]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/reloc.c
Merge arm-oabi.h into arm.h
[thirdparty/binutils-gdb.git] / bfd / reloc.c
CommitLineData
252b5132 1/* BFD support for handling relocation entries.
5b93d8bb 2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
252b5132
RH
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
5
6This file is part of BFD, the Binary File Descriptor library.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22/*
23SECTION
24 Relocations
25
26 BFD maintains relocations in much the same way it maintains
27 symbols: they are left alone until required, then read in
88b6bae0 28 en-masse and translated into an internal form. A common
252b5132
RH
29 routine <<bfd_perform_relocation>> acts upon the
30 canonical form to do the fixup.
31
32 Relocations are maintained on a per section basis,
33 while symbols are maintained on a per BFD basis.
34
35 All that a back end has to do to fit the BFD interface is to create
36 a <<struct reloc_cache_entry>> for each relocation
37 in a particular section, and fill in the right bits of the structures.
38
39@menu
40@* typedef arelent::
41@* howto manager::
42@end menu
43
44*/
45
46/* DO compile in the reloc_code name table from libbfd.h. */
47#define _BFD_MAKE_TABLE_bfd_reloc_code_real
48
49#include "bfd.h"
50#include "sysdep.h"
51#include "bfdlink.h"
52#include "libbfd.h"
53/*
54DOCDD
55INODE
56 typedef arelent, howto manager, Relocations, Relocations
57
58SUBSECTION
59 typedef arelent
60
61 This is the structure of a relocation entry:
62
63CODE_FRAGMENT
64.
65.typedef enum bfd_reloc_status
66.{
67. {* No errors detected *}
68. bfd_reloc_ok,
69.
70. {* The relocation was performed, but there was an overflow. *}
71. bfd_reloc_overflow,
72.
73. {* The address to relocate was not within the section supplied. *}
74. bfd_reloc_outofrange,
75.
76. {* Used by special functions *}
77. bfd_reloc_continue,
78.
79. {* Unsupported relocation size requested. *}
80. bfd_reloc_notsupported,
81.
82. {* Unused *}
83. bfd_reloc_other,
84.
85. {* The symbol to relocate against was undefined. *}
86. bfd_reloc_undefined,
87.
88. {* The relocation was performed, but may not be ok - presently
89. generated only when linking i960 coff files with i960 b.out
90. symbols. If this type is returned, the error_message argument
91. to bfd_perform_relocation will be set. *}
92. bfd_reloc_dangerous
93. }
94. bfd_reloc_status_type;
95.
96.
97.typedef struct reloc_cache_entry
98.{
99. {* A pointer into the canonical table of pointers *}
100. struct symbol_cache_entry **sym_ptr_ptr;
101.
102. {* offset in section *}
103. bfd_size_type address;
104.
105. {* addend for relocation value *}
106. bfd_vma addend;
107.
108. {* Pointer to how to perform the required relocation *}
109. reloc_howto_type *howto;
110.
111.} arelent;
112
113*/
114
115/*
116DESCRIPTION
117
118 Here is a description of each of the fields within an <<arelent>>:
119
120 o <<sym_ptr_ptr>>
121
122 The symbol table pointer points to a pointer to the symbol
123 associated with the relocation request. It is
124 the pointer into the table returned by the back end's
125 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
126 through a pointer to a pointer so that tools like the linker
127 can fix up all the symbols of the same name by modifying only
128 one pointer. The relocation routine looks in the symbol and
129 uses the base of the section the symbol is attached to and the
130 value of the symbol as the initial relocation offset. If the
131 symbol pointer is zero, then the section provided is looked up.
132
133 o <<address>>
134
135 The <<address>> field gives the offset in bytes from the base of
136 the section data which owns the relocation record to the first
137 byte of relocatable information. The actual data relocated
138 will be relative to this point; for example, a relocation
139 type which modifies the bottom two bytes of a four byte word
140 would not touch the first byte pointed to in a big endian
141 world.
142
143 o <<addend>>
144
145 The <<addend>> is a value provided by the back end to be added (!)
146 to the relocation offset. Its interpretation is dependent upon
147 the howto. For example, on the 68k the code:
148
149
150| char foo[];
151| main()
152| {
153| return foo[0x12345678];
154| }
155
156 Could be compiled into:
157
158| linkw fp,#-4
159| moveb @@#12345678,d0
160| extbl d0
161| unlk fp
162| rts
163
164
165 This could create a reloc pointing to <<foo>>, but leave the
166 offset in the data, something like:
167
168
169|RELOCATION RECORDS FOR [.text]:
170|offset type value
171|00000006 32 _foo
172|
173|00000000 4e56 fffc ; linkw fp,#-4
174|00000004 1039 1234 5678 ; moveb @@#12345678,d0
175|0000000a 49c0 ; extbl d0
176|0000000c 4e5e ; unlk fp
177|0000000e 4e75 ; rts
178
179
180 Using coff and an 88k, some instructions don't have enough
181 space in them to represent the full address range, and
182 pointers have to be loaded in two parts. So you'd get something like:
183
184
185| or.u r13,r0,hi16(_foo+0x12345678)
186| ld.b r2,r13,lo16(_foo+0x12345678)
187| jmp r1
188
189
190 This should create two relocs, both pointing to <<_foo>>, and with
191 0x12340000 in their addend field. The data would consist of:
192
193
194|RELOCATION RECORDS FOR [.text]:
195|offset type value
196|00000002 HVRT16 _foo+0x12340000
197|00000006 LVRT16 _foo+0x12340000
198|
199|00000000 5da05678 ; or.u r13,r0,0x5678
200|00000004 1c4d5678 ; ld.b r2,r13,0x5678
201|00000008 f400c001 ; jmp r1
202
203
204 The relocation routine digs out the value from the data, adds
205 it to the addend to get the original offset, and then adds the
206 value of <<_foo>>. Note that all 32 bits have to be kept around
207 somewhere, to cope with carry from bit 15 to bit 16.
208
209 One further example is the sparc and the a.out format. The
210 sparc has a similar problem to the 88k, in that some
211 instructions don't have room for an entire offset, but on the
212 sparc the parts are created in odd sized lumps. The designers of
213 the a.out format chose to not use the data within the section
214 for storing part of the offset; all the offset is kept within
215 the reloc. Anything in the data should be ignored.
216
217| save %sp,-112,%sp
218| sethi %hi(_foo+0x12345678),%g2
219| ldsb [%g2+%lo(_foo+0x12345678)],%i0
220| ret
221| restore
222
223 Both relocs contain a pointer to <<foo>>, and the offsets
224 contain junk.
225
226
227|RELOCATION RECORDS FOR [.text]:
228|offset type value
229|00000004 HI22 _foo+0x12345678
230|00000008 LO10 _foo+0x12345678
231|
232|00000000 9de3bf90 ; save %sp,-112,%sp
233|00000004 05000000 ; sethi %hi(_foo+0),%g2
234|00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
235|0000000c 81c7e008 ; ret
236|00000010 81e80000 ; restore
237
238
239 o <<howto>>
240
241 The <<howto>> field can be imagined as a
242 relocation instruction. It is a pointer to a structure which
243 contains information on what to do with all of the other
244 information in the reloc record and data section. A back end
245 would normally have a relocation instruction set and turn
246 relocations into pointers to the correct structure on input -
247 but it would be possible to create each howto field on demand.
248
249*/
250
251/*
252SUBSUBSECTION
253 <<enum complain_overflow>>
254
255 Indicates what sort of overflow checking should be done when
256 performing a relocation.
257
258CODE_FRAGMENT
259.
260.enum complain_overflow
261.{
262. {* Do not complain on overflow. *}
263. complain_overflow_dont,
264.
265. {* Complain if the bitfield overflows, whether it is considered
266. as signed or unsigned. *}
267. complain_overflow_bitfield,
268.
269. {* Complain if the value overflows when considered as signed
270. number. *}
271. complain_overflow_signed,
272.
273. {* Complain if the value overflows when considered as an
274. unsigned number. *}
275. complain_overflow_unsigned
276.};
277
278*/
279
280/*
281SUBSUBSECTION
282 <<reloc_howto_type>>
283
284 The <<reloc_howto_type>> is a structure which contains all the
285 information that libbfd needs to know to tie up a back end's data.
286
287CODE_FRAGMENT
288.struct symbol_cache_entry; {* Forward declaration *}
289.
290.struct reloc_howto_struct
291.{
292. {* The type field has mainly a documentary use - the back end can
293. do what it wants with it, though normally the back end's
294. external idea of what a reloc number is stored
295. in this field. For example, a PC relative word relocation
296. in a coff environment has the type 023 - because that's
297. what the outside world calls a R_PCRWORD reloc. *}
298. unsigned int type;
299.
300. {* The value the final relocation is shifted right by. This drops
301. unwanted data from the relocation. *}
302. unsigned int rightshift;
303.
304. {* The size of the item to be relocated. This is *not* a
305. power-of-two measure. To get the number of bytes operated
306. on by a type of relocation, use bfd_get_reloc_size. *}
307. int size;
308.
309. {* The number of bits in the item to be relocated. This is used
310. when doing overflow checking. *}
311. unsigned int bitsize;
312.
313. {* Notes that the relocation is relative to the location in the
314. data section of the addend. The relocation function will
315. subtract from the relocation value the address of the location
316. being relocated. *}
317. boolean pc_relative;
318.
319. {* The bit position of the reloc value in the destination.
320. The relocated value is left shifted by this amount. *}
321. unsigned int bitpos;
322.
323. {* What type of overflow error should be checked for when
324. relocating. *}
325. enum complain_overflow complain_on_overflow;
326.
327. {* If this field is non null, then the supplied function is
328. called rather than the normal function. This allows really
329. strange relocation methods to be accomodated (e.g., i960 callj
330. instructions). *}
331. bfd_reloc_status_type (*special_function)
332. PARAMS ((bfd *abfd,
333. arelent *reloc_entry,
334. struct symbol_cache_entry *symbol,
335. PTR data,
336. asection *input_section,
337. bfd *output_bfd,
338. char **error_message));
339.
340. {* The textual name of the relocation type. *}
341. char *name;
342.
c1b7949f
DE
343. {* Some formats record a relocation addend in the section contents
344. rather than with the relocation. For ELF formats this is the
345. distinction between USE_REL and USE_RELA (though the code checks
346. for USE_REL == 1/0). The value of this field is TRUE if the
347. addend is recorded with the section contents; when performing a
348. partial link (ld -r) the section contents (the data) will be
349. modified. The value of this field is FALSE if addends are
350. recorded with the relocation (in arelent.addend); when performing
351. a partial link the relocation will be modified.
352. All relocations for all ELF USE_RELA targets should set this field
353. to FALSE (values of TRUE should be looked on with suspicion).
354. However, the converse is not true: not all relocations of all ELF
355. USE_REL targets set this field to TRUE. Why this is so is peculiar
356. to each particular target. For relocs that aren't used in partial
357. links (e.g. GOT stuff) it doesn't matter what this is set to. *}
252b5132
RH
358. boolean partial_inplace;
359.
360. {* The src_mask selects which parts of the read in data
361. are to be used in the relocation sum. E.g., if this was an 8 bit
88b6bae0 362. byte of data which we read and relocated, this would be
252b5132
RH
363. 0x000000ff. When we have relocs which have an addend, such as
364. sun4 extended relocs, the value in the offset part of a
365. relocating field is garbage so we never use it. In this case
366. the mask would be 0x00000000. *}
367. bfd_vma src_mask;
368.
369. {* The dst_mask selects which parts of the instruction are replaced
370. into the instruction. In most cases src_mask == dst_mask,
371. except in the above special case, where dst_mask would be
372. 0x000000ff, and src_mask would be 0x00000000. *}
373. bfd_vma dst_mask;
374.
375. {* When some formats create PC relative instructions, they leave
376. the value of the pc of the place being relocated in the offset
377. slot of the instruction, so that a PC relative relocation can
378. be made just by adding in an ordinary offset (e.g., sun3 a.out).
379. Some formats leave the displacement part of an instruction
380. empty (e.g., m88k bcs); this flag signals the fact.*}
381. boolean pcrel_offset;
382.
383.};
384
385*/
386
387/*
388FUNCTION
389 The HOWTO Macro
390
391DESCRIPTION
392 The HOWTO define is horrible and will go away.
393
394
395.#define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
396. {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
397
398DESCRIPTION
399 And will be replaced with the totally magic way. But for the
400 moment, we are compatible, so do it this way.
401
402
403.#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN)
404.
