]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - block/blk-settings.c
Merge tag 'block-6.9-20240510' of git://git.kernel.dk/linux
[thirdparty/kernel/linux.git] / block / blk-settings.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
86db1e29
JA
2/*
3 * Functions related to setting various queue properties from drivers
4 */
5#include <linux/kernel.h>
6#include <linux/module.h>
7#include <linux/init.h>
8#include <linux/bio.h>
9#include <linux/blkdev.h>
4ee60ec1 10#include <linux/pagemap.h>
edb0872f 11#include <linux/backing-dev-defs.h>
70dd5bf3 12#include <linux/gcd.h>
2cda2728 13#include <linux/lcm.h>
ad5ebd2f 14#include <linux/jiffies.h>
5a0e3ad6 15#include <linux/gfp.h>
45147fb5 16#include <linux/dma-mapping.h>
86db1e29
JA
17
18#include "blk.h"
0bc65bd4 19#include "blk-rq-qos.h"
87760e5e 20#include "blk-wbt.h"
86db1e29 21
242f9dcb
JA
22void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23{
24 q->rq_timeout = timeout;
25}
26EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27
b1bd055d
MP
28/**
29 * blk_set_stacking_limits - set default limits for stacking devices
30 * @lim: the queue_limits structure to reset
31 *
c490f226
CH
32 * Prepare queue limits for applying limits from underlying devices using
33 * blk_stack_limits().
b1bd055d
MP
34 */
35void blk_set_stacking_limits(struct queue_limits *lim)
36{
c490f226
CH
37 memset(lim, 0, sizeof(*lim));
38 lim->logical_block_size = SECTOR_SIZE;
39 lim->physical_block_size = SECTOR_SIZE;
40 lim->io_min = SECTOR_SIZE;
41 lim->discard_granularity = SECTOR_SIZE;
42 lim->dma_alignment = SECTOR_SIZE - 1;
43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
b1bd055d
MP
44
45 /* Inherit limits from component devices */
b1bd055d 46 lim->max_segments = USHRT_MAX;
42c9cdfe 47 lim->max_discard_segments = USHRT_MAX;
b1bd055d 48 lim->max_hw_sectors = UINT_MAX;
d82ae52e 49 lim->max_segment_size = UINT_MAX;
fe86cdce 50 lim->max_sectors = UINT_MAX;
ca369d51 51 lim->max_dev_sectors = UINT_MAX;
a6f0788e 52 lim->max_write_zeroes_sectors = UINT_MAX;
0512a75b 53 lim->max_zone_append_sectors = UINT_MAX;
4f563a64 54 lim->max_user_discard_sectors = UINT_MAX;
b1bd055d
MP
55}
56EXPORT_SYMBOL(blk_set_stacking_limits);
57
b9947297
CH
58static void blk_apply_bdi_limits(struct backing_dev_info *bdi,
59 struct queue_limits *lim)
60{
61 /*
62 * For read-ahead of large files to be effective, we need to read ahead
63 * at least twice the optimal I/O size.
64 */
65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
67}
68
d690cb8a
CH
69static int blk_validate_zoned_limits(struct queue_limits *lim)
70{
71 if (!lim->zoned) {
72 if (WARN_ON_ONCE(lim->max_open_zones) ||
73 WARN_ON_ONCE(lim->max_active_zones) ||
74 WARN_ON_ONCE(lim->zone_write_granularity) ||
75 WARN_ON_ONCE(lim->max_zone_append_sectors))
76 return -EINVAL;
77 return 0;
78 }
79
80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
81 return -EINVAL;
82
83 if (lim->zone_write_granularity < lim->logical_block_size)
84 lim->zone_write_granularity = lim->logical_block_size;
85
86 if (lim->max_zone_append_sectors) {
87 /*
88 * The Zone Append size is limited by the maximum I/O size
89 * and the zone size given that it can't span zones.
90 */
91 lim->max_zone_append_sectors =
92 min3(lim->max_hw_sectors,
93 lim->max_zone_append_sectors,
94 lim->chunk_sectors);
95 }
96
97 return 0;
98}
99
100/*
101 * Check that the limits in lim are valid, initialize defaults for unset
102 * values, and cap values based on others where needed.
103 */
104static int blk_validate_limits(struct queue_limits *lim)
105{
106 unsigned int max_hw_sectors;
107
108 /*
109 * Unless otherwise specified, default to 512 byte logical blocks and a
110 * physical block size equal to the logical block size.
111 */
112 if (!lim->logical_block_size)
113 lim->logical_block_size = SECTOR_SIZE;
114 if (lim->physical_block_size < lim->logical_block_size)
115 lim->physical_block_size = lim->logical_block_size;
116
117 /*
118 * The minimum I/O size defaults to the physical block size unless
119 * explicitly overridden.
120 */
121 if (lim->io_min < lim->physical_block_size)
122 lim->io_min = lim->physical_block_size;
123
124 /*
125 * max_hw_sectors has a somewhat weird default for historical reason,
126 * but driver really should set their own instead of relying on this
127 * value.
128 *
129 * The block layer relies on the fact that every driver can
130 * handle at lest a page worth of data per I/O, and needs the value
131 * aligned to the logical block size.
