]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/reloc.c
Rmeove i370-mvs architecture - it is not supported.
[thirdparty/binutils-gdb.git] / bfd / reloc.c
CommitLineData
252b5132 1/* BFD support for handling relocation entries.
7898deda
NC
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
252b5132
RH
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7This file is part of BFD, the Binary File Descriptor library.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23/*
24SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
3f9b03b5 29 en-masse and translated into an internal form. A common
252b5132
RH
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40@menu
41@* typedef arelent::
42@* howto manager::
43@end menu
44
45*/
46
47/* DO compile in the reloc_code name table from libbfd.h. */
48#define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50#include "bfd.h"
51#include "sysdep.h"
52#include "bfdlink.h"
53#include "libbfd.h"
54/*
55DOCDD
56INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64CODE_FRAGMENT
65.
66.typedef enum bfd_reloc_status
67.{
68. {* No errors detected *}
69. bfd_reloc_ok,
70.
71. {* The relocation was performed, but there was an overflow. *}
72. bfd_reloc_overflow,
73.
74. {* The address to relocate was not within the section supplied. *}
75. bfd_reloc_outofrange,
76.
77. {* Used by special functions *}
78. bfd_reloc_continue,
79.
80. {* Unsupported relocation size requested. *}
81. bfd_reloc_notsupported,
82.
83. {* Unused *}
84. bfd_reloc_other,
85.
86. {* The symbol to relocate against was undefined. *}
87. bfd_reloc_undefined,
88.
89. {* The relocation was performed, but may not be ok - presently
90. generated only when linking i960 coff files with i960 b.out
91. symbols. If this type is returned, the error_message argument
92. to bfd_perform_relocation will be set. *}
93. bfd_reloc_dangerous
94. }
95. bfd_reloc_status_type;
96.
97.
98.typedef struct reloc_cache_entry
99.{
100. {* A pointer into the canonical table of pointers *}
101. struct symbol_cache_entry **sym_ptr_ptr;
102.
103. {* offset in section *}
104. bfd_size_type address;
105.
106. {* addend for relocation value *}
107. bfd_vma addend;
108.
109. {* Pointer to how to perform the required relocation *}
110. reloc_howto_type *howto;
111.
112.} arelent;
113
114*/
115
116/*
117DESCRIPTION
118
119 Here is a description of each of the fields within an <<arelent>>:
120
121 o <<sym_ptr_ptr>>
122
123 The symbol table pointer points to a pointer to the symbol
124 associated with the relocation request. It is
125 the pointer into the table returned by the back end's
126 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
127 through a pointer to a pointer so that tools like the linker
128 can fix up all the symbols of the same name by modifying only
129 one pointer. The relocation routine looks in the symbol and
130 uses the base of the section the symbol is attached to and the
131 value of the symbol as the initial relocation offset. If the
132 symbol pointer is zero, then the section provided is looked up.
133
134 o <<address>>
135
136 The <<address>> field gives the offset in bytes from the base of
137 the section data which owns the relocation record to the first
138 byte of relocatable information. The actual data relocated
139 will be relative to this point; for example, a relocation
140 type which modifies the bottom two bytes of a four byte word
141 would not touch the first byte pointed to in a big endian
142 world.
143
144 o <<addend>>
145
146 The <<addend>> is a value provided by the back end to be added (!)
147 to the relocation offset. Its interpretation is dependent upon
148 the howto. For example, on the 68k the code:
149
252b5132
RH
150| char foo[];
151| main()
152| {
153| return foo[0x12345678];
154| }
155
156 Could be compiled into:
157
158| linkw fp,#-4
159| moveb @@#12345678,d0
160| extbl d0
161| unlk fp
162| rts
163
252b5132
RH
164 This could create a reloc pointing to <<foo>>, but leave the
165 offset in the data, something like:
166
252b5132
RH
167|RELOCATION RECORDS FOR [.text]:
168|offset type value
169|00000006 32 _foo
170|
171|00000000 4e56 fffc ; linkw fp,#-4
172|00000004 1039 1234 5678 ; moveb @@#12345678,d0
173|0000000a 49c0 ; extbl d0
174|0000000c 4e5e ; unlk fp
175|0000000e 4e75 ; rts
176
252b5132
RH
177 Using coff and an 88k, some instructions don't have enough
178 space in them to represent the full address range, and
179 pointers have to be loaded in two parts. So you'd get something like:
180
252b5132
RH
181| or.u r13,r0,hi16(_foo+0x12345678)
182| ld.b r2,r13,lo16(_foo+0x12345678)
183| jmp r1
184
252b5132
RH
185 This should create two relocs, both pointing to <<_foo>>, and with
186 0x12340000 in their addend field. The data would consist of:
187
252b5132
RH
188|RELOCATION RECORDS FOR [.text]:
189|offset type value
190|00000002 HVRT16 _foo+0x12340000
191|00000006 LVRT16 _foo+0x12340000
192|
193|00000000 5da05678 ; or.u r13,r0,0x5678
194|00000004 1c4d5678 ; ld.b r2,r13,0x5678
195|00000008 f400c001 ; jmp r1
196
252b5132
RH
197 The relocation routine digs out the value from the data, adds
198 it to the addend to get the original offset, and then adds the
199 value of <<_foo>>. Note that all 32 bits have to be kept around
200 somewhere, to cope with carry from bit 15 to bit 16.
201
202 One further example is the sparc and the a.out format. The
203 sparc has a similar problem to the 88k, in that some
204 instructions don't have room for an entire offset, but on the
205 sparc the parts are created in odd sized lumps. The designers of
206 the a.out format chose to not use the data within the section
207 for storing part of the offset; all the offset is kept within
208 the reloc. Anything in the data should be ignored.
209
210| save %sp,-112,%sp
211| sethi %hi(_foo+0x12345678),%g2
212| ldsb [%g2+%lo(_foo+0x12345678)],%i0
213| ret
214| restore
215
216 Both relocs contain a pointer to <<foo>>, and the offsets
217 contain junk.
218
252b5132
RH
219|RELOCATION RECORDS FOR [.text]:
220|offset type value
221|00000004 HI22 _foo+0x12345678
222|00000008 LO10 _foo+0x12345678
223|
224|00000000 9de3bf90 ; save %sp,-112,%sp
225|00000004 05000000 ; sethi %hi(_foo+0),%g2
226|00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
227|0000000c 81c7e008 ; ret
228|00000010 81e80000 ; restore
229
252b5132
RH
230 o <<howto>>
231
232 The <<howto>> field can be imagined as a
233 relocation instruction. It is a pointer to a structure which
234 contains information on what to do with all of the other
235 information in the reloc record and data section. A back end
236 would normally have a relocation instruction set and turn
237 relocations into pointers to the correct structure on input -
238 but it would be possible to create each howto field on demand.
239
240*/
241
242/*
243SUBSUBSECTION
244 <<enum complain_overflow>>
245
246 Indicates what sort of overflow checking should be done when
247 performing a relocation.
248
249CODE_FRAGMENT
250.
251.enum complain_overflow
252.{
253. {* Do not complain on overflow. *}
254. complain_overflow_dont,
255.
256. {* Complain if the bitfield overflows, whether it is considered
257. as signed or unsigned. *}
258. complain_overflow_bitfield,
259.
260. {* Complain if the value overflows when considered as signed
261. number. *}
262. complain_overflow_signed,
263.
264. {* Complain if the value overflows when considered as an
265. unsigned number. *}
266. complain_overflow_unsigned
267.};
268
269*/
270
271/*
272SUBSUBSECTION
273 <<reloc_howto_type>>
274
275 The <<reloc_howto_type>> is a structure which contains all the
276 information that libbfd needs to know to tie up a back end's data.
277
278CODE_FRAGMENT
279.struct symbol_cache_entry; {* Forward declaration *}
280.
281.struct reloc_howto_struct
282.{
283. {* The type field has mainly a documentary use - the back end can
284. do what it wants with it, though normally the back end's
285. external idea of what a reloc number is stored
286. in this field. For example, a PC relative word relocation
287. in a coff environment has the type 023 - because that's
288. what the outside world calls a R_PCRWORD reloc. *}
289. unsigned int type;
290.
291. {* The value the final relocation is shifted right by. This drops
292. unwanted data from the relocation. *}
293. unsigned int rightshift;
294.
295. {* The size of the item to be relocated. This is *not* a
296. power-of-two measure. To get the number of bytes operated
297. on by a type of relocation, use bfd_get_reloc_size. *}
298. int size;
299.
300. {* The number of bits in the item to be relocated. This is used
301. when doing overflow checking. *}
302. unsigned int bitsize;
303.
304. {* Notes that the relocation is relative to the location in the
305. data section of the addend. The relocation function will
306. subtract from the relocation value the address of the location
307. being relocated. *}
308. boolean pc_relative;
309.
310. {* The bit position of the reloc value in the destination.
311. The relocated value is left shifted by this amount. *}
312. unsigned int bitpos;
313.
314. {* What type of overflow error should be checked for when
315. relocating. *}
316. enum complain_overflow complain_on_overflow;
317.
318. {* If this field is non null, then the supplied function is
319. called rather than the normal function. This allows really
320. strange relocation methods to be accomodated (e.g., i960 callj
321. instructions). *}
322. bfd_reloc_status_type (*special_function)
323. PARAMS ((bfd *abfd,
324. arelent *reloc_entry,
325. struct symbol_cache_entry *symbol,
326. PTR data,
327. asection *input_section,
328. bfd *output_bfd,
329. char **error_message));
330.
331. {* The textual name of the relocation type. *}
332. char *name;
333.
c1b7949f
DE
334. {* Some formats record a relocation addend in the section contents
335. rather than with the relocation. For ELF formats this is the
336. distinction between USE_REL and USE_RELA (though the code checks
337. for USE_REL == 1/0). The value of this field is TRUE if the
338. addend is recorded with the section contents; when performing a
339. partial link (ld -r) the section contents (the data) will be
340. modified. The value of this field is FALSE if addends are
341. recorded with the relocation (in arelent.addend); when performing
342. a partial link the relocation will be modified.
343. All relocations for all ELF USE_RELA targets should set this field
344. to FALSE (values of TRUE should be looked on with suspicion).
345. However, the converse is not true: not all relocations of all ELF
346. USE_REL targets set this field to TRUE. Why this is so is peculiar
347. to each particular target. For relocs that aren't used in partial
348. links (e.g. GOT stuff) it doesn't matter what this is set to. *}
252b5132
RH
349. boolean partial_inplace;
350.
351. {* The src_mask selects which parts of the read in data
352. are to be used in the relocation sum. E.g., if this was an 8 bit
88b6bae0 353. byte of data which we read and relocated, this would be
252b5132
RH
354. 0x000000ff. When we have relocs which have an addend, such as
355. sun4 extended relocs, the value in the offset part of a
356. relocating field is garbage so we never use it. In this case
357. the mask would be 0x00000000. *}
358. bfd_vma src_mask;
359.
360. {* The dst_mask selects which parts of the instruction are replaced
361. into the instruction. In most cases src_mask == dst_mask,
362. except in the above special case, where dst_mask would be
363. 0x000000ff, and src_mask would be 0x00000000. *}
364. bfd_vma dst_mask;
365.
366. {* When some formats create PC relative instructions, they leave
367. the value of the pc of the place being relocated in the offset
368. slot of the instruction, so that a PC relative relocation can
369. be made just by adding in an ordinary offset (e.g., sun3 a.out).
370. Some formats leave the displacement part of an instruction
371. empty (e.g., m88k bcs); this flag signals the fact.*}
372. boolean pcrel_offset;
373.
374.};
375
376*/
377
378/*
379FUNCTION
380 The HOWTO Macro
381
382DESCRIPTION
383 The HOWTO define is horrible and will go away.
384
252b5132
RH
385.#define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
386. {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
387
388DESCRIPTION
389 And will be replaced with the totally magic way. But for the
390 moment, we are compatible, so do it this way.
391
252b5132
RH
392.#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN)
393.
5f771d47
ILT
394
395DESCRIPTION
396 This is used to fill in an empty howto entry in an array.
397
398.#define EMPTY_HOWTO(C) \
399. HOWTO((C),0,0,0,false,0,complain_overflow_dont,NULL,NULL,false,0,0,false)
400.
401
252b5132
RH
402DESCRIPTION
403 Helper routine to turn a symbol into a relocation value.
404
405.#define HOWTO_PREPARE(relocation, symbol) \
406. { \
407. if (symbol != (asymbol *)NULL) { \
408. if (bfd_is_com_section (symbol->section)) { \
409. relocation = 0; \
410. } \
411. else { \
412. relocation = symbol->value; \
413. } \
414. } \
415.}
416
417*/
418
419/*
420FUNCTION
421 bfd_get_reloc_size
422
423SYNOPSIS
424 unsigned int bfd_get_reloc_size (reloc_howto_type *);
425
426DESCRIPTION
427 For a reloc_howto_type that operates on a fixed number of bytes,
428 this returns the number of bytes operated on.
