]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/reloc.c
(HAVE_REALPATH): New entry.
[thirdparty/binutils-gdb.git] / bfd / reloc.c
CommitLineData
252b5132 1/* BFD support for handling relocation entries.
7898deda 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
fbca6ad9 3 2000, 2001, 2002
252b5132
RH
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
ec4530b5 7 This file is part of BFD, the Binary File Descriptor library.
252b5132 8
ec4530b5
NC
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
252b5132 13
ec4530b5
NC
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
252b5132 18
ec4530b5
NC
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
252b5132
RH
22
23/*
24SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
3f9b03b5 29 en-masse and translated into an internal form. A common
252b5132
RH
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40@menu
41@* typedef arelent::
42@* howto manager::
43@end menu
44
45*/
46
47/* DO compile in the reloc_code name table from libbfd.h. */
48#define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50#include "bfd.h"
51#include "sysdep.h"
52#include "bfdlink.h"
53#include "libbfd.h"
54/*
55DOCDD
56INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64CODE_FRAGMENT
65.
66.typedef enum bfd_reloc_status
67.{
b5f79c76 68. {* No errors detected. *}
252b5132
RH
69. bfd_reloc_ok,
70.
b5f79c76 71. {* The relocation was performed, but there was an overflow. *}
252b5132
RH
72. bfd_reloc_overflow,
73.
b5f79c76 74. {* The address to relocate was not within the section supplied. *}
252b5132
RH
75. bfd_reloc_outofrange,
76.
b5f79c76 77. {* Used by special functions. *}
252b5132
RH
78. bfd_reloc_continue,
79.
b5f79c76 80. {* Unsupported relocation size requested. *}
252b5132
RH
81. bfd_reloc_notsupported,
82.
b5f79c76 83. {* Unused. *}
252b5132
RH
84. bfd_reloc_other,
85.
b5f79c76 86. {* The symbol to relocate against was undefined. *}
252b5132
RH
87. bfd_reloc_undefined,
88.
dc810e39
AM
89. {* The relocation was performed, but may not be ok - presently
90. generated only when linking i960 coff files with i960 b.out
91. symbols. If this type is returned, the error_message argument
92. to bfd_perform_relocation will be set. *}
252b5132
RH
93. bfd_reloc_dangerous
94. }
95. bfd_reloc_status_type;
96.
97.
98.typedef struct reloc_cache_entry
99.{
b5f79c76 100. {* A pointer into the canonical table of pointers. *}
252b5132
RH
101. struct symbol_cache_entry **sym_ptr_ptr;
102.
b5f79c76 103. {* offset in section. *}
252b5132
RH
104. bfd_size_type address;
105.
b5f79c76 106. {* addend for relocation value. *}
252b5132
RH
107. bfd_vma addend;
108.
b5f79c76 109. {* Pointer to how to perform the required relocation. *}
252b5132
RH
110. reloc_howto_type *howto;
111.
b5f79c76
NC
112.}
113.arelent;
114.
252b5132
RH
115*/
116
117/*
118DESCRIPTION
119
120 Here is a description of each of the fields within an <<arelent>>:
121
122 o <<sym_ptr_ptr>>
123
124 The symbol table pointer points to a pointer to the symbol
125 associated with the relocation request. It is
126 the pointer into the table returned by the back end's
127 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
128 through a pointer to a pointer so that tools like the linker
129 can fix up all the symbols of the same name by modifying only
130 one pointer. The relocation routine looks in the symbol and
131 uses the base of the section the symbol is attached to and the
132 value of the symbol as the initial relocation offset. If the
133 symbol pointer is zero, then the section provided is looked up.
134
135 o <<address>>
136
137 The <<address>> field gives the offset in bytes from the base of
138 the section data which owns the relocation record to the first
139 byte of relocatable information. The actual data relocated
140 will be relative to this point; for example, a relocation
141 type which modifies the bottom two bytes of a four byte word
142 would not touch the first byte pointed to in a big endian
143 world.
144
145 o <<addend>>
146
147 The <<addend>> is a value provided by the back end to be added (!)
148 to the relocation offset. Its interpretation is dependent upon
149 the howto. For example, on the 68k the code:
150
252b5132
RH
151| char foo[];
152| main()
153| {
154| return foo[0x12345678];
155| }
156
157 Could be compiled into:
158
159| linkw fp,#-4
160| moveb @@#12345678,d0
161| extbl d0
162| unlk fp
163| rts
164
252b5132
RH
165 This could create a reloc pointing to <<foo>>, but leave the
166 offset in the data, something like:
167
252b5132
RH
168|RELOCATION RECORDS FOR [.text]:
169|offset type value
170|00000006 32 _foo
171|
172|00000000 4e56 fffc ; linkw fp,#-4
173|00000004 1039 1234 5678 ; moveb @@#12345678,d0
174|0000000a 49c0 ; extbl d0
175|0000000c 4e5e ; unlk fp
176|0000000e 4e75 ; rts
177
252b5132
RH
178 Using coff and an 88k, some instructions don't have enough
179 space in them to represent the full address range, and
180 pointers have to be loaded in two parts. So you'd get something like:
181
252b5132
RH
182| or.u r13,r0,hi16(_foo+0x12345678)
183| ld.b r2,r13,lo16(_foo+0x12345678)
184| jmp r1
185
252b5132
RH
186 This should create two relocs, both pointing to <<_foo>>, and with
187 0x12340000 in their addend field. The data would consist of:
188
252b5132
RH
189|RELOCATION RECORDS FOR [.text]:
190|offset type value
191|00000002 HVRT16 _foo+0x12340000
192|00000006 LVRT16 _foo+0x12340000
193|
194|00000000 5da05678 ; or.u r13,r0,0x5678
195|00000004 1c4d5678 ; ld.b r2,r13,0x5678
196|00000008 f400c001 ; jmp r1
197
252b5132
RH
198 The relocation routine digs out the value from the data, adds
199 it to the addend to get the original offset, and then adds the
200 value of <<_foo>>. Note that all 32 bits have to be kept around
201 somewhere, to cope with carry from bit 15 to bit 16.
202
203 One further example is the sparc and the a.out format. The
204 sparc has a similar problem to the 88k, in that some
205 instructions don't have room for an entire offset, but on the
206 sparc the parts are created in odd sized lumps. The designers of
207 the a.out format chose to not use the data within the section
208 for storing part of the offset; all the offset is kept within
209 the reloc. Anything in the data should be ignored.
210
211| save %sp,-112,%sp
212| sethi %hi(_foo+0x12345678),%g2
213| ldsb [%g2+%lo(_foo+0x12345678)],%i0
214| ret
215| restore
216
217 Both relocs contain a pointer to <<foo>>, and the offsets
218 contain junk.
219
252b5132
RH
220|RELOCATION RECORDS FOR [.text]:
221|offset type value
222|00000004 HI22 _foo+0x12345678
223|00000008 LO10 _foo+0x12345678
224|
225|00000000 9de3bf90 ; save %sp,-112,%sp
226|00000004 05000000 ; sethi %hi(_foo+0),%g2
227|00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
228|0000000c 81c7e008 ; ret
229|00000010 81e80000 ; restore
230
252b5132
RH
231 o <<howto>>
232
233 The <<howto>> field can be imagined as a
234 relocation instruction. It is a pointer to a structure which
235 contains information on what to do with all of the other
236 information in the reloc record and data section. A back end
237 would normally have a relocation instruction set and turn
238 relocations into pointers to the correct structure on input -
239 but it would be possible to create each howto field on demand.
240
241*/
242
243/*
244SUBSUBSECTION
245 <<enum complain_overflow>>
246
247 Indicates what sort of overflow checking should be done when
248 performing a relocation.
249
250CODE_FRAGMENT
251.
252.enum complain_overflow
253.{
b5f79c76 254. {* Do not complain on overflow. *}
252b5132
RH
255. complain_overflow_dont,
256.
dc810e39 257. {* Complain if the bitfield overflows, whether it is considered
b5f79c76 258. as signed or unsigned. *}
252b5132
RH
259. complain_overflow_bitfield,
260.
dc810e39 261. {* Complain if the value overflows when considered as signed
b5f79c76 262. number. *}
252b5132
RH
263. complain_overflow_signed,
264.
dc810e39 265. {* Complain if the value overflows when considered as an
b5f79c76 266. unsigned number. *}
252b5132
RH
267. complain_overflow_unsigned
268.};
269
270*/
271
272/*
273SUBSUBSECTION
274 <<reloc_howto_type>>
275
276 The <<reloc_howto_type>> is a structure which contains all the
277 information that libbfd needs to know to tie up a back end's data.
278
279CODE_FRAGMENT
b5f79c76 280.struct symbol_cache_entry; {* Forward declaration. *}
252b5132
RH
281.
282.struct reloc_howto_struct
283.{
dc810e39
AM
284. {* The type field has mainly a documentary use - the back end can
285. do what it wants with it, though normally the back end's
286. external idea of what a reloc number is stored
287. in this field. For example, a PC relative word relocation
288. in a coff environment has the type 023 - because that's
289. what the outside world calls a R_PCRWORD reloc. *}
252b5132
RH
290. unsigned int type;
291.
dc810e39
AM
292. {* The value the final relocation is shifted right by. This drops
293. unwanted data from the relocation. *}
252b5132
RH
294. unsigned int rightshift;
295.
dc810e39
AM
296. {* The size of the item to be relocated. This is *not* a
297. power-of-two measure. To get the number of bytes operated
298. on by a type of relocation, use bfd_get_reloc_size. *}
252b5132
RH
299. int size;
300.
dc810e39
AM
301. {* The number of bits in the item to be relocated. This is used
302. when doing overflow checking. *}
252b5132
RH
303. unsigned int bitsize;
304.
dc810e39
AM
305. {* Notes that the relocation is relative to the location in the
306. data section of the addend. The relocation function will
307. subtract from the relocation value the address of the location
308. being relocated. *}
b34976b6 309. bfd_boolean pc_relative;
252b5132 310.
dc810e39
AM
311. {* The bit position of the reloc value in the destination.
312. The relocated value is left shifted by this amount. *}
252b5132
RH
313. unsigned int bitpos;
314.
dc810e39
AM
315. {* What type of overflow error should be checked for when
316. relocating. *}
252b5132
RH
317. enum complain_overflow complain_on_overflow;
318.
dc810e39
AM
319. {* If this field is non null, then the supplied function is
320. called rather than the normal function. This allows really
321. strange relocation methods to be accomodated (e.g., i960 callj
322. instructions). *}
252b5132 323. bfd_reloc_status_type (*special_function)
dc810e39
AM
324. PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
325. bfd *, char **));
252b5132 326.
dc810e39 327. {* The textual name of the relocation type. *}
252b5132
RH
328. char *name;
329.
dc810e39
AM
330. {* Some formats record a relocation addend in the section contents
331. rather than with the relocation. For ELF formats this is the
332. distinction between USE_REL and USE_RELA (though the code checks
333. for USE_REL == 1/0). The value of this field is TRUE if the
334. addend is recorded with the section contents; when performing a
335. partial link (ld -r) the section contents (the data) will be
336. modified. The value of this field is FALSE if addends are
337. recorded with the relocation (in arelent.addend); when performing
338. a partial link the relocation will be modified.
339. All relocations for all ELF USE_RELA targets should set this field
340. to FALSE (values of TRUE should be looked on with suspicion).
341. However, the converse is not true: not all relocations of all ELF
342. USE_REL targets set this field to TRUE. Why this is so is peculiar
343. to each particular target. For relocs that aren't used in partial
344. links (e.g. GOT stuff) it doesn't matter what this is set to. *}
b34976b6 345. bfd_boolean partial_inplace;
252b5132 346.
7dc77aaa
AM
347. {* src_mask selects the part of the instruction (or data) to be used
348. in the relocation sum. If the target relocations don't have an
349. addend in the reloc, eg. ELF USE_REL, src_mask will normally equal
350. dst_mask to extract the addend from the section contents. If
351. relocations do have an addend in the reloc, eg. ELF USE_RELA, this
352. field should be zero. Non-zero values for ELF USE_RELA targets are
353. bogus as in those cases the value in the dst_mask part of the
354. section contents should be treated as garbage. *}
252b5132
RH
355. bfd_vma src_mask;
356.
7dc77aaa
AM
357. {* dst_mask selects which parts of the instruction (or data) are
358. replaced with a relocated value. *}
252b5132
RH
359. bfd_vma dst_mask;
360.
dc810e39
AM
361. {* When some formats create PC relative instructions, they leave
362. the value of the pc of the place being relocated in the offset
363. slot of the instruction, so that a PC relative relocation can
364. be made just by adding in an ordinary offset (e.g., sun3 a.out).
365. Some formats leave the displacement part of an instruction
366. empty (e.g., m88k bcs); this flag signals the fact. *}
b34976b6 367. bfd_boolean pcrel_offset;
252b5132 368.};
b5f79c76 369.
252b5132
RH
370*/
371
372/*
373FUNCTION
374 The HOWTO Macro
375
376DESCRIPTION
377 The HOWTO define is horrible and will go away.
378
dc810e39
AM
379.#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
380. { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
252b5132
RH
381
382DESCRIPTION
383 And will be replaced with the totally magic way. But for the
384 moment, we are compatible, so do it this way.
385
dc810e39
AM
386.#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
387. HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
b34976b6 388. NAME, FALSE, 0, 0, IN)
252b5132 389.
5f771d47
ILT
390
391DESCRIPTION
392 This is used to fill in an empty howto entry in an array.
393
394.#define EMPTY_HOWTO(C) \
b34976b6
AM
395. HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \
396. NULL, FALSE, 0, 0, FALSE)
5f771d47
ILT
397.
398
252b5132
RH
399DESCRIPTION
400 Helper routine to turn a symbol into a relocation value.
401
dc810e39
AM
402.#define HOWTO_PREPARE(relocation, symbol) \
403. { \
404. if (symbol != (asymbol *) NULL) \
405. { \
406. if (bfd_is_com_section (symbol->section)) \
407. { \
408. relocation = 0; \
409. } \
410. else \
411. { \
412. relocation = symbol->value; \
413. } \
414. } \
415. }
b5f79c76 416.
252b5132
RH
417*/
418
419/*
420FUNCTION
421 bfd_get_reloc_size
422
423SYNOPSIS
424 unsigned int bfd_get_reloc_size (reloc_howto_type *);
425
426DESCRIPTION
427 For a reloc_howto_type that operates on a fixed number of bytes,
428 this returns the number of bytes operated on.
429 */
430
431unsigned int
432bfd_get_reloc_size (howto)
433 reloc_howto_type *howto;
434{
435 switch (howto->size)
436 {
437 case 0: return 1;
438 case 1: return 2;
439 case 2: return 4;
440 case 3: return 0;
441 case 4: return 8;
442 case 8: return 16;
443 case -2: return 4;
444 default: abort ();
445 }
446}
447
448/*
449TYPEDEF
450 arelent_chain
451
452DESCRIPTION
453
454 How relocs are tied together in an <<asection>>:
455
dc810e39
AM
456.typedef struct relent_chain
457.{
252b5132 458. arelent relent;
dc810e39 459. struct relent_chain *next;
b5f79c76
NC
460.}
461.arelent_chain;
462.
252b5132
RH
463*/
464
465/* N_ONES produces N one bits, without overflowing machine arithmetic. */
466#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
467
468/*
469FUNCTION
470 bfd_check_overflow
471
472SYNOPSIS
473 bfd_reloc_status_type
474 bfd_check_overflow
475 (enum complain_overflow how,
476 unsigned int bitsize,
477 unsigned int rightshift,
478 unsigned int addrsize,
479 bfd_vma relocation);
480
481DESCRIPTION
482 Perform overflow checking on @var{relocation} which has
483 @var{bitsize} significant bits and will be shifted right by
484 @var{rightshift} bits, on a machine with addresses containing
485 @var{addrsize} significant bits. The result is either of
486 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
487
488*/
489
490bfd_reloc_status_type
491bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
492 enum complain_overflow how;
493 unsigned int bitsize;
494 unsigned int rightshift;
495 unsigned int addrsize;
496 bfd_vma relocation;
497{
498 bfd_vma fieldmask, addrmask, signmask, ss, a;
499 bfd_reloc_status_type flag = bfd_reloc_ok;
500
501 a = relocation;
502
503 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
504 we'll be permissive: extra bits in the field mask will
505 automatically extend the address mask for purposes of the
506 overflow check. */
507 fieldmask = N_ONES (bitsize);
508 addrmask = N_ONES (addrsize) | fieldmask;
509
510 switch (how)
511 {
512 case complain_overflow_dont:
513 break;
514
515 case complain_overflow_signed:
516 /* If any sign bits are set, all sign bits must be set. That
517 is, A must be a valid negative address after shifting. */
518 a = (a & addrmask) >> rightshift;
519 signmask = ~ (fieldmask >> 1);
520 ss = a & signmask;
521 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
522 flag = bfd_reloc_overflow;
523 break;
524
525 case complain_overflow_unsigned:
526 /* We have an overflow if the address does not fit in the field. */
527 a = (a & addrmask) >> rightshift;
528 if ((a & ~ fieldmask) != 0)
529 flag = bfd_reloc_overflow;
530 break;
531
532 case complain_overflow_bitfield:
533 /* Bitfields are sometimes signed, sometimes unsigned. We
d5afc56e
AM
534 explicitly allow an address wrap too, which means a bitfield
535 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
536 if the value has some, but not all, bits set outside the
537 field. */
252b5132 538 a >>= rightshift;
d5afc56e
AM
539 ss = a & ~ fieldmask;
540 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
541 flag = bfd_reloc_overflow;
252b5132
RH
542 break;
543
544 default:
545 abort ();
546 }
547
548 return flag;
549}
550
551/*
552FUNCTION
553 bfd_perform_relocation
554
555SYNOPSIS
556 bfd_reloc_status_type
557 bfd_perform_relocation
558 (bfd *abfd,
559 arelent *reloc_entry,
560 PTR data,
561 asection *input_section,
562 bfd *output_bfd,
563 char **error_message);
564
565DESCRIPTION
566 If @var{output_bfd} is supplied to this function, the
567 generated image will be relocatable; the relocations are
568 copied to the output file after they have been changed to
569 reflect the new state of the world. There are two ways of
570 reflecting the results of partial linkage in an output file:
571 by modifying the output data in place, and by modifying the
572 relocation record. Some native formats (e.g., basic a.out and
573 basic coff) have no way of specifying an addend in the
574 relocation type, so the addend has to go in the output data.