132 */
133 if (!lim->max_hw_sectors)
134 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
135 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
136 return -EINVAL;
137 lim->max_hw_sectors = round_down(lim->max_hw_sectors,
138 lim->logical_block_size >> SECTOR_SHIFT);
139
140 /*
141 * The actual max_sectors value is a complex beast and also takes the
142 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
143 * value into account. The ->max_sectors value is always calculated
144 * from these, so directly setting it won't have any effect.
145 */
146 max_hw_sectors = min_not_zero(lim->max_hw_sectors,
147 lim->max_dev_sectors);
148 if (lim->max_user_sectors) {
038105a2 149 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
d690cb8a
CH
150 return -EINVAL;
151 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
152 } else {
153 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
154 }
155 lim->max_sectors = round_down(lim->max_sectors,
156 lim->logical_block_size >> SECTOR_SHIFT);
157
158 /*
159 * Random default for the maximum number of segments. Driver should not
160 * rely on this and set their own.
161 */
162 if (!lim->max_segments)
163 lim->max_segments = BLK_MAX_SEGMENTS;
164
4f563a64
CH
165 lim->max_discard_sectors =
166 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
167
d690cb8a
CH
168 if (!lim->max_discard_segments)
169 lim->max_discard_segments = 1;
170
171 if (lim->discard_granularity < lim->physical_block_size)
172 lim->discard_granularity = lim->physical_block_size;
173
174 /*
175 * By default there is no limit on the segment boundary alignment,
176 * but if there is one it can't be smaller than the page size as
177 * that would break all the normal I/O patterns.
178 */
179 if (!lim->seg_boundary_mask)
180 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
181 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
182 return -EINVAL;
183
d690cb8a 184 /*
b561ea56
ML
185 * Stacking device may have both virtual boundary and max segment
186 * size limit, so allow this setting now, and long-term the two
187 * might need to move out of stacking limits since we have immutable
188 * bvec and lower layer bio splitting is supposed to handle the two
189 * correctly.
d690cb8a 190 */
ffd379c1
ML
191 if (lim->virt_boundary_mask) {
192 if (!lim->max_segment_size)
193 lim->max_segment_size = UINT_MAX;
194 } else {
a3911966
CH
195 /*
196 * The maximum segment size has an odd historic 64k default that
197 * drivers probably should override. Just like the I/O size we
198 * require drivers to at least handle a full page per segment.
199 */
200 if (!lim->max_segment_size)
201 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
202 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
203 return -EINVAL;
d690cb8a
CH
204 }
205
206 /*
207 * We require drivers to at least do logical block aligned I/O, but
208 * historically could not check for that due to the separate calls
209 * to set the limits. Once the transition is finished the check
210 * below should be narrowed down to check the logical block size.
211 */
212 if (!lim->dma_alignment)
213 lim->dma_alignment = SECTOR_SIZE - 1;
214 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
215 return -EINVAL;
216
217 if (lim->alignment_offset) {
218 lim->alignment_offset &= (lim->physical_block_size - 1);
219 lim->misaligned = 0;
220 }
221
222 return blk_validate_zoned_limits(lim);
223}
224
225/*
226 * Set the default limits for a newly allocated queue. @lim contains the
227 * initial limits set by the driver, which could be no limit in which case
228 * all fields are cleared to zero.
229 */
230int blk_set_default_limits(struct queue_limits *lim)
231{
4f563a64
CH
232 /*
233 * Most defaults are set by capping the bounds in blk_validate_limits,
234 * but max_user_discard_sectors is special and needs an explicit
235 * initialization to the max value here.
236 */
237 lim->max_user_discard_sectors = UINT_MAX;
d690cb8a
CH
238 return blk_validate_limits(lim);
239}
240
241/**
242 * queue_limits_commit_update - commit an atomic update of queue limits
243 * @q: queue to update
244 * @lim: limits to apply
245 *
246 * Apply the limits in @lim that were obtained from queue_limits_start_update()
247 * and updated by the caller to @q.
248 *
249 * Returns 0 if successful, else a negative error code.
250 */
251int queue_limits_commit_update(struct request_queue *q,
252 struct queue_limits *lim)
253 __releases(q->limits_lock)
254{
255 int error = blk_validate_limits(lim);
256
257 if (!error) {
258 q->limits = *lim;
259 if (q->disk)
260 blk_apply_bdi_limits(q->disk->bdi, lim);
261 }
262 mutex_unlock(&q->limits_lock);
263 return error;
264}
265EXPORT_SYMBOL_GPL(queue_limits_commit_update);
266
631d4efb 267/**
4c4ab8ae 268 * queue_limits_set - apply queue limits to queue
631d4efb
CH
269 * @q: queue to update
270 * @lim: limits to apply
271 *
272 * Apply the limits in @lim that were freshly initialized to @q.
273 * To update existing limits use queue_limits_start_update() and
274 * queue_limits_commit_update() instead.
275 *
276 * Returns 0 if successful, else a negative error code.
277 */
278int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
279{
280 mutex_lock(&q->limits_lock);
281 return queue_limits_commit_update(q, lim);
282}
283EXPORT_SYMBOL_GPL(queue_limits_set);
284
86db1e29
JA
285/**
286 * blk_queue_bounce_limit - set bounce buffer limit for queue
cd0aca2d 287 * @q: the request queue for the device
9bb33f24 288 * @bounce: bounce limit to enforce
86db1e29
JA
289 *
290 * Description:
9bb33f24
CH
291 * Force bouncing for ISA DMA ranges or highmem.