429 */
430
431unsigned int
432bfd_get_reloc_size (howto)
433 reloc_howto_type *howto;
434{
435 switch (howto->size)
436 {
437 case 0: return 1;
438 case 1: return 2;
439 case 2: return 4;
440 case 3: return 0;
441 case 4: return 8;
442 case 8: return 16;
443 case -2: return 4;
444 default: abort ();
445 }
446}
447
448/*
449TYPEDEF
450 arelent_chain
451
452DESCRIPTION
453
454 How relocs are tied together in an <<asection>>:
455
456.typedef struct relent_chain {
457. arelent relent;
458. struct relent_chain *next;
459.} arelent_chain;
460
461*/
462
463/* N_ONES produces N one bits, without overflowing machine arithmetic. */
464#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
465
466/*
467FUNCTION
468 bfd_check_overflow
469
470SYNOPSIS
471 bfd_reloc_status_type
472 bfd_check_overflow
473 (enum complain_overflow how,
474 unsigned int bitsize,
475 unsigned int rightshift,
476 unsigned int addrsize,
477 bfd_vma relocation);
478
479DESCRIPTION
480 Perform overflow checking on @var{relocation} which has
481 @var{bitsize} significant bits and will be shifted right by
482 @var{rightshift} bits, on a machine with addresses containing
483 @var{addrsize} significant bits. The result is either of
484 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
485
486*/
487
488bfd_reloc_status_type
489bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
490 enum complain_overflow how;
491 unsigned int bitsize;
492 unsigned int rightshift;
493 unsigned int addrsize;
494 bfd_vma relocation;
495{
496 bfd_vma fieldmask, addrmask, signmask, ss, a;
497 bfd_reloc_status_type flag = bfd_reloc_ok;
498
499 a = relocation;
500
501 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
502 we'll be permissive: extra bits in the field mask will
503 automatically extend the address mask for purposes of the
504 overflow check. */
505 fieldmask = N_ONES (bitsize);
506 addrmask = N_ONES (addrsize) | fieldmask;
507
508 switch (how)
509 {
510 case complain_overflow_dont:
511 break;
512
513 case complain_overflow_signed:
514 /* If any sign bits are set, all sign bits must be set. That
515 is, A must be a valid negative address after shifting. */
516 a = (a & addrmask) >> rightshift;
517 signmask = ~ (fieldmask >> 1);
518 ss = a & signmask;
519 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
520 flag = bfd_reloc_overflow;
521 break;
522
523 case complain_overflow_unsigned:
524 /* We have an overflow if the address does not fit in the field. */
525 a = (a & addrmask) >> rightshift;
526 if ((a & ~ fieldmask) != 0)
527 flag = bfd_reloc_overflow;
528 break;
529
530 case complain_overflow_bitfield:
531 /* Bitfields are sometimes signed, sometimes unsigned. We
d5afc56e
AM
532 explicitly allow an address wrap too, which means a bitfield
533 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
534 if the value has some, but not all, bits set outside the
535 field. */
252b5132 536 a >>= rightshift;
d5afc56e
AM
537 ss = a & ~ fieldmask;
538 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
539 flag = bfd_reloc_overflow;
252b5132
RH
540 break;
541
542 default:
543 abort ();
544 }
545
546 return flag;
547}
548
549/*
550FUNCTION
551 bfd_perform_relocation
552
553SYNOPSIS
554 bfd_reloc_status_type
555 bfd_perform_relocation
556 (bfd *abfd,
557 arelent *reloc_entry,
558 PTR data,
559 asection *input_section,
560 bfd *output_bfd,
561 char **error_message);
562
563DESCRIPTION
564 If @var{output_bfd} is supplied to this function, the
565 generated image will be relocatable; the relocations are
566 copied to the output file after they have been changed to
567 reflect the new state of the world. There are two ways of
568 reflecting the results of partial linkage in an output file:
569 by modifying the output data in place, and by modifying the
570 relocation record. Some native formats (e.g., basic a.out and
571 basic coff) have no way of specifying an addend in the
572 relocation type, so the addend has to go in the output data.
573 This is no big deal since in these formats the output data
574 slot will always be big enough for the addend. Complex reloc
575 types with addends were invented to solve just this problem.
576 The @var{error_message} argument is set to an error message if
577 this return @code{bfd_reloc_dangerous}.
578
579*/
580
252b5132
RH
581bfd_reloc_status_type
582bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
583 error_message)
584 bfd *abfd;
585 arelent *reloc_entry;
586 PTR data;
587 asection *input_section;
588 bfd *output_bfd;
589 char **error_message;
590{
591 bfd_vma relocation;
592 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 593 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
594 bfd_vma output_base = 0;
595 reloc_howto_type *howto = reloc_entry->howto;
596 asection *reloc_target_output_section;
597 asymbol *symbol;
598
599 symbol = *(reloc_entry->sym_ptr_ptr);
600 if (bfd_is_abs_section (symbol->section)
601 && output_bfd != (bfd *) NULL)
602 {
603 reloc_entry->address += input_section->output_offset;
604 return bfd_reloc_ok;
605 }
606
607 /* If we are not producing relocateable output, return an error if
608 the symbol is not defined. An undefined weak symbol is
609 considered to have a value of zero (SVR4 ABI, p. 4-27). */
610 if (bfd_is_und_section (symbol->section)
611 && (symbol->flags & BSF_WEAK) == 0
612 && output_bfd == (bfd *) NULL)
613 flag = bfd_reloc_undefined;
614
615 /* If there is a function supplied to handle this relocation type,
616 call it. It'll return `bfd_reloc_continue' if further processing
617 can be done. */
618 if (howto->special_function)
619 {
620 bfd_reloc_status_type cont;
621 cont = howto->special_function (abfd, reloc_entry, symbol, data,
622 input_section, output_bfd,
623 error_message);
624 if (cont != bfd_reloc_continue)
625 return cont;
626 }
627
628 /* Is the address of the relocation really within the section? */
9a968f43
NC
629 if (reloc_entry->address > input_section->_cooked_size /
630 bfd_octets_per_byte (abfd))
252b5132
RH
631 return bfd_reloc_outofrange;
632
633 /* Work out which section the relocation is targetted at and the
634 initial relocation command value. */
635
636 /* Get symbol value. (Common symbols are special.) */
637 if (bfd_is_com_section (symbol->section))
638 relocation = 0;
639 else
640 relocation = symbol->value;
641
252b5132
RH
642 reloc_target_output_section = symbol->section->output_section;
643
644 /* Convert input-section-relative symbol value to absolute. */
645 if (output_bfd && howto->partial_inplace == false)
646 output_base = 0;
647 else
648 output_base = reloc_target_output_section->vma;
649
650 relocation += output_base + symbol->section->output_offset;
651
652 /* Add in supplied addend. */
653 relocation += reloc_entry->addend;
654
655 /* Here the variable relocation holds the final address of the
656 symbol we are relocating against, plus any addend. */
657
658 if (howto->pc_relative == true)
659 {
660 /* This is a PC relative relocation. We want to set RELOCATION
661 to the distance between the address of the symbol and the
662 location. RELOCATION is already the address of the symbol.
663
664 We start by subtracting the address of the section containing
665 the location.
666
667 If pcrel_offset is set, we must further subtract the position
668 of the location within the section. Some targets arrange for
669 the addend to be the negative of the position of the location
670 within the section; for example, i386-aout does this. For
671 i386-aout, pcrel_offset is false. Some other targets do not
672 include the position of the location; for example, m88kbcs,
673 or ELF. For those targets, pcrel_offset is true.
674
675 If we are producing relocateable output, then we must ensure
676 that this reloc will be correctly computed when the final
677 relocation is done. If pcrel_offset is false we want to wind
678 up with the negative of the location within the section,
679 which means we must adjust the existing addend by the change
680 in the location within the section. If pcrel_offset is true
681 we do not want to adjust the existing addend at all.
682
683 FIXME: This seems logical to me, but for the case of
684 producing relocateable output it is not what the code
685 actually does. I don't want to change it, because it seems
686 far too likely that something will break. */
687
688 relocation -=
689 input_section->output_section->vma + input_section->output_offset;
690
691 if (howto->pcrel_offset == true)
692 relocation -= reloc_entry->address;
693 }
694
695 if (output_bfd != (bfd *) NULL)
696 {
697 if (howto->partial_inplace == false)
698 {
699 /* This is a partial relocation, and we want to apply the relocation
700 to the reloc entry rather than the raw data. Modify the reloc
701 inplace to reflect what we now know. */
702 reloc_entry->addend = relocation;
703 reloc_entry->address += input_section->output_offset;
704 return flag;
705 }
706 else
707 {
708 /* This is a partial relocation, but inplace, so modify the
709 reloc record a bit.
710
711 If we've relocated with a symbol with a section, change
712 into a ref to the section belonging to the symbol. */
713
714 reloc_entry->address += input_section->output_offset;
715
716 /* WTF?? */
717 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
718 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
719 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
720 {
721#if 1
722 /* For m68k-coff, the addend was being subtracted twice during
723 relocation with -r. Removing the line below this comment
724 fixes that problem; see PR 2953.
725
726However, Ian wrote the following, regarding removing the line below,
727which explains why it is still enabled: --djm
728
729If you put a patch like that into BFD you need to check all the COFF
730linkers. I am fairly certain that patch will break coff-i386 (e.g.,
731SCO); see coff_i386_reloc in coff-i386.c where I worked around the
732problem in a different way. There may very well be a reason that the
733code works as it does.
734
735Hmmm. The first obvious point is that bfd_perform_relocation should
736not have any tests that depend upon the flavour. It's seem like
737entirely the wrong place for such a thing. The second obvious point
738is that the current code ignores the reloc addend when producing
739relocateable output for COFF. That's peculiar. In fact, I really
740have no idea what the point of the line you want to remove is.
741
742A typical COFF reloc subtracts the old value of the symbol and adds in
743the new value to the location in the object file (if it's a pc
744relative reloc it adds the difference between the symbol value and the
745location). When relocating we need to preserve that property.
746
747BFD handles this by setting the addend to the negative of the old
748value of the symbol. Unfortunately it handles common symbols in a
749non-standard way (it doesn't subtract the old value) but that's a
750different story (we can't change it without losing backward
751compatibility with old object files) (coff-i386 does subtract the old
752value, to be compatible with existing coff-i386 targets, like SCO).
753
754So everything works fine when not producing relocateable output. When
755we are producing relocateable output, logically we should do exactly
756what we do when not producing relocateable output. Therefore, your
757patch is correct. In fact, it should probably always just set
758reloc_entry->addend to 0 for all cases, since it is, in fact, going to
759add the value into the object file. This won't hurt the COFF code,
760which doesn't use the addend; I'm not sure what it will do to other
761formats (the thing to check for would be whether any formats both use
762the addend and set partial_inplace).
763
764When I wanted to make coff-i386 produce relocateable output, I ran
765into the problem that you are running into: I wanted to remove that
766line. Rather than risk it, I made the coff-i386 relocs use a special
767function; it's coff_i386_reloc in coff-i386.c. The function
768specifically adds the addend field into the object file, knowing that
769bfd_perform_relocation is not going to. If you remove that line, then
770coff-i386.c will wind up adding the addend field in twice. It's
771trivial to fix; it just needs to be done.
772
773The problem with removing the line is just that it may break some
774working code. With BFD it's hard to be sure of anything. The right
775way to deal with this is simply to build and test at least all the
776supported COFF targets. It should be straightforward if time and disk
777space consuming. For each target:
778 1) build the linker
779 2) generate some executable, and link it using -r (I would
780 probably use paranoia.o and link against newlib/libc.a, which
781 for all the supported targets would be available in
782 /usr/cygnus/progressive/H-host/target/lib/libc.a).
783 3) make the change to reloc.c
784 4) rebuild the linker
785 5) repeat step 2
786 6) if the resulting object files are the same, you have at least
787 made it no worse
788 7) if they are different you have to figure out which version is
789 right
790*/
791 relocation -= reloc_entry->addend;
792#endif
793 reloc_entry->addend = 0;
794 }
795 else
796 {
797 reloc_entry->addend = relocation;
798 }
799 }
800 }
801 else
802 {
803 reloc_entry->addend = 0;
804 }
805
806 /* FIXME: This overflow checking is incomplete, because the value
807 might have overflowed before we get here. For a correct check we
808 need to compute the value in a size larger than bitsize, but we
809 can't reasonably do that for a reloc the same size as a host
810 machine word.
811 FIXME: We should also do overflow checking on the result after
812 adding in the value contained in the object file. */
813 if (howto->complain_on_overflow != complain_overflow_dont
814 && flag == bfd_reloc_ok)
815 flag = bfd_check_overflow (howto->complain_on_overflow,
816 howto->bitsize,
817 howto->rightshift,
818 bfd_arch_bits_per_address (abfd),
819 relocation);
820
821 /*
822 Either we are relocating all the way, or we don't want to apply
823 the relocation to the reloc entry (probably because there isn't
824 any room in the output format to describe addends to relocs)
825 */
826
827 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
828 (OSF version 1.3, compiler version 3.11). It miscompiles the
829 following program:
830
831 struct str
832 {
833 unsigned int i0;
834 } s = { 0 };
835
836 int
837 main ()
838 {
839 unsigned long x;
840
841 x = 0x100000000;
842 x <<= (unsigned long) s.i0;
843 if (x == 0)
844 printf ("failed\n");
845 else
846 printf ("succeeded (%lx)\n", x);
847 }
848 */
849
850 relocation >>= (bfd_vma) howto->rightshift;
851
852 /* Shift everything up to where it's going to be used */
853
854 relocation <<= (bfd_vma) howto->bitpos;
855
856 /* Wait for the day when all have the mask in them */
857
858 /* What we do:
859 i instruction to be left alone
860 o offset within instruction
861 r relocation offset to apply
862 S src mask
863 D dst mask
864 N ~dst mask
865 A part 1
866 B part 2
867 R result
868
869 Do this:
88b6bae0
AM
870 (( i i i i i o o o o o from bfd_get<size>
871 and S S S S S) to get the size offset we want
872 + r r r r r r r r r r) to get the final value to place
252b5132
RH
873 and D D D D D to chop to right size
874 -----------------------
88b6bae0 875 = A A A A A
252b5132 876 And this:
88b6bae0
AM
877 ( i i i i i o o o o o from bfd_get<size>
878 and N N N N N ) get instruction
252b5132 879 -----------------------
88b6bae0 880 = B B B B B
252b5132
RH
881
882 And then:
88b6bae0
AM
883 ( B B B B B
884 or A A A A A)
252b5132 885 -----------------------
88b6bae0 886 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
887 */
888
889#define DOIT(x) \
890 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
891
892 switch (howto->size)
893 {
894 case 0:
895 {
9a968f43 896 char x = bfd_get_8 (abfd, (char *) data + octets);
252b5132 897 DOIT (x);
9a968f43 898 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
899 }
900 break;
901
902 case 1:
903 {
9a968f43 904 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132 905 DOIT (x);
9a968f43 906 bfd_put_16 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
907 }
908 break;
909 case 2:
910 {
9a968f43 911 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132 912 DOIT (x);
9a968f43 913 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
914 }
915 break;
916 case -2:
917 {
9a968f43 918 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132
RH
919 relocation = -relocation;
920 DOIT (x);
9a968f43 921 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
922 }
923 break;
924
925 case -1:
926 {
9a968f43 927 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132
RH
928 relocation = -relocation;
929 DOIT (x);
9a968f43 930 bfd_put_16 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
931 }
932 break;
933
934 case 3:
935 /* Do nothing */
936 break;
937
938 case 4:
939#ifdef BFD64
940 {
9a968f43 941 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
252b5132 942 DOIT (x);
9a968f43 943 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
944 }
945#else
946 abort ();
947#endif
948 break;
949 default:
950 return bfd_reloc_other;
951 }
952
953 return flag;
954}
955
956/*
957FUNCTION
958 bfd_install_relocation
959
960SYNOPSIS
961 bfd_reloc_status_type
962 bfd_install_relocation
963 (bfd *abfd,
964 arelent *reloc_entry,
965 PTR data, bfd_vma data_start,
966 asection *input_section,
967 char **error_message);
968
969DESCRIPTION
970 This looks remarkably like <<bfd_perform_relocation>>, except it
971 does not expect that the section contents have been filled in.