575 This is no big deal since in these formats the output data
576 slot will always be big enough for the addend. Complex reloc
577 types with addends were invented to solve just this problem.
578 The @var{error_message} argument is set to an error message if
579 this return @code{bfd_reloc_dangerous}.
580
581*/
582
252b5132
RH
583bfd_reloc_status_type
584bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
585 error_message)
586 bfd *abfd;
587 arelent *reloc_entry;
588 PTR data;
589 asection *input_section;
590 bfd *output_bfd;
591 char **error_message;
592{
593 bfd_vma relocation;
594 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 595 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
596 bfd_vma output_base = 0;
597 reloc_howto_type *howto = reloc_entry->howto;
598 asection *reloc_target_output_section;
599 asymbol *symbol;
600
601 symbol = *(reloc_entry->sym_ptr_ptr);
602 if (bfd_is_abs_section (symbol->section)
603 && output_bfd != (bfd *) NULL)
604 {
605 reloc_entry->address += input_section->output_offset;
606 return bfd_reloc_ok;
607 }
608
609 /* If we are not producing relocateable output, return an error if
610 the symbol is not defined. An undefined weak symbol is
611 considered to have a value of zero (SVR4 ABI, p. 4-27). */
612 if (bfd_is_und_section (symbol->section)
613 && (symbol->flags & BSF_WEAK) == 0
614 && output_bfd == (bfd *) NULL)
615 flag = bfd_reloc_undefined;
616
617 /* If there is a function supplied to handle this relocation type,
618 call it. It'll return `bfd_reloc_continue' if further processing
619 can be done. */
620 if (howto->special_function)
621 {
622 bfd_reloc_status_type cont;
623 cont = howto->special_function (abfd, reloc_entry, symbol, data,
624 input_section, output_bfd,
625 error_message);
626 if (cont != bfd_reloc_continue)
627 return cont;
628 }
629
630 /* Is the address of the relocation really within the section? */
e207c4fa
AM
631 if (reloc_entry->address > (input_section->_cooked_size
632 / bfd_octets_per_byte (abfd)))
252b5132
RH
633 return bfd_reloc_outofrange;
634
635 /* Work out which section the relocation is targetted at and the
636 initial relocation command value. */
637
638 /* Get symbol value. (Common symbols are special.) */
639 if (bfd_is_com_section (symbol->section))
640 relocation = 0;
641 else
642 relocation = symbol->value;
643
252b5132
RH
644 reloc_target_output_section = symbol->section->output_section;
645
646 /* Convert input-section-relative symbol value to absolute. */
ec4530b5
NC
647 if ((output_bfd && ! howto->partial_inplace)
648 || reloc_target_output_section == NULL)
252b5132
RH
649 output_base = 0;
650 else
651 output_base = reloc_target_output_section->vma;
652
653 relocation += output_base + symbol->section->output_offset;
654
655 /* Add in supplied addend. */
656 relocation += reloc_entry->addend;
657
658 /* Here the variable relocation holds the final address of the
659 symbol we are relocating against, plus any addend. */
660
82e51918 661 if (howto->pc_relative)
252b5132
RH
662 {
663 /* This is a PC relative relocation. We want to set RELOCATION
664 to the distance between the address of the symbol and the
665 location. RELOCATION is already the address of the symbol.
666
667 We start by subtracting the address of the section containing
668 the location.
669
670 If pcrel_offset is set, we must further subtract the position
671 of the location within the section. Some targets arrange for
672 the addend to be the negative of the position of the location
673 within the section; for example, i386-aout does this. For
b34976b6 674 i386-aout, pcrel_offset is FALSE. Some other targets do not
252b5132 675 include the position of the location; for example, m88kbcs,
b34976b6 676 or ELF. For those targets, pcrel_offset is TRUE.
252b5132
RH
677
678 If we are producing relocateable output, then we must ensure
679 that this reloc will be correctly computed when the final
b34976b6 680 relocation is done. If pcrel_offset is FALSE we want to wind
252b5132
RH
681 up with the negative of the location within the section,
682 which means we must adjust the existing addend by the change
b34976b6 683 in the location within the section. If pcrel_offset is TRUE
252b5132
RH
684 we do not want to adjust the existing addend at all.
685
686 FIXME: This seems logical to me, but for the case of
687 producing relocateable output it is not what the code
688 actually does. I don't want to change it, because it seems
689 far too likely that something will break. */
690
691 relocation -=
692 input_section->output_section->vma + input_section->output_offset;
693
82e51918 694 if (howto->pcrel_offset)
252b5132
RH
695 relocation -= reloc_entry->address;
696 }
697
698 if (output_bfd != (bfd *) NULL)
699 {
82e51918 700 if (! howto->partial_inplace)
252b5132
RH
701 {
702 /* This is a partial relocation, and we want to apply the relocation
703 to the reloc entry rather than the raw data. Modify the reloc
704 inplace to reflect what we now know. */
705 reloc_entry->addend = relocation;
706 reloc_entry->address += input_section->output_offset;
707 return flag;
708 }
709 else
710 {
711 /* This is a partial relocation, but inplace, so modify the
712 reloc record a bit.
713
714 If we've relocated with a symbol with a section, change
715 into a ref to the section belonging to the symbol. */
716
717 reloc_entry->address += input_section->output_offset;
718
719 /* WTF?? */
720 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
721 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
722 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
723 {
724#if 1
725 /* For m68k-coff, the addend was being subtracted twice during
726 relocation with -r. Removing the line below this comment
727 fixes that problem; see PR 2953.
728
729However, Ian wrote the following, regarding removing the line below,
730which explains why it is still enabled: --djm
731
732If you put a patch like that into BFD you need to check all the COFF
733linkers. I am fairly certain that patch will break coff-i386 (e.g.,
734SCO); see coff_i386_reloc in coff-i386.c where I worked around the
735problem in a different way. There may very well be a reason that the
736code works as it does.
737
738Hmmm. The first obvious point is that bfd_perform_relocation should
739not have any tests that depend upon the flavour. It's seem like
740entirely the wrong place for such a thing. The second obvious point
741is that the current code ignores the reloc addend when producing
742relocateable output for COFF. That's peculiar. In fact, I really
743have no idea what the point of the line you want to remove is.
744
745A typical COFF reloc subtracts the old value of the symbol and adds in
746the new value to the location in the object file (if it's a pc
747relative reloc it adds the difference between the symbol value and the
748location). When relocating we need to preserve that property.
749
750BFD handles this by setting the addend to the negative of the old
751value of the symbol. Unfortunately it handles common symbols in a
752non-standard way (it doesn't subtract the old value) but that's a
753different story (we can't change it without losing backward
754compatibility with old object files) (coff-i386 does subtract the old
755value, to be compatible with existing coff-i386 targets, like SCO).
756
757So everything works fine when not producing relocateable output. When
758we are producing relocateable output, logically we should do exactly
759what we do when not producing relocateable output. Therefore, your
760patch is correct. In fact, it should probably always just set
761reloc_entry->addend to 0 for all cases, since it is, in fact, going to
762add the value into the object file. This won't hurt the COFF code,
763which doesn't use the addend; I'm not sure what it will do to other
764formats (the thing to check for would be whether any formats both use
765the addend and set partial_inplace).
766
767When I wanted to make coff-i386 produce relocateable output, I ran
768into the problem that you are running into: I wanted to remove that
769line. Rather than risk it, I made the coff-i386 relocs use a special
770function; it's coff_i386_reloc in coff-i386.c. The function
771specifically adds the addend field into the object file, knowing that
772bfd_perform_relocation is not going to. If you remove that line, then
773coff-i386.c will wind up adding the addend field in twice. It's
774trivial to fix; it just needs to be done.
775
776The problem with removing the line is just that it may break some
777working code. With BFD it's hard to be sure of anything. The right
778way to deal with this is simply to build and test at least all the
779supported COFF targets. It should be straightforward if time and disk
780space consuming. For each target:
781 1) build the linker
782 2) generate some executable, and link it using -r (I would
783 probably use paranoia.o and link against newlib/libc.a, which
784 for all the supported targets would be available in
785 /usr/cygnus/progressive/H-host/target/lib/libc.a).
786 3) make the change to reloc.c
787 4) rebuild the linker
788 5) repeat step 2
789 6) if the resulting object files are the same, you have at least
790 made it no worse
791 7) if they are different you have to figure out which version is
792 right
793*/
794 relocation -= reloc_entry->addend;
795#endif
796 reloc_entry->addend = 0;
797 }
798 else
799 {
800 reloc_entry->addend = relocation;
801 }
802 }
803 }
804 else
805 {
806 reloc_entry->addend = 0;
807 }
808
809 /* FIXME: This overflow checking is incomplete, because the value
810 might have overflowed before we get here. For a correct check we
811 need to compute the value in a size larger than bitsize, but we
812 can't reasonably do that for a reloc the same size as a host
813 machine word.
814 FIXME: We should also do overflow checking on the result after
815 adding in the value contained in the object file. */
816 if (howto->complain_on_overflow != complain_overflow_dont
817 && flag == bfd_reloc_ok)
818 flag = bfd_check_overflow (howto->complain_on_overflow,
819 howto->bitsize,
820 howto->rightshift,
821 bfd_arch_bits_per_address (abfd),
822 relocation);
823
b5f79c76
NC
824 /* Either we are relocating all the way, or we don't want to apply
825 the relocation to the reloc entry (probably because there isn't
826 any room in the output format to describe addends to relocs). */
252b5132
RH
827
828 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
829 (OSF version 1.3, compiler version 3.11). It miscompiles the
830 following program:
831
832 struct str
833 {
834 unsigned int i0;
835 } s = { 0 };
836
837 int
838 main ()
839 {
840 unsigned long x;
841
842 x = 0x100000000;
843 x <<= (unsigned long) s.i0;
844 if (x == 0)
845 printf ("failed\n");
846 else
847 printf ("succeeded (%lx)\n", x);
848 }
849 */
850
851 relocation >>= (bfd_vma) howto->rightshift;
852
b5f79c76 853 /* Shift everything up to where it's going to be used. */
252b5132
RH
854 relocation <<= (bfd_vma) howto->bitpos;
855
b5f79c76 856 /* Wait for the day when all have the mask in them. */
252b5132
RH
857
858 /* What we do:
859 i instruction to be left alone
860 o offset within instruction
861 r relocation offset to apply
862 S src mask
863 D dst mask
864 N ~dst mask
865 A part 1
866 B part 2
867 R result
868
869 Do this:
88b6bae0
AM
870 (( i i i i i o o o o o from bfd_get<size>
871 and S S S S S) to get the size offset we want
872 + r r r r r r r r r r) to get the final value to place
252b5132
RH
873 and D D D D D to chop to right size
874 -----------------------
88b6bae0 875 = A A A A A
252b5132 876 And this:
88b6bae0
AM
877 ( i i i i i o o o o o from bfd_get<size>
878 and N N N N N ) get instruction
252b5132 879 -----------------------
88b6bae0 880 = B B B B B
252b5132
RH
881
882 And then:
88b6bae0
AM
883 ( B B B B B
884 or A A A A A)
252b5132 885 -----------------------
88b6bae0 886 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
887 */
888
889#define DOIT(x) \
890 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
891
892 switch (howto->size)
893 {
894 case 0:
895 {
9a968f43 896 char x = bfd_get_8 (abfd, (char *) data + octets);
252b5132 897 DOIT (x);
9a968f43 898 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
899 }
900 break;
901
902 case 1:
903 {
9a968f43 904 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132 905 DOIT (x);
dc810e39 906 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
252b5132
RH
907 }
908 break;
909 case 2:
910 {
9a968f43 911 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132 912 DOIT (x);
dc810e39 913 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
914 }
915 break;
916 case -2:
917 {
9a968f43 918 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132
RH
919 relocation = -relocation;
920 DOIT (x);
dc810e39 921 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
922 }
923 break;
924
925 case -1:
926 {
9a968f43 927 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132
RH
928 relocation = -relocation;
929 DOIT (x);
dc810e39 930 bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
931 }
932 break;
933
934 case 3:
935 /* Do nothing */
936 break;
937
938 case 4:
939#ifdef BFD64
940 {
9a968f43 941 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
252b5132 942 DOIT (x);
9a968f43 943 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
944 }
945#else
946 abort ();
947#endif
948 break;
949 default:
950 return bfd_reloc_other;
951 }
952
953 return flag;
954}
955
956/*
957FUNCTION
958 bfd_install_relocation
959
960SYNOPSIS
961 bfd_reloc_status_type
962 bfd_install_relocation
963 (bfd *abfd,
964 arelent *reloc_entry,
965 PTR data, bfd_vma data_start,
966 asection *input_section,
967 char **error_message);
968
969DESCRIPTION
970 This looks remarkably like <<bfd_perform_relocation>>, except it
971 does not expect that the section contents have been filled in.
972 I.e., it's suitable for use when creating, rather than applying
973 a relocation.
974
975 For now, this function should be considered reserved for the
976 assembler.
252b5132
RH
977*/
978
252b5132
RH
979bfd_reloc_status_type
980bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
981 input_section, error_message)
982 bfd *abfd;
983 arelent *reloc_entry;
984 PTR data_start;
985 bfd_vma data_start_offset;
986 asection *input_section;
987 char **error_message;
988{
989 bfd_vma relocation;
990 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 991 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
992 bfd_vma output_base = 0;
993 reloc_howto_type *howto = reloc_entry->howto;
994 asection *reloc_target_output_section;
995 asymbol *symbol;
996 bfd_byte *data;
997
998 symbol = *(reloc_entry->sym_ptr_ptr);
999 if (bfd_is_abs_section (symbol->section))
1000 {
1001 reloc_entry->address += input_section->output_offset;
1002 return bfd_reloc_ok;
1003 }
1004
1005 /* If there is a function supplied to handle this relocation type,
1006 call it. It'll return `bfd_reloc_continue' if further processing
1007 can be done. */
1008 if (howto->special_function)
1009 {
1010 bfd_reloc_status_type cont;
88b6bae0 1011
252b5132
RH
1012 /* XXX - The special_function calls haven't been fixed up to deal
1013 with creating new relocations and section contents. */
1014 cont = howto->special_function (abfd, reloc_entry, symbol,
1015 /* XXX - Non-portable! */
1016 ((bfd_byte *) data_start
1017 - data_start_offset),
1018 input_section, abfd, error_message);
1019 if (cont != bfd_reloc_continue)
1020 return cont;
1021 }
1022
1023 /* Is the address of the relocation really within the section? */
e207c4fa
AM
1024 if (reloc_entry->address > (input_section->_cooked_size
1025 / bfd_octets_per_byte (abfd)))
252b5132
RH
1026 return bfd_reloc_outofrange;
1027
1028 /* Work out which section the relocation is targetted at and the
1029 initial relocation command value. */
1030
1031 /* Get symbol value. (Common symbols are special.) */
1032 if (bfd_is_com_section (symbol->section))
1033 relocation = 0;
1034 else
1035 relocation = symbol->value;
1036
1037 reloc_target_output_section = symbol->section->output_section;
1038
1039 /* Convert input-section-relative symbol value to absolute. */
82e51918 1040 if (! howto->partial_inplace)
252b5132
RH
1041 output_base = 0;
1042 else
1043 output_base = reloc_target_output_section->vma;
1044
1045 relocation += output_base + symbol->section->output_offset;
1046
1047 /* Add in supplied addend. */
1048 relocation += reloc_entry->addend;
1049
1050 /* Here the variable relocation holds the final address of the
1051 symbol we are relocating against, plus any addend. */
1052
82e51918 1053 if (howto->pc_relative)
252b5132
RH
1054 {
1055 /* This is a PC relative relocation. We want to set RELOCATION
1056 to the distance between the address of the symbol and the
1057 location. RELOCATION is already the address of the symbol.
1058
1059 We start by subtracting the address of the section containing
1060 the location.
1061
1062 If pcrel_offset is set, we must further subtract the position
1063 of the location within the section. Some targets arrange for
1064 the addend to be the negative of the position of the location
1065 within the section; for example, i386-aout does this. For
b34976b6 1066 i386-aout, pcrel_offset is FALSE. Some other targets do not
252b5132 1067 include the position of the location; for example, m88kbcs,
b34976b6 1068 or ELF. For those targets, pcrel_offset is TRUE.
