have separate local and global semantics for
4474 R_MIPS_GOT16; every relocation evaluates to "G". */
4475 if (!htab->is_vxworks && local_p)
b49e97c9 4476 {
b34976b6 4477 bfd_boolean forced;
b49e97c9 4478
b49e97c9 4479 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4480 local_sections, FALSE);
5c18022e 4481 value = mips_elf_got16_entry (abfd, input_bfd, info,
f4416af6 4482 symbol + addend, forced);
b49e97c9
TS
4483 if (value == MINUS_ONE)
4484 return bfd_reloc_outofrange;
4485 value
0a44bf69 4486 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4487 overflowed_p = mips_elf_overflow_p (value, 16);
4488 break;
4489 }
4490
4491 /* Fall through. */
4492
0f20cc35
DJ
4493 case R_MIPS_TLS_GD:
4494 case R_MIPS_TLS_GOTTPREL:
4495 case R_MIPS_TLS_LDM:
b49e97c9 4496 case R_MIPS_GOT_DISP:
0fdc1bf1 4497 got_disp:
b49e97c9
TS
4498 value = g;
4499 overflowed_p = mips_elf_overflow_p (value, 16);
4500 break;
4501
4502 case R_MIPS_GPREL32:
bce03d3d
AO
4503 value = (addend + symbol + gp0 - gp);
4504 if (!save_addend)
4505 value &= howto->dst_mask;
b49e97c9
TS
4506 break;
4507
4508 case R_MIPS_PC16:
bad36eac
DJ
4509 case R_MIPS_GNU_REL16_S2:
4510 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4511 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4512 value >>= howto->rightshift;
4513 value &= howto->dst_mask;
b49e97c9
TS
4514 break;
4515
4516 case R_MIPS_GOT_HI16:
4517 case R_MIPS_CALL_HI16:
4518 /* We're allowed to handle these two relocations identically.
4519 The dynamic linker is allowed to handle the CALL relocations
4520 differently by creating a lazy evaluation stub. */
4521 value = g;
4522 value = mips_elf_high (value);
4523 value &= howto->dst_mask;
4524 break;
4525
4526 case R_MIPS_GOT_LO16:
4527 case R_MIPS_CALL_LO16:
4528 value = g & howto->dst_mask;
4529 break;
4530
4531 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4532 /* GOT_PAGE relocations that reference non-local symbols decay
4533 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4534 0. */
93a2b7ae 4535 if (! local_p)
0fdc1bf1 4536 goto got_disp;
5c18022e 4537 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4538 if (value == MINUS_ONE)
4539 return bfd_reloc_outofrange;
0a44bf69 4540 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4541 overflowed_p = mips_elf_overflow_p (value, 16);
4542 break;
4543
4544 case R_MIPS_GOT_OFST:
93a2b7ae 4545 if (local_p)
5c18022e 4546 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
4547 else
4548 value = addend;
b49e97c9
TS
4549 overflowed_p = mips_elf_overflow_p (value, 16);
4550 break;
4551
4552 case R_MIPS_SUB:
4553 value = symbol - addend;
4554 value &= howto->dst_mask;
4555 break;
4556
4557 case R_MIPS_HIGHER:
4558 value = mips_elf_higher (addend + symbol);
4559 value &= howto->dst_mask;
4560 break;
4561
4562 case R_MIPS_HIGHEST:
4563 value = mips_elf_highest (addend + symbol);
4564 value &= howto->dst_mask;
4565 break;
4566
4567 case R_MIPS_SCN_DISP:
4568 value = symbol + addend - sec->output_offset;
4569 value &= howto->dst_mask;
4570 break;
4571
b49e97c9 4572 case R_MIPS_JALR:
1367d393
ILT
4573 /* This relocation is only a hint. In some cases, we optimize
4574 it into a bal instruction. But we don't try to optimize
4575 branches to the PLT; that will wind up wasting time. */
4576 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4577 return bfd_reloc_continue;
4578 value = symbol + addend;
4579 break;
b49e97c9 4580
1367d393 4581 case R_MIPS_PJUMP:
b49e97c9
TS
4582 case R_MIPS_GNU_VTINHERIT:
4583 case R_MIPS_GNU_VTENTRY:
4584 /* We don't do anything with these at present. */
4585 return bfd_reloc_continue;
4586
4587 default:
4588 /* An unrecognized relocation type. */
4589 return bfd_reloc_notsupported;
4590 }
4591
4592 /* Store the VALUE for our caller. */
4593 *valuep = value;
4594 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4595}
4596
4597/* Obtain the field relocated by RELOCATION. */
4598
4599static bfd_vma
9719ad41
RS
4600mips_elf_obtain_contents (reloc_howto_type *howto,
4601 const Elf_Internal_Rela *relocation,
4602 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4603{
4604 bfd_vma x;
4605 bfd_byte *location = contents + relocation->r_offset;
4606
4607 /* Obtain the bytes. */
4608 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4609
b49e97c9
TS
4610 return x;
4611}
4612
4613/* It has been determined that the result of the RELOCATION is the
4614 VALUE. Use HOWTO to place VALUE into the output file at the
4615 appropriate position. The SECTION is the section to which the
b34976b6 4616 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4617 for the relocation must be either JAL or JALX, and it is
4618 unconditionally converted to JALX.
4619
b34976b6 4620 Returns FALSE if anything goes wrong. */
b49e97c9 4621
b34976b6 4622static bfd_boolean
9719ad41
RS
4623mips_elf_perform_relocation (struct bfd_link_info *info,
4624 reloc_howto_type *howto,
4625 const Elf_Internal_Rela *relocation,
4626 bfd_vma value, bfd *input_bfd,
4627 asection *input_section, bfd_byte *contents,
4628 bfd_boolean require_jalx)
b49e97c9
TS
4629{
4630 bfd_vma x;
4631 bfd_byte *location;
4632 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4633
4634 /* Figure out where the relocation is occurring. */
4635 location = contents + relocation->r_offset;
4636
d6f16593
MR
4637 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4638
b49e97c9
TS
4639 /* Obtain the current value. */
4640 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4641
4642 /* Clear the field we are setting. */
4643 x &= ~howto->dst_mask;
4644
b49e97c9
TS
4645 /* Set the field. */
4646 x |= (value & howto->dst_mask);
4647
4648 /* If required, turn JAL into JALX. */
4649 if (require_jalx)
4650 {
b34976b6 4651 bfd_boolean ok;
b49e97c9
TS
4652 bfd_vma opcode = x >> 26;
4653 bfd_vma jalx_opcode;
4654
4655 /* Check to see if the opcode is already JAL or JALX. */
4656 if (r_type == R_MIPS16_26)
4657 {
4658 ok = ((opcode == 0x6) || (opcode == 0x7));
4659 jalx_opcode = 0x7;
4660 }
4661 else
4662 {
4663 ok = ((opcode == 0x3) || (opcode == 0x1d));
4664 jalx_opcode = 0x1d;
4665 }
4666
4667 /* If the opcode is not JAL or JALX, there's a problem. */
4668 if (!ok)
4669 {
4670 (*_bfd_error_handler)
d003868e
AM
4671 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4672 input_bfd,
4673 input_section,
b49e97c9
TS
4674 (unsigned long) relocation->r_offset);
4675 bfd_set_error (bfd_error_bad_value);
b34976b6 4676 return FALSE;
b49e97c9
TS
4677 }
4678
4679 /* Make this the JALX opcode. */
4680 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4681 }
4682
1367d393
ILT
4683 /* On the RM9000, bal is faster than jal, because bal uses branch
4684 prediction hardware. If we are linking for the RM9000, and we
4685 see jal, and bal fits, use it instead. Note that this
4686 transformation should be safe for all architectures. */
4687 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4688 && !info->relocatable
4689 && !require_jalx
4690 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4691 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4692 {
4693 bfd_vma addr;
4694 bfd_vma dest;
4695 bfd_signed_vma off;
4696
4697 addr = (input_section->output_section->vma
4698 + input_section->output_offset
4699 + relocation->r_offset
4700 + 4);
4701 if (r_type == R_MIPS_26)
4702 dest = (value << 2) | ((addr >> 28) << 28);
4703 else
4704 dest = value;
4705 off = dest - addr;
4706 if (off <= 0x1ffff && off >= -0x20000)
4707 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4708 }
4709
b49e97c9
TS
4710 /* Put the value into the output. */
4711 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4712
4713 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4714 location);
4715
b34976b6 4716 return TRUE;
b49e97c9
TS
4717}
4718
b34976b6 4719/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4720
b34976b6 4721static bfd_boolean
b9d58d71 4722mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4723{
4724 const char *name = bfd_get_section_name (abfd, section);
4725
b9d58d71 4726 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
b49e97c9
TS
4727}
4728\f
0a44bf69 4729/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4730
4731static void
0a44bf69
RS
4732mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4733 unsigned int n)
b49e97c9
TS
4734{
4735 asection *s;
0a44bf69 4736 struct mips_elf_link_hash_table *htab;
b49e97c9 4737
0a44bf69
RS
4738 htab = mips_elf_hash_table (info);
4739 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4740 BFD_ASSERT (s != NULL);
4741
0a44bf69
RS
4742 if (htab->is_vxworks)
4743 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4744 else
b49e97c9 4745 {
0a44bf69
RS
4746 if (s->size == 0)
4747 {
4748 /* Make room for a null element. */
4749 s->size += MIPS_ELF_REL_SIZE (abfd);
4750 ++s->reloc_count;
4751 }
4752 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4753 }
b49e97c9
TS
4754}
4755
4756/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4757 is the original relocation, which is now being transformed into a
4758 dynamic relocation. The ADDENDP is adjusted if necessary; the
4759 caller should store the result in place of the original addend. */
4760
b34976b6 4761static bfd_boolean
9719ad41
RS
4762mips_elf_create_dynamic_relocation (bfd *output_bfd,
4763 struct bfd_link_info *info,
4764 const Elf_Internal_Rela *rel,
4765 struct mips_elf_link_hash_entry *h,
4766 asection *sec, bfd_vma symbol,
4767 bfd_vma *addendp, asection *input_section)
b49e97c9 4768{
947216bf 4769 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4770 asection *sreloc;
4771 bfd *dynobj;
4772 int r_type;
5d41f0b6
RS
4773 long indx;
4774 bfd_boolean defined_p;
0a44bf69 4775 struct mips_elf_link_hash_table *htab;
b49e97c9 4776
0a44bf69 4777 htab = mips_elf_hash_table (info);
b49e97c9
TS
4778 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4779 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4780 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4781 BFD_ASSERT (sreloc != NULL);
4782 BFD_ASSERT (sreloc->contents != NULL);
4783 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4784 < sreloc->size);
b49e97c9 4785
b49e97c9
TS
4786 outrel[0].r_offset =
4787 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
4788 if (ABI_64_P (output_bfd))
4789 {
4790 outrel[1].r_offset =
4791 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4792 outrel[2].r_offset =
4793 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4794 }
b49e97c9 4795
c5ae1840 4796 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4797 /* The relocation field has been deleted. */
5d41f0b6
RS
4798 return TRUE;
4799
4800 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4801 {
4802 /* The relocation field has been converted into a relative value of
4803 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4804 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4805 *addendp += symbol;
5d41f0b6 4806 return TRUE;
0d591ff7 4807 }
b49e97c9 4808
5d41f0b6
RS
4809 /* We must now calculate the dynamic symbol table index to use
4810 in the relocation. */
4811 if (h != NULL
6ece8836
TS
4812 && (!h->root.def_regular
4813 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4814 {
4815 indx = h->root.dynindx;
4816 if (SGI_COMPAT (output_bfd))
4817 defined_p = h->root.def_regular;
4818 else
4819 /* ??? glibc's ld.so just adds the final GOT entry to the
4820 relocation field. It therefore treats relocs against
4821 defined symbols in the same way as relocs against
4822 undefined symbols. */
4823 defined_p = FALSE;
4824 }
b49e97c9
TS
4825 else
4826 {
5d41f0b6
RS
4827 if (sec != NULL && bfd_is_abs_section (sec))
4828 indx = 0;
4829 else if (sec == NULL || sec->owner == NULL)
fdd07405 4830 {
5d41f0b6
RS
4831 bfd_set_error (bfd_error_bad_value);
4832 return FALSE;
b49e97c9
TS
4833 }
4834 else
4835 {
5d41f0b6 4836 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
4837 if (indx == 0)
4838 {
4839 asection *osec = htab->root.text_index_section;
4840 indx = elf_section_data (osec)->dynindx;
4841 }
5d41f0b6
RS
4842 if (indx == 0)
4843 abort ();
b49e97c9
TS
4844 }
4845
5d41f0b6
RS
4846 /* Instead of generating a relocation using the section
4847 symbol, we may as well make it a fully relative
4848 relocation. We want to avoid generating relocations to
4849 local symbols because we used to generate them
4850 incorrectly, without adding the original symbol value,
4851 which is mandated by the ABI for section symbols. In
4852 order to give dynamic loaders and applications time to
4853 phase out the incorrect use, we refrain from emitting
4854 section-relative relocations. It's not like they're
4855 useful, after all. This should be a bit more efficient
4856 as well. */
4857 /* ??? Although this behavior is compatible with glibc's ld.so,
4858 the ABI says that relocations against STN_UNDEF should have
4859 a symbol value of 0. Irix rld honors this, so relocations
4860 against STN_UNDEF have no effect. */
4861 if (!SGI_COMPAT (output_bfd))
4862 indx = 0;
4863 defined_p = TRUE;
b49e97c9
TS
4864 }
4865
5d41f0b6
RS
4866 /* If the relocation was previously an absolute relocation and
4867 this symbol will not be referred to by the relocation, we must
4868 adjust it by the value we give it in the dynamic symbol table.
4869 Otherwise leave the job up to the dynamic linker. */
4870 if (defined_p && r_type != R_MIPS_REL32)
4871 *addendp += symbol;
4872
0a44bf69
RS
4873 if (htab->is_vxworks)
4874 /* VxWorks uses non-relative relocations for this. */
4875 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4876 else
4877 /* The relocation is always an REL32 relocation because we don't
4878 know where the shared library will wind up at load-time. */
4879 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4880 R_MIPS_REL32);
4881
5d41f0b6
RS
4882 /* For strict adherence to the ABI specification, we should
4883 generate a R_MIPS_64 relocation record by itself before the
4884 _REL32/_64 record as well, such that the addend is read in as
4885 a 64-bit value (REL32 is a 32-bit relocation, after all).
4886 However, since none of the existing ELF64 MIPS dynamic
4887 loaders seems to care, we don't waste space with these
4888 artificial relocations. If this turns out to not be true,
4889 mips_elf_allocate_dynamic_relocation() should be tweaked so
4890 as to make room for a pair of dynamic relocations per
4891 invocation if ABI_64_P, and here we should generate an
4892 additional relocation record with R_MIPS_64 by itself for a
4893 NULL symbol before this relocation record. */
4894 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4895 ABI_64_P (output_bfd)
4896 ? R_MIPS_64
4897 : R_MIPS_NONE);
4898 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4899
4900 /* Adjust the output offset of the relocation to reference the
4901 correct location in the output file. */
4902 outrel[0].r_offset += (input_section->output_section->vma
4903 + input_section->output_offset);
4904 outrel[1].r_offset += (input_section->output_section->vma
4905 + input_section->output_offset);
4906 outrel[2].r_offset += (input_section->output_section->vma
4907 + input_section->output_offset);
4908
b49e97c9
TS
4909 /* Put the relocation back out. We have to use the special
4910 relocation outputter in the 64-bit case since the 64-bit
4911 relocation format is non-standard. */
4912 if (ABI_64_P (output_bfd))
4913 {
4914 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4915 (output_bfd, &outrel[0],
4916 (sreloc->contents
4917 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4918 }
0a44bf69
RS
4919 else if (htab->is_vxworks)
4920 {
4921 /* VxWorks uses RELA rather than REL dynamic relocations. */
4922 outrel[0].r_addend = *addendp;
4923 bfd_elf32_swap_reloca_out
4924 (output_bfd, &outrel[0],
4925 (sreloc->contents
4926 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4927 }
b49e97c9 4928 else
947216bf
AM
4929 bfd_elf32_swap_reloc_out
4930 (output_bfd, &outrel[0],
4931 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4932
b49e97c9
TS
4933 /* We've now added another relocation. */
4934 ++sreloc->reloc_count;
4935
4936 /* Make sure the output section is writable. The dynamic linker
4937 will be writing to it. */
4938 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4939 |= SHF_WRITE;
4940
4941 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4942 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4943 {
4944 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4945 bfd_byte *cr;
4946
4947 if (scpt)
4948 {
4949 Elf32_crinfo cptrel;
4950
4951 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4952 cptrel.vaddr = (rel->r_offset
4953 + input_section->output_section->vma
4954 + input_section->output_offset);
4955 if (r_type == R_MIPS_REL32)
4956 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4957 else
4958 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4959 mips_elf_set_cr_dist2to (cptrel, 0);
4960 cptrel.konst = *addendp;
4961
4962 cr = (scpt->contents
4963 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4964 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4965 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4966 ((Elf32_External_crinfo *) cr
4967 + scpt->reloc_count));
4968 ++scpt->reloc_count;
4969 }
4970 }
4971
943284cc
DJ
4972 /* If we've written this relocation for a readonly section,
4973 we need to set DF_TEXTREL again, so that we do not delete the
4974 DT_TEXTREL tag. */
4975 if (MIPS_ELF_READONLY_SECTION (input_section))
4976 info->flags |= DF_TEXTREL;
4977
b34976b6 4978 return TRUE;
b49e97c9
TS
4979}
4980\f
b49e97c9
TS
4981/* Return the MACH for a MIPS e_flags value. */
4982
4983unsigned long
9719ad41 4984_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4985{
4986 switch (flags & EF_MIPS_MACH)
4987 {
4988 case E_MIPS_MACH_3900:
4989 return bfd_mach_mips3900;
4990
4991 case E_MIPS_MACH_4010:
4992 return bfd_mach_mips4010;
4993
4994 case E_MIPS_MACH_4100:
4995 return bfd_mach_mips4100;
4996
4997 case E_MIPS_MACH_4111:
4998 return bfd_mach_mips4111;
4999
00707a0e
RS
5000 case E_MIPS_MACH_4120:
5001 return bfd_mach_mips4120;
5002
b49e97c9
TS
5003 case E_MIPS_MACH_4650:
5004 return bfd_mach_mips4650;
5005
00707a0e
RS
5006 case E_MIPS_MACH_5400:
5007 return bfd_mach_mips5400;
5008
5009 case E_MIPS_MACH_5500:
5010 return bfd_mach_mips5500;
5011
0d2e43ed
ILT
5012 case E_MIPS_MACH_9000:
5013 return bfd_mach_mips9000;
5014
b49e97c9
TS
5015 case E_MIPS_MACH_SB1:
5016 return bfd_mach_mips_sb1;
5017
5018 default:
5019 switch (flags & EF_MIPS_ARCH)
5020 {
5021 default:
5022 case E_MIPS_ARCH_1:
5023 return bfd_mach_mips3000;
b49e97c9
TS
5024
5025 case E_MIPS_ARCH_2:
5026 return bfd_mach_mips6000;
b49e97c9
TS
5027
5028 case E_MIPS_ARCH_3:
5029 return bfd_mach_mips4000;
b49e97c9
TS
5030
5031 case E_MIPS_ARCH_4:
5032 return bfd_mach_mips8000;
b49e97c9
TS
5033
5034 case E_MIPS_ARCH_5:
5035 return bfd_mach_mips5;
b49e97c9
TS
5036
5037 case E_MIPS_ARCH_32:
5038 return bfd_mach_mipsisa32;
b49e97c9
TS
5039
5040 case E_MIPS_ARCH_64:
5041 return bfd_mach_mipsisa64;
af7ee8bf
CD
5042
5043 case E_MIPS_ARCH_32R2:
5044 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5045
5046 case E_MIPS_ARCH_64R2:
5047 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5048 }
5049 }
5050
5051 return 0;
5052}
5053
5054/* Return printable name for ABI. */
5055
5056static INLINE char *
9719ad41 5057elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5058{
5059 flagword flags;
5060
5061 flags = elf_elfheader (abfd)->e_flags;
5062 switch (flags & EF_MIPS_ABI)
5063 {
5064 case 0:
5065 if (ABI_N32_P (abfd))
5066 return "N32";
5067 else if (ABI_64_P (abfd))
5068 return "64";
5069 else
5070 return "none";
5071 case E_MIPS_ABI_O32:
5072 return "O32";
5073 case E_MIPS_ABI_O64:
5074 return "O64";
5075 case E_MIPS_ABI_EABI32:
5076 return "EABI32";
5077 case E_MIPS_ABI_EABI64:
5078 return "EABI64";
5079 default:
5080 return "unknown abi";
5081 }
5082}
5083\f
5084/* MIPS ELF uses two common sections. One is the usual one, and the
5085 other is for small objects. All the small objects are kept
5086 together, and then referenced via the gp pointer, which yields
5087 faster assembler code. This is what we use for the small common
5088 section. This approach is copied from ecoff.c. */
5089static asection mips_elf_scom_section;
5090static asymbol mips_elf_scom_symbol;
5091static asymbol *mips_elf_scom_symbol_ptr;
5092
5093/* MIPS ELF also uses an acommon section, which represents an
5094 allocated common symbol which may be overridden by a
5095 definition in a shared library. */
5096static asection mips_elf_acom_section;
5097static asymbol mips_elf_acom_symbol;
5098static asymbol *mips_elf_acom_symbol_ptr;
5099
5100/* Handle the special MIPS section numbers that a symbol may use.
5101 This is used for both the 32-bit and the 64-bit ABI. */
5102
5103void
9719ad41 5104_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5105{
5106 elf_symbol_type *elfsym;
5107
5108 elfsym = (elf_symbol_type *) asym;
5109 switch (elfsym->internal_elf_sym.st_shndx)
5110 {
5111 case SHN_MIPS_ACOMMON:
5112 /* This section is used in a dynamically linked executable file.
5113 It is an allocated common section. The dynamic linker can
5114 either resolve these symbols to something in a shared
5115 library, or it can just leave them here. For our purposes,
5116 we can consider these symbols to be in a new section. */
5117 if (mips_elf_acom_section.name == NULL)
5118 {
5119 /* Initialize the acommon section. */
5120 mips_elf_acom_section.name = ".acommon";
5121 mips_elf_acom_section.flags = SEC_ALLOC;
5122 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5123 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5124 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5125 mips_elf_acom_symbol.name = ".acommon";
5126 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5127 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5128 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5129 }
5130 asym->section = &mips_elf_acom_section;
5131 break;
5132
5133 case SHN_COMMON:
5134 /* Common symbols less than the GP size are automatically
5135 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5136 if (asym->value > elf_gp_size (abfd)
b59eed79 5137 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5138 || IRIX_COMPAT (abfd) == ict_irix6)
5139 break;
5140 /* Fall through. */
5141 case SHN_MIPS_SCOMMON:
5142 if (mips_elf_scom_section.name == NULL)
5143 {
5144 /* Initialize the small common section. */
5145 mips_elf_scom_section.name = ".scommon";
5146 mips_elf_scom_section.flags = SEC_IS_COMMON;
5147 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5148 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5149 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5150 mips_elf_scom_symbol.name = ".scommon";
5151 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5152 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5153 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5154 }
5155 asym->section = &mips_elf_scom_section;
5156 asym->value = elfsym->internal_elf_sym.st_size;
5157 break;
5158
5159 case SHN_MIPS_SUNDEFINED:
5160 asym->section = bfd_und_section_ptr;
5161 break;
5162
b49e97c9 5163 case SHN_MIPS_TEXT:
00b4930b
TS
5164 {
5165 asection *section = bfd_get_section_by_name (abfd, ".text");
5166
5167 BFD_ASSERT (SGI_COMPAT (abfd));
5168 if (section != NULL)
5169 {
5170 asym->section = section;
5171 /* MIPS_TEXT is a bit special, the address is not an offset
5172 to the base of the .text section. So substract the section
5173 base address to make it an offset. */
5174 asym->value -= section->vma;
5175 }
5176 }
b49e97c9
TS
5177 break;
5178
5179 case SHN_MIPS_DATA:
00b4930b
TS
5180 {
5181 asection *section = bfd_get_section_by_name (abfd, ".data");
5182
5183 BFD_ASSERT (SGI_COMPAT (abfd));
5184 if (section != NULL)
5185 {
5186 asym->section = section;
5187 /* MIPS_DATA is a bit special, the address is not an offset
5188 to the base of the .data section. So substract the section
5189 base address to make it an offset. */
5190 asym->value -= section->vma;
5191 }
5192 }
b49e97c9 5193 break;
b49e97c9
TS
5194 }
5195}
5196\f
8c946ed5
RS
5197/* Implement elf_backend_eh_frame_address_size. This differs from
5198 the default in the way it handles EABI64.
5199
5200 EABI64 was originally specified as an LP64 ABI, and that is what
5201 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5202 historically accepted the combination of -mabi=eabi and -mlong32,
5203 and this ILP32 variation has become semi-official over time.
5204 Both forms use elf32 and have pointer-sized FDE addresses.
5205
5206 If an EABI object was generated by GCC 4.0 or above, it will have
5207 an empty .gcc_compiled_longXX section, where XX is the size of longs
5208 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5209 have no special marking to distinguish them from LP64 objects.
5210
5211 We don't want users of the official LP64 ABI to be punished for the
5212 existence of the ILP32 variant, but at the same time, we don't want
5213 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5214 We therefore take the following approach:
5215
5216 - If ABFD contains a .gcc_compiled_longXX section, use it to
5217 determine the pointer size.
5218
5219 - Otherwise check the type of the first relocation. Assume that
5220 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5221
5222 - Otherwise punt.
5223
5224 The second check is enough to detect LP64 objects generated by pre-4.0
5225 compilers because, in the kind of output generated by those compilers,
5226 the first relocation will be associated with either a CIE personality
5227 routine or an FDE start address. Furthermore, the compilers never
5228 used a special (non-pointer) encoding for this ABI.
5229
5230 Checking the relocation type should also be safe because there is no
5231 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5232 did so. */
5233
5234unsigned int
5235_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5236{
5237 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5238 return 8;
5239 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5240 {
5241 bfd_boolean long32_p, long64_p;
5242
5243 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5244 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5245 if (long32_p && long64_p)
5246 return 0;
5247 if (long32_p)
5248 return 4;
5249 if (long64_p)
5250 return 8;
5251
5252 if (sec->reloc_count > 0
5253 && elf_section_data (sec)->relocs != NULL
5254 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5255 == R_MIPS_64))
5256 return 8;
5257
5258 return 0;
5259 }
5260 return 4;
5261}
5262\f
174fd7f9
RS
5263/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5264 relocations against two unnamed section symbols to resolve to the
5265 same address. For example, if we have code like:
5266
5267 lw $4,%got_disp(.data)($gp)
5268 lw $25,%got_disp(.text)($gp)
5269 jalr $25
5270
5271 then the linker will resolve both relocations to .data and the program
5272 will jump there rather than to .text.