972 I.e., it's suitable for use when creating, rather than applying
973 a relocation.
974
975 For now, this function should be considered reserved for the
976 assembler.
977
978*/
979
252b5132
RH
980bfd_reloc_status_type
981bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
982 input_section, error_message)
983 bfd *abfd;
984 arelent *reloc_entry;
985 PTR data_start;
986 bfd_vma data_start_offset;
987 asection *input_section;
988 char **error_message;
989{
990 bfd_vma relocation;
991 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 992 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
993 bfd_vma output_base = 0;
994 reloc_howto_type *howto = reloc_entry->howto;
995 asection *reloc_target_output_section;
996 asymbol *symbol;
997 bfd_byte *data;
998
999 symbol = *(reloc_entry->sym_ptr_ptr);
1000 if (bfd_is_abs_section (symbol->section))
1001 {
1002 reloc_entry->address += input_section->output_offset;
1003 return bfd_reloc_ok;
1004 }
1005
1006 /* If there is a function supplied to handle this relocation type,
1007 call it. It'll return `bfd_reloc_continue' if further processing
1008 can be done. */
1009 if (howto->special_function)
1010 {
1011 bfd_reloc_status_type cont;
88b6bae0 1012
252b5132
RH
1013 /* XXX - The special_function calls haven't been fixed up to deal
1014 with creating new relocations and section contents. */
1015 cont = howto->special_function (abfd, reloc_entry, symbol,
1016 /* XXX - Non-portable! */
1017 ((bfd_byte *) data_start
1018 - data_start_offset),
1019 input_section, abfd, error_message);
1020 if (cont != bfd_reloc_continue)
1021 return cont;
1022 }
1023
1024 /* Is the address of the relocation really within the section? */
1025 if (reloc_entry->address > input_section->_cooked_size)
1026 return bfd_reloc_outofrange;
1027
1028 /* Work out which section the relocation is targetted at and the
1029 initial relocation command value. */
1030
1031 /* Get symbol value. (Common symbols are special.) */
1032 if (bfd_is_com_section (symbol->section))
1033 relocation = 0;
1034 else
1035 relocation = symbol->value;
1036
1037 reloc_target_output_section = symbol->section->output_section;
1038
1039 /* Convert input-section-relative symbol value to absolute. */
1040 if (howto->partial_inplace == false)
1041 output_base = 0;
1042 else
1043 output_base = reloc_target_output_section->vma;
1044
1045 relocation += output_base + symbol->section->output_offset;
1046
1047 /* Add in supplied addend. */
1048 relocation += reloc_entry->addend;
1049
1050 /* Here the variable relocation holds the final address of the
1051 symbol we are relocating against, plus any addend. */
1052
1053 if (howto->pc_relative == true)
1054 {
1055 /* This is a PC relative relocation. We want to set RELOCATION
1056 to the distance between the address of the symbol and the
1057 location. RELOCATION is already the address of the symbol.
1058
1059 We start by subtracting the address of the section containing
1060 the location.
1061
1062 If pcrel_offset is set, we must further subtract the position
1063 of the location within the section. Some targets arrange for
1064 the addend to be the negative of the position of the location
1065 within the section; for example, i386-aout does this. For
1066 i386-aout, pcrel_offset is false. Some other targets do not
1067 include the position of the location; for example, m88kbcs,
1068 or ELF. For those targets, pcrel_offset is true.
1069
1070 If we are producing relocateable output, then we must ensure
1071 that this reloc will be correctly computed when the final
1072 relocation is done. If pcrel_offset is false we want to wind
1073 up with the negative of the location within the section,
1074 which means we must adjust the existing addend by the change
1075 in the location within the section. If pcrel_offset is true
1076 we do not want to adjust the existing addend at all.
1077
1078 FIXME: This seems logical to me, but for the case of
1079 producing relocateable output it is not what the code
1080 actually does. I don't want to change it, because it seems
1081 far too likely that something will break. */
1082
1083 relocation -=
1084 input_section->output_section->vma + input_section->output_offset;
1085
1086 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1087 relocation -= reloc_entry->address;
1088 }
1089
1090 if (howto->partial_inplace == false)
1091 {
1092 /* This is a partial relocation, and we want to apply the relocation
1093 to the reloc entry rather than the raw data. Modify the reloc
1094 inplace to reflect what we now know. */
1095 reloc_entry->addend = relocation;
1096 reloc_entry->address += input_section->output_offset;
1097 return flag;
1098 }
1099 else
1100 {
1101 /* This is a partial relocation, but inplace, so modify the
1102 reloc record a bit.
1103
1104 If we've relocated with a symbol with a section, change
1105 into a ref to the section belonging to the symbol. */
1106
1107 reloc_entry->address += input_section->output_offset;
1108
1109 /* WTF?? */
1110 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
1111 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1112 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1113 {
1114#if 1
1115/* For m68k-coff, the addend was being subtracted twice during
1116 relocation with -r. Removing the line below this comment
1117 fixes that problem; see PR 2953.
1118
1119However, Ian wrote the following, regarding removing the line below,
1120which explains why it is still enabled: --djm
1121
1122If you put a patch like that into BFD you need to check all the COFF
1123linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1124SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1125problem in a different way. There may very well be a reason that the
1126code works as it does.
1127
1128Hmmm. The first obvious point is that bfd_install_relocation should
1129not have any tests that depend upon the flavour. It's seem like
1130entirely the wrong place for such a thing. The second obvious point
1131is that the current code ignores the reloc addend when producing
1132relocateable output for COFF. That's peculiar. In fact, I really
1133have no idea what the point of the line you want to remove is.
1134
1135A typical COFF reloc subtracts the old value of the symbol and adds in
1136the new value to the location in the object file (if it's a pc
1137relative reloc it adds the difference between the symbol value and the
1138location). When relocating we need to preserve that property.
1139
1140BFD handles this by setting the addend to the negative of the old
1141value of the symbol. Unfortunately it handles common symbols in a
1142non-standard way (it doesn't subtract the old value) but that's a
1143different story (we can't change it without losing backward
1144compatibility with old object files) (coff-i386 does subtract the old
1145value, to be compatible with existing coff-i386 targets, like SCO).
1146
1147So everything works fine when not producing relocateable output. When
1148we are producing relocateable output, logically we should do exactly
1149what we do when not producing relocateable output. Therefore, your
1150patch is correct. In fact, it should probably always just set
1151reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1152add the value into the object file. This won't hurt the COFF code,
1153which doesn't use the addend; I'm not sure what it will do to other
1154formats (the thing to check for would be whether any formats both use
1155the addend and set partial_inplace).
1156
1157When I wanted to make coff-i386 produce relocateable output, I ran
1158into the problem that you are running into: I wanted to remove that
1159line. Rather than risk it, I made the coff-i386 relocs use a special
1160function; it's coff_i386_reloc in coff-i386.c. The function
1161specifically adds the addend field into the object file, knowing that
1162bfd_install_relocation is not going to. If you remove that line, then
1163coff-i386.c will wind up adding the addend field in twice. It's
1164trivial to fix; it just needs to be done.
1165
1166The problem with removing the line is just that it may break some
1167working code. With BFD it's hard to be sure of anything. The right
1168way to deal with this is simply to build and test at least all the
1169supported COFF targets. It should be straightforward if time and disk
1170space consuming. For each target:
1171 1) build the linker
1172 2) generate some executable, and link it using -r (I would
1173 probably use paranoia.o and link against newlib/libc.a, which
1174 for all the supported targets would be available in
1175 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1176 3) make the change to reloc.c
1177 4) rebuild the linker
1178 5) repeat step 2
1179 6) if the resulting object files are the same, you have at least
1180 made it no worse
1181 7) if they are different you have to figure out which version is
1182 right
1183*/
1184 relocation -= reloc_entry->addend;
1185#endif
1186 reloc_entry->addend = 0;
1187 }
1188 else
1189 {
1190 reloc_entry->addend = relocation;
1191 }
1192 }
1193
1194 /* FIXME: This overflow checking is incomplete, because the value
1195 might have overflowed before we get here. For a correct check we
1196 need to compute the value in a size larger than bitsize, but we
1197 can't reasonably do that for a reloc the same size as a host
1198 machine word.
1199 FIXME: We should also do overflow checking on the result after
1200 adding in the value contained in the object file. */
1201 if (howto->complain_on_overflow != complain_overflow_dont)
1202 flag = bfd_check_overflow (howto->complain_on_overflow,
1203 howto->bitsize,
1204 howto->rightshift,
1205 bfd_arch_bits_per_address (abfd),
1206 relocation);
1207
1208 /*
1209 Either we are relocating all the way, or we don't want to apply
1210 the relocation to the reloc entry (probably because there isn't
1211 any room in the output format to describe addends to relocs)
1212 */
1213
1214 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1215 (OSF version 1.3, compiler version 3.11). It miscompiles the
1216 following program:
1217
1218 struct str
1219 {
1220 unsigned int i0;
1221 } s = { 0 };
1222
1223 int
1224 main ()
1225 {
1226 unsigned long x;
1227
1228 x = 0x100000000;
1229 x <<= (unsigned long) s.i0;
1230 if (x == 0)
1231 printf ("failed\n");
1232 else
1233 printf ("succeeded (%lx)\n", x);
1234 }
1235 */
1236
1237 relocation >>= (bfd_vma) howto->rightshift;
1238
1239 /* Shift everything up to where it's going to be used */
1240
1241 relocation <<= (bfd_vma) howto->bitpos;
1242
1243 /* Wait for the day when all have the mask in them */
1244
1245 /* What we do:
1246 i instruction to be left alone
1247 o offset within instruction
1248 r relocation offset to apply
1249 S src mask
1250 D dst mask
1251 N ~dst mask
1252 A part 1
1253 B part 2
1254 R result
1255
1256 Do this:
88b6bae0
AM
1257 (( i i i i i o o o o o from bfd_get<size>
1258 and S S S S S) to get the size offset we want
1259 + r r r r r r r r r r) to get the final value to place
252b5132
RH
1260 and D D D D D to chop to right size
1261 -----------------------
88b6bae0 1262 = A A A A A
252b5132 1263 And this:
88b6bae0
AM
1264 ( i i i i i o o o o o from bfd_get<size>
1265 and N N N N N ) get instruction
252b5132 1266 -----------------------
88b6bae0 1267 = B B B B B
252b5132
RH
1268
1269 And then:
88b6bae0
AM
1270 ( B B B B B
1271 or A A A A A)
252b5132 1272 -----------------------
88b6bae0 1273 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
1274 */
1275
1276#define DOIT(x) \
1277 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1278
9a968f43 1279 data = (bfd_byte *) data_start + (octets - data_start_offset);
252b5132
RH
1280
1281 switch (howto->size)
1282 {
1283 case 0:
1284 {
1285 char x = bfd_get_8 (abfd, (char *) data);
1286 DOIT (x);
1287 bfd_put_8 (abfd, x, (unsigned char *) data);
1288 }
1289 break;
1290
1291 case 1:
1292 {
1293 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1294 DOIT (x);
1295 bfd_put_16 (abfd, x, (unsigned char *) data);
1296 }
1297 break;
1298 case 2:
1299 {
1300 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1301 DOIT (x);
1302 bfd_put_32 (abfd, x, (bfd_byte *) data);
1303 }
1304 break;
1305 case -2:
1306 {
1307 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1308 relocation = -relocation;
1309 DOIT (x);
1310 bfd_put_32 (abfd, x, (bfd_byte *) data);
1311 }
1312 break;
1313
1314 case 3:
1315 /* Do nothing */
1316 break;
1317
1318 case 4:
1319 {
1320 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1321 DOIT (x);
1322 bfd_put_64 (abfd, x, (bfd_byte *) data);
1323 }
1324 break;
1325 default:
1326 return bfd_reloc_other;
1327 }
1328
1329 return flag;
1330}
1331
1332/* This relocation routine is used by some of the backend linkers.
1333 They do not construct asymbol or arelent structures, so there is no
1334 reason for them to use bfd_perform_relocation. Also,
1335 bfd_perform_relocation is so hacked up it is easier to write a new
1336 function than to try to deal with it.
1337
1338 This routine does a final relocation. Whether it is useful for a
1339 relocateable link depends upon how the object format defines
1340 relocations.
1341
1342 FIXME: This routine ignores any special_function in the HOWTO,
1343 since the existing special_function values have been written for
1344 bfd_perform_relocation.