5f771d47
ILT
405
406DESCRIPTION
407 This is used to fill in an empty howto entry in an array.
408
409.#define EMPTY_HOWTO(C) \
410. HOWTO((C),0,0,0,false,0,complain_overflow_dont,NULL,NULL,false,0,0,false)
411.
412
252b5132
RH
413DESCRIPTION
414 Helper routine to turn a symbol into a relocation value.
415
416.#define HOWTO_PREPARE(relocation, symbol) \
417. { \
418. if (symbol != (asymbol *)NULL) { \
419. if (bfd_is_com_section (symbol->section)) { \
420. relocation = 0; \
421. } \
422. else { \
423. relocation = symbol->value; \
424. } \
425. } \
426.}
427
428*/
429
430/*
431FUNCTION
432 bfd_get_reloc_size
433
434SYNOPSIS
435 unsigned int bfd_get_reloc_size (reloc_howto_type *);
436
437DESCRIPTION
438 For a reloc_howto_type that operates on a fixed number of bytes,
439 this returns the number of bytes operated on.
440 */
441
442unsigned int
443bfd_get_reloc_size (howto)
444 reloc_howto_type *howto;
445{
446 switch (howto->size)
447 {
448 case 0: return 1;
449 case 1: return 2;
450 case 2: return 4;
451 case 3: return 0;
452 case 4: return 8;
453 case 8: return 16;
454 case -2: return 4;
455 default: abort ();
456 }
457}
458
459/*
460TYPEDEF
461 arelent_chain
462
463DESCRIPTION
464
465 How relocs are tied together in an <<asection>>:
466
467.typedef struct relent_chain {
468. arelent relent;
469. struct relent_chain *next;
470.} arelent_chain;
471
472*/
473
474/* N_ONES produces N one bits, without overflowing machine arithmetic. */
475#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
476
477/*
478FUNCTION
479 bfd_check_overflow
480
481SYNOPSIS
482 bfd_reloc_status_type
483 bfd_check_overflow
484 (enum complain_overflow how,
485 unsigned int bitsize,
486 unsigned int rightshift,
487 unsigned int addrsize,
488 bfd_vma relocation);
489
490DESCRIPTION
491 Perform overflow checking on @var{relocation} which has
492 @var{bitsize} significant bits and will be shifted right by
493 @var{rightshift} bits, on a machine with addresses containing
494 @var{addrsize} significant bits. The result is either of
495 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
496
497*/
498
499bfd_reloc_status_type
500bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
501 enum complain_overflow how;
502 unsigned int bitsize;
503 unsigned int rightshift;
504 unsigned int addrsize;
505 bfd_vma relocation;
506{
507 bfd_vma fieldmask, addrmask, signmask, ss, a;
508 bfd_reloc_status_type flag = bfd_reloc_ok;
509
510 a = relocation;
511
512 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
513 we'll be permissive: extra bits in the field mask will
514 automatically extend the address mask for purposes of the
515 overflow check. */
516 fieldmask = N_ONES (bitsize);
517 addrmask = N_ONES (addrsize) | fieldmask;
518
519 switch (how)
520 {
521 case complain_overflow_dont:
522 break;
523
524 case complain_overflow_signed:
525 /* If any sign bits are set, all sign bits must be set. That
526 is, A must be a valid negative address after shifting. */
527 a = (a & addrmask) >> rightshift;
528 signmask = ~ (fieldmask >> 1);
529 ss = a & signmask;
530 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
531 flag = bfd_reloc_overflow;
532 break;
533
534 case complain_overflow_unsigned:
535 /* We have an overflow if the address does not fit in the field. */
536 a = (a & addrmask) >> rightshift;
537 if ((a & ~ fieldmask) != 0)
538 flag = bfd_reloc_overflow;
539 break;
540
541 case complain_overflow_bitfield:
542 /* Bitfields are sometimes signed, sometimes unsigned. We
d5afc56e
AM
543 explicitly allow an address wrap too, which means a bitfield
544 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
545 if the value has some, but not all, bits set outside the
546 field. */
252b5132 547 a >>= rightshift;
d5afc56e
AM
548 ss = a & ~ fieldmask;
549 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
550 flag = bfd_reloc_overflow;
252b5132
RH
551 break;
552
553 default:
554 abort ();
555 }
556
557 return flag;
558}
559
560/*
561FUNCTION
562 bfd_perform_relocation
563
564SYNOPSIS
565 bfd_reloc_status_type
566 bfd_perform_relocation
567 (bfd *abfd,
568 arelent *reloc_entry,
569 PTR data,
570 asection *input_section,
571 bfd *output_bfd,
572 char **error_message);
573
574DESCRIPTION
575 If @var{output_bfd} is supplied to this function, the
576 generated image will be relocatable; the relocations are
577 copied to the output file after they have been changed to
578 reflect the new state of the world. There are two ways of
579 reflecting the results of partial linkage in an output file:
580 by modifying the output data in place, and by modifying the
581 relocation record. Some native formats (e.g., basic a.out and
582 basic coff) have no way of specifying an addend in the
583 relocation type, so the addend has to go in the output data.
584 This is no big deal since in these formats the output data
585 slot will always be big enough for the addend. Complex reloc
586 types with addends were invented to solve just this problem.
587 The @var{error_message} argument is set to an error message if
588 this return @code{bfd_reloc_dangerous}.
589
590*/
591
592
593bfd_reloc_status_type
594bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
595 error_message)
596 bfd *abfd;
597 arelent *reloc_entry;
598 PTR data;
599 asection *input_section;
600 bfd *output_bfd;
601 char **error_message;
602{
603 bfd_vma relocation;
604 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 605 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
606 bfd_vma output_base = 0;
607 reloc_howto_type *howto = reloc_entry->howto;
608 asection *reloc_target_output_section;
609 asymbol *symbol;
610
611 symbol = *(reloc_entry->sym_ptr_ptr);
612 if (bfd_is_abs_section (symbol->section)
613 && output_bfd != (bfd *) NULL)
614 {
615 reloc_entry->address += input_section->output_offset;
616 return bfd_reloc_ok;
617 }
618
619 /* If we are not producing relocateable output, return an error if
620 the symbol is not defined. An undefined weak symbol is
621 considered to have a value of zero (SVR4 ABI, p. 4-27). */
622 if (bfd_is_und_section (symbol->section)
623 && (symbol->flags & BSF_WEAK) == 0
624 && output_bfd == (bfd *) NULL)
625 flag = bfd_reloc_undefined;
626
627 /* If there is a function supplied to handle this relocation type,
628 call it. It'll return `bfd_reloc_continue' if further processing
629 can be done. */
630 if (howto->special_function)
631 {
632 bfd_reloc_status_type cont;
633 cont = howto->special_function (abfd, reloc_entry, symbol, data,
634 input_section, output_bfd,
635 error_message);
636 if (cont != bfd_reloc_continue)
637 return cont;
638 }
639
640 /* Is the address of the relocation really within the section? */
9a968f43
NC
641 if (reloc_entry->address > input_section->_cooked_size /
642 bfd_octets_per_byte (abfd))
252b5132
RH
643 return bfd_reloc_outofrange;
644
645 /* Work out which section the relocation is targetted at and the
646 initial relocation command value. */
647
648 /* Get symbol value. (Common symbols are special.) */
649 if (bfd_is_com_section (symbol->section))
650 relocation = 0;
651 else
652 relocation = symbol->value;
653
654
655 reloc_target_output_section = symbol->section->output_section;
656
657 /* Convert input-section-relative symbol value to absolute. */
658 if (output_bfd && howto->partial_inplace == false)
659 output_base = 0;
660 else
661 output_base = reloc_target_output_section->vma;
662
663 relocation += output_base + symbol->section->output_offset;
664
665 /* Add in supplied addend. */
666 relocation += reloc_entry->addend;
667
668 /* Here the variable relocation holds the final address of the
669 symbol we are relocating against, plus any addend. */
670
671 if (howto->pc_relative == true)
672 {
673 /* This is a PC relative relocation. We want to set RELOCATION
674 to the distance between the address of the symbol and the
675 location. RELOCATION is already the address of the symbol.
676
677 We start by subtracting the address of the section containing
678 the location.
679
680 If pcrel_offset is set, we must further subtract the position
681 of the location within the section. Some targets arrange for
682 the addend to be the negative of the position of the location
683 within the section; for example, i386-aout does this. For
684 i386-aout, pcrel_offset is false. Some other targets do not
685 include the position of the location; for example, m88kbcs,
686 or ELF. For those targets, pcrel_offset is true.
687
688 If we are producing relocateable output, then we must ensure
689 that this reloc will be correctly computed when the final
690 relocation is done. If pcrel_offset is false we want to wind
691 up with the negative of the location within the section,
692 which means we must adjust the existing addend by the change
693 in the location within the section. If pcrel_offset is true
694 we do not want to adjust the existing addend at all.
695
696 FIXME: This seems logical to me, but for the case of
697 producing relocateable output it is not what the code
698 actually does. I don't want to change it, because it seems
699 far too likely that something will break. */
700
701 relocation -=
702 input_section->output_section->vma + input_section->output_offset;
703
704 if (howto->pcrel_offset == true)
705 relocation -= reloc_entry->address;
706 }
707
708 if (output_bfd != (bfd *) NULL)
709 {
710 if (howto->partial_inplace == false)
711 {
712 /* This is a partial relocation, and we want to apply the relocation
713 to the reloc entry rather than the raw data. Modify the reloc
714 inplace to reflect what we now know. */
715 reloc_entry->addend = relocation;
716 reloc_entry->address += input_section->output_offset;
717 return flag;
718 }
719 else
720 {
721 /* This is a partial relocation, but inplace, so modify the
722 reloc record a bit.
723
724 If we've relocated with a symbol with a section, change
725 into a ref to the section belonging to the symbol. */
726
727 reloc_entry->address += input_section->output_offset;
728
729 /* WTF?? */
730 if (abfd->xvec->flavour == bfd_target_coff_flavour
731 && strcmp (abfd->xvec->name, "aixcoff-rs6000") != 0
732 && strcmp (abfd->xvec->name, "xcoff-powermac") != 0
733 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
734 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
735 {
736#if 1
737 /* For m68k-coff, the addend was being subtracted twice during
738 relocation with -r. Removing the line below this comment
739 fixes that problem; see PR 2953.
740
741However, Ian wrote the following, regarding removing the line below,
742which explains why it is still enabled: --djm
743
744If you put a patch like that into BFD you need to check all the COFF
745linkers. I am fairly certain that patch will break coff-i386 (e.g.,
746SCO); see coff_i386_reloc in coff-i386.c where I worked around the
747problem in a different way. There may very well be a reason that the
748code works as it does.
749
750Hmmm. The first obvious point is that bfd_perform_relocation should
751not have any tests that depend upon the flavour. It's seem like
752entirely the wrong place for such a thing. The second obvious point
753is that the current code ignores the reloc addend when producing
754relocateable output for COFF. That's peculiar. In fact, I really
755have no idea what the point of the line you want to remove is.
756
757A typical COFF reloc subtracts the old value of the symbol and adds in
758the new value to the location in the object file (if it's a pc
759relative reloc it adds the difference between the symbol value and the
760location). When relocating we need to preserve that property.
761
762BFD handles this by setting the addend to the negative of the old
763value of the symbol. Unfortunately it handles common symbols in a
764non-standard way (it doesn't subtract the old value) but that's a
765different story (we can't change it without losing backward
766compatibility with old object files) (coff-i386 does subtract the old
767value, to be compatible with existing coff-i386 targets, like SCO).
768
769So everything works fine when not producing relocateable output. When
770we are producing relocateable output, logically we should do exactly
771what we do when not producing relocateable output. Therefore, your
772patch is correct. In fact, it should probably always just set
773reloc_entry->addend to 0 for all cases, since it is, in fact, going to
774add the value into the object file. This won't hurt the COFF code,
775which doesn't use the addend; I'm not sure what it will do to other
776formats (the thing to check for would be whether any formats both use
777the addend and set partial_inplace).
778
779When I wanted to make coff-i386 produce relocateable output, I ran
780into the problem that you are running into: I wanted to remove that
781line. Rather than risk it, I made the coff-i386 relocs use a special
782function; it's coff_i386_reloc in coff-i386.c. The function
783specifically adds the addend field into the object file, knowing that
784bfd_perform_relocation is not going to. If you remove that line, then
785coff-i386.c will wind up adding the addend field in twice. It's
786trivial to fix; it just needs to be done.