5273
5274 We can work around this problem by giving names to local section symbols.
5275 This is also what the MIPSpro tools do. */
5276
5277bfd_boolean
5278_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5279{
5280 return SGI_COMPAT (abfd);
5281}
5282\f
b49e97c9
TS
5283/* Work over a section just before writing it out. This routine is
5284 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5285 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5286 a better way. */
5287
b34976b6 5288bfd_boolean
9719ad41 5289_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5290{
5291 if (hdr->sh_type == SHT_MIPS_REGINFO
5292 && hdr->sh_size > 0)
5293 {
5294 bfd_byte buf[4];
5295
5296 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5297 BFD_ASSERT (hdr->contents == NULL);
5298
5299 if (bfd_seek (abfd,
5300 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5301 SEEK_SET) != 0)
b34976b6 5302 return FALSE;
b49e97c9 5303 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5304 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5305 return FALSE;
b49e97c9
TS
5306 }
5307
5308 if (hdr->sh_type == SHT_MIPS_OPTIONS
5309 && hdr->bfd_section != NULL
f0abc2a1
AM
5310 && mips_elf_section_data (hdr->bfd_section) != NULL
5311 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5312 {
5313 bfd_byte *contents, *l, *lend;
5314
f0abc2a1
AM
5315 /* We stored the section contents in the tdata field in the
5316 set_section_contents routine. We save the section contents
5317 so that we don't have to read them again.
b49e97c9
TS
5318 At this point we know that elf_gp is set, so we can look
5319 through the section contents to see if there is an
5320 ODK_REGINFO structure. */
5321
f0abc2a1 5322 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5323 l = contents;
5324 lend = contents + hdr->sh_size;
5325 while (l + sizeof (Elf_External_Options) <= lend)
5326 {
5327 Elf_Internal_Options intopt;
5328
5329 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5330 &intopt);
1bc8074d
MR
5331 if (intopt.size < sizeof (Elf_External_Options))
5332 {
5333 (*_bfd_error_handler)
5334 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5335 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5336 break;
5337 }
b49e97c9
TS
5338 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5339 {
5340 bfd_byte buf[8];
5341
5342 if (bfd_seek (abfd,
5343 (hdr->sh_offset
5344 + (l - contents)
5345 + sizeof (Elf_External_Options)
5346 + (sizeof (Elf64_External_RegInfo) - 8)),
5347 SEEK_SET) != 0)
b34976b6 5348 return FALSE;
b49e97c9 5349 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5350 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5351 return FALSE;
b49e97c9
TS
5352 }
5353 else if (intopt.kind == ODK_REGINFO)
5354 {
5355 bfd_byte buf[4];
5356
5357 if (bfd_seek (abfd,
5358 (hdr->sh_offset
5359 + (l - contents)
5360 + sizeof (Elf_External_Options)
5361 + (sizeof (Elf32_External_RegInfo) - 4)),
5362 SEEK_SET) != 0)
b34976b6 5363 return FALSE;
b49e97c9 5364 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5365 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5366 return FALSE;
b49e97c9
TS
5367 }
5368 l += intopt.size;
5369 }
5370 }
5371
5372 if (hdr->bfd_section != NULL)
5373 {
5374 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5375
5376 if (strcmp (name, ".sdata") == 0
5377 || strcmp (name, ".lit8") == 0
5378 || strcmp (name, ".lit4") == 0)
5379 {
5380 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5381 hdr->sh_type = SHT_PROGBITS;
5382 }
5383 else if (strcmp (name, ".sbss") == 0)
5384 {
5385 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5386 hdr->sh_type = SHT_NOBITS;
5387 }
5388 else if (strcmp (name, ".srdata") == 0)
5389 {
5390 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5391 hdr->sh_type = SHT_PROGBITS;
5392 }
5393 else if (strcmp (name, ".compact_rel") == 0)
5394 {
5395 hdr->sh_flags = 0;
5396 hdr->sh_type = SHT_PROGBITS;
5397 }
5398 else if (strcmp (name, ".rtproc") == 0)
5399 {
5400 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5401 {
5402 unsigned int adjust;
5403
5404 adjust = hdr->sh_size % hdr->sh_addralign;
5405 if (adjust != 0)
5406 hdr->sh_size += hdr->sh_addralign - adjust;
5407 }
5408 }
5409 }
5410
b34976b6 5411 return TRUE;
b49e97c9
TS
5412}
5413
5414/* Handle a MIPS specific section when reading an object file. This
5415 is called when elfcode.h finds a section with an unknown type.
5416 This routine supports both the 32-bit and 64-bit ELF ABI.
5417
5418 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5419 how to. */
5420
b34976b6 5421bfd_boolean
6dc132d9
L
5422_bfd_mips_elf_section_from_shdr (bfd *abfd,
5423 Elf_Internal_Shdr *hdr,
5424 const char *name,
5425 int shindex)
b49e97c9
TS
5426{
5427 flagword flags = 0;
5428
5429 /* There ought to be a place to keep ELF backend specific flags, but
5430 at the moment there isn't one. We just keep track of the
5431 sections by their name, instead. Fortunately, the ABI gives
5432 suggested names for all the MIPS specific sections, so we will
5433 probably get away with this. */
5434 switch (hdr->sh_type)
5435 {
5436 case SHT_MIPS_LIBLIST:
5437 if (strcmp (name, ".liblist") != 0)
b34976b6 5438 return FALSE;
b49e97c9
TS
5439 break;
5440 case SHT_MIPS_MSYM:
5441 if (strcmp (name, ".msym") != 0)
b34976b6 5442 return FALSE;
b49e97c9
TS
5443 break;
5444 case SHT_MIPS_CONFLICT:
5445 if (strcmp (name, ".conflict") != 0)
b34976b6 5446 return FALSE;
b49e97c9
TS
5447 break;
5448 case SHT_MIPS_GPTAB:
0112cd26 5449 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 5450 return FALSE;
b49e97c9
TS
5451 break;
5452 case SHT_MIPS_UCODE:
5453 if (strcmp (name, ".ucode") != 0)
b34976b6 5454 return FALSE;
b49e97c9
TS
5455 break;
5456 case SHT_MIPS_DEBUG:
5457 if (strcmp (name, ".mdebug") != 0)
b34976b6 5458 return FALSE;
b49e97c9
TS
5459 flags = SEC_DEBUGGING;
5460 break;
5461 case SHT_MIPS_REGINFO:
5462 if (strcmp (name, ".reginfo") != 0
5463 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5464 return FALSE;
b49e97c9
TS
5465 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5466 break;
5467 case SHT_MIPS_IFACE:
5468 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5469 return FALSE;
b49e97c9
TS
5470 break;
5471 case SHT_MIPS_CONTENT:
0112cd26 5472 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 5473 return FALSE;
b49e97c9
TS
5474 break;
5475 case SHT_MIPS_OPTIONS:
cc2e31b9 5476 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5477 return FALSE;
b49e97c9
TS
5478 break;
5479 case SHT_MIPS_DWARF:
0112cd26 5480 if (! CONST_STRNEQ (name, ".debug_"))
b34976b6 5481 return FALSE;
b49e97c9
TS
5482 break;
5483 case SHT_MIPS_SYMBOL_LIB:
5484 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5485 return FALSE;
b49e97c9
TS
5486 break;
5487 case SHT_MIPS_EVENTS:
0112cd26
NC
5488 if (! CONST_STRNEQ (name, ".MIPS.events")
5489 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 5490 return FALSE;
b49e97c9
TS
5491 break;
5492 default:
cc2e31b9 5493 break;
b49e97c9
TS
5494 }
5495
6dc132d9 5496 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5497 return FALSE;
b49e97c9
TS
5498
5499 if (flags)
5500 {
5501 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5502 (bfd_get_section_flags (abfd,
5503 hdr->bfd_section)
5504 | flags)))
b34976b6 5505 return FALSE;
b49e97c9
TS
5506 }
5507
5508 /* FIXME: We should record sh_info for a .gptab section. */
5509
5510 /* For a .reginfo section, set the gp value in the tdata information
5511 from the contents of this section. We need the gp value while
5512 processing relocs, so we just get it now. The .reginfo section
5513 is not used in the 64-bit MIPS ELF ABI. */
5514 if (hdr->sh_type == SHT_MIPS_REGINFO)
5515 {
5516 Elf32_External_RegInfo ext;
5517 Elf32_RegInfo s;
5518
9719ad41
RS
5519 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5520 &ext, 0, sizeof ext))
b34976b6 5521 return FALSE;
b49e97c9
TS
5522 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5523 elf_gp (abfd) = s.ri_gp_value;
5524 }
5525
5526 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5527 set the gp value based on what we find. We may see both
5528 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5529 they should agree. */
5530 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5531 {
5532 bfd_byte *contents, *l, *lend;
5533
9719ad41 5534 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5535 if (contents == NULL)
b34976b6 5536 return FALSE;
b49e97c9 5537 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5538 0, hdr->sh_size))
b49e97c9
TS
5539 {
5540 free (contents);
b34976b6 5541 return FALSE;
b49e97c9
TS
5542 }
5543 l = contents;
5544 lend = contents + hdr->sh_size;
5545 while (l + sizeof (Elf_External_Options) <= lend)
5546 {
5547 Elf_Internal_Options intopt;
5548
5549 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5550 &intopt);
1bc8074d
MR
5551 if (intopt.size < sizeof (Elf_External_Options))
5552 {
5553 (*_bfd_error_handler)
5554 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5555 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5556 break;
5557 }
b49e97c9
TS
5558 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5559 {
5560 Elf64_Internal_RegInfo intreg;
5561
5562 bfd_mips_elf64_swap_reginfo_in
5563 (abfd,
5564 ((Elf64_External_RegInfo *)
5565 (l + sizeof (Elf_External_Options))),
5566 &intreg);
5567 elf_gp (abfd) = intreg.ri_gp_value;
5568 }
5569 else if (intopt.kind == ODK_REGINFO)
5570 {
5571 Elf32_RegInfo intreg;
5572
5573 bfd_mips_elf32_swap_reginfo_in
5574 (abfd,
5575 ((Elf32_External_RegInfo *)
5576 (l + sizeof (Elf_External_Options))),
5577 &intreg);
5578 elf_gp (abfd) = intreg.ri_gp_value;
5579 }
5580 l += intopt.size;
5581 }
5582 free (contents);
5583 }
5584
b34976b6 5585 return TRUE;
b49e97c9
TS
5586}
5587
5588/* Set the correct type for a MIPS ELF section. We do this by the
5589 section name, which is a hack, but ought to work. This routine is
5590 used by both the 32-bit and the 64-bit ABI. */
5591
b34976b6 5592bfd_boolean
9719ad41 5593_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 5594{
0414f35b 5595 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
5596
5597 if (strcmp (name, ".liblist") == 0)
5598 {
5599 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5600 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5601 /* The sh_link field is set in final_write_processing. */
5602 }
5603 else if (strcmp (name, ".conflict") == 0)
5604 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 5605 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
5606 {
5607 hdr->sh_type = SHT_MIPS_GPTAB;
5608 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5609 /* The sh_info field is set in final_write_processing. */
5610 }
5611 else if (strcmp (name, ".ucode") == 0)
5612 hdr->sh_type = SHT_MIPS_UCODE;
5613 else if (strcmp (name, ".mdebug") == 0)
5614 {
5615 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5616 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5617 entsize of 0. FIXME: Does this matter? */
5618 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5619 hdr->sh_entsize = 0;
5620 else
5621 hdr->sh_entsize = 1;
5622 }
5623 else if (strcmp (name, ".reginfo") == 0)
5624 {
5625 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5626 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5627 entsize of 0x18. FIXME: Does this matter? */
5628 if (SGI_COMPAT (abfd))
5629 {
5630 if ((abfd->flags & DYNAMIC) != 0)
5631 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5632 else
5633 hdr->sh_entsize = 1;
5634 }
5635 else
5636 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5637 }
5638 else if (SGI_COMPAT (abfd)
5639 && (strcmp (name, ".hash") == 0
5640 || strcmp (name, ".dynamic") == 0
5641 || strcmp (name, ".dynstr") == 0))
5642 {
5643 if (SGI_COMPAT (abfd))
5644 hdr->sh_entsize = 0;
5645#if 0
8dc1a139 5646 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5647 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5648#endif
5649 }
5650 else if (strcmp (name, ".got") == 0
5651 || strcmp (name, ".srdata") == 0
5652 || strcmp (name, ".sdata") == 0
5653 || strcmp (name, ".sbss") == 0
5654 || strcmp (name, ".lit4") == 0
5655 || strcmp (name, ".lit8") == 0)
5656 hdr->sh_flags |= SHF_MIPS_GPREL;
5657 else if (strcmp (name, ".MIPS.interfaces") == 0)
5658 {
5659 hdr->sh_type = SHT_MIPS_IFACE;
5660 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5661 }
0112cd26 5662 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
5663 {
5664 hdr->sh_type = SHT_MIPS_CONTENT;
5665 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5666 /* The sh_info field is set in final_write_processing. */
5667 }
cc2e31b9 5668 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5669 {
5670 hdr->sh_type = SHT_MIPS_OPTIONS;
5671 hdr->sh_entsize = 1;
5672 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5673 }
0112cd26 5674 else if (CONST_STRNEQ (name, ".debug_"))
b49e97c9
TS
5675 hdr->sh_type = SHT_MIPS_DWARF;
5676 else if (strcmp (name, ".MIPS.symlib") == 0)
5677 {
5678 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5679 /* The sh_link and sh_info fields are set in
5680 final_write_processing. */
5681 }
0112cd26
NC
5682 else if (CONST_STRNEQ (name, ".MIPS.events")
5683 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
5684 {
5685 hdr->sh_type = SHT_MIPS_EVENTS;
5686 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5687 /* The sh_link field is set in final_write_processing. */
5688 }
5689 else if (strcmp (name, ".msym") == 0)
5690 {
5691 hdr->sh_type = SHT_MIPS_MSYM;
5692 hdr->sh_flags |= SHF_ALLOC;
5693 hdr->sh_entsize = 8;
5694 }
5695
7a79a000
TS
5696 /* The generic elf_fake_sections will set up REL_HDR using the default
5697 kind of relocations. We used to set up a second header for the
5698 non-default kind of relocations here, but only NewABI would use
5699 these, and the IRIX ld doesn't like resulting empty RELA sections.
5700 Thus we create those header only on demand now. */
b49e97c9 5701
b34976b6 5702 return TRUE;
b49e97c9
TS
5703}
5704
5705/* Given a BFD section, try to locate the corresponding ELF section
5706 index. This is used by both the 32-bit and the 64-bit ABI.
5707 Actually, it's not clear to me that the 64-bit ABI supports these,
5708 but for non-PIC objects we will certainly want support for at least
5709 the .scommon section. */
5710
b34976b6 5711bfd_boolean
9719ad41
RS
5712_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5713 asection *sec, int *retval)
b49e97c9
TS
5714{
5715 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5716 {
5717 *retval = SHN_MIPS_SCOMMON;
b34976b6 5718 return TRUE;
b49e97c9
TS
5719 }
5720 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5721 {
5722 *retval = SHN_MIPS_ACOMMON;
b34976b6 5723 return TRUE;
b49e97c9 5724 }
b34976b6 5725 return FALSE;
b49e97c9
TS
5726}
5727\f
5728/* Hook called by the linker routine which adds symbols from an object
5729 file. We must handle the special MIPS section numbers here. */
5730
b34976b6 5731bfd_boolean
9719ad41 5732_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5733 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5734 flagword *flagsp ATTRIBUTE_UNUSED,
5735 asection **secp, bfd_vma *valp)
b49e97c9
TS
5736{
5737 if (SGI_COMPAT (abfd)
5738 && (abfd->flags & DYNAMIC) != 0
5739 && strcmp (*namep, "_rld_new_interface") == 0)
5740 {
8dc1a139 5741 /* Skip IRIX5 rld entry name. */
b49e97c9 5742 *namep = NULL;
b34976b6 5743 return TRUE;
b49e97c9
TS
5744 }
5745
eedecc07
DD
5746 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5747 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5748 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5749 a magic symbol resolved by the linker, we ignore this bogus definition
5750 of _gp_disp. New ABI objects do not suffer from this problem so this
5751 is not done for them. */
5752 if (!NEWABI_P(abfd)
5753 && (sym->st_shndx == SHN_ABS)
5754 && (strcmp (*namep, "_gp_disp") == 0))
5755 {
5756 *namep = NULL;
5757 return TRUE;
5758 }
5759
b49e97c9
TS
5760 switch (sym->st_shndx)
5761 {
5762 case SHN_COMMON:
5763 /* Common symbols less than the GP size are automatically
5764 treated as SHN_MIPS_SCOMMON symbols. */
5765 if (sym->st_size > elf_gp_size (abfd)
b59eed79 5766 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
5767 || IRIX_COMPAT (abfd) == ict_irix6)
5768 break;
5769 /* Fall through. */
5770 case SHN_MIPS_SCOMMON:
5771 *secp = bfd_make_section_old_way (abfd, ".scommon");
5772 (*secp)->flags |= SEC_IS_COMMON;
5773 *valp = sym->st_size;
5774 break;
5775
5776 case SHN_MIPS_TEXT:
5777 /* This section is used in a shared object. */
5778 if (elf_tdata (abfd)->elf_text_section == NULL)
5779 {
5780 asymbol *elf_text_symbol;
5781 asection *elf_text_section;
5782 bfd_size_type amt = sizeof (asection);
5783
5784 elf_text_section = bfd_zalloc (abfd, amt);
5785 if (elf_text_section == NULL)
b34976b6 5786 return FALSE;
b49e97c9
TS
5787
5788 amt = sizeof (asymbol);
5789 elf_text_symbol = bfd_zalloc (abfd, amt);
5790 if (elf_text_symbol == NULL)
b34976b6 5791 return FALSE;
b49e97c9
TS
5792
5793 /* Initialize the section. */
5794
5795 elf_tdata (abfd)->elf_text_section = elf_text_section;
5796 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5797
5798 elf_text_section->symbol = elf_text_symbol;
5799 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5800
5801 elf_text_section->name = ".text";
5802 elf_text_section->flags = SEC_NO_FLAGS;
5803 elf_text_section->output_section = NULL;
5804 elf_text_section->owner = abfd;
5805 elf_text_symbol->name = ".text";
5806 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5807 elf_text_symbol->section = elf_text_section;
5808 }
5809 /* This code used to do *secp = bfd_und_section_ptr if
5810 info->shared. I don't know why, and that doesn't make sense,
5811 so I took it out. */
5812 *secp = elf_tdata (abfd)->elf_text_section;
5813 break;
5814
5815 case SHN_MIPS_ACOMMON:
5816 /* Fall through. XXX Can we treat this as allocated data? */
5817 case SHN_MIPS_DATA:
5818 /* This section is used in a shared object. */
5819 if (elf_tdata (abfd)->elf_data_section == NULL)
5820 {
5821 asymbol *elf_data_symbol;
5822 asection *elf_data_section;
5823 bfd_size_type amt = sizeof (asection);
5824
5825 elf_data_section = bfd_zalloc (abfd, amt);
5826 if (elf_data_section == NULL)
b34976b6 5827 return FALSE;
b49e97c9
TS
5828
5829 amt = sizeof (asymbol);
5830 elf_data_symbol = bfd_zalloc (abfd, amt);
5831 if (elf_data_symbol == NULL)
b34976b6 5832 return FALSE;
b49e97c9
TS
5833
5834 /* Initialize the section. */
5835
5836 elf_tdata (abfd)->elf_data_section = elf_data_section;
5837 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5838
5839 elf_data_section->symbol = elf_data_symbol;
5840 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5841
5842 elf_data_section->name = ".data";
5843 elf_data_section->flags = SEC_NO_FLAGS;
5844 elf_data_section->output_section = NULL;
5845 elf_data_section->owner = abfd;
5846 elf_data_symbol->name = ".data";
5847 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5848 elf_data_symbol->section = elf_data_section;
5849 }
5850 /* This code used to do *secp = bfd_und_section_ptr if
5851 info->shared. I don't know why, and that doesn't make sense,
5852 so I took it out. */
5853 *secp = elf_tdata (abfd)->elf_data_section;
5854 break;
5855
5856 case SHN_MIPS_SUNDEFINED:
5857 *secp = bfd_und_section_ptr;
5858 break;
5859 }
5860
5861 if (SGI_COMPAT (abfd)
5862 && ! info->shared
5863 && info->hash->creator == abfd->xvec
5864 && strcmp (*namep, "__rld_obj_head") == 0)
5865 {
5866 struct elf_link_hash_entry *h;
14a793b2 5867 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5868
5869 /* Mark __rld_obj_head as dynamic. */
14a793b2 5870 bh = NULL;
b49e97c9 5871 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5872 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5873 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5874 return FALSE;
14a793b2
AM
5875
5876 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5877 h->non_elf = 0;
5878 h->def_regular = 1;
b49e97c9
TS
5879 h->type = STT_OBJECT;
5880
c152c796 5881 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5882 return FALSE;
b49e97c9 5883
b34976b6 5884 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5885 }
5886
5887 /* If this is a mips16 text symbol, add 1 to the value to make it
5888 odd. This will cause something like .word SYM to come up with
5889 the right value when it is loaded into the PC. */
5890 if (sym->st_other == STO_MIPS16)
5891 ++*valp;
5892
b34976b6 5893 return TRUE;
b49e97c9
TS
5894}
5895
5896/* This hook function is called before the linker writes out a global
5897 symbol. We mark symbols as small common if appropriate. This is
5898 also where we undo the increment of the value for a mips16 symbol. */
5899
b34976b6 5900bfd_boolean
9719ad41
RS
5901_bfd_mips_elf_link_output_symbol_hook
5902 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5903 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5904 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5905{
5906 /* If we see a common symbol, which implies a relocatable link, then
5907 if a symbol was small common in an input file, mark it as small
5908 common in the output file. */
5909 if (sym->st_shndx == SHN_COMMON
5910 && strcmp (input_sec->name, ".scommon") == 0)
5911 sym->st_shndx = SHN_MIPS_SCOMMON;
5912
79cda7cf
FF
5913 if (sym->st_other == STO_MIPS16)
5914 sym->st_value &= ~1;
b49e97c9 5915
b34976b6 5916 return TRUE;
b49e97c9
TS
5917}
5918\f
5919/* Functions for the dynamic linker. */
5920
5921/* Create dynamic sections when linking against a dynamic object. */
5922
b34976b6 5923bfd_boolean
9719ad41 5924_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5925{
5926 struct elf_link_hash_entry *h;
14a793b2 5927 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5928 flagword flags;
5929 register asection *s;
5930 const char * const *namep;
0a44bf69 5931 struct mips_elf_link_hash_table *htab;
b49e97c9 5932
0a44bf69 5933 htab = mips_elf_hash_table (info);
b49e97c9
TS
5934 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5935 | SEC_LINKER_CREATED | SEC_READONLY);
5936
0a44bf69
RS
5937 /* The psABI requires a read-only .dynamic section, but the VxWorks
5938 EABI doesn't. */
5939 if (!htab->is_vxworks)
b49e97c9 5940 {
0a44bf69
RS
5941 s = bfd_get_section_by_name (abfd, ".dynamic");
5942 if (s != NULL)
5943 {
5944 if (! bfd_set_section_flags (abfd, s, flags))
5945 return FALSE;
5946 }
b49e97c9
TS
5947 }
5948
5949 /* We need to create .got section. */
f4416af6
AO
5950 if (! mips_elf_create_got_section (abfd, info, FALSE))
5951 return FALSE;
5952
0a44bf69 5953 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 5954 return FALSE;
b49e97c9 5955
b49e97c9
TS
5956 /* Create .stub section. */
5957 if (bfd_get_section_by_name (abfd,
5958 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5959 {
3496cb2a
L
5960 s = bfd_make_section_with_flags (abfd,
5961 MIPS_ELF_STUB_SECTION_NAME (abfd),
5962 flags | SEC_CODE);
b49e97c9 5963 if (s == NULL
b49e97c9
TS
5964 || ! bfd_set_section_alignment (abfd, s,
5965 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5966 return FALSE;
b49e97c9
TS
5967 }
5968
5969 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5970 && !info->shared
5971 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5972 {
3496cb2a
L
5973 s = bfd_make_section_with_flags (abfd, ".rld_map",
5974 flags &~ (flagword) SEC_READONLY);
b49e97c9 5975 if (s == NULL
b49e97c9
TS
5976 || ! bfd_set_section_alignment (abfd, s,
5977 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5978 return FALSE;
b49e97c9
TS
5979 }
5980
5981 /* On IRIX5, we adjust add some additional symbols and change the
5982 alignments of several sections. There is no ABI documentation
5983 indicating that this is necessary on IRIX6, nor any evidence that
5984 the linker takes such action. */
5985 if (IRIX_COMPAT (abfd) == ict_irix5)
5986 {
5987 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5988 {
14a793b2 5989 bh = NULL;
b49e97c9 5990 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5991 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5992 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5993 return FALSE;
14a793b2
AM
5994
5995 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5996 h->non_elf = 0;
5997 h->def_regular = 1;
b49e97c9
TS
5998 h->type = STT_SECTION;
5999
c152c796 6000 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6001 return FALSE;
b49e97c9
TS
6002 }
6003
6004 /* We need to create a .compact_rel section. */
6005 if (SGI_COMPAT (abfd))
6006 {
6007 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 6008 return FALSE;
b49e97c9
TS
6009 }
6010
44c410de 6011 /* Change alignments of some sections. */
b49e97c9
TS
6012 s = bfd_get_section_by_name (abfd, ".hash");
6013 if (s != NULL)
d80dcc6a 6014 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6015 s = bfd_get_section_by_name (abfd, ".dynsym");
6016 if (s != NULL)
d80dcc6a 6017 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6018 s = bfd_get_section_by_name (abfd, ".dynstr");
6019 if (s != NULL)
d80dcc6a 6020 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6021 s = bfd_get_section_by_name (abfd, ".reginfo");
6022 if (s != NULL)
d80dcc6a 6023 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6024 s = bfd_get_section_by_name (abfd, ".dynamic");
6025 if (s != NULL)
d80dcc6a 6026 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6027 }
6028
6029 if (!info->shared)
6030 {
14a793b2
AM
6031 const char *name;
6032
6033 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6034 bh = NULL;
6035 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6036 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6037 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6038 return FALSE;
14a793b2
AM
6039
6040 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6041 h->non_elf = 0;
6042 h->def_regular = 1;
b49e97c9
TS
6043 h->type = STT_SECTION;
6044
c152c796 6045 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6046 return FALSE;
b49e97c9
TS
6047
6048 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6049 {
6050 /* __rld_map is a four byte word located in the .data section
6051 and is filled in by the rtld to contain a pointer to
6052 the _r_debug structure. Its symbol value will be set in
6053 _bfd_mips_elf_finish_dynamic_symbol. */
6054 s = bfd_get_section_by_name (abfd, ".rld_map");
6055 BFD_ASSERT (s != NULL);
6056
14a793b2
AM
6057 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6058 bh = NULL;
6059 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6060 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6061 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6062 return FALSE;
14a793b2
AM
6063
6064 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6065 h->non_elf = 0;
6066 h->def_regular = 1;
b49e97c9
TS
6067 h->type = STT_OBJECT;
6068
c152c796 6069 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6070 return FALSE;
b49e97c9
TS
6071 }
6072 }
6073
0a44bf69
RS
6074 if (htab->is_vxworks)
6075 {
6076 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6077 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6078 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6079 return FALSE;
6080
6081 /* Cache the sections created above. */
6082 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6083 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6084 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6085 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6086 if (!htab->sdynbss
6087 || (!htab->srelbss && !info->shared)
6088 || !htab->srelplt
6089 || !htab->splt)
6090 abort ();
6091
6092 /* Do the usual VxWorks handling. */
6093 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6094 return FALSE;
6095
6096 /* Work out the PLT sizes. */
6097 if (info->shared)
6098 {
6099 htab->plt_header_size
6100 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6101 htab->plt_entry_size
6102 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6103 }
6104 else
6105 {
6106 htab->plt_header_size
6107 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6108 htab->plt_entry_size
6109 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6110 }
6111 }
6112
b34976b6 6113 return TRUE;
b49e97c9
TS
6114}
6115\f
6116/* Look through the relocs for a section during the first phase, and
6117 allocate space in the global offset table. */
6118
b34976b6 6119bfd_boolean
9719ad41
RS
6120_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6121 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6122{
6123 const char *name;
6124 bfd *dynobj;
6125 Elf_Internal_Shdr *symtab_hdr;
6126 struct elf_link_hash_entry **sym_hashes;
6127 struct mips_got_info *g;
6128 size_t extsymoff;
6129 const Elf_Internal_Rela *rel;
6130 const Elf_Internal_Rela *rel_end;
6131 asection *sgot;
6132 asection *sreloc;
9c5bfbb7 6133 const struct elf_backend_data *bed;
0a44bf69 6134 struct mips_elf_link_hash_table *htab;
b49e97c9 6135
1049f94e 6136 if (info->relocatable)
b34976b6 6137 return TRUE;
b49e97c9 6138
0a44bf69 6139 htab = mips_elf_hash_table (info);
b49e97c9
TS
6140 dynobj = elf_hash_table (info)->dynobj;
6141 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6142 sym_hashes = elf_sym_hashes (abfd);
6143 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6144
6145 /* Check for the mips16 stub sections. */
6146
6147 name = bfd_get_section_name (abfd, sec);
b9d58d71 6148 if (FN_STUB_P (name))
b49e97c9
TS
6149 {
6150 unsigned long r_symndx;
6151
6152 /* Look at the relocation information to figure out which symbol
6153 this is for. */
6154
6155 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6156
6157 if (r_symndx < extsymoff
6158 || sym_hashes[r_symndx - extsymoff] == NULL)
6159 {
6160 asection *o;
6161
6162 /* This stub is for a local symbol. This stub will only be
6163 needed if there is some relocation in this BFD, other
6164 than a 16 bit function call, which refers to this symbol. */
6165 for (o = abfd->sections; o != NULL; o = o->next)
6166 {
6167 Elf_Internal_Rela *sec_relocs;
6168 const Elf_Internal_Rela *r, *rend;
6169
6170 /* We can ignore stub sections when looking for relocs. */
6171 if ((o->flags & SEC_RELOC) == 0
6172 || o->reloc_count == 0
b9d58d71 6173 || mips16_stub_section_p (abfd, o))
b49e97c9
TS
6174 continue;
6175
45d6a902 6176 sec_relocs
9719ad41 6177 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6178 info->keep_memory);
b49e97c9 6179 if (sec_relocs == NULL)
b34976b6 6180 return FALSE;
b49e97c9
TS
6181
6182 rend = sec_relocs + o->reloc_count;
6183 for (r = sec_relocs; r < rend; r++)
6184 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6185 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6186 break;
6187
6cdc0ccc 6188 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6189 free (sec_relocs);
6190
6191 if (r < rend)
6192 break;
6193 }
6194
6195 if (o == NULL)
6196 {
6197 /* There is no non-call reloc for this stub, so we do
6198 not need it. Since this function is called before
6199 the linker maps input sections to output sections, we
6200 can easily discard it by setting the SEC_EXCLUDE
6201 flag. */
6202 sec->flags |= SEC_EXCLUDE;
b34976b6 6203 return TRUE;
b49e97c9
TS
6204 }
6205
6206 /* Record this stub in an array of local symbol stubs for
6207 this BFD. */
6208 if (elf_tdata (abfd)->local_stubs == NULL)
6209 {
6210 unsigned long symcount;
6211 asection **n;
6212 bfd_size_type amt;
6213
6214 if (elf_bad_symtab (abfd))
6215 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6216 else
6217 symcount = symtab_hdr->sh_info;
6218 amt = symcount * sizeof (asection *);
9719ad41 6219 n = bfd_zalloc (abfd, amt);
b49e97c9 6220 if (n == NULL)
b34976b6 6221 return FALSE;
b49e97c9
TS
6222 elf_tdata (abfd)->local_stubs = n;
6223 }
6224
b9d58d71 6225 sec->flags |= SEC_KEEP;
b49e97c9
TS
6226 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6227
6228 /* We don't need to set mips16_stubs_seen in this case.