292 *
293 * DEPRECATED, don't use in new code.
86db1e29 294 **/
9bb33f24 295void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
86db1e29 296{
9bb33f24 297 q->limits.bounce = bounce;
86db1e29 298}
86db1e29
JA
299EXPORT_SYMBOL(blk_queue_bounce_limit);
300
301/**
ca369d51
MP
302 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
303 * @q: the request queue for the device
2800aac1 304 * @max_hw_sectors: max hardware sectors in the usual 512b unit
86db1e29
JA
305 *
306 * Description:
2800aac1
MP
307 * Enables a low level driver to set a hard upper limit,
308 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
4f258a46
MP
309 * the device driver based upon the capabilities of the I/O
310 * controller.
2800aac1 311 *
ca369d51
MP
312 * max_dev_sectors is a hard limit imposed by the storage device for
313 * READ/WRITE requests. It is set by the disk driver.
314 *
2800aac1
MP
315 * max_sectors is a soft limit imposed by the block layer for
316 * filesystem type requests. This value can be overridden on a
317 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
318 * The soft limit can not exceed max_hw_sectors.
86db1e29 319 **/
ca369d51 320void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
86db1e29 321{
ca369d51
MP
322 struct queue_limits *limits = &q->limits;
323 unsigned int max_sectors;
324
09cbfeaf
KS
325 if ((max_hw_sectors << 9) < PAGE_SIZE) {
326 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
f19d1e3b 327 pr_info("%s: set to minimum %u\n", __func__, max_hw_sectors);
86db1e29
JA
328 }
329
817046ec
DLM
330 max_hw_sectors = round_down(max_hw_sectors,
331 limits->logical_block_size >> SECTOR_SHIFT);
30e2bc08 332 limits->max_hw_sectors = max_hw_sectors;
817046ec 333
ca369d51 334 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
c9c77418
KB
335
336 if (limits->max_user_sectors)
337 max_sectors = min(max_sectors, limits->max_user_sectors);
338 else
d6b9f4e6 339 max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS_CAP);
c9c77418 340
817046ec
DLM
341 max_sectors = round_down(max_sectors,
342 limits->logical_block_size >> SECTOR_SHIFT);
ca369d51 343 limits->max_sectors = max_sectors;
817046ec 344
d152c682 345 if (!q->disk)
edb0872f 346 return;
d152c682 347 q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
86db1e29 348}
086fa5ff 349EXPORT_SYMBOL(blk_queue_max_hw_sectors);
86db1e29 350
762380ad
JA
351/**
352 * blk_queue_chunk_sectors - set size of the chunk for this queue
353 * @q: the request queue for the device
354 * @chunk_sectors: chunk sectors in the usual 512b unit
355 *
356 * Description:
357 * If a driver doesn't want IOs to cross a given chunk size, it can set
07d098e6
MS
358 * this limit and prevent merging across chunks. Note that the block layer
359 * must accept a page worth of data at any offset. So if the crossing of
360 * chunks is a hard limitation in the driver, it must still be prepared
361 * to split single page bios.
762380ad
JA
362 **/
363void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
364{
762380ad
JA
365 q->limits.chunk_sectors = chunk_sectors;
366}
367EXPORT_SYMBOL(blk_queue_chunk_sectors);
368
67efc925
CH
369/**
370 * blk_queue_max_discard_sectors - set max sectors for a single discard
371 * @q: the request queue for the device
c7ebf065 372 * @max_discard_sectors: maximum number of sectors to discard
67efc925
CH
373 **/
374void blk_queue_max_discard_sectors(struct request_queue *q,
375 unsigned int max_discard_sectors)
376{
4f563a64
CH
377 struct queue_limits *lim = &q->limits;
378
379 lim->max_hw_discard_sectors = max_discard_sectors;
380 lim->max_discard_sectors =
381 min(max_discard_sectors, lim->max_user_discard_sectors);
67efc925
CH
382}
383EXPORT_SYMBOL(blk_queue_max_discard_sectors);
384
44abff2c
CH
385/**
386 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
387 * @q: the request queue for the device
388 * @max_sectors: maximum number of sectors to secure_erase
389 **/
390void blk_queue_max_secure_erase_sectors(struct request_queue *q,
391 unsigned int max_sectors)
392{
393 q->limits.max_secure_erase_sectors = max_sectors;
394}
395EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
396
a6f0788e
CK
397/**
398 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
399 * write zeroes
400 * @q: the request queue for the device
401 * @max_write_zeroes_sectors: maximum number of sectors to write per command
402 **/
403void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
404 unsigned int max_write_zeroes_sectors)
405{
406 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
407}
408EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
409
0512a75b
KB
410/**
411 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
412 * @q: the request queue for the device
413 * @max_zone_append_sectors: maximum number of sectors to write per command
414 **/
415void blk_queue_max_zone_append_sectors(struct request_queue *q,
416 unsigned int max_zone_append_sectors)
417{
418 unsigned int max_sectors;
419
420 if (WARN_ON(!blk_queue_is_zoned(q)))
421 return;
422
423 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
424 max_sectors = min(q->limits.chunk_sectors, max_sectors);
425
426 /*
427 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
428 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
429 * or the max_hw_sectors limit not set.