252b5132
RH
1069
1070 If we are producing relocateable output, then we must ensure
1071 that this reloc will be correctly computed when the final
b34976b6 1072 relocation is done. If pcrel_offset is FALSE we want to wind
252b5132
RH
1073 up with the negative of the location within the section,
1074 which means we must adjust the existing addend by the change
b34976b6 1075 in the location within the section. If pcrel_offset is TRUE
252b5132
RH
1076 we do not want to adjust the existing addend at all.
1077
1078 FIXME: This seems logical to me, but for the case of
1079 producing relocateable output it is not what the code
1080 actually does. I don't want to change it, because it seems
1081 far too likely that something will break. */
1082
1083 relocation -=
1084 input_section->output_section->vma + input_section->output_offset;
1085
82e51918 1086 if (howto->pcrel_offset && howto->partial_inplace)
252b5132
RH
1087 relocation -= reloc_entry->address;
1088 }
1089
82e51918 1090 if (! howto->partial_inplace)
252b5132
RH
1091 {
1092 /* This is a partial relocation, and we want to apply the relocation
1093 to the reloc entry rather than the raw data. Modify the reloc
1094 inplace to reflect what we now know. */
1095 reloc_entry->addend = relocation;
1096 reloc_entry->address += input_section->output_offset;
1097 return flag;
1098 }
1099 else
1100 {
1101 /* This is a partial relocation, but inplace, so modify the
1102 reloc record a bit.
1103
1104 If we've relocated with a symbol with a section, change
1105 into a ref to the section belonging to the symbol. */
252b5132
RH
1106 reloc_entry->address += input_section->output_offset;
1107
1108 /* WTF?? */
1109 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
1110 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1111 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1112 {
1113#if 1
1114/* For m68k-coff, the addend was being subtracted twice during
1115 relocation with -r. Removing the line below this comment
1116 fixes that problem; see PR 2953.
1117
1118However, Ian wrote the following, regarding removing the line below,
1119which explains why it is still enabled: --djm
1120
1121If you put a patch like that into BFD you need to check all the COFF
1122linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1123SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1124problem in a different way. There may very well be a reason that the
1125code works as it does.
1126
1127Hmmm. The first obvious point is that bfd_install_relocation should
1128not have any tests that depend upon the flavour. It's seem like
1129entirely the wrong place for such a thing. The second obvious point
1130is that the current code ignores the reloc addend when producing
1131relocateable output for COFF. That's peculiar. In fact, I really
1132have no idea what the point of the line you want to remove is.
1133
1134A typical COFF reloc subtracts the old value of the symbol and adds in
1135the new value to the location in the object file (if it's a pc
1136relative reloc it adds the difference between the symbol value and the
1137location). When relocating we need to preserve that property.
1138
1139BFD handles this by setting the addend to the negative of the old
1140value of the symbol. Unfortunately it handles common symbols in a
1141non-standard way (it doesn't subtract the old value) but that's a
1142different story (we can't change it without losing backward
1143compatibility with old object files) (coff-i386 does subtract the old
1144value, to be compatible with existing coff-i386 targets, like SCO).
1145
1146So everything works fine when not producing relocateable output. When
1147we are producing relocateable output, logically we should do exactly
1148what we do when not producing relocateable output. Therefore, your
1149patch is correct. In fact, it should probably always just set
1150reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1151add the value into the object file. This won't hurt the COFF code,
1152which doesn't use the addend; I'm not sure what it will do to other
1153formats (the thing to check for would be whether any formats both use
1154the addend and set partial_inplace).
1155
1156When I wanted to make coff-i386 produce relocateable output, I ran
1157into the problem that you are running into: I wanted to remove that
1158line. Rather than risk it, I made the coff-i386 relocs use a special
1159function; it's coff_i386_reloc in coff-i386.c. The function
1160specifically adds the addend field into the object file, knowing that
1161bfd_install_relocation is not going to. If you remove that line, then
1162coff-i386.c will wind up adding the addend field in twice. It's
1163trivial to fix; it just needs to be done.
1164
1165The problem with removing the line is just that it may break some
1166working code. With BFD it's hard to be sure of anything. The right
1167way to deal with this is simply to build and test at least all the
1168supported COFF targets. It should be straightforward if time and disk
1169space consuming. For each target:
1170 1) build the linker
1171 2) generate some executable, and link it using -r (I would
1172 probably use paranoia.o and link against newlib/libc.a, which
1173 for all the supported targets would be available in
1174 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1175 3) make the change to reloc.c
1176 4) rebuild the linker
1177 5) repeat step 2
1178 6) if the resulting object files are the same, you have at least
1179 made it no worse
1180 7) if they are different you have to figure out which version is
b5f79c76 1181 right. */
252b5132
RH
1182 relocation -= reloc_entry->addend;
1183#endif
1184 reloc_entry->addend = 0;
1185 }
1186 else
1187 {
1188 reloc_entry->addend = relocation;
1189 }
1190 }
1191
1192 /* FIXME: This overflow checking is incomplete, because the value
1193 might have overflowed before we get here. For a correct check we
1194 need to compute the value in a size larger than bitsize, but we
1195 can't reasonably do that for a reloc the same size as a host
1196 machine word.
1197 FIXME: We should also do overflow checking on the result after
1198 adding in the value contained in the object file. */
1199 if (howto->complain_on_overflow != complain_overflow_dont)
1200 flag = bfd_check_overflow (howto->complain_on_overflow,
1201 howto->bitsize,
1202 howto->rightshift,
1203 bfd_arch_bits_per_address (abfd),
1204 relocation);
1205
b5f79c76
NC
1206 /* Either we are relocating all the way, or we don't want to apply
1207 the relocation to the reloc entry (probably because there isn't
1208 any room in the output format to describe addends to relocs). */
252b5132
RH
1209
1210 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1211 (OSF version 1.3, compiler version 3.11). It miscompiles the
1212 following program:
1213
1214 struct str
1215 {
1216 unsigned int i0;
1217 } s = { 0 };
1218
1219 int
1220 main ()
1221 {
1222 unsigned long x;
1223
1224 x = 0x100000000;
1225 x <<= (unsigned long) s.i0;
1226 if (x == 0)
1227 printf ("failed\n");
1228 else
1229 printf ("succeeded (%lx)\n", x);
1230 }
1231 */
1232
1233 relocation >>= (bfd_vma) howto->rightshift;
1234
b5f79c76 1235 /* Shift everything up to where it's going to be used. */
252b5132
RH
1236 relocation <<= (bfd_vma) howto->bitpos;
1237
b5f79c76 1238 /* Wait for the day when all have the mask in them. */
252b5132
RH
1239
1240 /* What we do:
1241 i instruction to be left alone
1242 o offset within instruction
1243 r relocation offset to apply
1244 S src mask
1245 D dst mask
1246 N ~dst mask
1247 A part 1
1248 B part 2
1249 R result
1250
1251 Do this:
88b6bae0
AM
1252 (( i i i i i o o o o o from bfd_get<size>
1253 and S S S S S) to get the size offset we want
1254 + r r r r r r r r r r) to get the final value to place
252b5132
RH
1255 and D D D D D to chop to right size
1256 -----------------------
88b6bae0 1257 = A A A A A
252b5132 1258 And this:
88b6bae0
AM
1259 ( i i i i i o o o o o from bfd_get<size>
1260 and N N N N N ) get instruction
252b5132 1261 -----------------------
88b6bae0 1262 = B B B B B
252b5132
RH
1263
1264 And then:
88b6bae0
AM
1265 ( B B B B B
1266 or A A A A A)
252b5132 1267 -----------------------
88b6bae0 1268 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
1269 */
1270
1271#define DOIT(x) \
1272 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1273
9a968f43 1274 data = (bfd_byte *) data_start + (octets - data_start_offset);
252b5132
RH
1275
1276 switch (howto->size)
1277 {
1278 case 0:
1279 {
1280 char x = bfd_get_8 (abfd, (char *) data);
1281 DOIT (x);
1282 bfd_put_8 (abfd, x, (unsigned char *) data);
1283 }
1284 break;
1285
1286 case 1:
1287 {
1288 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1289 DOIT (x);
dc810e39 1290 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
252b5132
RH
1291 }
1292 break;
1293 case 2:
1294 {
1295 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1296 DOIT (x);
dc810e39 1297 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1298 }
1299 break;
1300 case -2:
1301 {
1302 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1303 relocation = -relocation;
1304 DOIT (x);
dc810e39 1305 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1306 }
1307 break;
1308
1309 case 3:
1310 /* Do nothing */
1311 break;
1312
1313 case 4:
1314 {
1315 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1316 DOIT (x);
1317 bfd_put_64 (abfd, x, (bfd_byte *) data);
1318 }
1319 break;
1320 default:
1321 return bfd_reloc_other;
1322 }
1323
1324 return flag;
1325}
1326
1327/* This relocation routine is used by some of the backend linkers.
1328 They do not construct asymbol or arelent structures, so there is no
1329 reason for them to use bfd_perform_relocation. Also,
1330 bfd_perform_relocation is so hacked up it is easier to write a new
1331 function than to try to deal with it.
1332
1333 This routine does a final relocation. Whether it is useful for a
1334 relocateable link depends upon how the object format defines
1335 relocations.
1336
1337 FIXME: This routine ignores any special_function in the HOWTO,
1338 since the existing special_function values have been written for
1339 bfd_perform_relocation.
1340
1341 HOWTO is the reloc howto information.
1342 INPUT_BFD is the BFD which the reloc applies to.
1343 INPUT_SECTION is the section which the reloc applies to.
1344 CONTENTS is the contents of the section.
1345 ADDRESS is the address of the reloc within INPUT_SECTION.
1346 VALUE is the value of the symbol the reloc refers to.
1347 ADDEND is the addend of the reloc. */
1348
1349bfd_reloc_status_type
1350_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1351 value, addend)
1352 reloc_howto_type *howto;
1353 bfd *input_bfd;
1354 asection *input_section;
1355 bfd_byte *contents;
1356 bfd_vma address;
1357 bfd_vma value;
1358 bfd_vma addend;
1359{
1360 bfd_vma relocation;
1361
1362 /* Sanity check the address. */
1363 if (address > input_section->_raw_size)
1364 return bfd_reloc_outofrange;
1365
1366 /* This function assumes that we are dealing with a basic relocation
1367 against a symbol. We want to compute the value of the symbol to
1368 relocate to. This is just VALUE, the value of the symbol, plus
1369 ADDEND, any addend associated with the reloc. */
1370 relocation = value + addend;
1371
1372 /* If the relocation is PC relative, we want to set RELOCATION to
1373 the distance between the symbol (currently in RELOCATION) and the
1374 location we are relocating. Some targets (e.g., i386-aout)
1375 arrange for the contents of the section to be the negative of the
1376 offset of the location within the section; for such targets
b34976b6 1377 pcrel_offset is FALSE. Other targets (e.g., m88kbcs or ELF)
252b5132 1378 simply leave the contents of the section as zero; for such
b34976b6 1379 targets pcrel_offset is TRUE. If pcrel_offset is FALSE we do not
252b5132
RH
1380 need to subtract out the offset of the location within the
1381 section (which is just ADDRESS). */
1382 if (howto->pc_relative)
1383 {
1384 relocation -= (input_section->output_section->vma
1385 + input_section->output_offset);
1386 if (howto->pcrel_offset)
1387 relocation -= address;
1388 }
1389
1390 return _bfd_relocate_contents (howto, input_bfd, relocation,
1391 contents + address);
1392}
1393
1394/* Relocate a given location using a given value and howto. */
1395
1396bfd_reloc_status_type
1397_bfd_relocate_contents (howto, input_bfd, relocation, location)
1398 reloc_howto_type *howto;
1399 bfd *input_bfd;
1400 bfd_vma relocation;
1401 bfd_byte *location;
1402{
1403 int size;
7442e600 1404 bfd_vma x = 0;
d5afc56e 1405 bfd_reloc_status_type flag;
252b5132
RH
1406 unsigned int rightshift = howto->rightshift;
1407 unsigned int bitpos = howto->bitpos;
1408
1409 /* If the size is negative, negate RELOCATION. This isn't very
1410 general. */
1411 if (howto->size < 0)
1412 relocation = -relocation;
1413
1414 /* Get the value we are going to relocate. */
1415 size = bfd_get_reloc_size (howto);
1416 switch (size)
1417 {
1418 default:
1419 case 0:
1420 abort ();
1421 case 1:
1422 x = bfd_get_8 (input_bfd, location);
1423 break;
1424 case 2:
1425 x = bfd_get_16 (input_bfd, location);
1426 break;
1427 case 4:
1428 x = bfd_get_32 (input_bfd, location);
1429 break;
1430 case 8:
1431#ifdef BFD64
1432 x = bfd_get_64 (input_bfd, location);
1433#else
1434 abort ();
1435#endif
1436 break;
1437 }
1438
1439 /* Check for overflow. FIXME: We may drop bits during the addition
1440 which we don't check for. We must either check at every single
1441 operation, which would be tedious, or we must do the computations
1442 in a type larger than bfd_vma, which would be inefficient. */
d5afc56e 1443 flag = bfd_reloc_ok;
252b5132
RH
1444 if (howto->complain_on_overflow != complain_overflow_dont)
1445 {
1446 bfd_vma addrmask, fieldmask, signmask, ss;
1447 bfd_vma a, b, sum;
1448
1449 /* Get the values to be added together. For signed and unsigned
1450 relocations, we assume that all values should be truncated to
1451 the size of an address. For bitfields, all the bits matter.
1452 See also bfd_check_overflow. */
1453 fieldmask = N_ONES (howto->bitsize);
1454 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1455 a = relocation;
1456 b = x & howto->src_mask;
1457
1458 switch (howto->complain_on_overflow)
1459 {
1460 case complain_overflow_signed:
1461 a = (a & addrmask) >> rightshift;
1462
1463 /* If any sign bits are set, all sign bits must be set.
1464 That is, A must be a valid negative address after
1465 shifting. */
1466 signmask = ~ (fieldmask >> 1);
1467 ss = a & signmask;
1468 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
d5afc56e 1469 flag = bfd_reloc_overflow;
252b5132
RH
1470
1471 /* We only need this next bit of code if the sign bit of B
1472 is below the sign bit of A. This would only happen if
1473 SRC_MASK had fewer bits than BITSIZE. Note that if
1474 SRC_MASK has more bits than BITSIZE, we can get into
1475 trouble; we would need to verify that B is in range, as
1476 we do for A above. */
1477 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871
AM
1478
1479 /* Set all the bits above the sign bit. */
1480 b = (b ^ signmask) - signmask;
252b5132
RH
1481
1482 b = (b & addrmask) >> bitpos;
1483
1484 /* Now we can do the addition. */
1485 sum = a + b;
1486
1487 /* See if the result has the correct sign. Bits above the
1488 sign bit are junk now; ignore them. If the sum is
1489 positive, make sure we did not have all negative inputs;
1490 if the sum is negative, make sure we did not have all
1491 positive inputs. The test below looks only at the sign
1492 bits, and it really just
1493 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1494 */
1495 signmask = (fieldmask >> 1) + 1;
1496 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
d5afc56e 1497 flag = bfd_reloc_overflow;
252b5132
RH
1498
1499 break;
1500
1501 case complain_overflow_unsigned:
1502 /* Checking for an unsigned overflow is relatively easy:
1503 trim the addresses and add, and trim the result as well.
1504 Overflow is normally indicated when the result does not
1505 fit in the field. However, we also need to consider the
1506 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1507 input is 0x80000000, and bfd_vma is only 32 bits; then we
1508 will get sum == 0, but there is an overflow, since the
1509 inputs did not fit in the field. Instead of doing a
1510 separate test, we can check for this by or-ing in the
1511 operands when testing for the sum overflowing its final
1512 field. */
1513 a = (a & addrmask) >> rightshift;
1514 b = (b & addrmask) >> bitpos;
1515 sum = (a + b) & addrmask;
1516 if ((a | b | sum) & ~ fieldmask)
d5afc56e 1517 flag = bfd_reloc_overflow;
252b5132
RH
1518
1519 break;
1520
1521 case complain_overflow_bitfield:
d5afc56e 1522 /* Much like the signed check, but for a field one bit
8a4ac871 1523 wider, and no trimming inputs with addrmask. We allow a
d5afc56e
AM
1524 bitfield to represent numbers in the range -2**n to
1525 2**n-1, where n is the number of bits in the field.