1345
1346 HOWTO is the reloc howto information.
1347 INPUT_BFD is the BFD which the reloc applies to.
1348 INPUT_SECTION is the section which the reloc applies to.
1349 CONTENTS is the contents of the section.
1350 ADDRESS is the address of the reloc within INPUT_SECTION.
1351 VALUE is the value of the symbol the reloc refers to.
1352 ADDEND is the addend of the reloc. */
1353
1354bfd_reloc_status_type
1355_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1356 value, addend)
1357 reloc_howto_type *howto;
1358 bfd *input_bfd;
1359 asection *input_section;
1360 bfd_byte *contents;
1361 bfd_vma address;
1362 bfd_vma value;
1363 bfd_vma addend;
1364{
1365 bfd_vma relocation;
1366
1367 /* Sanity check the address. */
1368 if (address > input_section->_raw_size)
1369 return bfd_reloc_outofrange;
1370
1371 /* This function assumes that we are dealing with a basic relocation
1372 against a symbol. We want to compute the value of the symbol to
1373 relocate to. This is just VALUE, the value of the symbol, plus
1374 ADDEND, any addend associated with the reloc. */
1375 relocation = value + addend;
1376
1377 /* If the relocation is PC relative, we want to set RELOCATION to
1378 the distance between the symbol (currently in RELOCATION) and the
1379 location we are relocating. Some targets (e.g., i386-aout)
1380 arrange for the contents of the section to be the negative of the
1381 offset of the location within the section; for such targets
1382 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1383 simply leave the contents of the section as zero; for such
1384 targets pcrel_offset is true. If pcrel_offset is false we do not
1385 need to subtract out the offset of the location within the
1386 section (which is just ADDRESS). */
1387 if (howto->pc_relative)
1388 {
1389 relocation -= (input_section->output_section->vma
1390 + input_section->output_offset);
1391 if (howto->pcrel_offset)
1392 relocation -= address;
1393 }
1394
1395 return _bfd_relocate_contents (howto, input_bfd, relocation,
1396 contents + address);
1397}
1398
1399/* Relocate a given location using a given value and howto. */
1400
1401bfd_reloc_status_type
1402_bfd_relocate_contents (howto, input_bfd, relocation, location)
1403 reloc_howto_type *howto;
1404 bfd *input_bfd;
1405 bfd_vma relocation;
1406 bfd_byte *location;
1407{
1408 int size;
7442e600 1409 bfd_vma x = 0;
d5afc56e 1410 bfd_reloc_status_type flag;
252b5132
RH
1411 unsigned int rightshift = howto->rightshift;
1412 unsigned int bitpos = howto->bitpos;
1413
1414 /* If the size is negative, negate RELOCATION. This isn't very
1415 general. */
1416 if (howto->size < 0)
1417 relocation = -relocation;
1418
1419 /* Get the value we are going to relocate. */
1420 size = bfd_get_reloc_size (howto);
1421 switch (size)
1422 {
1423 default:
1424 case 0:
1425 abort ();
1426 case 1:
1427 x = bfd_get_8 (input_bfd, location);
1428 break;
1429 case 2:
1430 x = bfd_get_16 (input_bfd, location);
1431 break;
1432 case 4:
1433 x = bfd_get_32 (input_bfd, location);
1434 break;
1435 case 8:
1436#ifdef BFD64
1437 x = bfd_get_64 (input_bfd, location);
1438#else
1439 abort ();
1440#endif
1441 break;
1442 }
1443
1444 /* Check for overflow. FIXME: We may drop bits during the addition
1445 which we don't check for. We must either check at every single
1446 operation, which would be tedious, or we must do the computations
1447 in a type larger than bfd_vma, which would be inefficient. */
d5afc56e 1448 flag = bfd_reloc_ok;
252b5132
RH
1449 if (howto->complain_on_overflow != complain_overflow_dont)
1450 {
1451 bfd_vma addrmask, fieldmask, signmask, ss;
1452 bfd_vma a, b, sum;
1453
1454 /* Get the values to be added together. For signed and unsigned
1455 relocations, we assume that all values should be truncated to
1456 the size of an address. For bitfields, all the bits matter.
1457 See also bfd_check_overflow. */
1458 fieldmask = N_ONES (howto->bitsize);
1459 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1460 a = relocation;
1461 b = x & howto->src_mask;
1462
1463 switch (howto->complain_on_overflow)
1464 {
1465 case complain_overflow_signed:
1466 a = (a & addrmask) >> rightshift;
1467
1468 /* If any sign bits are set, all sign bits must be set.
1469 That is, A must be a valid negative address after
1470 shifting. */
1471 signmask = ~ (fieldmask >> 1);
1472 ss = a & signmask;
1473 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
d5afc56e 1474 flag = bfd_reloc_overflow;
252b5132
RH
1475
1476 /* We only need this next bit of code if the sign bit of B
1477 is below the sign bit of A. This would only happen if
1478 SRC_MASK had fewer bits than BITSIZE. Note that if
1479 SRC_MASK has more bits than BITSIZE, we can get into
1480 trouble; we would need to verify that B is in range, as
1481 we do for A above. */
1482 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871
AM
1483
1484 /* Set all the bits above the sign bit. */
1485 b = (b ^ signmask) - signmask;
252b5132
RH
1486
1487 b = (b & addrmask) >> bitpos;
1488
1489 /* Now we can do the addition. */
1490 sum = a + b;
1491
1492 /* See if the result has the correct sign. Bits above the
1493 sign bit are junk now; ignore them. If the sum is
1494 positive, make sure we did not have all negative inputs;
1495 if the sum is negative, make sure we did not have all
1496 positive inputs. The test below looks only at the sign
1497 bits, and it really just
1498 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1499 */
1500 signmask = (fieldmask >> 1) + 1;
1501 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
d5afc56e 1502 flag = bfd_reloc_overflow;
252b5132
RH
1503
1504 break;
1505
1506 case complain_overflow_unsigned:
1507 /* Checking for an unsigned overflow is relatively easy:
1508 trim the addresses and add, and trim the result as well.
1509 Overflow is normally indicated when the result does not
1510 fit in the field. However, we also need to consider the
1511 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1512 input is 0x80000000, and bfd_vma is only 32 bits; then we
1513 will get sum == 0, but there is an overflow, since the
1514 inputs did not fit in the field. Instead of doing a
1515 separate test, we can check for this by or-ing in the
1516 operands when testing for the sum overflowing its final
1517 field. */
1518 a = (a & addrmask) >> rightshift;
1519 b = (b & addrmask) >> bitpos;
1520 sum = (a + b) & addrmask;
1521 if ((a | b | sum) & ~ fieldmask)
d5afc56e 1522 flag = bfd_reloc_overflow;
252b5132
RH
1523
1524 break;
1525
1526 case complain_overflow_bitfield:
d5afc56e 1527 /* Much like the signed check, but for a field one bit
8a4ac871 1528 wider, and no trimming inputs with addrmask. We allow a
d5afc56e
AM
1529 bitfield to represent numbers in the range -2**n to
1530 2**n-1, where n is the number of bits in the field.
1531 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1532 overflow, which is exactly what we want. */
252b5132 1533 a >>= rightshift;
252b5132 1534
d5afc56e
AM
1535 signmask = ~ fieldmask;
1536 ss = a & signmask;
1537 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1538 flag = bfd_reloc_overflow;
252b5132 1539
d5afc56e 1540 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871 1541 b = (b ^ signmask) - signmask;
252b5132 1542
d5afc56e 1543 b >>= bitpos;
44257b8b 1544
252b5132 1545 sum = a + b;
d5afc56e 1546
8a4ac871
AM
1547 /* We mask with addrmask here to explicitly allow an address
1548 wrap-around. The Linux kernel relies on it, and it is
1549 the only way to write assembler code which can run when
1550 loaded at a location 0x80000000 away from the location at
1551 which it is linked. */
d5afc56e 1552 signmask = fieldmask + 1;
8a4ac871 1553 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
d5afc56e 1554 flag = bfd_reloc_overflow;
252b5132
RH
1555
1556 break;
1557
1558 default:
1559 abort ();
1560 }
1561 }
1562
1563 /* Put RELOCATION in the right bits. */
1564 relocation >>= (bfd_vma) rightshift;
1565 relocation <<= (bfd_vma) bitpos;
1566
1567 /* Add RELOCATION to the right bits of X. */
1568 x = ((x & ~howto->dst_mask)
1569 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1570
1571 /* Put the relocated value back in the object file. */
1572 switch (size)
1573 {
1574 default:
1575 case 0:
1576 abort ();
1577 case 1:
1578 bfd_put_8 (input_bfd, x, location);
1579 break;
1580 case 2:
1581 bfd_put_16 (input_bfd, x, location);
1582 break;
1583 case 4:
1584 bfd_put_32 (input_bfd, x, location);
1585 break;
1586 case 8:
1587#ifdef BFD64
1588 bfd_put_64 (input_bfd, x, location);
1589#else
1590 abort ();
1591#endif
1592 break;
1593 }
1594
d5afc56e 1595 return flag;
252b5132
RH
1596}
1597
1598/*
1599DOCDD
1600INODE
1601 howto manager, , typedef arelent, Relocations
1602
1603SECTION
1604 The howto manager
1605
1606 When an application wants to create a relocation, but doesn't
1607 know what the target machine might call it, it can find out by
1608 using this bit of code.
1609
1610*/
1611
1612/*
1613TYPEDEF
1614 bfd_reloc_code_type
1615
1616DESCRIPTION
1617 The insides of a reloc code. The idea is that, eventually, there
1618 will be one enumerator for every type of relocation we ever do.
1619 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1620 return a howto pointer.
1621
1622 This does mean that the application must determine the correct
1623 enumerator value; you can't get a howto pointer from a random set
1624 of attributes.
1625
1626SENUM
1627 bfd_reloc_code_real
1628
1629ENUM
1630 BFD_RELOC_64
1631ENUMX
1632 BFD_RELOC_32
1633ENUMX
1634 BFD_RELOC_26
1635ENUMX
1636 BFD_RELOC_24
1637ENUMX
1638 BFD_RELOC_16
1639ENUMX
1640 BFD_RELOC_14
1641ENUMX
1642 BFD_RELOC_8
1643ENUMDOC
1644 Basic absolute relocations of N bits.
1645
1646ENUM
1647 BFD_RELOC_64_PCREL
1648ENUMX
1649 BFD_RELOC_32_PCREL
1650ENUMX
1651 BFD_RELOC_24_PCREL
1652ENUMX
1653 BFD_RELOC_16_PCREL
1654ENUMX
1655 BFD_RELOC_12_PCREL
1656ENUMX
1657 BFD_RELOC_8_PCREL
1658ENUMDOC
1659 PC-relative relocations. Sometimes these are relative to the address
1660of the relocation itself; sometimes they are relative to the start of
1661the section containing the relocation. It depends on the specific target.
1662
1663The 24-bit relocation is used in some Intel 960 configurations.
1664
1665ENUM
1666 BFD_RELOC_32_GOT_PCREL
1667ENUMX
1668 BFD_RELOC_16_GOT_PCREL
1669ENUMX
1670 BFD_RELOC_8_GOT_PCREL
1671ENUMX
1672 BFD_RELOC_32_GOTOFF
1673ENUMX
1674 BFD_RELOC_16_GOTOFF
1675ENUMX
1676 BFD_RELOC_LO16_GOTOFF
1677ENUMX
1678 BFD_RELOC_HI16_GOTOFF
1679ENUMX
1680 BFD_RELOC_HI16_S_GOTOFF
1681ENUMX
1682 BFD_RELOC_8_GOTOFF
1683ENUMX
1684 BFD_RELOC_32_PLT_PCREL
1685ENUMX
1686 BFD_RELOC_24_PLT_PCREL
1687ENUMX
1688 BFD_RELOC_16_PLT_PCREL
1689ENUMX
1690 BFD_RELOC_8_PLT_PCREL
1691ENUMX
1692 BFD_RELOC_32_PLTOFF
1693ENUMX
1694 BFD_RELOC_16_PLTOFF
1695ENUMX
1696 BFD_RELOC_LO16_PLTOFF
1697ENUMX
1698 BFD_RELOC_HI16_PLTOFF
1699ENUMX
1700 BFD_RELOC_HI16_S_PLTOFF
1701ENUMX
1702 BFD_RELOC_8_PLTOFF
1703ENUMDOC
1704 For ELF.
1705
1706ENUM
1707 BFD_RELOC_68K_GLOB_DAT
1708ENUMX
1709 BFD_RELOC_68K_JMP_SLOT
1710ENUMX
1711 BFD_RELOC_68K_RELATIVE
1712ENUMDOC
1713 Relocations used by 68K ELF.
1714
1715ENUM
1716 BFD_RELOC_32_BASEREL
1717ENUMX
1718 BFD_RELOC_16_BASEREL
1719ENUMX
1720 BFD_RELOC_LO16_BASEREL
1721ENUMX
1722 BFD_RELOC_HI16_BASEREL
1723ENUMX
1724 BFD_RELOC_HI16_S_BASEREL
1725ENUMX
1726 BFD_RELOC_8_BASEREL
1727ENUMX
1728 BFD_RELOC_RVA
1729ENUMDOC
1730 Linkage-table relative.
1731
1732ENUM
1733 BFD_RELOC_8_FFnn
1734ENUMDOC
1735 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1736
1737ENUM
1738 BFD_RELOC_32_PCREL_S2
1739ENUMX
1740 BFD_RELOC_16_PCREL_S2
1741ENUMX
1742 BFD_RELOC_23_PCREL_S2
1743ENUMDOC
1744 These PC-relative relocations are stored as word displacements --
1745i.e., byte displacements shifted right two bits. The 30-bit word
1746displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1747SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1748signed 16-bit displacement is used on the MIPS, and the 23-bit
1749displacement is used on the Alpha.
1750
1751ENUM
1752 BFD_RELOC_HI22
1753ENUMX
1754 BFD_RELOC_LO10
1755ENUMDOC
1756 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1757the target word. These are used on the SPARC.
1758
1759ENUM
1760 BFD_RELOC_GPREL16
1761ENUMX
1762 BFD_RELOC_GPREL32
1763ENUMDOC
1764 For systems that allocate a Global Pointer register, these are
1765displacements off that register. These relocation types are
1766handled specially, because the value the register will have is
1767decided relatively late.
1768
252b5132
RH
1769ENUM
1770 BFD_RELOC_I960_CALLJ
1771ENUMDOC
1772 Reloc types used for i960/b.out.
1773
1774ENUM
1775 BFD_RELOC_NONE
1776ENUMX
1777 BFD_RELOC_SPARC_WDISP22
1778ENUMX
1779 BFD_RELOC_SPARC22
1780ENUMX
1781 BFD_RELOC_SPARC13
1782ENUMX
1783 BFD_RELOC_SPARC_GOT10
1784ENUMX
1785 BFD_RELOC_SPARC_GOT13
1786ENUMX
1787 BFD_RELOC_SPARC_GOT22
1788ENUMX
1789 BFD_RELOC_SPARC_PC10
1790ENUMX
1791 BFD_RELOC_SPARC_PC22
1792ENUMX
1793 BFD_RELOC_SPARC_WPLT30
1794ENUMX
1795 BFD_RELOC_SPARC_COPY
1796ENUMX
1797 BFD_RELOC_SPARC_GLOB_DAT
1798ENUMX
1799 BFD_RELOC_SPARC_JMP_SLOT
1800ENUMX
1801 BFD_RELOC_SPARC_RELATIVE
1802ENUMX
1803 BFD_RELOC_SPARC_UA32
1804ENUMDOC
1805 SPARC ELF relocations. There is probably some overlap with other
1806 relocation types already defined.
