]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - block/blk-settings.c
Merge tag 'for-6.10/block-20240511' of git://git.kernel.dk/linux
[thirdparty/kernel/linux.git] / block / blk-settings.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
86db1e29
JA
2/*
3 * Functions related to setting various queue properties from drivers
4 */
5#include <linux/kernel.h>
6#include <linux/module.h>
7#include <linux/init.h>
8#include <linux/bio.h>
9#include <linux/blkdev.h>
4ee60ec1 10#include <linux/pagemap.h>
edb0872f 11#include <linux/backing-dev-defs.h>
70dd5bf3 12#include <linux/gcd.h>
2cda2728 13#include <linux/lcm.h>
ad5ebd2f 14#include <linux/jiffies.h>
5a0e3ad6 15#include <linux/gfp.h>
45147fb5 16#include <linux/dma-mapping.h>
86db1e29
JA
17
18#include "blk.h"
0bc65bd4 19#include "blk-rq-qos.h"
87760e5e 20#include "blk-wbt.h"
86db1e29 21
242f9dcb
JA
22void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23{
24 q->rq_timeout = timeout;
25}
26EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27
b1bd055d
MP
28/**
29 * blk_set_stacking_limits - set default limits for stacking devices
30 * @lim: the queue_limits structure to reset
31 *
c490f226
CH
32 * Prepare queue limits for applying limits from underlying devices using
33 * blk_stack_limits().
b1bd055d
MP
34 */
35void blk_set_stacking_limits(struct queue_limits *lim)
36{
c490f226
CH
37 memset(lim, 0, sizeof(*lim));
38 lim->logical_block_size = SECTOR_SIZE;
39 lim->physical_block_size = SECTOR_SIZE;
40 lim->io_min = SECTOR_SIZE;
41 lim->discard_granularity = SECTOR_SIZE;
42 lim->dma_alignment = SECTOR_SIZE - 1;
43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
b1bd055d
MP
44
45 /* Inherit limits from component devices */
b1bd055d 46 lim->max_segments = USHRT_MAX;
42c9cdfe 47 lim->max_discard_segments = USHRT_MAX;
b1bd055d 48 lim->max_hw_sectors = UINT_MAX;
d82ae52e 49 lim->max_segment_size = UINT_MAX;
fe86cdce 50 lim->max_sectors = UINT_MAX;
ca369d51 51 lim->max_dev_sectors = UINT_MAX;
a6f0788e 52 lim->max_write_zeroes_sectors = UINT_MAX;
0512a75b 53 lim->max_zone_append_sectors = UINT_MAX;
4f563a64 54 lim->max_user_discard_sectors = UINT_MAX;
b1bd055d
MP
55}
56EXPORT_SYMBOL(blk_set_stacking_limits);
57
b9947297
CH
58static void blk_apply_bdi_limits(struct backing_dev_info *bdi,
59 struct queue_limits *lim)
60{
61 /*
62 * For read-ahead of large files to be effective, we need to read ahead
63 * at least twice the optimal I/O size.
64 */
65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
67}
68
d690cb8a
CH
69static int blk_validate_zoned_limits(struct queue_limits *lim)
70{
71 if (!lim->zoned) {
72 if (WARN_ON_ONCE(lim->max_open_zones) ||
73 WARN_ON_ONCE(lim->max_active_zones) ||
74 WARN_ON_ONCE(lim->zone_write_granularity) ||
75 WARN_ON_ONCE(lim->max_zone_append_sectors))
76 return -EINVAL;
77 return 0;
78 }
79
80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
81 return -EINVAL;
82
83 if (lim->zone_write_granularity < lim->logical_block_size)
84 lim->zone_write_granularity = lim->logical_block_size;
85
86 if (lim->max_zone_append_sectors) {
87 /*
88 * The Zone Append size is limited by the maximum I/O size
89 * and the zone size given that it can't span zones.
90 */
91 lim->max_zone_append_sectors =
92 min3(lim->max_hw_sectors,
93 lim->max_zone_append_sectors,
94 lim->chunk_sectors);
95 }
96
97 return 0;
98}
99
100/*
101 * Check that the limits in lim are valid, initialize defaults for unset
102 * values, and cap values based on others where needed.
103 */
104static int blk_validate_limits(struct queue_limits *lim)
105{
106 unsigned int max_hw_sectors;
107
108 /*
109 * Unless otherwise specified, default to 512 byte logical blocks and a
110 * physical block size equal to the logical block size.
111 */
112 if (!lim->logical_block_size)
113 lim->logical_block_size = SECTOR_SIZE;
114 if (lim->physical_block_size < lim->logical_block_size)
115 lim->physical_block_size = lim->logical_block_size;
116
117 /*
118 * The minimum I/O size defaults to the physical block size unless
119 * explicitly overridden.
120 */
121 if (lim->io_min < lim->physical_block_size)
122 lim->io_min = lim->physical_block_size;
123
124 /*
125 * max_hw_sectors has a somewhat weird default for historical reason,
126 * but driver really should set their own instead of relying on this
127 * value.
128 *
129 * The block layer relies on the fact that every driver can
130 * handle at lest a page worth of data per I/O, and needs the value
131 * aligned to the logical block size.
