]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/reloc.c
* scripttempl/elfd30v.sc: Place .gcc_except_table.
[thirdparty/binutils-gdb.git] / bfd / reloc.c
CommitLineData
252b5132 1/* BFD support for handling relocation entries.
5b93d8bb 2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
252b5132
RH
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
5
6This file is part of BFD, the Binary File Descriptor library.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22/*
23SECTION
24 Relocations
25
26 BFD maintains relocations in much the same way it maintains
27 symbols: they are left alone until required, then read in
dfc5f959 28 en-mass and translated into an internal form. A common
252b5132
RH
29 routine <<bfd_perform_relocation>> acts upon the
30 canonical form to do the fixup.
31
32 Relocations are maintained on a per section basis,
33 while symbols are maintained on a per BFD basis.
34
35 All that a back end has to do to fit the BFD interface is to create
36 a <<struct reloc_cache_entry>> for each relocation
37 in a particular section, and fill in the right bits of the structures.
38
39@menu
40@* typedef arelent::
41@* howto manager::
42@end menu
43
44*/
45
46/* DO compile in the reloc_code name table from libbfd.h. */
47#define _BFD_MAKE_TABLE_bfd_reloc_code_real
48
49#include "bfd.h"
50#include "sysdep.h"
51#include "bfdlink.h"
52#include "libbfd.h"
53/*
54DOCDD
55INODE
56 typedef arelent, howto manager, Relocations, Relocations
57
58SUBSECTION
59 typedef arelent
60
61 This is the structure of a relocation entry:
62
63CODE_FRAGMENT
64.
65.typedef enum bfd_reloc_status
66.{
67. {* No errors detected *}
68. bfd_reloc_ok,
69.
70. {* The relocation was performed, but there was an overflow. *}
71. bfd_reloc_overflow,
72.
73. {* The address to relocate was not within the section supplied. *}
74. bfd_reloc_outofrange,
75.
76. {* Used by special functions *}
77. bfd_reloc_continue,
78.
79. {* Unsupported relocation size requested. *}
80. bfd_reloc_notsupported,
81.
82. {* Unused *}
83. bfd_reloc_other,
84.
85. {* The symbol to relocate against was undefined. *}
86. bfd_reloc_undefined,
87.
88. {* The relocation was performed, but may not be ok - presently
89. generated only when linking i960 coff files with i960 b.out
90. symbols. If this type is returned, the error_message argument
91. to bfd_perform_relocation will be set. *}
92. bfd_reloc_dangerous
93. }
94. bfd_reloc_status_type;
95.
96.
97.typedef struct reloc_cache_entry
98.{
99. {* A pointer into the canonical table of pointers *}
100. struct symbol_cache_entry **sym_ptr_ptr;
101.
102. {* offset in section *}
103. bfd_size_type address;
104.
105. {* addend for relocation value *}
106. bfd_vma addend;
107.
108. {* Pointer to how to perform the required relocation *}
109. reloc_howto_type *howto;
110.
111.} arelent;
112
113*/
114
115/*
116DESCRIPTION
117
118 Here is a description of each of the fields within an <<arelent>>:
119
120 o <<sym_ptr_ptr>>
121
122 The symbol table pointer points to a pointer to the symbol
123 associated with the relocation request. It is
124 the pointer into the table returned by the back end's
125 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
126 through a pointer to a pointer so that tools like the linker
127 can fix up all the symbols of the same name by modifying only
128 one pointer. The relocation routine looks in the symbol and
129 uses the base of the section the symbol is attached to and the
130 value of the symbol as the initial relocation offset. If the
131 symbol pointer is zero, then the section provided is looked up.
132
133 o <<address>>
134
135 The <<address>> field gives the offset in bytes from the base of
136 the section data which owns the relocation record to the first
137 byte of relocatable information. The actual data relocated
138 will be relative to this point; for example, a relocation
139 type which modifies the bottom two bytes of a four byte word
140 would not touch the first byte pointed to in a big endian
141 world.
142
143 o <<addend>>
144
145 The <<addend>> is a value provided by the back end to be added (!)
146 to the relocation offset. Its interpretation is dependent upon
147 the howto. For example, on the 68k the code:
148
149
150| char foo[];
151| main()
152| {
153| return foo[0x12345678];
154| }
155
156 Could be compiled into:
157
158| linkw fp,#-4
159| moveb @@#12345678,d0
160| extbl d0
161| unlk fp
162| rts
163
164
165 This could create a reloc pointing to <<foo>>, but leave the
166 offset in the data, something like:
167
168
169|RELOCATION RECORDS FOR [.text]:
170|offset type value
171|00000006 32 _foo
172|
173|00000000 4e56 fffc ; linkw fp,#-4
174|00000004 1039 1234 5678 ; moveb @@#12345678,d0
175|0000000a 49c0 ; extbl d0
176|0000000c 4e5e ; unlk fp
177|0000000e 4e75 ; rts
178
179
180 Using coff and an 88k, some instructions don't have enough
181 space in them to represent the full address range, and
182 pointers have to be loaded in two parts. So you'd get something like:
183
184
185| or.u r13,r0,hi16(_foo+0x12345678)
186| ld.b r2,r13,lo16(_foo+0x12345678)
187| jmp r1
188
189
190 This should create two relocs, both pointing to <<_foo>>, and with
191 0x12340000 in their addend field. The data would consist of:
192
193
194|RELOCATION RECORDS FOR [.text]:
195|offset type value
196|00000002 HVRT16 _foo+0x12340000
197|00000006 LVRT16 _foo+0x12340000
198|
199|00000000 5da05678 ; or.u r13,r0,0x5678
200|00000004 1c4d5678 ; ld.b r2,r13,0x5678
201|00000008 f400c001 ; jmp r1
202
203
204 The relocation routine digs out the value from the data, adds
205 it to the addend to get the original offset, and then adds the
206 value of <<_foo>>. Note that all 32 bits have to be kept around
207 somewhere, to cope with carry from bit 15 to bit 16.
208
209 One further example is the sparc and the a.out format. The
210 sparc has a similar problem to the 88k, in that some
211 instructions don't have room for an entire offset, but on the
212 sparc the parts are created in odd sized lumps. The designers of
213 the a.out format chose to not use the data within the section
214 for storing part of the offset; all the offset is kept within
215 the reloc. Anything in the data should be ignored.
216
217| save %sp,-112,%sp
218| sethi %hi(_foo+0x12345678),%g2
219| ldsb [%g2+%lo(_foo+0x12345678)],%i0
220| ret
221| restore
222
223 Both relocs contain a pointer to <<foo>>, and the offsets
224 contain junk.
225
226
227|RELOCATION RECORDS FOR [.text]:
228|offset type value
229|00000004 HI22 _foo+0x12345678
230|00000008 LO10 _foo+0x12345678
231|
232|00000000 9de3bf90 ; save %sp,-112,%sp
233|00000004 05000000 ; sethi %hi(_foo+0),%g2
234|00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
235|0000000c 81c7e008 ; ret
236|00000010 81e80000 ; restore
237
238
239 o <<howto>>
240
241 The <<howto>> field can be imagined as a
242 relocation instruction. It is a pointer to a structure which
243 contains information on what to do with all of the other
244 information in the reloc record and data section. A back end
245 would normally have a relocation instruction set and turn
246 relocations into pointers to the correct structure on input -
247 but it would be possible to create each howto field on demand.
248
249*/
250
251/*
252SUBSUBSECTION
253 <<enum complain_overflow>>
254
255 Indicates what sort of overflow checking should be done when
256 performing a relocation.
257
258CODE_FRAGMENT
259.
260.enum complain_overflow
261.{
262. {* Do not complain on overflow. *}
263. complain_overflow_dont,
264.
265. {* Complain if the bitfield overflows, whether it is considered
266. as signed or unsigned. *}
267. complain_overflow_bitfield,
268.
269. {* Complain if the value overflows when considered as signed
270. number. *}
271. complain_overflow_signed,
272.
273. {* Complain if the value overflows when considered as an
274. unsigned number. *}
275. complain_overflow_unsigned
276.};
277
278*/
279
280/*
281SUBSUBSECTION
282 <<reloc_howto_type>>
283
284 The <<reloc_howto_type>> is a structure which contains all the
285 information that libbfd needs to know to tie up a back end's data.
286
287CODE_FRAGMENT
288.struct symbol_cache_entry; {* Forward declaration *}
289.
290.struct reloc_howto_struct
291.{
292. {* The type field has mainly a documentary use - the back end can
293. do what it wants with it, though normally the back end's
294. external idea of what a reloc number is stored
295. in this field. For example, a PC relative word relocation
296. in a coff environment has the type 023 - because that's
297. what the outside world calls a R_PCRWORD reloc. *}
298. unsigned int type;
299.
300. {* The value the final relocation is shifted right by. This drops
301. unwanted data from the relocation. *}
302. unsigned int rightshift;
303.
304. {* The size of the item to be relocated. This is *not* a
305. power-of-two measure. To get the number of bytes operated
306. on by a type of relocation, use bfd_get_reloc_size. *}
307. int size;
308.
309. {* The number of bits in the item to be relocated. This is used
310. when doing overflow checking. *}
311. unsigned int bitsize;
312.
313. {* Notes that the relocation is relative to the location in the
314. data section of the addend. The relocation function will
315. subtract from the relocation value the address of the location
316. being relocated. *}
317. boolean pc_relative;
318.
319. {* The bit position of the reloc value in the destination.
320. The relocated value is left shifted by this amount. *}
321. unsigned int bitpos;
322.
323. {* What type of overflow error should be checked for when
324. relocating. *}
325. enum complain_overflow complain_on_overflow;
326.
327. {* If this field is non null, then the supplied function is
328. called rather than the normal function. This allows really
329. strange relocation methods to be accomodated (e.g., i960 callj
330. instructions). *}
331. bfd_reloc_status_type (*special_function)
332. PARAMS ((bfd *abfd,
333. arelent *reloc_entry,
334. struct symbol_cache_entry *symbol,
335. PTR data,
336. asection *input_section,
337. bfd *output_bfd,
338. char **error_message));
339.
340. {* The textual name of the relocation type. *}
341. char *name;
342.
c1b7949f
DE
343. {* Some formats record a relocation addend in the section contents
344. rather than with the relocation. For ELF formats this is the
345. distinction between USE_REL and USE_RELA (though the code checks
346. for USE_REL == 1/0). The value of this field is TRUE if the
347. addend is recorded with the section contents; when performing a
348. partial link (ld -r) the section contents (the data) will be
349. modified. The value of this field is FALSE if addends are
350. recorded with the relocation (in arelent.addend); when performing
351. a partial link the relocation will be modified.
352. All relocations for all ELF USE_RELA targets should set this field
353. to FALSE (values of TRUE should be looked on with suspicion).
354. However, the converse is not true: not all relocations of all ELF
355. USE_REL targets set this field to TRUE. Why this is so is peculiar
356. to each particular target. For relocs that aren't used in partial
357. links (e.g. GOT stuff) it doesn't matter what this is set to. *}
252b5132
RH
358. boolean partial_inplace;
359.
360. {* The src_mask selects which parts of the read in data
361. are to be used in the relocation sum. E.g., if this was an 8 bit
88b6bae0 362. byte of data which we read and relocated, this would be
252b5132
RH
363. 0x000000ff. When we have relocs which have an addend, such as
364. sun4 extended relocs, the value in the offset part of a
365. relocating field is garbage so we never use it. In this case
366. the mask would be 0x00000000. *}
367. bfd_vma src_mask;
368.
369. {* The dst_mask selects which parts of the instruction are replaced
370. into the instruction. In most cases src_mask == dst_mask,
371. except in the above special case, where dst_mask would be
372. 0x000000ff, and src_mask would be 0x00000000. *}
373. bfd_vma dst_mask;
374.
375. {* When some formats create PC relative instructions, they leave
376. the value of the pc of the place being relocated in the offset
377. slot of the instruction, so that a PC relative relocation can
378. be made just by adding in an ordinary offset (e.g., sun3 a.out).
379. Some formats leave the displacement part of an instruction
380. empty (e.g., m88k bcs); this flag signals the fact.*}
381. boolean pcrel_offset;
382.
383.};
384
385*/
386
387/*
388FUNCTION
389 The HOWTO Macro
390
391DESCRIPTION
392 The HOWTO define is horrible and will go away.
393
394
395.#define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
396. {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
397
398DESCRIPTION
399 And will be replaced with the totally magic way. But for the
400 moment, we are compatible, so do it this way.
401
402
403.#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN)
404.