1807
1808ENUM
1809 BFD_RELOC_SPARC_BASE13
1810ENUMX
1811 BFD_RELOC_SPARC_BASE22
1812ENUMDOC
1813 I think these are specific to SPARC a.out (e.g., Sun 4).
1814
1815ENUMEQ
1816 BFD_RELOC_SPARC_64
1817 BFD_RELOC_64
1818ENUMX
1819 BFD_RELOC_SPARC_10
1820ENUMX
1821 BFD_RELOC_SPARC_11
1822ENUMX
1823 BFD_RELOC_SPARC_OLO10
1824ENUMX
1825 BFD_RELOC_SPARC_HH22
1826ENUMX
1827 BFD_RELOC_SPARC_HM10
1828ENUMX
1829 BFD_RELOC_SPARC_LM22
1830ENUMX
1831 BFD_RELOC_SPARC_PC_HH22
1832ENUMX
1833 BFD_RELOC_SPARC_PC_HM10
1834ENUMX
1835 BFD_RELOC_SPARC_PC_LM22
1836ENUMX
1837 BFD_RELOC_SPARC_WDISP16
1838ENUMX
1839 BFD_RELOC_SPARC_WDISP19
1840ENUMX
1841 BFD_RELOC_SPARC_7
1842ENUMX
1843 BFD_RELOC_SPARC_6
1844ENUMX
1845 BFD_RELOC_SPARC_5
1846ENUMEQX
1847 BFD_RELOC_SPARC_DISP64
1848 BFD_RELOC_64_PCREL
1849ENUMX
1850 BFD_RELOC_SPARC_PLT64
1851ENUMX
1852 BFD_RELOC_SPARC_HIX22
1853ENUMX
1854 BFD_RELOC_SPARC_LOX10
1855ENUMX
1856 BFD_RELOC_SPARC_H44
1857ENUMX
1858 BFD_RELOC_SPARC_M44
1859ENUMX
1860 BFD_RELOC_SPARC_L44
1861ENUMX
1862 BFD_RELOC_SPARC_REGISTER
1863ENUMDOC
1864 SPARC64 relocations
1865
1866ENUM
1867 BFD_RELOC_SPARC_REV32
1868ENUMDOC
1869 SPARC little endian relocation
1870
1871ENUM
1872 BFD_RELOC_ALPHA_GPDISP_HI16
1873ENUMDOC
1874 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1875 "addend" in some special way.
1876 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1877 writing; when reading, it will be the absolute section symbol. The
1878 addend is the displacement in bytes of the "lda" instruction from
1879 the "ldah" instruction (which is at the address of this reloc).
1880ENUM
1881 BFD_RELOC_ALPHA_GPDISP_LO16
1882ENUMDOC
1883 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1884 with GPDISP_HI16 relocs. The addend is ignored when writing the
1885 relocations out, and is filled in with the file's GP value on
1886 reading, for convenience.
1887
1888ENUM
1889 BFD_RELOC_ALPHA_GPDISP
1890ENUMDOC
1891 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1892 relocation except that there is no accompanying GPDISP_LO16
1893 relocation.
1894
1895ENUM
1896 BFD_RELOC_ALPHA_LITERAL
1897ENUMX
1898 BFD_RELOC_ALPHA_ELF_LITERAL
1899ENUMX
1900 BFD_RELOC_ALPHA_LITUSE
1901ENUMDOC
1902 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1903 the assembler turns it into a LDQ instruction to load the address of
1904 the symbol, and then fills in a register in the real instruction.
1905
1906 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1907 section symbol. The addend is ignored when writing, but is filled
1908 in with the file's GP value on reading, for convenience, as with the
1909 GPDISP_LO16 reloc.
1910
1911 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1912 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1913 but it generates output not based on the position within the .got
1914 section, but relative to the GP value chosen for the file during the
1915 final link stage.
1916
1917 The LITUSE reloc, on the instruction using the loaded address, gives
1918 information to the linker that it might be able to use to optimize
1919 away some literal section references. The symbol is ignored (read
1920 as the absolute section symbol), and the "addend" indicates the type
1921 of instruction using the register:
1922 1 - "memory" fmt insn
1923 2 - byte-manipulation (byte offset reg)
1924 3 - jsr (target of branch)
1925
1926 The GNU linker currently doesn't do any of this optimizing.
1927
fe174262
MM
1928ENUM
1929 BFD_RELOC_ALPHA_USER_LITERAL
1930ENUMX
1931 BFD_RELOC_ALPHA_USER_LITUSE_BASE
1932ENUMX
1933 BFD_RELOC_ALPHA_USER_LITUSE_BYTOFF
1934ENUMX
1935 BFD_RELOC_ALPHA_USER_LITUSE_JSR
1936ENUMX
1937 BFD_RELOC_ALPHA_USER_GPDISP
1938ENUMX
1939 BFD_RELOC_ALPHA_USER_GPRELHIGH
1940ENUMX
1941 BFD_RELOC_ALPHA_USER_GPRELLOW
1942ENUMDOC
1943 The BFD_RELOC_ALPHA_USER_* relocations are used by the assembler to
1944 process the explicit !<reloc>!sequence relocations, and are mapped
1945 into the normal relocations at the end of processing.
1946
252b5132
RH
1947ENUM
1948 BFD_RELOC_ALPHA_HINT
1949ENUMDOC
1950 The HINT relocation indicates a value that should be filled into the
1951 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1952 prediction logic which may be provided on some processors.
1953
1954ENUM
1955 BFD_RELOC_ALPHA_LINKAGE
1956ENUMDOC
1957 The LINKAGE relocation outputs a linkage pair in the object file,
1958 which is filled by the linker.
1959
1960ENUM
1961 BFD_RELOC_ALPHA_CODEADDR
1962ENUMDOC
1963 The CODEADDR relocation outputs a STO_CA in the object file,
1964 which is filled by the linker.
1965
1966ENUM
1967 BFD_RELOC_MIPS_JMP
1968ENUMDOC
1969 Bits 27..2 of the relocation address shifted right 2 bits;
1970 simple reloc otherwise.
1971
1972ENUM
1973 BFD_RELOC_MIPS16_JMP
1974ENUMDOC
1975 The MIPS16 jump instruction.
1976
1977ENUM
1978 BFD_RELOC_MIPS16_GPREL
1979ENUMDOC
1980 MIPS16 GP relative reloc.
1981
1982ENUM
1983 BFD_RELOC_HI16
1984ENUMDOC
1985 High 16 bits of 32-bit value; simple reloc.
1986ENUM
1987 BFD_RELOC_HI16_S
1988ENUMDOC
1989 High 16 bits of 32-bit value but the low 16 bits will be sign
1990 extended and added to form the final result. If the low 16
1991 bits form a negative number, we need to add one to the high value
1992 to compensate for the borrow when the low bits are added.
1993ENUM
1994 BFD_RELOC_LO16
1995ENUMDOC
1996 Low 16 bits.
1997ENUM
1998 BFD_RELOC_PCREL_HI16_S
1999ENUMDOC
2000 Like BFD_RELOC_HI16_S, but PC relative.
2001ENUM
2002 BFD_RELOC_PCREL_LO16
2003ENUMDOC
2004 Like BFD_RELOC_LO16, but PC relative.
2005
2006ENUMEQ
2007 BFD_RELOC_MIPS_GPREL
2008 BFD_RELOC_GPREL16
2009ENUMDOC
2010 Relocation relative to the global pointer.
2011
2012ENUM
2013 BFD_RELOC_MIPS_LITERAL
2014ENUMDOC
2015 Relocation against a MIPS literal section.
2016
2017ENUM
2018 BFD_RELOC_MIPS_GOT16
2019ENUMX
2020 BFD_RELOC_MIPS_CALL16
2021ENUMEQX
2022 BFD_RELOC_MIPS_GPREL32
2023 BFD_RELOC_GPREL32
2024ENUMX
2025 BFD_RELOC_MIPS_GOT_HI16
2026ENUMX
2027 BFD_RELOC_MIPS_GOT_LO16
2028ENUMX
2029 BFD_RELOC_MIPS_CALL_HI16
2030ENUMX
2031 BFD_RELOC_MIPS_CALL_LO16
3f830999
MM
2032ENUMX
2033 BFD_RELOC_MIPS_SUB
2034ENUMX
2035 BFD_RELOC_MIPS_GOT_PAGE
2036ENUMX
2037 BFD_RELOC_MIPS_GOT_OFST
2038ENUMX
2039 BFD_RELOC_MIPS_GOT_DISP
c2feb664
NC
2040ENUMX
2041 BFD_RELOC_MIPS_SHIFT5
2042ENUMX
2043 BFD_RELOC_MIPS_SHIFT6
2044ENUMX
2045 BFD_RELOC_MIPS_INSERT_A
2046ENUMX
2047 BFD_RELOC_MIPS_INSERT_B
2048ENUMX
2049 BFD_RELOC_MIPS_DELETE
2050ENUMX
2051 BFD_RELOC_MIPS_HIGHEST
2052ENUMX
2053 BFD_RELOC_MIPS_HIGHER
2054ENUMX
2055 BFD_RELOC_MIPS_SCN_DISP
2056ENUMX
2057 BFD_RELOC_MIPS_REL16
2058ENUMX
2059 BFD_RELOC_MIPS_RELGOT
2060ENUMX
2061 BFD_RELOC_MIPS_JALR
252b5132
RH
2062COMMENT
2063ENUMDOC
2064 MIPS ELF relocations.
2065
2066COMMENT
2067
2068ENUM
2069 BFD_RELOC_386_GOT32
2070ENUMX
2071 BFD_RELOC_386_PLT32
2072ENUMX
2073 BFD_RELOC_386_COPY
2074ENUMX
2075 BFD_RELOC_386_GLOB_DAT
2076ENUMX
2077 BFD_RELOC_386_JUMP_SLOT
2078ENUMX
2079 BFD_RELOC_386_RELATIVE
2080ENUMX
2081 BFD_RELOC_386_GOTOFF
2082ENUMX
2083 BFD_RELOC_386_GOTPC
2084ENUMDOC
2085 i386/elf relocations
2086
8d88c4ca
NC
2087ENUM
2088 BFD_RELOC_X86_64_GOT32
2089ENUMX
2090 BFD_RELOC_X86_64_PLT32
2091ENUMX
2092 BFD_RELOC_X86_64_COPY
2093ENUMX
2094 BFD_RELOC_X86_64_GLOB_DAT
2095ENUMX
2096 BFD_RELOC_X86_64_JUMP_SLOT
2097ENUMX
2098 BFD_RELOC_X86_64_RELATIVE
2099ENUMX
2100 BFD_RELOC_X86_64_GOTPCREL
2101ENUMX
2102 BFD_RELOC_X86_64_32S
2103ENUMDOC
2104 x86-64/elf relocations
2105
252b5132
RH
2106ENUM
2107 BFD_RELOC_NS32K_IMM_8
2108ENUMX
2109 BFD_RELOC_NS32K_IMM_16
2110ENUMX
2111 BFD_RELOC_NS32K_IMM_32
2112ENUMX
2113 BFD_RELOC_NS32K_IMM_8_PCREL
2114ENUMX
2115 BFD_RELOC_NS32K_IMM_16_PCREL
2116ENUMX
2117 BFD_RELOC_NS32K_IMM_32_PCREL
2118ENUMX
2119 BFD_RELOC_NS32K_DISP_8
2120ENUMX
2121 BFD_RELOC_NS32K_DISP_16
2122ENUMX
2123 BFD_RELOC_NS32K_DISP_32
2124ENUMX
2125 BFD_RELOC_NS32K_DISP_8_PCREL
2126ENUMX
2127 BFD_RELOC_NS32K_DISP_16_PCREL
2128ENUMX
2129 BFD_RELOC_NS32K_DISP_32_PCREL
2130ENUMDOC
2131 ns32k relocations
2132
e135f41b
NC
2133ENUM
2134 BFD_RELOC_PDP11_DISP_8_PCREL
2135ENUMX
2136 BFD_RELOC_PDP11_DISP_6_PCREL
2137ENUMDOC
2138 PDP11 relocations
2139
0bcb993b
ILT
2140ENUM
2141 BFD_RELOC_PJ_CODE_HI16
2142ENUMX
2143 BFD_RELOC_PJ_CODE_LO16
2144ENUMX
2145 BFD_RELOC_PJ_CODE_DIR16
2146ENUMX
2147 BFD_RELOC_PJ_CODE_DIR32
2148ENUMX
2149 BFD_RELOC_PJ_CODE_REL16
2150ENUMX
2151 BFD_RELOC_PJ_CODE_REL32
2152ENUMDOC
2153 Picojava relocs. Not all of these appear in object files.
88b6bae0 2154
252b5132
RH
2155ENUM
2156 BFD_RELOC_PPC_B26
2157ENUMX
2158 BFD_RELOC_PPC_BA26
2159ENUMX
2160 BFD_RELOC_PPC_TOC16
2161ENUMX
2162 BFD_RELOC_PPC_B16
2163ENUMX
2164 BFD_RELOC_PPC_B16_BRTAKEN
2165ENUMX
2166 BFD_RELOC_PPC_B16_BRNTAKEN
2167ENUMX
2168 BFD_RELOC_PPC_BA16
2169ENUMX
2170 BFD_RELOC_PPC_BA16_BRTAKEN
2171ENUMX
2172 BFD_RELOC_PPC_BA16_BRNTAKEN
2173ENUMX
2174 BFD_RELOC_PPC_COPY
2175ENUMX
2176 BFD_RELOC_PPC_GLOB_DAT
2177ENUMX
2178 BFD_RELOC_PPC_JMP_SLOT
2179ENUMX
2180 BFD_RELOC_PPC_RELATIVE
2181ENUMX
2182 BFD_RELOC_PPC_LOCAL24PC
2183ENUMX
2184 BFD_RELOC_PPC_EMB_NADDR32
2185ENUMX
2186 BFD_RELOC_PPC_EMB_NADDR16
2187ENUMX
2188 BFD_RELOC_PPC_EMB_NADDR16_LO
2189ENUMX
2190 BFD_RELOC_PPC_EMB_NADDR16_HI
2191ENUMX
2192 BFD_RELOC_PPC_EMB_NADDR16_HA
2193ENUMX
2194 BFD_RELOC_PPC_EMB_SDAI16
2195ENUMX
2196 BFD_RELOC_PPC_EMB_SDA2I16
2197ENUMX
2198 BFD_RELOC_PPC_EMB_SDA2REL
2199ENUMX
2200 BFD_RELOC_PPC_EMB_SDA21
2201ENUMX
2202 BFD_RELOC_PPC_EMB_MRKREF
2203ENUMX
2204 BFD_RELOC_PPC_EMB_RELSEC16
2205ENUMX
2206 BFD_RELOC_PPC_EMB_RELST_LO
2207ENUMX
2208 BFD_RELOC_PPC_EMB_RELST_HI
2209ENUMX
2210 BFD_RELOC_PPC_EMB_RELST_HA
2211ENUMX
2212 BFD_RELOC_PPC_EMB_BIT_FLD
2213ENUMX
2214 BFD_RELOC_PPC_EMB_RELSDA
2215ENUMDOC
2216 Power(rs6000) and PowerPC relocations.
2217
5b93d8bb
AM
2218ENUM
2219 BFD_RELOC_I370_D12
2220ENUMDOC
2221 IBM 370/390 relocations
2222
252b5132
RH
2223ENUM
2224 BFD_RELOC_CTOR
2225ENUMDOC
2226 The type of reloc used to build a contructor table - at the moment
2227 probably a 32 bit wide absolute relocation, but the target can choose.