132 */
133 if (!lim->max_hw_sectors)
134 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
135 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
136 return -EINVAL;
137 lim->max_hw_sectors = round_down(lim->max_hw_sectors,
138 lim->logical_block_size >> SECTOR_SHIFT);
139
140 /*
141 * The actual max_sectors value is a complex beast and also takes the
142 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
143 * value into account. The ->max_sectors value is always calculated
144 * from these, so directly setting it won't have any effect.
145 */
146 max_hw_sectors = min_not_zero(lim->max_hw_sectors,
147 lim->max_dev_sectors);
148 if (lim->max_user_sectors) {
038105a2 149 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
d690cb8a
CH
150 return -EINVAL;
151 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
152 } else {
153 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
154 }
155 lim->max_sectors = round_down(lim->max_sectors,
156 lim->logical_block_size >> SECTOR_SHIFT);
157
158 /*
159 * Random default for the maximum number of segments. Driver should not
160 * rely on this and set their own.
161 */
162 if (!lim->max_segments)
163 lim->max_segments = BLK_MAX_SEGMENTS;
164
4f563a64
CH
165 lim->max_discard_sectors =
166 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
167
d690cb8a
CH
168 if (!lim->max_discard_segments)
169 lim->max_discard_segments = 1;
170
171 if (lim->discard_granularity < lim->physical_block_size)
172 lim->discard_granularity = lim->physical_block_size;
173
174 /*
175 * By default there is no limit on the segment boundary alignment,
176 * but if there is one it can't be smaller than the page size as
177 * that would break all the normal I/O patterns.
178 */
179 if (!lim->seg_boundary_mask)
180 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
181 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
182 return -EINVAL;
183
d690cb8a 184 /*
b561ea56
ML
185 * Stacking device may have both virtual boundary and max segment
186 * size limit, so allow this setting now, and long-term the two
187 * might need to move out of stacking limits since we have immutable
188 * bvec and lower layer bio splitting is supposed to handle the two
189 * correctly.
d690cb8a 190 */
ffd379c1
ML
191 if (lim->virt_boundary_mask) {
192 if (!lim->max_segment_size)
193 lim->max_segment_size = UINT_MAX;
194 } else {
a3911966
CH
195 /*
196 * The maximum segment size has an odd historic 64k default that
197 * drivers probably should override. Just like the I/O size we
198 * require drivers to at least handle a full page per segment.
199 */
200 if (!lim->max_segment_size)
201 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
202 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
203 return -EINVAL;
d690cb8a
CH
204 }
205
206 /*
207 * We require drivers to at least do logical block aligned I/O, but
208 * historically could not check for that due to the separate calls
209 * to set the limits. Once the transition is finished the check
210 * below should be narrowed down to check the logical block size.
211 */
212 if (!lim->dma_alignment)
213 lim->dma_alignment = SECTOR_SIZE - 1;
214 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
215 return -EINVAL;
216
217 if (lim->alignment_offset) {
218 lim->alignment_offset &= (lim->physical_block_size - 1);
219 lim->misaligned = 0;
220 }
221
222 return blk_validate_zoned_limits(lim);
223}
224
225/*
226 * Set the default limits for a newly allocated queue. @lim contains the
227 * initial limits set by the driver, which could be no limit in which case
228 * all fields are cleared to zero.
229 */
230int blk_set_default_limits(struct queue_limits *lim)
231{
4f563a64
CH
232 /*
233 * Most defaults are set by capping the bounds in blk_validate_limits,
234 * but max_user_discard_sectors is special and needs an explicit
235 * initialization to the max value here.
236 */
237 lim->max_user_discard_sectors = UINT_MAX;
d690cb8a
CH
238 return blk_validate_limits(lim);
239}
240
241/**
242 * queue_limits_commit_update - commit an atomic update of queue limits
243 * @q: queue to update
244 * @lim: limits to apply
245 *
246 * Apply the limits in @lim that were obtained from queue_limits_start_update()
247 * and updated by the caller to @q.
248 *
249 * Returns 0 if successful, else a negative error code.
250 */
251int queue_limits_commit_update(struct request_queue *q,
252 struct queue_limits *lim)
253 __releases(q->limits_lock)
254{
255 int error = blk_validate_limits(lim);
256
257 if (!error) {
258 q->limits = *lim;
259 if (q->disk)
260 blk_apply_bdi_limits(q->disk->bdi, lim);
261 }
262 mutex_unlock(&q->limits_lock);
263 return error;
264}
265EXPORT_SYMBOL_GPL(queue_limits_commit_update);
266
631d4efb 267/**
4c4ab8ae 268 * queue_limits_set - apply queue limits to queue
631d4efb
CH
269 * @q: queue to update
270 * @lim: limits to apply
271 *
272 * Apply the limits in @lim that were freshly initialized to @q.
273 * To update existing limits use queue_limits_start_update() and
274 * queue_limits_commit_update() instead.
275 *
276 * Returns 0 if successful, else a negative error code.
277 */
278int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
279{
280 mutex_lock(&q->limits_lock);
281 return queue_limits_commit_update(q, lim);
282}
283EXPORT_SYMBOL_GPL(queue_limits_set);
284
86db1e29
JA
285/**
286 * blk_queue_bounce_limit - set bounce buffer limit for queue
cd0aca2d 287 * @q: the request queue for the device
9bb33f24 288 * @bounce: bounce limit to enforce
86db1e29
JA
289 *
290 * Description:
9bb33f24
CH
291 * Force bouncing for ISA DMA ranges or highmem.