6229 That flag is used to see whether we need to look through
6230 the global symbol table for stubs. We don't need to set
6231 it here, because we just have a local stub. */
6232 }
6233 else
6234 {
6235 struct mips_elf_link_hash_entry *h;
6236
6237 h = ((struct mips_elf_link_hash_entry *)
6238 sym_hashes[r_symndx - extsymoff]);
6239
973a3492
L
6240 while (h->root.root.type == bfd_link_hash_indirect
6241 || h->root.root.type == bfd_link_hash_warning)
6242 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6243
b49e97c9
TS
6244 /* H is the symbol this stub is for. */
6245
b9d58d71
TS
6246 /* If we already have an appropriate stub for this function, we
6247 don't need another one, so we can discard this one. Since
6248 this function is called before the linker maps input sections
6249 to output sections, we can easily discard it by setting the
6250 SEC_EXCLUDE flag. */
6251 if (h->fn_stub != NULL)
6252 {
6253 sec->flags |= SEC_EXCLUDE;
6254 return TRUE;
6255 }
6256
6257 sec->flags |= SEC_KEEP;
b49e97c9 6258 h->fn_stub = sec;
b34976b6 6259 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6260 }
6261 }
b9d58d71 6262 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
6263 {
6264 unsigned long r_symndx;
6265 struct mips_elf_link_hash_entry *h;
6266 asection **loc;
6267
6268 /* Look at the relocation information to figure out which symbol
6269 this is for. */
6270
6271 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6272
6273 if (r_symndx < extsymoff
6274 || sym_hashes[r_symndx - extsymoff] == NULL)
6275 {
b9d58d71 6276 asection *o;
b49e97c9 6277
b9d58d71
TS
6278 /* This stub is for a local symbol. This stub will only be
6279 needed if there is some relocation (R_MIPS16_26) in this BFD
6280 that refers to this symbol. */
6281 for (o = abfd->sections; o != NULL; o = o->next)
6282 {
6283 Elf_Internal_Rela *sec_relocs;
6284 const Elf_Internal_Rela *r, *rend;
6285
6286 /* We can ignore stub sections when looking for relocs. */
6287 if ((o->flags & SEC_RELOC) == 0
6288 || o->reloc_count == 0
6289 || mips16_stub_section_p (abfd, o))
6290 continue;
6291
6292 sec_relocs
6293 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6294 info->keep_memory);
6295 if (sec_relocs == NULL)
6296 return FALSE;
6297
6298 rend = sec_relocs + o->reloc_count;
6299 for (r = sec_relocs; r < rend; r++)
6300 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6301 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6302 break;
6303
6304 if (elf_section_data (o)->relocs != sec_relocs)
6305 free (sec_relocs);
6306
6307 if (r < rend)
6308 break;
6309 }
6310
6311 if (o == NULL)
6312 {
6313 /* There is no non-call reloc for this stub, so we do
6314 not need it. Since this function is called before
6315 the linker maps input sections to output sections, we
6316 can easily discard it by setting the SEC_EXCLUDE
6317 flag. */
6318 sec->flags |= SEC_EXCLUDE;
6319 return TRUE;
6320 }
6321
6322 /* Record this stub in an array of local symbol call_stubs for
6323 this BFD. */
6324 if (elf_tdata (abfd)->local_call_stubs == NULL)
6325 {
6326 unsigned long symcount;
6327 asection **n;
6328 bfd_size_type amt;
6329
6330 if (elf_bad_symtab (abfd))
6331 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6332 else
6333 symcount = symtab_hdr->sh_info;
6334 amt = symcount * sizeof (asection *);
6335 n = bfd_zalloc (abfd, amt);
6336 if (n == NULL)
6337 return FALSE;
6338 elf_tdata (abfd)->local_call_stubs = n;
6339 }
b49e97c9 6340
b9d58d71
TS
6341 sec->flags |= SEC_KEEP;
6342 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 6343
b9d58d71
TS
6344 /* We don't need to set mips16_stubs_seen in this case.
6345 That flag is used to see whether we need to look through
6346 the global symbol table for stubs. We don't need to set
6347 it here, because we just have a local stub. */
6348 }
b49e97c9 6349 else
b49e97c9 6350 {
b9d58d71
TS
6351 h = ((struct mips_elf_link_hash_entry *)
6352 sym_hashes[r_symndx - extsymoff]);
6353
6354 /* H is the symbol this stub is for. */
6355
6356 if (CALL_FP_STUB_P (name))
6357 loc = &h->call_fp_stub;
6358 else
6359 loc = &h->call_stub;
6360
6361 /* If we already have an appropriate stub for this function, we
6362 don't need another one, so we can discard this one. Since
6363 this function is called before the linker maps input sections
6364 to output sections, we can easily discard it by setting the
6365 SEC_EXCLUDE flag. */
6366 if (*loc != NULL)
6367 {
6368 sec->flags |= SEC_EXCLUDE;
6369 return TRUE;
6370 }
b49e97c9 6371
b9d58d71
TS
6372 sec->flags |= SEC_KEEP;
6373 *loc = sec;
6374 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6375 }
b49e97c9
TS
6376 }
6377
6378 if (dynobj == NULL)
6379 {
6380 sgot = NULL;
6381 g = NULL;
6382 }
6383 else
6384 {
f4416af6 6385 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6386 if (sgot == NULL)
6387 g = NULL;
6388 else
6389 {
f0abc2a1
AM
6390 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6391 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6392 BFD_ASSERT (g != NULL);
6393 }
6394 }
6395
6396 sreloc = NULL;
6397 bed = get_elf_backend_data (abfd);
6398 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6399 for (rel = relocs; rel < rel_end; ++rel)
6400 {
6401 unsigned long r_symndx;
6402 unsigned int r_type;
6403 struct elf_link_hash_entry *h;
6404
6405 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6406 r_type = ELF_R_TYPE (abfd, rel->r_info);
6407
6408 if (r_symndx < extsymoff)
6409 h = NULL;
6410 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6411 {
6412 (*_bfd_error_handler)
d003868e
AM
6413 (_("%B: Malformed reloc detected for section %s"),
6414 abfd, name);
b49e97c9 6415 bfd_set_error (bfd_error_bad_value);
b34976b6 6416 return FALSE;
b49e97c9
TS
6417 }
6418 else
6419 {
6420 h = sym_hashes[r_symndx - extsymoff];
6421
6422 /* This may be an indirect symbol created because of a version. */
6423 if (h != NULL)
6424 {
6425 while (h->root.type == bfd_link_hash_indirect)
6426 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6427 }
6428 }
6429
6430 /* Some relocs require a global offset table. */
6431 if (dynobj == NULL || sgot == NULL)
6432 {
6433 switch (r_type)
6434 {
6435 case R_MIPS_GOT16:
6436 case R_MIPS_CALL16:
6437 case R_MIPS_CALL_HI16:
6438 case R_MIPS_CALL_LO16:
6439 case R_MIPS_GOT_HI16:
6440 case R_MIPS_GOT_LO16:
6441 case R_MIPS_GOT_PAGE:
6442 case R_MIPS_GOT_OFST:
6443 case R_MIPS_GOT_DISP:
86324f90 6444 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6445 case R_MIPS_TLS_GD:
6446 case R_MIPS_TLS_LDM:
b49e97c9
TS
6447 if (dynobj == NULL)
6448 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6449 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6450 return FALSE;
b49e97c9 6451 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6452 if (htab->is_vxworks && !info->shared)
6453 {
6454 (*_bfd_error_handler)
6455 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6456 abfd, (unsigned long) rel->r_offset);
6457 bfd_set_error (bfd_error_bad_value);
6458 return FALSE;
6459 }
b49e97c9
TS
6460 break;
6461
6462 case R_MIPS_32:
6463 case R_MIPS_REL32:
6464 case R_MIPS_64:
0a44bf69
RS
6465 /* In VxWorks executables, references to external symbols
6466 are handled using copy relocs or PLT stubs, so there's
6467 no need to add a dynamic relocation here. */
b49e97c9 6468 if (dynobj == NULL
0a44bf69 6469 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6470 && (sec->flags & SEC_ALLOC) != 0)
6471 elf_hash_table (info)->dynobj = dynobj = abfd;
6472 break;
6473
6474 default:
6475 break;
6476 }
6477 }
6478
0a44bf69
RS
6479 if (h)
6480 {
6481 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6482
6483 /* Relocations against the special VxWorks __GOTT_BASE__ and
6484 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6485 room for them in .rela.dyn. */
6486 if (is_gott_symbol (info, h))
6487 {
6488 if (sreloc == NULL)
6489 {
6490 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6491 if (sreloc == NULL)
6492 return FALSE;
6493 }
6494 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
6495 if (MIPS_ELF_READONLY_SECTION (sec))
6496 /* We tell the dynamic linker that there are
6497 relocations against the text segment. */
6498 info->flags |= DF_TEXTREL;
0a44bf69
RS
6499 }
6500 }
6501 else if (r_type == R_MIPS_CALL_LO16
6502 || r_type == R_MIPS_GOT_LO16
6503 || r_type == R_MIPS_GOT_DISP
6504 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6505 {
6506 /* We may need a local GOT entry for this relocation. We
6507 don't count R_MIPS_GOT_PAGE because we can estimate the
6508 maximum number of pages needed by looking at the size of
6509 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6510 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6511 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6512 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6513 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6514 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6515 rel->r_addend, g, 0))
f4416af6 6516 return FALSE;
b49e97c9
TS
6517 }
6518
6519 switch (r_type)
6520 {
6521 case R_MIPS_CALL16:
6522 if (h == NULL)
6523 {
6524 (*_bfd_error_handler)
d003868e
AM
6525 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6526 abfd, (unsigned long) rel->r_offset);
b49e97c9 6527 bfd_set_error (bfd_error_bad_value);
b34976b6 6528 return FALSE;
b49e97c9
TS
6529 }
6530 /* Fall through. */
6531
6532 case R_MIPS_CALL_HI16:
6533 case R_MIPS_CALL_LO16:
6534 if (h != NULL)
6535 {
0a44bf69
RS
6536 /* VxWorks call relocations point the function's .got.plt
6537 entry, which will be allocated by adjust_dynamic_symbol.
6538 Otherwise, this symbol requires a global GOT entry. */
8275b357 6539 if ((!htab->is_vxworks || h->forced_local)
0a44bf69 6540 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6541 return FALSE;
b49e97c9
TS
6542
6543 /* We need a stub, not a plt entry for the undefined
6544 function. But we record it as if it needs plt. See
c152c796 6545 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6546 h->needs_plt = 1;
b49e97c9
TS
6547 h->type = STT_FUNC;
6548 }
6549 break;
6550
0fdc1bf1
AO
6551 case R_MIPS_GOT_PAGE:
6552 /* If this is a global, overridable symbol, GOT_PAGE will
6553 decay to GOT_DISP, so we'll need a GOT entry for it. */
6554 if (h == NULL)
6555 break;
6556 else
6557 {
6558 struct mips_elf_link_hash_entry *hmips =
6559 (struct mips_elf_link_hash_entry *) h;
143d77c5 6560
0fdc1bf1
AO
6561 while (hmips->root.root.type == bfd_link_hash_indirect
6562 || hmips->root.root.type == bfd_link_hash_warning)
6563 hmips = (struct mips_elf_link_hash_entry *)
6564 hmips->root.root.u.i.link;
143d77c5 6565
f5385ebf 6566 if (hmips->root.def_regular
0fdc1bf1 6567 && ! (info->shared && ! info->symbolic
f5385ebf 6568 && ! hmips->root.forced_local))
0fdc1bf1
AO
6569 break;
6570 }
6571 /* Fall through. */
6572
b49e97c9
TS
6573 case R_MIPS_GOT16:
6574 case R_MIPS_GOT_HI16:
6575 case R_MIPS_GOT_LO16:
6576 case R_MIPS_GOT_DISP:
0f20cc35 6577 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6578 return FALSE;
b49e97c9
TS
6579 break;
6580
0f20cc35
DJ
6581 case R_MIPS_TLS_GOTTPREL:
6582 if (info->shared)
6583 info->flags |= DF_STATIC_TLS;
6584 /* Fall through */
6585
6586 case R_MIPS_TLS_LDM:
6587 if (r_type == R_MIPS_TLS_LDM)
6588 {
6589 r_symndx = 0;
6590 h = NULL;
6591 }
6592 /* Fall through */
6593
6594 case R_MIPS_TLS_GD:
6595 /* This symbol requires a global offset table entry, or two
6596 for TLS GD relocations. */
6597 {
6598 unsigned char flag = (r_type == R_MIPS_TLS_GD
6599 ? GOT_TLS_GD
6600 : r_type == R_MIPS_TLS_LDM
6601 ? GOT_TLS_LDM
6602 : GOT_TLS_IE);
6603 if (h != NULL)
6604 {
6605 struct mips_elf_link_hash_entry *hmips =
6606 (struct mips_elf_link_hash_entry *) h;
6607 hmips->tls_type |= flag;
6608
6609 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6610 return FALSE;
6611 }
6612 else
6613 {
6614 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6615
6616 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6617 rel->r_addend, g, flag))
6618 return FALSE;
6619 }
6620 }
6621 break;
6622
b49e97c9
TS
6623 case R_MIPS_32:
6624 case R_MIPS_REL32:
6625 case R_MIPS_64:
0a44bf69
RS
6626 /* In VxWorks executables, references to external symbols
6627 are handled using copy relocs or PLT stubs, so there's
6628 no need to add a .rela.dyn entry for this relocation. */
6629 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6630 && (sec->flags & SEC_ALLOC) != 0)
6631 {
6632 if (sreloc == NULL)
6633 {
0a44bf69 6634 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 6635 if (sreloc == NULL)
f4416af6 6636 return FALSE;
b49e97c9 6637 }
b49e97c9 6638 if (info->shared)
82f0cfbd
EC
6639 {
6640 /* When creating a shared object, we must copy these
6641 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
6642 relocs. Make room for this reloc in .rel(a).dyn. */
6643 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 6644 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6645 /* We tell the dynamic linker that there are
6646 relocations against the text segment. */
6647 info->flags |= DF_TEXTREL;
6648 }
b49e97c9
TS
6649 else
6650 {
6651 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6652
b49e97c9
TS
6653 /* We only need to copy this reloc if the symbol is
6654 defined in a dynamic object. */
6655 hmips = (struct mips_elf_link_hash_entry *) h;
6656 ++hmips->possibly_dynamic_relocs;
943284cc 6657 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6658 /* We need it to tell the dynamic linker if there
6659 are relocations against the text segment. */
6660 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6661 }
6662
6663 /* Even though we don't directly need a GOT entry for
6664 this symbol, a symbol must have a dynamic symbol
6665 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
6666 dynamic relocations against it. This does not apply
6667 to VxWorks, which does not have the usual coupling
6668 between global GOT entries and .dynsym entries. */
6669 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
6670 {
6671 if (dynobj == NULL)
6672 elf_hash_table (info)->dynobj = dynobj = abfd;
6673 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6674 return FALSE;
6675 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6676 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6677 return FALSE;
6678 }
b49e97c9
TS
6679 }
6680
6681 if (SGI_COMPAT (abfd))
6682 mips_elf_hash_table (info)->compact_rel_size +=
6683 sizeof (Elf32_External_crinfo);
6684 break;
6685
0a44bf69
RS
6686 case R_MIPS_PC16:
6687 if (h)
6688 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6689 break;
6690
b49e97c9 6691 case R_MIPS_26:
0a44bf69
RS
6692 if (h)
6693 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6694 /* Fall through. */
6695
b49e97c9
TS
6696 case R_MIPS_GPREL16:
6697 case R_MIPS_LITERAL:
6698 case R_MIPS_GPREL32:
6699 if (SGI_COMPAT (abfd))
6700 mips_elf_hash_table (info)->compact_rel_size +=
6701 sizeof (Elf32_External_crinfo);
6702 break;
6703
6704 /* This relocation describes the C++ object vtable hierarchy.
6705 Reconstruct it for later use during GC. */
6706 case R_MIPS_GNU_VTINHERIT:
c152c796 6707 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6708 return FALSE;
b49e97c9
TS
6709 break;
6710
6711 /* This relocation describes which C++ vtable entries are actually
6712 used. Record for later use during GC. */
6713 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
6714 BFD_ASSERT (h != NULL);
6715 if (h != NULL
6716 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6717 return FALSE;
b49e97c9
TS
6718 break;
6719
6720 default:
6721 break;
6722 }
6723
6724 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
6725 related to taking the function's address. This doesn't apply to
6726 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6727 a normal .got entry. */
6728 if (!htab->is_vxworks && h != NULL)
6729 switch (r_type)
6730 {
6731 default:
6732 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6733 break;
6734 case R_MIPS_CALL16:
6735 case R_MIPS_CALL_HI16:
6736 case R_MIPS_CALL_LO16:
6737 case R_MIPS_JALR:
6738 break;
6739 }
b49e97c9
TS
6740
6741 /* If this reloc is not a 16 bit call, and it has a global
6742 symbol, then we will need the fn_stub if there is one.
6743 References from a stub section do not count. */
6744 if (h != NULL
6745 && r_type != R_MIPS16_26
b9d58d71 6746 && !mips16_stub_section_p (abfd, sec))
b49e97c9
TS
6747 {
6748 struct mips_elf_link_hash_entry *mh;
6749
6750 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6751 mh->need_fn_stub = TRUE;
b49e97c9
TS
6752 }
6753 }
6754
b34976b6 6755 return TRUE;
b49e97c9
TS
6756}
6757\f
d0647110 6758bfd_boolean
9719ad41
RS
6759_bfd_mips_relax_section (bfd *abfd, asection *sec,
6760 struct bfd_link_info *link_info,
6761 bfd_boolean *again)
d0647110
AO
6762{
6763 Elf_Internal_Rela *internal_relocs;
6764 Elf_Internal_Rela *irel, *irelend;
6765 Elf_Internal_Shdr *symtab_hdr;
6766 bfd_byte *contents = NULL;
d0647110
AO
6767 size_t extsymoff;
6768 bfd_boolean changed_contents = FALSE;
6769 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6770 Elf_Internal_Sym *isymbuf = NULL;
6771
6772 /* We are not currently changing any sizes, so only one pass. */
6773 *again = FALSE;
6774
1049f94e 6775 if (link_info->relocatable)
d0647110
AO
6776 return TRUE;
6777
9719ad41 6778 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6779 link_info->keep_memory);
d0647110
AO
6780 if (internal_relocs == NULL)
6781 return TRUE;
6782
6783 irelend = internal_relocs + sec->reloc_count
6784 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6785 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6786 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6787
6788 for (irel = internal_relocs; irel < irelend; irel++)
6789 {
6790 bfd_vma symval;
6791 bfd_signed_vma sym_offset;
6792 unsigned int r_type;
6793 unsigned long r_symndx;
6794 asection *sym_sec;
6795 unsigned long instruction;
6796
6797 /* Turn jalr into bgezal, and jr into beq, if they're marked
6798 with a JALR relocation, that indicate where they jump to.