5f771d47
ILT
405
406DESCRIPTION
407 This is used to fill in an empty howto entry in an array.
408
409.#define EMPTY_HOWTO(C) \
410. HOWTO((C),0,0,0,false,0,complain_overflow_dont,NULL,NULL,false,0,0,false)
411.
412
252b5132
RH
413DESCRIPTION
414 Helper routine to turn a symbol into a relocation value.
415
416.#define HOWTO_PREPARE(relocation, symbol) \
417. { \
418. if (symbol != (asymbol *)NULL) { \
419. if (bfd_is_com_section (symbol->section)) { \
420. relocation = 0; \
421. } \
422. else { \
423. relocation = symbol->value; \
424. } \
425. } \
426.}
427
428*/
429
430/*
431FUNCTION
432 bfd_get_reloc_size
433
434SYNOPSIS
435 unsigned int bfd_get_reloc_size (reloc_howto_type *);
436
437DESCRIPTION
438 For a reloc_howto_type that operates on a fixed number of bytes,
439 this returns the number of bytes operated on.
440 */
441
442unsigned int
443bfd_get_reloc_size (howto)
444 reloc_howto_type *howto;
445{
446 switch (howto->size)
447 {
448 case 0: return 1;
449 case 1: return 2;
450 case 2: return 4;
451 case 3: return 0;
452 case 4: return 8;
453 case 8: return 16;
454 case -2: return 4;
455 default: abort ();
456 }
457}
458
459/*
460TYPEDEF
461 arelent_chain
462
463DESCRIPTION
464
465 How relocs are tied together in an <<asection>>:
466
467.typedef struct relent_chain {
468. arelent relent;
469. struct relent_chain *next;
470.} arelent_chain;
471
472*/
473
474/* N_ONES produces N one bits, without overflowing machine arithmetic. */
475#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
476
477/*
478FUNCTION
479 bfd_check_overflow
480
481SYNOPSIS
482 bfd_reloc_status_type
483 bfd_check_overflow
484 (enum complain_overflow how,
485 unsigned int bitsize,
486 unsigned int rightshift,
487 unsigned int addrsize,
488 bfd_vma relocation);
489
490DESCRIPTION
491 Perform overflow checking on @var{relocation} which has
492 @var{bitsize} significant bits and will be shifted right by
493 @var{rightshift} bits, on a machine with addresses containing
494 @var{addrsize} significant bits. The result is either of
495 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
496
497*/
498
499bfd_reloc_status_type
500bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
501 enum complain_overflow how;
502 unsigned int bitsize;
503 unsigned int rightshift;
504 unsigned int addrsize;
505 bfd_vma relocation;
506{
507 bfd_vma fieldmask, addrmask, signmask, ss, a;
508 bfd_reloc_status_type flag = bfd_reloc_ok;
509
510 a = relocation;
511
512 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
513 we'll be permissive: extra bits in the field mask will
514 automatically extend the address mask for purposes of the
515 overflow check. */
516 fieldmask = N_ONES (bitsize);
517 addrmask = N_ONES (addrsize) | fieldmask;
518
519 switch (how)
520 {
521 case complain_overflow_dont:
522 break;
523
524 case complain_overflow_signed:
525 /* If any sign bits are set, all sign bits must be set. That
526 is, A must be a valid negative address after shifting. */
527 a = (a & addrmask) >> rightshift;
528 signmask = ~ (fieldmask >> 1);
529 ss = a & signmask;
530 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
531 flag = bfd_reloc_overflow;
532 break;
533
534 case complain_overflow_unsigned:
535 /* We have an overflow if the address does not fit in the field. */
536 a = (a & addrmask) >> rightshift;
537 if ((a & ~ fieldmask) != 0)
538 flag = bfd_reloc_overflow;
539 break;
540
541 case complain_overflow_bitfield:
542 /* Bitfields are sometimes signed, sometimes unsigned. We
d5afc56e
AM
543 explicitly allow an address wrap too, which means a bitfield
544 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
545 if the value has some, but not all, bits set outside the
546 field. */
252b5132 547 a >>= rightshift;
d5afc56e
AM
548 ss = a & ~ fieldmask;
549 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
550 flag = bfd_reloc_overflow;
252b5132
RH
551 break;
552
553 default:
554 abort ();
555 }
556
557 return flag;
558}
559
560/*
561FUNCTION
562 bfd_perform_relocation
563
564SYNOPSIS
565 bfd_reloc_status_type
566 bfd_perform_relocation
567 (bfd *abfd,
568 arelent *reloc_entry,
569 PTR data,
570 asection *input_section,
571 bfd *output_bfd,
572 char **error_message);
573
574DESCRIPTION
575 If @var{output_bfd} is supplied to this function, the
576 generated image will be relocatable; the relocations are
577 copied to the output file after they have been changed to
578 reflect the new state of the world. There are two ways of
579 reflecting the results of partial linkage in an output file:
580 by modifying the output data in place, and by modifying the
581 relocation record. Some native formats (e.g., basic a.out and
582 basic coff) have no way of specifying an addend in the
583 relocation type, so the addend has to go in the output data.
584 This is no big deal since in these formats the output data
585 slot will always be big enough for the addend. Complex reloc
586 types with addends were invented to solve just this problem.
587 The @var{error_message} argument is set to an error message if
588 this return @code{bfd_reloc_dangerous}.
589
590*/
591
592
593bfd_reloc_status_type
594bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
595 error_message)
596 bfd *abfd;
597 arelent *reloc_entry;
598 PTR data;
599 asection *input_section;
600 bfd *output_bfd;
601 char **error_message;
602{
603 bfd_vma relocation;
604 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 605 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
606 bfd_vma output_base = 0;
607 reloc_howto_type *howto = reloc_entry->howto;
608 asection *reloc_target_output_section;
609 asymbol *symbol;
610
611 symbol = *(reloc_entry->sym_ptr_ptr);
612 if (bfd_is_abs_section (symbol->section)
613 && output_bfd != (bfd *) NULL)
614 {
615 reloc_entry->address += input_section->output_offset;
616 return bfd_reloc_ok;
617 }
618
619 /* If we are not producing relocateable output, return an error if
620 the symbol is not defined. An undefined weak symbol is
621 considered to have a value of zero (SVR4 ABI, p. 4-27). */
622 if (bfd_is_und_section (symbol->section)
623 && (symbol->flags & BSF_WEAK) == 0
624 && output_bfd == (bfd *) NULL)
625 flag = bfd_reloc_undefined;
626
627 /* If there is a function supplied to handle this relocation type,
628 call it. It'll return `bfd_reloc_continue' if further processing
629 can be done. */
630 if (howto->special_function)
631 {
632 bfd_reloc_status_type cont;
633 cont = howto->special_function (abfd, reloc_entry, symbol, data,
634 input_section, output_bfd,
635 error_message);
636 if (cont != bfd_reloc_continue)
637 return cont;
638 }
639
640 /* Is the address of the relocation really within the section? */
9a968f43
NC
641 if (reloc_entry->address > input_section->_cooked_size /
642 bfd_octets_per_byte (abfd))
252b5132
RH
643 return bfd_reloc_outofrange;
644
645 /* Work out which section the relocation is targetted at and the
646 initial relocation command value. */
647
648 /* Get symbol value. (Common symbols are special.) */
649 if (bfd_is_com_section (symbol->section))
650 relocation = 0;
651 else
652 relocation = symbol->value;
653
654
655 reloc_target_output_section = symbol->section->output_section;
656
657 /* Convert input-section-relative symbol value to absolute. */
658 if (output_bfd && howto->partial_inplace == false)
659 output_base = 0;
660 else
661 output_base = reloc_target_output_section->vma;
662
663 relocation += output_base + symbol->section->output_offset;
664
665 /* Add in supplied addend. */
666 relocation += reloc_entry->addend;
667
668 /* Here the variable relocation holds the final address of the
669 symbol we are relocating against, plus any addend. */
670
671 if (howto->pc_relative == true)
672 {
673 /* This is a PC relative relocation. We want to set RELOCATION
674 to the distance between the address of the symbol and the
675 location. RELOCATION is already the address of the symbol.
676
677 We start by subtracting the address of the section containing
678 the location.
679
680 If pcrel_offset is set, we must further subtract the position
681 of the location within the section. Some targets arrange for
682 the addend to be the negative of the position of the location
683 within the section; for example, i386-aout does this. For
684 i386-aout, pcrel_offset is false. Some other targets do not
685 include the position of the location; for example, m88kbcs,
686 or ELF. For those targets, pcrel_offset is true.
687
688 If we are producing relocateable output, then we must ensure
689 that this reloc will be correctly computed when the final
690 relocation is done. If pcrel_offset is false we want to wind
691 up with the negative of the location within the section,
692 which means we must adjust the existing addend by the change
693 in the location within the section. If pcrel_offset is true
694 we do not want to adjust the existing addend at all.
695
696 FIXME: This seems logical to me, but for the case of
697 producing relocateable output it is not what the code
698 actually does. I don't want to change it, because it seems
699 far too likely that something will break. */
700
701 relocation -=
702 input_section->output_section->vma + input_section->output_offset;
703
704 if (howto->pcrel_offset == true)
705 relocation -= reloc_entry->address;
706 }
707
708 if (output_bfd != (bfd *) NULL)
709 {
710 if (howto->partial_inplace == false)
711 {
712 /* This is a partial relocation, and we want to apply the relocation
713 to the reloc entry rather than the raw data. Modify the reloc
714 inplace to reflect what we now know. */
715 reloc_entry->addend = relocation;
716 reloc_entry->address += input_section->output_offset;
717 return flag;
718 }
719 else
720 {
721 /* This is a partial relocation, but inplace, so modify the
722 reloc record a bit.
723
724 If we've relocated with a symbol with a section, change
725 into a ref to the section belonging to the symbol. */
726
727 reloc_entry->address += input_section->output_offset;
728
729 /* WTF?? */
730 if (abfd->xvec->flavour == bfd_target_coff_flavour
731 && strcmp (abfd->xvec->name, "aixcoff-rs6000") != 0
732 && strcmp (abfd->xvec->name, "xcoff-powermac") != 0
733 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
734 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
735 {
736#if 1
737 /* For m68k-coff, the addend was being subtracted twice during
738 relocation with -r. Removing the line below this comment
739 fixes that problem; see PR 2953.
740
741However, Ian wrote the following, regarding removing the line below,
742which explains why it is still enabled: --djm
743
744If you put a patch like that into BFD you need to check all the COFF
745linkers. I am fairly certain that patch will break coff-i386 (e.g.,
746SCO); see coff_i386_reloc in coff-i386.c where I worked around the
747problem in a different way. There may very well be a reason that the
748code works as it does.
749
750Hmmm. The first obvious point is that bfd_perform_relocation should
751not have any tests that depend upon the flavour. It's seem like
752entirely the wrong place for such a thing. The second obvious point
753is that the current code ignores the reloc addend when producing
754relocateable output for COFF. That's peculiar. In fact, I really
755have no idea what the point of the line you want to remove is.
756
757A typical COFF reloc subtracts the old value of the symbol and adds in
758the new value to the location in the object file (if it's a pc
759relative reloc it adds the difference between the symbol value and the
760location). When relocating we need to preserve that property.
761
762BFD handles this by setting the addend to the negative of the old
763value of the symbol. Unfortunately it handles common symbols in a
764non-standard way (it doesn't subtract the old value) but that's a
765different story (we can't change it without losing backward
766compatibility with old object files) (coff-i386 does subtract the old
767value, to be compatible with existing coff-i386 targets, like SCO).
768
769So everything works fine when not producing relocateable output. When
770we are producing relocateable output, logically we should do exactly
771what we do when not producing relocateable output. Therefore, your
772patch is correct. In fact, it should probably always just set
773reloc_entry->addend to 0 for all cases, since it is, in fact, going to
774add the value into the object file. This won't hurt the COFF code,
775which doesn't use the addend; I'm not sure what it will do to other
776formats (the thing to check for would be whether any formats both use
777the addend and set partial_inplace).
778
779When I wanted to make coff-i386 produce relocateable output, I ran
780into the problem that you are running into: I wanted to remove that
781line. Rather than risk it, I made the coff-i386 relocs use a special
782function; it's coff_i386_reloc in coff-i386.c. The function
783specifically adds the addend field into the object file, knowing that
784bfd_perform_relocation is not going to. If you remove that line, then
785coff-i386.c will wind up adding the addend field in twice. It's
786trivial to fix; it just needs to be done.