787
788The problem with removing the line is just that it may break some
789working code. With BFD it's hard to be sure of anything. The right
790way to deal with this is simply to build and test at least all the
791supported COFF targets. It should be straightforward if time and disk
792space consuming. For each target:
793 1) build the linker
794 2) generate some executable, and link it using -r (I would
795 probably use paranoia.o and link against newlib/libc.a, which
796 for all the supported targets would be available in
797 /usr/cygnus/progressive/H-host/target/lib/libc.a).
798 3) make the change to reloc.c
799 4) rebuild the linker
800 5) repeat step 2
801 6) if the resulting object files are the same, you have at least
802 made it no worse
803 7) if they are different you have to figure out which version is
804 right
805*/
806 relocation -= reloc_entry->addend;
807#endif
808 reloc_entry->addend = 0;
809 }
810 else
811 {
812 reloc_entry->addend = relocation;
813 }
814 }
815 }
816 else
817 {
818 reloc_entry->addend = 0;
819 }
820
821 /* FIXME: This overflow checking is incomplete, because the value
822 might have overflowed before we get here. For a correct check we
823 need to compute the value in a size larger than bitsize, but we
824 can't reasonably do that for a reloc the same size as a host
825 machine word.
826 FIXME: We should also do overflow checking on the result after
827 adding in the value contained in the object file. */
828 if (howto->complain_on_overflow != complain_overflow_dont
829 && flag == bfd_reloc_ok)
830 flag = bfd_check_overflow (howto->complain_on_overflow,
831 howto->bitsize,
832 howto->rightshift,
833 bfd_arch_bits_per_address (abfd),
834 relocation);
835
836 /*
837 Either we are relocating all the way, or we don't want to apply
838 the relocation to the reloc entry (probably because there isn't
839 any room in the output format to describe addends to relocs)
840 */
841
842 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
843 (OSF version 1.3, compiler version 3.11). It miscompiles the
844 following program:
845
846 struct str
847 {
848 unsigned int i0;
849 } s = { 0 };
850
851 int
852 main ()
853 {
854 unsigned long x;
855
856 x = 0x100000000;
857 x <<= (unsigned long) s.i0;
858 if (x == 0)
859 printf ("failed\n");
860 else
861 printf ("succeeded (%lx)\n", x);
862 }
863 */
864
865 relocation >>= (bfd_vma) howto->rightshift;
866
867 /* Shift everything up to where it's going to be used */
868
869 relocation <<= (bfd_vma) howto->bitpos;
870
871 /* Wait for the day when all have the mask in them */
872
873 /* What we do:
874 i instruction to be left alone
875 o offset within instruction
876 r relocation offset to apply
877 S src mask
878 D dst mask
879 N ~dst mask
880 A part 1
881 B part 2
882 R result
883
884 Do this:
88b6bae0
AM
885 (( i i i i i o o o o o from bfd_get<size>
886 and S S S S S) to get the size offset we want
887 + r r r r r r r r r r) to get the final value to place
252b5132
RH
888 and D D D D D to chop to right size
889 -----------------------
88b6bae0 890 = A A A A A
252b5132 891 And this:
88b6bae0
AM
892 ( i i i i i o o o o o from bfd_get<size>
893 and N N N N N ) get instruction
252b5132 894 -----------------------
88b6bae0 895 = B B B B B
252b5132
RH
896
897 And then:
88b6bae0
AM
898 ( B B B B B
899 or A A A A A)
252b5132 900 -----------------------
88b6bae0 901 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
902 */
903
904#define DOIT(x) \
905 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
906
907 switch (howto->size)
908 {
909 case 0:
910 {
9a968f43 911 char x = bfd_get_8 (abfd, (char *) data + octets);
252b5132 912 DOIT (x);
9a968f43 913 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
914 }
915 break;
916
917 case 1:
918 {
9a968f43 919 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132 920 DOIT (x);
9a968f43 921 bfd_put_16 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
922 }
923 break;
924 case 2:
925 {
9a968f43 926 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132 927 DOIT (x);
9a968f43 928 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
929 }
930 break;
931 case -2:
932 {
9a968f43 933 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132
RH
934 relocation = -relocation;
935 DOIT (x);
9a968f43 936 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
937 }
938 break;
939
940 case -1:
941 {
9a968f43 942 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132
RH
943 relocation = -relocation;
944 DOIT (x);
9a968f43 945 bfd_put_16 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
946 }
947 break;
948
949 case 3:
950 /* Do nothing */
951 break;
952
953 case 4:
954#ifdef BFD64
955 {
9a968f43 956 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
252b5132 957 DOIT (x);
9a968f43 958 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
959 }
960#else
961 abort ();
962#endif
963 break;
964 default:
965 return bfd_reloc_other;
966 }
967
968 return flag;
969}
970
971/*
972FUNCTION
973 bfd_install_relocation
974
975SYNOPSIS
976 bfd_reloc_status_type
977 bfd_install_relocation
978 (bfd *abfd,
979 arelent *reloc_entry,
980 PTR data, bfd_vma data_start,
981 asection *input_section,
982 char **error_message);
983
984DESCRIPTION
985 This looks remarkably like <<bfd_perform_relocation>>, except it
986 does not expect that the section contents have been filled in.
987 I.e., it's suitable for use when creating, rather than applying
988 a relocation.
989
990 For now, this function should be considered reserved for the
991 assembler.
992
993*/
994
995
996bfd_reloc_status_type
997bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
998 input_section, error_message)
999 bfd *abfd;
1000 arelent *reloc_entry;
1001 PTR data_start;
1002 bfd_vma data_start_offset;
1003 asection *input_section;
1004 char **error_message;
1005{
1006 bfd_vma relocation;
1007 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 1008 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
1009 bfd_vma output_base = 0;
1010 reloc_howto_type *howto = reloc_entry->howto;
1011 asection *reloc_target_output_section;
1012 asymbol *symbol;
1013 bfd_byte *data;
1014
1015 symbol = *(reloc_entry->sym_ptr_ptr);
1016 if (bfd_is_abs_section (symbol->section))
1017 {
1018 reloc_entry->address += input_section->output_offset;
1019 return bfd_reloc_ok;
1020 }
1021
1022 /* If there is a function supplied to handle this relocation type,
1023 call it. It'll return `bfd_reloc_continue' if further processing
1024 can be done. */
1025 if (howto->special_function)
1026 {
1027 bfd_reloc_status_type cont;
88b6bae0 1028
252b5132
RH
1029 /* XXX - The special_function calls haven't been fixed up to deal
1030 with creating new relocations and section contents. */
1031 cont = howto->special_function (abfd, reloc_entry, symbol,
1032 /* XXX - Non-portable! */
1033 ((bfd_byte *) data_start
1034 - data_start_offset),
1035 input_section, abfd, error_message);
1036 if (cont != bfd_reloc_continue)
1037 return cont;
1038 }
1039
1040 /* Is the address of the relocation really within the section? */
1041 if (reloc_entry->address > input_section->_cooked_size)
1042 return bfd_reloc_outofrange;
1043
1044 /* Work out which section the relocation is targetted at and the
1045 initial relocation command value. */
1046
1047 /* Get symbol value. (Common symbols are special.) */
1048 if (bfd_is_com_section (symbol->section))
1049 relocation = 0;
1050 else
1051 relocation = symbol->value;
1052
1053 reloc_target_output_section = symbol->section->output_section;
1054
1055 /* Convert input-section-relative symbol value to absolute. */
1056 if (howto->partial_inplace == false)
1057 output_base = 0;
1058 else
1059 output_base = reloc_target_output_section->vma;
1060
1061 relocation += output_base + symbol->section->output_offset;
1062
1063 /* Add in supplied addend. */
1064 relocation += reloc_entry->addend;
1065
1066 /* Here the variable relocation holds the final address of the
1067 symbol we are relocating against, plus any addend. */
1068
1069 if (howto->pc_relative == true)
1070 {
1071 /* This is a PC relative relocation. We want to set RELOCATION
1072 to the distance between the address of the symbol and the
1073 location. RELOCATION is already the address of the symbol.
1074
1075 We start by subtracting the address of the section containing
1076 the location.
1077
1078 If pcrel_offset is set, we must further subtract the position
1079 of the location within the section. Some targets arrange for
1080 the addend to be the negative of the position of the location
1081 within the section; for example, i386-aout does this. For
1082 i386-aout, pcrel_offset is false. Some other targets do not
1083 include the position of the location; for example, m88kbcs,
1084 or ELF. For those targets, pcrel_offset is true.
1085
1086 If we are producing relocateable output, then we must ensure
1087 that this reloc will be correctly computed when the final
1088 relocation is done. If pcrel_offset is false we want to wind
1089 up with the negative of the location within the section,
1090 which means we must adjust the existing addend by the change
1091 in the location within the section. If pcrel_offset is true
1092 we do not want to adjust the existing addend at all.
1093
1094 FIXME: This seems logical to me, but for the case of
1095 producing relocateable output it is not what the code
1096 actually does. I don't want to change it, because it seems
1097 far too likely that something will break. */
1098
1099 relocation -=
1100 input_section->output_section->vma + input_section->output_offset;
1101
1102 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1103 relocation -= reloc_entry->address;
1104 }
1105
1106 if (howto->partial_inplace == false)
1107 {
1108 /* This is a partial relocation, and we want to apply the relocation
1109 to the reloc entry rather than the raw data. Modify the reloc
1110 inplace to reflect what we now know. */
1111 reloc_entry->addend = relocation;
1112 reloc_entry->address += input_section->output_offset;
1113 return flag;
1114 }
1115 else
1116 {
1117 /* This is a partial relocation, but inplace, so modify the
1118 reloc record a bit.
1119
1120 If we've relocated with a symbol with a section, change
1121 into a ref to the section belonging to the symbol. */
1122
1123 reloc_entry->address += input_section->output_offset;
1124
1125 /* WTF?? */
1126 if (abfd->xvec->flavour == bfd_target_coff_flavour
1127 && strcmp (abfd->xvec->name, "aixcoff-rs6000") != 0
1128 && strcmp (abfd->xvec->name, "xcoff-powermac") != 0
1129 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1130 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1131 {
1132#if 1
1133/* For m68k-coff, the addend was being subtracted twice during
1134 relocation with -r. Removing the line below this comment
1135 fixes that problem; see PR 2953.
1136
1137However, Ian wrote the following, regarding removing the line below,
1138which explains why it is still enabled: --djm
1139
1140If you put a patch like that into BFD you need to check all the COFF
1141linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1142SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1143problem in a different way. There may very well be a reason that the
1144code works as it does.
1145
1146Hmmm. The first obvious point is that bfd_install_relocation should
1147not have any tests that depend upon the flavour. It's seem like
1148entirely the wrong place for such a thing. The second obvious point
1149is that the current code ignores the reloc addend when producing
1150relocateable output for COFF. That's peculiar. In fact, I really
1151have no idea what the point of the line you want to remove is.
1152
1153A typical COFF reloc subtracts the old value of the symbol and adds in
1154the new value to the location in the object file (if it's a pc
1155relative reloc it adds the difference between the symbol value and the
1156location). When relocating we need to preserve that property.
1157
1158BFD handles this by setting the addend to the negative of the old
1159value of the symbol. Unfortunately it handles common symbols in a
1160non-standard way (it doesn't subtract the old value) but that's a
1161different story (we can't change it without losing backward
1162compatibility with old object files) (coff-i386 does subtract the old
1163value, to be compatible with existing coff-i386 targets, like SCO).
1164
1165So everything works fine when not producing relocateable output. When
1166we are producing relocateable output, logically we should do exactly
1167what we do when not producing relocateable output. Therefore, your
1168patch is correct. In fact, it should probably always just set
1169reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1170add the value into the object file. This won't hurt the COFF code,
1171which doesn't use the addend; I'm not sure what it will do to other
1172formats (the thing to check for would be whether any formats both use
1173the addend and set partial_inplace).
1174
1175When I wanted to make coff-i386 produce relocateable output, I ran
1176into the problem that you are running into: I wanted to remove that
1177line. Rather than risk it, I made the coff-i386 relocs use a special
1178function; it's coff_i386_reloc in coff-i386.c. The function
1179specifically adds the addend field into the object file, knowing that
1180bfd_install_relocation is not going to. If you remove that line, then
1181coff-i386.c will wind up adding the addend field in twice. It's
1182trivial to fix; it just needs to be done.