1526 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1527 overflow, which is exactly what we want. */
252b5132 1528 a >>= rightshift;
252b5132 1529
d5afc56e
AM
1530 signmask = ~ fieldmask;
1531 ss = a & signmask;
1532 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1533 flag = bfd_reloc_overflow;
252b5132 1534
d5afc56e 1535 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871 1536 b = (b ^ signmask) - signmask;
252b5132 1537
d5afc56e 1538 b >>= bitpos;
44257b8b 1539
252b5132 1540 sum = a + b;
d5afc56e 1541
8a4ac871
AM
1542 /* We mask with addrmask here to explicitly allow an address
1543 wrap-around. The Linux kernel relies on it, and it is
1544 the only way to write assembler code which can run when
1545 loaded at a location 0x80000000 away from the location at
1546 which it is linked. */
d5afc56e 1547 signmask = fieldmask + 1;
8a4ac871 1548 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
d5afc56e 1549 flag = bfd_reloc_overflow;
252b5132
RH
1550
1551 break;
1552
1553 default:
1554 abort ();
1555 }
1556 }
1557
1558 /* Put RELOCATION in the right bits. */
1559 relocation >>= (bfd_vma) rightshift;
1560 relocation <<= (bfd_vma) bitpos;
1561
1562 /* Add RELOCATION to the right bits of X. */
1563 x = ((x & ~howto->dst_mask)
1564 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1565
1566 /* Put the relocated value back in the object file. */
1567 switch (size)
1568 {
1569 default:
1570 case 0:
1571 abort ();
1572 case 1:
1573 bfd_put_8 (input_bfd, x, location);
1574 break;
1575 case 2:
1576 bfd_put_16 (input_bfd, x, location);
1577 break;
1578 case 4:
1579 bfd_put_32 (input_bfd, x, location);
1580 break;
1581 case 8:
1582#ifdef BFD64
1583 bfd_put_64 (input_bfd, x, location);
1584#else
1585 abort ();
1586#endif
1587 break;
1588 }
1589
d5afc56e 1590 return flag;
252b5132
RH
1591}
1592
1593/*
1594DOCDD
1595INODE
1596 howto manager, , typedef arelent, Relocations
1597
1598SECTION
1599 The howto manager
1600
1601 When an application wants to create a relocation, but doesn't
1602 know what the target machine might call it, it can find out by
1603 using this bit of code.
1604
1605*/
1606
1607/*
1608TYPEDEF
1609 bfd_reloc_code_type
1610
1611DESCRIPTION
1612 The insides of a reloc code. The idea is that, eventually, there
1613 will be one enumerator for every type of relocation we ever do.
1614 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1615 return a howto pointer.
1616
1617 This does mean that the application must determine the correct
1618 enumerator value; you can't get a howto pointer from a random set
1619 of attributes.
1620
1621SENUM
1622 bfd_reloc_code_real
1623
1624ENUM
1625 BFD_RELOC_64
1626ENUMX
1627 BFD_RELOC_32
1628ENUMX
1629 BFD_RELOC_26
1630ENUMX
1631 BFD_RELOC_24
1632ENUMX
1633 BFD_RELOC_16
1634ENUMX
1635 BFD_RELOC_14
1636ENUMX
1637 BFD_RELOC_8
1638ENUMDOC
1639 Basic absolute relocations of N bits.
1640
1641ENUM
1642 BFD_RELOC_64_PCREL
1643ENUMX
1644 BFD_RELOC_32_PCREL
1645ENUMX
1646 BFD_RELOC_24_PCREL
1647ENUMX
1648 BFD_RELOC_16_PCREL
1649ENUMX
1650 BFD_RELOC_12_PCREL
1651ENUMX
1652 BFD_RELOC_8_PCREL
1653ENUMDOC
1654 PC-relative relocations. Sometimes these are relative to the address
1655of the relocation itself; sometimes they are relative to the start of
1656the section containing the relocation. It depends on the specific target.
1657
1658The 24-bit relocation is used in some Intel 960 configurations.
1659
1660ENUM
1661 BFD_RELOC_32_GOT_PCREL
1662ENUMX
1663 BFD_RELOC_16_GOT_PCREL
1664ENUMX
1665 BFD_RELOC_8_GOT_PCREL
1666ENUMX
1667 BFD_RELOC_32_GOTOFF
1668ENUMX
1669 BFD_RELOC_16_GOTOFF
1670ENUMX
1671 BFD_RELOC_LO16_GOTOFF
1672ENUMX
1673 BFD_RELOC_HI16_GOTOFF
1674ENUMX
1675 BFD_RELOC_HI16_S_GOTOFF
1676ENUMX
1677 BFD_RELOC_8_GOTOFF
5bd4f169
AM
1678ENUMX
1679 BFD_RELOC_64_PLT_PCREL
252b5132
RH
1680ENUMX
1681 BFD_RELOC_32_PLT_PCREL
1682ENUMX
1683 BFD_RELOC_24_PLT_PCREL
1684ENUMX
1685 BFD_RELOC_16_PLT_PCREL
1686ENUMX
1687 BFD_RELOC_8_PLT_PCREL
5bd4f169
AM
1688ENUMX
1689 BFD_RELOC_64_PLTOFF
252b5132
RH
1690ENUMX
1691 BFD_RELOC_32_PLTOFF
1692ENUMX
1693 BFD_RELOC_16_PLTOFF
1694ENUMX
1695 BFD_RELOC_LO16_PLTOFF
1696ENUMX
1697 BFD_RELOC_HI16_PLTOFF
1698ENUMX
1699 BFD_RELOC_HI16_S_PLTOFF
1700ENUMX
1701 BFD_RELOC_8_PLTOFF
1702ENUMDOC
1703 For ELF.
1704
1705ENUM
1706 BFD_RELOC_68K_GLOB_DAT
1707ENUMX
1708 BFD_RELOC_68K_JMP_SLOT
1709ENUMX
1710 BFD_RELOC_68K_RELATIVE
1711ENUMDOC
1712 Relocations used by 68K ELF.
1713
1714ENUM
1715 BFD_RELOC_32_BASEREL
1716ENUMX
1717 BFD_RELOC_16_BASEREL
1718ENUMX
1719 BFD_RELOC_LO16_BASEREL
1720ENUMX
1721 BFD_RELOC_HI16_BASEREL
1722ENUMX
1723 BFD_RELOC_HI16_S_BASEREL
1724ENUMX
1725 BFD_RELOC_8_BASEREL
1726ENUMX
1727 BFD_RELOC_RVA
1728ENUMDOC
1729 Linkage-table relative.
1730
1731ENUM
1732 BFD_RELOC_8_FFnn
1733ENUMDOC
1734 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1735
1736ENUM
1737 BFD_RELOC_32_PCREL_S2
1738ENUMX
1739 BFD_RELOC_16_PCREL_S2
1740ENUMX
1741 BFD_RELOC_23_PCREL_S2
1742ENUMDOC
1743 These PC-relative relocations are stored as word displacements --
1744i.e., byte displacements shifted right two bits. The 30-bit word
1745displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1746SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1747signed 16-bit displacement is used on the MIPS, and the 23-bit
1748displacement is used on the Alpha.
1749
1750ENUM
1751 BFD_RELOC_HI22
1752ENUMX
1753 BFD_RELOC_LO10
1754ENUMDOC
1755 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1756the target word. These are used on the SPARC.
1757
1758ENUM
1759 BFD_RELOC_GPREL16
1760ENUMX
1761 BFD_RELOC_GPREL32
1762ENUMDOC
1763 For systems that allocate a Global Pointer register, these are
1764displacements off that register. These relocation types are
1765handled specially, because the value the register will have is
1766decided relatively late.
1767
252b5132
RH
1768ENUM
1769 BFD_RELOC_I960_CALLJ
1770ENUMDOC
1771 Reloc types used for i960/b.out.
1772
1773ENUM
1774 BFD_RELOC_NONE
1775ENUMX
1776 BFD_RELOC_SPARC_WDISP22
1777ENUMX
1778 BFD_RELOC_SPARC22
1779ENUMX
1780 BFD_RELOC_SPARC13
1781ENUMX
1782 BFD_RELOC_SPARC_GOT10
1783ENUMX
1784 BFD_RELOC_SPARC_GOT13
1785ENUMX
1786 BFD_RELOC_SPARC_GOT22
1787ENUMX
1788 BFD_RELOC_SPARC_PC10
1789ENUMX
1790 BFD_RELOC_SPARC_PC22
1791ENUMX
1792 BFD_RELOC_SPARC_WPLT30
1793ENUMX
1794 BFD_RELOC_SPARC_COPY
1795ENUMX
1796 BFD_RELOC_SPARC_GLOB_DAT
1797ENUMX
1798 BFD_RELOC_SPARC_JMP_SLOT
1799ENUMX
1800 BFD_RELOC_SPARC_RELATIVE
0f2712ed
NC
1801ENUMX
1802 BFD_RELOC_SPARC_UA16
252b5132
RH
1803ENUMX
1804 BFD_RELOC_SPARC_UA32
0f2712ed
NC
1805ENUMX
1806 BFD_RELOC_SPARC_UA64
252b5132
RH
1807ENUMDOC
1808 SPARC ELF relocations. There is probably some overlap with other
1809 relocation types already defined.
1810
1811ENUM
1812 BFD_RELOC_SPARC_BASE13
1813ENUMX
1814 BFD_RELOC_SPARC_BASE22
1815ENUMDOC
1816 I think these are specific to SPARC a.out (e.g., Sun 4).
1817
1818ENUMEQ
1819 BFD_RELOC_SPARC_64
1820 BFD_RELOC_64
1821ENUMX
1822 BFD_RELOC_SPARC_10
1823ENUMX
1824 BFD_RELOC_SPARC_11
1825ENUMX
1826 BFD_RELOC_SPARC_OLO10
1827ENUMX
1828 BFD_RELOC_SPARC_HH22
1829ENUMX
1830 BFD_RELOC_SPARC_HM10
1831ENUMX
1832 BFD_RELOC_SPARC_LM22
1833ENUMX
1834 BFD_RELOC_SPARC_PC_HH22
1835ENUMX
1836 BFD_RELOC_SPARC_PC_HM10
1837ENUMX
1838 BFD_RELOC_SPARC_PC_LM22
1839ENUMX
1840 BFD_RELOC_SPARC_WDISP16
1841ENUMX
1842 BFD_RELOC_SPARC_WDISP19
1843ENUMX
1844 BFD_RELOC_SPARC_7
1845ENUMX
1846 BFD_RELOC_SPARC_6
1847ENUMX
1848 BFD_RELOC_SPARC_5
1849ENUMEQX
1850 BFD_RELOC_SPARC_DISP64
1851 BFD_RELOC_64_PCREL
bd5e6e7e
JJ
1852ENUMX
1853 BFD_RELOC_SPARC_PLT32
252b5132
RH
1854ENUMX
1855 BFD_RELOC_SPARC_PLT64
1856ENUMX
1857 BFD_RELOC_SPARC_HIX22
1858ENUMX
1859 BFD_RELOC_SPARC_LOX10
1860ENUMX
1861 BFD_RELOC_SPARC_H44
1862ENUMX
1863 BFD_RELOC_SPARC_M44
1864ENUMX
1865 BFD_RELOC_SPARC_L44
1866ENUMX
1867 BFD_RELOC_SPARC_REGISTER
1868ENUMDOC
1869 SPARC64 relocations
1870
1871ENUM
1872 BFD_RELOC_SPARC_REV32
1873ENUMDOC
1874 SPARC little endian relocation
1875
1876ENUM
1877 BFD_RELOC_ALPHA_GPDISP_HI16
1878ENUMDOC
1879 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1880 "addend" in some special way.
1881 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1882 writing; when reading, it will be the absolute section symbol. The
1883 addend is the displacement in bytes of the "lda" instruction from
1884 the "ldah" instruction (which is at the address of this reloc).
1885ENUM
1886 BFD_RELOC_ALPHA_GPDISP_LO16
1887ENUMDOC
1888 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1889 with GPDISP_HI16 relocs. The addend is ignored when writing the
1890 relocations out, and is filled in with the file's GP value on
1891 reading, for convenience.
1892
1893ENUM
1894 BFD_RELOC_ALPHA_GPDISP
1895ENUMDOC
1896 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1897 relocation except that there is no accompanying GPDISP_LO16
1898 relocation.
1899
1900ENUM
1901 BFD_RELOC_ALPHA_LITERAL
1902ENUMX
1903 BFD_RELOC_ALPHA_ELF_LITERAL
1904ENUMX
1905 BFD_RELOC_ALPHA_LITUSE
1906ENUMDOC
1907 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1908 the assembler turns it into a LDQ instruction to load the address of
1909 the symbol, and then fills in a register in the real instruction.
1910
1911 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1912 section symbol. The addend is ignored when writing, but is filled
1913 in with the file's GP value on reading, for convenience, as with the
1914 GPDISP_LO16 reloc.
1915
1916 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1917 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1918 but it generates output not based on the position within the .got
1919 section, but relative to the GP value chosen for the file during the
1920 final link stage.
1921
1922 The LITUSE reloc, on the instruction using the loaded address, gives
1923 information to the linker that it might be able to use to optimize
1924 away some literal section references. The symbol is ignored (read
1925 as the absolute section symbol), and the "addend" indicates the type
1926 of instruction using the register:
1927 1 - "memory" fmt insn
1928 2 - byte-manipulation (byte offset reg)
1929 3 - jsr (target of branch)
1930
252b5132
RH
1931ENUM
1932 BFD_RELOC_ALPHA_HINT
1933ENUMDOC
1934 The HINT relocation indicates a value that should be filled into the
1935 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1936 prediction logic which may be provided on some processors.
1937
1938ENUM
1939 BFD_RELOC_ALPHA_LINKAGE
1940ENUMDOC
1941 The LINKAGE relocation outputs a linkage pair in the object file,
1942 which is filled by the linker.
1943
1944ENUM
1945 BFD_RELOC_ALPHA_CODEADDR
1946ENUMDOC
1947 The CODEADDR relocation outputs a STO_CA in the object file,
1948 which is filled by the linker.
1949
dfe57ca0
RH
1950ENUM
1951 BFD_RELOC_ALPHA_GPREL_HI16
1952ENUMX
1953 BFD_RELOC_ALPHA_GPREL_LO16
1954ENUMDOC
dc810e39
AM
1955 The GPREL_HI/LO relocations together form a 32-bit offset from the
1956 GP register.
dfe57ca0 1957
7793f4d0
RH
1958ENUM
1959 BFD_RELOC_ALPHA_BRSGP
1960ENUMDOC
1961 Like BFD_RELOC_23_PCREL_S2, except that the source and target must
b34976b6 1962 share a common GP, and the target address is adjusted for
7793f4d0
RH
1963 STO_ALPHA_STD_GPLOAD.
1964
3765b1be
RH
1965ENUM
1966 BFD_RELOC_ALPHA_TLSGD
1967ENUMX
1968 BFD_RELOC_ALPHA_TLSLDM
1969ENUMX
1970 BFD_RELOC_ALPHA_DTPMOD64
1971ENUMX
1972 BFD_RELOC_ALPHA_GOTDTPREL16
1973ENUMX
1974 BFD_RELOC_ALPHA_DTPREL64
1975ENUMX
1976 BFD_RELOC_ALPHA_DTPREL_HI16
1977ENUMX
1978 BFD_RELOC_ALPHA_DTPREL_LO16
1979ENUMX
1980 BFD_RELOC_ALPHA_DTPREL16
1981ENUMX
1982 BFD_RELOC_ALPHA_GOTTPREL16
1983ENUMX
1984 BFD_RELOC_ALPHA_TPREL64
1985ENUMX
1986 BFD_RELOC_ALPHA_TPREL_HI16
1987ENUMX
1988 BFD_RELOC_ALPHA_TPREL_LO16
1989ENUMX
1990 BFD_RELOC_ALPHA_TPREL16
1991ENUMDOC
1992 Alpha thread-local storage relocations.
1993
252b5132
RH
1994ENUM
1995 BFD_RELOC_MIPS_JMP
1996ENUMDOC
1997 Bits 27..2 of the relocation address shifted right 2 bits;
1998 simple reloc otherwise.
1999
2000ENUM
2001 BFD_RELOC_MIPS16_JMP
2002ENUMDOC
2003 The MIPS16 jump instruction.
2004
2005ENUM
2006 BFD_RELOC_MIPS16_GPREL
2007ENUMDOC
2008 MIPS16 GP relative reloc.
2009
2010ENUM
2011 BFD_RELOC_HI16
2012ENUMDOC
2013 High 16 bits of 32-bit value; simple reloc.
2014ENUM
2015 BFD_RELOC_HI16_S
2016ENUMDOC
2017 High 16 bits of 32-bit value but the low 16 bits will be sign
2018 extended and added to form the final result. If the low 16
2019 bits form a negative number, we need to add one to the high value
2020 to compensate for the borrow when the low bits are added.