292 *
293 * DEPRECATED, don't use in new code.
86db1e29 294 **/
9bb33f24 295void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
86db1e29 296{
9bb33f24 297 q->limits.bounce = bounce;
86db1e29 298}
86db1e29
JA
299EXPORT_SYMBOL(blk_queue_bounce_limit);
300
301/**
ca369d51
MP
302 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
303 * @q: the request queue for the device
2800aac1 304 * @max_hw_sectors: max hardware sectors in the usual 512b unit
86db1e29
JA
305 *
306 * Description:
2800aac1
MP
307 * Enables a low level driver to set a hard upper limit,
308 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
4f258a46
MP
309 * the device driver based upon the capabilities of the I/O
310 * controller.
2800aac1 311 *
ca369d51
MP
312 * max_dev_sectors is a hard limit imposed by the storage device for
313 * READ/WRITE requests. It is set by the disk driver.
314 *
2800aac1
MP
315 * max_sectors is a soft limit imposed by the block layer for
316 * filesystem type requests. This value can be overridden on a
317 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
318 * The soft limit can not exceed max_hw_sectors.
86db1e29 319 **/
ca369d51 320void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
86db1e29 321{
ca369d51
MP
322 struct queue_limits *limits = &q->limits;
323 unsigned int max_sectors;
324
09cbfeaf
KS
325 if ((max_hw_sectors << 9) < PAGE_SIZE) {
326 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
f19d1e3b 327 pr_info("%s: set to minimum %u\n", __func__, max_hw_sectors);
86db1e29
JA
328 }
329
817046ec
DLM
330 max_hw_sectors = round_down(max_hw_sectors,
331 limits->logical_block_size >> SECTOR_SHIFT);
30e2bc08 332 limits->max_hw_sectors = max_hw_sectors;
817046ec 333
ca369d51 334 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
c9c77418
KB
335
336 if (limits->max_user_sectors)
337 max_sectors = min(max_sectors, limits->max_user_sectors);
338 else
d6b9f4e6 339 max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS_CAP);
c9c77418 340
817046ec
DLM
341 max_sectors = round_down(max_sectors,
342 limits->logical_block_size >> SECTOR_SHIFT);
ca369d51 343 limits->max_sectors = max_sectors;
817046ec 344
d152c682 345 if (!q->disk)
edb0872f 346 return;
d152c682 347 q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
86db1e29 348}
086fa5ff 349EXPORT_SYMBOL(blk_queue_max_hw_sectors);
86db1e29 350
762380ad
JA
351/**
352 * blk_queue_chunk_sectors - set size of the chunk for this queue
353 * @q: the request queue for the device
354 * @chunk_sectors: chunk sectors in the usual 512b unit
355 *
356 * Description:
357 * If a driver doesn't want IOs to cross a given chunk size, it can set
07d098e6
MS
358 * this limit and prevent merging across chunks. Note that the block layer
359 * must accept a page worth of data at any offset. So if the crossing of
360 * chunks is a hard limitation in the driver, it must still be prepared
361 * to split single page bios.
762380ad
JA
362 **/
363void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
364{
762380ad
JA
365 q->limits.chunk_sectors = chunk_sectors;
366}
367EXPORT_SYMBOL(blk_queue_chunk_sectors);
368
67efc925
CH
369/**
370 * blk_queue_max_discard_sectors - set max sectors for a single discard
371 * @q: the request queue for the device
c7ebf065 372 * @max_discard_sectors: maximum number of sectors to discard
67efc925
CH
373 **/
374void blk_queue_max_discard_sectors(struct request_queue *q,
375 unsigned int max_discard_sectors)
376{
4f563a64
CH
377 struct queue_limits *lim = &q->limits;
378
379 lim->max_hw_discard_sectors = max_discard_sectors;
380 lim->max_discard_sectors =
381 min(max_discard_sectors, lim->max_user_discard_sectors);
67efc925
CH
382}
383EXPORT_SYMBOL(blk_queue_max_discard_sectors);
384
44abff2c
CH
385/**
386 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
387 * @q: the request queue for the device
388 * @max_sectors: maximum number of sectors to secure_erase
389 **/
390void blk_queue_max_secure_erase_sectors(struct request_queue *q,
391 unsigned int max_sectors)
392{
393 q->limits.max_secure_erase_sectors = max_sectors;
394}
395EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
396
a6f0788e
CK
397/**
398 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
399 * write zeroes
400 * @q: the request queue for the device
401 * @max_write_zeroes_sectors: maximum number of sectors to write per command
402 **/
403void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
404 unsigned int max_write_zeroes_sectors)
405{
406 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
407}
408EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
409
0512a75b
KB
410/**
411 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
412 * @q: the request queue for the device
413 * @max_zone_append_sectors: maximum number of sectors to write per command
ccdbf0aa
DLM
414 *
415 * Sets the maximum number of sectors allowed for zone append commands. If
416 * Specifying 0 for @max_zone_append_sectors indicates that the queue does
417 * not natively support zone append operations and that the block layer must
418 * emulate these operations using regular writes.