430 */
431 WARN_ON(!max_sectors);
432
433 q->limits.max_zone_append_sectors = max_sectors;
434}
435EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
436
86db1e29 437/**
8a78362c 438 * blk_queue_max_segments - set max hw segments for a request for this queue
86db1e29
JA
439 * @q: the request queue for the device
440 * @max_segments: max number of segments
441 *
442 * Description:
443 * Enables a low level driver to set an upper limit on the number of
8a78362c 444 * hw data segments in a request.
86db1e29 445 **/
8a78362c 446void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
86db1e29
JA
447{
448 if (!max_segments) {
449 max_segments = 1;
f19d1e3b 450 pr_info("%s: set to minimum %u\n", __func__, max_segments);
86db1e29
JA
451 }
452
8a78362c 453 q->limits.max_segments = max_segments;
86db1e29 454}
8a78362c 455EXPORT_SYMBOL(blk_queue_max_segments);
86db1e29 456
1e739730
CH
457/**
458 * blk_queue_max_discard_segments - set max segments for discard requests
459 * @q: the request queue for the device
460 * @max_segments: max number of segments
461 *
462 * Description:
463 * Enables a low level driver to set an upper limit on the number of
464 * segments in a discard request.
465 **/
466void blk_queue_max_discard_segments(struct request_queue *q,
467 unsigned short max_segments)
468{
469 q->limits.max_discard_segments = max_segments;
470}
471EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
472
86db1e29
JA
473/**
474 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
475 * @q: the request queue for the device
476 * @max_size: max size of segment in bytes
477 *
478 * Description:
479 * Enables a low level driver to set an upper limit on the size of a
480 * coalesced segment
481 **/
482void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
483{
09cbfeaf
KS
484 if (max_size < PAGE_SIZE) {
485 max_size = PAGE_SIZE;
f19d1e3b 486 pr_info("%s: set to minimum %u\n", __func__, max_size);
86db1e29
JA
487 }
488
09324d32
CH
489 /* see blk_queue_virt_boundary() for the explanation */
490 WARN_ON_ONCE(q->limits.virt_boundary_mask);
491
025146e1 492 q->limits.max_segment_size = max_size;
86db1e29 493}
86db1e29
JA
494EXPORT_SYMBOL(blk_queue_max_segment_size);
495
496/**
e1defc4f 497 * blk_queue_logical_block_size - set logical block size for the queue
86db1e29 498 * @q: the request queue for the device
e1defc4f 499 * @size: the logical block size, in bytes
86db1e29
JA
500 *
501 * Description:
e1defc4f
MP
502 * This should be set to the lowest possible block size that the
503 * storage device can address. The default of 512 covers most
504 * hardware.
86db1e29 505 **/
ad6bf88a 506void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
86db1e29 507{
817046ec
DLM
508 struct queue_limits *limits = &q->limits;
509
510 limits->logical_block_size = size;
511
3c407dc7
CH
512 if (limits->discard_granularity < limits->logical_block_size)
513 limits->discard_granularity = limits->logical_block_size;
514
817046ec
DLM
515 if (limits->physical_block_size < size)
516 limits->physical_block_size = size;
c72758f3 517
817046ec
DLM
518 if (limits->io_min < limits->physical_block_size)
519 limits->io_min = limits->physical_block_size;
c72758f3 520
817046ec
DLM
521 limits->max_hw_sectors =
522 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
523 limits->max_sectors =
524 round_down(limits->max_sectors, size >> SECTOR_SHIFT);
86db1e29 525}
e1defc4f 526EXPORT_SYMBOL(blk_queue_logical_block_size);
86db1e29 527
c72758f3
MP
528/**
529 * blk_queue_physical_block_size - set physical block size for the queue
530 * @q: the request queue for the device
531 * @size: the physical block size, in bytes
532 *
533 * Description:
534 * This should be set to the lowest possible sector size that the
535 * hardware can operate on without reverting to read-modify-write
536 * operations.
537 */
892b6f90 538void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
c72758f3
MP
539{
540 q->limits.physical_block_size = size;
541
542 if (q->limits.physical_block_size < q->limits.logical_block_size)
543 q->limits.physical_block_size = q->limits.logical_block_size;
544
458aa1a0
CH
545 if (q->limits.discard_granularity < q->limits.physical_block_size)
546 q->limits.discard_granularity = q->limits.physical_block_size;
547
c72758f3
MP
548 if (q->limits.io_min < q->limits.physical_block_size)
549 q->limits.io_min = q->limits.physical_block_size;
550}
551EXPORT_SYMBOL(blk_queue_physical_block_size);
552
a805a4fa
DLM
553/**
554 * blk_queue_zone_write_granularity - set zone write granularity for the queue
555 * @q: the request queue for the zoned device
556 * @size: the zone write granularity size, in bytes
557 *
558 * Description:
559 * This should be set to the lowest possible size allowing to write in
560 * sequential zones of a zoned block device.