2021ENUM
2022 BFD_RELOC_LO16
2023ENUMDOC
2024 Low 16 bits.
2025ENUM
2026 BFD_RELOC_PCREL_HI16_S
2027ENUMDOC
2028 Like BFD_RELOC_HI16_S, but PC relative.
2029ENUM
2030 BFD_RELOC_PCREL_LO16
2031ENUMDOC
2032 Like BFD_RELOC_LO16, but PC relative.
2033
252b5132
RH
2034ENUM
2035 BFD_RELOC_MIPS_LITERAL
2036ENUMDOC
2037 Relocation against a MIPS literal section.
2038
2039ENUM
2040 BFD_RELOC_MIPS_GOT16
2041ENUMX
2042 BFD_RELOC_MIPS_CALL16
252b5132
RH
2043ENUMX
2044 BFD_RELOC_MIPS_GOT_HI16
2045ENUMX
2046 BFD_RELOC_MIPS_GOT_LO16
2047ENUMX
2048 BFD_RELOC_MIPS_CALL_HI16
2049ENUMX
2050 BFD_RELOC_MIPS_CALL_LO16
3f830999
MM
2051ENUMX
2052 BFD_RELOC_MIPS_SUB
2053ENUMX
2054 BFD_RELOC_MIPS_GOT_PAGE
2055ENUMX
2056 BFD_RELOC_MIPS_GOT_OFST
2057ENUMX
2058 BFD_RELOC_MIPS_GOT_DISP
c2feb664
NC
2059ENUMX
2060 BFD_RELOC_MIPS_SHIFT5
2061ENUMX
2062 BFD_RELOC_MIPS_SHIFT6
2063ENUMX
2064 BFD_RELOC_MIPS_INSERT_A
2065ENUMX
2066 BFD_RELOC_MIPS_INSERT_B
2067ENUMX
2068 BFD_RELOC_MIPS_DELETE
2069ENUMX
2070 BFD_RELOC_MIPS_HIGHEST
2071ENUMX
2072 BFD_RELOC_MIPS_HIGHER
2073ENUMX
2074 BFD_RELOC_MIPS_SCN_DISP
2075ENUMX
2076 BFD_RELOC_MIPS_REL16
2077ENUMX
2078 BFD_RELOC_MIPS_RELGOT
2079ENUMX
2080 BFD_RELOC_MIPS_JALR
252b5132 2081COMMENT
4e5ba5b7
DB
2082ENUM
2083 BFD_RELOC_FRV_LABEL16
2084ENUMX
2085 BFD_RELOC_FRV_LABEL24
2086ENUMX
2087 BFD_RELOC_FRV_LO16
2088ENUMX
2089 BFD_RELOC_FRV_HI16
2090ENUMX
2091 BFD_RELOC_FRV_GPREL12
2092ENUMX
2093 BFD_RELOC_FRV_GPRELU12
2094ENUMX
2095 BFD_RELOC_FRV_GPREL32
2096ENUMX
2097 BFD_RELOC_FRV_GPRELHI
2098ENUMX
2099 BFD_RELOC_FRV_GPRELLO
2100ENUMDOC
2101 Fujitsu Frv Relocations.
2102COMMENT
fbca6ad9 2103COMMENT
252b5132
RH
2104ENUMDOC
2105 MIPS ELF relocations.
2106
2107COMMENT
2108
2109ENUM
2110 BFD_RELOC_386_GOT32
2111ENUMX
2112 BFD_RELOC_386_PLT32
2113ENUMX
2114 BFD_RELOC_386_COPY
2115ENUMX
2116 BFD_RELOC_386_GLOB_DAT
2117ENUMX
2118 BFD_RELOC_386_JUMP_SLOT
2119ENUMX
2120 BFD_RELOC_386_RELATIVE
2121ENUMX
2122 BFD_RELOC_386_GOTOFF
2123ENUMX
2124 BFD_RELOC_386_GOTPC
37e55690
JJ
2125ENUMX
2126 BFD_RELOC_386_TLS_TPOFF
2127ENUMX
2128 BFD_RELOC_386_TLS_IE
2129ENUMX
2130 BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
2131ENUMX
2132 BFD_RELOC_386_TLS_LE
2133ENUMX
2134 BFD_RELOC_386_TLS_GD
2135ENUMX
2136 BFD_RELOC_386_TLS_LDM
2137ENUMX
2138 BFD_RELOC_386_TLS_LDO_32
2139ENUMX
2140 BFD_RELOC_386_TLS_IE_32
2141ENUMX
2142 BFD_RELOC_386_TLS_LE_32
2143ENUMX
2144 BFD_RELOC_386_TLS_DTPMOD32
2145ENUMX
2146 BFD_RELOC_386_TLS_DTPOFF32
2147ENUMX
2148 BFD_RELOC_386_TLS_TPOFF32
252b5132
RH
2149ENUMDOC
2150 i386/elf relocations
2151
8d88c4ca
NC
2152ENUM
2153 BFD_RELOC_X86_64_GOT32
2154ENUMX
2155 BFD_RELOC_X86_64_PLT32
2156ENUMX
2157 BFD_RELOC_X86_64_COPY
2158ENUMX
2159 BFD_RELOC_X86_64_GLOB_DAT
2160ENUMX
2161 BFD_RELOC_X86_64_JUMP_SLOT
2162ENUMX
2163 BFD_RELOC_X86_64_RELATIVE
2164ENUMX
2165 BFD_RELOC_X86_64_GOTPCREL
2166ENUMX
2167 BFD_RELOC_X86_64_32S
bffbf940
JJ
2168ENUMX
2169 BFD_RELOC_X86_64_DTPMOD64
2170ENUMX
2171 BFD_RELOC_X86_64_DTPOFF64
2172ENUMX
2173 BFD_RELOC_X86_64_TPOFF64
2174ENUMX
2175 BFD_RELOC_X86_64_TLSGD
2176ENUMX
2177 BFD_RELOC_X86_64_TLSLD
2178ENUMX
2179 BFD_RELOC_X86_64_DTPOFF32
2180ENUMX
2181 BFD_RELOC_X86_64_GOTTPOFF
2182ENUMX
2183 BFD_RELOC_X86_64_TPOFF32
8d88c4ca
NC
2184ENUMDOC
2185 x86-64/elf relocations
2186
252b5132
RH
2187ENUM
2188 BFD_RELOC_NS32K_IMM_8
2189ENUMX
2190 BFD_RELOC_NS32K_IMM_16
2191ENUMX
2192 BFD_RELOC_NS32K_IMM_32
2193ENUMX
2194 BFD_RELOC_NS32K_IMM_8_PCREL
2195ENUMX
2196 BFD_RELOC_NS32K_IMM_16_PCREL
2197ENUMX
2198 BFD_RELOC_NS32K_IMM_32_PCREL
2199ENUMX
2200 BFD_RELOC_NS32K_DISP_8
2201ENUMX
2202 BFD_RELOC_NS32K_DISP_16
2203ENUMX
2204 BFD_RELOC_NS32K_DISP_32
2205ENUMX
2206 BFD_RELOC_NS32K_DISP_8_PCREL
2207ENUMX
2208 BFD_RELOC_NS32K_DISP_16_PCREL
2209ENUMX
2210 BFD_RELOC_NS32K_DISP_32_PCREL
2211ENUMDOC
2212 ns32k relocations
2213
e135f41b
NC
2214ENUM
2215 BFD_RELOC_PDP11_DISP_8_PCREL
2216ENUMX
2217 BFD_RELOC_PDP11_DISP_6_PCREL
2218ENUMDOC
2219 PDP11 relocations
2220
0bcb993b
ILT
2221ENUM
2222 BFD_RELOC_PJ_CODE_HI16
2223ENUMX
2224 BFD_RELOC_PJ_CODE_LO16
2225ENUMX
2226 BFD_RELOC_PJ_CODE_DIR16
2227ENUMX
2228 BFD_RELOC_PJ_CODE_DIR32
2229ENUMX
2230 BFD_RELOC_PJ_CODE_REL16
2231ENUMX
2232 BFD_RELOC_PJ_CODE_REL32
2233ENUMDOC
2234 Picojava relocs. Not all of these appear in object files.
88b6bae0 2235
252b5132
RH
2236ENUM
2237 BFD_RELOC_PPC_B26
2238ENUMX
2239 BFD_RELOC_PPC_BA26
2240ENUMX
2241 BFD_RELOC_PPC_TOC16
2242ENUMX
2243 BFD_RELOC_PPC_B16
2244ENUMX
2245 BFD_RELOC_PPC_B16_BRTAKEN
2246ENUMX
2247 BFD_RELOC_PPC_B16_BRNTAKEN
2248ENUMX
2249 BFD_RELOC_PPC_BA16
2250ENUMX
2251 BFD_RELOC_PPC_BA16_BRTAKEN
2252ENUMX
2253 BFD_RELOC_PPC_BA16_BRNTAKEN
2254ENUMX
2255 BFD_RELOC_PPC_COPY
2256ENUMX
2257 BFD_RELOC_PPC_GLOB_DAT
2258ENUMX
2259 BFD_RELOC_PPC_JMP_SLOT
2260ENUMX
2261 BFD_RELOC_PPC_RELATIVE
2262ENUMX
2263 BFD_RELOC_PPC_LOCAL24PC
2264ENUMX
2265 BFD_RELOC_PPC_EMB_NADDR32
2266ENUMX
2267 BFD_RELOC_PPC_EMB_NADDR16
2268ENUMX
2269 BFD_RELOC_PPC_EMB_NADDR16_LO
2270ENUMX
2271 BFD_RELOC_PPC_EMB_NADDR16_HI
2272ENUMX
2273 BFD_RELOC_PPC_EMB_NADDR16_HA
2274ENUMX
2275 BFD_RELOC_PPC_EMB_SDAI16
2276ENUMX
2277 BFD_RELOC_PPC_EMB_SDA2I16
2278ENUMX
2279 BFD_RELOC_PPC_EMB_SDA2REL
2280ENUMX
2281 BFD_RELOC_PPC_EMB_SDA21
2282ENUMX
2283 BFD_RELOC_PPC_EMB_MRKREF
2284ENUMX
2285 BFD_RELOC_PPC_EMB_RELSEC16
2286ENUMX
2287 BFD_RELOC_PPC_EMB_RELST_LO
2288ENUMX
2289 BFD_RELOC_PPC_EMB_RELST_HI
2290ENUMX
2291 BFD_RELOC_PPC_EMB_RELST_HA
2292ENUMX
2293 BFD_RELOC_PPC_EMB_BIT_FLD
2294ENUMX
2295 BFD_RELOC_PPC_EMB_RELSDA
5bd4f169
AM
2296ENUMX
2297 BFD_RELOC_PPC64_HIGHER
2298ENUMX
2299 BFD_RELOC_PPC64_HIGHER_S
2300ENUMX
2301 BFD_RELOC_PPC64_HIGHEST
2302ENUMX
2303 BFD_RELOC_PPC64_HIGHEST_S
2304ENUMX
2305 BFD_RELOC_PPC64_TOC16_LO
2306ENUMX
2307 BFD_RELOC_PPC64_TOC16_HI
2308ENUMX
2309 BFD_RELOC_PPC64_TOC16_HA
2310ENUMX
2311 BFD_RELOC_PPC64_TOC
2312ENUMX
dc810e39 2313 BFD_RELOC_PPC64_PLTGOT16
5bd4f169
AM
2314ENUMX
2315 BFD_RELOC_PPC64_PLTGOT16_LO
2316ENUMX
2317 BFD_RELOC_PPC64_PLTGOT16_HI
2318ENUMX
2319 BFD_RELOC_PPC64_PLTGOT16_HA
2320ENUMX
2321 BFD_RELOC_PPC64_ADDR16_DS
2322ENUMX
2323 BFD_RELOC_PPC64_ADDR16_LO_DS
2324ENUMX
2325 BFD_RELOC_PPC64_GOT16_DS
2326ENUMX
2327 BFD_RELOC_PPC64_GOT16_LO_DS
2328ENUMX
2329 BFD_RELOC_PPC64_PLT16_LO_DS
2330ENUMX
2331 BFD_RELOC_PPC64_SECTOFF_DS
2332ENUMX
2333 BFD_RELOC_PPC64_SECTOFF_LO_DS
2334ENUMX
2335 BFD_RELOC_PPC64_TOC16_DS
2336ENUMX
2337 BFD_RELOC_PPC64_TOC16_LO_DS
2338ENUMX
2339 BFD_RELOC_PPC64_PLTGOT16_DS
2340ENUMX
2341 BFD_RELOC_PPC64_PLTGOT16_LO_DS
252b5132
RH
2342ENUMDOC
2343 Power(rs6000) and PowerPC relocations.
2344
5b93d8bb
AM
2345ENUM
2346 BFD_RELOC_I370_D12
2347ENUMDOC
2348 IBM 370/390 relocations
2349
252b5132
RH
2350ENUM
2351 BFD_RELOC_CTOR
2352ENUMDOC
2353 The type of reloc used to build a contructor table - at the moment
2354 probably a 32 bit wide absolute relocation, but the target can choose.
2355 It generally does map to one of the other relocation types.
2356
2357ENUM
2358 BFD_RELOC_ARM_PCREL_BRANCH
2359ENUMDOC
2360 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2361 not stored in the instruction.
dfc5f959
NC
2362ENUM
2363 BFD_RELOC_ARM_PCREL_BLX
2364ENUMDOC
2365 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2366 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2367 field in the instruction.
2368ENUM
2369 BFD_RELOC_THUMB_PCREL_BLX
2370ENUMDOC
2371 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2372 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2373 field in the instruction.
252b5132
RH
2374ENUM
2375 BFD_RELOC_ARM_IMMEDIATE
752149a0
NC
2376ENUMX
2377 BFD_RELOC_ARM_ADRL_IMMEDIATE
252b5132
RH
2378ENUMX
2379 BFD_RELOC_ARM_OFFSET_IMM
2380ENUMX
2381 BFD_RELOC_ARM_SHIFT_IMM
2382ENUMX
2383 BFD_RELOC_ARM_SWI
2384ENUMX
2385 BFD_RELOC_ARM_MULTI
2386ENUMX
2387 BFD_RELOC_ARM_CP_OFF_IMM
2388ENUMX
2389 BFD_RELOC_ARM_ADR_IMM
2390ENUMX
2391 BFD_RELOC_ARM_LDR_IMM
2392ENUMX
2393 BFD_RELOC_ARM_LITERAL
2394ENUMX
2395 BFD_RELOC_ARM_IN_POOL
2396ENUMX
2397 BFD_RELOC_ARM_OFFSET_IMM8
2398ENUMX
2399 BFD_RELOC_ARM_HWLITERAL
2400ENUMX
2401 BFD_RELOC_ARM_THUMB_ADD
2402ENUMX
2403 BFD_RELOC_ARM_THUMB_IMM
2404ENUMX
2405 BFD_RELOC_ARM_THUMB_SHIFT
2406ENUMX
2407 BFD_RELOC_ARM_THUMB_OFFSET
2408ENUMX
2409 BFD_RELOC_ARM_GOT12
2410ENUMX
2411 BFD_RELOC_ARM_GOT32
2412ENUMX
2413 BFD_RELOC_ARM_JUMP_SLOT
2414ENUMX
2415 BFD_RELOC_ARM_COPY
2416ENUMX
2417 BFD_RELOC_ARM_GLOB_DAT
2418ENUMX
2419 BFD_RELOC_ARM_PLT32
2420ENUMX
2421 BFD_RELOC_ARM_RELATIVE
2422ENUMX
2423 BFD_RELOC_ARM_GOTOFF
2424ENUMX
2425 BFD_RELOC_ARM_GOTPC
2426ENUMDOC
2427 These relocs are only used within the ARM assembler. They are not
2428 (at present) written to any object files.