0512a75b
KB
419 **/
420void blk_queue_max_zone_append_sectors(struct request_queue *q,
421 unsigned int max_zone_append_sectors)
422{
ccdbf0aa 423 unsigned int max_sectors = 0;
0512a75b
KB
424
425 if (WARN_ON(!blk_queue_is_zoned(q)))
426 return;
427
ccdbf0aa
DLM
428 if (max_zone_append_sectors) {
429 max_sectors = min(q->limits.max_hw_sectors,
430 max_zone_append_sectors);
431 max_sectors = min(q->limits.chunk_sectors, max_sectors);
0512a75b 432
ccdbf0aa
DLM
433 /*
434 * Signal eventual driver bugs resulting in the max_zone_append
435 * sectors limit being 0 due to the chunk_sectors limit (zone
436 * size) not set or the max_hw_sectors limit not set.
437 */
438 WARN_ON_ONCE(!max_sectors);
439 }
0512a75b
KB
440
441 q->limits.max_zone_append_sectors = max_sectors;
442}
443EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
444
86db1e29 445/**
8a78362c 446 * blk_queue_max_segments - set max hw segments for a request for this queue
86db1e29
JA
447 * @q: the request queue for the device
448 * @max_segments: max number of segments
449 *
450 * Description:
451 * Enables a low level driver to set an upper limit on the number of
8a78362c 452 * hw data segments in a request.
86db1e29 453 **/
8a78362c 454void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
86db1e29
JA
455{
456 if (!max_segments) {
457 max_segments = 1;
f19d1e3b 458 pr_info("%s: set to minimum %u\n", __func__, max_segments);
86db1e29
JA
459 }
460
8a78362c 461 q->limits.max_segments = max_segments;
86db1e29 462}
8a78362c 463EXPORT_SYMBOL(blk_queue_max_segments);
86db1e29 464
1e739730
CH
465/**
466 * blk_queue_max_discard_segments - set max segments for discard requests
467 * @q: the request queue for the device
468 * @max_segments: max number of segments
469 *
470 * Description:
471 * Enables a low level driver to set an upper limit on the number of
472 * segments in a discard request.
473 **/
474void blk_queue_max_discard_segments(struct request_queue *q,
475 unsigned short max_segments)
476{
477 q->limits.max_discard_segments = max_segments;
478}
479EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
480
86db1e29
JA
481/**
482 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
483 * @q: the request queue for the device
484 * @max_size: max size of segment in bytes
485 *
486 * Description:
487 * Enables a low level driver to set an upper limit on the size of a
488 * coalesced segment
489 **/
490void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
491{
09cbfeaf
KS
492 if (max_size < PAGE_SIZE) {
493 max_size = PAGE_SIZE;
f19d1e3b 494 pr_info("%s: set to minimum %u\n", __func__, max_size);
86db1e29
JA
495 }
496
09324d32
CH
497 /* see blk_queue_virt_boundary() for the explanation */
498 WARN_ON_ONCE(q->limits.virt_boundary_mask);
499
025146e1 500 q->limits.max_segment_size = max_size;
86db1e29 501}
86db1e29
JA
502EXPORT_SYMBOL(blk_queue_max_segment_size);
503
504/**
e1defc4f 505 * blk_queue_logical_block_size - set logical block size for the queue
86db1e29 506 * @q: the request queue for the device
e1defc4f 507 * @size: the logical block size, in bytes
86db1e29
JA
508 *
509 * Description:
e1defc4f
MP
510 * This should be set to the lowest possible block size that the
511 * storage device can address. The default of 512 covers most
512 * hardware.
86db1e29 513 **/
ad6bf88a 514void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
86db1e29 515{
817046ec
DLM
516 struct queue_limits *limits = &q->limits;
517
518 limits->logical_block_size = size;
519
3c407dc7
CH
520 if (limits->discard_granularity < limits->logical_block_size)
521 limits->discard_granularity = limits->logical_block_size;
522
817046ec
DLM
523 if (limits->physical_block_size < size)
524 limits->physical_block_size = size;
c72758f3 525
817046ec
DLM
526 if (limits->io_min < limits->physical_block_size)
527 limits->io_min = limits->physical_block_size;
c72758f3 528
817046ec
DLM
529 limits->max_hw_sectors =
530 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
531 limits->max_sectors =
532 round_down(limits->max_sectors, size >> SECTOR_SHIFT);
86db1e29 533}
e1defc4f 534EXPORT_SYMBOL(blk_queue_logical_block_size);
86db1e29 535
c72758f3
MP
536/**
537 * blk_queue_physical_block_size - set physical block size for the queue
538 * @q: the request queue for the device
539 * @size: the physical block size, in bytes
540 *
541 * Description:
542 * This should be set to the lowest possible sector size that the
543 * hardware can operate on without reverting to read-modify-write
544 * operations.
545 */
892b6f90 546void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
c72758f3
MP
547{
548 q->limits.physical_block_size = size;
549
550 if (q->limits.physical_block_size < q->limits.logical_block_size)
551 q->limits.physical_block_size = q->limits.logical_block_size;
552
458aa1a0
CH
553 if (q->limits.discard_granularity < q->limits.physical_block_size)
554 q->limits.discard_granularity = q->limits.physical_block_size;
555
c72758f3
MP
556 if (q->limits.io_min < q->limits.physical_block_size)
557 q->limits.io_min = q->limits.physical_block_size;
558}
559EXPORT_SYMBOL(blk_queue_physical_block_size);
560
a805a4fa
DLM
561/**
562 * blk_queue_zone_write_granularity - set zone write granularity for the queue
563 * @q: the request queue for the zoned device
564 * @size: the zone write granularity size, in bytes
565 *
566 * Description:
567 * This should be set to the lowest possible size allowing to write in
568 * sequential zones of a zoned block device.