561 */
562void blk_queue_zone_write_granularity(struct request_queue *q,
563 unsigned int size)
564{
565 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
566 return;
567
568 q->limits.zone_write_granularity = size;
569
570 if (q->limits.zone_write_granularity < q->limits.logical_block_size)
571 q->limits.zone_write_granularity = q->limits.logical_block_size;
572}
573EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
574
c72758f3
MP
575/**
576 * blk_queue_alignment_offset - set physical block alignment offset
577 * @q: the request queue for the device
8ebf9756 578 * @offset: alignment offset in bytes
c72758f3
MP
579 *
580 * Description:
581 * Some devices are naturally misaligned to compensate for things like
582 * the legacy DOS partition table 63-sector offset. Low-level drivers
583 * should call this function for devices whose first sector is not
584 * naturally aligned.
585 */
586void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
587{
588 q->limits.alignment_offset =
589 offset & (q->limits.physical_block_size - 1);
590 q->limits.misaligned = 0;
591}
592EXPORT_SYMBOL(blk_queue_alignment_offset);
593
471aa704 594void disk_update_readahead(struct gendisk *disk)
c2e4cd57 595{
b9947297 596 blk_apply_bdi_limits(disk->bdi, &disk->queue->limits);
c2e4cd57 597}
471aa704 598EXPORT_SYMBOL_GPL(disk_update_readahead);
c2e4cd57 599
7c958e32
MP
600/**
601 * blk_limits_io_min - set minimum request size for a device
602 * @limits: the queue limits
603 * @min: smallest I/O size in bytes
604 *
605 * Description:
606 * Some devices have an internal block size bigger than the reported
607 * hardware sector size. This function can be used to signal the
608 * smallest I/O the device can perform without incurring a performance
609 * penalty.
610 */
611void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
612{
613 limits->io_min = min;
614
615 if (limits->io_min < limits->logical_block_size)
616 limits->io_min = limits->logical_block_size;
617
618 if (limits->io_min < limits->physical_block_size)
619 limits->io_min = limits->physical_block_size;
620}
621EXPORT_SYMBOL(blk_limits_io_min);
622
c72758f3
MP
623/**
624 * blk_queue_io_min - set minimum request size for the queue
625 * @q: the request queue for the device
8ebf9756 626 * @min: smallest I/O size in bytes
c72758f3
MP
627 *
628 * Description:
7e5f5fb0
MP
629 * Storage devices may report a granularity or preferred minimum I/O
630 * size which is the smallest request the device can perform without
631 * incurring a performance penalty. For disk drives this is often the
632 * physical block size. For RAID arrays it is often the stripe chunk
633 * size. A properly aligned multiple of minimum_io_size is the
634 * preferred request size for workloads where a high number of I/O
635 * operations is desired.
c72758f3
MP
636 */
637void blk_queue_io_min(struct request_queue *q, unsigned int min)
638{
7c958e32 639 blk_limits_io_min(&q->limits, min);
c72758f3
MP
640}
641EXPORT_SYMBOL(blk_queue_io_min);
642
3c5820c7
MP
643/**
644 * blk_limits_io_opt - set optimal request size for a device
645 * @limits: the queue limits
646 * @opt: smallest I/O size in bytes
647 *
648 * Description:
649 * Storage devices may report an optimal I/O size, which is the
650 * device's preferred unit for sustained I/O. This is rarely reported
651 * for disk drives. For RAID arrays it is usually the stripe width or
652 * the internal track size. A properly aligned multiple of
653 * optimal_io_size is the preferred request size for workloads where
654 * sustained throughput is desired.
655 */
656void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
657{
658 limits->io_opt = opt;
659}
660EXPORT_SYMBOL(blk_limits_io_opt);
661
c72758f3
MP
662/**
663 * blk_queue_io_opt - set optimal request size for the queue
664 * @q: the request queue for the device
8ebf9756 665 * @opt: optimal request size in bytes
c72758f3
MP
666 *
667 * Description:
7e5f5fb0
MP
668 * Storage devices may report an optimal I/O size, which is the
669 * device's preferred unit for sustained I/O. This is rarely reported
670 * for disk drives. For RAID arrays it is usually the stripe width or
671 * the internal track size. A properly aligned multiple of
672 * optimal_io_size is the preferred request size for workloads where
673 * sustained throughput is desired.