6799 This saves some pipeline bubbles. */
6800 r_type = ELF_R_TYPE (abfd, irel->r_info);
6801 if (r_type != R_MIPS_JALR)
6802 continue;
6803
6804 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6805 /* Compute the address of the jump target. */
6806 if (r_symndx >= extsymoff)
6807 {
6808 struct mips_elf_link_hash_entry *h
6809 = ((struct mips_elf_link_hash_entry *)
6810 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6811
6812 while (h->root.root.type == bfd_link_hash_indirect
6813 || h->root.root.type == bfd_link_hash_warning)
6814 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6815
d0647110
AO
6816 /* If a symbol is undefined, or if it may be overridden,
6817 skip it. */
6818 if (! ((h->root.root.type == bfd_link_hash_defined
6819 || h->root.root.type == bfd_link_hash_defweak)
6820 && h->root.root.u.def.section)
6821 || (link_info->shared && ! link_info->symbolic
f5385ebf 6822 && !h->root.forced_local))
d0647110
AO
6823 continue;
6824
6825 sym_sec = h->root.root.u.def.section;
6826 if (sym_sec->output_section)
6827 symval = (h->root.root.u.def.value
6828 + sym_sec->output_section->vma
6829 + sym_sec->output_offset);
6830 else
6831 symval = h->root.root.u.def.value;
6832 }
6833 else
6834 {
6835 Elf_Internal_Sym *isym;
6836
6837 /* Read this BFD's symbols if we haven't done so already. */
6838 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6839 {
6840 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6841 if (isymbuf == NULL)
6842 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6843 symtab_hdr->sh_info, 0,
6844 NULL, NULL, NULL);
6845 if (isymbuf == NULL)
6846 goto relax_return;
6847 }
6848
6849 isym = isymbuf + r_symndx;
6850 if (isym->st_shndx == SHN_UNDEF)
6851 continue;
6852 else if (isym->st_shndx == SHN_ABS)
6853 sym_sec = bfd_abs_section_ptr;
6854 else if (isym->st_shndx == SHN_COMMON)
6855 sym_sec = bfd_com_section_ptr;
6856 else
6857 sym_sec
6858 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6859 symval = isym->st_value
6860 + sym_sec->output_section->vma
6861 + sym_sec->output_offset;
6862 }
6863
6864 /* Compute branch offset, from delay slot of the jump to the
6865 branch target. */
6866 sym_offset = (symval + irel->r_addend)
6867 - (sec_start + irel->r_offset + 4);
6868
6869 /* Branch offset must be properly aligned. */
6870 if ((sym_offset & 3) != 0)
6871 continue;
6872
6873 sym_offset >>= 2;
6874
6875 /* Check that it's in range. */
6876 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6877 continue;
143d77c5 6878
d0647110
AO
6879 /* Get the section contents if we haven't done so already. */
6880 if (contents == NULL)
6881 {
6882 /* Get cached copy if it exists. */
6883 if (elf_section_data (sec)->this_hdr.contents != NULL)
6884 contents = elf_section_data (sec)->this_hdr.contents;
6885 else
6886 {
eea6121a 6887 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6888 goto relax_return;
6889 }
6890 }
6891
6892 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6893
6894 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6895 if ((instruction & 0xfc1fffff) == 0x0000f809)
6896 instruction = 0x04110000;
6897 /* If it was jr <reg>, turn it into b <target>. */
6898 else if ((instruction & 0xfc1fffff) == 0x00000008)
6899 instruction = 0x10000000;
6900 else
6901 continue;
6902
6903 instruction |= (sym_offset & 0xffff);
6904 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6905 changed_contents = TRUE;
6906 }
6907
6908 if (contents != NULL
6909 && elf_section_data (sec)->this_hdr.contents != contents)
6910 {
6911 if (!changed_contents && !link_info->keep_memory)
6912 free (contents);
6913 else
6914 {
6915 /* Cache the section contents for elf_link_input_bfd. */
6916 elf_section_data (sec)->this_hdr.contents = contents;
6917 }
6918 }
6919 return TRUE;
6920
143d77c5 6921 relax_return:
eea6121a
AM
6922 if (contents != NULL
6923 && elf_section_data (sec)->this_hdr.contents != contents)
6924 free (contents);
d0647110
AO
6925 return FALSE;
6926}
6927\f
b49e97c9
TS
6928/* Adjust a symbol defined by a dynamic object and referenced by a
6929 regular object. The current definition is in some section of the
6930 dynamic object, but we're not including those sections. We have to
6931 change the definition to something the rest of the link can
6932 understand. */
6933
b34976b6 6934bfd_boolean
9719ad41
RS
6935_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6936 struct elf_link_hash_entry *h)
b49e97c9
TS
6937{
6938 bfd *dynobj;
6939 struct mips_elf_link_hash_entry *hmips;
6940 asection *s;
5108fc1b 6941 struct mips_elf_link_hash_table *htab;
b49e97c9 6942
5108fc1b 6943 htab = mips_elf_hash_table (info);
b49e97c9
TS
6944 dynobj = elf_hash_table (info)->dynobj;
6945
6946 /* Make sure we know what is going on here. */
6947 BFD_ASSERT (dynobj != NULL
f5385ebf 6948 && (h->needs_plt
f6e332e6 6949 || h->u.weakdef != NULL
f5385ebf
AM
6950 || (h->def_dynamic
6951 && h->ref_regular
6952 && !h->def_regular)));
b49e97c9
TS
6953
6954 /* If this symbol is defined in a dynamic object, we need to copy
6955 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6956 file. */
6957 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6958 if (! info->relocatable
b49e97c9
TS
6959 && hmips->possibly_dynamic_relocs != 0
6960 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6961 || !h->def_regular))
b49e97c9 6962 {
0a44bf69
RS
6963 mips_elf_allocate_dynamic_relocations
6964 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 6965 if (hmips->readonly_reloc)
b49e97c9
TS
6966 /* We tell the dynamic linker that there are relocations
6967 against the text segment. */
6968 info->flags |= DF_TEXTREL;
6969 }
6970
6971 /* For a function, create a stub, if allowed. */
6972 if (! hmips->no_fn_stub
f5385ebf 6973 && h->needs_plt)
b49e97c9
TS
6974 {
6975 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6976 return TRUE;
b49e97c9
TS
6977
6978 /* If this symbol is not defined in a regular file, then set
6979 the symbol to the stub location. This is required to make
6980 function pointers compare as equal between the normal
6981 executable and the shared library. */
f5385ebf 6982 if (!h->def_regular)
b49e97c9
TS
6983 {
6984 /* We need .stub section. */
6985 s = bfd_get_section_by_name (dynobj,
6986 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6987 BFD_ASSERT (s != NULL);
6988
6989 h->root.u.def.section = s;
eea6121a 6990 h->root.u.def.value = s->size;
b49e97c9
TS
6991
6992 /* XXX Write this stub address somewhere. */
eea6121a 6993 h->plt.offset = s->size;
b49e97c9
TS
6994
6995 /* Make room for this stub code. */
5108fc1b 6996 s->size += htab->function_stub_size;
b49e97c9
TS
6997
6998 /* The last half word of the stub will be filled with the index
6999 of this symbol in .dynsym section. */
b34976b6 7000 return TRUE;
b49e97c9
TS
7001 }
7002 }
7003 else if ((h->type == STT_FUNC)
f5385ebf 7004 && !h->needs_plt)
b49e97c9
TS
7005 {
7006 /* This will set the entry for this symbol in the GOT to 0, and
7007 the dynamic linker will take care of this. */
7008 h->root.u.def.value = 0;
b34976b6 7009 return TRUE;
b49e97c9
TS
7010 }
7011
7012 /* If this is a weak symbol, and there is a real definition, the
7013 processor independent code will have arranged for us to see the
7014 real definition first, and we can just use the same value. */
f6e332e6 7015 if (h->u.weakdef != NULL)
b49e97c9 7016 {
f6e332e6
AM
7017 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7018 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7019 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7020 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 7021 return TRUE;
b49e97c9
TS
7022 }
7023
7024 /* This is a reference to a symbol defined by a dynamic object which
7025 is not a function. */
7026
b34976b6 7027 return TRUE;
b49e97c9 7028}
0a44bf69
RS
7029
7030/* Likewise, for VxWorks. */
7031
7032bfd_boolean
7033_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7034 struct elf_link_hash_entry *h)
7035{
7036 bfd *dynobj;
7037 struct mips_elf_link_hash_entry *hmips;
7038 struct mips_elf_link_hash_table *htab;
0a44bf69
RS
7039
7040 htab = mips_elf_hash_table (info);
7041 dynobj = elf_hash_table (info)->dynobj;
7042 hmips = (struct mips_elf_link_hash_entry *) h;
7043
7044 /* Make sure we know what is going on here. */
7045 BFD_ASSERT (dynobj != NULL
7046 && (h->needs_plt
7047 || h->needs_copy
7048 || h->u.weakdef != NULL
7049 || (h->def_dynamic
7050 && h->ref_regular
7051 && !h->def_regular)));
7052
7053 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7054 either (a) we want to branch to the symbol or (b) we're linking an
7055 executable that needs a canonical function address. In the latter
7056 case, the canonical address will be the address of the executable's
7057 load stub. */
7058 if ((hmips->is_branch_target
7059 || (!info->shared
7060 && h->type == STT_FUNC
7061 && hmips->is_relocation_target))
7062 && h->def_dynamic
7063 && h->ref_regular
7064 && !h->def_regular
7065 && !h->forced_local)
7066 h->needs_plt = 1;
7067
7068 /* Locally-binding symbols do not need a PLT stub; we can refer to
7069 the functions directly. */
7070 else if (h->needs_plt
7071 && (SYMBOL_CALLS_LOCAL (info, h)
7072 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7073 && h->root.type == bfd_link_hash_undefweak)))
7074 {
7075 h->needs_plt = 0;
7076 return TRUE;
7077 }
7078
7079 if (h->needs_plt)
7080 {
7081 /* If this is the first symbol to need a PLT entry, allocate room
7082 for the header, and for the header's .rela.plt.unloaded entries. */
7083 if (htab->splt->size == 0)
7084 {
7085 htab->splt->size += htab->plt_header_size;
7086 if (!info->shared)
7087 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7088 }
7089
7090 /* Assign the next .plt entry to this symbol. */
7091 h->plt.offset = htab->splt->size;
7092 htab->splt->size += htab->plt_entry_size;
7093
7094 /* If the output file has no definition of the symbol, set the
7095 symbol's value to the address of the stub. For executables,
7096 point at the PLT load stub rather than the lazy resolution stub;
7097 this stub will become the canonical function address. */
7098 if (!h->def_regular)
7099 {
7100 h->root.u.def.section = htab->splt;
7101 h->root.u.def.value = h->plt.offset;
7102 if (!info->shared)
7103 h->root.u.def.value += 8;
7104 }
7105
7106 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7107 htab->sgotplt->size += 4;
7108 htab->srelplt->size += sizeof (Elf32_External_Rela);
7109
7110 /* Make room for the .rela.plt.unloaded relocations. */
7111 if (!info->shared)
7112 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7113
7114 return TRUE;
7115 }
7116
7117 /* If a function symbol is defined by a dynamic object, and we do not
7118 need a PLT stub for it, the symbol's value should be zero. */
7119 if (h->type == STT_FUNC
7120 && h->def_dynamic
7121 && h->ref_regular
7122 && !h->def_regular)
7123 {
7124 h->root.u.def.value = 0;
7125 return TRUE;
7126 }
7127
7128 /* If this is a weak symbol, and there is a real definition, the
7129 processor independent code will have arranged for us to see the
7130 real definition first, and we can just use the same value. */
7131 if (h->u.weakdef != NULL)
7132 {
7133 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7134 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7135 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7136 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7137 return TRUE;
7138 }
7139
7140 /* This is a reference to a symbol defined by a dynamic object which
7141 is not a function. */
7142 if (info->shared)
7143 return TRUE;
7144
7145 /* We must allocate the symbol in our .dynbss section, which will
7146 become part of the .bss section of the executable. There will be
7147 an entry for this symbol in the .dynsym section. The dynamic
7148 object will contain position independent code, so all references
7149 from the dynamic object to this symbol will go through the global
7150 offset table. The dynamic linker will use the .dynsym entry to
7151 determine the address it must put in the global offset table, so
7152 both the dynamic object and the regular object will refer to the
7153 same memory location for the variable. */
7154
7155 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7156 {
7157 htab->srelbss->size += sizeof (Elf32_External_Rela);
7158 h->needs_copy = 1;
7159 }
7160
027297b7 7161 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 7162}
b49e97c9 7163\f
5108fc1b
RS
7164/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7165 The number might be exact or a worst-case estimate, depending on how
7166 much information is available to elf_backend_omit_section_dynsym at
7167 the current linking stage. */
7168
7169static bfd_size_type
7170count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7171{
7172 bfd_size_type count;
7173
7174 count = 0;
7175 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7176 {
7177 asection *p;
7178 const struct elf_backend_data *bed;
7179
7180 bed = get_elf_backend_data (output_bfd);
7181 for (p = output_bfd->sections; p ; p = p->next)
7182 if ((p->flags & SEC_EXCLUDE) == 0
7183 && (p->flags & SEC_ALLOC) != 0
7184 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7185 ++count;
7186 }
7187 return count;
7188}
7189
b49e97c9
TS
7190/* This function is called after all the input files have been read,
7191 and the input sections have been assigned to output sections. We
7192 check for any mips16 stub sections that we can discard. */
7193
b34976b6 7194bfd_boolean
9719ad41
RS
7195_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7196 struct bfd_link_info *info)
b49e97c9
TS
7197{
7198 asection *ri;
7199
f4416af6
AO
7200 bfd *dynobj;
7201 asection *s;
7202 struct mips_got_info *g;
7203 int i;
7204 bfd_size_type loadable_size = 0;
7205 bfd_size_type local_gotno;
5108fc1b 7206 bfd_size_type dynsymcount;
f4416af6 7207 bfd *sub;
0f20cc35 7208 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7209 struct mips_elf_link_hash_table *htab;
7210
7211 htab = mips_elf_hash_table (info);
f4416af6 7212
b49e97c9
TS
7213 /* The .reginfo section has a fixed size. */
7214 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7215 if (ri != NULL)
9719ad41 7216 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7217
1049f94e 7218 if (! (info->relocatable
f4416af6
AO
7219 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7220 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7221 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7222
7223 dynobj = elf_hash_table (info)->dynobj;
7224 if (dynobj == NULL)
7225 /* Relocatable links don't have it. */
7226 return TRUE;
143d77c5 7227
f4416af6
AO
7228 g = mips_elf_got_info (dynobj, &s);
7229 if (s == NULL)
b34976b6 7230 return TRUE;
b49e97c9 7231
f4416af6
AO
7232 /* Calculate the total loadable size of the output. That
7233 will give us the maximum number of GOT_PAGE entries
7234 required. */
7235 for (sub = info->input_bfds; sub; sub = sub->link_next)
7236 {
7237 asection *subsection;
7238
7239 for (subsection = sub->sections;
7240 subsection;
7241 subsection = subsection->next)
7242 {
7243 if ((subsection->flags & SEC_ALLOC) == 0)
7244 continue;
eea6121a 7245 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7246 &~ (bfd_size_type) 0xf);
7247 }
7248 }
7249
7250 /* There has to be a global GOT entry for every symbol with
7251 a dynamic symbol table index of DT_MIPS_GOTSYM or
7252 higher. Therefore, it make sense to put those symbols
7253 that need GOT entries at the end of the symbol table. We
7254 do that here. */
7255 if (! mips_elf_sort_hash_table (info, 1))
7256 return FALSE;
7257
7258 if (g->global_gotsym != NULL)
7259 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7260 else
7261 /* If there are no global symbols, or none requiring
7262 relocations, then GLOBAL_GOTSYM will be NULL. */
7263 i = 0;
7264
5108fc1b
RS
7265 /* Get a worst-case estimate of the number of dynamic symbols needed.
7266 At this point, dynsymcount does not account for section symbols
7267 and count_section_dynsyms may overestimate the number that will
7268 be needed. */
7269 dynsymcount = (elf_hash_table (info)->dynsymcount
7270 + count_section_dynsyms (output_bfd, info));
7271
7272 /* Determine the size of one stub entry. */
7273 htab->function_stub_size = (dynsymcount > 0x10000
7274 ? MIPS_FUNCTION_STUB_BIG_SIZE
7275 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7276
f4416af6
AO
7277 /* In the worst case, we'll get one stub per dynamic symbol, plus
7278 one to account for the dummy entry at the end required by IRIX
7279 rld. */
5108fc1b 7280 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7281
0a44bf69
RS
7282 if (htab->is_vxworks)
7283 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7284 relocations against local symbols evaluate to "G", and the EABI does
7285 not include R_MIPS_GOT_PAGE. */
7286 local_gotno = 0;
7287 else
7288 /* Assume there are two loadable segments consisting of contiguous
7289 sections. Is 5 enough? */
7290 local_gotno = (loadable_size >> 16) + 5;
f4416af6
AO
7291
7292 g->local_gotno += local_gotno;
eea6121a 7293 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7294
7295 g->global_gotno = i;
eea6121a 7296 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7297
0f20cc35
DJ
7298 /* We need to calculate tls_gotno for global symbols at this point
7299 instead of building it up earlier, to avoid doublecounting
7300 entries for one global symbol from multiple input files. */
7301 count_tls_arg.info = info;
7302 count_tls_arg.needed = 0;
7303 elf_link_hash_traverse (elf_hash_table (info),
7304 mips_elf_count_global_tls_entries,
7305 &count_tls_arg);
7306 g->tls_gotno += count_tls_arg.needed;
7307 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7308
7309 mips_elf_resolve_final_got_entries (g);
7310
0a44bf69
RS
7311 /* VxWorks does not support multiple GOTs. It initializes $gp to
7312 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7313 dynamic loader. */
7314 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35
DJ
7315 {
7316 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7317 return FALSE;
7318 }
7319 else
7320 {
7321 /* Set up TLS entries for the first GOT. */
7322 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7323 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7324 }
8275b357 7325 htab->computed_got_sizes = TRUE;
b49e97c9 7326
b34976b6 7327 return TRUE;
b49e97c9
TS
7328}
7329
7330/* Set the sizes of the dynamic sections. */
7331
b34976b6 7332bfd_boolean
9719ad41
RS
7333_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7334 struct bfd_link_info *info)
b49e97c9
TS
7335{
7336 bfd *dynobj;
0a44bf69 7337 asection *s, *sreldyn;
b34976b6 7338 bfd_boolean reltext;
0a44bf69 7339 struct mips_elf_link_hash_table *htab;
b49e97c9 7340
0a44bf69 7341 htab = mips_elf_hash_table (info);
b49e97c9
TS
7342 dynobj = elf_hash_table (info)->dynobj;
7343 BFD_ASSERT (dynobj != NULL);
7344
7345 if (elf_hash_table (info)->dynamic_sections_created)
7346 {
7347 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7348 if (info->executable)
b49e97c9
TS
7349 {
7350 s = bfd_get_section_by_name (dynobj, ".interp");
7351 BFD_ASSERT (s != NULL);
eea6121a 7352 s->size
b49e97c9
TS
7353 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7354 s->contents
7355 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7356 }
7357 }
7358
7359 /* The check_relocs and adjust_dynamic_symbol entry points have
7360 determined the sizes of the various dynamic sections. Allocate
7361 memory for them. */
b34976b6 7362 reltext = FALSE;
0a44bf69 7363 sreldyn = NULL;
b49e97c9
TS
7364 for (s = dynobj->sections; s != NULL; s = s->next)
7365 {
7366 const char *name;
b49e97c9
TS
7367
7368 /* It's OK to base decisions on the section name, because none
7369 of the dynobj section names depend upon the input files. */
7370 name = bfd_get_section_name (dynobj, s);
7371
7372 if ((s->flags & SEC_LINKER_CREATED) == 0)
7373 continue;
7374
0112cd26 7375 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 7376 {
c456f082 7377 if (s->size != 0)
b49e97c9
TS
7378 {
7379 const char *outname;
7380 asection *target;
7381
7382 /* If this relocation section applies to a read only
7383 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7384 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7385 assert a DT_TEXTREL entry rather than testing whether
7386 there exists a relocation to a read only section or
7387 not. */
7388 outname = bfd_get_section_name (output_bfd,
7389 s->output_section);
7390 target = bfd_get_section_by_name (output_bfd, outname + 4);
7391 if ((target != NULL
7392 && (target->flags & SEC_READONLY) != 0
7393 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7394 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7395 reltext = TRUE;
b49e97c9
TS
7396
7397 /* We use the reloc_count field as a counter if we need
7398 to copy relocs into the output file. */
0a44bf69 7399 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7400 s->reloc_count = 0;
f4416af6
AO
7401
7402 /* If combreloc is enabled, elf_link_sort_relocs() will
7403 sort relocations, but in a different way than we do,
7404 and before we're done creating relocations. Also, it
7405 will move them around between input sections'
7406 relocation's contents, so our sorting would be
7407 broken, so don't let it run. */
7408 info->combreloc = 0;
b49e97c9
TS
7409 }
7410 }
0a44bf69
RS
7411 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7412 {
7413 /* Executables do not need a GOT. */
7414 if (info->shared)
7415 {
7416 /* Allocate relocations for all but the reserved entries. */
7417 struct mips_got_info *g;
7418 unsigned int count;
7419
7420 g = mips_elf_got_info (dynobj, NULL);
7421 count = (g->global_gotno
7422 + g->local_gotno
7423 - MIPS_RESERVED_GOTNO (info));
7424 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7425 }
7426 }
0112cd26 7427 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
b49e97c9 7428 {
f4416af6
AO
7429 /* _bfd_mips_elf_always_size_sections() has already done
7430 most of the work, but some symbols may have been mapped
7431 to versions that we must now resolve in the got_entries
7432 hash tables. */
7433 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7434 struct mips_got_info *g = gg;
7435 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7436 unsigned int needed_relocs = 0;
143d77c5 7437
f4416af6 7438 if (gg->next)
b49e97c9 7439 {
f4416af6
AO
7440 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7441 set_got_offset_arg.info = info;
b49e97c9 7442
0f20cc35
DJ
7443 /* NOTE 2005-02-03: How can this call, or the next, ever
7444 find any indirect entries to resolve? They were all
7445 resolved in mips_elf_multi_got. */
f4416af6
AO
7446 mips_elf_resolve_final_got_entries (gg);
7447 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7448 {
f4416af6
AO
7449 unsigned int save_assign;
7450
7451 mips_elf_resolve_final_got_entries (g);
7452
7453 /* Assign offsets to global GOT entries. */
7454 save_assign = g->assigned_gotno;
7455 g->assigned_gotno = g->local_gotno;
7456 set_got_offset_arg.g = g;
7457 set_got_offset_arg.needed_relocs = 0;
7458 htab_traverse (g->got_entries,
7459 mips_elf_set_global_got_offset,
7460 &set_got_offset_arg);
7461 needed_relocs += set_got_offset_arg.needed_relocs;
7462 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7463 <= g->global_gotno);
7464
7465 g->assigned_gotno = save_assign;
7466 if (info->shared)
7467 {
7468 needed_relocs += g->local_gotno - g->assigned_gotno;
7469 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7470 + g->next->global_gotno
0f20cc35 7471 + g->next->tls_gotno
0a44bf69 7472 + MIPS_RESERVED_GOTNO (info));
f4416af6 7473 }
b49e97c9 7474 }
0f20cc35
DJ
7475 }
7476 else
7477 {
7478 struct mips_elf_count_tls_arg arg;
7479 arg.info = info;
7480 arg.needed = 0;
b49e97c9 7481
0f20cc35
DJ
7482 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7483 &arg);
7484 elf_link_hash_traverse (elf_hash_table (info),
7485 mips_elf_count_global_tls_relocs,
7486 &arg);
7487
7488 needed_relocs += arg.needed;
f4416af6 7489 }
0f20cc35
DJ
7490
7491 if (needed_relocs)
0a44bf69
RS
7492 mips_elf_allocate_dynamic_relocations (dynobj, info,
7493 needed_relocs);
b49e97c9
TS
7494 }
7495 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7496 {
8dc1a139 7497 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7498 of .text section. So put a dummy. XXX */
7499 s->size += htab->function_stub_size;
b49e97c9
TS
7500 }
7501 else if (! info->shared
7502 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 7503 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 7504 {
5108fc1b 7505 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7506 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7507 s->size += 4;
b49e97c9
TS
7508 }
7509 else if (SGI_COMPAT (output_bfd)
0112cd26 7510 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 7511 s->size += mips_elf_hash_table (info)->compact_rel_size;
0112cd26 7512 else if (! CONST_STRNEQ (name, ".init")
0a44bf69
RS
7513 && s != htab->sgotplt
7514 && s != htab->splt)
b49e97c9
TS
7515 {
7516 /* It's not one of our sections, so don't allocate space. */
7517 continue;
7518 }
7519
c456f082 7520 if (s->size == 0)
b49e97c9 7521 {
8423293d 7522 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7523 continue;
7524 }
7525
c456f082
AM
7526 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7527 continue;
7528
0a44bf69
RS
7529 /* Allocate memory for this section last, since we may increase its
7530 size above. */
7531 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7532 {
7533 sreldyn = s;
7534 continue;
7535 }
7536
b49e97c9 7537 /* Allocate memory for the section contents. */
eea6121a 7538 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7539 if (s->contents == NULL)
b49e97c9
TS
7540 {
7541 bfd_set_error (bfd_error_no_memory);
b34976b6 7542 return FALSE;
b49e97c9
TS
7543 }
7544 }
7545
0a44bf69
RS
7546 /* Allocate memory for the .rel(a).dyn section. */
7547 if (sreldyn != NULL)
7548 {
7549 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7550 if (sreldyn->contents == NULL)
7551 {
7552 bfd_set_error (bfd_error_no_memory);
7553 return FALSE;
7554 }
7555 }
7556
b49e97c9
TS
7557 if (elf_hash_table (info)->dynamic_sections_created)
7558 {
7559 /* Add some entries to the .dynamic section. We fill in the
7560 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7561 must add the entries now so that we get the correct size for
5750dcec 7562 the .dynamic section. */
af5978fb
RS
7563
7564 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
7565 DT_MIPS_RLD_MAP entry. This must come first because glibc
7566 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7567 looks at the first one it sees. */
af5978fb
RS
7568 if (!info->shared
7569 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7570 return FALSE;
b49e97c9 7571
5750dcec
DJ
7572 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7573 used by the debugger. */
7574 if (info->executable
7575 && !SGI_COMPAT (output_bfd)
7576 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7577 return FALSE;
7578
0a44bf69 7579 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7580 info->flags |= DF_TEXTREL;
7581
7582 if ((info->flags & DF_TEXTREL) != 0)
7583 {
7584 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7585 return FALSE;
943284cc
DJ
7586
7587 /* Clear the DF_TEXTREL flag. It will be set again if we
7588 write out an actual text relocation; we may not, because
7589 at this point we do not know whether e.g. any .eh_frame
7590 absolute relocations have been converted to PC-relative. */
7591 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7592 }
7593
7594 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7595 return FALSE;
b49e97c9 7596
0a44bf69 7597 if (htab->is_vxworks)
b49e97c9 7598 {
0a44bf69
RS
7599 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7600 use any of the DT_MIPS_* tags. */
7601 if (mips_elf_rel_dyn_section (info, FALSE))
7602 {
7603 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7604 return FALSE;
b49e97c9 7605
0a44bf69
RS
7606 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7607 return FALSE;
b49e97c9 7608
0a44bf69
RS
7609 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7610 return FALSE;
7611 }
7612 if (htab->splt->size > 0)
7613 {
7614 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7615 return FALSE;
7616
7617 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7618 return FALSE;
7619
7620 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7621 return FALSE;
7622 }
b49e97c9 7623 }
0a44bf69
RS
7624 else
7625 {
7626 if (mips_elf_rel_dyn_section (info, FALSE))
7627 {
7628 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7629 return FALSE;
b49e97c9 7630
0a44bf69
RS
7631 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7632 return FALSE;
b49e97c9 7633
0a44bf69
RS
7634 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7635 return FALSE;
7636 }
b49e97c9 7637
0a44bf69
RS
7638 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7639 return FALSE;
b49e97c9 7640
0a44bf69
RS
7641 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7642 return FALSE;
b49e97c9 7643
0a44bf69
RS
7644 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7645 return FALSE;
b49e97c9 7646
0a44bf69
RS
7647 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7648 return FALSE;
b49e97c9 7649
0a44bf69
RS
7650 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7651 return FALSE;
b49e97c9 7652
0a44bf69
RS
7653 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7654 return FALSE;
b49e97c9 7655
0a44bf69
RS
7656 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7657 return FALSE;
7658
7659 if (IRIX_COMPAT (dynobj) == ict_irix5
7660 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7661 return FALSE;
7662
7663 if (IRIX_COMPAT (dynobj) == ict_irix6
7664 && (bfd_get_section_by_name
7665 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7666 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7667 return FALSE;
7668 }
b49e97c9
TS
7669 }
7670
b34976b6 7671 return TRUE;
b49e97c9
TS
7672}
7673\f
81d43bff
RS
7674/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7675 Adjust its R_ADDEND field so that it is correct for the output file.
7676 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7677 and sections respectively; both use symbol indexes. */
7678
7679static void
7680mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7681 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7682 asection **local_sections, Elf_Internal_Rela *rel)
7683{
7684 unsigned int r_type, r_symndx;
7685 Elf_Internal_Sym *sym;
7686 asection *sec;
7687
7688 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7689 {
7690 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7691 if (r_type == R_MIPS16_GPREL
7692 || r_type == R_MIPS_GPREL16
7693 || r_type == R_MIPS_GPREL32
7694 || r_type == R_MIPS_LITERAL)
7695 {
7696 rel->r_addend += _bfd_get_gp_value (input_bfd);
7697 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7698 }
7699
7700 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7701 sym = local_syms + r_symndx;
7702
7703 /* Adjust REL's addend to account for section merging. */
7704 if (!info->relocatable)
7705 {
7706 sec = local_sections[r_symndx];
7707 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7708 }
7709
7710 /* This would normally be done by the rela_normal code in elflink.c. */
7711 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7712 rel->r_addend += local_sections[r_symndx]->output_offset;
7713 }
7714}
7715
b49e97c9
TS
7716/* Relocate a MIPS ELF section. */
7717
b34976b6 7718bfd_boolean
9719ad41
RS
7719_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7720 bfd *input_bfd, asection *input_section,
7721 bfd_byte *contents, Elf_Internal_Rela *relocs,
7722 Elf_Internal_Sym *local_syms,
7723 asection **local_sections)
b49e97c9
TS
7724{
7725 Elf_Internal_Rela *rel;
7726 const Elf_Internal_Rela *relend;
7727 bfd_vma addend = 0;
b34976b6 7728 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 7729 const struct elf_backend_data *bed;
b49e97c9
TS
7730
7731 bed = get_elf_backend_data (output_bfd);
7732 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7733 for (rel = relocs; rel < relend; ++rel)
7734 {
7735 const char *name;
c9adbffe 7736 bfd_vma value = 0;
b49e97c9 7737 reloc_howto_type *howto;
b34976b6
AM
7738 bfd_boolean require_jalx;
7739 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 7740 REL relocation. */
b34976b6 7741 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 7742 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 7743 const char *msg;
ab96bf03
AM
7744 unsigned long r_symndx;
7745 asection *sec;
749b8d9d
L
7746 Elf_Internal_Shdr *symtab_hdr;
7747 struct elf_link_hash_entry *h;
b49e97c9
TS
7748
7749 /* Find the relocation howto for this relocation. */
ab96bf03
AM
7750 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7751 NEWABI_P (input_bfd)
7752 && (MIPS_RELOC_RELA_P
7753 (input_bfd, input_section,
7754 rel - relocs)));
7755
7756 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 7757 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
ab96bf03 7758 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
749b8d9d
L
7759 {
7760 sec = local_sections[r_symndx];
7761 h = NULL;
7762 }
ab96bf03
AM
7763 else
7764 {
ab96bf03 7765 unsigned long extsymoff;
ab96bf03 7766
ab96bf03
AM
7767 extsymoff = 0;
7768 if (!elf_bad_symtab (input_bfd))
7769 extsymoff = symtab_hdr->sh_info;
7770 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7771 while (h->root.type == bfd_link_hash_indirect
7772 || h->root.type == bfd_link_hash_warning)
7773 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7774
7775 sec = NULL;
7776 if (h->root.type == bfd_link_hash_defined
7777 || h->root.type == bfd_link_hash_defweak)
7778 sec = h->root.u.def.section;
7779 }
7780
7781 if (sec != NULL && elf_discarded_section (sec))
7782 {
7783 /* For relocs against symbols from removed linkonce sections,
7784 or sections discarded by a linker script, we just want the
7785 section contents zeroed. Avoid any special processing. */
7786 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7787 rel->r_info = 0;
7788 rel->r_addend = 0;
7789 continue;
7790 }
7791
4a14403c 7792 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
7793 {
7794 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7795 64-bit code, but make sure all their addresses are in the
7796 lowermost or uppermost 32-bit section of the 64-bit address
7797 space. Thus, when they use an R_MIPS_64 they mean what is
7798 usually meant by R_MIPS_32, with the exception that the
7799 stored value is sign-extended to 64 bits. */
b34976b6 7800 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
7801
7802 /* On big-endian systems, we need to lie about the position
7803 of the reloc. */
7804 if (bfd_big_endian (input_bfd))
7805 rel->r_offset += 4;
7806 }
b49e97c9
TS
7807
7808 if (!use_saved_addend_p)
7809 {
7810 Elf_Internal_Shdr *rel_hdr;
7811
7812 /* If these relocations were originally of the REL variety,
7813 we must pull the addend out of the field that will be
7814 relocated. Otherwise, we simply use the contents of the
7815 RELA relocation. To determine which flavor or relocation
7816 this is, we depend on the fact that the INPUT_SECTION's
7817 REL_HDR is read before its REL_HDR2. */
7818 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7819 if ((size_t) (rel - relocs)
7820 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7821 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7822 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7823 {
d6f16593
MR
7824 bfd_byte *location = contents + rel->r_offset;
7825
b49e97c9 7826 /* Note that this is a REL relocation. */
b34976b6 7827 rela_relocation_p = FALSE;
b49e97c9
TS
7828
7829 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7830 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7831 location);
b49e97c9
TS
7832 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7833 contents);
d6f16593
MR
7834 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7835 location);
7836
b49e97c9
TS
7837 addend &= howto->src_mask;
7838
7839 /* For some kinds of relocations, the ADDEND is a
7840 combination of the addend stored in two different
7841 relocations. */
d6f16593 7842 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7843 || (r_type == R_MIPS_GOT16
7844 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7845 local_sections, FALSE)))
b49e97c9 7846 {
b49e97c9
TS
7847 const Elf_Internal_Rela *lo16_relocation;
7848 reloc_howto_type *lo16_howto;
d6f16593
MR
7849 int lo16_type;
7850
7851 if (r_type == R_MIPS16_HI16)
7852 lo16_type = R_MIPS16_LO16;
7853 else
7854 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7855
7856 /* The combined value is the sum of the HI16 addend,
7857 left-shifted by sixteen bits, and the LO16
7858 addend, sign extended. (Usually, the code does
7859 a `lui' of the HI16 value, and then an `addiu' of
7860 the LO16 value.)