787
788The problem with removing the line is just that it may break some
789working code. With BFD it's hard to be sure of anything. The right
790way to deal with this is simply to build and test at least all the
791supported COFF targets. It should be straightforward if time and disk
792space consuming. For each target:
793 1) build the linker
794 2) generate some executable, and link it using -r (I would
795 probably use paranoia.o and link against newlib/libc.a, which
796 for all the supported targets would be available in
797 /usr/cygnus/progressive/H-host/target/lib/libc.a).
798 3) make the change to reloc.c
799 4) rebuild the linker
800 5) repeat step 2
801 6) if the resulting object files are the same, you have at least
802 made it no worse
803 7) if they are different you have to figure out which version is
804 right
805*/
806 relocation -= reloc_entry->addend;
807#endif
808 reloc_entry->addend = 0;
809 }
810 else
811 {
812 reloc_entry->addend = relocation;
813 }
814 }
815 }
816 else
817 {
818 reloc_entry->addend = 0;
819 }
820
821 /* FIXME: This overflow checking is incomplete, because the value
822 might have overflowed before we get here. For a correct check we
823 need to compute the value in a size larger than bitsize, but we
824 can't reasonably do that for a reloc the same size as a host
825 machine word.
826 FIXME: We should also do overflow checking on the result after
827 adding in the value contained in the object file. */
828 if (howto->complain_on_overflow != complain_overflow_dont
829 && flag == bfd_reloc_ok)
830 flag = bfd_check_overflow (howto->complain_on_overflow,
831 howto->bitsize,
832 howto->rightshift,
833 bfd_arch_bits_per_address (abfd),
834 relocation);
835
836 /*
837 Either we are relocating all the way, or we don't want to apply
838 the relocation to the reloc entry (probably because there isn't
839 any room in the output format to describe addends to relocs)
840 */
841
842 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
843 (OSF version 1.3, compiler version 3.11). It miscompiles the
844 following program:
845
846 struct str
847 {
848 unsigned int i0;
849 } s = { 0 };
850
851 int
852 main ()
853 {
854 unsigned long x;
855
856 x = 0x100000000;
857 x <<= (unsigned long) s.i0;
858 if (x == 0)
859 printf ("failed\n");
860 else
861 printf ("succeeded (%lx)\n", x);
862 }
863 */
864
865 relocation >>= (bfd_vma) howto->rightshift;
866
867 /* Shift everything up to where it's going to be used */
868
869 relocation <<= (bfd_vma) howto->bitpos;
870
871 /* Wait for the day when all have the mask in them */
872
873 /* What we do:
874 i instruction to be left alone
875 o offset within instruction
876 r relocation offset to apply
877 S src mask
878 D dst mask
879 N ~dst mask
880 A part 1
881 B part 2
882 R result
883
884 Do this:
88b6bae0
AM
885 (( i i i i i o o o o o from bfd_get<size>
886 and S S S S S) to get the size offset we want
887 + r r r r r r r r r r) to get the final value to place
252b5132
RH
888 and D D D D D to chop to right size
889 -----------------------
88b6bae0 890 = A A A A A
252b5132 891 And this:
88b6bae0
AM
892 ( i i i i i o o o o o from bfd_get<size>
893 and N N N N N ) get instruction
252b5132 894 -----------------------
88b6bae0 895 = B B B B B
252b5132
RH
896
897 And then:
88b6bae0
AM
898 ( B B B B B
899 or A A A A A)
252b5132 900 -----------------------
88b6bae0 901 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
902 */
903
904#define DOIT(x) \
905 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
906
907 switch (howto->size)
908 {
909 case 0:
910 {
9a968f43 911 char x = bfd_get_8 (abfd, (char *) data + octets);
252b5132 912 DOIT (x);
9a968f43 913 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
914 }
915 break;
916
917 case 1:
918 {
9a968f43 919 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132 920 DOIT (x);
9a968f43 921 bfd_put_16 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
922 }
923 break;
924 case 2:
925 {
9a968f43 926 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132 927 DOIT (x);
9a968f43 928 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
929 }
930 break;
931 case -2:
932 {
9a968f43 933 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132
RH
934 relocation = -relocation;
935 DOIT (x);
9a968f43 936 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
937 }
938 break;
939
940 case -1:
941 {
9a968f43 942 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132
RH
943 relocation = -relocation;
944 DOIT (x);
9a968f43 945 bfd_put_16 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
946 }
947 break;
948
949 case 3:
950 /* Do nothing */
951 break;
952
953 case 4:
954#ifdef BFD64
955 {
9a968f43 956 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
252b5132 957 DOIT (x);
9a968f43 958 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
959 }
960#else
961 abort ();
962#endif
963 break;
964 default:
965 return bfd_reloc_other;
966 }
967
968 return flag;
969}
970
971/*
972FUNCTION
973 bfd_install_relocation
974
975SYNOPSIS
976 bfd_reloc_status_type
977 bfd_install_relocation
978 (bfd *abfd,
979 arelent *reloc_entry,
980 PTR data, bfd_vma data_start,
981 asection *input_section,
982 char **error_message);
983
984DESCRIPTION
985 This looks remarkably like <<bfd_perform_relocation>>, except it
986 does not expect that the section contents have been filled in.
987 I.e., it's suitable for use when creating, rather than applying
988 a relocation.
989
990 For now, this function should be considered reserved for the
991 assembler.
992
993*/
994
995
996bfd_reloc_status_type
997bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
998 input_section, error_message)
999 bfd *abfd;
1000 arelent *reloc_entry;
1001 PTR data_start;
1002 bfd_vma data_start_offset;
1003 asection *input_section;
1004 char **error_message;
1005{
1006 bfd_vma relocation;
1007 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 1008 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
1009 bfd_vma output_base = 0;
1010 reloc_howto_type *howto = reloc_entry->howto;
1011 asection *reloc_target_output_section;
1012 asymbol *symbol;
1013 bfd_byte *data;
1014
1015 symbol = *(reloc_entry->sym_ptr_ptr);
1016 if (bfd_is_abs_section (symbol->section))
1017 {
1018 reloc_entry->address += input_section->output_offset;
1019 return bfd_reloc_ok;
1020 }
1021
1022 /* If there is a function supplied to handle this relocation type,
1023 call it. It'll return `bfd_reloc_continue' if further processing
1024 can be done. */
1025 if (howto->special_function)
1026 {
1027 bfd_reloc_status_type cont;
88b6bae0 1028
252b5132
RH
1029 /* XXX - The special_function calls haven't been fixed up to deal
1030 with creating new relocations and section contents. */
1031 cont = howto->special_function (abfd, reloc_entry, symbol,
1032 /* XXX - Non-portable! */
1033 ((bfd_byte *) data_start
1034 - data_start_offset),
1035 input_section, abfd, error_message);
1036 if (cont != bfd_reloc_continue)
1037 return cont;
1038 }
1039
1040 /* Is the address of the relocation really within the section? */
1041 if (reloc_entry->address > input_section->_cooked_size)
1042 return bfd_reloc_outofrange;
1043
1044 /* Work out which section the relocation is targetted at and the
1045 initial relocation command value. */
1046
1047 /* Get symbol value. (Common symbols are special.) */
1048 if (bfd_is_com_section (symbol->section))
1049 relocation = 0;
1050 else
1051 relocation = symbol->value;
1052
1053 reloc_target_output_section = symbol->section->output_section;
1054
1055 /* Convert input-section-relative symbol value to absolute. */
1056 if (howto->partial_inplace == false)
1057 output_base = 0;
1058 else
1059 output_base = reloc_target_output_section->vma;
1060
1061 relocation += output_base + symbol->section->output_offset;
1062
1063 /* Add in supplied addend. */
1064 relocation += reloc_entry->addend;
1065
1066 /* Here the variable relocation holds the final address of the
1067 symbol we are relocating against, plus any addend. */
1068
1069 if (howto->pc_relative == true)
1070 {
1071 /* This is a PC relative relocation. We want to set RELOCATION
1072 to the distance between the address of the symbol and the
1073 location. RELOCATION is already the address of the symbol.
1074
1075 We start by subtracting the address of the section containing
1076 the location.
1077
1078 If pcrel_offset is set, we must further subtract the position
1079 of the location within the section. Some targets arrange for
1080 the addend to be the negative of the position of the location
1081 within the section; for example, i386-aout does this. For
1082 i386-aout, pcrel_offset is false. Some other targets do not
1083 include the position of the location; for example, m88kbcs,
1084 or ELF. For those targets, pcrel_offset is true.
1085
1086 If we are producing relocateable output, then we must ensure
1087 that this reloc will be correctly computed when the final
1088 relocation is done. If pcrel_offset is false we want to wind
1089 up with the negative of the location within the section,
1090 which means we must adjust the existing addend by the change
1091 in the location within the section. If pcrel_offset is true
1092 we do not want to adjust the existing addend at all.
1093
1094 FIXME: This seems logical to me, but for the case of
1095 producing relocateable output it is not what the code
1096 actually does. I don't want to change it, because it seems
1097 far too likely that something will break. */
1098
1099 relocation -=
1100 input_section->output_section->vma + input_section->output_offset;
1101
1102 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1103 relocation -= reloc_entry->address;
1104 }
1105
1106 if (howto->partial_inplace == false)
1107 {
1108 /* This is a partial relocation, and we want to apply the relocation
1109 to the reloc entry rather than the raw data. Modify the reloc
1110 inplace to reflect what we now know. */
1111 reloc_entry->addend = relocation;
1112 reloc_entry->address += input_section->output_offset;
1113 return flag;
1114 }
1115 else
1116 {
1117 /* This is a partial relocation, but inplace, so modify the
1118 reloc record a bit.
1119
1120 If we've relocated with a symbol with a section, change
1121 into a ref to the section belonging to the symbol. */
1122
1123 reloc_entry->address += input_section->output_offset;
1124
1125 /* WTF?? */
1126 if (abfd->xvec->flavour == bfd_target_coff_flavour
1127 && strcmp (abfd->xvec->name, "aixcoff-rs6000") != 0
1128 && strcmp (abfd->xvec->name, "xcoff-powermac") != 0
1129 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1130 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1131 {
1132#if 1
1133/* For m68k-coff, the addend was being subtracted twice during
1134 relocation with -r. Removing the line below this comment
1135 fixes that problem; see PR 2953.
1136
1137However, Ian wrote the following, regarding removing the line below,
1138which explains why it is still enabled: --djm
1139
1140If you put a patch like that into BFD you need to check all the COFF
1141linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1142SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1143problem in a different way. There may very well be a reason that the
1144code works as it does.
1145
1146Hmmm. The first obvious point is that bfd_install_relocation should
1147not have any tests that depend upon the flavour. It's seem like
1148entirely the wrong place for such a thing. The second obvious point
1149is that the current code ignores the reloc addend when producing
1150relocateable output for COFF. That's peculiar. In fact, I really
1151have no idea what the point of the line you want to remove is.
1152
1153A typical COFF reloc subtracts the old value of the symbol and adds in
1154the new value to the location in the object file (if it's a pc
1155relative reloc it adds the difference between the symbol value and the
1156location). When relocating we need to preserve that property.
1157
1158BFD handles this by setting the addend to the negative of the old
1159value of the symbol. Unfortunately it handles common symbols in a
1160non-standard way (it doesn't subtract the old value) but that's a
1161different story (we can't change it without losing backward
1162compatibility with old object files) (coff-i386 does subtract the old
1163value, to be compatible with existing coff-i386 targets, like SCO).
1164
1165So everything works fine when not producing relocateable output. When
1166we are producing relocateable output, logically we should do exactly
1167what we do when not producing relocateable output. Therefore, your
1168patch is correct. In fact, it should probably always just set
1169reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1170add the value into the object file. This won't hurt the COFF code,
1171which doesn't use the addend; I'm not sure what it will do to other
1172formats (the thing to check for would be whether any formats both use
1173the addend and set partial_inplace).
1174
1175When I wanted to make coff-i386 produce relocateable output, I ran
1176into the problem that you are running into: I wanted to remove that
1177line. Rather than risk it, I made the coff-i386 relocs use a special
1178function; it's coff_i386_reloc in coff-i386.c. The function
1179specifically adds the addend field into the object file, knowing that
1180bfd_install_relocation is not going to. If you remove that line, then
1181coff-i386.c will wind up adding the addend field in twice. It's
1182trivial to fix; it just needs to be done.