2429
2430ENUM
2431 BFD_RELOC_SH_PCDISP8BY2
2432ENUMX
2433 BFD_RELOC_SH_PCDISP12BY2
2434ENUMX
2435 BFD_RELOC_SH_IMM4
2436ENUMX
2437 BFD_RELOC_SH_IMM4BY2
2438ENUMX
2439 BFD_RELOC_SH_IMM4BY4
2440ENUMX
2441 BFD_RELOC_SH_IMM8
2442ENUMX
2443 BFD_RELOC_SH_IMM8BY2
2444ENUMX
2445 BFD_RELOC_SH_IMM8BY4
2446ENUMX
2447 BFD_RELOC_SH_PCRELIMM8BY2
2448ENUMX
2449 BFD_RELOC_SH_PCRELIMM8BY4
2450ENUMX
2451 BFD_RELOC_SH_SWITCH16
2452ENUMX
2453 BFD_RELOC_SH_SWITCH32
2454ENUMX
2455 BFD_RELOC_SH_USES
2456ENUMX
2457 BFD_RELOC_SH_COUNT
2458ENUMX
2459 BFD_RELOC_SH_ALIGN
2460ENUMX
2461 BFD_RELOC_SH_CODE
2462ENUMX
2463 BFD_RELOC_SH_DATA
2464ENUMX
2465 BFD_RELOC_SH_LABEL
015551fc
JR
2466ENUMX
2467 BFD_RELOC_SH_LOOP_START
2468ENUMX
2469 BFD_RELOC_SH_LOOP_END
3d96075c
L
2470ENUMX
2471 BFD_RELOC_SH_COPY
2472ENUMX
2473 BFD_RELOC_SH_GLOB_DAT
2474ENUMX
2475 BFD_RELOC_SH_JMP_SLOT
2476ENUMX
2477 BFD_RELOC_SH_RELATIVE
2478ENUMX
2479 BFD_RELOC_SH_GOTPC
eb1e0e80
NC
2480ENUMX
2481 BFD_RELOC_SH_GOT_LOW16
2482ENUMX
2483 BFD_RELOC_SH_GOT_MEDLOW16
2484ENUMX
2485 BFD_RELOC_SH_GOT_MEDHI16
2486ENUMX
2487 BFD_RELOC_SH_GOT_HI16
2488ENUMX
2489 BFD_RELOC_SH_GOTPLT_LOW16
2490ENUMX
2491 BFD_RELOC_SH_GOTPLT_MEDLOW16
2492ENUMX
2493 BFD_RELOC_SH_GOTPLT_MEDHI16
2494ENUMX
2495 BFD_RELOC_SH_GOTPLT_HI16
2496ENUMX
2497 BFD_RELOC_SH_PLT_LOW16
2498ENUMX
2499 BFD_RELOC_SH_PLT_MEDLOW16
2500ENUMX
2501 BFD_RELOC_SH_PLT_MEDHI16
2502ENUMX
2503 BFD_RELOC_SH_PLT_HI16
2504ENUMX
2505 BFD_RELOC_SH_GOTOFF_LOW16
2506ENUMX
2507 BFD_RELOC_SH_GOTOFF_MEDLOW16
2508ENUMX
2509 BFD_RELOC_SH_GOTOFF_MEDHI16
2510ENUMX
2511 BFD_RELOC_SH_GOTOFF_HI16
2512ENUMX
2513 BFD_RELOC_SH_GOTPC_LOW16
2514ENUMX
2515 BFD_RELOC_SH_GOTPC_MEDLOW16
2516ENUMX
2517 BFD_RELOC_SH_GOTPC_MEDHI16
2518ENUMX
2519 BFD_RELOC_SH_GOTPC_HI16
2520ENUMX
2521 BFD_RELOC_SH_COPY64
2522ENUMX
2523 BFD_RELOC_SH_GLOB_DAT64
2524ENUMX
2525 BFD_RELOC_SH_JMP_SLOT64
2526ENUMX
2527 BFD_RELOC_SH_RELATIVE64
2528ENUMX
2529 BFD_RELOC_SH_GOT10BY4
2530ENUMX
2531 BFD_RELOC_SH_GOT10BY8
2532ENUMX
2533 BFD_RELOC_SH_GOTPLT10BY4
2534ENUMX
2535 BFD_RELOC_SH_GOTPLT10BY8
2536ENUMX
2537 BFD_RELOC_SH_GOTPLT32
2538ENUMX
2539 BFD_RELOC_SH_SHMEDIA_CODE
2540ENUMX
2541 BFD_RELOC_SH_IMMU5
2542ENUMX
2543 BFD_RELOC_SH_IMMS6
2544ENUMX
2545 BFD_RELOC_SH_IMMS6BY32
2546ENUMX
2547 BFD_RELOC_SH_IMMU6
2548ENUMX
2549 BFD_RELOC_SH_IMMS10
2550ENUMX
2551 BFD_RELOC_SH_IMMS10BY2
2552ENUMX
2553 BFD_RELOC_SH_IMMS10BY4
2554ENUMX
2555 BFD_RELOC_SH_IMMS10BY8
2556ENUMX
2557 BFD_RELOC_SH_IMMS16
2558ENUMX
2559 BFD_RELOC_SH_IMMU16
2560ENUMX
2561 BFD_RELOC_SH_IMM_LOW16
2562ENUMX
2563 BFD_RELOC_SH_IMM_LOW16_PCREL
2564ENUMX
2565 BFD_RELOC_SH_IMM_MEDLOW16
2566ENUMX
2567 BFD_RELOC_SH_IMM_MEDLOW16_PCREL
2568ENUMX
2569 BFD_RELOC_SH_IMM_MEDHI16
2570ENUMX
2571 BFD_RELOC_SH_IMM_MEDHI16_PCREL
2572ENUMX
2573 BFD_RELOC_SH_IMM_HI16
2574ENUMX
2575 BFD_RELOC_SH_IMM_HI16_PCREL
2576ENUMX
2577 BFD_RELOC_SH_PT_16
3376eaf5
KK
2578ENUMX
2579 BFD_RELOC_SH_TLS_GD_32
2580ENUMX
2581 BFD_RELOC_SH_TLS_LD_32
2582ENUMX
2583 BFD_RELOC_SH_TLS_LDO_32
2584ENUMX
2585 BFD_RELOC_SH_TLS_IE_32
2586ENUMX
2587 BFD_RELOC_SH_TLS_LE_32
2588ENUMX
2589 BFD_RELOC_SH_TLS_DTPMOD32
2590ENUMX
2591 BFD_RELOC_SH_TLS_DTPOFF32
2592ENUMX
2593 BFD_RELOC_SH_TLS_TPOFF32
252b5132
RH
2594ENUMDOC
2595 Hitachi SH relocs. Not all of these appear in object files.
2596
2597ENUM
2598 BFD_RELOC_THUMB_PCREL_BRANCH9
2599ENUMX
2600 BFD_RELOC_THUMB_PCREL_BRANCH12
2601ENUMX
2602 BFD_RELOC_THUMB_PCREL_BRANCH23
2603ENUMDOC
2604 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2605 be zero and is not stored in the instruction.
2606
2607ENUM
2608 BFD_RELOC_ARC_B22_PCREL
2609ENUMDOC
0d2bcfaf 2610 ARC Cores relocs.
252b5132
RH
2611 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2612 not stored in the instruction. The high 20 bits are installed in bits 26
2613 through 7 of the instruction.
2614ENUM
2615 BFD_RELOC_ARC_B26
2616ENUMDOC
2617 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2618 stored in the instruction. The high 24 bits are installed in bits 23
2619 through 0.
2620
2621ENUM
2622 BFD_RELOC_D10V_10_PCREL_R
2623ENUMDOC
2624 Mitsubishi D10V relocs.
2625 This is a 10-bit reloc with the right 2 bits
2626 assumed to be 0.
2627ENUM
2628 BFD_RELOC_D10V_10_PCREL_L
2629ENUMDOC
2630 Mitsubishi D10V relocs.
2631 This is a 10-bit reloc with the right 2 bits
2632 assumed to be 0. This is the same as the previous reloc
2633 except it is in the left container, i.e.,
2634 shifted left 15 bits.
2635ENUM
2636 BFD_RELOC_D10V_18
2637ENUMDOC
2638 This is an 18-bit reloc with the right 2 bits
2639 assumed to be 0.
2640ENUM
2641 BFD_RELOC_D10V_18_PCREL
2642ENUMDOC
2643 This is an 18-bit reloc with the right 2 bits
2644 assumed to be 0.
2645
2646ENUM
2647 BFD_RELOC_D30V_6
2648ENUMDOC
2649 Mitsubishi D30V relocs.
2650 This is a 6-bit absolute reloc.
2651ENUM
2652 BFD_RELOC_D30V_9_PCREL
2653ENUMDOC
88b6bae0
AM
2654 This is a 6-bit pc-relative reloc with
2655 the right 3 bits assumed to be 0.
252b5132
RH
2656ENUM
2657 BFD_RELOC_D30V_9_PCREL_R
2658ENUMDOC
88b6bae0 2659 This is a 6-bit pc-relative reloc with
252b5132
RH
2660 the right 3 bits assumed to be 0. Same
2661 as the previous reloc but on the right side
88b6bae0 2662 of the container.
252b5132
RH
2663ENUM
2664 BFD_RELOC_D30V_15
2665ENUMDOC
88b6bae0
AM
2666 This is a 12-bit absolute reloc with the
2667 right 3 bitsassumed to be 0.
252b5132
RH
2668ENUM
2669 BFD_RELOC_D30V_15_PCREL
2670ENUMDOC
88b6bae0
AM
2671 This is a 12-bit pc-relative reloc with
2672 the right 3 bits assumed to be 0.
252b5132
RH
2673ENUM
2674 BFD_RELOC_D30V_15_PCREL_R
2675ENUMDOC
88b6bae0 2676 This is a 12-bit pc-relative reloc with
252b5132
RH
2677 the right 3 bits assumed to be 0. Same
2678 as the previous reloc but on the right side
88b6bae0 2679 of the container.
252b5132
RH
2680ENUM
2681 BFD_RELOC_D30V_21
2682ENUMDOC
88b6bae0 2683 This is an 18-bit absolute reloc with
252b5132
RH
2684 the right 3 bits assumed to be 0.
2685ENUM
2686 BFD_RELOC_D30V_21_PCREL
2687ENUMDOC
88b6bae0 2688 This is an 18-bit pc-relative reloc with
252b5132
RH
2689 the right 3 bits assumed to be 0.
2690ENUM
2691 BFD_RELOC_D30V_21_PCREL_R
2692ENUMDOC
88b6bae0 2693 This is an 18-bit pc-relative reloc with
252b5132
RH
2694 the right 3 bits assumed to be 0. Same
2695 as the previous reloc but on the right side
2696 of the container.
2697ENUM
2698 BFD_RELOC_D30V_32
2699ENUMDOC
2700 This is a 32-bit absolute reloc.
2701ENUM
2702 BFD_RELOC_D30V_32_PCREL
2703ENUMDOC
2704 This is a 32-bit pc-relative reloc.
2705
d172d4ba
NC
2706ENUM
2707 BFD_RELOC_DLX_HI16_S
2708ENUMDOC
2709 DLX relocs
2710ENUM
2711 BFD_RELOC_DLX_LO16
2712ENUMDOC
2713 DLX relocs
2714ENUM
2715 BFD_RELOC_DLX_JMP26
2716ENUMDOC
2717 DLX relocs
2718
252b5132
RH
2719ENUM
2720 BFD_RELOC_M32R_24
2721ENUMDOC
2722 Mitsubishi M32R relocs.
2723 This is a 24 bit absolute address.
2724ENUM
2725 BFD_RELOC_M32R_10_PCREL
2726ENUMDOC
2727 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2728ENUM
2729 BFD_RELOC_M32R_18_PCREL
2730ENUMDOC
2731 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2732ENUM
2733 BFD_RELOC_M32R_26_PCREL
2734ENUMDOC
2735 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2736ENUM
2737 BFD_RELOC_M32R_HI16_ULO
2738ENUMDOC
2739 This is a 16-bit reloc containing the high 16 bits of an address
2740 used when the lower 16 bits are treated as unsigned.
2741ENUM
2742 BFD_RELOC_M32R_HI16_SLO
2743ENUMDOC
2744 This is a 16-bit reloc containing the high 16 bits of an address
2745 used when the lower 16 bits are treated as signed.
2746ENUM
2747 BFD_RELOC_M32R_LO16
2748ENUMDOC
2749 This is a 16-bit reloc containing the lower 16 bits of an address.
2750ENUM
2751 BFD_RELOC_M32R_SDA16
2752ENUMDOC
2753 This is a 16-bit reloc containing the small data area offset for use in
2754 add3, load, and store instructions.
2755
2756ENUM
2757 BFD_RELOC_V850_9_PCREL
2758ENUMDOC
2759 This is a 9-bit reloc
2760ENUM
2761 BFD_RELOC_V850_22_PCREL
2762ENUMDOC
2763 This is a 22-bit reloc
2764
2765ENUM
2766 BFD_RELOC_V850_SDA_16_16_OFFSET
2767ENUMDOC
2768 This is a 16 bit offset from the short data area pointer.
2769ENUM
2770 BFD_RELOC_V850_SDA_15_16_OFFSET
2771ENUMDOC
2772 This is a 16 bit offset (of which only 15 bits are used) from the
2773 short data area pointer.
2774ENUM
2775 BFD_RELOC_V850_ZDA_16_16_OFFSET
2776ENUMDOC
2777 This is a 16 bit offset from the zero data area pointer.
2778ENUM
2779 BFD_RELOC_V850_ZDA_15_16_OFFSET
2780ENUMDOC
2781 This is a 16 bit offset (of which only 15 bits are used) from the
2782 zero data area pointer.
2783ENUM
2784 BFD_RELOC_V850_TDA_6_8_OFFSET
2785ENUMDOC
2786 This is an 8 bit offset (of which only 6 bits are used) from the
2787 tiny data area pointer.
2788ENUM
2789 BFD_RELOC_V850_TDA_7_8_OFFSET
2790ENUMDOC
2791 This is an 8bit offset (of which only 7 bits are used) from the tiny
2792 data area pointer.
2793ENUM
2794 BFD_RELOC_V850_TDA_7_7_OFFSET
2795ENUMDOC
2796 This is a 7 bit offset from the tiny data area pointer.
2797ENUM
2798 BFD_RELOC_V850_TDA_16_16_OFFSET
2799ENUMDOC
2800 This is a 16 bit offset from the tiny data area pointer.
2801COMMENT
2802ENUM
2803 BFD_RELOC_V850_TDA_4_5_OFFSET
2804ENUMDOC
2805 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2806 data area pointer.
2807ENUM
2808 BFD_RELOC_V850_TDA_4_4_OFFSET
2809ENUMDOC
2810 This is a 4 bit offset from the tiny data area pointer.
2811ENUM
2812 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2813ENUMDOC
2814 This is a 16 bit offset from the short data area pointer, with the
2815 bits placed non-contigously in the instruction.
2816ENUM
2817 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2818ENUMDOC
2819 This is a 16 bit offset from the zero data area pointer, with the
2820 bits placed non-contigously in the instruction.
2821ENUM
2822 BFD_RELOC_V850_CALLT_6_7_OFFSET
2823ENUMDOC
2824 This is a 6 bit offset from the call table base pointer.
2825ENUM
2826 BFD_RELOC_V850_CALLT_16_16_OFFSET
2827ENUMDOC
2828 This is a 16 bit offset from the call table base pointer.
86aba9db
NC
2829ENUM
2830 BFD_RELOC_V850_LONGCALL
2831ENUMDOC
2832 Used for relaxing indirect function calls.
2833ENUM
2834 BFD_RELOC_V850_LONGJUMP
2835ENUMDOC
2836 Used for relaxing indirect jumps.
2837ENUM
2838 BFD_RELOC_V850_ALIGN
2839ENUMDOC
2840 Used to maintain alignment whilst relaxing.
252b5132
RH
2841ENUM
2842 BFD_RELOC_MN10300_32_PCREL
2843ENUMDOC
2844 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2845 instruction.
2846ENUM
2847 BFD_RELOC_MN10300_16_PCREL
2848ENUMDOC
2849 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2850 instruction.
2851
2852ENUM
2853 BFD_RELOC_TIC30_LDP
2854ENUMDOC
2855 This is a 8bit DP reloc for the tms320c30, where the most
2856 significant 8 bits of a 24 bit word are placed into the least
2857 significant 8 bits of the opcode.
2858
81635ce4
TW
2859ENUM
2860 BFD_RELOC_TIC54X_PARTLS7
2861ENUMDOC
2862 This is a 7bit reloc for the tms320c54x, where the least
2863 significant 7 bits of a 16 bit word are placed into the least
2864 significant 7 bits of the opcode.
2865
2866ENUM
2867 BFD_RELOC_TIC54X_PARTMS9
2868ENUMDOC
2869 This is a 9bit DP reloc for the tms320c54x, where the most
2870 significant 9 bits of a 16 bit word are placed into the least
2871 significant 9 bits of the opcode.
2872
2873ENUM
2874 BFD_RELOC_TIC54X_23
2875ENUMDOC
2876 This is an extended address 23-bit reloc for the tms320c54x.
2877
2878ENUM
2879 BFD_RELOC_TIC54X_16_OF_23
2880ENUMDOC
3d855632
KH
2881 This is a 16-bit reloc for the tms320c54x, where the least
2882 significant 16 bits of a 23-bit extended address are placed into
81635ce4
TW
2883 the opcode.
2884
2885ENUM
2886 BFD_RELOC_TIC54X_MS7_OF_23
2887ENUMDOC
2888 This is a reloc for the tms320c54x, where the most
3d855632 2889 significant 7 bits of a 23-bit extended address are placed into
81635ce4 2890 the opcode.
81635ce4 2891
252b5132
RH
2892ENUM
2893 BFD_RELOC_FR30_48
2894ENUMDOC
2895 This is a 48 bit reloc for the FR30 that stores 32 bits.
2896ENUM
2897 BFD_RELOC_FR30_20
2898ENUMDOC
2899 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2900 two sections.
2901ENUM
2902 BFD_RELOC_FR30_6_IN_4
2903ENUMDOC
2904 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2905 4 bits.
2906ENUM
2907 BFD_RELOC_FR30_8_IN_8
2908ENUMDOC
2909 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2910 into 8 bits.
2911ENUM
2912 BFD_RELOC_FR30_9_IN_8
2913ENUMDOC
2914 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2915 into 8 bits.
2916ENUM
2917 BFD_RELOC_FR30_10_IN_8
2918ENUMDOC
2919 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2920 into 8 bits.
2921ENUM
2922 BFD_RELOC_FR30_9_PCREL
2923ENUMDOC
2924 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2925 short offset into 8 bits.
2926ENUM
2927 BFD_RELOC_FR30_12_PCREL
2928ENUMDOC
2929 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2930 short offset into 11 bits.
88b6bae0 2931
252b5132
RH
2932ENUM
2933 BFD_RELOC_MCORE_PCREL_IMM8BY4
2934ENUMX
2935 BFD_RELOC_MCORE_PCREL_IMM11BY2
2936ENUMX
2937 BFD_RELOC_MCORE_PCREL_IMM4BY2
2938ENUMX
2939 BFD_RELOC_MCORE_PCREL_32
2940ENUMX
2941 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
36797d47
NC
2942ENUMX
2943 BFD_RELOC_MCORE_RVA
252b5132
RH
2944ENUMDOC
2945 Motorola Mcore relocations.
88b6bae0 2946
3c3bdf30
NC
2947ENUM
2948 BFD_RELOC_MMIX_GETA
2949ENUMX
2950 BFD_RELOC_MMIX_GETA_1
2951ENUMX
2952 BFD_RELOC_MMIX_GETA_2
2953ENUMX
2954 BFD_RELOC_MMIX_GETA_3
2955ENUMDOC
2956 These are relocations for the GETA instruction.
2957ENUM
2958 BFD_RELOC_MMIX_CBRANCH
2959ENUMX
2960 BFD_RELOC_MMIX_CBRANCH_J
2961ENUMX
2962 BFD_RELOC_MMIX_CBRANCH_1
2963ENUMX
2964 BFD_RELOC_MMIX_CBRANCH_2
2965ENUMX
2966 BFD_RELOC_MMIX_CBRANCH_3
2967ENUMDOC
2968 These are relocations for a conditional branch instruction.
2969ENUM
2970 BFD_RELOC_MMIX_PUSHJ
2971ENUMX
2972 BFD_RELOC_MMIX_PUSHJ_1
2973ENUMX
2974 BFD_RELOC_MMIX_PUSHJ_2
2975ENUMX
2976 BFD_RELOC_MMIX_PUSHJ_3
2977ENUMDOC
2978 These are relocations for the PUSHJ instruction.
2979ENUM
2980 BFD_RELOC_MMIX_JMP
2981ENUMX
2982 BFD_RELOC_MMIX_JMP_1
2983ENUMX
2984 BFD_RELOC_MMIX_JMP_2
2985ENUMX
2986 BFD_RELOC_MMIX_JMP_3
2987ENUMDOC
2988 These are relocations for the JMP instruction.
2989ENUM
2990 BFD_RELOC_MMIX_ADDR19
2991ENUMDOC
2992 This is a relocation for a relative address as in a GETA instruction or
2993 a branch.