c72758f3
MP
674 */
675void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
676{
3c5820c7 677 blk_limits_io_opt(&q->limits, opt);
d152c682 678 if (!q->disk)
edb0872f 679 return;
d152c682 680 q->disk->bdi->ra_pages =
c2e4cd57 681 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
c72758f3
MP
682}
683EXPORT_SYMBOL(blk_queue_io_opt);
684
aa261f20 685static int queue_limit_alignment_offset(const struct queue_limits *lim,
89098b07
CH
686 sector_t sector)
687{
688 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
689 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
690 << SECTOR_SHIFT;
691
692 return (granularity + lim->alignment_offset - alignment) % granularity;
693}
694
aa261f20
BVA
695static unsigned int queue_limit_discard_alignment(
696 const struct queue_limits *lim, sector_t sector)
5c4b4a5c
CH
697{
698 unsigned int alignment, granularity, offset;
699
700 if (!lim->max_discard_sectors)
701 return 0;
702
703 /* Why are these in bytes, not sectors? */
704 alignment = lim->discard_alignment >> SECTOR_SHIFT;
705 granularity = lim->discard_granularity >> SECTOR_SHIFT;
706 if (!granularity)
707 return 0;
708
709 /* Offset of the partition start in 'granularity' sectors */
710 offset = sector_div(sector, granularity);
711
712 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
713 offset = (granularity + alignment - offset) % granularity;
714
715 /* Turn it back into bytes, gaah */
716 return offset << SECTOR_SHIFT;
717}
718
97f433c3
MP
719static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
720{
721 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
722 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
723 sectors = PAGE_SIZE >> SECTOR_SHIFT;
724 return sectors;
725}
726
c72758f3
MP
727/**
728 * blk_stack_limits - adjust queue_limits for stacked devices
81744ee4
MP
729 * @t: the stacking driver limits (top device)
730 * @b: the underlying queue limits (bottom, component device)
e03a72e1 731 * @start: first data sector within component device
c72758f3
MP
732 *
733 * Description:
81744ee4
MP
734 * This function is used by stacking drivers like MD and DM to ensure
735 * that all component devices have compatible block sizes and
736 * alignments. The stacking driver must provide a queue_limits
737 * struct (top) and then iteratively call the stacking function for
738 * all component (bottom) devices. The stacking function will
739 * attempt to combine the values and ensure proper alignment.
740 *
741 * Returns 0 if the top and bottom queue_limits are compatible. The
742 * top device's block sizes and alignment offsets may be adjusted to
743 * ensure alignment with the bottom device. If no compatible sizes
744 * and alignments exist, -1 is returned and the resulting top
745 * queue_limits will have the misaligned flag set to indicate that
746 * the alignment_offset is undefined.
c72758f3
MP
747 */
748int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
e03a72e1 749 sector_t start)
c72758f3 750{
e03a72e1 751 unsigned int top, bottom, alignment, ret = 0;
86b37281 752
c72758f3
MP
753 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
754 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
ca369d51 755 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
a6f0788e
CK
756 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
757 b->max_write_zeroes_sectors);
0512a75b
KB
758 t->max_zone_append_sectors = min(t->max_zone_append_sectors,
759 b->max_zone_append_sectors);
9bb33f24 760 t->bounce = max(t->bounce, b->bounce);
c72758f3
MP
761
762 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
763 b->seg_boundary_mask);
03100aad
KB
764 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
765 b->virt_boundary_mask);
c72758f3 766
8a78362c 767 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
1e739730
CH
768 t->max_discard_segments = min_not_zero(t->max_discard_segments,
769 b->max_discard_segments);
13f05c8d
MP
770 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
771 b->max_integrity_segments);
c72758f3
MP
772
773 t->max_segment_size = min_not_zero(t->max_segment_size,
774 b->max_segment_size);
775
fe0b393f
MP
776 t->misaligned |= b->misaligned;
777
e03a72e1 778 alignment = queue_limit_alignment_offset(b, start);
9504e086 779
81744ee4
MP
780 /* Bottom device has different alignment. Check that it is
781 * compatible with the current top alignment.
782 */
9504e086
MP
783 if (t->alignment_offset != alignment) {
784
785 top = max(t->physical_block_size, t->io_min)
786 + t->alignment_offset;
81744ee4 787 bottom = max(b->physical_block_size, b->io_min) + alignment;
9504e086 788
81744ee4 789 /* Verify that top and bottom intervals line up */
b8839b8c 790 if (max(top, bottom) % min(top, bottom)) {
9504e086 791 t->misaligned = 1;
fe0b393f
MP
792 ret = -1;
793 }
9504e086
MP
794 }
795
c72758f3
MP
796 t->logical_block_size = max(t->logical_block_size,
797 b->logical_block_size);
798
799 t->physical_block_size = max(t->physical_block_size,
800 b->physical_block_size);
801
802 t->io_min = max(t->io_min, b->io_min);
e9637415 803 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
c964d62f 804 t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
7e7986f9
MS
805
806 /* Set non-power-of-2 compatible chunk_sectors boundary */
807 if (b->chunk_sectors)
808 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
9504e086 809
81744ee4 810 /* Physical block size a multiple of the logical block size? */
9504e086
MP
811 if (t->physical_block_size & (t->logical_block_size - 1)) {
812 t->physical_block_size = t->logical_block_size;
c72758f3 813 t->misaligned = 1;
fe0b393f 814 ret = -1;
86b37281
MP
815 }
816
81744ee4 817 /* Minimum I/O a multiple of the physical block size? */
9504e086
MP
818 if (t->io_min & (t->physical_block_size - 1)) {
819 t->io_min = t->physical_block_size;