1183
1184The problem with removing the line is just that it may break some
1185working code. With BFD it's hard to be sure of anything. The right
1186way to deal with this is simply to build and test at least all the
1187supported COFF targets. It should be straightforward if time and disk
1188space consuming. For each target:
1189 1) build the linker
1190 2) generate some executable, and link it using -r (I would
1191 probably use paranoia.o and link against newlib/libc.a, which
1192 for all the supported targets would be available in
1193 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1194 3) make the change to reloc.c
1195 4) rebuild the linker
1196 5) repeat step 2
1197 6) if the resulting object files are the same, you have at least
1198 made it no worse
1199 7) if they are different you have to figure out which version is
1200 right
1201*/
1202 relocation -= reloc_entry->addend;
1203#endif
1204 reloc_entry->addend = 0;
1205 }
1206 else
1207 {
1208 reloc_entry->addend = relocation;
1209 }
1210 }
1211
1212 /* FIXME: This overflow checking is incomplete, because the value
1213 might have overflowed before we get here. For a correct check we
1214 need to compute the value in a size larger than bitsize, but we
1215 can't reasonably do that for a reloc the same size as a host
1216 machine word.
1217 FIXME: We should also do overflow checking on the result after
1218 adding in the value contained in the object file. */
1219 if (howto->complain_on_overflow != complain_overflow_dont)
1220 flag = bfd_check_overflow (howto->complain_on_overflow,
1221 howto->bitsize,
1222 howto->rightshift,
1223 bfd_arch_bits_per_address (abfd),
1224 relocation);
1225
1226 /*
1227 Either we are relocating all the way, or we don't want to apply
1228 the relocation to the reloc entry (probably because there isn't
1229 any room in the output format to describe addends to relocs)
1230 */
1231
1232 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1233 (OSF version 1.3, compiler version 3.11). It miscompiles the
1234 following program:
1235
1236 struct str
1237 {
1238 unsigned int i0;
1239 } s = { 0 };
1240
1241 int
1242 main ()
1243 {
1244 unsigned long x;
1245
1246 x = 0x100000000;
1247 x <<= (unsigned long) s.i0;
1248 if (x == 0)
1249 printf ("failed\n");
1250 else
1251 printf ("succeeded (%lx)\n", x);
1252 }
1253 */
1254
1255 relocation >>= (bfd_vma) howto->rightshift;
1256
1257 /* Shift everything up to where it's going to be used */
1258
1259 relocation <<= (bfd_vma) howto->bitpos;
1260
1261 /* Wait for the day when all have the mask in them */
1262
1263 /* What we do:
1264 i instruction to be left alone
1265 o offset within instruction
1266 r relocation offset to apply
1267 S src mask
1268 D dst mask
1269 N ~dst mask
1270 A part 1
1271 B part 2
1272 R result
1273
1274 Do this:
88b6bae0
AM
1275 (( i i i i i o o o o o from bfd_get<size>
1276 and S S S S S) to get the size offset we want
1277 + r r r r r r r r r r) to get the final value to place
252b5132
RH
1278 and D D D D D to chop to right size
1279 -----------------------
88b6bae0 1280 = A A A A A
252b5132 1281 And this:
88b6bae0
AM
1282 ( i i i i i o o o o o from bfd_get<size>
1283 and N N N N N ) get instruction
252b5132 1284 -----------------------
88b6bae0 1285 = B B B B B
252b5132
RH
1286
1287 And then:
88b6bae0
AM
1288 ( B B B B B
1289 or A A A A A)
252b5132 1290 -----------------------
88b6bae0 1291 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
1292 */
1293
1294#define DOIT(x) \
1295 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1296
9a968f43 1297 data = (bfd_byte *) data_start + (octets - data_start_offset);
252b5132
RH
1298
1299 switch (howto->size)
1300 {
1301 case 0:
1302 {
1303 char x = bfd_get_8 (abfd, (char *) data);
1304 DOIT (x);
1305 bfd_put_8 (abfd, x, (unsigned char *) data);
1306 }
1307 break;
1308
1309 case 1:
1310 {
1311 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1312 DOIT (x);
1313 bfd_put_16 (abfd, x, (unsigned char *) data);
1314 }
1315 break;
1316 case 2:
1317 {
1318 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1319 DOIT (x);
1320 bfd_put_32 (abfd, x, (bfd_byte *) data);
1321 }
1322 break;
1323 case -2:
1324 {
1325 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1326 relocation = -relocation;
1327 DOIT (x);
1328 bfd_put_32 (abfd, x, (bfd_byte *) data);
1329 }
1330 break;
1331
1332 case 3:
1333 /* Do nothing */
1334 break;
1335
1336 case 4:
1337 {
1338 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1339 DOIT (x);
1340 bfd_put_64 (abfd, x, (bfd_byte *) data);
1341 }
1342 break;
1343 default:
1344 return bfd_reloc_other;
1345 }
1346
1347 return flag;
1348}
1349
1350/* This relocation routine is used by some of the backend linkers.
1351 They do not construct asymbol or arelent structures, so there is no
1352 reason for them to use bfd_perform_relocation. Also,
1353 bfd_perform_relocation is so hacked up it is easier to write a new
1354 function than to try to deal with it.
1355
1356 This routine does a final relocation. Whether it is useful for a
1357 relocateable link depends upon how the object format defines
1358 relocations.
1359
1360 FIXME: This routine ignores any special_function in the HOWTO,
1361 since the existing special_function values have been written for
1362 bfd_perform_relocation.
1363
1364 HOWTO is the reloc howto information.
1365 INPUT_BFD is the BFD which the reloc applies to.
1366 INPUT_SECTION is the section which the reloc applies to.
1367 CONTENTS is the contents of the section.
1368 ADDRESS is the address of the reloc within INPUT_SECTION.
1369 VALUE is the value of the symbol the reloc refers to.
1370 ADDEND is the addend of the reloc. */
1371
1372bfd_reloc_status_type
1373_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1374 value, addend)
1375 reloc_howto_type *howto;
1376 bfd *input_bfd;
1377 asection *input_section;
1378 bfd_byte *contents;
1379 bfd_vma address;
1380 bfd_vma value;
1381 bfd_vma addend;
1382{
1383 bfd_vma relocation;
1384
1385 /* Sanity check the address. */
1386 if (address > input_section->_raw_size)
1387 return bfd_reloc_outofrange;
1388
1389 /* This function assumes that we are dealing with a basic relocation
1390 against a symbol. We want to compute the value of the symbol to
1391 relocate to. This is just VALUE, the value of the symbol, plus
1392 ADDEND, any addend associated with the reloc. */
1393 relocation = value + addend;
1394
1395 /* If the relocation is PC relative, we want to set RELOCATION to
1396 the distance between the symbol (currently in RELOCATION) and the
1397 location we are relocating. Some targets (e.g., i386-aout)
1398 arrange for the contents of the section to be the negative of the
1399 offset of the location within the section; for such targets
1400 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1401 simply leave the contents of the section as zero; for such
1402 targets pcrel_offset is true. If pcrel_offset is false we do not
1403 need to subtract out the offset of the location within the
1404 section (which is just ADDRESS). */
1405 if (howto->pc_relative)
1406 {
1407 relocation -= (input_section->output_section->vma
1408 + input_section->output_offset);
1409 if (howto->pcrel_offset)
1410 relocation -= address;
1411 }
1412
1413 return _bfd_relocate_contents (howto, input_bfd, relocation,
1414 contents + address);
1415}
1416
1417/* Relocate a given location using a given value and howto. */
1418
1419bfd_reloc_status_type
1420_bfd_relocate_contents (howto, input_bfd, relocation, location)
1421 reloc_howto_type *howto;
1422 bfd *input_bfd;
1423 bfd_vma relocation;
1424 bfd_byte *location;
1425{
1426 int size;
7442e600 1427 bfd_vma x = 0;
d5afc56e 1428 bfd_reloc_status_type flag;
252b5132
RH
1429 unsigned int rightshift = howto->rightshift;
1430 unsigned int bitpos = howto->bitpos;
1431
1432 /* If the size is negative, negate RELOCATION. This isn't very
1433 general. */
1434 if (howto->size < 0)
1435 relocation = -relocation;
1436
1437 /* Get the value we are going to relocate. */
1438 size = bfd_get_reloc_size (howto);
1439 switch (size)
1440 {
1441 default:
1442 case 0:
1443 abort ();
1444 case 1:
1445 x = bfd_get_8 (input_bfd, location);
1446 break;
1447 case 2:
1448 x = bfd_get_16 (input_bfd, location);
1449 break;
1450 case 4:
1451 x = bfd_get_32 (input_bfd, location);
1452 break;
1453 case 8:
1454#ifdef BFD64
1455 x = bfd_get_64 (input_bfd, location);
1456#else
1457 abort ();
1458#endif
1459 break;
1460 }
1461
1462 /* Check for overflow. FIXME: We may drop bits during the addition
1463 which we don't check for. We must either check at every single
1464 operation, which would be tedious, or we must do the computations
1465 in a type larger than bfd_vma, which would be inefficient. */
d5afc56e 1466 flag = bfd_reloc_ok;
252b5132
RH
1467 if (howto->complain_on_overflow != complain_overflow_dont)
1468 {
1469 bfd_vma addrmask, fieldmask, signmask, ss;
1470 bfd_vma a, b, sum;
1471
1472 /* Get the values to be added together. For signed and unsigned
1473 relocations, we assume that all values should be truncated to
1474 the size of an address. For bitfields, all the bits matter.
1475 See also bfd_check_overflow. */
1476 fieldmask = N_ONES (howto->bitsize);
1477 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1478 a = relocation;
1479 b = x & howto->src_mask;
1480
1481 switch (howto->complain_on_overflow)
1482 {
1483 case complain_overflow_signed:
1484 a = (a & addrmask) >> rightshift;
1485
1486 /* If any sign bits are set, all sign bits must be set.
1487 That is, A must be a valid negative address after
1488 shifting. */
1489 signmask = ~ (fieldmask >> 1);
1490 ss = a & signmask;
1491 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
d5afc56e 1492 flag = bfd_reloc_overflow;
252b5132
RH
1493
1494 /* We only need this next bit of code if the sign bit of B
1495 is below the sign bit of A. This would only happen if
1496 SRC_MASK had fewer bits than BITSIZE. Note that if
1497 SRC_MASK has more bits than BITSIZE, we can get into
1498 trouble; we would need to verify that B is in range, as
1499 we do for A above. */
1500 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1501 if ((b & signmask) != 0)
1502 {
1503 /* Set all the bits above the sign bit. */
88b6bae0 1504 b -= signmask << 1;
252b5132
RH
1505 }
1506
1507 b = (b & addrmask) >> bitpos;
1508
1509 /* Now we can do the addition. */
1510 sum = a + b;
1511
1512 /* See if the result has the correct sign. Bits above the
1513 sign bit are junk now; ignore them. If the sum is
1514 positive, make sure we did not have all negative inputs;
1515 if the sum is negative, make sure we did not have all
1516 positive inputs. The test below looks only at the sign
1517 bits, and it really just
1518 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1519 */
1520 signmask = (fieldmask >> 1) + 1;
1521 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
d5afc56e 1522 flag = bfd_reloc_overflow;
252b5132
RH
1523
1524 break;
1525
1526 case complain_overflow_unsigned:
1527 /* Checking for an unsigned overflow is relatively easy:
1528 trim the addresses and add, and trim the result as well.
1529 Overflow is normally indicated when the result does not
1530 fit in the field. However, we also need to consider the
1531 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1532 input is 0x80000000, and bfd_vma is only 32 bits; then we
1533 will get sum == 0, but there is an overflow, since the
1534 inputs did not fit in the field. Instead of doing a
1535 separate test, we can check for this by or-ing in the
1536 operands when testing for the sum overflowing its final
1537 field. */
1538 a = (a & addrmask) >> rightshift;
1539 b = (b & addrmask) >> bitpos;
1540 sum = (a + b) & addrmask;
1541 if ((a | b | sum) & ~ fieldmask)
d5afc56e 1542 flag = bfd_reloc_overflow;
252b5132
RH
1543
1544 break;
1545
1546 case complain_overflow_bitfield:
d5afc56e
AM
1547 /* Much like the signed check, but for a field one bit
1548 wider, and no trimming with addrmask. We allow a
1549 bitfield to represent numbers in the range -2**n to
1550 2**n-1, where n is the number of bits in the field.