2228 It generally does map to one of the other relocation types.
2229
2230ENUM
2231 BFD_RELOC_ARM_PCREL_BRANCH
2232ENUMDOC
2233 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2234 not stored in the instruction.
dfc5f959
NC
2235ENUM
2236 BFD_RELOC_ARM_PCREL_BLX
2237ENUMDOC
2238 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2239 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2240 field in the instruction.
2241ENUM
2242 BFD_RELOC_THUMB_PCREL_BLX
2243ENUMDOC
2244 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2245 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2246 field in the instruction.
252b5132
RH
2247ENUM
2248 BFD_RELOC_ARM_IMMEDIATE
752149a0
NC
2249ENUMX
2250 BFD_RELOC_ARM_ADRL_IMMEDIATE
252b5132
RH
2251ENUMX
2252 BFD_RELOC_ARM_OFFSET_IMM
2253ENUMX
2254 BFD_RELOC_ARM_SHIFT_IMM
2255ENUMX
2256 BFD_RELOC_ARM_SWI
2257ENUMX
2258 BFD_RELOC_ARM_MULTI
2259ENUMX
2260 BFD_RELOC_ARM_CP_OFF_IMM
2261ENUMX
2262 BFD_RELOC_ARM_ADR_IMM
2263ENUMX
2264 BFD_RELOC_ARM_LDR_IMM
2265ENUMX
2266 BFD_RELOC_ARM_LITERAL
2267ENUMX
2268 BFD_RELOC_ARM_IN_POOL
2269ENUMX
2270 BFD_RELOC_ARM_OFFSET_IMM8
2271ENUMX
2272 BFD_RELOC_ARM_HWLITERAL
2273ENUMX
2274 BFD_RELOC_ARM_THUMB_ADD
2275ENUMX
2276 BFD_RELOC_ARM_THUMB_IMM
2277ENUMX
2278 BFD_RELOC_ARM_THUMB_SHIFT
2279ENUMX
2280 BFD_RELOC_ARM_THUMB_OFFSET
2281ENUMX
2282 BFD_RELOC_ARM_GOT12
2283ENUMX
2284 BFD_RELOC_ARM_GOT32
2285ENUMX
2286 BFD_RELOC_ARM_JUMP_SLOT
2287ENUMX
2288 BFD_RELOC_ARM_COPY
2289ENUMX
2290 BFD_RELOC_ARM_GLOB_DAT
2291ENUMX
2292 BFD_RELOC_ARM_PLT32
2293ENUMX
2294 BFD_RELOC_ARM_RELATIVE
2295ENUMX
2296 BFD_RELOC_ARM_GOTOFF
2297ENUMX
2298 BFD_RELOC_ARM_GOTPC
2299ENUMDOC
2300 These relocs are only used within the ARM assembler. They are not
2301 (at present) written to any object files.
2302
2303ENUM
2304 BFD_RELOC_SH_PCDISP8BY2
2305ENUMX
2306 BFD_RELOC_SH_PCDISP12BY2
2307ENUMX
2308 BFD_RELOC_SH_IMM4
2309ENUMX
2310 BFD_RELOC_SH_IMM4BY2
2311ENUMX
2312 BFD_RELOC_SH_IMM4BY4
2313ENUMX
2314 BFD_RELOC_SH_IMM8
2315ENUMX
2316 BFD_RELOC_SH_IMM8BY2
2317ENUMX
2318 BFD_RELOC_SH_IMM8BY4
2319ENUMX
2320 BFD_RELOC_SH_PCRELIMM8BY2
2321ENUMX
2322 BFD_RELOC_SH_PCRELIMM8BY4
2323ENUMX
2324 BFD_RELOC_SH_SWITCH16
2325ENUMX
2326 BFD_RELOC_SH_SWITCH32
2327ENUMX
2328 BFD_RELOC_SH_USES
2329ENUMX
2330 BFD_RELOC_SH_COUNT
2331ENUMX
2332 BFD_RELOC_SH_ALIGN
2333ENUMX
2334 BFD_RELOC_SH_CODE
2335ENUMX
2336 BFD_RELOC_SH_DATA
2337ENUMX
2338 BFD_RELOC_SH_LABEL
015551fc
JR
2339ENUMX
2340 BFD_RELOC_SH_LOOP_START
2341ENUMX
2342 BFD_RELOC_SH_LOOP_END
3d96075c
L
2343ENUMX
2344 BFD_RELOC_SH_COPY
2345ENUMX
2346 BFD_RELOC_SH_GLOB_DAT
2347ENUMX
2348 BFD_RELOC_SH_JMP_SLOT
2349ENUMX
2350 BFD_RELOC_SH_RELATIVE
2351ENUMX
2352 BFD_RELOC_SH_GOTPC
252b5132
RH
2353ENUMDOC
2354 Hitachi SH relocs. Not all of these appear in object files.
2355
2356ENUM
2357 BFD_RELOC_THUMB_PCREL_BRANCH9
2358ENUMX
2359 BFD_RELOC_THUMB_PCREL_BRANCH12
2360ENUMX
2361 BFD_RELOC_THUMB_PCREL_BRANCH23
2362ENUMDOC
2363 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2364 be zero and is not stored in the instruction.
2365
2366ENUM
2367 BFD_RELOC_ARC_B22_PCREL
2368ENUMDOC
0d2bcfaf 2369 ARC Cores relocs.
252b5132
RH
2370 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2371 not stored in the instruction. The high 20 bits are installed in bits 26
2372 through 7 of the instruction.
2373ENUM
2374 BFD_RELOC_ARC_B26
2375ENUMDOC
2376 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2377 stored in the instruction. The high 24 bits are installed in bits 23
2378 through 0.
2379
2380ENUM
2381 BFD_RELOC_D10V_10_PCREL_R
2382ENUMDOC
2383 Mitsubishi D10V relocs.
2384 This is a 10-bit reloc with the right 2 bits
2385 assumed to be 0.
2386ENUM
2387 BFD_RELOC_D10V_10_PCREL_L
2388ENUMDOC
2389 Mitsubishi D10V relocs.
2390 This is a 10-bit reloc with the right 2 bits
2391 assumed to be 0. This is the same as the previous reloc
2392 except it is in the left container, i.e.,
2393 shifted left 15 bits.
2394ENUM
2395 BFD_RELOC_D10V_18
2396ENUMDOC
2397 This is an 18-bit reloc with the right 2 bits
2398 assumed to be 0.
2399ENUM
2400 BFD_RELOC_D10V_18_PCREL
2401ENUMDOC
2402 This is an 18-bit reloc with the right 2 bits
2403 assumed to be 0.
2404
2405ENUM
2406 BFD_RELOC_D30V_6
2407ENUMDOC
2408 Mitsubishi D30V relocs.
2409 This is a 6-bit absolute reloc.
2410ENUM
2411 BFD_RELOC_D30V_9_PCREL
2412ENUMDOC
88b6bae0
AM
2413 This is a 6-bit pc-relative reloc with
2414 the right 3 bits assumed to be 0.
252b5132
RH
2415ENUM
2416 BFD_RELOC_D30V_9_PCREL_R
2417ENUMDOC
88b6bae0 2418 This is a 6-bit pc-relative reloc with
252b5132
RH
2419 the right 3 bits assumed to be 0. Same
2420 as the previous reloc but on the right side
88b6bae0 2421 of the container.
252b5132
RH
2422ENUM
2423 BFD_RELOC_D30V_15
2424ENUMDOC
88b6bae0
AM
2425 This is a 12-bit absolute reloc with the
2426 right 3 bitsassumed to be 0.
252b5132
RH
2427ENUM
2428 BFD_RELOC_D30V_15_PCREL
2429ENUMDOC
88b6bae0
AM
2430 This is a 12-bit pc-relative reloc with
2431 the right 3 bits assumed to be 0.
252b5132
RH
2432ENUM
2433 BFD_RELOC_D30V_15_PCREL_R
2434ENUMDOC
88b6bae0 2435 This is a 12-bit pc-relative reloc with
252b5132
RH
2436 the right 3 bits assumed to be 0. Same
2437 as the previous reloc but on the right side
88b6bae0 2438 of the container.
252b5132
RH
2439ENUM
2440 BFD_RELOC_D30V_21
2441ENUMDOC
88b6bae0 2442 This is an 18-bit absolute reloc with
252b5132
RH
2443 the right 3 bits assumed to be 0.
2444ENUM
2445 BFD_RELOC_D30V_21_PCREL
2446ENUMDOC
88b6bae0 2447 This is an 18-bit pc-relative reloc with
252b5132
RH
2448 the right 3 bits assumed to be 0.
2449ENUM
2450 BFD_RELOC_D30V_21_PCREL_R
2451ENUMDOC
88b6bae0 2452 This is an 18-bit pc-relative reloc with
252b5132
RH
2453 the right 3 bits assumed to be 0. Same
2454 as the previous reloc but on the right side
2455 of the container.
2456ENUM
2457 BFD_RELOC_D30V_32
2458ENUMDOC
2459 This is a 32-bit absolute reloc.
2460ENUM
2461 BFD_RELOC_D30V_32_PCREL
2462ENUMDOC
2463 This is a 32-bit pc-relative reloc.
2464
2465ENUM
2466 BFD_RELOC_M32R_24
2467ENUMDOC
2468 Mitsubishi M32R relocs.
2469 This is a 24 bit absolute address.
2470ENUM
2471 BFD_RELOC_M32R_10_PCREL
2472ENUMDOC
2473 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2474ENUM
2475 BFD_RELOC_M32R_18_PCREL
2476ENUMDOC
2477 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2478ENUM
2479 BFD_RELOC_M32R_26_PCREL
2480ENUMDOC
2481 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2482ENUM
2483 BFD_RELOC_M32R_HI16_ULO
2484ENUMDOC
2485 This is a 16-bit reloc containing the high 16 bits of an address
2486 used when the lower 16 bits are treated as unsigned.
2487ENUM
2488 BFD_RELOC_M32R_HI16_SLO
2489ENUMDOC
2490 This is a 16-bit reloc containing the high 16 bits of an address
2491 used when the lower 16 bits are treated as signed.
2492ENUM
2493 BFD_RELOC_M32R_LO16
2494ENUMDOC
2495 This is a 16-bit reloc containing the lower 16 bits of an address.
2496ENUM
2497 BFD_RELOC_M32R_SDA16
2498ENUMDOC
2499 This is a 16-bit reloc containing the small data area offset for use in
2500 add3, load, and store instructions.
2501
2502ENUM
2503 BFD_RELOC_V850_9_PCREL
2504ENUMDOC
2505 This is a 9-bit reloc
2506ENUM
2507 BFD_RELOC_V850_22_PCREL
2508ENUMDOC
2509 This is a 22-bit reloc
2510
2511ENUM
2512 BFD_RELOC_V850_SDA_16_16_OFFSET
2513ENUMDOC
2514 This is a 16 bit offset from the short data area pointer.
2515ENUM
2516 BFD_RELOC_V850_SDA_15_16_OFFSET
2517ENUMDOC
2518 This is a 16 bit offset (of which only 15 bits are used) from the
2519 short data area pointer.
2520ENUM
2521 BFD_RELOC_V850_ZDA_16_16_OFFSET
2522ENUMDOC
2523 This is a 16 bit offset from the zero data area pointer.
2524ENUM
2525 BFD_RELOC_V850_ZDA_15_16_OFFSET
2526ENUMDOC
2527 This is a 16 bit offset (of which only 15 bits are used) from the
2528 zero data area pointer.
2529ENUM
2530 BFD_RELOC_V850_TDA_6_8_OFFSET
2531ENUMDOC
2532 This is an 8 bit offset (of which only 6 bits are used) from the
2533 tiny data area pointer.
2534ENUM
2535 BFD_RELOC_V850_TDA_7_8_OFFSET
2536ENUMDOC
2537 This is an 8bit offset (of which only 7 bits are used) from the tiny
2538 data area pointer.
2539ENUM
2540 BFD_RELOC_V850_TDA_7_7_OFFSET
2541ENUMDOC
2542 This is a 7 bit offset from the tiny data area pointer.
2543ENUM
2544 BFD_RELOC_V850_TDA_16_16_OFFSET
2545ENUMDOC
2546 This is a 16 bit offset from the tiny data area pointer.
2547COMMENT
2548ENUM
2549 BFD_RELOC_V850_TDA_4_5_OFFSET
2550ENUMDOC
2551 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2552 data area pointer.
2553ENUM
2554 BFD_RELOC_V850_TDA_4_4_OFFSET
2555ENUMDOC
2556 This is a 4 bit offset from the tiny data area pointer.
2557ENUM
2558 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2559ENUMDOC
2560 This is a 16 bit offset from the short data area pointer, with the
2561 bits placed non-contigously in the instruction.
2562ENUM
2563 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2564ENUMDOC
2565 This is a 16 bit offset from the zero data area pointer, with the
2566 bits placed non-contigously in the instruction.
2567ENUM
2568 BFD_RELOC_V850_CALLT_6_7_OFFSET
2569ENUMDOC
2570 This is a 6 bit offset from the call table base pointer.
2571ENUM
2572 BFD_RELOC_V850_CALLT_16_16_OFFSET
2573ENUMDOC
2574 This is a 16 bit offset from the call table base pointer.
2575COMMENT
2576
2577ENUM
2578 BFD_RELOC_MN10300_32_PCREL
2579ENUMDOC
2580 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2581 instruction.
2582ENUM
2583 BFD_RELOC_MN10300_16_PCREL
2584ENUMDOC
2585 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2586 instruction.