820 t->misaligned = 1;
fe0b393f 821 ret = -1;
c72758f3
MP
822 }
823
81744ee4 824 /* Optimal I/O a multiple of the physical block size? */
9504e086
MP
825 if (t->io_opt & (t->physical_block_size - 1)) {
826 t->io_opt = 0;
827 t->misaligned = 1;
fe0b393f 828 ret = -1;
9504e086 829 }
c72758f3 830
22ada802
MS
831 /* chunk_sectors a multiple of the physical block size? */
832 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
833 t->chunk_sectors = 0;
834 t->misaligned = 1;
835 ret = -1;
836 }
837
c78afc62
KO
838 t->raid_partial_stripes_expensive =
839 max(t->raid_partial_stripes_expensive,
840 b->raid_partial_stripes_expensive);
841
81744ee4 842 /* Find lowest common alignment_offset */
e9637415 843 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
b8839b8c 844 % max(t->physical_block_size, t->io_min);
86b37281 845
81744ee4 846 /* Verify that new alignment_offset is on a logical block boundary */
fe0b393f 847 if (t->alignment_offset & (t->logical_block_size - 1)) {
c72758f3 848 t->misaligned = 1;
fe0b393f
MP
849 ret = -1;
850 }
c72758f3 851
97f433c3
MP
852 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
853 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
854 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
855
9504e086
MP
856 /* Discard alignment and granularity */
857 if (b->discard_granularity) {
e03a72e1 858 alignment = queue_limit_discard_alignment(b, start);
9504e086
MP
859
860 if (t->discard_granularity != 0 &&
861 t->discard_alignment != alignment) {
862 top = t->discard_granularity + t->discard_alignment;
863 bottom = b->discard_granularity + alignment;
70dd5bf3 864
9504e086 865 /* Verify that top and bottom intervals line up */
8dd2cb7e 866 if ((max(top, bottom) % min(top, bottom)) != 0)
9504e086
MP
867 t->discard_misaligned = 1;
868 }
869
81744ee4
MP
870 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
871 b->max_discard_sectors);
0034af03
JA
872 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
873 b->max_hw_discard_sectors);
9504e086
MP
874 t->discard_granularity = max(t->discard_granularity,
875 b->discard_granularity);
e9637415 876 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
8dd2cb7e 877 t->discard_granularity;
9504e086 878 }
44abff2c
CH
879 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
880 b->max_secure_erase_sectors);
a805a4fa
DLM
881 t->zone_write_granularity = max(t->zone_write_granularity,
882 b->zone_write_granularity);
3093a479 883 t->zoned = max(t->zoned, b->zoned);
c8f6f88d
DLM
884 if (!t->zoned) {
885 t->zone_write_granularity = 0;
886 t->max_zone_append_sectors = 0;
887 }
fe0b393f 888 return ret;
c72758f3 889}
5d85d324 890EXPORT_SYMBOL(blk_stack_limits);
c72758f3 891
c1373f1c
CH
892/**
893 * queue_limits_stack_bdev - adjust queue_limits for stacked devices
894 * @t: the stacking driver limits (top device)
895 * @bdev: the underlying block device (bottom)
896 * @offset: offset to beginning of data within component device
897 * @pfx: prefix to use for warnings logged
898 *
899 * Description:
900 * This function is used by stacking drivers like MD and DM to ensure
901 * that all component devices have compatible block sizes and
902 * alignments. The stacking driver must provide a queue_limits
903 * struct (top) and then iteratively call the stacking function for
904 * all component (bottom) devices. The stacking function will
905 * attempt to combine the values and ensure proper alignment.
906 */
907void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
908 sector_t offset, const char *pfx)
909{
910 if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits,
911 get_start_sect(bdev) + offset))
912 pr_notice("%s: Warning: Device %pg is misaligned\n",
913 pfx, bdev);
914}
915EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
916
27f8221a
FT
917/**
918 * blk_queue_update_dma_pad - update pad mask
919 * @q: the request queue for the device
920 * @mask: pad mask
921 *
922 * Update dma pad mask.
923 *
924 * Appending pad buffer to a request modifies the last entry of a
925 * scatter list such that it includes the pad buffer.
926 **/
927void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
928{
929 if (mask > q->dma_pad_mask)
930 q->dma_pad_mask = mask;
931}
932EXPORT_SYMBOL(blk_queue_update_dma_pad);
933
86db1e29
JA
934/**
935 * blk_queue_segment_boundary - set boundary rules for segment merging
936 * @q: the request queue for the device
937 * @mask: the memory boundary mask
938 **/
939void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
940{
09cbfeaf
KS
941 if (mask < PAGE_SIZE - 1) {
942 mask = PAGE_SIZE - 1;
f19d1e3b 943 pr_info("%s: set to minimum %lx\n", __func__, mask);
86db1e29
JA
944 }
945
025146e1 946 q->limits.seg_boundary_mask = mask;
86db1e29 947}
86db1e29
JA
948EXPORT_SYMBOL(blk_queue_segment_boundary);
949
03100aad
KB
950/**
951 * blk_queue_virt_boundary - set boundary rules for bio merging
952 * @q: the request queue for the device
953 * @mask: the memory boundary mask
954 **/
955void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
956{
957 q->limits.virt_boundary_mask = mask;
09324d32
CH
958
959 /*
960 * Devices that require a virtual boundary do not support scatter/gather
961 * I/O natively, but instead require a descriptor list entry for each
962 * page (which might not be idential to the Linux PAGE_SIZE). Because
963 * of that they are not limited by our notion of "segment size".
964 */
c6c84f78
CH
965 if (mask)
966 q->limits.max_segment_size = UINT_MAX;
03100aad
KB
967}
968EXPORT_SYMBOL(blk_queue_virt_boundary);
969
86db1e29
JA
970/**
971 * blk_queue_dma_alignment - set dma length and memory alignment
972 * @q: the request queue for the device
973 * @mask: alignment mask
974 *
975 * description:
710027a4 976 * set required memory and length alignment for direct dma transactions.