1551 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1552 overflow, which is exactly what we want. */
252b5132 1553 a >>= rightshift;
252b5132 1554
d5afc56e
AM
1555 signmask = ~ fieldmask;
1556 ss = a & signmask;
1557 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1558 flag = bfd_reloc_overflow;
252b5132 1559
d5afc56e
AM
1560 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1561 if ((b & signmask) != 0)
1562 b -= signmask << 1;
252b5132 1563
d5afc56e 1564 b >>= bitpos;
44257b8b 1565
252b5132 1566 sum = a + b;
d5afc56e
AM
1567
1568 signmask = fieldmask + 1;
1569 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1570 flag = bfd_reloc_overflow;
252b5132
RH
1571
1572 break;
1573
1574 default:
1575 abort ();
1576 }
1577 }
1578
1579 /* Put RELOCATION in the right bits. */
1580 relocation >>= (bfd_vma) rightshift;
1581 relocation <<= (bfd_vma) bitpos;
1582
1583 /* Add RELOCATION to the right bits of X. */
1584 x = ((x & ~howto->dst_mask)
1585 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1586
1587 /* Put the relocated value back in the object file. */
1588 switch (size)
1589 {
1590 default:
1591 case 0:
1592 abort ();
1593 case 1:
1594 bfd_put_8 (input_bfd, x, location);
1595 break;
1596 case 2:
1597 bfd_put_16 (input_bfd, x, location);
1598 break;
1599 case 4:
1600 bfd_put_32 (input_bfd, x, location);
1601 break;
1602 case 8:
1603#ifdef BFD64
1604 bfd_put_64 (input_bfd, x, location);
1605#else
1606 abort ();
1607#endif
1608 break;
1609 }
1610
d5afc56e 1611 return flag;
252b5132
RH
1612}
1613
1614/*
1615DOCDD
1616INODE
1617 howto manager, , typedef arelent, Relocations
1618
1619SECTION
1620 The howto manager
1621
1622 When an application wants to create a relocation, but doesn't
1623 know what the target machine might call it, it can find out by
1624 using this bit of code.
1625
1626*/
1627
1628/*
1629TYPEDEF
1630 bfd_reloc_code_type
1631
1632DESCRIPTION
1633 The insides of a reloc code. The idea is that, eventually, there
1634 will be one enumerator for every type of relocation we ever do.
1635 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1636 return a howto pointer.
1637
1638 This does mean that the application must determine the correct
1639 enumerator value; you can't get a howto pointer from a random set
1640 of attributes.
1641
1642SENUM
1643 bfd_reloc_code_real
1644
1645ENUM
1646 BFD_RELOC_64
1647ENUMX
1648 BFD_RELOC_32
1649ENUMX
1650 BFD_RELOC_26
1651ENUMX
1652 BFD_RELOC_24
1653ENUMX
1654 BFD_RELOC_16
1655ENUMX
1656 BFD_RELOC_14
1657ENUMX
1658 BFD_RELOC_8
1659ENUMDOC
1660 Basic absolute relocations of N bits.
1661
1662ENUM
1663 BFD_RELOC_64_PCREL
1664ENUMX
1665 BFD_RELOC_32_PCREL
1666ENUMX
1667 BFD_RELOC_24_PCREL
1668ENUMX
1669 BFD_RELOC_16_PCREL
1670ENUMX
1671 BFD_RELOC_12_PCREL
1672ENUMX
1673 BFD_RELOC_8_PCREL
1674ENUMDOC
1675 PC-relative relocations. Sometimes these are relative to the address
1676of the relocation itself; sometimes they are relative to the start of
1677the section containing the relocation. It depends on the specific target.
1678
1679The 24-bit relocation is used in some Intel 960 configurations.
1680
1681ENUM
1682 BFD_RELOC_32_GOT_PCREL
1683ENUMX
1684 BFD_RELOC_16_GOT_PCREL
1685ENUMX
1686 BFD_RELOC_8_GOT_PCREL
1687ENUMX
1688 BFD_RELOC_32_GOTOFF
1689ENUMX
1690 BFD_RELOC_16_GOTOFF
1691ENUMX
1692 BFD_RELOC_LO16_GOTOFF
1693ENUMX
1694 BFD_RELOC_HI16_GOTOFF
1695ENUMX
1696 BFD_RELOC_HI16_S_GOTOFF
1697ENUMX
1698 BFD_RELOC_8_GOTOFF
1699ENUMX
1700 BFD_RELOC_32_PLT_PCREL
1701ENUMX
1702 BFD_RELOC_24_PLT_PCREL
1703ENUMX
1704 BFD_RELOC_16_PLT_PCREL
1705ENUMX
1706 BFD_RELOC_8_PLT_PCREL
1707ENUMX
1708 BFD_RELOC_32_PLTOFF
1709ENUMX
1710 BFD_RELOC_16_PLTOFF
1711ENUMX
1712 BFD_RELOC_LO16_PLTOFF
1713ENUMX
1714 BFD_RELOC_HI16_PLTOFF
1715ENUMX
1716 BFD_RELOC_HI16_S_PLTOFF
1717ENUMX
1718 BFD_RELOC_8_PLTOFF
1719ENUMDOC
1720 For ELF.
1721
1722ENUM
1723 BFD_RELOC_68K_GLOB_DAT
1724ENUMX
1725 BFD_RELOC_68K_JMP_SLOT
1726ENUMX
1727 BFD_RELOC_68K_RELATIVE
1728ENUMDOC
1729 Relocations used by 68K ELF.
1730
1731ENUM
1732 BFD_RELOC_32_BASEREL
1733ENUMX
1734 BFD_RELOC_16_BASEREL
1735ENUMX
1736 BFD_RELOC_LO16_BASEREL
1737ENUMX
1738 BFD_RELOC_HI16_BASEREL
1739ENUMX
1740 BFD_RELOC_HI16_S_BASEREL
1741ENUMX
1742 BFD_RELOC_8_BASEREL
1743ENUMX
1744 BFD_RELOC_RVA
1745ENUMDOC
1746 Linkage-table relative.
1747
1748ENUM
1749 BFD_RELOC_8_FFnn
1750ENUMDOC
1751 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1752
1753ENUM
1754 BFD_RELOC_32_PCREL_S2
1755ENUMX
1756 BFD_RELOC_16_PCREL_S2
1757ENUMX
1758 BFD_RELOC_23_PCREL_S2
1759ENUMDOC
1760 These PC-relative relocations are stored as word displacements --
1761i.e., byte displacements shifted right two bits. The 30-bit word
1762displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1763SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1764signed 16-bit displacement is used on the MIPS, and the 23-bit
1765displacement is used on the Alpha.
1766
1767ENUM
1768 BFD_RELOC_HI22
1769ENUMX
1770 BFD_RELOC_LO10
1771ENUMDOC
1772 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1773the target word. These are used on the SPARC.
1774
1775ENUM
1776 BFD_RELOC_GPREL16
1777ENUMX
1778 BFD_RELOC_GPREL32
1779ENUMDOC
1780 For systems that allocate a Global Pointer register, these are
1781displacements off that register. These relocation types are
1782handled specially, because the value the register will have is
1783decided relatively late.
1784
1785
1786ENUM
1787 BFD_RELOC_I960_CALLJ
1788ENUMDOC
1789 Reloc types used for i960/b.out.
1790
1791ENUM
1792 BFD_RELOC_NONE
1793ENUMX
1794 BFD_RELOC_SPARC_WDISP22
1795ENUMX
1796 BFD_RELOC_SPARC22
1797ENUMX
1798 BFD_RELOC_SPARC13
1799ENUMX
1800 BFD_RELOC_SPARC_GOT10
1801ENUMX
1802 BFD_RELOC_SPARC_GOT13
1803ENUMX
1804 BFD_RELOC_SPARC_GOT22
1805ENUMX
1806 BFD_RELOC_SPARC_PC10
1807ENUMX
1808 BFD_RELOC_SPARC_PC22
1809ENUMX
1810 BFD_RELOC_SPARC_WPLT30
1811ENUMX
1812 BFD_RELOC_SPARC_COPY
1813ENUMX
1814 BFD_RELOC_SPARC_GLOB_DAT
1815ENUMX
1816 BFD_RELOC_SPARC_JMP_SLOT
1817ENUMX
1818 BFD_RELOC_SPARC_RELATIVE
1819ENUMX
1820 BFD_RELOC_SPARC_UA32
1821ENUMDOC
1822 SPARC ELF relocations. There is probably some overlap with other
1823 relocation types already defined.
1824
1825ENUM
1826 BFD_RELOC_SPARC_BASE13
1827ENUMX
1828 BFD_RELOC_SPARC_BASE22
1829ENUMDOC
1830 I think these are specific to SPARC a.out (e.g., Sun 4).
1831
1832ENUMEQ
1833 BFD_RELOC_SPARC_64
1834 BFD_RELOC_64
1835ENUMX
1836 BFD_RELOC_SPARC_10
1837ENUMX
1838 BFD_RELOC_SPARC_11
1839ENUMX
1840 BFD_RELOC_SPARC_OLO10
1841ENUMX
1842 BFD_RELOC_SPARC_HH22
1843ENUMX
1844 BFD_RELOC_SPARC_HM10
1845ENUMX
1846 BFD_RELOC_SPARC_LM22
1847ENUMX
1848 BFD_RELOC_SPARC_PC_HH22
1849ENUMX
1850 BFD_RELOC_SPARC_PC_HM10
1851ENUMX
1852 BFD_RELOC_SPARC_PC_LM22
1853ENUMX
1854 BFD_RELOC_SPARC_WDISP16
1855ENUMX
1856 BFD_RELOC_SPARC_WDISP19
1857ENUMX
1858 BFD_RELOC_SPARC_7
1859ENUMX
1860 BFD_RELOC_SPARC_6
1861ENUMX
1862 BFD_RELOC_SPARC_5
1863ENUMEQX
1864 BFD_RELOC_SPARC_DISP64
1865 BFD_RELOC_64_PCREL
1866ENUMX
1867 BFD_RELOC_SPARC_PLT64
1868ENUMX
1869 BFD_RELOC_SPARC_HIX22
1870ENUMX
1871 BFD_RELOC_SPARC_LOX10
1872ENUMX
1873 BFD_RELOC_SPARC_H44
1874ENUMX
1875 BFD_RELOC_SPARC_M44
1876ENUMX
1877 BFD_RELOC_SPARC_L44
1878ENUMX
1879 BFD_RELOC_SPARC_REGISTER
1880ENUMDOC
1881 SPARC64 relocations
1882
1883ENUM
1884 BFD_RELOC_SPARC_REV32
1885ENUMDOC
1886 SPARC little endian relocation
1887
1888ENUM
1889 BFD_RELOC_ALPHA_GPDISP_HI16
1890ENUMDOC
1891 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1892 "addend" in some special way.
1893 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1894 writing; when reading, it will be the absolute section symbol. The
1895 addend is the displacement in bytes of the "lda" instruction from
1896 the "ldah" instruction (which is at the address of this reloc).
1897ENUM
1898 BFD_RELOC_ALPHA_GPDISP_LO16
1899ENUMDOC
1900 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1901 with GPDISP_HI16 relocs. The addend is ignored when writing the
1902 relocations out, and is filled in with the file's GP value on
1903 reading, for convenience.
1904
1905ENUM
1906 BFD_RELOC_ALPHA_GPDISP
1907ENUMDOC
1908 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1909 relocation except that there is no accompanying GPDISP_LO16
1910 relocation.
1911
1912ENUM
1913 BFD_RELOC_ALPHA_LITERAL
1914ENUMX
1915 BFD_RELOC_ALPHA_ELF_LITERAL
1916ENUMX
1917 BFD_RELOC_ALPHA_LITUSE
1918ENUMDOC
1919 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1920 the assembler turns it into a LDQ instruction to load the address of
1921 the symbol, and then fills in a register in the real instruction.
1922
1923 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1924 section symbol. The addend is ignored when writing, but is filled
1925 in with the file's GP value on reading, for convenience, as with the
1926 GPDISP_LO16 reloc.
1927
1928 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1929 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1930 but it generates output not based on the position within the .got
1931 section, but relative to the GP value chosen for the file during the
1932 final link stage.