1183
1184The problem with removing the line is just that it may break some
1185working code. With BFD it's hard to be sure of anything. The right
1186way to deal with this is simply to build and test at least all the
1187supported COFF targets. It should be straightforward if time and disk
1188space consuming. For each target:
1189 1) build the linker
1190 2) generate some executable, and link it using -r (I would
1191 probably use paranoia.o and link against newlib/libc.a, which
1192 for all the supported targets would be available in
1193 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1194 3) make the change to reloc.c
1195 4) rebuild the linker
1196 5) repeat step 2
1197 6) if the resulting object files are the same, you have at least
1198 made it no worse
1199 7) if they are different you have to figure out which version is
1200 right
1201*/
1202 relocation -= reloc_entry->addend;
1203#endif
1204 reloc_entry->addend = 0;
1205 }
1206 else
1207 {
1208 reloc_entry->addend = relocation;
1209 }
1210 }
1211
1212 /* FIXME: This overflow checking is incomplete, because the value
1213 might have overflowed before we get here. For a correct check we
1214 need to compute the value in a size larger than bitsize, but we
1215 can't reasonably do that for a reloc the same size as a host
1216 machine word.
1217 FIXME: We should also do overflow checking on the result after
1218 adding in the value contained in the object file. */
1219 if (howto->complain_on_overflow != complain_overflow_dont)
1220 flag = bfd_check_overflow (howto->complain_on_overflow,
1221 howto->bitsize,
1222 howto->rightshift,
1223 bfd_arch_bits_per_address (abfd),
1224 relocation);
1225
1226 /*
1227 Either we are relocating all the way, or we don't want to apply
1228 the relocation to the reloc entry (probably because there isn't
1229 any room in the output format to describe addends to relocs)
1230 */
1231
1232 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1233 (OSF version 1.3, compiler version 3.11). It miscompiles the
1234 following program:
1235
1236 struct str
1237 {
1238 unsigned int i0;
1239 } s = { 0 };
1240
1241 int
1242 main ()
1243 {
1244 unsigned long x;
1245
1246 x = 0x100000000;
1247 x <<= (unsigned long) s.i0;
1248 if (x == 0)
1249 printf ("failed\n");
1250 else
1251 printf ("succeeded (%lx)\n", x);
1252 }
1253 */
1254
1255 relocation >>= (bfd_vma) howto->rightshift;
1256
1257 /* Shift everything up to where it's going to be used */
1258
1259 relocation <<= (bfd_vma) howto->bitpos;
1260
1261 /* Wait for the day when all have the mask in them */
1262
1263 /* What we do:
1264 i instruction to be left alone
1265 o offset within instruction
1266 r relocation offset to apply
1267 S src mask
1268 D dst mask
1269 N ~dst mask
1270 A part 1
1271 B part 2
1272 R result
1273
1274 Do this:
88b6bae0
AM
1275 (( i i i i i o o o o o from bfd_get<size>
1276 and S S S S S) to get the size offset we want
1277 + r r r r r r r r r r) to get the final value to place
252b5132
RH
1278 and D D D D D to chop to right size
1279 -----------------------
88b6bae0 1280 = A A A A A
252b5132 1281 And this:
88b6bae0
AM
1282 ( i i i i i o o o o o from bfd_get<size>
1283 and N N N N N ) get instruction
252b5132 1284 -----------------------
88b6bae0 1285 = B B B B B
252b5132
RH
1286
1287 And then:
88b6bae0
AM
1288 ( B B B B B
1289 or A A A A A)
252b5132 1290 -----------------------
88b6bae0 1291 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
1292 */
1293
1294#define DOIT(x) \
1295 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1296
9a968f43 1297 data = (bfd_byte *) data_start + (octets - data_start_offset);
252b5132
RH
1298
1299 switch (howto->size)
1300 {
1301 case 0:
1302 {
1303 char x = bfd_get_8 (abfd, (char *) data);
1304 DOIT (x);
1305 bfd_put_8 (abfd, x, (unsigned char *) data);
1306 }
1307 break;
1308
1309 case 1:
1310 {
1311 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1312 DOIT (x);
1313 bfd_put_16 (abfd, x, (unsigned char *) data);
1314 }
1315 break;
1316 case 2:
1317 {
1318 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1319 DOIT (x);
1320 bfd_put_32 (abfd, x, (bfd_byte *) data);
1321 }
1322 break;
1323 case -2:
1324 {
1325 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1326 relocation = -relocation;
1327 DOIT (x);
1328 bfd_put_32 (abfd, x, (bfd_byte *) data);
1329 }
1330 break;
1331
1332 case 3:
1333 /* Do nothing */
1334 break;
1335
1336 case 4:
1337 {
1338 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1339 DOIT (x);
1340 bfd_put_64 (abfd, x, (bfd_byte *) data);
1341 }
1342 break;
1343 default:
1344 return bfd_reloc_other;
1345 }
1346
1347 return flag;
1348}
1349
1350/* This relocation routine is used by some of the backend linkers.
1351 They do not construct asymbol or arelent structures, so there is no
1352 reason for them to use bfd_perform_relocation. Also,
1353 bfd_perform_relocation is so hacked up it is easier to write a new
1354 function than to try to deal with it.
1355
1356 This routine does a final relocation. Whether it is useful for a
1357 relocateable link depends upon how the object format defines
1358 relocations.
1359
1360 FIXME: This routine ignores any special_function in the HOWTO,
1361 since the existing special_function values have been written for
1362 bfd_perform_relocation.
1363
1364 HOWTO is the reloc howto information.
1365 INPUT_BFD is the BFD which the reloc applies to.
1366 INPUT_SECTION is the section which the reloc applies to.
1367 CONTENTS is the contents of the section.
1368 ADDRESS is the address of the reloc within INPUT_SECTION.
1369 VALUE is the value of the symbol the reloc refers to.
1370 ADDEND is the addend of the reloc. */
1371
1372bfd_reloc_status_type
1373_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1374 value, addend)
1375 reloc_howto_type *howto;
1376 bfd *input_bfd;
1377 asection *input_section;
1378 bfd_byte *contents;
1379 bfd_vma address;
1380 bfd_vma value;
1381 bfd_vma addend;
1382{
1383 bfd_vma relocation;
1384
1385 /* Sanity check the address. */
1386 if (address > input_section->_raw_size)
1387 return bfd_reloc_outofrange;
1388
1389 /* This function assumes that we are dealing with a basic relocation
1390 against a symbol. We want to compute the value of the symbol to
1391 relocate to. This is just VALUE, the value of the symbol, plus
1392 ADDEND, any addend associated with the reloc. */
1393 relocation = value + addend;
1394
1395 /* If the relocation is PC relative, we want to set RELOCATION to
1396 the distance between the symbol (currently in RELOCATION) and the
1397 location we are relocating. Some targets (e.g., i386-aout)
1398 arrange for the contents of the section to be the negative of the
1399 offset of the location within the section; for such targets
1400 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1401 simply leave the contents of the section as zero; for such
1402 targets pcrel_offset is true. If pcrel_offset is false we do not
1403 need to subtract out the offset of the location within the
1404 section (which is just ADDRESS). */
1405 if (howto->pc_relative)
1406 {
1407 relocation -= (input_section->output_section->vma
1408 + input_section->output_offset);
1409 if (howto->pcrel_offset)
1410 relocation -= address;
1411 }
1412
1413 return _bfd_relocate_contents (howto, input_bfd, relocation,
1414 contents + address);
1415}
1416
1417/* Relocate a given location using a given value and howto. */
1418
1419bfd_reloc_status_type
1420_bfd_relocate_contents (howto, input_bfd, relocation, location)
1421 reloc_howto_type *howto;
1422 bfd *input_bfd;
1423 bfd_vma relocation;
1424 bfd_byte *location;
1425{
1426 int size;
7442e600 1427 bfd_vma x = 0;
d5afc56e 1428 bfd_reloc_status_type flag;
252b5132
RH
1429 unsigned int rightshift = howto->rightshift;
1430 unsigned int bitpos = howto->bitpos;
1431
1432 /* If the size is negative, negate RELOCATION. This isn't very
1433 general. */
1434 if (howto->size < 0)
1435 relocation = -relocation;
1436
1437 /* Get the value we are going to relocate. */
1438 size = bfd_get_reloc_size (howto);
1439 switch (size)
1440 {
1441 default:
1442 case 0:
1443 abort ();
1444 case 1:
1445 x = bfd_get_8 (input_bfd, location);
1446 break;
1447 case 2:
1448 x = bfd_get_16 (input_bfd, location);
1449 break;
1450 case 4:
1451 x = bfd_get_32 (input_bfd, location);
1452 break;
1453 case 8:
1454#ifdef BFD64
1455 x = bfd_get_64 (input_bfd, location);
1456#else
1457 abort ();
1458#endif
1459 break;
1460 }
1461
1462 /* Check for overflow. FIXME: We may drop bits during the addition
1463 which we don't check for. We must either check at every single
1464 operation, which would be tedious, or we must do the computations
1465 in a type larger than bfd_vma, which would be inefficient. */
d5afc56e 1466 flag = bfd_reloc_ok;
252b5132
RH
1467 if (howto->complain_on_overflow != complain_overflow_dont)
1468 {
1469 bfd_vma addrmask, fieldmask, signmask, ss;
1470 bfd_vma a, b, sum;
1471
1472 /* Get the values to be added together. For signed and unsigned
1473 relocations, we assume that all values should be truncated to
1474 the size of an address. For bitfields, all the bits matter.
1475 See also bfd_check_overflow. */
1476 fieldmask = N_ONES (howto->bitsize);
1477 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1478 a = relocation;
1479 b = x & howto->src_mask;
1480
1481 switch (howto->complain_on_overflow)
1482 {
1483 case complain_overflow_signed:
1484 a = (a & addrmask) >> rightshift;
1485
1486 /* If any sign bits are set, all sign bits must be set.
1487 That is, A must be a valid negative address after
1488 shifting. */
1489 signmask = ~ (fieldmask >> 1);
1490 ss = a & signmask;
1491 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
d5afc56e 1492 flag = bfd_reloc_overflow;
252b5132
RH
1493
1494 /* We only need this next bit of code if the sign bit of B
1495 is below the sign bit of A. This would only happen if
1496 SRC_MASK had fewer bits than BITSIZE. Note that if
1497 SRC_MASK has more bits than BITSIZE, we can get into
1498 trouble; we would need to verify that B is in range, as
1499 we do for A above. */
1500 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871
AM
1501
1502 /* Set all the bits above the sign bit. */
1503 b = (b ^ signmask) - signmask;
252b5132
RH
1504
1505 b = (b & addrmask) >> bitpos;
1506
1507 /* Now we can do the addition. */
1508 sum = a + b;
1509
1510 /* See if the result has the correct sign. Bits above the
1511 sign bit are junk now; ignore them. If the sum is
1512 positive, make sure we did not have all negative inputs;
1513 if the sum is negative, make sure we did not have all
1514 positive inputs. The test below looks only at the sign
1515 bits, and it really just
1516 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1517 */
1518 signmask = (fieldmask >> 1) + 1;
1519 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
d5afc56e 1520 flag = bfd_reloc_overflow;
252b5132
RH
1521
1522 break;
1523
1524 case complain_overflow_unsigned:
1525 /* Checking for an unsigned overflow is relatively easy:
1526 trim the addresses and add, and trim the result as well.
1527 Overflow is normally indicated when the result does not
1528 fit in the field. However, we also need to consider the
1529 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1530 input is 0x80000000, and bfd_vma is only 32 bits; then we
1531 will get sum == 0, but there is an overflow, since the
1532 inputs did not fit in the field. Instead of doing a
1533 separate test, we can check for this by or-ing in the
1534 operands when testing for the sum overflowing its final
1535 field. */
1536 a = (a & addrmask) >> rightshift;
1537 b = (b & addrmask) >> bitpos;
1538 sum = (a + b) & addrmask;
1539 if ((a | b | sum) & ~ fieldmask)
d5afc56e 1540 flag = bfd_reloc_overflow;
252b5132
RH
1541
1542 break;
1543
1544 case complain_overflow_bitfield:
d5afc56e 1545 /* Much like the signed check, but for a field one bit
8a4ac871 1546 wider, and no trimming inputs with addrmask. We allow a
d5afc56e
AM
1547 bitfield to represent numbers in the range -2**n to
1548 2**n-1, where n is the number of bits in the field.