7861
4030e8f6
CD
7862 Scan ahead to find a matching LO16 relocation.
7863
7864 According to the MIPS ELF ABI, the R_MIPS_LO16
7865 relocation must be immediately following.
7866 However, for the IRIX6 ABI, the next relocation
7867 may be a composed relocation consisting of
7868 several relocations for the same address. In
7869 that case, the R_MIPS_LO16 relocation may occur
7870 as one of these. We permit a similar extension
2d82d84d
TS
7871 in general, as that is useful for GCC.
7872
7873 In some cases GCC dead code elimination removes
7874 the LO16 but keeps the corresponding HI16. This
7875 is strictly speaking a violation of the ABI but
7876 not immediately harmful. */
4030e8f6 7877 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7878 lo16_type,
b49e97c9
TS
7879 rel, relend);
7880 if (lo16_relocation == NULL)
749b8d9d
L
7881 {
7882 const char *name;
7883
7884 if (h)
7885 name = h->root.root.string;
7886 else
7887 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7888 local_syms + r_symndx,
7889 sec);
7890 (*_bfd_error_handler)
7891 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7892 input_bfd, input_section, name, howto->name,
7893 rel->r_offset);
749b8d9d 7894 }
2d82d84d
TS
7895 else
7896 {
7897 bfd_byte *lo16_location;
7898 bfd_vma l;
7899
7900 lo16_location = contents + lo16_relocation->r_offset;
7901
7902 /* Obtain the addend kept there. */
7903 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7904 lo16_type, FALSE);
7905 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7906 FALSE, lo16_location);
7907 l = mips_elf_obtain_contents (lo16_howto,
7908 lo16_relocation,
7909 input_bfd, contents);
7910 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7911 FALSE, lo16_location);
7912 l &= lo16_howto->src_mask;
7913 l <<= lo16_howto->rightshift;
7914 l = _bfd_mips_elf_sign_extend (l, 16);
7915
7916 addend <<= 16;
7917
7918 /* Compute the combined addend. */
7919 addend += l;
7920 }
b49e97c9 7921 }
30ac9238
RS
7922 else
7923 addend <<= howto->rightshift;
b49e97c9
TS
7924 }
7925 else
7926 addend = rel->r_addend;
81d43bff
RS
7927 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7928 local_syms, local_sections, rel);
b49e97c9
TS
7929 }
7930
1049f94e 7931 if (info->relocatable)
b49e97c9 7932 {
4a14403c 7933 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7934 && bfd_big_endian (input_bfd))
7935 rel->r_offset -= 4;
7936
81d43bff 7937 if (!rela_relocation_p && rel->r_addend)
5a659663 7938 {
81d43bff 7939 addend += rel->r_addend;
30ac9238 7940 if (r_type == R_MIPS_HI16
4030e8f6 7941 || r_type == R_MIPS_GOT16)
5a659663
TS
7942 addend = mips_elf_high (addend);
7943 else if (r_type == R_MIPS_HIGHER)
7944 addend = mips_elf_higher (addend);
7945 else if (r_type == R_MIPS_HIGHEST)
7946 addend = mips_elf_highest (addend);
30ac9238
RS
7947 else
7948 addend >>= howto->rightshift;
b49e97c9 7949
30ac9238
RS
7950 /* We use the source mask, rather than the destination
7951 mask because the place to which we are writing will be
7952 source of the addend in the final link. */
b49e97c9
TS
7953 addend &= howto->src_mask;
7954
5a659663 7955 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7956 /* See the comment above about using R_MIPS_64 in the 32-bit
7957 ABI. Here, we need to update the addend. It would be
7958 possible to get away with just using the R_MIPS_32 reloc
7959 but for endianness. */
7960 {
7961 bfd_vma sign_bits;
7962 bfd_vma low_bits;
7963 bfd_vma high_bits;
7964
7965 if (addend & ((bfd_vma) 1 << 31))
7966#ifdef BFD64
7967 sign_bits = ((bfd_vma) 1 << 32) - 1;
7968#else
7969 sign_bits = -1;
7970#endif
7971 else
7972 sign_bits = 0;
7973
7974 /* If we don't know that we have a 64-bit type,
7975 do two separate stores. */
7976 if (bfd_big_endian (input_bfd))
7977 {
7978 /* Store the sign-bits (which are most significant)
7979 first. */
7980 low_bits = sign_bits;
7981 high_bits = addend;
7982 }
7983 else
7984 {
7985 low_bits = addend;
7986 high_bits = sign_bits;
7987 }
7988 bfd_put_32 (input_bfd, low_bits,
7989 contents + rel->r_offset);
7990 bfd_put_32 (input_bfd, high_bits,
7991 contents + rel->r_offset + 4);
7992 continue;
7993 }
7994
7995 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7996 input_bfd, input_section,
b34976b6
AM
7997 contents, FALSE))
7998 return FALSE;
b49e97c9
TS
7999 }
8000
8001 /* Go on to the next relocation. */
8002 continue;
8003 }
8004
8005 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8006 relocations for the same offset. In that case we are
8007 supposed to treat the output of each relocation as the addend
8008 for the next. */
8009 if (rel + 1 < relend
8010 && rel->r_offset == rel[1].r_offset
8011 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 8012 use_saved_addend_p = TRUE;
b49e97c9 8013 else
b34976b6 8014 use_saved_addend_p = FALSE;
b49e97c9
TS
8015
8016 /* Figure out what value we are supposed to relocate. */
8017 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8018 input_section, info, rel,
8019 addend, howto, local_syms,
8020 local_sections, &value,
bce03d3d
AO
8021 &name, &require_jalx,
8022 use_saved_addend_p))
b49e97c9
TS
8023 {
8024 case bfd_reloc_continue:
8025 /* There's nothing to do. */
8026 continue;
8027
8028 case bfd_reloc_undefined:
8029 /* mips_elf_calculate_relocation already called the
8030 undefined_symbol callback. There's no real point in
8031 trying to perform the relocation at this point, so we
8032 just skip ahead to the next relocation. */
8033 continue;
8034
8035 case bfd_reloc_notsupported:
8036 msg = _("internal error: unsupported relocation error");
8037 info->callbacks->warning
8038 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 8039 return FALSE;
b49e97c9
TS
8040
8041 case bfd_reloc_overflow:
8042 if (use_saved_addend_p)
8043 /* Ignore overflow until we reach the last relocation for
8044 a given location. */
8045 ;
8046 else
8047 {
0e53d9da
AN
8048 struct mips_elf_link_hash_table *htab;
8049
8050 htab = mips_elf_hash_table (info);
b49e97c9 8051 BFD_ASSERT (name != NULL);
0e53d9da
AN
8052 if (!htab->small_data_overflow_reported
8053 && (howto->type == R_MIPS_GPREL16
8054 || howto->type == R_MIPS_LITERAL))
8055 {
8056 const char *msg =
8057 _("small-data section exceeds 64KB;"
8058 " lower small-data size limit (see option -G)");
8059
8060 htab->small_data_overflow_reported = TRUE;
8061 (*info->callbacks->einfo) ("%P: %s\n", msg);
8062 }
b49e97c9 8063 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 8064 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 8065 input_bfd, input_section, rel->r_offset)))
b34976b6 8066 return FALSE;
b49e97c9
TS
8067 }
8068 break;
8069
8070 case bfd_reloc_ok:
8071 break;
8072
8073 default:
8074 abort ();
8075 break;
8076 }
8077
8078 /* If we've got another relocation for the address, keep going
8079 until we reach the last one. */
8080 if (use_saved_addend_p)
8081 {
8082 addend = value;
8083 continue;
8084 }
8085
4a14403c 8086 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8087 /* See the comment above about using R_MIPS_64 in the 32-bit
8088 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8089 that calculated the right value. Now, however, we
8090 sign-extend the 32-bit result to 64-bits, and store it as a
8091 64-bit value. We are especially generous here in that we
8092 go to extreme lengths to support this usage on systems with
8093 only a 32-bit VMA. */
8094 {
8095 bfd_vma sign_bits;
8096 bfd_vma low_bits;
8097 bfd_vma high_bits;
8098
8099 if (value & ((bfd_vma) 1 << 31))
8100#ifdef BFD64
8101 sign_bits = ((bfd_vma) 1 << 32) - 1;
8102#else
8103 sign_bits = -1;
8104#endif
8105 else
8106 sign_bits = 0;
8107
8108 /* If we don't know that we have a 64-bit type,
8109 do two separate stores. */
8110 if (bfd_big_endian (input_bfd))
8111 {
8112 /* Undo what we did above. */
8113 rel->r_offset -= 4;
8114 /* Store the sign-bits (which are most significant)
8115 first. */
8116 low_bits = sign_bits;
8117 high_bits = value;
8118 }
8119 else
8120 {
8121 low_bits = value;
8122 high_bits = sign_bits;
8123 }
8124 bfd_put_32 (input_bfd, low_bits,
8125 contents + rel->r_offset);
8126 bfd_put_32 (input_bfd, high_bits,
8127 contents + rel->r_offset + 4);
8128 continue;
8129 }
8130
8131 /* Actually perform the relocation. */
8132 if (! mips_elf_perform_relocation (info, howto, rel, value,
8133 input_bfd, input_section,
8134 contents, require_jalx))
b34976b6 8135 return FALSE;
b49e97c9
TS
8136 }
8137
b34976b6 8138 return TRUE;
b49e97c9
TS
8139}
8140\f
8141/* If NAME is one of the special IRIX6 symbols defined by the linker,
8142 adjust it appropriately now. */
8143
8144static void
9719ad41
RS
8145mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8146 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
8147{
8148 /* The linker script takes care of providing names and values for
8149 these, but we must place them into the right sections. */
8150 static const char* const text_section_symbols[] = {
8151 "_ftext",
8152 "_etext",
8153 "__dso_displacement",
8154 "__elf_header",
8155 "__program_header_table",
8156 NULL
8157 };
8158
8159 static const char* const data_section_symbols[] = {
8160 "_fdata",
8161 "_edata",
8162 "_end",
8163 "_fbss",
8164 NULL
8165 };
8166
8167 const char* const *p;
8168 int i;
8169
8170 for (i = 0; i < 2; ++i)
8171 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8172 *p;
8173 ++p)
8174 if (strcmp (*p, name) == 0)
8175 {
8176 /* All of these symbols are given type STT_SECTION by the
8177 IRIX6 linker. */
8178 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8179 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8180
8181 /* The IRIX linker puts these symbols in special sections. */
8182 if (i == 0)
8183 sym->st_shndx = SHN_MIPS_TEXT;
8184 else
8185 sym->st_shndx = SHN_MIPS_DATA;
8186
8187 break;
8188 }
8189}
8190
8191/* Finish up dynamic symbol handling. We set the contents of various
8192 dynamic sections here. */
8193
b34976b6 8194bfd_boolean
9719ad41
RS
8195_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8196 struct bfd_link_info *info,
8197 struct elf_link_hash_entry *h,
8198 Elf_Internal_Sym *sym)
b49e97c9
TS
8199{
8200 bfd *dynobj;
b49e97c9 8201 asection *sgot;
f4416af6 8202 struct mips_got_info *g, *gg;
b49e97c9 8203 const char *name;
3d6746ca 8204 int idx;
5108fc1b 8205 struct mips_elf_link_hash_table *htab;
b49e97c9 8206
5108fc1b 8207 htab = mips_elf_hash_table (info);
b49e97c9 8208 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8209
c5ae1840 8210 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8211 {
8212 asection *s;
5108fc1b 8213 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8214
8215 /* This symbol has a stub. Set it up. */
8216
8217 BFD_ASSERT (h->dynindx != -1);
8218
8219 s = bfd_get_section_by_name (dynobj,
8220 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8221 BFD_ASSERT (s != NULL);
8222
5108fc1b
RS
8223 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8224 || (h->dynindx <= 0xffff));
3d6746ca
DD
8225
8226 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8227 sign extension at runtime in the stub, resulting in a negative
8228 index value. */
8229 if (h->dynindx & ~0x7fffffff)
b34976b6 8230 return FALSE;
b49e97c9
TS
8231
8232 /* Fill the stub. */
3d6746ca
DD
8233 idx = 0;
8234 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8235 idx += 4;
8236 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8237 idx += 4;
5108fc1b 8238 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8239 {
5108fc1b 8240 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8241 stub + idx);
8242 idx += 4;
8243 }
8244 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8245 idx += 4;
b49e97c9 8246
3d6746ca
DD
8247 /* If a large stub is not required and sign extension is not a
8248 problem, then use legacy code in the stub. */
5108fc1b
RS
8249 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8250 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8251 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8252 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8253 else
5108fc1b
RS
8254 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8255 stub + idx);
8256
eea6121a 8257 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8258 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8259
8260 /* Mark the symbol as undefined. plt.offset != -1 occurs
8261 only for the referenced symbol. */
8262 sym->st_shndx = SHN_UNDEF;
8263
8264 /* The run-time linker uses the st_value field of the symbol
8265 to reset the global offset table entry for this external
8266 to its stub address when unlinking a shared object. */
c5ae1840
TS
8267 sym->st_value = (s->output_section->vma + s->output_offset
8268 + h->plt.offset);
b49e97c9
TS
8269 }
8270
8271 BFD_ASSERT (h->dynindx != -1
f5385ebf 8272 || h->forced_local);
b49e97c9 8273
f4416af6 8274 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8275 BFD_ASSERT (sgot != NULL);
f4416af6 8276 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8277 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8278 BFD_ASSERT (g != NULL);
8279
8280 /* Run through the global symbol table, creating GOT entries for all
8281 the symbols that need them. */
8282 if (g->global_gotsym != NULL
8283 && h->dynindx >= g->global_gotsym->dynindx)
8284 {
8285 bfd_vma offset;
8286 bfd_vma value;
8287
6eaa6adc 8288 value = sym->st_value;
0f20cc35 8289 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8290 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8291 }
8292
0f20cc35 8293 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8294 {
8295 struct mips_got_entry e, *p;
0626d451 8296 bfd_vma entry;
f4416af6 8297 bfd_vma offset;
f4416af6
AO
8298
8299 gg = g;
8300
8301 e.abfd = output_bfd;
8302 e.symndx = -1;
8303 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8304 e.tls_type = 0;
143d77c5 8305
f4416af6
AO
8306 for (g = g->next; g->next != gg; g = g->next)
8307 {
8308 if (g->got_entries
8309 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8310 &e)))
8311 {
8312 offset = p->gotidx;
0626d451
RS
8313 if (info->shared
8314 || (elf_hash_table (info)->dynamic_sections_created
8315 && p->d.h != NULL
f5385ebf
AM
8316 && p->d.h->root.def_dynamic
8317 && !p->d.h->root.def_regular))
0626d451
RS
8318 {
8319 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8320 the various compatibility problems, it's easier to mock
8321 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8322 mips_elf_create_dynamic_relocation to calculate the
8323 appropriate addend. */
8324 Elf_Internal_Rela rel[3];
8325
8326 memset (rel, 0, sizeof (rel));
8327 if (ABI_64_P (output_bfd))
8328 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8329 else
8330 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8331 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8332
8333 entry = 0;
8334 if (! (mips_elf_create_dynamic_relocation
8335 (output_bfd, info, rel,
8336 e.d.h, NULL, sym->st_value, &entry, sgot)))
8337 return FALSE;
8338 }
8339 else
8340 entry = sym->st_value;
8341 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8342 }
8343 }
8344 }
8345
b49e97c9
TS
8346 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8347 name = h->root.root.string;
8348 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8349 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8350 sym->st_shndx = SHN_ABS;
8351 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8352 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8353 {
8354 sym->st_shndx = SHN_ABS;
8355 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8356 sym->st_value = 1;
8357 }
4a14403c 8358 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8359 {
8360 sym->st_shndx = SHN_ABS;
8361 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8362 sym->st_value = elf_gp (output_bfd);
8363 }
8364 else if (SGI_COMPAT (output_bfd))
8365 {
8366 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8367 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8368 {
8369 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8370 sym->st_other = STO_PROTECTED;
8371 sym->st_value = 0;
8372 sym->st_shndx = SHN_MIPS_DATA;
8373 }
8374 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8375 {
8376 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8377 sym->st_other = STO_PROTECTED;
8378 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8379 sym->st_shndx = SHN_ABS;
8380 }
8381 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8382 {
8383 if (h->type == STT_FUNC)
8384 sym->st_shndx = SHN_MIPS_TEXT;
8385 else if (h->type == STT_OBJECT)
8386 sym->st_shndx = SHN_MIPS_DATA;
8387 }
8388 }
8389
8390 /* Handle the IRIX6-specific symbols. */
8391 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8392 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8393
8394 if (! info->shared)
8395 {
8396 if (! mips_elf_hash_table (info)->use_rld_obj_head
8397 && (strcmp (name, "__rld_map") == 0
8398 || strcmp (name, "__RLD_MAP") == 0))
8399 {
8400 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8401 BFD_ASSERT (s != NULL);
8402 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8403 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8404 if (mips_elf_hash_table (info)->rld_value == 0)
8405 mips_elf_hash_table (info)->rld_value = sym->st_value;
8406 }
8407 else if (mips_elf_hash_table (info)->use_rld_obj_head
8408 && strcmp (name, "__rld_obj_head") == 0)
8409 {
8410 /* IRIX6 does not use a .rld_map section. */
8411 if (IRIX_COMPAT (output_bfd) == ict_irix5
8412 || IRIX_COMPAT (output_bfd) == ict_none)
8413 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8414 != NULL);
8415 mips_elf_hash_table (info)->rld_value = sym->st_value;
8416 }
8417 }
8418
8419 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8420 if (sym->st_other == STO_MIPS16)
8421 sym->st_value &= ~1;
b49e97c9 8422
b34976b6 8423 return TRUE;
b49e97c9
TS
8424}
8425
0a44bf69
RS
8426/* Likewise, for VxWorks. */
8427
8428bfd_boolean
8429_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8430 struct bfd_link_info *info,
8431 struct elf_link_hash_entry *h,
8432 Elf_Internal_Sym *sym)
8433{
8434 bfd *dynobj;
8435 asection *sgot;
8436 struct mips_got_info *g;
8437 struct mips_elf_link_hash_table *htab;
8438
8439 htab = mips_elf_hash_table (info);
8440 dynobj = elf_hash_table (info)->dynobj;
8441
8442 if (h->plt.offset != (bfd_vma) -1)
8443 {
6d79d2ed 8444 bfd_byte *loc;
0a44bf69
RS
8445 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8446 Elf_Internal_Rela rel;
8447 static const bfd_vma *plt_entry;
8448
8449 BFD_ASSERT (h->dynindx != -1);
8450 BFD_ASSERT (htab->splt != NULL);
8451 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8452
8453 /* Calculate the address of the .plt entry. */
8454 plt_address = (htab->splt->output_section->vma
8455 + htab->splt->output_offset
8456 + h->plt.offset);
8457
8458 /* Calculate the index of the entry. */
8459 plt_index = ((h->plt.offset - htab->plt_header_size)
8460 / htab->plt_entry_size);
8461
8462 /* Calculate the address of the .got.plt entry. */
8463 got_address = (htab->sgotplt->output_section->vma
8464 + htab->sgotplt->output_offset
8465 + plt_index * 4);
8466
8467 /* Calculate the offset of the .got.plt entry from
8468 _GLOBAL_OFFSET_TABLE_. */
8469 got_offset = mips_elf_gotplt_index (info, h);
8470
8471 /* Calculate the offset for the branch at the start of the PLT
8472 entry. The branch jumps to the beginning of .plt. */
8473 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8474
8475 /* Fill in the initial value of the .got.plt entry. */
8476 bfd_put_32 (output_bfd, plt_address,
8477 htab->sgotplt->contents + plt_index * 4);
8478
8479 /* Find out where the .plt entry should go. */
8480 loc = htab->splt->contents + h->plt.offset;
8481
8482 if (info->shared)
8483 {
8484 plt_entry = mips_vxworks_shared_plt_entry;
8485 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8486 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8487 }
8488 else
8489 {
8490 bfd_vma got_address_high, got_address_low;
8491
8492 plt_entry = mips_vxworks_exec_plt_entry;
8493 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8494 got_address_low = got_address & 0xffff;
8495
8496 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8497 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8498 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8499 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8500 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8501 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8502 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8503 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8504
8505 loc = (htab->srelplt2->contents
8506 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8507
8508 /* Emit a relocation for the .got.plt entry. */
8509 rel.r_offset = got_address;
8510 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8511 rel.r_addend = h->plt.offset;
8512 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8513
8514 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8515 loc += sizeof (Elf32_External_Rela);
8516 rel.r_offset = plt_address + 8;
8517 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8518 rel.r_addend = got_offset;
8519 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8520
8521 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8522 loc += sizeof (Elf32_External_Rela);
8523 rel.r_offset += 4;
8524 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8525 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8526 }
8527
8528 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8529 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8530 rel.r_offset = got_address;
8531 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8532 rel.r_addend = 0;
8533 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8534
8535 if (!h->def_regular)
8536 sym->st_shndx = SHN_UNDEF;
8537 }
8538
8539 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8540
8541 sgot = mips_elf_got_section (dynobj, FALSE);
8542 BFD_ASSERT (sgot != NULL);
8543 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8544 g = mips_elf_section_data (sgot)->u.got_info;
8545 BFD_ASSERT (g != NULL);
8546
8547 /* See if this symbol has an entry in the GOT. */
8548 if (g->global_gotsym != NULL
8549 && h->dynindx >= g->global_gotsym->dynindx)
8550 {
8551 bfd_vma offset;
8552 Elf_Internal_Rela outrel;
8553 bfd_byte *loc;
8554 asection *s;
8555
8556 /* Install the symbol value in the GOT. */
8557 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8558 R_MIPS_GOT16, info);
8559 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8560
8561 /* Add a dynamic relocation for it. */
8562 s = mips_elf_rel_dyn_section (info, FALSE);
8563 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8564 outrel.r_offset = (sgot->output_section->vma
8565 + sgot->output_offset
8566 + offset);
8567 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8568 outrel.r_addend = 0;
8569 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8570 }
8571
8572 /* Emit a copy reloc, if needed. */
8573 if (h->needs_copy)
8574 {
8575 Elf_Internal_Rela rel;
8576
8577 BFD_ASSERT (h->dynindx != -1);
8578
8579 rel.r_offset = (h->root.u.def.section->output_section->vma
8580 + h->root.u.def.section->output_offset
8581 + h->root.u.def.value);
8582 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8583 rel.r_addend = 0;
8584 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8585 htab->srelbss->contents
8586 + (htab->srelbss->reloc_count
8587 * sizeof (Elf32_External_Rela)));
8588 ++htab->srelbss->reloc_count;
8589 }
8590
8591 /* If this is a mips16 symbol, force the value to be even. */
8592 if (sym->st_other == STO_MIPS16)
8593 sym->st_value &= ~1;
8594
8595 return TRUE;
8596}
8597
8598/* Install the PLT header for a VxWorks executable and finalize the
8599 contents of .rela.plt.unloaded. */
8600
8601static void
8602mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8603{
8604 Elf_Internal_Rela rela;
8605 bfd_byte *loc;
8606 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8607 static const bfd_vma *plt_entry;
8608 struct mips_elf_link_hash_table *htab;
8609
8610 htab = mips_elf_hash_table (info);
8611 plt_entry = mips_vxworks_exec_plt0_entry;
8612
8613 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8614 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8615 + htab->root.hgot->root.u.def.section->output_offset
8616 + htab->root.hgot->root.u.def.value);
8617
8618 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8619 got_value_low = got_value & 0xffff;
8620
8621 /* Calculate the address of the PLT header. */
8622 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8623
8624 /* Install the PLT header. */
8625 loc = htab->splt->contents;
8626 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8627 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8628 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8629 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8630 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8631 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8632
8633 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8634 loc = htab->srelplt2->contents;
8635 rela.r_offset = plt_address;
8636 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8637 rela.r_addend = 0;
8638 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8639 loc += sizeof (Elf32_External_Rela);
8640
8641 /* Output the relocation for the following addiu of
8642 %lo(_GLOBAL_OFFSET_TABLE_). */
8643 rela.r_offset += 4;
8644 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8645 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8646 loc += sizeof (Elf32_External_Rela);
8647
8648 /* Fix up the remaining relocations. They may have the wrong
8649 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8650 in which symbols were output. */
8651 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8652 {
8653 Elf_Internal_Rela rel;
8654
8655 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8656 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8657 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8658 loc += sizeof (Elf32_External_Rela);
8659
8660 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8661 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8662 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8663 loc += sizeof (Elf32_External_Rela);
8664
8665 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8666 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8667 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8668 loc += sizeof (Elf32_External_Rela);
8669 }
8670}
8671
8672/* Install the PLT header for a VxWorks shared library. */
8673
8674static void
8675mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8676{
8677 unsigned int i;
8678 struct mips_elf_link_hash_table *htab;
8679
8680 htab = mips_elf_hash_table (info);
8681
8682 /* We just need to copy the entry byte-by-byte. */
8683 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8684 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8685 htab->splt->contents + i * 4);
8686}
8687
b49e97c9
TS
8688/* Finish up the dynamic sections. */
8689
b34976b6 8690bfd_boolean
9719ad41
RS
8691_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8692 struct bfd_link_info *info)
b49e97c9
TS
8693{
8694 bfd *dynobj;
8695 asection *sdyn;
8696 asection *sgot;
f4416af6 8697 struct mips_got_info *gg, *g;
0a44bf69 8698 struct mips_elf_link_hash_table *htab;
b49e97c9 8699
0a44bf69 8700 htab = mips_elf_hash_table (info);
b49e97c9
TS
8701 dynobj = elf_hash_table (info)->dynobj;
8702
8703 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8704
f4416af6 8705 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8706 if (sgot == NULL)
f4416af6 8707 gg = g = NULL;
b49e97c9
TS
8708 else
8709 {
f4416af6
AO
8710 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8711 gg = mips_elf_section_data (sgot)->u.got_info;
8712 BFD_ASSERT (gg != NULL);
8713 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
8714 BFD_ASSERT (g != NULL);
8715 }
8716
8717 if (elf_hash_table (info)->dynamic_sections_created)
8718 {
8719 bfd_byte *b;
943284cc 8720 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
8721
8722 BFD_ASSERT (sdyn != NULL);
8723 BFD_ASSERT (g != NULL);
8724
8725 for (b = sdyn->contents;
eea6121a 8726 b < sdyn->contents + sdyn->size;
b49e97c9
TS
8727 b += MIPS_ELF_DYN_SIZE (dynobj))
8728 {
8729 Elf_Internal_Dyn dyn;
8730 const char *name;
8731 size_t elemsize;
8732 asection *s;
b34976b6 8733 bfd_boolean swap_out_p;
b49e97c9
TS
8734
8735 /* Read in the current dynamic entry. */
8736 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8737
8738 /* Assume that we're going to modify it and write it out. */
b34976b6 8739 swap_out_p = TRUE;
b49e97c9
TS
8740
8741 switch (dyn.d_tag)
8742 {
8743 case DT_RELENT:
b49e97c9
TS
8744 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8745 break;
8746
0a44bf69
RS
8747 case DT_RELAENT:
8748 BFD_ASSERT (htab->is_vxworks);
8749 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8750 break;
8751
b49e97c9
TS
8752 case DT_STRSZ:
8753 /* Rewrite DT_STRSZ. */
8754 dyn.d_un.d_val =
8755 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8756 break;
8757
8758 case DT_PLTGOT:
8759 name = ".got";
0a44bf69
RS
8760 if (htab->is_vxworks)
8761 {
8762 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8763 of the ".got" section in DYNOBJ. */
8764 s = bfd_get_section_by_name (dynobj, name);
8765 BFD_ASSERT (s != NULL);
8766 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8767 }
8768 else
8769 {
8770 s = bfd_get_section_by_name (output_bfd, name);
8771 BFD_ASSERT (s != NULL);
8772 dyn.d_un.d_ptr = s->vma;
8773 }
b49e97c9
TS
8774 break;
8775
8776 case DT_MIPS_RLD_VERSION:
8777 dyn.d_un.d_val = 1; /* XXX */
8778 break;
8779
8780 case DT_MIPS_FLAGS:
8781 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8782 break;
8783
b49e97c9 8784 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
8785 {
8786 time_t t;
8787 time (&t);
8788 dyn.d_un.d_val = t;
8789 }
b49e97c9
TS
8790 break;
8791
8792 case DT_MIPS_ICHECKSUM:
8793 /* XXX FIXME: */
b34976b6 8794 swap_out_p = FALSE;
b49e97c9
TS
8795 break;
8796
8797 case DT_MIPS_IVERSION:
8798 /* XXX FIXME: */
b34976b6 8799 swap_out_p = FALSE;
b49e97c9
TS
8800 break;
8801
8802 case DT_MIPS_BASE_ADDRESS:
8803 s = output_bfd->sections;
8804 BFD_ASSERT (s != NULL);
8805 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8806 break;
8807
8808 case DT_MIPS_LOCAL_GOTNO:
8809 dyn.d_un.d_val = g->local_gotno;
8810 break;
8811
8812 case DT_MIPS_UNREFEXTNO:
8813 /* The index into the dynamic symbol table which is the
8814 entry of the first external symbol that is not
8815 referenced within the same object. */
8816 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8817 break;
8818
8819 case DT_MIPS_GOTSYM:
f4416af6 8820 if (gg->global_gotsym)
b49e97c9 8821 {
f4416af6 8822 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
8823 break;
8824 }
8825 /* In case if we don't have global got symbols we default
8826 to setting DT_MIPS_GOTSYM to the same value as
8827 DT_MIPS_SYMTABNO, so we just fall through. */
8828
8829 case DT_MIPS_SYMTABNO:
8830 name = ".dynsym";
8831 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8832 s = bfd_get_section_by_name (output_bfd, name);
8833 BFD_ASSERT (s != NULL);
8834
eea6121a 8835 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
8836 break;
8837
8838 case DT_MIPS_HIPAGENO:
0a44bf69 8839 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
8840 break;
8841
8842 case DT_MIPS_RLD_MAP:
8843 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8844 break;
8845
8846 case DT_MIPS_OPTIONS:
8847 s = (bfd_get_section_by_name
8848 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8849 dyn.d_un.d_ptr = s->vma;
8850 break;
8851
0a44bf69
RS
8852 case DT_RELASZ:
8853 BFD_ASSERT (htab->is_vxworks);
8854 /* The count does not include the JUMP_SLOT relocations. */
8855 if (htab->srelplt)
8856 dyn.d_un.d_val -= htab->srelplt->size;
8857 break;
8858
8859 case DT_PLTREL:
8860 BFD_ASSERT (htab->is_vxworks);
8861 dyn.d_un.d_val = DT_RELA;
8862 break;
8863
8864 case DT_PLTRELSZ:
8865 BFD_ASSERT (htab->is_vxworks);
8866 dyn.d_un.d_val = htab->srelplt->size;
8867 break;
8868
8869 case DT_JMPREL:
8870 BFD_ASSERT (htab->is_vxworks);
8871 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8872 + htab->srelplt->output_offset);
8873 break;
8874
943284cc
DJ
8875 case DT_TEXTREL:
8876 /* If we didn't need any text relocations after all, delete
8877 the dynamic tag. */
8878 if (!(info->flags & DF_TEXTREL))
8879 {
8880 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8881 swap_out_p = FALSE;
8882 }
8883 break;
8884
8885 case DT_FLAGS:
8886 /* If we didn't need any text relocations after all, clear
8887 DF_TEXTREL from DT_FLAGS. */
8888 if (!(info->flags & DF_TEXTREL))
8889 dyn.d_un.d_val &= ~DF_TEXTREL;
8890 else
8891 swap_out_p = FALSE;
8892 break;
8893
b49e97c9 8894 default:
b34976b6 8895 swap_out_p = FALSE;
b49e97c9
TS
8896 break;
8897 }
8898
943284cc 8899 if (swap_out_p || dyn_skipped)
b49e97c9 8900 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
8901 (dynobj, &dyn, b - dyn_skipped);
8902
8903 if (dyn_to_skip)
8904 {
8905 dyn_skipped += dyn_to_skip;
8906 dyn_to_skip = 0;
8907 }
b49e97c9 8908 }
943284cc
DJ
8909
8910 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8911 if (dyn_skipped > 0)
8912 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
8913 }
8914
b55fd4d4
DJ
8915 if (sgot != NULL && sgot->size > 0
8916 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 8917 {
0a44bf69
RS
8918 if (htab->is_vxworks)
8919 {
8920 /* The first entry of the global offset table points to the
8921 ".dynamic" section. The second is initialized by the
8922 loader and contains the shared library identifier.