569 */
570void blk_queue_zone_write_granularity(struct request_queue *q,
571 unsigned int size)
572{
573 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
574 return;
575
576 q->limits.zone_write_granularity = size;
577
578 if (q->limits.zone_write_granularity < q->limits.logical_block_size)
579 q->limits.zone_write_granularity = q->limits.logical_block_size;
580}
581EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
582
c72758f3
MP
583/**
584 * blk_queue_alignment_offset - set physical block alignment offset
585 * @q: the request queue for the device
8ebf9756 586 * @offset: alignment offset in bytes
c72758f3
MP
587 *
588 * Description:
589 * Some devices are naturally misaligned to compensate for things like
590 * the legacy DOS partition table 63-sector offset. Low-level drivers
591 * should call this function for devices whose first sector is not
592 * naturally aligned.
593 */
594void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
595{
596 q->limits.alignment_offset =
597 offset & (q->limits.physical_block_size - 1);
598 q->limits.misaligned = 0;
599}
600EXPORT_SYMBOL(blk_queue_alignment_offset);
601
471aa704 602void disk_update_readahead(struct gendisk *disk)
c2e4cd57 603{
b9947297 604 blk_apply_bdi_limits(disk->bdi, &disk->queue->limits);
c2e4cd57 605}
471aa704 606EXPORT_SYMBOL_GPL(disk_update_readahead);
c2e4cd57 607
7c958e32
MP
608/**
609 * blk_limits_io_min - set minimum request size for a device
610 * @limits: the queue limits
611 * @min: smallest I/O size in bytes
612 *
613 * Description:
614 * Some devices have an internal block size bigger than the reported
615 * hardware sector size. This function can be used to signal the
616 * smallest I/O the device can perform without incurring a performance
617 * penalty.
618 */
619void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
620{
621 limits->io_min = min;
622
623 if (limits->io_min < limits->logical_block_size)
624 limits->io_min = limits->logical_block_size;
625
626 if (limits->io_min < limits->physical_block_size)
627 limits->io_min = limits->physical_block_size;
628}
629EXPORT_SYMBOL(blk_limits_io_min);
630
c72758f3
MP
631/**
632 * blk_queue_io_min - set minimum request size for the queue
633 * @q: the request queue for the device
8ebf9756 634 * @min: smallest I/O size in bytes
c72758f3
MP
635 *
636 * Description:
7e5f5fb0
MP
637 * Storage devices may report a granularity or preferred minimum I/O
638 * size which is the smallest request the device can perform without
639 * incurring a performance penalty. For disk drives this is often the
640 * physical block size. For RAID arrays it is often the stripe chunk
641 * size. A properly aligned multiple of minimum_io_size is the
642 * preferred request size for workloads where a high number of I/O
643 * operations is desired.
c72758f3
MP
644 */
645void blk_queue_io_min(struct request_queue *q, unsigned int min)
646{
7c958e32 647 blk_limits_io_min(&q->limits, min);
c72758f3
MP
648}
649EXPORT_SYMBOL(blk_queue_io_min);
650
3c5820c7
MP
651/**
652 * blk_limits_io_opt - set optimal request size for a device
653 * @limits: the queue limits
654 * @opt: smallest I/O size in bytes
655 *
656 * Description:
657 * Storage devices may report an optimal I/O size, which is the
658 * device's preferred unit for sustained I/O. This is rarely reported
659 * for disk drives. For RAID arrays it is usually the stripe width or
660 * the internal track size. A properly aligned multiple of
661 * optimal_io_size is the preferred request size for workloads where
662 * sustained throughput is desired.
663 */
664void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
665{
666 limits->io_opt = opt;
667}
668EXPORT_SYMBOL(blk_limits_io_opt);
669
c72758f3
MP
670/**
671 * blk_queue_io_opt - set optimal request size for the queue
672 * @q: the request queue for the device
8ebf9756 673 * @opt: optimal request size in bytes
c72758f3
MP
674 *
675 * Description:
7e5f5fb0
MP
676 * Storage devices may report an optimal I/O size, which is the
677 * device's preferred unit for sustained I/O. This is rarely reported
678 * for disk drives. For RAID arrays it is usually the stripe width or
679 * the internal track size. A properly aligned multiple of
680 * optimal_io_size is the preferred request size for workloads where
681 * sustained throughput is desired.