1549 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1550 overflow, which is exactly what we want. */
252b5132 1551 a >>= rightshift;
252b5132 1552
d5afc56e
AM
1553 signmask = ~ fieldmask;
1554 ss = a & signmask;
1555 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1556 flag = bfd_reloc_overflow;
252b5132 1557
d5afc56e 1558 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871 1559 b = (b ^ signmask) - signmask;
252b5132 1560
d5afc56e 1561 b >>= bitpos;
44257b8b 1562
252b5132 1563 sum = a + b;
d5afc56e 1564
8a4ac871
AM
1565 /* We mask with addrmask here to explicitly allow an address
1566 wrap-around. The Linux kernel relies on it, and it is
1567 the only way to write assembler code which can run when
1568 loaded at a location 0x80000000 away from the location at
1569 which it is linked. */
d5afc56e 1570 signmask = fieldmask + 1;
8a4ac871 1571 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
d5afc56e 1572 flag = bfd_reloc_overflow;
252b5132
RH
1573
1574 break;
1575
1576 default:
1577 abort ();
1578 }
1579 }
1580
1581 /* Put RELOCATION in the right bits. */
1582 relocation >>= (bfd_vma) rightshift;
1583 relocation <<= (bfd_vma) bitpos;
1584
1585 /* Add RELOCATION to the right bits of X. */
1586 x = ((x & ~howto->dst_mask)
1587 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1588
1589 /* Put the relocated value back in the object file. */
1590 switch (size)
1591 {
1592 default:
1593 case 0:
1594 abort ();
1595 case 1:
1596 bfd_put_8 (input_bfd, x, location);
1597 break;
1598 case 2:
1599 bfd_put_16 (input_bfd, x, location);
1600 break;
1601 case 4:
1602 bfd_put_32 (input_bfd, x, location);
1603 break;
1604 case 8:
1605#ifdef BFD64
1606 bfd_put_64 (input_bfd, x, location);
1607#else
1608 abort ();
1609#endif
1610 break;
1611 }
1612
d5afc56e 1613 return flag;
252b5132
RH
1614}
1615
1616/*
1617DOCDD
1618INODE
1619 howto manager, , typedef arelent, Relocations
1620
1621SECTION
1622 The howto manager
1623
1624 When an application wants to create a relocation, but doesn't
1625 know what the target machine might call it, it can find out by
1626 using this bit of code.
1627
1628*/
1629
1630/*
1631TYPEDEF
1632 bfd_reloc_code_type
1633
1634DESCRIPTION
1635 The insides of a reloc code. The idea is that, eventually, there
1636 will be one enumerator for every type of relocation we ever do.
1637 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1638 return a howto pointer.
1639
1640 This does mean that the application must determine the correct
1641 enumerator value; you can't get a howto pointer from a random set
1642 of attributes.
1643
1644SENUM
1645 bfd_reloc_code_real
1646
1647ENUM
1648 BFD_RELOC_64
1649ENUMX
1650 BFD_RELOC_32
1651ENUMX
1652 BFD_RELOC_26
1653ENUMX
1654 BFD_RELOC_24
1655ENUMX
1656 BFD_RELOC_16
1657ENUMX
1658 BFD_RELOC_14
1659ENUMX
1660 BFD_RELOC_8
1661ENUMDOC
1662 Basic absolute relocations of N bits.
1663
1664ENUM
1665 BFD_RELOC_64_PCREL
1666ENUMX
1667 BFD_RELOC_32_PCREL
1668ENUMX
1669 BFD_RELOC_24_PCREL
1670ENUMX
1671 BFD_RELOC_16_PCREL
1672ENUMX
1673 BFD_RELOC_12_PCREL
1674ENUMX
1675 BFD_RELOC_8_PCREL
1676ENUMDOC
1677 PC-relative relocations. Sometimes these are relative to the address
1678of the relocation itself; sometimes they are relative to the start of
1679the section containing the relocation. It depends on the specific target.
1680
1681The 24-bit relocation is used in some Intel 960 configurations.
1682
1683ENUM
1684 BFD_RELOC_32_GOT_PCREL
1685ENUMX
1686 BFD_RELOC_16_GOT_PCREL
1687ENUMX
1688 BFD_RELOC_8_GOT_PCREL
1689ENUMX
1690 BFD_RELOC_32_GOTOFF
1691ENUMX
1692 BFD_RELOC_16_GOTOFF
1693ENUMX
1694 BFD_RELOC_LO16_GOTOFF
1695ENUMX
1696 BFD_RELOC_HI16_GOTOFF
1697ENUMX
1698 BFD_RELOC_HI16_S_GOTOFF
1699ENUMX
1700 BFD_RELOC_8_GOTOFF
1701ENUMX
1702 BFD_RELOC_32_PLT_PCREL
1703ENUMX
1704 BFD_RELOC_24_PLT_PCREL
1705ENUMX
1706 BFD_RELOC_16_PLT_PCREL
1707ENUMX
1708 BFD_RELOC_8_PLT_PCREL
1709ENUMX
1710 BFD_RELOC_32_PLTOFF
1711ENUMX
1712 BFD_RELOC_16_PLTOFF
1713ENUMX
1714 BFD_RELOC_LO16_PLTOFF
1715ENUMX
1716 BFD_RELOC_HI16_PLTOFF
1717ENUMX
1718 BFD_RELOC_HI16_S_PLTOFF
1719ENUMX
1720 BFD_RELOC_8_PLTOFF
1721ENUMDOC
1722 For ELF.
1723
1724ENUM
1725 BFD_RELOC_68K_GLOB_DAT
1726ENUMX
1727 BFD_RELOC_68K_JMP_SLOT
1728ENUMX
1729 BFD_RELOC_68K_RELATIVE
1730ENUMDOC
1731 Relocations used by 68K ELF.
1732
1733ENUM
1734 BFD_RELOC_32_BASEREL
1735ENUMX
1736 BFD_RELOC_16_BASEREL
1737ENUMX
1738 BFD_RELOC_LO16_BASEREL
1739ENUMX
1740 BFD_RELOC_HI16_BASEREL
1741ENUMX
1742 BFD_RELOC_HI16_S_BASEREL
1743ENUMX
1744 BFD_RELOC_8_BASEREL
1745ENUMX
1746 BFD_RELOC_RVA
1747ENUMDOC
1748 Linkage-table relative.
1749
1750ENUM
1751 BFD_RELOC_8_FFnn
1752ENUMDOC
1753 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1754
1755ENUM
1756 BFD_RELOC_32_PCREL_S2
1757ENUMX
1758 BFD_RELOC_16_PCREL_S2
1759ENUMX
1760 BFD_RELOC_23_PCREL_S2
1761ENUMDOC
1762 These PC-relative relocations are stored as word displacements --
1763i.e., byte displacements shifted right two bits. The 30-bit word
1764displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1765SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1766signed 16-bit displacement is used on the MIPS, and the 23-bit
1767displacement is used on the Alpha.
1768
1769ENUM
1770 BFD_RELOC_HI22
1771ENUMX
1772 BFD_RELOC_LO10
1773ENUMDOC
1774 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1775the target word. These are used on the SPARC.
1776
1777ENUM
1778 BFD_RELOC_GPREL16
1779ENUMX
1780 BFD_RELOC_GPREL32
1781ENUMDOC
1782 For systems that allocate a Global Pointer register, these are
1783displacements off that register. These relocation types are
1784handled specially, because the value the register will have is
1785decided relatively late.
1786
1787
1788ENUM
1789 BFD_RELOC_I960_CALLJ
1790ENUMDOC
1791 Reloc types used for i960/b.out.
1792
1793ENUM
1794 BFD_RELOC_NONE
1795ENUMX
1796 BFD_RELOC_SPARC_WDISP22
1797ENUMX
1798 BFD_RELOC_SPARC22
1799ENUMX
1800 BFD_RELOC_SPARC13
1801ENUMX
1802 BFD_RELOC_SPARC_GOT10
1803ENUMX
1804 BFD_RELOC_SPARC_GOT13
1805ENUMX
1806 BFD_RELOC_SPARC_GOT22
1807ENUMX
1808 BFD_RELOC_SPARC_PC10
1809ENUMX
1810 BFD_RELOC_SPARC_PC22
1811ENUMX
1812 BFD_RELOC_SPARC_WPLT30
1813ENUMX
1814 BFD_RELOC_SPARC_COPY
1815ENUMX
1816 BFD_RELOC_SPARC_GLOB_DAT
1817ENUMX
1818 BFD_RELOC_SPARC_JMP_SLOT
1819ENUMX
1820 BFD_RELOC_SPARC_RELATIVE
1821ENUMX
1822 BFD_RELOC_SPARC_UA32
1823ENUMDOC
1824 SPARC ELF relocations. There is probably some overlap with other
1825 relocation types already defined.
1826
1827ENUM
1828 BFD_RELOC_SPARC_BASE13
1829ENUMX
1830 BFD_RELOC_SPARC_BASE22
1831ENUMDOC
1832 I think these are specific to SPARC a.out (e.g., Sun 4).
1833
1834ENUMEQ
1835 BFD_RELOC_SPARC_64
1836 BFD_RELOC_64
1837ENUMX
1838 BFD_RELOC_SPARC_10
1839ENUMX
1840 BFD_RELOC_SPARC_11
1841ENUMX
1842 BFD_RELOC_SPARC_OLO10
1843ENUMX
1844 BFD_RELOC_SPARC_HH22
1845ENUMX
1846 BFD_RELOC_SPARC_HM10
1847ENUMX
1848 BFD_RELOC_SPARC_LM22
1849ENUMX
1850 BFD_RELOC_SPARC_PC_HH22
1851ENUMX
1852 BFD_RELOC_SPARC_PC_HM10
1853ENUMX
1854 BFD_RELOC_SPARC_PC_LM22
1855ENUMX
1856 BFD_RELOC_SPARC_WDISP16
1857ENUMX
1858 BFD_RELOC_SPARC_WDISP19
1859ENUMX
1860 BFD_RELOC_SPARC_7
1861ENUMX
1862 BFD_RELOC_SPARC_6
1863ENUMX
1864 BFD_RELOC_SPARC_5
1865ENUMEQX
1866 BFD_RELOC_SPARC_DISP64
1867 BFD_RELOC_64_PCREL
1868ENUMX
1869 BFD_RELOC_SPARC_PLT64
1870ENUMX
1871 BFD_RELOC_SPARC_HIX22
1872ENUMX
1873 BFD_RELOC_SPARC_LOX10
1874ENUMX
1875 BFD_RELOC_SPARC_H44
1876ENUMX
1877 BFD_RELOC_SPARC_M44
1878ENUMX
1879 BFD_RELOC_SPARC_L44
1880ENUMX
1881 BFD_RELOC_SPARC_REGISTER
1882ENUMDOC
1883 SPARC64 relocations
1884
1885ENUM
1886 BFD_RELOC_SPARC_REV32
1887ENUMDOC
1888 SPARC little endian relocation
1889
1890ENUM
1891 BFD_RELOC_ALPHA_GPDISP_HI16
1892ENUMDOC
1893 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1894 "addend" in some special way.
1895 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1896 writing; when reading, it will be the absolute section symbol. The
1897 addend is the displacement in bytes of the "lda" instruction from
1898 the "ldah" instruction (which is at the address of this reloc).
1899ENUM
1900 BFD_RELOC_ALPHA_GPDISP_LO16
1901ENUMDOC
1902 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1903 with GPDISP_HI16 relocs. The addend is ignored when writing the
1904 relocations out, and is filled in with the file's GP value on
1905 reading, for convenience.
1906
1907ENUM
1908 BFD_RELOC_ALPHA_GPDISP
1909ENUMDOC
1910 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1911 relocation except that there is no accompanying GPDISP_LO16
1912 relocation.
1913
1914ENUM
1915 BFD_RELOC_ALPHA_LITERAL
1916ENUMX
1917 BFD_RELOC_ALPHA_ELF_LITERAL
1918ENUMX
1919 BFD_RELOC_ALPHA_LITUSE
1920ENUMDOC
1921 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1922 the assembler turns it into a LDQ instruction to load the address of
1923 the symbol, and then fills in a register in the real instruction.
1924
1925 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1926 section symbol. The addend is ignored when writing, but is filled
1927 in with the file's GP value on reading, for convenience, as with the
1928 GPDISP_LO16 reloc.
1929
1930 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1931 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1932 but it generates output not based on the position within the .got
1933 section, but relative to the GP value chosen for the file during the
1934 final link stage.