2994ENUM
2995 BFD_RELOC_MMIX_ADDR27
2996ENUMDOC
2997 This is a relocation for a relative address as in a JMP instruction.
2998ENUM
2999 BFD_RELOC_MMIX_REG_OR_BYTE
3000ENUMDOC
3001 This is a relocation for an instruction field that may be a general
3002 register or a value 0..255.
3003ENUM
3004 BFD_RELOC_MMIX_REG
3005ENUMDOC
3006 This is a relocation for an instruction field that may be a general
3007 register.
3008ENUM
3009 BFD_RELOC_MMIX_BASE_PLUS_OFFSET
3010ENUMDOC
3011 This is a relocation for two instruction fields holding a register and
3012 an offset, the equivalent of the relocation.
3013ENUM
3014 BFD_RELOC_MMIX_LOCAL
3015ENUMDOC
3016 This relocation is an assertion that the expression is not allocated as
3017 a global register. It does not modify contents.
3018
adde6300
AM
3019ENUM
3020 BFD_RELOC_AVR_7_PCREL
3021ENUMDOC
3022 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
3023 short offset into 7 bits.
3024ENUM
3025 BFD_RELOC_AVR_13_PCREL
3026ENUMDOC
3027 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
3028 short offset into 12 bits.
3029ENUM
3030 BFD_RELOC_AVR_16_PM
3031ENUMDOC
3032 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
3d855632 3033 program memory address) into 16 bits.
adde6300
AM
3034ENUM
3035 BFD_RELOC_AVR_LO8_LDI
3036ENUMDOC
3037 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
3038 data memory address) into 8 bit immediate value of LDI insn.
3039ENUM
3040 BFD_RELOC_AVR_HI8_LDI
3041ENUMDOC
3042 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
3043 of data memory address) into 8 bit immediate value of LDI insn.
3044ENUM
3045 BFD_RELOC_AVR_HH8_LDI
3046ENUMDOC
3047 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
3048 of program memory address) into 8 bit immediate value of LDI insn.
3049ENUM
3050 BFD_RELOC_AVR_LO8_LDI_NEG
3051ENUMDOC
3052 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3053 (usually data memory address) into 8 bit immediate value of SUBI insn.
3054ENUM
3055 BFD_RELOC_AVR_HI8_LDI_NEG
3056ENUMDOC
3057 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3058 (high 8 bit of data memory address) into 8 bit immediate value of
3059 SUBI insn.
3060ENUM
3061 BFD_RELOC_AVR_HH8_LDI_NEG
3062ENUMDOC
3063 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3064 (most high 8 bit of program memory address) into 8 bit immediate value
3065 of LDI or SUBI insn.
3066ENUM
3067 BFD_RELOC_AVR_LO8_LDI_PM
3068ENUMDOC
3069 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
3070 command address) into 8 bit immediate value of LDI insn.
3071ENUM
3072 BFD_RELOC_AVR_HI8_LDI_PM
3073ENUMDOC
3074 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
3075 of command address) into 8 bit immediate value of LDI insn.
3076ENUM
3077 BFD_RELOC_AVR_HH8_LDI_PM
3078ENUMDOC
3079 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
3080 of command address) into 8 bit immediate value of LDI insn.
3081ENUM
3082 BFD_RELOC_AVR_LO8_LDI_PM_NEG
3083ENUMDOC
3084 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3085 (usually command address) into 8 bit immediate value of SUBI insn.
3086ENUM
3087 BFD_RELOC_AVR_HI8_LDI_PM_NEG
3088ENUMDOC
3089 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3090 (high 8 bit of 16 bit command address) into 8 bit immediate value
3091 of SUBI insn.
3092ENUM
3093 BFD_RELOC_AVR_HH8_LDI_PM_NEG
3094ENUMDOC
3095 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3096 (high 6 bit of 22 bit command address) into 8 bit immediate
3097 value of SUBI insn.
3098ENUM
3099 BFD_RELOC_AVR_CALL
3100ENUMDOC
3101 This is a 32 bit reloc for the AVR that stores 23 bit value
3102 into 22 bits.
3103
a85d7ed0
NC
3104ENUM
3105 BFD_RELOC_390_12
3106ENUMDOC
3107 Direct 12 bit.
3108ENUM
3109 BFD_RELOC_390_GOT12
3110ENUMDOC
3111 12 bit GOT offset.
3112ENUM
3113 BFD_RELOC_390_PLT32
3114ENUMDOC
3115 32 bit PC relative PLT address.
3116ENUM
3117 BFD_RELOC_390_COPY
3118ENUMDOC
3119 Copy symbol at runtime.
3120ENUM
3121 BFD_RELOC_390_GLOB_DAT
3122ENUMDOC
3123 Create GOT entry.
3124ENUM
3125 BFD_RELOC_390_JMP_SLOT
3126ENUMDOC
3127 Create PLT entry.
3128ENUM
3129 BFD_RELOC_390_RELATIVE
3130ENUMDOC
3131 Adjust by program base.
3132ENUM
3133 BFD_RELOC_390_GOTPC
3134ENUMDOC
3135 32 bit PC relative offset to GOT.
3136ENUM
3137 BFD_RELOC_390_GOT16
3138ENUMDOC
3139 16 bit GOT offset.
3140ENUM
3141 BFD_RELOC_390_PC16DBL
3142ENUMDOC
3143 PC relative 16 bit shifted by 1.
3144ENUM
3145 BFD_RELOC_390_PLT16DBL
3146ENUMDOC
3147 16 bit PC rel. PLT shifted by 1.
3148ENUM
3149 BFD_RELOC_390_PC32DBL
3150ENUMDOC
3151 PC relative 32 bit shifted by 1.
3152ENUM
3153 BFD_RELOC_390_PLT32DBL
3154ENUMDOC
3155 32 bit PC rel. PLT shifted by 1.
3156ENUM
3157 BFD_RELOC_390_GOTPCDBL
3158ENUMDOC
3159 32 bit PC rel. GOT shifted by 1.
3160ENUM
3161 BFD_RELOC_390_GOT64
3162ENUMDOC
3163 64 bit GOT offset.
3164ENUM
3165 BFD_RELOC_390_PLT64
3166ENUMDOC
3167 64 bit PC relative PLT address.
3168ENUM
3169 BFD_RELOC_390_GOTENT
3170ENUMDOC
3171 32 bit rel. offset to GOT entry.
dc810e39 3172
cf88bb9f
NC
3173ENUM
3174 BFD_RELOC_IP2K_FR9
3175ENUMDOC
3176 Scenix IP2K - 9-bit register number / data address
3177ENUM
3178 BFD_RELOC_IP2K_BANK
3179ENUMDOC
3180 Scenix IP2K - 4-bit register/data bank number
3181ENUM
3182 BFD_RELOC_IP2K_ADDR16CJP
3183ENUMDOC
3184 Scenix IP2K - low 13 bits of instruction word address
3185ENUM
3186 BFD_RELOC_IP2K_PAGE3
3187ENUMDOC
3188 Scenix IP2K - high 3 bits of instruction word address
3189ENUM
3190 BFD_RELOC_IP2K_LO8DATA
3191ENUMX
3192 BFD_RELOC_IP2K_HI8DATA
3193ENUMX
3194 BFD_RELOC_IP2K_EX8DATA
3195ENUMDOC
3196 Scenix IP2K - ext/low/high 8 bits of data address
3197ENUM
3198 BFD_RELOC_IP2K_LO8INSN
3199ENUMX
3200 BFD_RELOC_IP2K_HI8INSN
3201ENUMDOC
3202 Scenix IP2K - low/high 8 bits of instruction word address
3203ENUM
3204 BFD_RELOC_IP2K_PC_SKIP
3205ENUMDOC
3206 Scenix IP2K - even/odd PC modifier to modify snb pcl.0
3207ENUM
3208 BFD_RELOC_IP2K_TEXT
3209ENUMDOC
3210 Scenix IP2K - 16 bit word address in text section.
3211ENUM
3212 BFD_RELOC_IP2K_FR_OFFSET
3213ENUMDOC
3214 Scenix IP2K - 7-bit sp or dp offset
3215ENUM
3216 BFD_RELOC_VPE4KMATH_DATA
3217ENUMX
3218 BFD_RELOC_VPE4KMATH_INSN
3219ENUMDOC
3220 Scenix VPE4K coprocessor - data/insn-space addressing
3221
252b5132
RH
3222ENUM
3223 BFD_RELOC_VTABLE_INHERIT
3224ENUMX
3225 BFD_RELOC_VTABLE_ENTRY
3226ENUMDOC
88b6bae0 3227 These two relocations are used by the linker to determine which of
252b5132
RH
3228 the entries in a C++ virtual function table are actually used. When
3229 the --gc-sections option is given, the linker will zero out the entries
3230 that are not used, so that the code for those functions need not be
3231 included in the output.
3232
3233 VTABLE_INHERIT is a zero-space relocation used to describe to the
3234 linker the inheritence tree of a C++ virtual function table. The
3235 relocation's symbol should be the parent class' vtable, and the
3236 relocation should be located at the child vtable.
3237
3238 VTABLE_ENTRY is a zero-space relocation that describes the use of a
3239 virtual function table entry. The reloc's symbol should refer to the
3240 table of the class mentioned in the code. Off of that base, an offset
88b6bae0 3241 describes the entry that is being used. For Rela hosts, this offset
252b5132
RH
3242 is stored in the reloc's addend. For Rel hosts, we are forced to put
3243 this offset in the reloc's section offset.
3244
800eeca4
JW
3245ENUM
3246 BFD_RELOC_IA64_IMM14
3247ENUMX
3248 BFD_RELOC_IA64_IMM22
3249ENUMX
3250 BFD_RELOC_IA64_IMM64
3251ENUMX
3252 BFD_RELOC_IA64_DIR32MSB
3253ENUMX
3254 BFD_RELOC_IA64_DIR32LSB
3255ENUMX
3256 BFD_RELOC_IA64_DIR64MSB
3257ENUMX
3258 BFD_RELOC_IA64_DIR64LSB
3259ENUMX
3260 BFD_RELOC_IA64_GPREL22
3261ENUMX
3262 BFD_RELOC_IA64_GPREL64I
3263ENUMX
3264 BFD_RELOC_IA64_GPREL32MSB
3265ENUMX
3266 BFD_RELOC_IA64_GPREL32LSB
3267ENUMX
3268 BFD_RELOC_IA64_GPREL64MSB
3269ENUMX
3270 BFD_RELOC_IA64_GPREL64LSB
3271ENUMX
3272 BFD_RELOC_IA64_LTOFF22
3273ENUMX
3274 BFD_RELOC_IA64_LTOFF64I
3275ENUMX
3276 BFD_RELOC_IA64_PLTOFF22
3277ENUMX
3278 BFD_RELOC_IA64_PLTOFF64I
3279ENUMX
3280 BFD_RELOC_IA64_PLTOFF64MSB
3281ENUMX
3282 BFD_RELOC_IA64_PLTOFF64LSB
3283ENUMX
3284 BFD_RELOC_IA64_FPTR64I
3285ENUMX
3286 BFD_RELOC_IA64_FPTR32MSB
3287ENUMX
3288 BFD_RELOC_IA64_FPTR32LSB
3289ENUMX
3290 BFD_RELOC_IA64_FPTR64MSB
3291ENUMX
3292 BFD_RELOC_IA64_FPTR64LSB
3293ENUMX
3294 BFD_RELOC_IA64_PCREL21B
748abff6
RH
3295ENUMX
3296 BFD_RELOC_IA64_PCREL21BI
800eeca4
JW
3297ENUMX
3298 BFD_RELOC_IA64_PCREL21M
3299ENUMX
3300 BFD_RELOC_IA64_PCREL21F
748abff6
RH
3301ENUMX
3302 BFD_RELOC_IA64_PCREL22
3303ENUMX
3304 BFD_RELOC_IA64_PCREL60B
3305ENUMX
3306 BFD_RELOC_IA64_PCREL64I
800eeca4
JW
3307ENUMX
3308 BFD_RELOC_IA64_PCREL32MSB
3309ENUMX
3310 BFD_RELOC_IA64_PCREL32LSB
3311ENUMX
3312 BFD_RELOC_IA64_PCREL64MSB
3313ENUMX
3314 BFD_RELOC_IA64_PCREL64LSB
3315ENUMX
3316 BFD_RELOC_IA64_LTOFF_FPTR22
3317ENUMX
3318 BFD_RELOC_IA64_LTOFF_FPTR64I
a4bd8390
JW
3319ENUMX
3320 BFD_RELOC_IA64_LTOFF_FPTR32MSB
3321ENUMX
3322 BFD_RELOC_IA64_LTOFF_FPTR32LSB
800eeca4
JW
3323ENUMX
3324 BFD_RELOC_IA64_LTOFF_FPTR64MSB
3325ENUMX
3326 BFD_RELOC_IA64_LTOFF_FPTR64LSB
800eeca4
JW
3327ENUMX
3328 BFD_RELOC_IA64_SEGREL32MSB
3329ENUMX
3330 BFD_RELOC_IA64_SEGREL32LSB
3331ENUMX
3332 BFD_RELOC_IA64_SEGREL64MSB
3333ENUMX
3334 BFD_RELOC_IA64_SEGREL64LSB
3335ENUMX
3336 BFD_RELOC_IA64_SECREL32MSB
3337ENUMX
3338 BFD_RELOC_IA64_SECREL32LSB
3339ENUMX
3340 BFD_RELOC_IA64_SECREL64MSB
3341ENUMX
3342 BFD_RELOC_IA64_SECREL64LSB
3343ENUMX
3344 BFD_RELOC_IA64_REL32MSB
3345ENUMX
3346 BFD_RELOC_IA64_REL32LSB
3347ENUMX
3348 BFD_RELOC_IA64_REL64MSB
3349ENUMX
3350 BFD_RELOC_IA64_REL64LSB
3351ENUMX
3352 BFD_RELOC_IA64_LTV32MSB
3353ENUMX
3354 BFD_RELOC_IA64_LTV32LSB
3355ENUMX
3356 BFD_RELOC_IA64_LTV64MSB
3357ENUMX
3358 BFD_RELOC_IA64_LTV64LSB
3359ENUMX
3360 BFD_RELOC_IA64_IPLTMSB
3361ENUMX
3362 BFD_RELOC_IA64_IPLTLSB
800eeca4
JW
3363ENUMX
3364 BFD_RELOC_IA64_COPY
13ae64f3
JJ
3365ENUMX
3366 BFD_RELOC_IA64_LTOFF22X
3367ENUMX
3368 BFD_RELOC_IA64_LDXMOV
3369ENUMX
3370 BFD_RELOC_IA64_TPREL14
800eeca4
JW
3371ENUMX
3372 BFD_RELOC_IA64_TPREL22
13ae64f3
JJ
3373ENUMX
3374 BFD_RELOC_IA64_TPREL64I
800eeca4
JW
3375ENUMX
3376 BFD_RELOC_IA64_TPREL64MSB
3377ENUMX
3378 BFD_RELOC_IA64_TPREL64LSB
3379ENUMX
13ae64f3 3380 BFD_RELOC_IA64_LTOFF_TPREL22
800eeca4 3381ENUMX
13ae64f3 3382 BFD_RELOC_IA64_DTPMOD64MSB
800eeca4 3383ENUMX
13ae64f3
JJ
3384 BFD_RELOC_IA64_DTPMOD64LSB
3385ENUMX
3386 BFD_RELOC_IA64_LTOFF_DTPMOD22
3387ENUMX
3388 BFD_RELOC_IA64_DTPREL14
3389ENUMX
3390 BFD_RELOC_IA64_DTPREL22
3391ENUMX
3392 BFD_RELOC_IA64_DTPREL64I
3393ENUMX
3394 BFD_RELOC_IA64_DTPREL32MSB
3395ENUMX
3396 BFD_RELOC_IA64_DTPREL32LSB
3397ENUMX
3398 BFD_RELOC_IA64_DTPREL64MSB
3399ENUMX
3400 BFD_RELOC_IA64_DTPREL64LSB
3401ENUMX
3402 BFD_RELOC_IA64_LTOFF_DTPREL22
800eeca4
JW
3403ENUMDOC
3404 Intel IA64 Relocations.
60bcf0fa
NC
3405
3406ENUM
3407 BFD_RELOC_M68HC11_HI8
3408ENUMDOC
3409 Motorola 68HC11 reloc.
3dbfec86 3410 This is the 8 bit high part of an absolute address.
60bcf0fa
NC
3411ENUM
3412 BFD_RELOC_M68HC11_LO8
3413ENUMDOC
3414 Motorola 68HC11 reloc.
3dbfec86 3415 This is the 8 bit low part of an absolute address.