8923 The third is also initialized by the loader and points
8924 to the lazy resolution stub. */
8925 MIPS_ELF_PUT_WORD (output_bfd,
8926 sdyn->output_offset + sdyn->output_section->vma,
8927 sgot->contents);
8928 MIPS_ELF_PUT_WORD (output_bfd, 0,
8929 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8930 MIPS_ELF_PUT_WORD (output_bfd, 0,
8931 sgot->contents
8932 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8933 }
8934 else
8935 {
8936 /* The first entry of the global offset table will be filled at
8937 runtime. The second entry will be used by some runtime loaders.
8938 This isn't the case of IRIX rld. */
8939 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8940 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8941 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8942 }
b49e97c9 8943
54938e2a
TS
8944 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8945 = MIPS_ELF_GOT_SIZE (output_bfd);
8946 }
b49e97c9 8947
f4416af6
AO
8948 /* Generate dynamic relocations for the non-primary gots. */
8949 if (gg != NULL && gg->next)
8950 {
8951 Elf_Internal_Rela rel[3];
8952 bfd_vma addend = 0;
8953
8954 memset (rel, 0, sizeof (rel));
8955 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8956
8957 for (g = gg->next; g->next != gg; g = g->next)
8958 {
0f20cc35
DJ
8959 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8960 + g->next->tls_gotno;
f4416af6 8961
9719ad41 8962 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 8963 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 8964 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
8965 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8966
8967 if (! info->shared)
8968 continue;
8969
8970 while (index < g->assigned_gotno)
8971 {
8972 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8973 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8974 if (!(mips_elf_create_dynamic_relocation
8975 (output_bfd, info, rel, NULL,
8976 bfd_abs_section_ptr,
8977 0, &addend, sgot)))
8978 return FALSE;
8979 BFD_ASSERT (addend == 0);
8980 }
8981 }
8982 }
8983
3133ddbf
DJ
8984 /* The generation of dynamic relocations for the non-primary gots
8985 adds more dynamic relocations. We cannot count them until
8986 here. */
8987
8988 if (elf_hash_table (info)->dynamic_sections_created)
8989 {
8990 bfd_byte *b;
8991 bfd_boolean swap_out_p;
8992
8993 BFD_ASSERT (sdyn != NULL);
8994
8995 for (b = sdyn->contents;
8996 b < sdyn->contents + sdyn->size;
8997 b += MIPS_ELF_DYN_SIZE (dynobj))
8998 {
8999 Elf_Internal_Dyn dyn;
9000 asection *s;
9001
9002 /* Read in the current dynamic entry. */
9003 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9004
9005 /* Assume that we're going to modify it and write it out. */
9006 swap_out_p = TRUE;
9007
9008 switch (dyn.d_tag)
9009 {
9010 case DT_RELSZ:
9011 /* Reduce DT_RELSZ to account for any relocations we
9012 decided not to make. This is for the n64 irix rld,
9013 which doesn't seem to apply any relocations if there
9014 are trailing null entries. */
0a44bf69 9015 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
9016 dyn.d_un.d_val = (s->reloc_count
9017 * (ABI_64_P (output_bfd)
9018 ? sizeof (Elf64_Mips_External_Rel)
9019 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
9020 /* Adjust the section size too. Tools like the prelinker
9021 can reasonably expect the values to the same. */
9022 elf_section_data (s->output_section)->this_hdr.sh_size
9023 = dyn.d_un.d_val;
3133ddbf
DJ
9024 break;
9025
9026 default:
9027 swap_out_p = FALSE;
9028 break;
9029 }
9030
9031 if (swap_out_p)
9032 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9033 (dynobj, &dyn, b);
9034 }
9035 }
9036
b49e97c9 9037 {
b49e97c9
TS
9038 asection *s;
9039 Elf32_compact_rel cpt;
9040
b49e97c9
TS
9041 if (SGI_COMPAT (output_bfd))
9042 {
9043 /* Write .compact_rel section out. */
9044 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9045 if (s != NULL)
9046 {
9047 cpt.id1 = 1;
9048 cpt.num = s->reloc_count;
9049 cpt.id2 = 2;
9050 cpt.offset = (s->output_section->filepos
9051 + sizeof (Elf32_External_compact_rel));
9052 cpt.reserved0 = 0;
9053 cpt.reserved1 = 0;
9054 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9055 ((Elf32_External_compact_rel *)
9056 s->contents));
9057
9058 /* Clean up a dummy stub function entry in .text. */
9059 s = bfd_get_section_by_name (dynobj,
9060 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9061 if (s != NULL)
9062 {
9063 file_ptr dummy_offset;
9064
5108fc1b
RS
9065 BFD_ASSERT (s->size >= htab->function_stub_size);
9066 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 9067 memset (s->contents + dummy_offset, 0,
5108fc1b 9068 htab->function_stub_size);
b49e97c9
TS
9069 }
9070 }
9071 }
9072
0a44bf69
RS
9073 /* The psABI says that the dynamic relocations must be sorted in
9074 increasing order of r_symndx. The VxWorks EABI doesn't require
9075 this, and because the code below handles REL rather than RELA
9076 relocations, using it for VxWorks would be outright harmful. */
9077 if (!htab->is_vxworks)
b49e97c9 9078 {
0a44bf69
RS
9079 s = mips_elf_rel_dyn_section (info, FALSE);
9080 if (s != NULL
9081 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9082 {
9083 reldyn_sorting_bfd = output_bfd;
b49e97c9 9084
0a44bf69
RS
9085 if (ABI_64_P (output_bfd))
9086 qsort ((Elf64_External_Rel *) s->contents + 1,
9087 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9088 sort_dynamic_relocs_64);
9089 else
9090 qsort ((Elf32_External_Rel *) s->contents + 1,
9091 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9092 sort_dynamic_relocs);
9093 }
b49e97c9 9094 }
b49e97c9
TS
9095 }
9096
0a44bf69
RS
9097 if (htab->is_vxworks && htab->splt->size > 0)
9098 {
9099 if (info->shared)
9100 mips_vxworks_finish_shared_plt (output_bfd, info);
9101 else
9102 mips_vxworks_finish_exec_plt (output_bfd, info);
9103 }
b34976b6 9104 return TRUE;
b49e97c9
TS
9105}
9106
b49e97c9 9107
64543e1a
RS
9108/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9109
9110static void
9719ad41 9111mips_set_isa_flags (bfd *abfd)
b49e97c9 9112{
64543e1a 9113 flagword val;
b49e97c9
TS
9114
9115 switch (bfd_get_mach (abfd))
9116 {
9117 default:
9118 case bfd_mach_mips3000:
9119 val = E_MIPS_ARCH_1;
9120 break;
9121
9122 case bfd_mach_mips3900:
9123 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9124 break;
9125
9126 case bfd_mach_mips6000:
9127 val = E_MIPS_ARCH_2;
9128 break;
9129
9130 case bfd_mach_mips4000:
9131 case bfd_mach_mips4300:
9132 case bfd_mach_mips4400:
9133 case bfd_mach_mips4600:
9134 val = E_MIPS_ARCH_3;
9135 break;
9136
9137 case bfd_mach_mips4010:
9138 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9139 break;
9140
9141 case bfd_mach_mips4100:
9142 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9143 break;
9144
9145 case bfd_mach_mips4111:
9146 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9147 break;
9148
00707a0e
RS
9149 case bfd_mach_mips4120:
9150 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9151 break;
9152
b49e97c9
TS
9153 case bfd_mach_mips4650:
9154 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9155 break;
9156
00707a0e
RS
9157 case bfd_mach_mips5400:
9158 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9159 break;
9160
9161 case bfd_mach_mips5500:
9162 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9163 break;
9164
0d2e43ed
ILT
9165 case bfd_mach_mips9000:
9166 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9167 break;
9168
b49e97c9 9169 case bfd_mach_mips5000:
5a7ea749 9170 case bfd_mach_mips7000:
b49e97c9
TS
9171 case bfd_mach_mips8000:
9172 case bfd_mach_mips10000:
9173 case bfd_mach_mips12000:
9174 val = E_MIPS_ARCH_4;
9175 break;
9176
9177 case bfd_mach_mips5:
9178 val = E_MIPS_ARCH_5;
9179 break;
9180
9181 case bfd_mach_mips_sb1:
9182 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9183 break;
9184
9185 case bfd_mach_mipsisa32:
9186 val = E_MIPS_ARCH_32;
9187 break;
9188
9189 case bfd_mach_mipsisa64:
9190 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9191 break;
9192
9193 case bfd_mach_mipsisa32r2:
9194 val = E_MIPS_ARCH_32R2;
9195 break;
5f74bc13
CD
9196
9197 case bfd_mach_mipsisa64r2:
9198 val = E_MIPS_ARCH_64R2;
9199 break;
b49e97c9 9200 }
b49e97c9
TS
9201 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9202 elf_elfheader (abfd)->e_flags |= val;
9203
64543e1a
RS
9204}
9205
9206
9207/* The final processing done just before writing out a MIPS ELF object
9208 file. This gets the MIPS architecture right based on the machine
9209 number. This is used by both the 32-bit and the 64-bit ABI. */
9210
9211void
9719ad41
RS
9212_bfd_mips_elf_final_write_processing (bfd *abfd,
9213 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9214{
9215 unsigned int i;
9216 Elf_Internal_Shdr **hdrpp;
9217 const char *name;
9218 asection *sec;
9219
9220 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9221 is nonzero. This is for compatibility with old objects, which used
9222 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9223 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9224 mips_set_isa_flags (abfd);
9225
b49e97c9
TS
9226 /* Set the sh_info field for .gptab sections and other appropriate
9227 info for each special section. */
9228 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9229 i < elf_numsections (abfd);
9230 i++, hdrpp++)
9231 {
9232 switch ((*hdrpp)->sh_type)
9233 {
9234 case SHT_MIPS_MSYM:
9235 case SHT_MIPS_LIBLIST:
9236 sec = bfd_get_section_by_name (abfd, ".dynstr");
9237 if (sec != NULL)
9238 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9239 break;
9240
9241 case SHT_MIPS_GPTAB:
9242 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9243 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9244 BFD_ASSERT (name != NULL
0112cd26 9245 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
9246 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9247 BFD_ASSERT (sec != NULL);
9248 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9249 break;
9250
9251 case SHT_MIPS_CONTENT:
9252 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9253 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9254 BFD_ASSERT (name != NULL
0112cd26 9255 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
9256 sec = bfd_get_section_by_name (abfd,
9257 name + sizeof ".MIPS.content" - 1);
9258 BFD_ASSERT (sec != NULL);
9259 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9260 break;
9261
9262 case SHT_MIPS_SYMBOL_LIB:
9263 sec = bfd_get_section_by_name (abfd, ".dynsym");
9264 if (sec != NULL)
9265 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9266 sec = bfd_get_section_by_name (abfd, ".liblist");
9267 if (sec != NULL)
9268 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9269 break;
9270
9271 case SHT_MIPS_EVENTS:
9272 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9273 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9274 BFD_ASSERT (name != NULL);
0112cd26 9275 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
9276 sec = bfd_get_section_by_name (abfd,
9277 name + sizeof ".MIPS.events" - 1);
9278 else
9279 {
0112cd26 9280 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
9281 sec = bfd_get_section_by_name (abfd,
9282 (name
9283 + sizeof ".MIPS.post_rel" - 1));
9284 }
9285 BFD_ASSERT (sec != NULL);
9286 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9287 break;
9288
9289 }
9290 }
9291}
9292\f
8dc1a139 9293/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9294 segments. */
9295
9296int
a6b96beb
AM
9297_bfd_mips_elf_additional_program_headers (bfd *abfd,
9298 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9299{
9300 asection *s;
9301 int ret = 0;
9302
9303 /* See if we need a PT_MIPS_REGINFO segment. */
9304 s = bfd_get_section_by_name (abfd, ".reginfo");
9305 if (s && (s->flags & SEC_LOAD))
9306 ++ret;
9307
9308 /* See if we need a PT_MIPS_OPTIONS segment. */
9309 if (IRIX_COMPAT (abfd) == ict_irix6
9310 && bfd_get_section_by_name (abfd,
9311 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9312 ++ret;
9313
9314 /* See if we need a PT_MIPS_RTPROC segment. */
9315 if (IRIX_COMPAT (abfd) == ict_irix5
9316 && bfd_get_section_by_name (abfd, ".dynamic")
9317 && bfd_get_section_by_name (abfd, ".mdebug"))
9318 ++ret;
9319
98c904a8
RS
9320 /* Allocate a PT_NULL header in dynamic objects. See
9321 _bfd_mips_elf_modify_segment_map for details. */
9322 if (!SGI_COMPAT (abfd)
9323 && bfd_get_section_by_name (abfd, ".dynamic"))
9324 ++ret;
9325
b49e97c9
TS
9326 return ret;
9327}
9328
8dc1a139 9329/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9330
b34976b6 9331bfd_boolean
9719ad41 9332_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 9333 struct bfd_link_info *info)
b49e97c9
TS
9334{
9335 asection *s;
9336 struct elf_segment_map *m, **pm;
9337 bfd_size_type amt;
9338
9339 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9340 segment. */
9341 s = bfd_get_section_by_name (abfd, ".reginfo");
9342 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9343 {
9344 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9345 if (m->p_type == PT_MIPS_REGINFO)
9346 break;
9347 if (m == NULL)
9348 {
9349 amt = sizeof *m;
9719ad41 9350 m = bfd_zalloc (abfd, amt);
b49e97c9 9351 if (m == NULL)
b34976b6 9352 return FALSE;
b49e97c9
TS
9353
9354 m->p_type = PT_MIPS_REGINFO;
9355 m->count = 1;
9356 m->sections[0] = s;
9357
9358 /* We want to put it after the PHDR and INTERP segments. */
9359 pm = &elf_tdata (abfd)->segment_map;
9360 while (*pm != NULL
9361 && ((*pm)->p_type == PT_PHDR
9362 || (*pm)->p_type == PT_INTERP))
9363 pm = &(*pm)->next;
9364
9365 m->next = *pm;
9366 *pm = m;
9367 }
9368 }
9369
9370 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9371 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9372 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9373 table. */
c1fd6598
AO
9374 if (NEWABI_P (abfd)
9375 /* On non-IRIX6 new abi, we'll have already created a segment
9376 for this section, so don't create another. I'm not sure this
9377 is not also the case for IRIX 6, but I can't test it right
9378 now. */
9379 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9380 {
9381 for (s = abfd->sections; s; s = s->next)
9382 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9383 break;
9384
9385 if (s)
9386 {
9387 struct elf_segment_map *options_segment;
9388
98a8deaf
RS
9389 pm = &elf_tdata (abfd)->segment_map;
9390 while (*pm != NULL
9391 && ((*pm)->p_type == PT_PHDR
9392 || (*pm)->p_type == PT_INTERP))
9393 pm = &(*pm)->next;
b49e97c9 9394
8ded5a0f
AM
9395 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9396 {
9397 amt = sizeof (struct elf_segment_map);
9398 options_segment = bfd_zalloc (abfd, amt);
9399 options_segment->next = *pm;
9400 options_segment->p_type = PT_MIPS_OPTIONS;
9401 options_segment->p_flags = PF_R;
9402 options_segment->p_flags_valid = TRUE;
9403 options_segment->count = 1;
9404 options_segment->sections[0] = s;
9405 *pm = options_segment;
9406 }
b49e97c9
TS
9407 }
9408 }
9409 else
9410 {
9411 if (IRIX_COMPAT (abfd) == ict_irix5)
9412 {
9413 /* If there are .dynamic and .mdebug sections, we make a room
9414 for the RTPROC header. FIXME: Rewrite without section names. */
9415 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9416 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9417 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9418 {
9419 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9420 if (m->p_type == PT_MIPS_RTPROC)
9421 break;
9422 if (m == NULL)
9423 {
9424 amt = sizeof *m;
9719ad41 9425 m = bfd_zalloc (abfd, amt);
b49e97c9 9426 if (m == NULL)
b34976b6 9427 return FALSE;
b49e97c9
TS
9428
9429 m->p_type = PT_MIPS_RTPROC;
9430
9431 s = bfd_get_section_by_name (abfd, ".rtproc");
9432 if (s == NULL)
9433 {
9434 m->count = 0;
9435 m->p_flags = 0;
9436 m->p_flags_valid = 1;
9437 }
9438 else
9439 {
9440 m->count = 1;
9441 m->sections[0] = s;
9442 }
9443
9444 /* We want to put it after the DYNAMIC segment. */
9445 pm = &elf_tdata (abfd)->segment_map;
9446 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9447 pm = &(*pm)->next;
9448 if (*pm != NULL)
9449 pm = &(*pm)->next;
9450
9451 m->next = *pm;
9452 *pm = m;
9453 }
9454 }
9455 }
8dc1a139 9456 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9457 .dynstr, .dynsym, and .hash sections, and everything in
9458 between. */
9459 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9460 pm = &(*pm)->next)
9461 if ((*pm)->p_type == PT_DYNAMIC)
9462 break;
9463 m = *pm;
9464 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9465 {
9466 /* For a normal mips executable the permissions for the PT_DYNAMIC
9467 segment are read, write and execute. We do that here since
9468 the code in elf.c sets only the read permission. This matters
9469 sometimes for the dynamic linker. */
9470 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9471 {
9472 m->p_flags = PF_R | PF_W | PF_X;
9473 m->p_flags_valid = 1;
9474 }
9475 }
f6f62d6f
RS
9476 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9477 glibc's dynamic linker has traditionally derived the number of
9478 tags from the p_filesz field, and sometimes allocates stack
9479 arrays of that size. An overly-big PT_DYNAMIC segment can
9480 be actively harmful in such cases. Making PT_DYNAMIC contain
9481 other sections can also make life hard for the prelinker,
9482 which might move one of the other sections to a different
9483 PT_LOAD segment. */
9484 if (SGI_COMPAT (abfd)
9485 && m != NULL
9486 && m->count == 1
9487 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
9488 {
9489 static const char *sec_names[] =
9490 {
9491 ".dynamic", ".dynstr", ".dynsym", ".hash"
9492 };
9493 bfd_vma low, high;
9494 unsigned int i, c;
9495 struct elf_segment_map *n;
9496
792b4a53 9497 low = ~(bfd_vma) 0;
b49e97c9
TS
9498 high = 0;
9499 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9500 {
9501 s = bfd_get_section_by_name (abfd, sec_names[i]);
9502 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9503 {
9504 bfd_size_type sz;
9505
9506 if (low > s->vma)
9507 low = s->vma;
eea6121a 9508 sz = s->size;
b49e97c9
TS
9509 if (high < s->vma + sz)
9510 high = s->vma + sz;
9511 }
9512 }
9513
9514 c = 0;
9515 for (s = abfd->sections; s != NULL; s = s->next)
9516 if ((s->flags & SEC_LOAD) != 0
9517 && s->vma >= low
eea6121a 9518 && s->vma + s->size <= high)
b49e97c9
TS
9519 ++c;
9520
9521 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9522 n = bfd_zalloc (abfd, amt);
b49e97c9 9523 if (n == NULL)
b34976b6 9524 return FALSE;
b49e97c9
TS
9525 *n = *m;
9526 n->count = c;
9527
9528 i = 0;
9529 for (s = abfd->sections; s != NULL; s = s->next)
9530 {
9531 if ((s->flags & SEC_LOAD) != 0
9532 && s->vma >= low
eea6121a 9533 && s->vma + s->size <= high)
b49e97c9
TS
9534 {
9535 n->sections[i] = s;
9536 ++i;
9537 }
9538 }
9539
9540 *pm = n;
9541 }
9542 }
9543
98c904a8
RS
9544 /* Allocate a spare program header in dynamic objects so that tools
9545 like the prelinker can add an extra PT_LOAD entry.
9546
9547 If the prelinker needs to make room for a new PT_LOAD entry, its
9548 standard procedure is to move the first (read-only) sections into
9549 the new (writable) segment. However, the MIPS ABI requires
9550 .dynamic to be in a read-only segment, and the section will often
9551 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9552
9553 Although the prelinker could in principle move .dynamic to a
9554 writable segment, it seems better to allocate a spare program
9555 header instead, and avoid the need to move any sections.
9556 There is a long tradition of allocating spare dynamic tags,
9557 so allocating a spare program header seems like a natural
7c8b76cc
JM
9558 extension.