1935
1936 The LITUSE reloc, on the instruction using the loaded address, gives
1937 information to the linker that it might be able to use to optimize
1938 away some literal section references. The symbol is ignored (read
1939 as the absolute section symbol), and the "addend" indicates the type
1940 of instruction using the register:
1941 1 - "memory" fmt insn
1942 2 - byte-manipulation (byte offset reg)
1943 3 - jsr (target of branch)
1944
1945 The GNU linker currently doesn't do any of this optimizing.
1946
fe174262
MM
1947ENUM
1948 BFD_RELOC_ALPHA_USER_LITERAL
1949ENUMX
1950 BFD_RELOC_ALPHA_USER_LITUSE_BASE
1951ENUMX
1952 BFD_RELOC_ALPHA_USER_LITUSE_BYTOFF
1953ENUMX
1954 BFD_RELOC_ALPHA_USER_LITUSE_JSR
1955ENUMX
1956 BFD_RELOC_ALPHA_USER_GPDISP
1957ENUMX
1958 BFD_RELOC_ALPHA_USER_GPRELHIGH
1959ENUMX
1960 BFD_RELOC_ALPHA_USER_GPRELLOW
1961ENUMDOC
1962 The BFD_RELOC_ALPHA_USER_* relocations are used by the assembler to
1963 process the explicit !<reloc>!sequence relocations, and are mapped
1964 into the normal relocations at the end of processing.
1965
252b5132
RH
1966ENUM
1967 BFD_RELOC_ALPHA_HINT
1968ENUMDOC
1969 The HINT relocation indicates a value that should be filled into the
1970 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1971 prediction logic which may be provided on some processors.
1972
1973ENUM
1974 BFD_RELOC_ALPHA_LINKAGE
1975ENUMDOC
1976 The LINKAGE relocation outputs a linkage pair in the object file,
1977 which is filled by the linker.
1978
1979ENUM
1980 BFD_RELOC_ALPHA_CODEADDR
1981ENUMDOC
1982 The CODEADDR relocation outputs a STO_CA in the object file,
1983 which is filled by the linker.
1984
1985ENUM
1986 BFD_RELOC_MIPS_JMP
1987ENUMDOC
1988 Bits 27..2 of the relocation address shifted right 2 bits;
1989 simple reloc otherwise.
1990
1991ENUM
1992 BFD_RELOC_MIPS16_JMP
1993ENUMDOC
1994 The MIPS16 jump instruction.
1995
1996ENUM
1997 BFD_RELOC_MIPS16_GPREL
1998ENUMDOC
1999 MIPS16 GP relative reloc.
2000
2001ENUM
2002 BFD_RELOC_HI16
2003ENUMDOC
2004 High 16 bits of 32-bit value; simple reloc.
2005ENUM
2006 BFD_RELOC_HI16_S
2007ENUMDOC
2008 High 16 bits of 32-bit value but the low 16 bits will be sign
2009 extended and added to form the final result. If the low 16
2010 bits form a negative number, we need to add one to the high value
2011 to compensate for the borrow when the low bits are added.
2012ENUM
2013 BFD_RELOC_LO16
2014ENUMDOC
2015 Low 16 bits.
2016ENUM
2017 BFD_RELOC_PCREL_HI16_S
2018ENUMDOC
2019 Like BFD_RELOC_HI16_S, but PC relative.
2020ENUM
2021 BFD_RELOC_PCREL_LO16
2022ENUMDOC
2023 Like BFD_RELOC_LO16, but PC relative.
2024
2025ENUMEQ
2026 BFD_RELOC_MIPS_GPREL
2027 BFD_RELOC_GPREL16
2028ENUMDOC
2029 Relocation relative to the global pointer.
2030
2031ENUM
2032 BFD_RELOC_MIPS_LITERAL
2033ENUMDOC
2034 Relocation against a MIPS literal section.
2035
2036ENUM
2037 BFD_RELOC_MIPS_GOT16
2038ENUMX
2039 BFD_RELOC_MIPS_CALL16
2040ENUMEQX
2041 BFD_RELOC_MIPS_GPREL32
2042 BFD_RELOC_GPREL32
2043ENUMX
2044 BFD_RELOC_MIPS_GOT_HI16
2045ENUMX
2046 BFD_RELOC_MIPS_GOT_LO16
2047ENUMX
2048 BFD_RELOC_MIPS_CALL_HI16
2049ENUMX
2050 BFD_RELOC_MIPS_CALL_LO16
3f830999
MM
2051ENUMX
2052 BFD_RELOC_MIPS_SUB
2053ENUMX
2054 BFD_RELOC_MIPS_GOT_PAGE
2055ENUMX
2056 BFD_RELOC_MIPS_GOT_OFST
2057ENUMX
2058 BFD_RELOC_MIPS_GOT_DISP
252b5132
RH
2059COMMENT
2060ENUMDOC
2061 MIPS ELF relocations.
2062
2063COMMENT
2064
2065ENUM
2066 BFD_RELOC_386_GOT32
2067ENUMX
2068 BFD_RELOC_386_PLT32
2069ENUMX
2070 BFD_RELOC_386_COPY
2071ENUMX
2072 BFD_RELOC_386_GLOB_DAT
2073ENUMX
2074 BFD_RELOC_386_JUMP_SLOT
2075ENUMX
2076 BFD_RELOC_386_RELATIVE
2077ENUMX
2078 BFD_RELOC_386_GOTOFF
2079ENUMX
2080 BFD_RELOC_386_GOTPC
2081ENUMDOC
2082 i386/elf relocations
2083
2084ENUM
2085 BFD_RELOC_NS32K_IMM_8
2086ENUMX
2087 BFD_RELOC_NS32K_IMM_16
2088ENUMX
2089 BFD_RELOC_NS32K_IMM_32
2090ENUMX
2091 BFD_RELOC_NS32K_IMM_8_PCREL
2092ENUMX
2093 BFD_RELOC_NS32K_IMM_16_PCREL
2094ENUMX
2095 BFD_RELOC_NS32K_IMM_32_PCREL
2096ENUMX
2097 BFD_RELOC_NS32K_DISP_8
2098ENUMX
2099 BFD_RELOC_NS32K_DISP_16
2100ENUMX
2101 BFD_RELOC_NS32K_DISP_32
2102ENUMX
2103 BFD_RELOC_NS32K_DISP_8_PCREL
2104ENUMX
2105 BFD_RELOC_NS32K_DISP_16_PCREL
2106ENUMX
2107 BFD_RELOC_NS32K_DISP_32_PCREL
2108ENUMDOC
2109 ns32k relocations
2110
0bcb993b
ILT
2111ENUM
2112 BFD_RELOC_PJ_CODE_HI16
2113ENUMX
2114 BFD_RELOC_PJ_CODE_LO16
2115ENUMX
2116 BFD_RELOC_PJ_CODE_DIR16
2117ENUMX
2118 BFD_RELOC_PJ_CODE_DIR32
2119ENUMX
2120 BFD_RELOC_PJ_CODE_REL16
2121ENUMX
2122 BFD_RELOC_PJ_CODE_REL32
2123ENUMDOC
2124 Picojava relocs. Not all of these appear in object files.
88b6bae0 2125
252b5132
RH
2126ENUM
2127 BFD_RELOC_PPC_B26
2128ENUMX
2129 BFD_RELOC_PPC_BA26
2130ENUMX
2131 BFD_RELOC_PPC_TOC16
2132ENUMX
2133 BFD_RELOC_PPC_B16
2134ENUMX
2135 BFD_RELOC_PPC_B16_BRTAKEN
2136ENUMX
2137 BFD_RELOC_PPC_B16_BRNTAKEN
2138ENUMX
2139 BFD_RELOC_PPC_BA16
2140ENUMX
2141 BFD_RELOC_PPC_BA16_BRTAKEN
2142ENUMX
2143 BFD_RELOC_PPC_BA16_BRNTAKEN
2144ENUMX
2145 BFD_RELOC_PPC_COPY
2146ENUMX
2147 BFD_RELOC_PPC_GLOB_DAT
2148ENUMX
2149 BFD_RELOC_PPC_JMP_SLOT
2150ENUMX
2151 BFD_RELOC_PPC_RELATIVE
2152ENUMX
2153 BFD_RELOC_PPC_LOCAL24PC
2154ENUMX
2155 BFD_RELOC_PPC_EMB_NADDR32
2156ENUMX
2157 BFD_RELOC_PPC_EMB_NADDR16
2158ENUMX
2159 BFD_RELOC_PPC_EMB_NADDR16_LO
2160ENUMX
2161 BFD_RELOC_PPC_EMB_NADDR16_HI
2162ENUMX
2163 BFD_RELOC_PPC_EMB_NADDR16_HA
2164ENUMX
2165 BFD_RELOC_PPC_EMB_SDAI16
2166ENUMX
2167 BFD_RELOC_PPC_EMB_SDA2I16
2168ENUMX
2169 BFD_RELOC_PPC_EMB_SDA2REL
2170ENUMX
2171 BFD_RELOC_PPC_EMB_SDA21
2172ENUMX
2173 BFD_RELOC_PPC_EMB_MRKREF
2174ENUMX
2175 BFD_RELOC_PPC_EMB_RELSEC16
2176ENUMX
2177 BFD_RELOC_PPC_EMB_RELST_LO
2178ENUMX
2179 BFD_RELOC_PPC_EMB_RELST_HI
2180ENUMX
2181 BFD_RELOC_PPC_EMB_RELST_HA
2182ENUMX
2183 BFD_RELOC_PPC_EMB_BIT_FLD
2184ENUMX
2185 BFD_RELOC_PPC_EMB_RELSDA
2186ENUMDOC
2187 Power(rs6000) and PowerPC relocations.
2188
5b93d8bb
AM
2189ENUM
2190 BFD_RELOC_I370_D12
2191ENUMDOC
2192 IBM 370/390 relocations
2193
252b5132
RH
2194ENUM
2195 BFD_RELOC_CTOR
2196ENUMDOC
2197 The type of reloc used to build a contructor table - at the moment
2198 probably a 32 bit wide absolute relocation, but the target can choose.
2199 It generally does map to one of the other relocation types.
2200
2201ENUM
2202 BFD_RELOC_ARM_PCREL_BRANCH
2203ENUMDOC
2204 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2205 not stored in the instruction.
dfc5f959
NC
2206ENUM
2207 BFD_RELOC_ARM_PCREL_BLX
2208ENUMDOC
2209 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2210 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2211 field in the instruction.
2212ENUM
2213 BFD_RELOC_THUMB_PCREL_BLX
2214ENUMDOC
2215 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2216 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2217 field in the instruction.
252b5132
RH
2218ENUM
2219 BFD_RELOC_ARM_IMMEDIATE
752149a0
NC
2220ENUMX
2221 BFD_RELOC_ARM_ADRL_IMMEDIATE
252b5132
RH
2222ENUMX
2223 BFD_RELOC_ARM_OFFSET_IMM
2224ENUMX
2225 BFD_RELOC_ARM_SHIFT_IMM
2226ENUMX
2227 BFD_RELOC_ARM_SWI
2228ENUMX
2229 BFD_RELOC_ARM_MULTI
2230ENUMX
2231 BFD_RELOC_ARM_CP_OFF_IMM
2232ENUMX
2233 BFD_RELOC_ARM_ADR_IMM
2234ENUMX
2235 BFD_RELOC_ARM_LDR_IMM
2236ENUMX
2237 BFD_RELOC_ARM_LITERAL
2238ENUMX
2239 BFD_RELOC_ARM_IN_POOL
2240ENUMX
2241 BFD_RELOC_ARM_OFFSET_IMM8
2242ENUMX
2243 BFD_RELOC_ARM_HWLITERAL
2244ENUMX
2245 BFD_RELOC_ARM_THUMB_ADD
2246ENUMX
2247 BFD_RELOC_ARM_THUMB_IMM
2248ENUMX
2249 BFD_RELOC_ARM_THUMB_SHIFT
2250ENUMX
2251 BFD_RELOC_ARM_THUMB_OFFSET
2252ENUMX
2253 BFD_RELOC_ARM_GOT12
2254ENUMX
2255 BFD_RELOC_ARM_GOT32
2256ENUMX
2257 BFD_RELOC_ARM_JUMP_SLOT
2258ENUMX
2259 BFD_RELOC_ARM_COPY
2260ENUMX
2261 BFD_RELOC_ARM_GLOB_DAT
2262ENUMX
2263 BFD_RELOC_ARM_PLT32
2264ENUMX
2265 BFD_RELOC_ARM_RELATIVE
2266ENUMX
2267 BFD_RELOC_ARM_GOTOFF
2268ENUMX
2269 BFD_RELOC_ARM_GOTPC
2270ENUMDOC
2271 These relocs are only used within the ARM assembler. They are not
2272 (at present) written to any object files.