c72758f3
MP
682 */
683void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
684{
3c5820c7 685 blk_limits_io_opt(&q->limits, opt);
d152c682 686 if (!q->disk)
edb0872f 687 return;
d152c682 688 q->disk->bdi->ra_pages =
c2e4cd57 689 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
c72758f3
MP
690}
691EXPORT_SYMBOL(blk_queue_io_opt);
692
aa261f20 693static int queue_limit_alignment_offset(const struct queue_limits *lim,
89098b07
CH
694 sector_t sector)
695{
696 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
697 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
698 << SECTOR_SHIFT;
699
700 return (granularity + lim->alignment_offset - alignment) % granularity;
701}
702
aa261f20
BVA
703static unsigned int queue_limit_discard_alignment(
704 const struct queue_limits *lim, sector_t sector)
5c4b4a5c
CH
705{
706 unsigned int alignment, granularity, offset;
707
708 if (!lim->max_discard_sectors)
709 return 0;
710
711 /* Why are these in bytes, not sectors? */
712 alignment = lim->discard_alignment >> SECTOR_SHIFT;
713 granularity = lim->discard_granularity >> SECTOR_SHIFT;
714 if (!granularity)
715 return 0;
716
717 /* Offset of the partition start in 'granularity' sectors */
718 offset = sector_div(sector, granularity);
719
720 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
721 offset = (granularity + alignment - offset) % granularity;
722
723 /* Turn it back into bytes, gaah */
724 return offset << SECTOR_SHIFT;
725}
726
97f433c3
MP
727static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
728{
729 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
730 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
731 sectors = PAGE_SIZE >> SECTOR_SHIFT;
732 return sectors;
733}
734
c72758f3
MP
735/**
736 * blk_stack_limits - adjust queue_limits for stacked devices
81744ee4
MP
737 * @t: the stacking driver limits (top device)
738 * @b: the underlying queue limits (bottom, component device)
e03a72e1 739 * @start: first data sector within component device
c72758f3
MP
740 *
741 * Description:
81744ee4
MP
742 * This function is used by stacking drivers like MD and DM to ensure
743 * that all component devices have compatible block sizes and
744 * alignments. The stacking driver must provide a queue_limits
745 * struct (top) and then iteratively call the stacking function for
746 * all component (bottom) devices. The stacking function will
747 * attempt to combine the values and ensure proper alignment.
748 *
749 * Returns 0 if the top and bottom queue_limits are compatible. The
750 * top device's block sizes and alignment offsets may be adjusted to
751 * ensure alignment with the bottom device. If no compatible sizes
752 * and alignments exist, -1 is returned and the resulting top
753 * queue_limits will have the misaligned flag set to indicate that
754 * the alignment_offset is undefined.
c72758f3
MP
755 */
756int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
e03a72e1 757 sector_t start)
c72758f3 758{
e03a72e1 759 unsigned int top, bottom, alignment, ret = 0;
86b37281 760
c72758f3
MP
761 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
762 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
ca369d51 763 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
a6f0788e
CK
764 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
765 b->max_write_zeroes_sectors);
ccdbf0aa
DLM
766 t->max_zone_append_sectors = min(queue_limits_max_zone_append_sectors(t),
767 queue_limits_max_zone_append_sectors(b));
9bb33f24 768 t->bounce = max(t->bounce, b->bounce);
c72758f3
MP
769
770 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
771 b->seg_boundary_mask);
03100aad
KB
772 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
773 b->virt_boundary_mask);
c72758f3 774
8a78362c 775 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
1e739730
CH
776 t->max_discard_segments = min_not_zero(t->max_discard_segments,
777 b->max_discard_segments);
13f05c8d
MP
778 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
779 b->max_integrity_segments);
c72758f3
MP
780
781 t->max_segment_size = min_not_zero(t->max_segment_size,
782 b->max_segment_size);
783
fe0b393f
MP
784 t->misaligned |= b->misaligned;
785
e03a72e1 786 alignment = queue_limit_alignment_offset(b, start);
9504e086 787
81744ee4
MP
788 /* Bottom device has different alignment. Check that it is
789 * compatible with the current top alignment.
790 */
9504e086
MP
791 if (t->alignment_offset != alignment) {
792
793 top = max(t->physical_block_size, t->io_min)
794 + t->alignment_offset;
81744ee4 795 bottom = max(b->physical_block_size, b->io_min) + alignment;
9504e086 796
81744ee4 797 /* Verify that top and bottom intervals line up */
b8839b8c 798 if (max(top, bottom) % min(top, bottom)) {
9504e086 799 t->misaligned = 1;
fe0b393f
MP
800 ret = -1;
801 }
9504e086
MP
802 }
803
c72758f3
MP
804 t->logical_block_size = max(t->logical_block_size,
805 b->logical_block_size);
806
807 t->physical_block_size = max(t->physical_block_size,
808 b->physical_block_size);
809
810 t->io_min = max(t->io_min, b->io_min);
e9637415 811 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
c964d62f 812 t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
7e7986f9
MS
813
814 /* Set non-power-of-2 compatible chunk_sectors boundary */
815 if (b->chunk_sectors)
816 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
9504e086 817
81744ee4 818 /* Physical block size a multiple of the logical block size? */
9504e086
MP
819 if (t->physical_block_size & (t->logical_block_size - 1)) {
820 t->physical_block_size = t->logical_block_size;
c72758f3 821 t->misaligned = 1;