9559
9560 If INFO is NULL, we may be copying an already prelinked binary
9561 with objcopy or strip, so do not add this header. */
9562 if (info != NULL
9563 && !SGI_COMPAT (abfd)
98c904a8
RS
9564 && bfd_get_section_by_name (abfd, ".dynamic"))
9565 {
9566 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9567 if ((*pm)->p_type == PT_NULL)
9568 break;
9569 if (*pm == NULL)
9570 {
9571 m = bfd_zalloc (abfd, sizeof (*m));
9572 if (m == NULL)
9573 return FALSE;
9574
9575 m->p_type = PT_NULL;
9576 *pm = m;
9577 }
9578 }
9579
b34976b6 9580 return TRUE;
b49e97c9
TS
9581}
9582\f
9583/* Return the section that should be marked against GC for a given
9584 relocation. */
9585
9586asection *
9719ad41 9587_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 9588 struct bfd_link_info *info,
9719ad41
RS
9589 Elf_Internal_Rela *rel,
9590 struct elf_link_hash_entry *h,
9591 Elf_Internal_Sym *sym)
b49e97c9
TS
9592{
9593 /* ??? Do mips16 stub sections need to be handled special? */
9594
9595 if (h != NULL)
07adf181
AM
9596 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9597 {
9598 case R_MIPS_GNU_VTINHERIT:
9599 case R_MIPS_GNU_VTENTRY:
9600 return NULL;
9601 }
b49e97c9 9602
07adf181 9603 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
9604}
9605
9606/* Update the got entry reference counts for the section being removed. */
9607
b34976b6 9608bfd_boolean
9719ad41
RS
9609_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9610 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9611 asection *sec ATTRIBUTE_UNUSED,
9612 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9613{
9614#if 0
9615 Elf_Internal_Shdr *symtab_hdr;
9616 struct elf_link_hash_entry **sym_hashes;
9617 bfd_signed_vma *local_got_refcounts;
9618 const Elf_Internal_Rela *rel, *relend;
9619 unsigned long r_symndx;
9620 struct elf_link_hash_entry *h;
9621
9622 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9623 sym_hashes = elf_sym_hashes (abfd);
9624 local_got_refcounts = elf_local_got_refcounts (abfd);
9625
9626 relend = relocs + sec->reloc_count;
9627 for (rel = relocs; rel < relend; rel++)
9628 switch (ELF_R_TYPE (abfd, rel->r_info))
9629 {
9630 case R_MIPS_GOT16:
9631 case R_MIPS_CALL16:
9632 case R_MIPS_CALL_HI16:
9633 case R_MIPS_CALL_LO16:
9634 case R_MIPS_GOT_HI16:
9635 case R_MIPS_GOT_LO16:
4a14403c
TS
9636 case R_MIPS_GOT_DISP:
9637 case R_MIPS_GOT_PAGE:
9638 case R_MIPS_GOT_OFST:
b49e97c9
TS
9639 /* ??? It would seem that the existing MIPS code does no sort
9640 of reference counting or whatnot on its GOT and PLT entries,
9641 so it is not possible to garbage collect them at this time. */
9642 break;
9643
9644 default:
9645 break;
9646 }
9647#endif
9648
b34976b6 9649 return TRUE;
b49e97c9
TS
9650}
9651\f
9652/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9653 hiding the old indirect symbol. Process additional relocation
9654 information. Also called for weakdefs, in which case we just let
9655 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9656
9657void
fcfa13d2 9658_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9659 struct elf_link_hash_entry *dir,
9660 struct elf_link_hash_entry *ind)
b49e97c9
TS
9661{
9662 struct mips_elf_link_hash_entry *dirmips, *indmips;
9663
fcfa13d2 9664 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9665
9666 if (ind->root.type != bfd_link_hash_indirect)
9667 return;
9668
9669 dirmips = (struct mips_elf_link_hash_entry *) dir;
9670 indmips = (struct mips_elf_link_hash_entry *) ind;
9671 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9672 if (indmips->readonly_reloc)
b34976b6 9673 dirmips->readonly_reloc = TRUE;
b49e97c9 9674 if (indmips->no_fn_stub)
b34976b6 9675 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9676
9677 if (dirmips->tls_type == 0)
9678 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9679}
9680
9681void
9719ad41
RS
9682_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9683 struct elf_link_hash_entry *entry,
9684 bfd_boolean force_local)
b49e97c9
TS
9685{
9686 bfd *dynobj;
9687 asection *got;
9688 struct mips_got_info *g;
9689 struct mips_elf_link_hash_entry *h;
8275b357 9690 struct mips_elf_link_hash_table *htab;
7c5fcef7 9691
b49e97c9 9692 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9693 if (h->forced_local)
9694 return;
4b555070 9695 h->forced_local = force_local;
7c5fcef7 9696
b49e97c9 9697 dynobj = elf_hash_table (info)->dynobj;
8275b357 9698 htab = mips_elf_hash_table (info);
8d1d654f 9699 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 9700 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 9701 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 9702 {
c45a316a
AM
9703 if (g->next)
9704 {
9705 struct mips_got_entry e;
9706 struct mips_got_info *gg = g;
9707
9708 /* Since we're turning what used to be a global symbol into a
9709 local one, bump up the number of local entries of each GOT
9710 that had an entry for it. This will automatically decrease
9711 the number of global entries, since global_gotno is actually
9712 the upper limit of global entries. */
9713 e.abfd = dynobj;
9714 e.symndx = -1;
9715 e.d.h = h;
0f20cc35 9716 e.tls_type = 0;
c45a316a
AM
9717
9718 for (g = g->next; g != gg; g = g->next)
9719 if (htab_find (g->got_entries, &e))
9720 {
9721 BFD_ASSERT (g->global_gotno > 0);
9722 g->local_gotno++;
9723 g->global_gotno--;
9724 }
b49e97c9 9725
c45a316a
AM
9726 /* If this was a global symbol forced into the primary GOT, we
9727 no longer need an entry for it. We can't release the entry
9728 at this point, but we must at least stop counting it as one
9729 of the symbols that required a forced got entry. */
9730 if (h->root.got.offset == 2)
9731 {
9732 BFD_ASSERT (gg->assigned_gotno > 0);
9733 gg->assigned_gotno--;
9734 }
9735 }
c45a316a 9736 else if (h->root.got.offset == 1)
f4416af6 9737 {
8275b357
RS
9738 /* check_relocs didn't know that this symbol would be
9739 forced-local, so add an extra local got entry. */
c45a316a 9740 g->local_gotno++;
8275b357
RS
9741 if (htab->computed_got_sizes)
9742 {
9743 /* We'll have treated this symbol as global rather
9744 than local. */
9745 BFD_ASSERT (g->global_gotno > 0);
9746 g->global_gotno--;
9747 }
f4416af6 9748 }
8275b357
RS
9749 else if (htab->is_vxworks && h->root.needs_plt)
9750 {
9751 /* check_relocs didn't know that this symbol would be
9752 forced-local, so add an extra local got entry. */
9753 g->local_gotno++;
9754 if (htab->computed_got_sizes)
9755 /* The symbol is only used in call relocations, so we'll
9756 have assumed it only needs a .got.plt entry. Increase
9757 the size of .got accordingly. */
9758 got->size += MIPS_ELF_GOT_SIZE (dynobj);
9759 }
f4416af6 9760 }
f4416af6
AO
9761
9762 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
9763}
9764\f
d01414a5
TS
9765#define PDR_SIZE 32
9766
b34976b6 9767bfd_boolean
9719ad41
RS
9768_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9769 struct bfd_link_info *info)
d01414a5
TS
9770{
9771 asection *o;
b34976b6 9772 bfd_boolean ret = FALSE;
d01414a5
TS
9773 unsigned char *tdata;
9774 size_t i, skip;
9775
9776 o = bfd_get_section_by_name (abfd, ".pdr");
9777 if (! o)
b34976b6 9778 return FALSE;
eea6121a 9779 if (o->size == 0)
b34976b6 9780 return FALSE;
eea6121a 9781 if (o->size % PDR_SIZE != 0)
b34976b6 9782 return FALSE;
d01414a5
TS
9783 if (o->output_section != NULL
9784 && bfd_is_abs_section (o->output_section))
b34976b6 9785 return FALSE;
d01414a5 9786
eea6121a 9787 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 9788 if (! tdata)
b34976b6 9789 return FALSE;
d01414a5 9790
9719ad41 9791 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 9792 info->keep_memory);
d01414a5
TS
9793 if (!cookie->rels)
9794 {
9795 free (tdata);
b34976b6 9796 return FALSE;
d01414a5
TS
9797 }
9798
9799 cookie->rel = cookie->rels;
9800 cookie->relend = cookie->rels + o->reloc_count;
9801
eea6121a 9802 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 9803 {
c152c796 9804 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
9805 {
9806 tdata[i] = 1;
9807 skip ++;
9808 }
9809 }
9810
9811 if (skip != 0)
9812 {
f0abc2a1 9813 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 9814 o->size -= skip * PDR_SIZE;
b34976b6 9815 ret = TRUE;
d01414a5
TS
9816 }
9817 else
9818 free (tdata);
9819
9820 if (! info->keep_memory)
9821 free (cookie->rels);
9822
9823 return ret;
9824}
9825
b34976b6 9826bfd_boolean
9719ad41 9827_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
9828{
9829 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
9830 return TRUE;
9831 return FALSE;
53bfd6b4 9832}
d01414a5 9833
b34976b6 9834bfd_boolean
c7b8f16e
JB
9835_bfd_mips_elf_write_section (bfd *output_bfd,
9836 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9837 asection *sec, bfd_byte *contents)
d01414a5
TS
9838{
9839 bfd_byte *to, *from, *end;
9840 int i;
9841
9842 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 9843 return FALSE;
d01414a5 9844
f0abc2a1 9845 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 9846 return FALSE;
d01414a5
TS
9847
9848 to = contents;
eea6121a 9849 end = contents + sec->size;
d01414a5
TS
9850 for (from = contents, i = 0;
9851 from < end;
9852 from += PDR_SIZE, i++)
9853 {
f0abc2a1 9854 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
9855 continue;
9856 if (to != from)
9857 memcpy (to, from, PDR_SIZE);
9858 to += PDR_SIZE;
9859 }
9860 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 9861 sec->output_offset, sec->size);
b34976b6 9862 return TRUE;
d01414a5 9863}
53bfd6b4 9864\f
b49e97c9
TS
9865/* MIPS ELF uses a special find_nearest_line routine in order the
9866 handle the ECOFF debugging information. */
9867
9868struct mips_elf_find_line
9869{
9870 struct ecoff_debug_info d;
9871 struct ecoff_find_line i;
9872};
9873
b34976b6 9874bfd_boolean
9719ad41
RS
9875_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9876 asymbol **symbols, bfd_vma offset,
9877 const char **filename_ptr,
9878 const char **functionname_ptr,
9879 unsigned int *line_ptr)
b49e97c9
TS
9880{
9881 asection *msec;
9882
9883 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9884 filename_ptr, functionname_ptr,
9885 line_ptr))
b34976b6 9886 return TRUE;
b49e97c9
TS
9887
9888 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9889 filename_ptr, functionname_ptr,
9719ad41 9890 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 9891 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 9892 return TRUE;
b49e97c9
TS
9893
9894 msec = bfd_get_section_by_name (abfd, ".mdebug");
9895 if (msec != NULL)
9896 {
9897 flagword origflags;
9898 struct mips_elf_find_line *fi;
9899 const struct ecoff_debug_swap * const swap =
9900 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9901
9902 /* If we are called during a link, mips_elf_final_link may have
9903 cleared the SEC_HAS_CONTENTS field. We force it back on here
9904 if appropriate (which it normally will be). */
9905 origflags = msec->flags;
9906 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9907 msec->flags |= SEC_HAS_CONTENTS;
9908
9909 fi = elf_tdata (abfd)->find_line_info;
9910 if (fi == NULL)
9911 {
9912 bfd_size_type external_fdr_size;
9913 char *fraw_src;
9914 char *fraw_end;
9915 struct fdr *fdr_ptr;
9916 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9917
9719ad41 9918 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
9919 if (fi == NULL)
9920 {
9921 msec->flags = origflags;
b34976b6 9922 return FALSE;
b49e97c9
TS
9923 }
9924
9925 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9926 {
9927 msec->flags = origflags;
b34976b6 9928 return FALSE;
b49e97c9
TS
9929 }
9930
9931 /* Swap in the FDR information. */
9932 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 9933 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
9934 if (fi->d.fdr == NULL)
9935 {
9936 msec->flags = origflags;
b34976b6 9937 return FALSE;
b49e97c9
TS
9938 }
9939 external_fdr_size = swap->external_fdr_size;
9940 fdr_ptr = fi->d.fdr;
9941 fraw_src = (char *) fi->d.external_fdr;
9942 fraw_end = (fraw_src
9943 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9944 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 9945 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
9946
9947 elf_tdata (abfd)->find_line_info = fi;
9948
9949 /* Note that we don't bother to ever free this information.
9950 find_nearest_line is either called all the time, as in
9951 objdump -l, so the information should be saved, or it is
9952 rarely called, as in ld error messages, so the memory
9953 wasted is unimportant. Still, it would probably be a
9954 good idea for free_cached_info to throw it away. */
9955 }
9956
9957 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9958 &fi->i, filename_ptr, functionname_ptr,
9959 line_ptr))
9960 {
9961 msec->flags = origflags;
b34976b6 9962 return TRUE;
b49e97c9
TS
9963 }
9964
9965 msec->flags = origflags;
9966 }
9967
9968 /* Fall back on the generic ELF find_nearest_line routine. */
9969
9970 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9971 filename_ptr, functionname_ptr,
9972 line_ptr);
9973}
4ab527b0
FF
9974
9975bfd_boolean
9976_bfd_mips_elf_find_inliner_info (bfd *abfd,
9977 const char **filename_ptr,
9978 const char **functionname_ptr,
9979 unsigned int *line_ptr)
9980{
9981 bfd_boolean found;
9982 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9983 functionname_ptr, line_ptr,
9984 & elf_tdata (abfd)->dwarf2_find_line_info);
9985 return found;
9986}
9987
b49e97c9
TS
9988\f
9989/* When are writing out the .options or .MIPS.options section,
9990 remember the bytes we are writing out, so that we can install the
9991 GP value in the section_processing routine. */
9992
b34976b6 9993bfd_boolean
9719ad41
RS
9994_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9995 const void *location,
9996 file_ptr offset, bfd_size_type count)
b49e97c9 9997{
cc2e31b9 9998 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
9999 {
10000 bfd_byte *c;
10001
10002 if (elf_section_data (section) == NULL)
10003 {
10004 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 10005 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 10006 if (elf_section_data (section) == NULL)
b34976b6 10007 return FALSE;
b49e97c9 10008 }
f0abc2a1 10009 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
10010 if (c == NULL)
10011 {
eea6121a 10012 c = bfd_zalloc (abfd, section->size);
b49e97c9 10013 if (c == NULL)
b34976b6 10014 return FALSE;
f0abc2a1 10015 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
10016 }
10017
9719ad41 10018 memcpy (c + offset, location, count);
b49e97c9
TS
10019 }
10020
10021 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10022 count);
10023}
10024
10025/* This is almost identical to bfd_generic_get_... except that some
10026 MIPS relocations need to be handled specially. Sigh. */
10027
10028bfd_byte *
9719ad41
RS
10029_bfd_elf_mips_get_relocated_section_contents
10030 (bfd *abfd,
10031 struct bfd_link_info *link_info,
10032 struct bfd_link_order *link_order,
10033 bfd_byte *data,
10034 bfd_boolean relocatable,
10035 asymbol **symbols)
b49e97c9
TS
10036{
10037 /* Get enough memory to hold the stuff */
10038 bfd *input_bfd = link_order->u.indirect.section->owner;
10039 asection *input_section = link_order->u.indirect.section;
eea6121a 10040 bfd_size_type sz;
b49e97c9
TS
10041
10042 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10043 arelent **reloc_vector = NULL;
10044 long reloc_count;
10045
10046 if (reloc_size < 0)
10047 goto error_return;
10048
9719ad41 10049 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
10050 if (reloc_vector == NULL && reloc_size != 0)
10051 goto error_return;
10052
10053 /* read in the section */
eea6121a
AM
10054 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10055 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
10056 goto error_return;
10057
b49e97c9
TS
10058 reloc_count = bfd_canonicalize_reloc (input_bfd,
10059 input_section,
10060 reloc_vector,
10061 symbols);
10062 if (reloc_count < 0)
10063 goto error_return;
10064
10065 if (reloc_count > 0)
10066 {
10067 arelent **parent;
10068 /* for mips */
10069 int gp_found;
10070 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10071
10072 {
10073 struct bfd_hash_entry *h;
10074 struct bfd_link_hash_entry *lh;
10075 /* Skip all this stuff if we aren't mixing formats. */
10076 if (abfd && input_bfd
10077 && abfd->xvec == input_bfd->xvec)
10078 lh = 0;
10079 else
10080 {
b34976b6 10081 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
10082 lh = (struct bfd_link_hash_entry *) h;
10083 }
10084 lookup:
10085 if (lh)
10086 {
10087 switch (lh->type)
10088 {
10089 case bfd_link_hash_undefined:
10090 case bfd_link_hash_undefweak:
10091 case bfd_link_hash_common:
10092 gp_found = 0;
10093 break;
10094 case bfd_link_hash_defined:
10095 case bfd_link_hash_defweak:
10096 gp_found = 1;
10097 gp = lh->u.def.value;
10098 break;
10099 case bfd_link_hash_indirect:
10100 case bfd_link_hash_warning:
10101 lh = lh->u.i.link;
10102 /* @@FIXME ignoring warning for now */
10103 goto lookup;
10104 case bfd_link_hash_new:
10105 default:
10106 abort ();
10107 }
10108 }
10109 else
10110 gp_found = 0;
10111 }
10112 /* end mips */
9719ad41 10113 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 10114 {
9719ad41 10115 char *error_message = NULL;
b49e97c9
TS
10116 bfd_reloc_status_type r;
10117
10118 /* Specific to MIPS: Deal with relocation types that require
10119 knowing the gp of the output bfd. */
10120 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 10121
8236346f
EC
10122 /* If we've managed to find the gp and have a special
10123 function for the relocation then go ahead, else default
10124 to the generic handling. */
10125 if (gp_found
10126 && (*parent)->howto->special_function
10127 == _bfd_mips_elf32_gprel16_reloc)
10128 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10129 input_section, relocatable,
10130 data, gp);
10131 else
86324f90 10132 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
10133 input_section,
10134 relocatable ? abfd : NULL,
10135 &error_message);
b49e97c9 10136
1049f94e 10137 if (relocatable)
b49e97c9
TS
10138 {
10139 asection *os = input_section->output_section;
10140
10141 /* A partial link, so keep the relocs */
10142 os->orelocation[os->reloc_count] = *parent;
10143 os->reloc_count++;
10144 }
10145
10146 if (r != bfd_reloc_ok)
10147 {
10148 switch (r)
10149 {
10150 case bfd_reloc_undefined:
10151 if (!((*link_info->callbacks->undefined_symbol)
10152 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 10153 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
10154 goto error_return;
10155 break;
10156 case bfd_reloc_dangerous:
9719ad41 10157 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
10158 if (!((*link_info->callbacks->reloc_dangerous)
10159 (link_info, error_message, input_bfd, input_section,
10160 (*parent)->address)))
10161 goto error_return;
10162 break;
10163 case bfd_reloc_overflow:
10164 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
10165 (link_info, NULL,
10166 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
10167 (*parent)->howto->name, (*parent)->addend,
10168 input_bfd, input_section, (*parent)->address)))
10169 goto error_return;
10170 break;
10171 case bfd_reloc_outofrange:
10172 default:
10173 abort ();
10174 break;
10175 }
10176
10177 }
10178 }
10179 }
10180 if (reloc_vector != NULL)
10181 free (reloc_vector);
10182 return data;
10183
10184error_return:
10185 if (reloc_vector != NULL)
10186 free (reloc_vector);
10187 return NULL;
10188}
10189\f
10190/* Create a MIPS ELF linker hash table. */
10191
10192struct bfd_link_hash_table *
9719ad41 10193_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
10194{
10195 struct mips_elf_link_hash_table *ret;
10196 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10197
9719ad41
RS
10198 ret = bfd_malloc (amt);
10199 if (ret == NULL)
b49e97c9
TS
10200 return NULL;
10201
66eb6687
AM
10202 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10203 mips_elf_link_hash_newfunc,
10204 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10205 {
e2d34d7d 10206 free (ret);
b49e97c9
TS
10207 return NULL;
10208 }
10209
10210#if 0
10211 /* We no longer use this. */
10212 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10213 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10214#endif
10215 ret->procedure_count = 0;
10216 ret->compact_rel_size = 0;
b34976b6 10217 ret->use_rld_obj_head = FALSE;
b49e97c9 10218 ret->rld_value = 0;
b34976b6 10219 ret->mips16_stubs_seen = FALSE;
8275b357 10220 ret->computed_got_sizes = FALSE;
0a44bf69 10221 ret->is_vxworks = FALSE;
0e53d9da 10222 ret->small_data_overflow_reported = FALSE;
0a44bf69
RS
10223 ret->srelbss = NULL;
10224 ret->sdynbss = NULL;
10225 ret->srelplt = NULL;
10226 ret->srelplt2 = NULL;
10227 ret->sgotplt = NULL;
10228 ret->splt = NULL;
10229 ret->plt_header_size = 0;
10230 ret->plt_entry_size = 0;
5108fc1b 10231 ret->function_stub_size = 0;
b49e97c9
TS
10232
10233 return &ret->root.root;
10234}
0a44bf69
RS
10235
10236/* Likewise, but indicate that the target is VxWorks. */
10237
10238struct bfd_link_hash_table *
10239_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10240{
10241 struct bfd_link_hash_table *ret;
10242
10243 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10244 if (ret)
10245 {
10246 struct mips_elf_link_hash_table *htab;
10247
10248 htab = (struct mips_elf_link_hash_table *) ret;
10249 htab->is_vxworks = 1;
10250 }
10251 return ret;
10252}
b49e97c9
TS
10253\f
10254/* We need to use a special link routine to handle the .reginfo and
10255 the .mdebug sections. We need to merge all instances of these
10256 sections together, not write them all out sequentially. */
10257
b34976b6 10258bfd_boolean
9719ad41 10259_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10260{
b49e97c9
TS
10261 asection *o;
10262 struct bfd_link_order *p;
10263 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10264 asection *rtproc_sec;
10265 Elf32_RegInfo reginfo;
10266 struct ecoff_debug_info debug;
7a2a6943
NC
10267 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10268 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10269 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10270 void *mdebug_handle = NULL;
b49e97c9
TS
10271 asection *s;
10272 EXTR esym;
10273 unsigned int i;
10274 bfd_size_type amt;
0a44bf69 10275 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10276
10277 static const char * const secname[] =
10278 {
10279 ".text", ".init", ".fini", ".data",
10280 ".rodata", ".sdata", ".sbss", ".bss"
10281 };
10282 static const int sc[] =
10283 {
10284 scText, scInit, scFini, scData,
10285 scRData, scSData, scSBss, scBss
10286 };
10287
b49e97c9
TS
10288 /* We'd carefully arranged the dynamic symbol indices, and then the
10289 generic size_dynamic_sections renumbered them out from under us.
10290 Rather than trying somehow to prevent the renumbering, just do
10291 the sort again. */
0a44bf69 10292 htab = mips_elf_hash_table (info);
b49e97c9
TS
10293 if (elf_hash_table (info)->dynamic_sections_created)
10294 {
10295 bfd *dynobj;
10296 asection *got;
10297 struct mips_got_info *g;
7a2a6943 10298 bfd_size_type dynsecsymcount;
b49e97c9
TS
10299
10300 /* When we resort, we must tell mips_elf_sort_hash_table what
10301 the lowest index it may use is. That's the number of section
10302 symbols we're going to add. The generic ELF linker only
10303 adds these symbols when building a shared object. Note that
10304 we count the sections after (possibly) removing the .options
10305 section above. */
7a2a6943 10306
5108fc1b 10307 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10308 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10309 return FALSE;
b49e97c9
TS
10310
10311 /* Make sure we didn't grow the global .got region. */
10312 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10313 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10314 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10315
10316 if (g->global_gotsym != NULL)
10317 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10318 - g->global_gotsym->dynindx)
10319 <= g->global_gotno);
10320 }
10321
b49e97c9
TS
10322 /* Get a value for the GP register. */
10323 if (elf_gp (abfd) == 0)
10324 {
10325 struct bfd_link_hash_entry *h;
10326
b34976b6 10327 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10328 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10329 elf_gp (abfd) = (h->u.def.value
10330 + h->u.def.section->output_section->vma
10331 + h->u.def.section->output_offset);
0a44bf69
RS
10332 else if (htab->is_vxworks
10333 && (h = bfd_link_hash_lookup (info->hash,
10334 "_GLOBAL_OFFSET_TABLE_",
10335 FALSE, FALSE, TRUE))
10336 && h->type == bfd_link_hash_defined)
10337 elf_gp (abfd) = (h->u.def.section->output_section->vma
10338 + h->u.def.section->output_offset
10339 + h->u.def.value);
1049f94e 10340 else if (info->relocatable)
b49e97c9
TS
10341 {
10342 bfd_vma lo = MINUS_ONE;
10343
10344 /* Find the GP-relative section with the lowest offset. */
9719ad41 10345 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10346 if (o->vma < lo
10347 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10348 lo = o->vma;
10349
10350 /* And calculate GP relative to that. */
0a44bf69 10351 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10352 }
10353 else
10354 {
10355 /* If the relocate_section function needs to do a reloc
10356 involving the GP value, it should make a reloc_dangerous
10357 callback to warn that GP is not defined. */
10358 }
10359 }
10360
10361 /* Go through the sections and collect the .reginfo and .mdebug
10362 information. */
10363 reginfo_sec = NULL;
10364 mdebug_sec = NULL;
10365 gptab_data_sec = NULL;
10366 gptab_bss_sec = NULL;
9719ad41 10367 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10368 {
10369 if (strcmp (o->name, ".reginfo") == 0)
10370 {
10371 memset (&reginfo, 0, sizeof reginfo);
10372
10373 /* We have found the .reginfo section in the output file.
10374 Look through all the link_orders comprising it and merge
10375 the information together. */
8423293d 10376 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10377 {
10378 asection *input_section;
10379 bfd *input_bfd;
10380 Elf32_External_RegInfo ext;
10381 Elf32_RegInfo sub;
10382
10383 if (p->type != bfd_indirect_link_order)
10384 {
10385 if (p->type == bfd_data_link_order)
10386 continue;
10387 abort ();
10388 }
10389
10390 input_section = p->u.indirect.section;
10391 input_bfd = input_section->owner;
10392
b49e97c9 10393 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10394 &ext, 0, sizeof ext))
b34976b6 10395 return FALSE;
b49e97c9
TS
10396
10397 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10398
10399 reginfo.ri_gprmask |= sub.ri_gprmask;
10400 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10401 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10402 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10403 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10404
10405 /* ri_gp_value is set by the function
10406 mips_elf32_section_processing when the section is
10407 finally written out. */
10408
10409 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10410 elf_link_input_bfd ignores this section. */
10411 input_section->flags &= ~SEC_HAS_CONTENTS;
10412 }
10413
10414 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10415 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10416
10417 /* Skip this section later on (I don't think this currently
10418 matters, but someday it might). */
8423293d 10419 o->map_head.link_order = NULL;
b49e97c9
TS
10420
10421 reginfo_sec = o;
10422 }
10423
10424 if (strcmp (o->name, ".mdebug") == 0)
10425 {
10426 struct extsym_info einfo;
10427 bfd_vma last;
10428
10429 /* We have found the .mdebug section in the output file.