2273
2274ENUM
2275 BFD_RELOC_SH_PCDISP8BY2
2276ENUMX
2277 BFD_RELOC_SH_PCDISP12BY2
2278ENUMX
2279 BFD_RELOC_SH_IMM4
2280ENUMX
2281 BFD_RELOC_SH_IMM4BY2
2282ENUMX
2283 BFD_RELOC_SH_IMM4BY4
2284ENUMX
2285 BFD_RELOC_SH_IMM8
2286ENUMX
2287 BFD_RELOC_SH_IMM8BY2
2288ENUMX
2289 BFD_RELOC_SH_IMM8BY4
2290ENUMX
2291 BFD_RELOC_SH_PCRELIMM8BY2
2292ENUMX
2293 BFD_RELOC_SH_PCRELIMM8BY4
2294ENUMX
2295 BFD_RELOC_SH_SWITCH16
2296ENUMX
2297 BFD_RELOC_SH_SWITCH32
2298ENUMX
2299 BFD_RELOC_SH_USES
2300ENUMX
2301 BFD_RELOC_SH_COUNT
2302ENUMX
2303 BFD_RELOC_SH_ALIGN
2304ENUMX
2305 BFD_RELOC_SH_CODE
2306ENUMX
2307 BFD_RELOC_SH_DATA
2308ENUMX
2309 BFD_RELOC_SH_LABEL
015551fc
JR
2310ENUMX
2311 BFD_RELOC_SH_LOOP_START
2312ENUMX
2313 BFD_RELOC_SH_LOOP_END
252b5132
RH
2314ENUMDOC
2315 Hitachi SH relocs. Not all of these appear in object files.
2316
2317ENUM
2318 BFD_RELOC_THUMB_PCREL_BRANCH9
2319ENUMX
2320 BFD_RELOC_THUMB_PCREL_BRANCH12
2321ENUMX
2322 BFD_RELOC_THUMB_PCREL_BRANCH23
2323ENUMDOC
2324 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2325 be zero and is not stored in the instruction.
2326
2327ENUM
2328 BFD_RELOC_ARC_B22_PCREL
2329ENUMDOC
2330 Argonaut RISC Core (ARC) relocs.
2331 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2332 not stored in the instruction. The high 20 bits are installed in bits 26
2333 through 7 of the instruction.
2334ENUM
2335 BFD_RELOC_ARC_B26
2336ENUMDOC
2337 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2338 stored in the instruction. The high 24 bits are installed in bits 23
2339 through 0.
2340
2341ENUM
2342 BFD_RELOC_D10V_10_PCREL_R
2343ENUMDOC
2344 Mitsubishi D10V relocs.
2345 This is a 10-bit reloc with the right 2 bits
2346 assumed to be 0.
2347ENUM
2348 BFD_RELOC_D10V_10_PCREL_L
2349ENUMDOC
2350 Mitsubishi D10V relocs.
2351 This is a 10-bit reloc with the right 2 bits
2352 assumed to be 0. This is the same as the previous reloc
2353 except it is in the left container, i.e.,
2354 shifted left 15 bits.
2355ENUM
2356 BFD_RELOC_D10V_18
2357ENUMDOC
2358 This is an 18-bit reloc with the right 2 bits
2359 assumed to be 0.
2360ENUM
2361 BFD_RELOC_D10V_18_PCREL
2362ENUMDOC
2363 This is an 18-bit reloc with the right 2 bits
2364 assumed to be 0.
2365
2366ENUM
2367 BFD_RELOC_D30V_6
2368ENUMDOC
2369 Mitsubishi D30V relocs.
2370 This is a 6-bit absolute reloc.
2371ENUM
2372 BFD_RELOC_D30V_9_PCREL
2373ENUMDOC
88b6bae0
AM
2374 This is a 6-bit pc-relative reloc with
2375 the right 3 bits assumed to be 0.
252b5132
RH
2376ENUM
2377 BFD_RELOC_D30V_9_PCREL_R
2378ENUMDOC
88b6bae0 2379 This is a 6-bit pc-relative reloc with
252b5132
RH
2380 the right 3 bits assumed to be 0. Same
2381 as the previous reloc but on the right side
88b6bae0 2382 of the container.
252b5132
RH
2383ENUM
2384 BFD_RELOC_D30V_15
2385ENUMDOC
88b6bae0
AM
2386 This is a 12-bit absolute reloc with the
2387 right 3 bitsassumed to be 0.
252b5132
RH
2388ENUM
2389 BFD_RELOC_D30V_15_PCREL
2390ENUMDOC
88b6bae0
AM
2391 This is a 12-bit pc-relative reloc with
2392 the right 3 bits assumed to be 0.
252b5132
RH
2393ENUM
2394 BFD_RELOC_D30V_15_PCREL_R
2395ENUMDOC
88b6bae0 2396 This is a 12-bit pc-relative reloc with
252b5132
RH
2397 the right 3 bits assumed to be 0. Same
2398 as the previous reloc but on the right side
88b6bae0 2399 of the container.
252b5132
RH
2400ENUM
2401 BFD_RELOC_D30V_21
2402ENUMDOC
88b6bae0 2403 This is an 18-bit absolute reloc with
252b5132
RH
2404 the right 3 bits assumed to be 0.
2405ENUM
2406 BFD_RELOC_D30V_21_PCREL
2407ENUMDOC
88b6bae0 2408 This is an 18-bit pc-relative reloc with
252b5132
RH
2409 the right 3 bits assumed to be 0.
2410ENUM
2411 BFD_RELOC_D30V_21_PCREL_R
2412ENUMDOC
88b6bae0 2413 This is an 18-bit pc-relative reloc with
252b5132
RH
2414 the right 3 bits assumed to be 0. Same
2415 as the previous reloc but on the right side
2416 of the container.
2417ENUM
2418 BFD_RELOC_D30V_32
2419ENUMDOC
2420 This is a 32-bit absolute reloc.
2421ENUM
2422 BFD_RELOC_D30V_32_PCREL
2423ENUMDOC
2424 This is a 32-bit pc-relative reloc.
2425
2426ENUM
2427 BFD_RELOC_M32R_24
2428ENUMDOC
2429 Mitsubishi M32R relocs.
2430 This is a 24 bit absolute address.
2431ENUM
2432 BFD_RELOC_M32R_10_PCREL
2433ENUMDOC
2434 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2435ENUM
2436 BFD_RELOC_M32R_18_PCREL
2437ENUMDOC
2438 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2439ENUM
2440 BFD_RELOC_M32R_26_PCREL
2441ENUMDOC
2442 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2443ENUM
2444 BFD_RELOC_M32R_HI16_ULO
2445ENUMDOC
2446 This is a 16-bit reloc containing the high 16 bits of an address
2447 used when the lower 16 bits are treated as unsigned.
2448ENUM
2449 BFD_RELOC_M32R_HI16_SLO
2450ENUMDOC
2451 This is a 16-bit reloc containing the high 16 bits of an address
2452 used when the lower 16 bits are treated as signed.
2453ENUM
2454 BFD_RELOC_M32R_LO16
2455ENUMDOC
2456 This is a 16-bit reloc containing the lower 16 bits of an address.
2457ENUM
2458 BFD_RELOC_M32R_SDA16
2459ENUMDOC
2460 This is a 16-bit reloc containing the small data area offset for use in
2461 add3, load, and store instructions.
2462
2463ENUM
2464 BFD_RELOC_V850_9_PCREL
2465ENUMDOC
2466 This is a 9-bit reloc
2467ENUM
2468 BFD_RELOC_V850_22_PCREL
2469ENUMDOC
2470 This is a 22-bit reloc
2471
2472ENUM
2473 BFD_RELOC_V850_SDA_16_16_OFFSET
2474ENUMDOC
2475 This is a 16 bit offset from the short data area pointer.
2476ENUM
2477 BFD_RELOC_V850_SDA_15_16_OFFSET
2478ENUMDOC
2479 This is a 16 bit offset (of which only 15 bits are used) from the
2480 short data area pointer.
2481ENUM
2482 BFD_RELOC_V850_ZDA_16_16_OFFSET
2483ENUMDOC
2484 This is a 16 bit offset from the zero data area pointer.
2485ENUM
2486 BFD_RELOC_V850_ZDA_15_16_OFFSET
2487ENUMDOC
2488 This is a 16 bit offset (of which only 15 bits are used) from the
2489 zero data area pointer.
2490ENUM
2491 BFD_RELOC_V850_TDA_6_8_OFFSET
2492ENUMDOC
2493 This is an 8 bit offset (of which only 6 bits are used) from the
2494 tiny data area pointer.
2495ENUM
2496 BFD_RELOC_V850_TDA_7_8_OFFSET
2497ENUMDOC
2498 This is an 8bit offset (of which only 7 bits are used) from the tiny
2499 data area pointer.
2500ENUM
2501 BFD_RELOC_V850_TDA_7_7_OFFSET
2502ENUMDOC
2503 This is a 7 bit offset from the tiny data area pointer.
2504ENUM
2505 BFD_RELOC_V850_TDA_16_16_OFFSET
2506ENUMDOC
2507 This is a 16 bit offset from the tiny data area pointer.
2508COMMENT
2509ENUM
2510 BFD_RELOC_V850_TDA_4_5_OFFSET
2511ENUMDOC
2512 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2513 data area pointer.
2514ENUM
2515 BFD_RELOC_V850_TDA_4_4_OFFSET
2516ENUMDOC
2517 This is a 4 bit offset from the tiny data area pointer.
2518ENUM
2519 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2520ENUMDOC
2521 This is a 16 bit offset from the short data area pointer, with the
2522 bits placed non-contigously in the instruction.
2523ENUM
2524 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2525ENUMDOC
2526 This is a 16 bit offset from the zero data area pointer, with the
2527 bits placed non-contigously in the instruction.
2528ENUM
2529 BFD_RELOC_V850_CALLT_6_7_OFFSET
2530ENUMDOC
2531 This is a 6 bit offset from the call table base pointer.
2532ENUM
2533 BFD_RELOC_V850_CALLT_16_16_OFFSET
2534ENUMDOC
2535 This is a 16 bit offset from the call table base pointer.
2536COMMENT
2537
2538ENUM
2539 BFD_RELOC_MN10300_32_PCREL
2540ENUMDOC
2541 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2542 instruction.
2543ENUM
2544 BFD_RELOC_MN10300_16_PCREL
2545ENUMDOC
2546 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2547 instruction.
2548
2549ENUM
2550 BFD_RELOC_TIC30_LDP
2551ENUMDOC
2552 This is a 8bit DP reloc for the tms320c30, where the most
2553 significant 8 bits of a 24 bit word are placed into the least
2554 significant 8 bits of the opcode.
2555
81635ce4
TW
2556ENUM
2557 BFD_RELOC_TIC54X_PARTLS7
2558ENUMDOC
2559 This is a 7bit reloc for the tms320c54x, where the least
2560 significant 7 bits of a 16 bit word are placed into the least
2561 significant 7 bits of the opcode.
2562
2563ENUM
2564 BFD_RELOC_TIC54X_PARTMS9
2565ENUMDOC
2566 This is a 9bit DP reloc for the tms320c54x, where the most
2567 significant 9 bits of a 16 bit word are placed into the least
2568 significant 9 bits of the opcode.
2569
2570ENUM
2571 BFD_RELOC_TIC54X_23
2572ENUMDOC
2573 This is an extended address 23-bit reloc for the tms320c54x.
2574
2575ENUM
2576 BFD_RELOC_TIC54X_16_OF_23
2577ENUMDOC
2578 This is a 16-bit reloc for the tms320c54x, where the least
2579 significant 16 bits of a 23-bit extended address are placed into
2580 the opcode.
2581
2582ENUM
2583 BFD_RELOC_TIC54X_MS7_OF_23
2584ENUMDOC
2585 This is a reloc for the tms320c54x, where the most
2586 significant 7 bits of a 23-bit extended address are placed into
2587 the opcode.
81635ce4 2588
252b5132
RH
2589ENUM
2590 BFD_RELOC_FR30_48
2591ENUMDOC
2592 This is a 48 bit reloc for the FR30 that stores 32 bits.
2593ENUM
2594 BFD_RELOC_FR30_20
2595ENUMDOC
2596 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2597 two sections.
2598ENUM
2599 BFD_RELOC_FR30_6_IN_4
2600ENUMDOC
2601 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2602 4 bits.
2603ENUM
2604 BFD_RELOC_FR30_8_IN_8
2605ENUMDOC
2606 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2607 into 8 bits.
2608ENUM
2609 BFD_RELOC_FR30_9_IN_8
2610ENUMDOC
2611 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2612 into 8 bits.
2613ENUM
2614 BFD_RELOC_FR30_10_IN_8
2615ENUMDOC
2616 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2617 into 8 bits.
2618ENUM
2619 BFD_RELOC_FR30_9_PCREL
2620ENUMDOC
2621 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2622 short offset into 8 bits.