2587
2588ENUM
2589 BFD_RELOC_TIC30_LDP
2590ENUMDOC
2591 This is a 8bit DP reloc for the tms320c30, where the most
2592 significant 8 bits of a 24 bit word are placed into the least
2593 significant 8 bits of the opcode.
2594
81635ce4
TW
2595ENUM
2596 BFD_RELOC_TIC54X_PARTLS7
2597ENUMDOC
2598 This is a 7bit reloc for the tms320c54x, where the least
2599 significant 7 bits of a 16 bit word are placed into the least
2600 significant 7 bits of the opcode.
2601
2602ENUM
2603 BFD_RELOC_TIC54X_PARTMS9
2604ENUMDOC
2605 This is a 9bit DP reloc for the tms320c54x, where the most
2606 significant 9 bits of a 16 bit word are placed into the least
2607 significant 9 bits of the opcode.
2608
2609ENUM
2610 BFD_RELOC_TIC54X_23
2611ENUMDOC
2612 This is an extended address 23-bit reloc for the tms320c54x.
2613
2614ENUM
2615 BFD_RELOC_TIC54X_16_OF_23
2616ENUMDOC
3d855632
KH
2617 This is a 16-bit reloc for the tms320c54x, where the least
2618 significant 16 bits of a 23-bit extended address are placed into
81635ce4
TW
2619 the opcode.
2620
2621ENUM
2622 BFD_RELOC_TIC54X_MS7_OF_23
2623ENUMDOC
2624 This is a reloc for the tms320c54x, where the most
3d855632 2625 significant 7 bits of a 23-bit extended address are placed into
81635ce4 2626 the opcode.
81635ce4 2627
252b5132
RH
2628ENUM
2629 BFD_RELOC_FR30_48
2630ENUMDOC
2631 This is a 48 bit reloc for the FR30 that stores 32 bits.
2632ENUM
2633 BFD_RELOC_FR30_20
2634ENUMDOC
2635 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2636 two sections.
2637ENUM
2638 BFD_RELOC_FR30_6_IN_4
2639ENUMDOC
2640 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2641 4 bits.
2642ENUM
2643 BFD_RELOC_FR30_8_IN_8
2644ENUMDOC
2645 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2646 into 8 bits.
2647ENUM
2648 BFD_RELOC_FR30_9_IN_8
2649ENUMDOC
2650 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2651 into 8 bits.
2652ENUM
2653 BFD_RELOC_FR30_10_IN_8
2654ENUMDOC
2655 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2656 into 8 bits.
2657ENUM
2658 BFD_RELOC_FR30_9_PCREL
2659ENUMDOC
2660 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2661 short offset into 8 bits.
2662ENUM
2663 BFD_RELOC_FR30_12_PCREL
2664ENUMDOC
2665 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2666 short offset into 11 bits.
88b6bae0 2667
252b5132
RH
2668ENUM
2669 BFD_RELOC_MCORE_PCREL_IMM8BY4
2670ENUMX
2671 BFD_RELOC_MCORE_PCREL_IMM11BY2
2672ENUMX
2673 BFD_RELOC_MCORE_PCREL_IMM4BY2
2674ENUMX
2675 BFD_RELOC_MCORE_PCREL_32
2676ENUMX
2677 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
36797d47
NC
2678ENUMX
2679 BFD_RELOC_MCORE_RVA
252b5132
RH
2680ENUMDOC
2681 Motorola Mcore relocations.
88b6bae0 2682
adde6300
AM
2683ENUM
2684 BFD_RELOC_AVR_7_PCREL
2685ENUMDOC
2686 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2687 short offset into 7 bits.
2688ENUM
2689 BFD_RELOC_AVR_13_PCREL
2690ENUMDOC
2691 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2692 short offset into 12 bits.
2693ENUM
2694 BFD_RELOC_AVR_16_PM
2695ENUMDOC
2696 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
3d855632 2697 program memory address) into 16 bits.
adde6300
AM
2698ENUM
2699 BFD_RELOC_AVR_LO8_LDI
2700ENUMDOC
2701 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2702 data memory address) into 8 bit immediate value of LDI insn.
2703ENUM
2704 BFD_RELOC_AVR_HI8_LDI
2705ENUMDOC
2706 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2707 of data memory address) into 8 bit immediate value of LDI insn.
2708ENUM
2709 BFD_RELOC_AVR_HH8_LDI
2710ENUMDOC
2711 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2712 of program memory address) into 8 bit immediate value of LDI insn.
2713ENUM
2714 BFD_RELOC_AVR_LO8_LDI_NEG
2715ENUMDOC
2716 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2717 (usually data memory address) into 8 bit immediate value of SUBI insn.
2718ENUM
2719 BFD_RELOC_AVR_HI8_LDI_NEG
2720ENUMDOC
2721 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2722 (high 8 bit of data memory address) into 8 bit immediate value of
2723 SUBI insn.
2724ENUM
2725 BFD_RELOC_AVR_HH8_LDI_NEG
2726ENUMDOC
2727 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2728 (most high 8 bit of program memory address) into 8 bit immediate value
2729 of LDI or SUBI insn.
2730ENUM
2731 BFD_RELOC_AVR_LO8_LDI_PM
2732ENUMDOC
2733 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2734 command address) into 8 bit immediate value of LDI insn.
2735ENUM
2736 BFD_RELOC_AVR_HI8_LDI_PM
2737ENUMDOC
2738 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2739 of command address) into 8 bit immediate value of LDI insn.
2740ENUM
2741 BFD_RELOC_AVR_HH8_LDI_PM
2742ENUMDOC
2743 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2744 of command address) into 8 bit immediate value of LDI insn.
2745ENUM
2746 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2747ENUMDOC
2748 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2749 (usually command address) into 8 bit immediate value of SUBI insn.
2750ENUM
2751 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2752ENUMDOC
2753 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2754 (high 8 bit of 16 bit command address) into 8 bit immediate value
2755 of SUBI insn.
2756ENUM
2757 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2758ENUMDOC
2759 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2760 (high 6 bit of 22 bit command address) into 8 bit immediate
2761 value of SUBI insn.
2762ENUM
2763 BFD_RELOC_AVR_CALL
2764ENUMDOC
2765 This is a 32 bit reloc for the AVR that stores 23 bit value
2766 into 22 bits.
2767
a85d7ed0
NC
2768ENUM
2769 BFD_RELOC_390_12
2770ENUMDOC
2771 Direct 12 bit.
2772ENUM
2773 BFD_RELOC_390_GOT12
2774ENUMDOC
2775 12 bit GOT offset.
2776ENUM
2777 BFD_RELOC_390_PLT32
2778ENUMDOC
2779 32 bit PC relative PLT address.
2780ENUM
2781 BFD_RELOC_390_COPY
2782ENUMDOC
2783 Copy symbol at runtime.
2784ENUM
2785 BFD_RELOC_390_GLOB_DAT
2786ENUMDOC
2787 Create GOT entry.
2788ENUM
2789 BFD_RELOC_390_JMP_SLOT
2790ENUMDOC
2791 Create PLT entry.
2792ENUM
2793 BFD_RELOC_390_RELATIVE
2794ENUMDOC
2795 Adjust by program base.
2796ENUM
2797 BFD_RELOC_390_GOTPC
2798ENUMDOC
2799 32 bit PC relative offset to GOT.
2800ENUM
2801 BFD_RELOC_390_GOT16
2802ENUMDOC
2803 16 bit GOT offset.
2804ENUM
2805 BFD_RELOC_390_PC16DBL
2806ENUMDOC
2807 PC relative 16 bit shifted by 1.
2808ENUM
2809 BFD_RELOC_390_PLT16DBL
2810ENUMDOC
2811 16 bit PC rel. PLT shifted by 1.
2812ENUM
2813 BFD_RELOC_390_PC32DBL
2814ENUMDOC
2815 PC relative 32 bit shifted by 1.
2816ENUM
2817 BFD_RELOC_390_PLT32DBL
2818ENUMDOC
2819 32 bit PC rel. PLT shifted by 1.
2820ENUM
2821 BFD_RELOC_390_GOTPCDBL
2822ENUMDOC
2823 32 bit PC rel. GOT shifted by 1.
2824ENUM
2825 BFD_RELOC_390_GOT64
2826ENUMDOC
2827 64 bit GOT offset.
2828ENUM
2829 BFD_RELOC_390_PLT64
2830ENUMDOC
2831 64 bit PC relative PLT address.
2832ENUM
2833 BFD_RELOC_390_GOTENT
2834ENUMDOC
2835 32 bit rel. offset to GOT entry.
2836
252b5132
RH
2837ENUM
2838 BFD_RELOC_VTABLE_INHERIT
2839ENUMX
2840 BFD_RELOC_VTABLE_ENTRY
2841ENUMDOC
88b6bae0 2842 These two relocations are used by the linker to determine which of
252b5132
RH
2843 the entries in a C++ virtual function table are actually used. When
2844 the --gc-sections option is given, the linker will zero out the entries
2845 that are not used, so that the code for those functions need not be
2846 included in the output.
2847
2848 VTABLE_INHERIT is a zero-space relocation used to describe to the
2849 linker the inheritence tree of a C++ virtual function table. The
2850 relocation's symbol should be the parent class' vtable, and the
2851 relocation should be located at the child vtable.
2852
2853 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2854 virtual function table entry. The reloc's symbol should refer to the
2855 table of the class mentioned in the code. Off of that base, an offset
88b6bae0 2856 describes the entry that is being used. For Rela hosts, this offset
252b5132
RH
2857 is stored in the reloc's addend. For Rel hosts, we are forced to put
2858 this offset in the reloc's section offset.
2859
800eeca4
JW
2860ENUM
2861 BFD_RELOC_IA64_IMM14
2862ENUMX
2863 BFD_RELOC_IA64_IMM22
2864ENUMX
2865 BFD_RELOC_IA64_IMM64
2866ENUMX
2867 BFD_RELOC_IA64_DIR32MSB
2868ENUMX
2869 BFD_RELOC_IA64_DIR32LSB
2870ENUMX
2871 BFD_RELOC_IA64_DIR64MSB
2872ENUMX
2873 BFD_RELOC_IA64_DIR64LSB
2874ENUMX
2875 BFD_RELOC_IA64_GPREL22
2876ENUMX
2877 BFD_RELOC_IA64_GPREL64I
2878ENUMX
2879 BFD_RELOC_IA64_GPREL32MSB
2880ENUMX
2881 BFD_RELOC_IA64_GPREL32LSB
2882ENUMX
2883 BFD_RELOC_IA64_GPREL64MSB
2884ENUMX
2885 BFD_RELOC_IA64_GPREL64LSB
2886ENUMX
2887 BFD_RELOC_IA64_LTOFF22
2888ENUMX
2889 BFD_RELOC_IA64_LTOFF64I
2890ENUMX
2891 BFD_RELOC_IA64_PLTOFF22
2892ENUMX
2893 BFD_RELOC_IA64_PLTOFF64I
2894ENUMX
2895 BFD_RELOC_IA64_PLTOFF64MSB
2896ENUMX
2897 BFD_RELOC_IA64_PLTOFF64LSB
2898ENUMX
2899 BFD_RELOC_IA64_FPTR64I
2900ENUMX
2901 BFD_RELOC_IA64_FPTR32MSB
2902ENUMX
2903 BFD_RELOC_IA64_FPTR32LSB
2904ENUMX
2905 BFD_RELOC_IA64_FPTR64MSB
2906ENUMX
2907 BFD_RELOC_IA64_FPTR64LSB
2908ENUMX
2909 BFD_RELOC_IA64_PCREL21B
748abff6
RH
2910ENUMX
2911 BFD_RELOC_IA64_PCREL21BI
800eeca4
JW
2912ENUMX
2913 BFD_RELOC_IA64_PCREL21M
2914ENUMX
2915 BFD_RELOC_IA64_PCREL21F
748abff6
RH
2916ENUMX
2917 BFD_RELOC_IA64_PCREL22
2918ENUMX
2919 BFD_RELOC_IA64_PCREL60B
2920ENUMX
2921 BFD_RELOC_IA64_PCREL64I
800eeca4
JW
2922ENUMX
2923 BFD_RELOC_IA64_PCREL32MSB
2924ENUMX
2925 BFD_RELOC_IA64_PCREL32LSB
2926ENUMX
2927 BFD_RELOC_IA64_PCREL64MSB
2928ENUMX
2929 BFD_RELOC_IA64_PCREL64LSB
2930ENUMX
2931 BFD_RELOC_IA64_LTOFF_FPTR22
2932ENUMX
2933 BFD_RELOC_IA64_LTOFF_FPTR64I
2934ENUMX
2935 BFD_RELOC_IA64_LTOFF_FPTR64MSB
2936ENUMX
2937 BFD_RELOC_IA64_LTOFF_FPTR64LSB
800eeca4
JW
2938ENUMX
2939 BFD_RELOC_IA64_SEGREL32MSB
2940ENUMX
2941 BFD_RELOC_IA64_SEGREL32LSB
2942ENUMX
2943 BFD_RELOC_IA64_SEGREL64MSB
2944ENUMX
2945 BFD_RELOC_IA64_SEGREL64LSB
2946ENUMX
2947 BFD_RELOC_IA64_SECREL32MSB
2948ENUMX
2949 BFD_RELOC_IA64_SECREL32LSB
2950ENUMX
2951 BFD_RELOC_IA64_SECREL64MSB
2952ENUMX
2953 BFD_RELOC_IA64_SECREL64LSB
2954ENUMX
2955 BFD_RELOC_IA64_REL32MSB
2956ENUMX
2957 BFD_RELOC_IA64_REL32LSB
2958ENUMX
2959 BFD_RELOC_IA64_REL64MSB
2960ENUMX
2961 BFD_RELOC_IA64_REL64LSB
2962ENUMX
2963 BFD_RELOC_IA64_LTV32MSB
2964ENUMX
2965 BFD_RELOC_IA64_LTV32LSB
2966ENUMX
2967 BFD_RELOC_IA64_LTV64MSB
2968ENUMX
2969 BFD_RELOC_IA64_LTV64LSB
2970ENUMX
2971 BFD_RELOC_IA64_IPLTMSB
2972ENUMX
2973 BFD_RELOC_IA64_IPLTLSB
800eeca4
JW
2974ENUMX
2975 BFD_RELOC_IA64_COPY
2976ENUMX
2977 BFD_RELOC_IA64_TPREL22
2978ENUMX
2979 BFD_RELOC_IA64_TPREL64MSB
2980ENUMX
2981 BFD_RELOC_IA64_TPREL64LSB
2982ENUMX
2983 BFD_RELOC_IA64_LTOFF_TP22
2984ENUMX
2985 BFD_RELOC_IA64_LTOFF22X
2986ENUMX
2987 BFD_RELOC_IA64_LDXMOV
2988ENUMDOC
2989 Intel IA64 Relocations.
60bcf0fa
NC
2990
2991ENUM
2992 BFD_RELOC_M68HC11_HI8
2993ENUMDOC
2994 Motorola 68HC11 reloc.
2995 This is the 8 bits high part of an absolute address.
2996ENUM
2997 BFD_RELOC_M68HC11_LO8
2998ENUMDOC
2999 Motorola 68HC11 reloc.
3000 This is the 8 bits low part of an absolute address.
3001ENUM
3002 BFD_RELOC_M68HC11_3B
3003ENUMDOC
3004 Motorola 68HC11 reloc.
3005 This is the 3 bits of a value.
3006
06c15ad7
HPN
3007ENUM
3008 BFD_RELOC_CRIS_BDISP8
3009ENUMX
3010 BFD_RELOC_CRIS_UNSIGNED_5
3011ENUMX
3012 BFD_RELOC_CRIS_SIGNED_6
3013ENUMX
3014 BFD_RELOC_CRIS_UNSIGNED_6
3015ENUMX
3016 BFD_RELOC_CRIS_UNSIGNED_4
3017ENUMDOC
3018 These relocs are only used within the CRIS assembler. They are not
3019 (at present) written to any object files.