fe0b393f 822 ret = -1;
86b37281
MP
823 }
824
81744ee4 825 /* Minimum I/O a multiple of the physical block size? */
9504e086
MP
826 if (t->io_min & (t->physical_block_size - 1)) {
827 t->io_min = t->physical_block_size;
828 t->misaligned = 1;
fe0b393f 829 ret = -1;
c72758f3
MP
830 }
831
81744ee4 832 /* Optimal I/O a multiple of the physical block size? */
9504e086
MP
833 if (t->io_opt & (t->physical_block_size - 1)) {
834 t->io_opt = 0;
835 t->misaligned = 1;
fe0b393f 836 ret = -1;
9504e086 837 }
c72758f3 838
22ada802
MS
839 /* chunk_sectors a multiple of the physical block size? */
840 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
841 t->chunk_sectors = 0;
842 t->misaligned = 1;
843 ret = -1;
844 }
845
c78afc62
KO
846 t->raid_partial_stripes_expensive =
847 max(t->raid_partial_stripes_expensive,
848 b->raid_partial_stripes_expensive);
849
81744ee4 850 /* Find lowest common alignment_offset */
e9637415 851 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
b8839b8c 852 % max(t->physical_block_size, t->io_min);
86b37281 853
81744ee4 854 /* Verify that new alignment_offset is on a logical block boundary */
fe0b393f 855 if (t->alignment_offset & (t->logical_block_size - 1)) {
c72758f3 856 t->misaligned = 1;
fe0b393f
MP
857 ret = -1;
858 }
c72758f3 859
97f433c3
MP
860 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
861 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
862 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
863
9504e086
MP
864 /* Discard alignment and granularity */
865 if (b->discard_granularity) {
e03a72e1 866 alignment = queue_limit_discard_alignment(b, start);
9504e086
MP
867
868 if (t->discard_granularity != 0 &&
869 t->discard_alignment != alignment) {
870 top = t->discard_granularity + t->discard_alignment;
871 bottom = b->discard_granularity + alignment;
70dd5bf3 872
9504e086 873 /* Verify that top and bottom intervals line up */
8dd2cb7e 874 if ((max(top, bottom) % min(top, bottom)) != 0)
9504e086
MP
875 t->discard_misaligned = 1;
876 }
877
81744ee4
MP
878 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
879 b->max_discard_sectors);
0034af03
JA
880 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
881 b->max_hw_discard_sectors);
9504e086
MP
882 t->discard_granularity = max(t->discard_granularity,
883 b->discard_granularity);
e9637415 884 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
8dd2cb7e 885 t->discard_granularity;
9504e086 886 }
44abff2c
CH
887 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
888 b->max_secure_erase_sectors);
a805a4fa
DLM
889 t->zone_write_granularity = max(t->zone_write_granularity,
890 b->zone_write_granularity);
3093a479 891 t->zoned = max(t->zoned, b->zoned);
c8f6f88d
DLM
892 if (!t->zoned) {
893 t->zone_write_granularity = 0;
894 t->max_zone_append_sectors = 0;
895 }
fe0b393f 896 return ret;
c72758f3 897}
5d85d324 898EXPORT_SYMBOL(blk_stack_limits);
c72758f3 899
c1373f1c
CH
900/**
901 * queue_limits_stack_bdev - adjust queue_limits for stacked devices
902 * @t: the stacking driver limits (top device)
903 * @bdev: the underlying block device (bottom)
904 * @offset: offset to beginning of data within component device
905 * @pfx: prefix to use for warnings logged
906 *
907 * Description:
908 * This function is used by stacking drivers like MD and DM to ensure
909 * that all component devices have compatible block sizes and
910 * alignments. The stacking driver must provide a queue_limits
911 * struct (top) and then iteratively call the stacking function for
912 * all component (bottom) devices. The stacking function will
913 * attempt to combine the values and ensure proper alignment.
914 */
915void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
916 sector_t offset, const char *pfx)
917{
918 if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits,
919 get_start_sect(bdev) + offset))
920 pr_notice("%s: Warning: Device %pg is misaligned\n",
921 pfx, bdev);
922}
923EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
924
27f8221a
FT
925/**
926 * blk_queue_update_dma_pad - update pad mask
927 * @q: the request queue for the device
928 * @mask: pad mask
929 *
930 * Update dma pad mask.
931 *
932 * Appending pad buffer to a request modifies the last entry of a
933 * scatter list such that it includes the pad buffer.
934 **/
935void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
936{
937 if (mask > q->dma_pad_mask)
938 q->dma_pad_mask = mask;
939}
940EXPORT_SYMBOL(blk_queue_update_dma_pad);
941
86db1e29
JA
942/**
943 * blk_queue_segment_boundary - set boundary rules for segment merging
944 * @q: the request queue for the device
945 * @mask: the memory boundary mask
946 **/
947void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
948{
09cbfeaf
KS
949 if (mask < PAGE_SIZE - 1) {
950 mask = PAGE_SIZE - 1;
f19d1e3b 951 pr_info("%s: set to minimum %lx\n", __func__, mask);
86db1e29
JA
952 }
953
025146e1 954 q->limits.seg_boundary_mask = mask;
86db1e29 955}
86db1e29
JA
956EXPORT_SYMBOL(blk_queue_segment_boundary);
957
03100aad
KB
958/**
959 * blk_queue_virt_boundary - set boundary rules for bio merging
960 * @q: the request queue for the device
961 * @mask: the memory boundary mask
962 **/
963void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
964{
965 q->limits.virt_boundary_mask = mask;
09324d32
CH
966
967 /*
968 * Devices that require a virtual boundary do not support scatter/gather
969 * I/O natively, but instead require a descriptor list entry for each
970 * page (which might not be idential to the Linux PAGE_SIZE). Because
971 * of that they are not limited by our notion of "segment size".