2623ENUM
2624 BFD_RELOC_FR30_12_PCREL
2625ENUMDOC
2626 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2627 short offset into 11 bits.
88b6bae0 2628
252b5132
RH
2629ENUM
2630 BFD_RELOC_MCORE_PCREL_IMM8BY4
2631ENUMX
2632 BFD_RELOC_MCORE_PCREL_IMM11BY2
2633ENUMX
2634 BFD_RELOC_MCORE_PCREL_IMM4BY2
2635ENUMX
2636 BFD_RELOC_MCORE_PCREL_32
2637ENUMX
2638 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
36797d47
NC
2639ENUMX
2640 BFD_RELOC_MCORE_RVA
252b5132
RH
2641ENUMDOC
2642 Motorola Mcore relocations.
88b6bae0 2643
adde6300
AM
2644ENUM
2645 BFD_RELOC_AVR_7_PCREL
2646ENUMDOC
2647 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2648 short offset into 7 bits.
2649ENUM
2650 BFD_RELOC_AVR_13_PCREL
2651ENUMDOC
2652 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2653 short offset into 12 bits.
2654ENUM
2655 BFD_RELOC_AVR_16_PM
2656ENUMDOC
2657 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
2658 program memory address) into 16 bits.
2659ENUM
2660 BFD_RELOC_AVR_LO8_LDI
2661ENUMDOC
2662 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2663 data memory address) into 8 bit immediate value of LDI insn.
2664ENUM
2665 BFD_RELOC_AVR_HI8_LDI
2666ENUMDOC
2667 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2668 of data memory address) into 8 bit immediate value of LDI insn.
2669ENUM
2670 BFD_RELOC_AVR_HH8_LDI
2671ENUMDOC
2672 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2673 of program memory address) into 8 bit immediate value of LDI insn.
2674ENUM
2675 BFD_RELOC_AVR_LO8_LDI_NEG
2676ENUMDOC
2677 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2678 (usually data memory address) into 8 bit immediate value of SUBI insn.
2679ENUM
2680 BFD_RELOC_AVR_HI8_LDI_NEG
2681ENUMDOC
2682 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2683 (high 8 bit of data memory address) into 8 bit immediate value of
2684 SUBI insn.
2685ENUM
2686 BFD_RELOC_AVR_HH8_LDI_NEG
2687ENUMDOC
2688 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2689 (most high 8 bit of program memory address) into 8 bit immediate value
2690 of LDI or SUBI insn.
2691ENUM
2692 BFD_RELOC_AVR_LO8_LDI_PM
2693ENUMDOC
2694 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2695 command address) into 8 bit immediate value of LDI insn.
2696ENUM
2697 BFD_RELOC_AVR_HI8_LDI_PM
2698ENUMDOC
2699 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2700 of command address) into 8 bit immediate value of LDI insn.
2701ENUM
2702 BFD_RELOC_AVR_HH8_LDI_PM
2703ENUMDOC
2704 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2705 of command address) into 8 bit immediate value of LDI insn.
2706ENUM
2707 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2708ENUMDOC
2709 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2710 (usually command address) into 8 bit immediate value of SUBI insn.
2711ENUM
2712 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2713ENUMDOC
2714 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2715 (high 8 bit of 16 bit command address) into 8 bit immediate value
2716 of SUBI insn.
2717ENUM
2718 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2719ENUMDOC
2720 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2721 (high 6 bit of 22 bit command address) into 8 bit immediate
2722 value of SUBI insn.
2723ENUM
2724 BFD_RELOC_AVR_CALL
2725ENUMDOC
2726 This is a 32 bit reloc for the AVR that stores 23 bit value
2727 into 22 bits.
2728
252b5132
RH
2729ENUM
2730 BFD_RELOC_VTABLE_INHERIT
2731ENUMX
2732 BFD_RELOC_VTABLE_ENTRY
2733ENUMDOC
88b6bae0 2734 These two relocations are used by the linker to determine which of
252b5132
RH
2735 the entries in a C++ virtual function table are actually used. When
2736 the --gc-sections option is given, the linker will zero out the entries
2737 that are not used, so that the code for those functions need not be
2738 included in the output.
2739
2740 VTABLE_INHERIT is a zero-space relocation used to describe to the
2741 linker the inheritence tree of a C++ virtual function table. The
2742 relocation's symbol should be the parent class' vtable, and the
2743 relocation should be located at the child vtable.
2744
2745 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2746 virtual function table entry. The reloc's symbol should refer to the
2747 table of the class mentioned in the code. Off of that base, an offset
88b6bae0 2748 describes the entry that is being used. For Rela hosts, this offset
252b5132
RH
2749 is stored in the reloc's addend. For Rel hosts, we are forced to put
2750 this offset in the reloc's section offset.
2751
2752ENDSENUM
2753 BFD_RELOC_UNUSED
2754CODE_FRAGMENT
2755.
2756.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
2757*/
2758
2759
2760/*
2761FUNCTION
2762 bfd_reloc_type_lookup
2763
2764SYNOPSIS
2765 reloc_howto_type *
2766 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
2767
2768DESCRIPTION
2769 Return a pointer to a howto structure which, when
2770 invoked, will perform the relocation @var{code} on data from the
2771 architecture noted.
2772
2773*/
2774
2775
2776reloc_howto_type *
2777bfd_reloc_type_lookup (abfd, code)
2778 bfd *abfd;
2779 bfd_reloc_code_real_type code;
2780{
2781 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
2782}
2783
2784static reloc_howto_type bfd_howto_32 =
2785HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
2786
2787
2788/*
2789INTERNAL_FUNCTION
2790 bfd_default_reloc_type_lookup
2791
2792SYNOPSIS
2793 reloc_howto_type *bfd_default_reloc_type_lookup
2794 (bfd *abfd, bfd_reloc_code_real_type code);
2795
2796DESCRIPTION
2797 Provides a default relocation lookup routine for any architecture.
2798
2799
2800*/
2801
2802reloc_howto_type *
2803bfd_default_reloc_type_lookup (abfd, code)
2804 bfd *abfd;
2805 bfd_reloc_code_real_type code;
2806{
2807 switch (code)
2808 {
2809 case BFD_RELOC_CTOR:
2810 /* The type of reloc used in a ctor, which will be as wide as the
2811 address - so either a 64, 32, or 16 bitter. */
2812 switch (bfd_get_arch_info (abfd)->bits_per_address)
2813 {
2814 case 64:
2815 BFD_FAIL ();
2816 case 32:
2817 return &bfd_howto_32;
2818 case 16:
2819 BFD_FAIL ();
2820 default:
2821 BFD_FAIL ();
2822 }
2823 default:
2824 BFD_FAIL ();
2825 }
2826 return (reloc_howto_type *) NULL;
2827}
2828
2829/*
2830FUNCTION
2831 bfd_get_reloc_code_name
2832
2833SYNOPSIS
2834 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
2835
2836DESCRIPTION
2837 Provides a printable name for the supplied relocation code.
2838 Useful mainly for printing error messages.
2839*/
2840
2841const char *
2842bfd_get_reloc_code_name (code)
2843 bfd_reloc_code_real_type code;
2844{
2845 if (code > BFD_RELOC_UNUSED)
2846 return 0;
2847 return bfd_reloc_code_real_names[(int)code];
2848}
2849
2850/*
2851INTERNAL_FUNCTION
2852 bfd_generic_relax_section
2853
2854SYNOPSIS
2855 boolean bfd_generic_relax_section
2856 (bfd *abfd,
2857 asection *section,
2858 struct bfd_link_info *,
2859 boolean *);
2860
2861DESCRIPTION
2862 Provides default handling for relaxing for back ends which
2863 don't do relaxing -- i.e., does nothing.
2864*/
2865
2866/*ARGSUSED*/
2867boolean
2868bfd_generic_relax_section (abfd, section, link_info, again)
7442e600
ILT
2869 bfd *abfd ATTRIBUTE_UNUSED;
2870 asection *section ATTRIBUTE_UNUSED;
2871 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
2872 boolean *again;
2873{
2874 *again = false;
2875 return true;
2876}
2877
2878/*
2879INTERNAL_FUNCTION
2880 bfd_generic_gc_sections
2881
2882SYNOPSIS
2883 boolean bfd_generic_gc_sections
2884 (bfd *, struct bfd_link_info *);
2885
2886DESCRIPTION
2887 Provides default handling for relaxing for back ends which
2888 don't do section gc -- i.e., does nothing.
2889*/
2890
2891/*ARGSUSED*/
2892boolean
2893bfd_generic_gc_sections (abfd, link_info)
7442e600
ILT
2894 bfd *abfd ATTRIBUTE_UNUSED;
2895 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
2896{
2897 return true;
2898}
2899
2900/*
2901INTERNAL_FUNCTION
2902 bfd_generic_get_relocated_section_contents
2903
2904SYNOPSIS
2905 bfd_byte *
2906 bfd_generic_get_relocated_section_contents (bfd *abfd,
2907 struct bfd_link_info *link_info,
2908 struct bfd_link_order *link_order,
2909 bfd_byte *data,
2910 boolean relocateable,
2911 asymbol **symbols);
2912
2913DESCRIPTION
2914 Provides default handling of relocation effort for back ends
2915 which can't be bothered to do it efficiently.
2916
2917*/
2918
2919bfd_byte *
2920bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
2921 relocateable, symbols)
2922 bfd *abfd;
2923 struct bfd_link_info *link_info;
2924 struct bfd_link_order *link_order;
2925 bfd_byte *data;
2926 boolean relocateable;
2927 asymbol **symbols;
2928{
2929 /* Get enough memory to hold the stuff */
2930 bfd *input_bfd = link_order->u.indirect.section->owner;
2931 asection *input_section = link_order->u.indirect.section;
2932
2933 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
2934 arelent **reloc_vector = NULL;
2935 long reloc_count;
2936
2937 if (reloc_size < 0)
2938 goto error_return;
2939
2940 reloc_vector = (arelent **) bfd_malloc ((size_t) reloc_size);
2941 if (reloc_vector == NULL && reloc_size != 0)
2942 goto error_return;
2943
2944 /* read in the section */
2945 if (!bfd_get_section_contents (input_bfd,
2946 input_section,
2947 (PTR) data,
2948 0,
2949 input_section->_raw_size))
2950 goto error_return;
2951
2952 /* We're not relaxing the section, so just copy the size info */
2953 input_section->_cooked_size = input_section->_raw_size;
2954 input_section->reloc_done = true;
2955
2956 reloc_count = bfd_canonicalize_reloc (input_bfd,
2957 input_section,
2958 reloc_vector,
2959 symbols);
2960 if (reloc_count < 0)
2961 goto error_return;
2962
2963 if (reloc_count > 0)
2964 {
2965 arelent **parent;
2966 for (parent = reloc_vector; *parent != (arelent *) NULL;
2967 parent++)
2968 {
2969 char *error_message = (char *) NULL;
2970 bfd_reloc_status_type r =
2971 bfd_perform_relocation (input_bfd,
2972 *parent,
2973 (PTR) data,
2974 input_section,
2975 relocateable ? abfd : (bfd *) NULL,
2976 &error_message);
2977
2978 if (relocateable)
2979 {
2980 asection *os = input_section->output_section;
2981
2982 /* A partial link, so keep the relocs */
2983 os->orelocation[os->reloc_count] = *parent;
2984 os->reloc_count++;
2985 }
2986
2987 if (r != bfd_reloc_ok)
2988 {
2989 switch (r)
2990 {
2991 case bfd_reloc_undefined:
2992 if (!((*link_info->callbacks->undefined_symbol)
2993 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785
L
2994 input_bfd, input_section, (*parent)->address,
2995 true)))
252b5132
RH
2996 goto error_return;
2997 break;
2998 case bfd_reloc_dangerous:
2999 BFD_ASSERT (error_message != (char *) NULL);
3000 if (!((*link_info->callbacks->reloc_dangerous)
3001 (link_info, error_message, input_bfd, input_section,
3002 (*parent)->address)))
3003 goto error_return;
3004 break;
3005 case bfd_reloc_overflow:
3006 if (!((*link_info->callbacks->reloc_overflow)
3007 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3008 (*parent)->howto->name, (*parent)->addend,
3009 input_bfd, input_section, (*parent)->address)))
3010 goto error_return;
3011 break;
3012 case bfd_reloc_outofrange:
3013 default:
3014 abort ();
3015 break;
3016 }
3017
3018 }
3019 }
3020 }
3021 if (reloc_vector != NULL)
3022 free (reloc_vector);
3023 return data;
3024
3025error_return:
3026 if (reloc_vector != NULL)
3027 free (reloc_vector);
3028 return NULL;
3029}