10430 Look through all the link_orders comprising it and merge
10431 the information together. */
10432 symhdr->magic = swap->sym_magic;
10433 /* FIXME: What should the version stamp be? */
10434 symhdr->vstamp = 0;
10435 symhdr->ilineMax = 0;
10436 symhdr->cbLine = 0;
10437 symhdr->idnMax = 0;
10438 symhdr->ipdMax = 0;
10439 symhdr->isymMax = 0;
10440 symhdr->ioptMax = 0;
10441 symhdr->iauxMax = 0;
10442 symhdr->issMax = 0;
10443 symhdr->issExtMax = 0;
10444 symhdr->ifdMax = 0;
10445 symhdr->crfd = 0;
10446 symhdr->iextMax = 0;
10447
10448 /* We accumulate the debugging information itself in the
10449 debug_info structure. */
10450 debug.line = NULL;
10451 debug.external_dnr = NULL;
10452 debug.external_pdr = NULL;
10453 debug.external_sym = NULL;
10454 debug.external_opt = NULL;
10455 debug.external_aux = NULL;
10456 debug.ss = NULL;
10457 debug.ssext = debug.ssext_end = NULL;
10458 debug.external_fdr = NULL;
10459 debug.external_rfd = NULL;
10460 debug.external_ext = debug.external_ext_end = NULL;
10461
10462 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10463 if (mdebug_handle == NULL)
b34976b6 10464 return FALSE;
b49e97c9
TS
10465
10466 esym.jmptbl = 0;
10467 esym.cobol_main = 0;
10468 esym.weakext = 0;
10469 esym.reserved = 0;
10470 esym.ifd = ifdNil;
10471 esym.asym.iss = issNil;
10472 esym.asym.st = stLocal;
10473 esym.asym.reserved = 0;
10474 esym.asym.index = indexNil;
10475 last = 0;
10476 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10477 {
10478 esym.asym.sc = sc[i];
10479 s = bfd_get_section_by_name (abfd, secname[i]);
10480 if (s != NULL)
10481 {
10482 esym.asym.value = s->vma;
eea6121a 10483 last = s->vma + s->size;
b49e97c9
TS
10484 }
10485 else
10486 esym.asym.value = last;
10487 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10488 secname[i], &esym))
b34976b6 10489 return FALSE;
b49e97c9
TS
10490 }
10491
8423293d 10492 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10493 {
10494 asection *input_section;
10495 bfd *input_bfd;
10496 const struct ecoff_debug_swap *input_swap;
10497 struct ecoff_debug_info input_debug;
10498 char *eraw_src;
10499 char *eraw_end;
10500
10501 if (p->type != bfd_indirect_link_order)
10502 {
10503 if (p->type == bfd_data_link_order)
10504 continue;
10505 abort ();
10506 }
10507
10508 input_section = p->u.indirect.section;
10509 input_bfd = input_section->owner;
10510
10511 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10512 || (get_elf_backend_data (input_bfd)
10513 ->elf_backend_ecoff_debug_swap) == NULL)
10514 {
10515 /* I don't know what a non MIPS ELF bfd would be
10516 doing with a .mdebug section, but I don't really
10517 want to deal with it. */
10518 continue;
10519 }
10520
10521 input_swap = (get_elf_backend_data (input_bfd)
10522 ->elf_backend_ecoff_debug_swap);
10523
eea6121a 10524 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10525
10526 /* The ECOFF linking code expects that we have already
10527 read in the debugging information and set up an
10528 ecoff_debug_info structure, so we do that now. */
10529 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10530 &input_debug))
b34976b6 10531 return FALSE;
b49e97c9
TS
10532
10533 if (! (bfd_ecoff_debug_accumulate
10534 (mdebug_handle, abfd, &debug, swap, input_bfd,
10535 &input_debug, input_swap, info)))
b34976b6 10536 return FALSE;
b49e97c9
TS
10537
10538 /* Loop through the external symbols. For each one with
10539 interesting information, try to find the symbol in
10540 the linker global hash table and save the information
10541 for the output external symbols. */
10542 eraw_src = input_debug.external_ext;
10543 eraw_end = (eraw_src
10544 + (input_debug.symbolic_header.iextMax
10545 * input_swap->external_ext_size));
10546 for (;
10547 eraw_src < eraw_end;
10548 eraw_src += input_swap->external_ext_size)
10549 {
10550 EXTR ext;
10551 const char *name;
10552 struct mips_elf_link_hash_entry *h;
10553
9719ad41 10554 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10555 if (ext.asym.sc == scNil
10556 || ext.asym.sc == scUndefined
10557 || ext.asym.sc == scSUndefined)
10558 continue;
10559
10560 name = input_debug.ssext + ext.asym.iss;
10561 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10562 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10563 if (h == NULL || h->esym.ifd != -2)
10564 continue;
10565
10566 if (ext.ifd != -1)
10567 {
10568 BFD_ASSERT (ext.ifd
10569 < input_debug.symbolic_header.ifdMax);
10570 ext.ifd = input_debug.ifdmap[ext.ifd];
10571 }
10572
10573 h->esym = ext;
10574 }
10575
10576 /* Free up the information we just read. */
10577 free (input_debug.line);
10578 free (input_debug.external_dnr);
10579 free (input_debug.external_pdr);
10580 free (input_debug.external_sym);
10581 free (input_debug.external_opt);
10582 free (input_debug.external_aux);
10583 free (input_debug.ss);
10584 free (input_debug.ssext);
10585 free (input_debug.external_fdr);
10586 free (input_debug.external_rfd);
10587 free (input_debug.external_ext);
10588
10589 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10590 elf_link_input_bfd ignores this section. */
10591 input_section->flags &= ~SEC_HAS_CONTENTS;
10592 }
10593
10594 if (SGI_COMPAT (abfd) && info->shared)
10595 {
10596 /* Create .rtproc section. */
10597 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10598 if (rtproc_sec == NULL)
10599 {
10600 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10601 | SEC_LINKER_CREATED | SEC_READONLY);
10602
3496cb2a
L
10603 rtproc_sec = bfd_make_section_with_flags (abfd,
10604 ".rtproc",
10605 flags);
b49e97c9 10606 if (rtproc_sec == NULL
b49e97c9 10607 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10608 return FALSE;
b49e97c9
TS
10609 }
10610
10611 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10612 info, rtproc_sec,
10613 &debug))
b34976b6 10614 return FALSE;
b49e97c9
TS
10615 }
10616
10617 /* Build the external symbol information. */
10618 einfo.abfd = abfd;
10619 einfo.info = info;
10620 einfo.debug = &debug;
10621 einfo.swap = swap;
b34976b6 10622 einfo.failed = FALSE;
b49e97c9 10623 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10624 mips_elf_output_extsym, &einfo);
b49e97c9 10625 if (einfo.failed)
b34976b6 10626 return FALSE;
b49e97c9
TS
10627
10628 /* Set the size of the .mdebug section. */
eea6121a 10629 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10630
10631 /* Skip this section later on (I don't think this currently
10632 matters, but someday it might). */
8423293d 10633 o->map_head.link_order = NULL;
b49e97c9
TS
10634
10635 mdebug_sec = o;
10636 }
10637
0112cd26 10638 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
10639 {
10640 const char *subname;
10641 unsigned int c;
10642 Elf32_gptab *tab;
10643 Elf32_External_gptab *ext_tab;
10644 unsigned int j;
10645
10646 /* The .gptab.sdata and .gptab.sbss sections hold
10647 information describing how the small data area would
10648 change depending upon the -G switch. These sections
10649 not used in executables files. */
1049f94e 10650 if (! info->relocatable)
b49e97c9 10651 {
8423293d 10652 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10653 {
10654 asection *input_section;
10655
10656 if (p->type != bfd_indirect_link_order)
10657 {
10658 if (p->type == bfd_data_link_order)
10659 continue;
10660 abort ();
10661 }
10662
10663 input_section = p->u.indirect.section;
10664
10665 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10666 elf_link_input_bfd ignores this section. */
10667 input_section->flags &= ~SEC_HAS_CONTENTS;
10668 }
10669
10670 /* Skip this section later on (I don't think this
10671 currently matters, but someday it might). */
8423293d 10672 o->map_head.link_order = NULL;
b49e97c9
TS
10673
10674 /* Really remove the section. */
5daa8fe7 10675 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10676 --abfd->section_count;
10677
10678 continue;
10679 }
10680
10681 /* There is one gptab for initialized data, and one for
10682 uninitialized data. */
10683 if (strcmp (o->name, ".gptab.sdata") == 0)
10684 gptab_data_sec = o;
10685 else if (strcmp (o->name, ".gptab.sbss") == 0)
10686 gptab_bss_sec = o;
10687 else
10688 {
10689 (*_bfd_error_handler)
10690 (_("%s: illegal section name `%s'"),
10691 bfd_get_filename (abfd), o->name);
10692 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10693 return FALSE;
b49e97c9
TS
10694 }
10695
10696 /* The linker script always combines .gptab.data and
10697 .gptab.sdata into .gptab.sdata, and likewise for
10698 .gptab.bss and .gptab.sbss. It is possible that there is
10699 no .sdata or .sbss section in the output file, in which
10700 case we must change the name of the output section. */
10701 subname = o->name + sizeof ".gptab" - 1;
10702 if (bfd_get_section_by_name (abfd, subname) == NULL)
10703 {
10704 if (o == gptab_data_sec)
10705 o->name = ".gptab.data";
10706 else
10707 o->name = ".gptab.bss";
10708 subname = o->name + sizeof ".gptab" - 1;
10709 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10710 }
10711
10712 /* Set up the first entry. */
10713 c = 1;
10714 amt = c * sizeof (Elf32_gptab);
9719ad41 10715 tab = bfd_malloc (amt);
b49e97c9 10716 if (tab == NULL)
b34976b6 10717 return FALSE;
b49e97c9
TS
10718 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10719 tab[0].gt_header.gt_unused = 0;
10720
10721 /* Combine the input sections. */
8423293d 10722 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10723 {
10724 asection *input_section;
10725 bfd *input_bfd;
10726 bfd_size_type size;
10727 unsigned long last;
10728 bfd_size_type gpentry;
10729
10730 if (p->type != bfd_indirect_link_order)
10731 {
10732 if (p->type == bfd_data_link_order)
10733 continue;
10734 abort ();
10735 }
10736
10737 input_section = p->u.indirect.section;
10738 input_bfd = input_section->owner;
10739
10740 /* Combine the gptab entries for this input section one
10741 by one. We know that the input gptab entries are
10742 sorted by ascending -G value. */
eea6121a 10743 size = input_section->size;
b49e97c9
TS
10744 last = 0;
10745 for (gpentry = sizeof (Elf32_External_gptab);
10746 gpentry < size;
10747 gpentry += sizeof (Elf32_External_gptab))
10748 {
10749 Elf32_External_gptab ext_gptab;
10750 Elf32_gptab int_gptab;
10751 unsigned long val;
10752 unsigned long add;
b34976b6 10753 bfd_boolean exact;
b49e97c9
TS
10754 unsigned int look;
10755
10756 if (! (bfd_get_section_contents
9719ad41
RS
10757 (input_bfd, input_section, &ext_gptab, gpentry,
10758 sizeof (Elf32_External_gptab))))
b49e97c9
TS
10759 {
10760 free (tab);
b34976b6 10761 return FALSE;
b49e97c9
TS
10762 }
10763
10764 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10765 &int_gptab);
10766 val = int_gptab.gt_entry.gt_g_value;
10767 add = int_gptab.gt_entry.gt_bytes - last;
10768
b34976b6 10769 exact = FALSE;
b49e97c9
TS
10770 for (look = 1; look < c; look++)
10771 {
10772 if (tab[look].gt_entry.gt_g_value >= val)
10773 tab[look].gt_entry.gt_bytes += add;
10774
10775 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 10776 exact = TRUE;
b49e97c9
TS
10777 }
10778
10779 if (! exact)
10780 {
10781 Elf32_gptab *new_tab;
10782 unsigned int max;
10783
10784 /* We need a new table entry. */
10785 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 10786 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
10787 if (new_tab == NULL)
10788 {
10789 free (tab);
b34976b6 10790 return FALSE;
b49e97c9
TS
10791 }
10792 tab = new_tab;
10793 tab[c].gt_entry.gt_g_value = val;
10794 tab[c].gt_entry.gt_bytes = add;
10795
10796 /* Merge in the size for the next smallest -G
10797 value, since that will be implied by this new
10798 value. */
10799 max = 0;
10800 for (look = 1; look < c; look++)
10801 {
10802 if (tab[look].gt_entry.gt_g_value < val
10803 && (max == 0
10804 || (tab[look].gt_entry.gt_g_value
10805 > tab[max].gt_entry.gt_g_value)))
10806 max = look;
10807 }
10808 if (max != 0)
10809 tab[c].gt_entry.gt_bytes +=
10810 tab[max].gt_entry.gt_bytes;
10811
10812 ++c;
10813 }
10814
10815 last = int_gptab.gt_entry.gt_bytes;
10816 }
10817
10818 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10819 elf_link_input_bfd ignores this section. */
10820 input_section->flags &= ~SEC_HAS_CONTENTS;
10821 }
10822
10823 /* The table must be sorted by -G value. */
10824 if (c > 2)
10825 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10826
10827 /* Swap out the table. */
10828 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 10829 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
10830 if (ext_tab == NULL)
10831 {
10832 free (tab);
b34976b6 10833 return FALSE;
b49e97c9
TS
10834 }
10835
10836 for (j = 0; j < c; j++)
10837 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10838 free (tab);
10839
eea6121a 10840 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
10841 o->contents = (bfd_byte *) ext_tab;
10842
10843 /* Skip this section later on (I don't think this currently
10844 matters, but someday it might). */
8423293d 10845 o->map_head.link_order = NULL;
b49e97c9
TS
10846 }
10847 }
10848
10849 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 10850 if (!bfd_elf_final_link (abfd, info))
b34976b6 10851 return FALSE;
b49e97c9
TS
10852
10853 /* Now write out the computed sections. */
10854
9719ad41 10855 if (reginfo_sec != NULL)
b49e97c9
TS
10856 {
10857 Elf32_External_RegInfo ext;
10858
10859 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 10860 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 10861 return FALSE;
b49e97c9
TS
10862 }
10863
9719ad41 10864 if (mdebug_sec != NULL)
b49e97c9
TS
10865 {
10866 BFD_ASSERT (abfd->output_has_begun);
10867 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10868 swap, info,
10869 mdebug_sec->filepos))
b34976b6 10870 return FALSE;
b49e97c9
TS
10871
10872 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10873 }
10874
9719ad41 10875 if (gptab_data_sec != NULL)
b49e97c9
TS
10876 {
10877 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10878 gptab_data_sec->contents,
eea6121a 10879 0, gptab_data_sec->size))
b34976b6 10880 return FALSE;
b49e97c9
TS
10881 }
10882
9719ad41 10883 if (gptab_bss_sec != NULL)
b49e97c9
TS
10884 {
10885 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10886 gptab_bss_sec->contents,
eea6121a 10887 0, gptab_bss_sec->size))
b34976b6 10888 return FALSE;
b49e97c9
TS
10889 }
10890
10891 if (SGI_COMPAT (abfd))
10892 {
10893 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10894 if (rtproc_sec != NULL)
10895 {
10896 if (! bfd_set_section_contents (abfd, rtproc_sec,
10897 rtproc_sec->contents,
eea6121a 10898 0, rtproc_sec->size))
b34976b6 10899 return FALSE;
b49e97c9
TS
10900 }
10901 }
10902
b34976b6 10903 return TRUE;
b49e97c9
TS
10904}
10905\f
64543e1a
RS
10906/* Structure for saying that BFD machine EXTENSION extends BASE. */
10907
10908struct mips_mach_extension {
10909 unsigned long extension, base;
10910};
10911
10912
10913/* An array describing how BFD machines relate to one another. The entries
10914 are ordered topologically with MIPS I extensions listed last. */
10915
10916static const struct mips_mach_extension mips_mach_extensions[] = {
10917 /* MIPS64 extensions. */
5f74bc13 10918 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
10919 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10920
10921 /* MIPS V extensions. */
10922 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10923
10924 /* R10000 extensions. */
10925 { bfd_mach_mips12000, bfd_mach_mips10000 },
10926
10927 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10928 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10929 better to allow vr5400 and vr5500 code to be merged anyway, since
10930 many libraries will just use the core ISA. Perhaps we could add
10931 some sort of ASE flag if this ever proves a problem. */
10932 { bfd_mach_mips5500, bfd_mach_mips5400 },
10933 { bfd_mach_mips5400, bfd_mach_mips5000 },
10934
10935 /* MIPS IV extensions. */
10936 { bfd_mach_mips5, bfd_mach_mips8000 },
10937 { bfd_mach_mips10000, bfd_mach_mips8000 },
10938 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 10939 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 10940 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
10941
10942 /* VR4100 extensions. */
10943 { bfd_mach_mips4120, bfd_mach_mips4100 },
10944 { bfd_mach_mips4111, bfd_mach_mips4100 },
10945
10946 /* MIPS III extensions. */
10947 { bfd_mach_mips8000, bfd_mach_mips4000 },
10948 { bfd_mach_mips4650, bfd_mach_mips4000 },
10949 { bfd_mach_mips4600, bfd_mach_mips4000 },
10950 { bfd_mach_mips4400, bfd_mach_mips4000 },
10951 { bfd_mach_mips4300, bfd_mach_mips4000 },
10952 { bfd_mach_mips4100, bfd_mach_mips4000 },
10953 { bfd_mach_mips4010, bfd_mach_mips4000 },
10954
10955 /* MIPS32 extensions. */
10956 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10957
10958 /* MIPS II extensions. */
10959 { bfd_mach_mips4000, bfd_mach_mips6000 },
10960 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10961
10962 /* MIPS I extensions. */
10963 { bfd_mach_mips6000, bfd_mach_mips3000 },
10964 { bfd_mach_mips3900, bfd_mach_mips3000 }
10965};
10966
10967
10968/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10969
10970static bfd_boolean
9719ad41 10971mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
10972{
10973 size_t i;
10974
c5211a54
RS
10975 if (extension == base)
10976 return TRUE;
10977
10978 if (base == bfd_mach_mipsisa32
10979 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10980 return TRUE;
10981
10982 if (base == bfd_mach_mipsisa32r2
10983 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10984 return TRUE;
10985
10986 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 10987 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
10988 {
10989 extension = mips_mach_extensions[i].base;
10990 if (extension == base)
10991 return TRUE;
10992 }
64543e1a 10993
c5211a54 10994 return FALSE;
64543e1a
RS
10995}
10996
10997
10998/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 10999
b34976b6 11000static bfd_boolean
9719ad41 11001mips_32bit_flags_p (flagword flags)
00707a0e 11002{
64543e1a
RS
11003 return ((flags & EF_MIPS_32BITMODE) != 0
11004 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
11005 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11006 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11007 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11008 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11009 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
11010}
11011
64543e1a 11012
2cf19d5c
JM
11013/* Merge object attributes from IBFD into OBFD. Raise an error if
11014 there are conflicting attributes. */
11015static bfd_boolean
11016mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
11017{
11018 obj_attribute *in_attr;
11019 obj_attribute *out_attr;
11020
11021 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11022 {
11023 /* This is the first object. Copy the attributes. */
11024 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11025
11026 /* Use the Tag_null value to indicate the attributes have been
11027 initialized. */
11028 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11029
11030 return TRUE;
11031 }
11032
11033 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11034 non-conflicting ones. */
11035 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11036 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11037 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11038 {
11039 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11040 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11041 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11042 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11043 ;
11044 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11045 _bfd_error_handler
11046 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11047 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11048 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11049 _bfd_error_handler
11050 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11051 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11052 else
11053 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11054 {
11055 case 1:
11056 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11057 {
11058 case 2:
11059 _bfd_error_handler
11060 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11061 obfd, ibfd);
11062
11063 case 3:
11064 _bfd_error_handler
11065 (_("Warning: %B uses hard float, %B uses soft float"),
11066 obfd, ibfd);
11067 break;
11068
11069 default:
11070 abort ();
11071 }
11072 break;
11073
11074 case 2:
11075 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11076 {
11077 case 1:
11078 _bfd_error_handler
11079 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11080 ibfd, obfd);
11081
11082 case 3:
11083 _bfd_error_handler
11084 (_("Warning: %B uses hard float, %B uses soft float"),
11085 obfd, ibfd);
11086 break;
11087
11088 default:
11089 abort ();
11090 }
11091 break;
11092
11093 case 3:
11094 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11095 {
11096 case 1:
11097 case 2:
11098 _bfd_error_handler
11099 (_("Warning: %B uses hard float, %B uses soft float"),
11100 ibfd, obfd);
11101 break;
11102
11103 default:
11104 abort ();
11105 }
11106 break;
11107
11108 default:
11109 abort ();
11110 }
11111 }
11112
11113 /* Merge Tag_compatibility attributes and any common GNU ones. */
11114 _bfd_elf_merge_object_attributes (ibfd, obfd);
11115
11116 return TRUE;
11117}
11118
b49e97c9
TS
11119/* Merge backend specific data from an object file to the output
11120 object file when linking. */
11121
b34976b6 11122bfd_boolean
9719ad41 11123_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
11124{
11125 flagword old_flags;
11126 flagword new_flags;
b34976b6
AM
11127 bfd_boolean ok;
11128 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
11129 asection *sec;
11130
11131 /* Check if we have the same endianess */
82e51918 11132 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
11133 {
11134 (*_bfd_error_handler)
d003868e
AM
11135 (_("%B: endianness incompatible with that of the selected emulation"),
11136 ibfd);
aa701218
AO
11137 return FALSE;
11138 }
b49e97c9
TS
11139
11140 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11141 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 11142 return TRUE;
b49e97c9 11143
aa701218
AO
11144 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11145 {
11146 (*_bfd_error_handler)
d003868e
AM
11147 (_("%B: ABI is incompatible with that of the selected emulation"),
11148 ibfd);
aa701218
AO
11149 return FALSE;
11150 }
11151
2cf19d5c
JM
11152 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11153 return FALSE;
11154
b49e97c9
TS
11155 new_flags = elf_elfheader (ibfd)->e_flags;
11156 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11157 old_flags = elf_elfheader (obfd)->e_flags;
11158
11159 if (! elf_flags_init (obfd))
11160 {
b34976b6 11161 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
11162 elf_elfheader (obfd)->e_flags = new_flags;
11163 elf_elfheader (obfd)->e_ident[EI_CLASS]
11164 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11165
11166 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
11167 && (bfd_get_arch_info (obfd)->the_default
11168 || mips_mach_extends_p (bfd_get_mach (obfd),
11169 bfd_get_mach (ibfd))))
b49e97c9
TS
11170 {
11171 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11172 bfd_get_mach (ibfd)))
b34976b6 11173 return FALSE;
b49e97c9
TS
11174 }
11175
b34976b6 11176 return TRUE;
b49e97c9
TS
11177 }
11178
11179 /* Check flag compatibility. */
11180
11181 new_flags &= ~EF_MIPS_NOREORDER;
11182 old_flags &= ~EF_MIPS_NOREORDER;
11183
f4416af6
AO
11184 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11185 doesn't seem to matter. */
11186 new_flags &= ~EF_MIPS_XGOT;
11187 old_flags &= ~EF_MIPS_XGOT;
11188
98a8deaf
RS
11189 /* MIPSpro generates ucode info in n64 objects. Again, we should
11190 just be able to ignore this. */
11191 new_flags &= ~EF_MIPS_UCODE;
11192 old_flags &= ~EF_MIPS_UCODE;
11193
0a44bf69
RS
11194 /* Don't care about the PIC flags from dynamic objects; they are
11195 PIC by design. */
11196 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11197 && (ibfd->flags & DYNAMIC) != 0)
11198 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11199
b49e97c9 11200 if (new_flags == old_flags)
b34976b6 11201 return TRUE;
b49e97c9
TS
11202
11203 /* Check to see if the input BFD actually contains any sections.
11204 If not, its flags may not have been initialised either, but it cannot
11205 actually cause any incompatibility. */
11206 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11207 {
11208 /* Ignore synthetic sections and empty .text, .data and .bss sections
11209 which are automatically generated by gas. */
11210 if (strcmp (sec->name, ".reginfo")
11211 && strcmp (sec->name, ".mdebug")
eea6121a 11212 && (sec->size != 0
d13d89fa
NS
11213 || (strcmp (sec->name, ".text")
11214 && strcmp (sec->name, ".data")
11215 && strcmp (sec->name, ".bss"))))
b49e97c9 11216 {
b34976b6 11217 null_input_bfd = FALSE;
b49e97c9
TS
11218 break;
11219 }
11220 }
11221 if (null_input_bfd)
b34976b6 11222 return TRUE;
b49e97c9 11223
b34976b6 11224 ok = TRUE;
b49e97c9 11225
143d77c5
EC
11226 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11227 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 11228 {
b49e97c9 11229 (*_bfd_error_handler)
d003868e
AM
11230 (_("%B: warning: linking PIC files with non-PIC files"),
11231 ibfd);
143d77c5 11232 ok = TRUE;
b49e97c9
TS
11233 }
11234
143d77c5
EC
11235 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11236 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11237 if (! (new_flags & EF_MIPS_PIC))
11238 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11239
11240 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11241 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 11242
64543e1a
RS
11243 /* Compare the ISAs. */
11244 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 11245 {
64543e1a 11246 (*_bfd_error_handler)
d003868e
AM
11247 (_("%B: linking 32-bit code with 64-bit code"),
11248 ibfd);
64543e1a
RS
11249 ok = FALSE;
11250 }
11251 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11252 {
11253 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11254 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 11255 {
64543e1a
RS
11256 /* Copy the architecture info from IBFD to OBFD. Also copy
11257 the 32-bit flag (if set) so that we continue to recognise
11258 OBFD as a 32-bit binary. */
11259 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11260 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11261 elf_elfheader (obfd)->e_flags
11262 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11263
11264 /* Copy across the ABI flags if OBFD doesn't use them
11265 and if that was what caused us to treat IBFD as 32-bit. */
11266 if ((old_flags & EF_MIPS_ABI) == 0
11267 && mips_32bit_flags_p (new_flags)
11268 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11269 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
11270 }
11271 else
11272 {
64543e1a 11273 /* The ISAs aren't compatible. */
b49e97c9 11274 (*_bfd_error_handler)
d003868e
AM
11275 (_("%B: linking %s module with previous %s modules"),
11276 ibfd,
64543e1a
RS
11277 bfd_printable_name (ibfd),
11278 bfd_printable_name (obfd));
b34976b6 11279 ok = FALSE;
b49e97c9 11280 }
b49e97c9
TS
11281 }
11282
64543e1a
RS
11283 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11284 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11285
11286 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
11287 does set EI_CLASS differently from any 32-bit ABI. */
11288 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11289 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11290 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11291 {
11292 /* Only error if both are set (to different values). */
11293 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11294 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11295 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11296 {
11297 (*_bfd_error_handler)
d003868e
AM
11298 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11299 ibfd,
b49e97c9
TS
11300 elf_mips_abi_name (ibfd),
11301 elf_mips_abi_name (obfd));
b34976b6 11302 ok = FALSE;
b49e97c9
TS
11303 }
11304 new_flags &= ~EF_MIPS_ABI;
11305 old_flags &= ~EF_MIPS_ABI;
11306 }
11307
fb39dac1
RS
11308 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11309 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11310 {
11311 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11312
11313 new_flags &= ~ EF_MIPS_ARCH_ASE;
11314 old_flags &= ~ EF_MIPS_ARCH_ASE;
11315 }
11316
b49e97c9
TS
11317 /* Warn about any other mismatches */
11318 if (new_flags != old_flags)
11319 {
11320 (*_bfd_error_handler)
d003868e
AM
11321 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11322 ibfd, (unsigned long) new_flags,
b49e97c9 11323 (unsigned long) old_flags);
b34976b6 11324 ok = FALSE;
b49e97c9
TS
11325 }
11326
11327 if (! ok)
11328 {
11329 bfd_set_error (bfd_error_bad_value);
b34976b6 11330 return FALSE;
b49e97c9
TS
11331 }
11332
b34976b6 11333 return TRUE;
b49e97c9
TS
11334}
11335
11336/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11337
b34976b6 11338bfd_boolean
9719ad41 11339_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11340{
11341 BFD_ASSERT (!elf_flags_init (abfd)
11342 || elf_elfheader (abfd)->e_flags == flags);
11343
11344 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11345 elf_flags_init (abfd) = TRUE;
11346 return TRUE;
b49e97c9
TS
11347}
11348
b34976b6 11349bfd_boolean
9719ad41 11350_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11351{
9719ad41 11352 FILE *file = ptr;
b49e97c9
TS
11353
11354 BFD_ASSERT (abfd != NULL && ptr != NULL);
11355
11356 /* Print normal ELF private data. */
11357 _bfd_elf_print_private_bfd_data (abfd, ptr);
11358
11359 /* xgettext:c-format */
11360 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11361
11362 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11363 fprintf (file, _(" [abi=O32]"));
11364 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11365 fprintf (file, _(" [abi=O64]"));
11366 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11367 fprintf (file, _(" [abi=EABI32]"));
11368 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11369 fprintf (file, _(" [abi=EABI64]"));
11370 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11371 fprintf (file, _(" [abi unknown]"));
11372 else if (ABI_N32_P (abfd))
11373 fprintf (file, _(" [abi=N32]"));
11374 else if (ABI_64_P (abfd))
11375 fprintf (file, _(" [abi=64]"));
11376 else
11377 fprintf (file, _(" [no abi set]"));
11378
11379 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 11380 fprintf (file, " [mips1]");
b49e97c9 11381 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 11382 fprintf (file, " [mips2]");
b49e97c9 11383 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 11384 fprintf (file, " [mips3]");
b49e97c9 11385 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 11386 fprintf (file, " [mips4]");
b49e97c9 11387 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 11388 fprintf (file, " [mips5]");
b49e97c9 11389 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 11390 fprintf (file, " [mips32]");
b49e97c9 11391 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 11392 fprintf (file, " [mips64]");
af7ee8bf 11393 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 11394 fprintf (file, " [mips32r2]");
5f74bc13 11395 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 11396 fprintf (file, " [mips64r2]");
b49e97c9
TS
11397 else
11398 fprintf (file, _(" [unknown ISA]"));
11399
40d32fc6 11400 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 11401 fprintf (file, " [mdmx]");
40d32fc6
CD
11402
11403 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 11404 fprintf (file, " [mips16]");
40d32fc6 11405
b49e97c9 11406 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 11407 fprintf (file, " [32bitmode]");
b49e97c9
TS
11408 else
11409 fprintf (file, _(" [not 32bitmode]"));
11410
c0e3f241 11411 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 11412 fprintf (file, " [noreorder]");
c0e3f241
CD
11413
11414 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 11415 fprintf (file, " [PIC]");
c0e3f241
CD
11416
11417 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 11418 fprintf (file, " [CPIC]");
c0e3f241
CD
11419
11420 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 11421 fprintf (file, " [XGOT]");
c0e3f241
CD
11422
11423 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 11424 fprintf (file, " [UCODE]");
c0e3f241 11425
b49e97c9
TS
11426 fputc ('\n', file);
11427
b34976b6 11428 return TRUE;
b49e97c9 11429}
2f89ff8d 11430
b35d266b 11431const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11432{
0112cd26
NC
11433 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11434 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11435 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11436 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11437 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11438 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11439 { NULL, 0, 0, 0, 0 }
2f89ff8d 11440};
5e2b0d47 11441
8992f0d7
TS
11442/* Merge non visibility st_other attributes. Ensure that the
11443 STO_OPTIONAL flag is copied into h->other, even if this is not a
11444 definiton of the symbol. */
5e2b0d47
NC
11445void
11446_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11447 const Elf_Internal_Sym *isym,
11448 bfd_boolean definition,
11449 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11450{
8992f0d7
TS
11451 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11452 {
11453 unsigned char other;
11454
11455 other = (definition ? isym->st_other : h->other);
11456 other &= ~ELF_ST_VISIBILITY (-1);
11457 h->other = other | ELF_ST_VISIBILITY (h->other);
11458 }
11459
11460 if (!definition
5e2b0d47
NC
11461 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11462 h->other |= STO_OPTIONAL;
11463}
12ac1cf5
NC
11464
11465/* Decide whether an undefined symbol is special and can be ignored.
11466 This is the case for OPTIONAL symbols on IRIX. */
11467bfd_boolean
11468_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11469{
11470 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11471}
e0764319
NC
11472
11473bfd_boolean
11474_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11475{
11476 return (sym->st_shndx == SHN_COMMON
11477 || sym->st_shndx == SHN_MIPS_ACOMMON
11478 || sym->st_shndx == SHN_MIPS_SCOMMON);
11479}