1933
1934 The LITUSE reloc, on the instruction using the loaded address, gives
1935 information to the linker that it might be able to use to optimize
1936 away some literal section references. The symbol is ignored (read
1937 as the absolute section symbol), and the "addend" indicates the type
1938 of instruction using the register:
1939 1 - "memory" fmt insn
1940 2 - byte-manipulation (byte offset reg)
1941 3 - jsr (target of branch)
1942
1943 The GNU linker currently doesn't do any of this optimizing.
1944
fe174262
MM
1945ENUM
1946 BFD_RELOC_ALPHA_USER_LITERAL
1947ENUMX
1948 BFD_RELOC_ALPHA_USER_LITUSE_BASE
1949ENUMX
1950 BFD_RELOC_ALPHA_USER_LITUSE_BYTOFF
1951ENUMX
1952 BFD_RELOC_ALPHA_USER_LITUSE_JSR
1953ENUMX
1954 BFD_RELOC_ALPHA_USER_GPDISP
1955ENUMX
1956 BFD_RELOC_ALPHA_USER_GPRELHIGH
1957ENUMX
1958 BFD_RELOC_ALPHA_USER_GPRELLOW
1959ENUMDOC
1960 The BFD_RELOC_ALPHA_USER_* relocations are used by the assembler to
1961 process the explicit !<reloc>!sequence relocations, and are mapped
1962 into the normal relocations at the end of processing.
1963
252b5132
RH
1964ENUM
1965 BFD_RELOC_ALPHA_HINT
1966ENUMDOC
1967 The HINT relocation indicates a value that should be filled into the
1968 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1969 prediction logic which may be provided on some processors.
1970
1971ENUM
1972 BFD_RELOC_ALPHA_LINKAGE
1973ENUMDOC
1974 The LINKAGE relocation outputs a linkage pair in the object file,
1975 which is filled by the linker.
1976
1977ENUM
1978 BFD_RELOC_ALPHA_CODEADDR
1979ENUMDOC
1980 The CODEADDR relocation outputs a STO_CA in the object file,
1981 which is filled by the linker.
1982
1983ENUM
1984 BFD_RELOC_MIPS_JMP
1985ENUMDOC
1986 Bits 27..2 of the relocation address shifted right 2 bits;
1987 simple reloc otherwise.
1988
1989ENUM
1990 BFD_RELOC_MIPS16_JMP
1991ENUMDOC
1992 The MIPS16 jump instruction.
1993
1994ENUM
1995 BFD_RELOC_MIPS16_GPREL
1996ENUMDOC
1997 MIPS16 GP relative reloc.
1998
1999ENUM
2000 BFD_RELOC_HI16
2001ENUMDOC
2002 High 16 bits of 32-bit value; simple reloc.
2003ENUM
2004 BFD_RELOC_HI16_S
2005ENUMDOC
2006 High 16 bits of 32-bit value but the low 16 bits will be sign
2007 extended and added to form the final result. If the low 16
2008 bits form a negative number, we need to add one to the high value
2009 to compensate for the borrow when the low bits are added.
2010ENUM
2011 BFD_RELOC_LO16
2012ENUMDOC
2013 Low 16 bits.
2014ENUM
2015 BFD_RELOC_PCREL_HI16_S
2016ENUMDOC
2017 Like BFD_RELOC_HI16_S, but PC relative.
2018ENUM
2019 BFD_RELOC_PCREL_LO16
2020ENUMDOC
2021 Like BFD_RELOC_LO16, but PC relative.
2022
2023ENUMEQ
2024 BFD_RELOC_MIPS_GPREL
2025 BFD_RELOC_GPREL16
2026ENUMDOC
2027 Relocation relative to the global pointer.
2028
2029ENUM
2030 BFD_RELOC_MIPS_LITERAL
2031ENUMDOC
2032 Relocation against a MIPS literal section.
2033
2034ENUM
2035 BFD_RELOC_MIPS_GOT16
2036ENUMX
2037 BFD_RELOC_MIPS_CALL16
2038ENUMEQX
2039 BFD_RELOC_MIPS_GPREL32
2040 BFD_RELOC_GPREL32
2041ENUMX
2042 BFD_RELOC_MIPS_GOT_HI16
2043ENUMX
2044 BFD_RELOC_MIPS_GOT_LO16
2045ENUMX
2046 BFD_RELOC_MIPS_CALL_HI16
2047ENUMX
2048 BFD_RELOC_MIPS_CALL_LO16
3f830999
MM
2049ENUMX
2050 BFD_RELOC_MIPS_SUB
2051ENUMX
2052 BFD_RELOC_MIPS_GOT_PAGE
2053ENUMX
2054 BFD_RELOC_MIPS_GOT_OFST
2055ENUMX
2056 BFD_RELOC_MIPS_GOT_DISP
252b5132
RH
2057COMMENT
2058ENUMDOC
2059 MIPS ELF relocations.
2060
2061COMMENT
2062
2063ENUM
2064 BFD_RELOC_386_GOT32
2065ENUMX
2066 BFD_RELOC_386_PLT32
2067ENUMX
2068 BFD_RELOC_386_COPY
2069ENUMX
2070 BFD_RELOC_386_GLOB_DAT
2071ENUMX
2072 BFD_RELOC_386_JUMP_SLOT
2073ENUMX
2074 BFD_RELOC_386_RELATIVE
2075ENUMX
2076 BFD_RELOC_386_GOTOFF
2077ENUMX
2078 BFD_RELOC_386_GOTPC
2079ENUMDOC
2080 i386/elf relocations
2081
2082ENUM
2083 BFD_RELOC_NS32K_IMM_8
2084ENUMX
2085 BFD_RELOC_NS32K_IMM_16
2086ENUMX
2087 BFD_RELOC_NS32K_IMM_32
2088ENUMX
2089 BFD_RELOC_NS32K_IMM_8_PCREL
2090ENUMX
2091 BFD_RELOC_NS32K_IMM_16_PCREL
2092ENUMX
2093 BFD_RELOC_NS32K_IMM_32_PCREL
2094ENUMX
2095 BFD_RELOC_NS32K_DISP_8
2096ENUMX
2097 BFD_RELOC_NS32K_DISP_16
2098ENUMX
2099 BFD_RELOC_NS32K_DISP_32
2100ENUMX
2101 BFD_RELOC_NS32K_DISP_8_PCREL
2102ENUMX
2103 BFD_RELOC_NS32K_DISP_16_PCREL
2104ENUMX
2105 BFD_RELOC_NS32K_DISP_32_PCREL
2106ENUMDOC
2107 ns32k relocations
2108
0bcb993b
ILT
2109ENUM
2110 BFD_RELOC_PJ_CODE_HI16
2111ENUMX
2112 BFD_RELOC_PJ_CODE_LO16
2113ENUMX
2114 BFD_RELOC_PJ_CODE_DIR16
2115ENUMX
2116 BFD_RELOC_PJ_CODE_DIR32
2117ENUMX
2118 BFD_RELOC_PJ_CODE_REL16
2119ENUMX
2120 BFD_RELOC_PJ_CODE_REL32
2121ENUMDOC
2122 Picojava relocs. Not all of these appear in object files.
88b6bae0 2123
252b5132
RH
2124ENUM
2125 BFD_RELOC_PPC_B26
2126ENUMX
2127 BFD_RELOC_PPC_BA26
2128ENUMX
2129 BFD_RELOC_PPC_TOC16
2130ENUMX
2131 BFD_RELOC_PPC_B16
2132ENUMX
2133 BFD_RELOC_PPC_B16_BRTAKEN
2134ENUMX
2135 BFD_RELOC_PPC_B16_BRNTAKEN
2136ENUMX
2137 BFD_RELOC_PPC_BA16
2138ENUMX
2139 BFD_RELOC_PPC_BA16_BRTAKEN
2140ENUMX
2141 BFD_RELOC_PPC_BA16_BRNTAKEN
2142ENUMX
2143 BFD_RELOC_PPC_COPY
2144ENUMX
2145 BFD_RELOC_PPC_GLOB_DAT
2146ENUMX
2147 BFD_RELOC_PPC_JMP_SLOT
2148ENUMX
2149 BFD_RELOC_PPC_RELATIVE
2150ENUMX
2151 BFD_RELOC_PPC_LOCAL24PC
2152ENUMX
2153 BFD_RELOC_PPC_EMB_NADDR32
2154ENUMX
2155 BFD_RELOC_PPC_EMB_NADDR16
2156ENUMX
2157 BFD_RELOC_PPC_EMB_NADDR16_LO
2158ENUMX
2159 BFD_RELOC_PPC_EMB_NADDR16_HI
2160ENUMX
2161 BFD_RELOC_PPC_EMB_NADDR16_HA
2162ENUMX
2163 BFD_RELOC_PPC_EMB_SDAI16
2164ENUMX
2165 BFD_RELOC_PPC_EMB_SDA2I16
2166ENUMX
2167 BFD_RELOC_PPC_EMB_SDA2REL
2168ENUMX
2169 BFD_RELOC_PPC_EMB_SDA21
2170ENUMX
2171 BFD_RELOC_PPC_EMB_MRKREF
2172ENUMX
2173 BFD_RELOC_PPC_EMB_RELSEC16
2174ENUMX
2175 BFD_RELOC_PPC_EMB_RELST_LO
2176ENUMX
2177 BFD_RELOC_PPC_EMB_RELST_HI
2178ENUMX
2179 BFD_RELOC_PPC_EMB_RELST_HA
2180ENUMX
2181 BFD_RELOC_PPC_EMB_BIT_FLD
2182ENUMX
2183 BFD_RELOC_PPC_EMB_RELSDA
2184ENUMDOC
2185 Power(rs6000) and PowerPC relocations.
2186
5b93d8bb
AM
2187ENUM
2188 BFD_RELOC_I370_D12
2189ENUMDOC
2190 IBM 370/390 relocations
2191
252b5132
RH
2192ENUM
2193 BFD_RELOC_CTOR
2194ENUMDOC
2195 The type of reloc used to build a contructor table - at the moment
2196 probably a 32 bit wide absolute relocation, but the target can choose.
2197 It generally does map to one of the other relocation types.
2198
2199ENUM
2200 BFD_RELOC_ARM_PCREL_BRANCH
2201ENUMDOC
2202 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2203 not stored in the instruction.
2204ENUM
2205 BFD_RELOC_ARM_IMMEDIATE
752149a0
NC
2206ENUMX
2207 BFD_RELOC_ARM_ADRL_IMMEDIATE
252b5132
RH
2208ENUMX
2209 BFD_RELOC_ARM_OFFSET_IMM
2210ENUMX
2211 BFD_RELOC_ARM_SHIFT_IMM
2212ENUMX
2213 BFD_RELOC_ARM_SWI
2214ENUMX
2215 BFD_RELOC_ARM_MULTI
2216ENUMX
2217 BFD_RELOC_ARM_CP_OFF_IMM
2218ENUMX
2219 BFD_RELOC_ARM_ADR_IMM
2220ENUMX
2221 BFD_RELOC_ARM_LDR_IMM
2222ENUMX
2223 BFD_RELOC_ARM_LITERAL
2224ENUMX
2225 BFD_RELOC_ARM_IN_POOL
2226ENUMX
2227 BFD_RELOC_ARM_OFFSET_IMM8
2228ENUMX
2229 BFD_RELOC_ARM_HWLITERAL
2230ENUMX
2231 BFD_RELOC_ARM_THUMB_ADD
2232ENUMX
2233 BFD_RELOC_ARM_THUMB_IMM
2234ENUMX
2235 BFD_RELOC_ARM_THUMB_SHIFT
2236ENUMX
2237 BFD_RELOC_ARM_THUMB_OFFSET
2238ENUMX
2239 BFD_RELOC_ARM_GOT12
2240ENUMX
2241 BFD_RELOC_ARM_GOT32
2242ENUMX
2243 BFD_RELOC_ARM_JUMP_SLOT
2244ENUMX
2245 BFD_RELOC_ARM_COPY
2246ENUMX
2247 BFD_RELOC_ARM_GLOB_DAT
2248ENUMX
2249 BFD_RELOC_ARM_PLT32
2250ENUMX
2251 BFD_RELOC_ARM_RELATIVE
2252ENUMX
2253 BFD_RELOC_ARM_GOTOFF
2254ENUMX
2255 BFD_RELOC_ARM_GOTPC
2256ENUMDOC
2257 These relocs are only used within the ARM assembler. They are not
2258 (at present) written to any object files.