60bcf0fa
NC
3416ENUM
3417 BFD_RELOC_M68HC11_3B
3418ENUMDOC
3419 Motorola 68HC11 reloc.
3dbfec86
SC
3420 This is the 3 bit of a value.
3421ENUM
3422 BFD_RELOC_M68HC11_RL_JUMP
3423ENUMDOC
3424 Motorola 68HC11 reloc.
3425 This reloc marks the beginning of a jump/call instruction.
3426 It is used for linker relaxation to correctly identify beginning
3427 of instruction and change some branchs to use PC-relative
3428 addressing mode.
3429ENUM
3430 BFD_RELOC_M68HC11_RL_GROUP
3431ENUMDOC
3432 Motorola 68HC11 reloc.
3433 This reloc marks a group of several instructions that gcc generates
3434 and for which the linker relaxation pass can modify and/or remove
3435 some of them.
3436ENUM
3437 BFD_RELOC_M68HC11_LO16
3438ENUMDOC
3439 Motorola 68HC11 reloc.
3440 This is the 16-bit lower part of an address. It is used for 'call'
3441 instruction to specify the symbol address without any special
3442 transformation (due to memory bank window).
3443ENUM
3444 BFD_RELOC_M68HC11_PAGE
3445ENUMDOC
3446 Motorola 68HC11 reloc.
3447 This is a 8-bit reloc that specifies the page number of an address.
3448 It is used by 'call' instruction to specify the page number of
3449 the symbol.
3450ENUM
3451 BFD_RELOC_M68HC11_24
3452ENUMDOC
3453 Motorola 68HC11 reloc.
3454 This is a 24-bit reloc that represents the address with a 16-bit
3455 value and a 8-bit page number. The symbol address is transformed
3456 to follow the 16K memory bank of 68HC12 (seen as mapped in the window).
60bcf0fa 3457
06c15ad7
HPN
3458ENUM
3459 BFD_RELOC_CRIS_BDISP8
3460ENUMX
3461 BFD_RELOC_CRIS_UNSIGNED_5
3462ENUMX
3463 BFD_RELOC_CRIS_SIGNED_6
3464ENUMX
3465 BFD_RELOC_CRIS_UNSIGNED_6
3466ENUMX
3467 BFD_RELOC_CRIS_UNSIGNED_4
3468ENUMDOC
3469 These relocs are only used within the CRIS assembler. They are not
3470 (at present) written to any object files.
58d29fc3
HPN
3471ENUM
3472 BFD_RELOC_CRIS_COPY
3473ENUMX
3474 BFD_RELOC_CRIS_GLOB_DAT
3475ENUMX
3476 BFD_RELOC_CRIS_JUMP_SLOT
3477ENUMX
3478 BFD_RELOC_CRIS_RELATIVE
3479ENUMDOC
3480 Relocs used in ELF shared libraries for CRIS.
3481ENUM
3482 BFD_RELOC_CRIS_32_GOT
3483ENUMDOC
3484 32-bit offset to symbol-entry within GOT.
3485ENUM
3486 BFD_RELOC_CRIS_16_GOT
3487ENUMDOC
3488 16-bit offset to symbol-entry within GOT.
3489ENUM
3490 BFD_RELOC_CRIS_32_GOTPLT
3491ENUMDOC
3492 32-bit offset to symbol-entry within GOT, with PLT handling.
3493ENUM
3494 BFD_RELOC_CRIS_16_GOTPLT
3495ENUMDOC
3496 16-bit offset to symbol-entry within GOT, with PLT handling.
3497ENUM
3498 BFD_RELOC_CRIS_32_GOTREL
3499ENUMDOC
3500 32-bit offset to symbol, relative to GOT.
3501ENUM
3502 BFD_RELOC_CRIS_32_PLT_GOTREL
3503ENUMDOC
3504 32-bit offset to symbol with PLT entry, relative to GOT.
3505ENUM
3506 BFD_RELOC_CRIS_32_PLT_PCREL
3507ENUMDOC
3508 32-bit offset to symbol with PLT entry, relative to this relocation.
06c15ad7 3509
a87fdb8d
JE
3510ENUM
3511 BFD_RELOC_860_COPY
3512ENUMX
3513 BFD_RELOC_860_GLOB_DAT
3514ENUMX
3515 BFD_RELOC_860_JUMP_SLOT
3516ENUMX
3517 BFD_RELOC_860_RELATIVE
3518ENUMX
3519 BFD_RELOC_860_PC26
3520ENUMX
3521 BFD_RELOC_860_PLT26
3522ENUMX
3523 BFD_RELOC_860_PC16
3524ENUMX
3525 BFD_RELOC_860_LOW0
3526ENUMX
3527 BFD_RELOC_860_SPLIT0
3528ENUMX
3529 BFD_RELOC_860_LOW1
3530ENUMX
3531 BFD_RELOC_860_SPLIT1
3532ENUMX
3533 BFD_RELOC_860_LOW2
3534ENUMX
3535 BFD_RELOC_860_SPLIT2
3536ENUMX
3537 BFD_RELOC_860_LOW3
3538ENUMX
3539 BFD_RELOC_860_LOGOT0
3540ENUMX
3541 BFD_RELOC_860_SPGOT0
3542ENUMX
3543 BFD_RELOC_860_LOGOT1
3544ENUMX
3545 BFD_RELOC_860_SPGOT1
3546ENUMX
3547 BFD_RELOC_860_LOGOTOFF0
3548ENUMX
3549 BFD_RELOC_860_SPGOTOFF0
3550ENUMX
3551 BFD_RELOC_860_LOGOTOFF1
3552ENUMX
3553 BFD_RELOC_860_SPGOTOFF1
3554ENUMX
3555 BFD_RELOC_860_LOGOTOFF2
3556ENUMX
3557 BFD_RELOC_860_LOGOTOFF3
3558ENUMX
3559 BFD_RELOC_860_LOPC
3560ENUMX
3561 BFD_RELOC_860_HIGHADJ
3562ENUMX
3563 BFD_RELOC_860_HAGOT
3564ENUMX
3565 BFD_RELOC_860_HAGOTOFF
3566ENUMX
3567 BFD_RELOC_860_HAPC
3568ENUMX
3569 BFD_RELOC_860_HIGH
3570ENUMX
3571 BFD_RELOC_860_HIGOT
3572ENUMX
3573 BFD_RELOC_860_HIGOTOFF
3574ENUMDOC
3575 Intel i860 Relocations.
3576
b3baf5d0
NC
3577ENUM
3578 BFD_RELOC_OPENRISC_ABS_26
3579ENUMX
3580 BFD_RELOC_OPENRISC_REL_26
3581ENUMDOC
3582 OpenRISC Relocations.
3583
e01b0e69
JR
3584ENUM
3585 BFD_RELOC_H8_DIR16A8
3586ENUMX
3587 BFD_RELOC_H8_DIR16R8
3588ENUMX
3589 BFD_RELOC_H8_DIR24A8
3590ENUMX
3591 BFD_RELOC_H8_DIR24R8
3592ENUMX
3593 BFD_RELOC_H8_DIR32A16
3594ENUMDOC
3595 H8 elf Relocations.
3596
93fbbb04
GK
3597ENUM
3598 BFD_RELOC_XSTORMY16_REL_12
5fd63999
DD
3599ENUMX
3600 BFD_RELOC_XSTORMY16_12
93fbbb04
GK
3601ENUMX
3602 BFD_RELOC_XSTORMY16_24
3603ENUMX
3604 BFD_RELOC_XSTORMY16_FPTR16
3605ENUMDOC
3606 Sony Xstormy16 Relocations.
3607
90ace9e9
JT
3608ENUM
3609 BFD_RELOC_VAX_GLOB_DAT
3610ENUMX
3611 BFD_RELOC_VAX_JMP_SLOT
3612ENUMX
3613 BFD_RELOC_VAX_RELATIVE
3614ENUMDOC
3615 Relocations used by VAX ELF.
3616
252b5132
RH
3617ENDSENUM
3618 BFD_RELOC_UNUSED
3619CODE_FRAGMENT
3620.
3621.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3622*/
3623
252b5132
RH
3624/*
3625FUNCTION
3626 bfd_reloc_type_lookup
3627
3628SYNOPSIS
3629 reloc_howto_type *
3630 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3631
3632DESCRIPTION
3633 Return a pointer to a howto structure which, when
3634 invoked, will perform the relocation @var{code} on data from the
3635 architecture noted.
3636
3637*/
3638
252b5132
RH
3639reloc_howto_type *
3640bfd_reloc_type_lookup (abfd, code)
3641 bfd *abfd;
3642 bfd_reloc_code_real_type code;
3643{
3644 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3645}
3646
3647static reloc_howto_type bfd_howto_32 =
b34976b6 3648HOWTO (0, 00, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "VRT32", FALSE, 0xffffffff, 0xffffffff, TRUE);
252b5132 3649
252b5132
RH
3650/*
3651INTERNAL_FUNCTION
3652 bfd_default_reloc_type_lookup
3653
3654SYNOPSIS
3655 reloc_howto_type *bfd_default_reloc_type_lookup
3656 (bfd *abfd, bfd_reloc_code_real_type code);
3657
3658DESCRIPTION
3659 Provides a default relocation lookup routine for any architecture.
3660
252b5132
RH
3661*/
3662
3663reloc_howto_type *
3664bfd_default_reloc_type_lookup (abfd, code)
3665 bfd *abfd;
3666 bfd_reloc_code_real_type code;
3667{
3668 switch (code)
3669 {
3670 case BFD_RELOC_CTOR:
3671 /* The type of reloc used in a ctor, which will be as wide as the
3672 address - so either a 64, 32, or 16 bitter. */
3673 switch (bfd_get_arch_info (abfd)->bits_per_address)
3674 {
3675 case 64:
3676 BFD_FAIL ();
3677 case 32:
3678 return &bfd_howto_32;
3679 case 16:
3680 BFD_FAIL ();
3681 default:
3682 BFD_FAIL ();
3683 }
3684 default:
3685 BFD_FAIL ();
3686 }
3687 return (reloc_howto_type *) NULL;
3688}
3689
3690/*
3691FUNCTION
3692 bfd_get_reloc_code_name
3693
3694SYNOPSIS
3695 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3696
3697DESCRIPTION
3698 Provides a printable name for the supplied relocation code.
3699 Useful mainly for printing error messages.
3700*/
3701
3702const char *
3703bfd_get_reloc_code_name (code)
3704 bfd_reloc_code_real_type code;
3705{
d45913a0 3706 if ((int) code > (int) BFD_RELOC_UNUSED)
252b5132
RH
3707 return 0;
3708 return bfd_reloc_code_real_names[(int)code];
3709}
3710
3711/*
3712INTERNAL_FUNCTION
3713 bfd_generic_relax_section
3714
3715SYNOPSIS
b34976b6 3716 bfd_boolean bfd_generic_relax_section
252b5132
RH
3717 (bfd *abfd,
3718 asection *section,
3719 struct bfd_link_info *,
b34976b6 3720 bfd_boolean *);
252b5132
RH
3721
3722DESCRIPTION
3723 Provides default handling for relaxing for back ends which
3724 don't do relaxing -- i.e., does nothing.
3725*/
3726
b34976b6 3727bfd_boolean
252b5132 3728bfd_generic_relax_section (abfd, section, link_info, again)
7442e600
ILT
3729 bfd *abfd ATTRIBUTE_UNUSED;
3730 asection *section ATTRIBUTE_UNUSED;
3731 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
b34976b6 3732 bfd_boolean *again;
252b5132 3733{
b34976b6
AM
3734 *again = FALSE;
3735 return TRUE;
252b5132
RH
3736}
3737
3738/*
3739INTERNAL_FUNCTION
3740 bfd_generic_gc_sections
3741
3742SYNOPSIS
b34976b6 3743 bfd_boolean bfd_generic_gc_sections
252b5132
RH
3744 (bfd *, struct bfd_link_info *);
3745
3746DESCRIPTION
3747 Provides default handling for relaxing for back ends which
3748 don't do section gc -- i.e., does nothing.
3749*/
3750
b34976b6 3751bfd_boolean
252b5132 3752bfd_generic_gc_sections (abfd, link_info)
7442e600
ILT
3753 bfd *abfd ATTRIBUTE_UNUSED;
3754 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132 3755{
b34976b6 3756 return TRUE;
252b5132
RH
3757}
3758
8550eb6e
JJ
3759/*
3760INTERNAL_FUNCTION
3761 bfd_generic_merge_sections
3762
3763SYNOPSIS
b34976b6 3764 bfd_boolean bfd_generic_merge_sections
8550eb6e
JJ
3765 (bfd *, struct bfd_link_info *);
3766
3767DESCRIPTION
3768 Provides default handling for SEC_MERGE section merging for back ends
3769 which don't have SEC_MERGE support -- i.e., does nothing.
3770*/
3771
b34976b6 3772bfd_boolean
8550eb6e
JJ
3773bfd_generic_merge_sections (abfd, link_info)
3774 bfd *abfd ATTRIBUTE_UNUSED;
3775 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3776{
b34976b6 3777 return TRUE;
8550eb6e
JJ
3778}
3779
252b5132
RH
3780/*
3781INTERNAL_FUNCTION
3782 bfd_generic_get_relocated_section_contents
3783
3784SYNOPSIS
3785 bfd_byte *
3786 bfd_generic_get_relocated_section_contents (bfd *abfd,
3787 struct bfd_link_info *link_info,
3788 struct bfd_link_order *link_order,
3789 bfd_byte *data,
b34976b6 3790 bfd_boolean relocateable,
252b5132
RH
3791 asymbol **symbols);
3792
3793DESCRIPTION
3794 Provides default handling of relocation effort for back ends
3795 which can't be bothered to do it efficiently.
3796
3797*/
3798
3799bfd_byte *
3800bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3801 relocateable, symbols)
3802 bfd *abfd;
3803 struct bfd_link_info *link_info;
3804 struct bfd_link_order *link_order;
3805 bfd_byte *data;
b34976b6 3806 bfd_boolean relocateable;
252b5132
RH
3807 asymbol **symbols;
3808{
b5f79c76 3809 /* Get enough memory to hold the stuff. */
252b5132
RH
3810 bfd *input_bfd = link_order->u.indirect.section->owner;
3811 asection *input_section = link_order->u.indirect.section;
3812
3813 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3814 arelent **reloc_vector = NULL;
3815 long reloc_count;
3816
3817 if (reloc_size < 0)
3818 goto error_return;
3819
dc810e39 3820 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
252b5132
RH
3821 if (reloc_vector == NULL && reloc_size != 0)
3822 goto error_return;
3823
b5f79c76 3824 /* Read in the section. */
252b5132
RH
3825 if (!bfd_get_section_contents (input_bfd,
3826 input_section,
3827 (PTR) data,
dc810e39 3828 (bfd_vma) 0,
252b5132
RH
3829 input_section->_raw_size))
3830 goto error_return;
3831
b5f79c76 3832 /* We're not relaxing the section, so just copy the size info. */
252b5132 3833 input_section->_cooked_size = input_section->_raw_size;
b34976b6 3834 input_section->reloc_done = TRUE;
252b5132
RH
3835
3836 reloc_count = bfd_canonicalize_reloc (input_bfd,
3837 input_section,
3838 reloc_vector,
3839 symbols);
3840 if (reloc_count < 0)
3841 goto error_return;
3842
3843 if (reloc_count > 0)
3844 {
3845 arelent **parent;
3846 for (parent = reloc_vector; *parent != (arelent *) NULL;
3847 parent++)
3848 {
3849 char *error_message = (char *) NULL;
3850 bfd_reloc_status_type r =
3851 bfd_perform_relocation (input_bfd,
3852 *parent,
3853 (PTR) data,
3854 input_section,
3855 relocateable ? abfd : (bfd *) NULL,
3856 &error_message);
3857
3858 if (relocateable)
3859 {
3860 asection *os = input_section->output_section;
3861
b5f79c76 3862 /* A partial link, so keep the relocs. */
252b5132
RH
3863 os->orelocation[os->reloc_count] = *parent;
3864 os->reloc_count++;
3865 }
3866
3867 if (r != bfd_reloc_ok)
3868 {
3869 switch (r)
3870 {
3871 case bfd_reloc_undefined:
3872 if (!((*link_info->callbacks->undefined_symbol)
3873 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785 3874 input_bfd, input_section, (*parent)->address,
b34976b6 3875 TRUE)))
252b5132
RH
3876 goto error_return;
3877 break;
3878 case bfd_reloc_dangerous:
3879 BFD_ASSERT (error_message != (char *) NULL);
3880 if (!((*link_info->callbacks->reloc_dangerous)
3881 (link_info, error_message, input_bfd, input_section,
3882 (*parent)->address)))
3883 goto error_return;
3884 break;
3885 case bfd_reloc_overflow:
3886 if (!((*link_info->callbacks->reloc_overflow)
3887 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3888 (*parent)->howto->name, (*parent)->addend,
3889 input_bfd, input_section, (*parent)->address)))
3890 goto error_return;
3891 break;
3892 case bfd_reloc_outofrange:
3893 default:
3894 abort ();
3895 break;
3896 }
3897
3898 }
3899 }
3900 }
3901 if (reloc_vector != NULL)
3902 free (reloc_vector);
3903 return data;
3904
3905error_return:
3906 if (reloc_vector != NULL)
3907 free (reloc_vector);
3908 return NULL;
3909}