58d29fc3
HPN
3020ENUM
3021 BFD_RELOC_CRIS_COPY
3022ENUMX
3023 BFD_RELOC_CRIS_GLOB_DAT
3024ENUMX
3025 BFD_RELOC_CRIS_JUMP_SLOT
3026ENUMX
3027 BFD_RELOC_CRIS_RELATIVE
3028ENUMDOC
3029 Relocs used in ELF shared libraries for CRIS.
3030ENUM
3031 BFD_RELOC_CRIS_32_GOT
3032ENUMDOC
3033 32-bit offset to symbol-entry within GOT.
3034ENUM
3035 BFD_RELOC_CRIS_16_GOT
3036ENUMDOC
3037 16-bit offset to symbol-entry within GOT.
3038ENUM
3039 BFD_RELOC_CRIS_32_GOTPLT
3040ENUMDOC
3041 32-bit offset to symbol-entry within GOT, with PLT handling.
3042ENUM
3043 BFD_RELOC_CRIS_16_GOTPLT
3044ENUMDOC
3045 16-bit offset to symbol-entry within GOT, with PLT handling.
3046ENUM
3047 BFD_RELOC_CRIS_32_GOTREL
3048ENUMDOC
3049 32-bit offset to symbol, relative to GOT.
3050ENUM
3051 BFD_RELOC_CRIS_32_PLT_GOTREL
3052ENUMDOC
3053 32-bit offset to symbol with PLT entry, relative to GOT.
3054ENUM
3055 BFD_RELOC_CRIS_32_PLT_PCREL
3056ENUMDOC
3057 32-bit offset to symbol with PLT entry, relative to this relocation.
06c15ad7 3058
a87fdb8d
JE
3059ENUM
3060 BFD_RELOC_860_COPY
3061ENUMX
3062 BFD_RELOC_860_GLOB_DAT
3063ENUMX
3064 BFD_RELOC_860_JUMP_SLOT
3065ENUMX
3066 BFD_RELOC_860_RELATIVE
3067ENUMX
3068 BFD_RELOC_860_PC26
3069ENUMX
3070 BFD_RELOC_860_PLT26
3071ENUMX
3072 BFD_RELOC_860_PC16
3073ENUMX
3074 BFD_RELOC_860_LOW0
3075ENUMX
3076 BFD_RELOC_860_SPLIT0
3077ENUMX
3078 BFD_RELOC_860_LOW1
3079ENUMX
3080 BFD_RELOC_860_SPLIT1
3081ENUMX
3082 BFD_RELOC_860_LOW2
3083ENUMX
3084 BFD_RELOC_860_SPLIT2
3085ENUMX
3086 BFD_RELOC_860_LOW3
3087ENUMX
3088 BFD_RELOC_860_LOGOT0
3089ENUMX
3090 BFD_RELOC_860_SPGOT0
3091ENUMX
3092 BFD_RELOC_860_LOGOT1
3093ENUMX
3094 BFD_RELOC_860_SPGOT1
3095ENUMX
3096 BFD_RELOC_860_LOGOTOFF0
3097ENUMX
3098 BFD_RELOC_860_SPGOTOFF0
3099ENUMX
3100 BFD_RELOC_860_LOGOTOFF1
3101ENUMX
3102 BFD_RELOC_860_SPGOTOFF1
3103ENUMX
3104 BFD_RELOC_860_LOGOTOFF2
3105ENUMX
3106 BFD_RELOC_860_LOGOTOFF3
3107ENUMX
3108 BFD_RELOC_860_LOPC
3109ENUMX
3110 BFD_RELOC_860_HIGHADJ
3111ENUMX
3112 BFD_RELOC_860_HAGOT
3113ENUMX
3114 BFD_RELOC_860_HAGOTOFF
3115ENUMX
3116 BFD_RELOC_860_HAPC
3117ENUMX
3118 BFD_RELOC_860_HIGH
3119ENUMX
3120 BFD_RELOC_860_HIGOT
3121ENUMX
3122 BFD_RELOC_860_HIGOTOFF
3123ENUMDOC
3124 Intel i860 Relocations.
3125
b3baf5d0
NC
3126ENUM
3127 BFD_RELOC_OPENRISC_ABS_26
3128ENUMX
3129 BFD_RELOC_OPENRISC_REL_26
3130ENUMDOC
3131 OpenRISC Relocations.
3132
252b5132
RH
3133ENDSENUM
3134 BFD_RELOC_UNUSED
3135CODE_FRAGMENT
3136.
3137.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3138*/
3139
252b5132
RH
3140/*
3141FUNCTION
3142 bfd_reloc_type_lookup
3143
3144SYNOPSIS
3145 reloc_howto_type *
3146 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3147
3148DESCRIPTION
3149 Return a pointer to a howto structure which, when
3150 invoked, will perform the relocation @var{code} on data from the
3151 architecture noted.
3152
3153*/
3154
252b5132
RH
3155reloc_howto_type *
3156bfd_reloc_type_lookup (abfd, code)
3157 bfd *abfd;
3158 bfd_reloc_code_real_type code;
3159{
3160 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3161}
3162
3163static reloc_howto_type bfd_howto_32 =
3164HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3165
252b5132
RH
3166/*
3167INTERNAL_FUNCTION
3168 bfd_default_reloc_type_lookup
3169
3170SYNOPSIS
3171 reloc_howto_type *bfd_default_reloc_type_lookup
3172 (bfd *abfd, bfd_reloc_code_real_type code);
3173
3174DESCRIPTION
3175 Provides a default relocation lookup routine for any architecture.
3176
252b5132
RH
3177*/
3178
3179reloc_howto_type *
3180bfd_default_reloc_type_lookup (abfd, code)
3181 bfd *abfd;
3182 bfd_reloc_code_real_type code;
3183{
3184 switch (code)
3185 {
3186 case BFD_RELOC_CTOR:
3187 /* The type of reloc used in a ctor, which will be as wide as the
3188 address - so either a 64, 32, or 16 bitter. */
3189 switch (bfd_get_arch_info (abfd)->bits_per_address)
3190 {
3191 case 64:
3192 BFD_FAIL ();
3193 case 32:
3194 return &bfd_howto_32;
3195 case 16:
3196 BFD_FAIL ();
3197 default:
3198 BFD_FAIL ();
3199 }
3200 default:
3201 BFD_FAIL ();
3202 }
3203 return (reloc_howto_type *) NULL;
3204}
3205
3206/*
3207FUNCTION
3208 bfd_get_reloc_code_name
3209
3210SYNOPSIS
3211 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3212
3213DESCRIPTION
3214 Provides a printable name for the supplied relocation code.
3215 Useful mainly for printing error messages.
3216*/
3217
3218const char *
3219bfd_get_reloc_code_name (code)
3220 bfd_reloc_code_real_type code;
3221{
3222 if (code > BFD_RELOC_UNUSED)
3223 return 0;
3224 return bfd_reloc_code_real_names[(int)code];
3225}
3226
3227/*
3228INTERNAL_FUNCTION
3229 bfd_generic_relax_section
3230
3231SYNOPSIS
3232 boolean bfd_generic_relax_section
3233 (bfd *abfd,
3234 asection *section,
3235 struct bfd_link_info *,
3236 boolean *);
3237
3238DESCRIPTION
3239 Provides default handling for relaxing for back ends which
3240 don't do relaxing -- i.e., does nothing.
3241*/
3242
3243/*ARGSUSED*/
3244boolean
3245bfd_generic_relax_section (abfd, section, link_info, again)
7442e600
ILT
3246 bfd *abfd ATTRIBUTE_UNUSED;
3247 asection *section ATTRIBUTE_UNUSED;
3248 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
3249 boolean *again;
3250{
3251 *again = false;
3252 return true;
3253}
3254
3255/*
3256INTERNAL_FUNCTION
3257 bfd_generic_gc_sections
3258
3259SYNOPSIS
3260 boolean bfd_generic_gc_sections
3261 (bfd *, struct bfd_link_info *);
3262
3263DESCRIPTION
3264 Provides default handling for relaxing for back ends which
3265 don't do section gc -- i.e., does nothing.
3266*/
3267
3268/*ARGSUSED*/
3269boolean
3270bfd_generic_gc_sections (abfd, link_info)
7442e600
ILT
3271 bfd *abfd ATTRIBUTE_UNUSED;
3272 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
3273{
3274 return true;
3275}
3276
8550eb6e
JJ
3277/*
3278INTERNAL_FUNCTION
3279 bfd_generic_merge_sections
3280
3281SYNOPSIS
3282 boolean bfd_generic_merge_sections
3283 (bfd *, struct bfd_link_info *);
3284
3285DESCRIPTION
3286 Provides default handling for SEC_MERGE section merging for back ends
3287 which don't have SEC_MERGE support -- i.e., does nothing.
3288*/
3289
3290/*ARGSUSED*/
3291boolean
3292bfd_generic_merge_sections (abfd, link_info)
3293 bfd *abfd ATTRIBUTE_UNUSED;
3294 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3295{
3296 return true;
3297}
3298
252b5132
RH
3299/*
3300INTERNAL_FUNCTION
3301 bfd_generic_get_relocated_section_contents
3302
3303SYNOPSIS
3304 bfd_byte *
3305 bfd_generic_get_relocated_section_contents (bfd *abfd,
3306 struct bfd_link_info *link_info,
3307 struct bfd_link_order *link_order,
3308 bfd_byte *data,
3309 boolean relocateable,
3310 asymbol **symbols);
3311
3312DESCRIPTION
3313 Provides default handling of relocation effort for back ends
3314 which can't be bothered to do it efficiently.
3315
3316*/
3317
3318bfd_byte *
3319bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3320 relocateable, symbols)
3321 bfd *abfd;
3322 struct bfd_link_info *link_info;
3323 struct bfd_link_order *link_order;
3324 bfd_byte *data;
3325 boolean relocateable;
3326 asymbol **symbols;
3327{
3328 /* Get enough memory to hold the stuff */
3329 bfd *input_bfd = link_order->u.indirect.section->owner;
3330 asection *input_section = link_order->u.indirect.section;
3331
3332 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3333 arelent **reloc_vector = NULL;
3334 long reloc_count;
3335
3336 if (reloc_size < 0)
3337 goto error_return;
3338
3339 reloc_vector = (arelent **) bfd_malloc ((size_t) reloc_size);
3340 if (reloc_vector == NULL && reloc_size != 0)
3341 goto error_return;
3342
3343 /* read in the section */
3344 if (!bfd_get_section_contents (input_bfd,
3345 input_section,
3346 (PTR) data,
3347 0,
3348 input_section->_raw_size))
3349 goto error_return;
3350
3351 /* We're not relaxing the section, so just copy the size info */
3352 input_section->_cooked_size = input_section->_raw_size;
3353 input_section->reloc_done = true;
3354
3355 reloc_count = bfd_canonicalize_reloc (input_bfd,
3356 input_section,
3357 reloc_vector,
3358 symbols);
3359 if (reloc_count < 0)
3360 goto error_return;
3361
3362 if (reloc_count > 0)
3363 {
3364 arelent **parent;
3365 for (parent = reloc_vector; *parent != (arelent *) NULL;
3366 parent++)
3367 {
3368 char *error_message = (char *) NULL;
3369 bfd_reloc_status_type r =
3370 bfd_perform_relocation (input_bfd,
3371 *parent,
3372 (PTR) data,
3373 input_section,
3374 relocateable ? abfd : (bfd *) NULL,
3375 &error_message);
3376
3377 if (relocateable)
3378 {
3379 asection *os = input_section->output_section;
3380
3381 /* A partial link, so keep the relocs */
3382 os->orelocation[os->reloc_count] = *parent;
3383 os->reloc_count++;
3384 }
3385
3386 if (r != bfd_reloc_ok)
3387 {
3388 switch (r)
3389 {
3390 case bfd_reloc_undefined:
3391 if (!((*link_info->callbacks->undefined_symbol)
3392 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785
L
3393 input_bfd, input_section, (*parent)->address,
3394 true)))
252b5132
RH
3395 goto error_return;
3396 break;
3397 case bfd_reloc_dangerous:
3398 BFD_ASSERT (error_message != (char *) NULL);
3399 if (!((*link_info->callbacks->reloc_dangerous)
3400 (link_info, error_message, input_bfd, input_section,
3401 (*parent)->address)))
3402 goto error_return;
3403 break;
3404 case bfd_reloc_overflow:
3405 if (!((*link_info->callbacks->reloc_overflow)
3406 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3407 (*parent)->howto->name, (*parent)->addend,
3408 input_bfd, input_section, (*parent)->address)))
3409 goto error_return;
3410 break;
3411 case bfd_reloc_outofrange:
3412 default:
3413 abort ();
3414 break;
3415 }
3416
3417 }
3418 }
3419 }
3420 if (reloc_vector != NULL)
3421 free (reloc_vector);
3422 return data;
3423
3424error_return:
3425 if (reloc_vector != NULL)
3426 free (reloc_vector);
3427 return NULL;
3428}