2259
2260ENUM
2261 BFD_RELOC_SH_PCDISP8BY2
2262ENUMX
2263 BFD_RELOC_SH_PCDISP12BY2
2264ENUMX
2265 BFD_RELOC_SH_IMM4
2266ENUMX
2267 BFD_RELOC_SH_IMM4BY2
2268ENUMX
2269 BFD_RELOC_SH_IMM4BY4
2270ENUMX
2271 BFD_RELOC_SH_IMM8
2272ENUMX
2273 BFD_RELOC_SH_IMM8BY2
2274ENUMX
2275 BFD_RELOC_SH_IMM8BY4
2276ENUMX
2277 BFD_RELOC_SH_PCRELIMM8BY2
2278ENUMX
2279 BFD_RELOC_SH_PCRELIMM8BY4
2280ENUMX
2281 BFD_RELOC_SH_SWITCH16
2282ENUMX
2283 BFD_RELOC_SH_SWITCH32
2284ENUMX
2285 BFD_RELOC_SH_USES
2286ENUMX
2287 BFD_RELOC_SH_COUNT
2288ENUMX
2289 BFD_RELOC_SH_ALIGN
2290ENUMX
2291 BFD_RELOC_SH_CODE
2292ENUMX
2293 BFD_RELOC_SH_DATA
2294ENUMX
2295 BFD_RELOC_SH_LABEL
015551fc
JR
2296ENUMX
2297 BFD_RELOC_SH_LOOP_START
2298ENUMX
2299 BFD_RELOC_SH_LOOP_END
252b5132
RH
2300ENUMDOC
2301 Hitachi SH relocs. Not all of these appear in object files.
2302
2303ENUM
2304 BFD_RELOC_THUMB_PCREL_BRANCH9
2305ENUMX
2306 BFD_RELOC_THUMB_PCREL_BRANCH12
2307ENUMX
2308 BFD_RELOC_THUMB_PCREL_BRANCH23
2309ENUMDOC
2310 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2311 be zero and is not stored in the instruction.
2312
2313ENUM
2314 BFD_RELOC_ARC_B22_PCREL
2315ENUMDOC
2316 Argonaut RISC Core (ARC) relocs.
2317 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2318 not stored in the instruction. The high 20 bits are installed in bits 26
2319 through 7 of the instruction.
2320ENUM
2321 BFD_RELOC_ARC_B26
2322ENUMDOC
2323 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2324 stored in the instruction. The high 24 bits are installed in bits 23
2325 through 0.
2326
2327ENUM
2328 BFD_RELOC_D10V_10_PCREL_R
2329ENUMDOC
2330 Mitsubishi D10V relocs.
2331 This is a 10-bit reloc with the right 2 bits
2332 assumed to be 0.
2333ENUM
2334 BFD_RELOC_D10V_10_PCREL_L
2335ENUMDOC
2336 Mitsubishi D10V relocs.
2337 This is a 10-bit reloc with the right 2 bits
2338 assumed to be 0. This is the same as the previous reloc
2339 except it is in the left container, i.e.,
2340 shifted left 15 bits.
2341ENUM
2342 BFD_RELOC_D10V_18
2343ENUMDOC
2344 This is an 18-bit reloc with the right 2 bits
2345 assumed to be 0.
2346ENUM
2347 BFD_RELOC_D10V_18_PCREL
2348ENUMDOC
2349 This is an 18-bit reloc with the right 2 bits
2350 assumed to be 0.
2351
2352ENUM
2353 BFD_RELOC_D30V_6
2354ENUMDOC
2355 Mitsubishi D30V relocs.
2356 This is a 6-bit absolute reloc.
2357ENUM
2358 BFD_RELOC_D30V_9_PCREL
2359ENUMDOC
88b6bae0
AM
2360 This is a 6-bit pc-relative reloc with
2361 the right 3 bits assumed to be 0.
252b5132
RH
2362ENUM
2363 BFD_RELOC_D30V_9_PCREL_R
2364ENUMDOC
88b6bae0 2365 This is a 6-bit pc-relative reloc with
252b5132
RH
2366 the right 3 bits assumed to be 0. Same
2367 as the previous reloc but on the right side
88b6bae0 2368 of the container.
252b5132
RH
2369ENUM
2370 BFD_RELOC_D30V_15
2371ENUMDOC
88b6bae0
AM
2372 This is a 12-bit absolute reloc with the
2373 right 3 bitsassumed to be 0.
252b5132
RH
2374ENUM
2375 BFD_RELOC_D30V_15_PCREL
2376ENUMDOC
88b6bae0
AM
2377 This is a 12-bit pc-relative reloc with
2378 the right 3 bits assumed to be 0.
252b5132
RH
2379ENUM
2380 BFD_RELOC_D30V_15_PCREL_R
2381ENUMDOC
88b6bae0 2382 This is a 12-bit pc-relative reloc with
252b5132
RH
2383 the right 3 bits assumed to be 0. Same
2384 as the previous reloc but on the right side
88b6bae0 2385 of the container.
252b5132
RH
2386ENUM
2387 BFD_RELOC_D30V_21
2388ENUMDOC
88b6bae0 2389 This is an 18-bit absolute reloc with
252b5132
RH
2390 the right 3 bits assumed to be 0.
2391ENUM
2392 BFD_RELOC_D30V_21_PCREL
2393ENUMDOC
88b6bae0 2394 This is an 18-bit pc-relative reloc with
252b5132
RH
2395 the right 3 bits assumed to be 0.
2396ENUM
2397 BFD_RELOC_D30V_21_PCREL_R
2398ENUMDOC
88b6bae0 2399 This is an 18-bit pc-relative reloc with
252b5132
RH
2400 the right 3 bits assumed to be 0. Same
2401 as the previous reloc but on the right side
2402 of the container.
2403ENUM
2404 BFD_RELOC_D30V_32
2405ENUMDOC
2406 This is a 32-bit absolute reloc.
2407ENUM
2408 BFD_RELOC_D30V_32_PCREL
2409ENUMDOC
2410 This is a 32-bit pc-relative reloc.
2411
2412ENUM
2413 BFD_RELOC_M32R_24
2414ENUMDOC
2415 Mitsubishi M32R relocs.
2416 This is a 24 bit absolute address.
2417ENUM
2418 BFD_RELOC_M32R_10_PCREL
2419ENUMDOC
2420 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2421ENUM
2422 BFD_RELOC_M32R_18_PCREL
2423ENUMDOC
2424 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2425ENUM
2426 BFD_RELOC_M32R_26_PCREL
2427ENUMDOC
2428 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2429ENUM
2430 BFD_RELOC_M32R_HI16_ULO
2431ENUMDOC
2432 This is a 16-bit reloc containing the high 16 bits of an address
2433 used when the lower 16 bits are treated as unsigned.
2434ENUM
2435 BFD_RELOC_M32R_HI16_SLO
2436ENUMDOC
2437 This is a 16-bit reloc containing the high 16 bits of an address
2438 used when the lower 16 bits are treated as signed.
2439ENUM
2440 BFD_RELOC_M32R_LO16
2441ENUMDOC
2442 This is a 16-bit reloc containing the lower 16 bits of an address.
2443ENUM
2444 BFD_RELOC_M32R_SDA16
2445ENUMDOC
2446 This is a 16-bit reloc containing the small data area offset for use in
2447 add3, load, and store instructions.
2448
2449ENUM
2450 BFD_RELOC_V850_9_PCREL
2451ENUMDOC
2452 This is a 9-bit reloc
2453ENUM
2454 BFD_RELOC_V850_22_PCREL
2455ENUMDOC
2456 This is a 22-bit reloc
2457
2458ENUM
2459 BFD_RELOC_V850_SDA_16_16_OFFSET
2460ENUMDOC
2461 This is a 16 bit offset from the short data area pointer.
2462ENUM
2463 BFD_RELOC_V850_SDA_15_16_OFFSET
2464ENUMDOC
2465 This is a 16 bit offset (of which only 15 bits are used) from the
2466 short data area pointer.
2467ENUM
2468 BFD_RELOC_V850_ZDA_16_16_OFFSET
2469ENUMDOC
2470 This is a 16 bit offset from the zero data area pointer.
2471ENUM
2472 BFD_RELOC_V850_ZDA_15_16_OFFSET
2473ENUMDOC
2474 This is a 16 bit offset (of which only 15 bits are used) from the
2475 zero data area pointer.
2476ENUM
2477 BFD_RELOC_V850_TDA_6_8_OFFSET
2478ENUMDOC
2479 This is an 8 bit offset (of which only 6 bits are used) from the
2480 tiny data area pointer.
2481ENUM
2482 BFD_RELOC_V850_TDA_7_8_OFFSET
2483ENUMDOC
2484 This is an 8bit offset (of which only 7 bits are used) from the tiny
2485 data area pointer.
2486ENUM
2487 BFD_RELOC_V850_TDA_7_7_OFFSET
2488ENUMDOC
2489 This is a 7 bit offset from the tiny data area pointer.
2490ENUM
2491 BFD_RELOC_V850_TDA_16_16_OFFSET
2492ENUMDOC
2493 This is a 16 bit offset from the tiny data area pointer.
2494COMMENT
2495ENUM
2496 BFD_RELOC_V850_TDA_4_5_OFFSET
2497ENUMDOC
2498 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2499 data area pointer.
2500ENUM
2501 BFD_RELOC_V850_TDA_4_4_OFFSET
2502ENUMDOC
2503 This is a 4 bit offset from the tiny data area pointer.
2504ENUM
2505 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2506ENUMDOC
2507 This is a 16 bit offset from the short data area pointer, with the
2508 bits placed non-contigously in the instruction.
2509ENUM
2510 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2511ENUMDOC
2512 This is a 16 bit offset from the zero data area pointer, with the
2513 bits placed non-contigously in the instruction.
2514ENUM
2515 BFD_RELOC_V850_CALLT_6_7_OFFSET
2516ENUMDOC
2517 This is a 6 bit offset from the call table base pointer.
2518ENUM
2519 BFD_RELOC_V850_CALLT_16_16_OFFSET
2520ENUMDOC
2521 This is a 16 bit offset from the call table base pointer.
2522COMMENT
2523
2524ENUM
2525 BFD_RELOC_MN10300_32_PCREL
2526ENUMDOC
2527 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2528 instruction.
2529ENUM
2530 BFD_RELOC_MN10300_16_PCREL
2531ENUMDOC
2532 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2533 instruction.
2534
2535ENUM
2536 BFD_RELOC_TIC30_LDP
2537ENUMDOC
2538 This is a 8bit DP reloc for the tms320c30, where the most
2539 significant 8 bits of a 24 bit word are placed into the least
2540 significant 8 bits of the opcode.
2541
81635ce4
TW
2542COMMENT
2543ENUM
2544 BFD_RELOC_TIC54X_PARTLS7
2545ENUMDOC
2546 This is a 7bit reloc for the tms320c54x, where the least
2547 significant 7 bits of a 16 bit word are placed into the least
2548 significant 7 bits of the opcode.
2549
2550ENUM
2551 BFD_RELOC_TIC54X_PARTMS9
2552ENUMDOC
2553 This is a 9bit DP reloc for the tms320c54x, where the most
2554 significant 9 bits of a 16 bit word are placed into the least
2555 significant 9 bits of the opcode.
2556
2557ENUM
2558 BFD_RELOC_TIC54X_23
2559ENUMDOC
2560 This is an extended address 23-bit reloc for the tms320c54x.
2561
2562ENUM
2563 BFD_RELOC_TIC54X_16_OF_23
2564ENUMDOC
2565 This is a 16-bit reloc for the tms320c54x, where the least
2566 significant 16 bits of a 23-bit extended address are placed into
2567 the opcode.
2568
2569ENUM
2570 BFD_RELOC_TIC54X_MS7_OF_23
2571ENUMDOC
2572 This is a reloc for the tms320c54x, where the most
2573 significant 7 bits of a 23-bit extended address are placed into
2574 the opcode.
2575COMMENT
2576
252b5132
RH
2577ENUM
2578 BFD_RELOC_FR30_48
2579ENUMDOC
2580 This is a 48 bit reloc for the FR30 that stores 32 bits.
2581ENUM
2582 BFD_RELOC_FR30_20
2583ENUMDOC
2584 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2585 two sections.
2586ENUM
2587 BFD_RELOC_FR30_6_IN_4
2588ENUMDOC
2589 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2590 4 bits.
2591ENUM
2592 BFD_RELOC_FR30_8_IN_8
2593ENUMDOC
2594 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2595 into 8 bits.
2596ENUM
2597 BFD_RELOC_FR30_9_IN_8
2598ENUMDOC
2599 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2600 into 8 bits.
2601ENUM
2602 BFD_RELOC_FR30_10_IN_8
2603ENUMDOC
2604 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2605 into 8 bits.
2606ENUM
2607 BFD_RELOC_FR30_9_PCREL
2608ENUMDOC
2609 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2610 short offset into 8 bits.
2611ENUM
2612 BFD_RELOC_FR30_12_PCREL
2613ENUMDOC
2614 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2615 short offset into 11 bits.