972 */
c6c84f78
CH
973 if (mask)
974 q->limits.max_segment_size = UINT_MAX;
03100aad
KB
975}
976EXPORT_SYMBOL(blk_queue_virt_boundary);
977
86db1e29
JA
978/**
979 * blk_queue_dma_alignment - set dma length and memory alignment
980 * @q: the request queue for the device
981 * @mask: alignment mask
982 *
983 * description:
710027a4 984 * set required memory and length alignment for direct dma transactions.
8feb4d20 985 * this is used when building direct io requests for the queue.
86db1e29
JA
986 *
987 **/
988void blk_queue_dma_alignment(struct request_queue *q, int mask)
989{
c964d62f 990 q->limits.dma_alignment = mask;
86db1e29 991}
86db1e29
JA
992EXPORT_SYMBOL(blk_queue_dma_alignment);
993
994/**
995 * blk_queue_update_dma_alignment - update dma length and memory alignment
996 * @q: the request queue for the device
997 * @mask: alignment mask
998 *
999 * description:
710027a4 1000 * update required memory and length alignment for direct dma transactions.
86db1e29
JA
1001 * If the requested alignment is larger than the current alignment, then
1002 * the current queue alignment is updated to the new value, otherwise it
1003 * is left alone. The design of this is to allow multiple objects
1004 * (driver, device, transport etc) to set their respective
1005 * alignments without having them interfere.
1006 *
1007 **/
1008void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
1009{
1010 BUG_ON(mask > PAGE_SIZE);
1011
c964d62f
KB
1012 if (mask > q->limits.dma_alignment)
1013 q->limits.dma_alignment = mask;
86db1e29 1014}
86db1e29
JA
1015EXPORT_SYMBOL(blk_queue_update_dma_alignment);
1016
d278d4a8
JA
1017/**
1018 * blk_set_queue_depth - tell the block layer about the device queue depth
1019 * @q: the request queue for the device
1020 * @depth: queue depth
1021 *
1022 */
1023void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
1024{
1025 q->queue_depth = depth;
9677a3e0 1026 rq_qos_queue_depth_changed(q);
d278d4a8
JA
1027}
1028EXPORT_SYMBOL(blk_set_queue_depth);
1029
93e9d8e8
JA
1030/**
1031 * blk_queue_write_cache - configure queue's write cache
1032 * @q: the request queue for the device
1033 * @wc: write back cache on or off
1034 * @fua: device supports FUA writes, if true
1035 *
1036 * Tell the block layer about the write cache of @q.
1037 */
1038void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
1039{
43c9835b
CH
1040 if (wc) {
1041 blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
57d74df9 1042 blk_queue_flag_set(QUEUE_FLAG_WC, q);
43c9835b
CH
1043 } else {
1044 blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
57d74df9 1045 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
43c9835b 1046 }
c888a8f9 1047 if (fua)
57d74df9 1048 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
c888a8f9 1049 else
57d74df9 1050 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
93e9d8e8
JA
1051}
1052EXPORT_SYMBOL_GPL(blk_queue_write_cache);
1053
45147fb5
YS
1054/**
1055 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
1056 * @q: the request queue for the device
1057 * @dev: the device pointer for dma
1058 *
1059 * Tell the block layer about merging the segments by dma map of @q.
1060 */
1061bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1062 struct device *dev)
1063{
1064 unsigned long boundary = dma_get_merge_boundary(dev);
1065
1066 if (!boundary)
1067 return false;
1068
1069 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
1070 blk_queue_virt_boundary(q, boundary);
1071
1072 return true;
1073}
1074EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
1075
27ba3e8f 1076/**
d73e93b4
CH
1077 * disk_set_zoned - inidicate a zoned device
1078 * @disk: gendisk to configure
27ba3e8f 1079 */
d73e93b4 1080void disk_set_zoned(struct gendisk *disk)
27ba3e8f 1081{
a805a4fa
DLM
1082 struct request_queue *q = disk->queue;
1083
d73e93b4
CH
1084 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
1085
1086 /*
1087 * Set the zone write granularity to the device logical block
1088 * size by default. The driver can change this value if needed.
1089 */
1090 q->limits.zoned = true;
1091 blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
27ba3e8f 1092}
6b2bd274 1093EXPORT_SYMBOL_GPL(disk_set_zoned);
89098b07
CH
1094
1095int bdev_alignment_offset(struct block_device *bdev)
1096{
1097 struct request_queue *q = bdev_get_queue(bdev);
1098
1099 if (q->limits.misaligned)
1100 return -1;
1101 if (bdev_is_partition(bdev))
1102 return queue_limit_alignment_offset(&q->limits,
1103 bdev->bd_start_sect);
1104 return q->limits.alignment_offset;
1105}
1106EXPORT_SYMBOL_GPL(bdev_alignment_offset);
5c4b4a5c
CH
1107
1108unsigned int bdev_discard_alignment(struct block_device *bdev)
1109{
1110 struct request_queue *q = bdev_get_queue(bdev);
1111
1112 if (bdev_is_partition(bdev))
1113 return queue_limit_discard_alignment(&q->limits,
1114 bdev->bd_start_sect);
1115 return q->limits.discard_alignment;
1116}
1117EXPORT_SYMBOL_GPL(bdev_discard_alignment);