88b6bae0 2616
252b5132
RH
2617ENUM
2618 BFD_RELOC_MCORE_PCREL_IMM8BY4
2619ENUMX
2620 BFD_RELOC_MCORE_PCREL_IMM11BY2
2621ENUMX
2622 BFD_RELOC_MCORE_PCREL_IMM4BY2
2623ENUMX
2624 BFD_RELOC_MCORE_PCREL_32
2625ENUMX
2626 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
36797d47
NC
2627ENUMX
2628 BFD_RELOC_MCORE_RVA
252b5132
RH
2629ENUMDOC
2630 Motorola Mcore relocations.
88b6bae0 2631
adde6300
AM
2632ENUM
2633 BFD_RELOC_AVR_7_PCREL
2634ENUMDOC
2635 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2636 short offset into 7 bits.
2637ENUM
2638 BFD_RELOC_AVR_13_PCREL
2639ENUMDOC
2640 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2641 short offset into 12 bits.
2642ENUM
2643 BFD_RELOC_AVR_16_PM
2644ENUMDOC
2645 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
2646 program memory address) into 16 bits.
2647ENUM
2648 BFD_RELOC_AVR_LO8_LDI
2649ENUMDOC
2650 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2651 data memory address) into 8 bit immediate value of LDI insn.
2652ENUM
2653 BFD_RELOC_AVR_HI8_LDI
2654ENUMDOC
2655 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2656 of data memory address) into 8 bit immediate value of LDI insn.
2657ENUM
2658 BFD_RELOC_AVR_HH8_LDI
2659ENUMDOC
2660 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2661 of program memory address) into 8 bit immediate value of LDI insn.
2662ENUM
2663 BFD_RELOC_AVR_LO8_LDI_NEG
2664ENUMDOC
2665 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2666 (usually data memory address) into 8 bit immediate value of SUBI insn.
2667ENUM
2668 BFD_RELOC_AVR_HI8_LDI_NEG
2669ENUMDOC
2670 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2671 (high 8 bit of data memory address) into 8 bit immediate value of
2672 SUBI insn.
2673ENUM
2674 BFD_RELOC_AVR_HH8_LDI_NEG
2675ENUMDOC
2676 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2677 (most high 8 bit of program memory address) into 8 bit immediate value
2678 of LDI or SUBI insn.
2679ENUM
2680 BFD_RELOC_AVR_LO8_LDI_PM
2681ENUMDOC
2682 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2683 command address) into 8 bit immediate value of LDI insn.
2684ENUM
2685 BFD_RELOC_AVR_HI8_LDI_PM
2686ENUMDOC
2687 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2688 of command address) into 8 bit immediate value of LDI insn.
2689ENUM
2690 BFD_RELOC_AVR_HH8_LDI_PM
2691ENUMDOC
2692 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2693 of command address) into 8 bit immediate value of LDI insn.
2694ENUM
2695 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2696ENUMDOC
2697 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2698 (usually command address) into 8 bit immediate value of SUBI insn.
2699ENUM
2700 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2701ENUMDOC
2702 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2703 (high 8 bit of 16 bit command address) into 8 bit immediate value
2704 of SUBI insn.
2705ENUM
2706 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2707ENUMDOC
2708 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2709 (high 6 bit of 22 bit command address) into 8 bit immediate
2710 value of SUBI insn.
2711ENUM
2712 BFD_RELOC_AVR_CALL
2713ENUMDOC
2714 This is a 32 bit reloc for the AVR that stores 23 bit value
2715 into 22 bits.
2716
252b5132
RH
2717ENUM
2718 BFD_RELOC_VTABLE_INHERIT
2719ENUMX
2720 BFD_RELOC_VTABLE_ENTRY
2721ENUMDOC
88b6bae0 2722 These two relocations are used by the linker to determine which of
252b5132
RH
2723 the entries in a C++ virtual function table are actually used. When
2724 the --gc-sections option is given, the linker will zero out the entries
2725 that are not used, so that the code for those functions need not be
2726 included in the output.
2727
2728 VTABLE_INHERIT is a zero-space relocation used to describe to the
2729 linker the inheritence tree of a C++ virtual function table. The
2730 relocation's symbol should be the parent class' vtable, and the
2731 relocation should be located at the child vtable.
2732
2733 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2734 virtual function table entry. The reloc's symbol should refer to the
2735 table of the class mentioned in the code. Off of that base, an offset
88b6bae0 2736 describes the entry that is being used. For Rela hosts, this offset
252b5132
RH
2737 is stored in the reloc's addend. For Rel hosts, we are forced to put
2738 this offset in the reloc's section offset.
2739
2740ENDSENUM
2741 BFD_RELOC_UNUSED
2742CODE_FRAGMENT
2743.
2744.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
2745*/
2746
2747
2748/*
2749FUNCTION
2750 bfd_reloc_type_lookup
2751
2752SYNOPSIS
2753 reloc_howto_type *
2754 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
2755
2756DESCRIPTION
2757 Return a pointer to a howto structure which, when
2758 invoked, will perform the relocation @var{code} on data from the
2759 architecture noted.
2760
2761*/
2762
2763
2764reloc_howto_type *
2765bfd_reloc_type_lookup (abfd, code)
2766 bfd *abfd;
2767 bfd_reloc_code_real_type code;
2768{
2769 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
2770}
2771
2772static reloc_howto_type bfd_howto_32 =
2773HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
2774
2775
2776/*
2777INTERNAL_FUNCTION
2778 bfd_default_reloc_type_lookup
2779
2780SYNOPSIS
2781 reloc_howto_type *bfd_default_reloc_type_lookup
2782 (bfd *abfd, bfd_reloc_code_real_type code);
2783
2784DESCRIPTION
2785 Provides a default relocation lookup routine for any architecture.
2786
2787
2788*/
2789
2790reloc_howto_type *
2791bfd_default_reloc_type_lookup (abfd, code)
2792 bfd *abfd;
2793 bfd_reloc_code_real_type code;
2794{
2795 switch (code)
2796 {
2797 case BFD_RELOC_CTOR:
2798 /* The type of reloc used in a ctor, which will be as wide as the
2799 address - so either a 64, 32, or 16 bitter. */
2800 switch (bfd_get_arch_info (abfd)->bits_per_address)
2801 {
2802 case 64:
2803 BFD_FAIL ();
2804 case 32:
2805 return &bfd_howto_32;
2806 case 16:
2807 BFD_FAIL ();
2808 default:
2809 BFD_FAIL ();
2810 }
2811 default:
2812 BFD_FAIL ();
2813 }
2814 return (reloc_howto_type *) NULL;
2815}
2816
2817/*
2818FUNCTION
2819 bfd_get_reloc_code_name
2820
2821SYNOPSIS
2822 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
2823
2824DESCRIPTION
2825 Provides a printable name for the supplied relocation code.
2826 Useful mainly for printing error messages.
2827*/
2828
2829const char *
2830bfd_get_reloc_code_name (code)
2831 bfd_reloc_code_real_type code;
2832{
2833 if (code > BFD_RELOC_UNUSED)
2834 return 0;
2835 return bfd_reloc_code_real_names[(int)code];
2836}
2837
2838/*
2839INTERNAL_FUNCTION
2840 bfd_generic_relax_section
2841
2842SYNOPSIS
2843 boolean bfd_generic_relax_section
2844 (bfd *abfd,
2845 asection *section,
2846 struct bfd_link_info *,
2847 boolean *);
2848
2849DESCRIPTION
2850 Provides default handling for relaxing for back ends which
2851 don't do relaxing -- i.e., does nothing.
2852*/
2853
2854/*ARGSUSED*/
2855boolean
2856bfd_generic_relax_section (abfd, section, link_info, again)
7442e600
ILT
2857 bfd *abfd ATTRIBUTE_UNUSED;
2858 asection *section ATTRIBUTE_UNUSED;
2859 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
2860 boolean *again;
2861{
2862 *again = false;
2863 return true;
2864}
2865
2866/*
2867INTERNAL_FUNCTION
2868 bfd_generic_gc_sections
2869
2870SYNOPSIS
2871 boolean bfd_generic_gc_sections
2872 (bfd *, struct bfd_link_info *);
2873
2874DESCRIPTION
2875 Provides default handling for relaxing for back ends which
2876 don't do section gc -- i.e., does nothing.
2877*/
2878
2879/*ARGSUSED*/
2880boolean
2881bfd_generic_gc_sections (abfd, link_info)
7442e600
ILT
2882 bfd *abfd ATTRIBUTE_UNUSED;
2883 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
2884{
2885 return true;
2886}
2887
2888/*
2889INTERNAL_FUNCTION
2890 bfd_generic_get_relocated_section_contents
2891
2892SYNOPSIS
2893 bfd_byte *
2894 bfd_generic_get_relocated_section_contents (bfd *abfd,
2895 struct bfd_link_info *link_info,
2896 struct bfd_link_order *link_order,
2897 bfd_byte *data,
2898 boolean relocateable,
2899 asymbol **symbols);
2900
2901DESCRIPTION
2902 Provides default handling of relocation effort for back ends
2903 which can't be bothered to do it efficiently.
2904
2905*/
2906
2907bfd_byte *
2908bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
2909 relocateable, symbols)
2910 bfd *abfd;
2911 struct bfd_link_info *link_info;
2912 struct bfd_link_order *link_order;
2913 bfd_byte *data;
2914 boolean relocateable;
2915 asymbol **symbols;
2916{
2917 /* Get enough memory to hold the stuff */
2918 bfd *input_bfd = link_order->u.indirect.section->owner;
2919 asection *input_section = link_order->u.indirect.section;
2920
2921 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
2922 arelent **reloc_vector = NULL;
2923 long reloc_count;
2924
2925 if (reloc_size < 0)
2926 goto error_return;
2927
2928 reloc_vector = (arelent **) bfd_malloc ((size_t) reloc_size);
2929 if (reloc_vector == NULL && reloc_size != 0)
2930 goto error_return;
2931
2932 /* read in the section */
2933 if (!bfd_get_section_contents (input_bfd,
2934 input_section,
2935 (PTR) data,
2936 0,
2937 input_section->_raw_size))
2938 goto error_return;
2939
2940 /* We're not relaxing the section, so just copy the size info */
2941 input_section->_cooked_size = input_section->_raw_size;
2942 input_section->reloc_done = true;
2943
2944 reloc_count = bfd_canonicalize_reloc (input_bfd,
2945 input_section,
2946 reloc_vector,
2947 symbols);
2948 if (reloc_count < 0)
2949 goto error_return;
2950
2951 if (reloc_count > 0)
2952 {
2953 arelent **parent;
2954 for (parent = reloc_vector; *parent != (arelent *) NULL;
2955 parent++)
2956 {
2957 char *error_message = (char *) NULL;
2958 bfd_reloc_status_type r =
2959 bfd_perform_relocation (input_bfd,
2960 *parent,
2961 (PTR) data,
2962 input_section,
2963 relocateable ? abfd : (bfd *) NULL,
2964 &error_message);
2965
2966 if (relocateable)
2967 {
2968 asection *os = input_section->output_section;
2969
2970 /* A partial link, so keep the relocs */
2971 os->orelocation[os->reloc_count] = *parent;
2972 os->reloc_count++;
2973 }
2974
2975 if (r != bfd_reloc_ok)
2976 {
2977 switch (r)
2978 {
2979 case bfd_reloc_undefined:
2980 if (!((*link_info->callbacks->undefined_symbol)
2981 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785
L
2982 input_bfd, input_section, (*parent)->address,
2983 true)))
252b5132
RH
2984 goto error_return;
2985 break;
2986 case bfd_reloc_dangerous:
2987 BFD_ASSERT (error_message != (char *) NULL);
2988 if (!((*link_info->callbacks->reloc_dangerous)
2989 (link_info, error_message, input_bfd, input_section,
2990 (*parent)->address)))
2991 goto error_return;
2992 break;
2993 case bfd_reloc_overflow:
2994 if (!((*link_info->callbacks->reloc_overflow)
2995 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
2996 (*parent)->howto->name, (*parent)->addend,
2997 input_bfd, input_section, (*parent)->address)))
2998 goto error_return;
2999 break;
3000 case bfd_reloc_outofrange:
3001 default:
3002 abort ();
3003 break;
3004 }
3005
3006 }
3007 }
3008 }
3009 if (reloc_vector != NULL)
3010 free (reloc_vector);
3011 return data;
3012
3013error_return:
3014 if (reloc_vector != NULL)
3015 free (reloc_vector);
3016 return NULL;
3017}