8feb4d20 977 * this is used when building direct io requests for the queue.
86db1e29
JA
978 *
979 **/
980void blk_queue_dma_alignment(struct request_queue *q, int mask)
981{
c964d62f 982 q->limits.dma_alignment = mask;
86db1e29 983}
86db1e29
JA
984EXPORT_SYMBOL(blk_queue_dma_alignment);
985
986/**
987 * blk_queue_update_dma_alignment - update dma length and memory alignment
988 * @q: the request queue for the device
989 * @mask: alignment mask
990 *
991 * description:
710027a4 992 * update required memory and length alignment for direct dma transactions.
86db1e29
JA
993 * If the requested alignment is larger than the current alignment, then
994 * the current queue alignment is updated to the new value, otherwise it
995 * is left alone. The design of this is to allow multiple objects
996 * (driver, device, transport etc) to set their respective
997 * alignments without having them interfere.
998 *
999 **/
1000void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
1001{
1002 BUG_ON(mask > PAGE_SIZE);
1003
c964d62f
KB
1004 if (mask > q->limits.dma_alignment)
1005 q->limits.dma_alignment = mask;
86db1e29 1006}
86db1e29
JA
1007EXPORT_SYMBOL(blk_queue_update_dma_alignment);
1008
d278d4a8
JA
1009/**
1010 * blk_set_queue_depth - tell the block layer about the device queue depth
1011 * @q: the request queue for the device
1012 * @depth: queue depth
1013 *
1014 */
1015void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
1016{
1017 q->queue_depth = depth;
9677a3e0 1018 rq_qos_queue_depth_changed(q);
d278d4a8
JA
1019}
1020EXPORT_SYMBOL(blk_set_queue_depth);
1021
93e9d8e8
JA
1022/**
1023 * blk_queue_write_cache - configure queue's write cache
1024 * @q: the request queue for the device
1025 * @wc: write back cache on or off
1026 * @fua: device supports FUA writes, if true
1027 *
1028 * Tell the block layer about the write cache of @q.
1029 */
1030void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
1031{
43c9835b
CH
1032 if (wc) {
1033 blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
57d74df9 1034 blk_queue_flag_set(QUEUE_FLAG_WC, q);
43c9835b
CH
1035 } else {
1036 blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
57d74df9 1037 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
43c9835b 1038 }
c888a8f9 1039 if (fua)
57d74df9 1040 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
c888a8f9 1041 else
57d74df9 1042 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
93e9d8e8
JA
1043}
1044EXPORT_SYMBOL_GPL(blk_queue_write_cache);
1045
68c43f13
DLM
1046/**
1047 * blk_queue_required_elevator_features - Set a queue required elevator features
1048 * @q: the request queue for the target device
1049 * @features: Required elevator features OR'ed together
1050 *
1051 * Tell the block layer that for the device controlled through @q, only the
1052 * only elevators that can be used are those that implement at least the set of
1053 * features specified by @features.
1054 */
1055void blk_queue_required_elevator_features(struct request_queue *q,
1056 unsigned int features)
1057{
1058 q->required_elevator_features = features;
1059}
1060EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
1061
45147fb5
YS
1062/**
1063 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
1064 * @q: the request queue for the device
1065 * @dev: the device pointer for dma
1066 *
1067 * Tell the block layer about merging the segments by dma map of @q.
1068 */
1069bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1070 struct device *dev)
1071{
1072 unsigned long boundary = dma_get_merge_boundary(dev);
1073
1074 if (!boundary)
1075 return false;
1076
1077 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
1078 blk_queue_virt_boundary(q, boundary);
1079
1080 return true;
1081}
1082EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
1083
27ba3e8f 1084/**
d73e93b4
CH
1085 * disk_set_zoned - inidicate a zoned device
1086 * @disk: gendisk to configure
27ba3e8f 1087 */
d73e93b4 1088void disk_set_zoned(struct gendisk *disk)
27ba3e8f 1089{
a805a4fa
DLM
1090 struct request_queue *q = disk->queue;
1091
d73e93b4
CH
1092 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
1093
1094 /*
1095 * Set the zone write granularity to the device logical block
1096 * size by default. The driver can change this value if needed.
1097 */
1098 q->limits.zoned = true;
1099 blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
27ba3e8f 1100}
6b2bd274 1101EXPORT_SYMBOL_GPL(disk_set_zoned);
89098b07
CH
1102
1103int bdev_alignment_offset(struct block_device *bdev)
1104{
1105 struct request_queue *q = bdev_get_queue(bdev);
1106
1107 if (q->limits.misaligned)
1108 return -1;
1109 if (bdev_is_partition(bdev))
1110 return queue_limit_alignment_offset(&q->limits,
1111 bdev->bd_start_sect);
1112 return q->limits.alignment_offset;
1113}
1114EXPORT_SYMBOL_GPL(bdev_alignment_offset);
5c4b4a5c
CH
1115
1116unsigned int bdev_discard_alignment(struct block_device *bdev)
1117{
1118 struct request_queue *q = bdev_get_queue(bdev);
1119
1120 if (bdev_is_partition(bdev))
1121 return queue_limit_discard_alignment(&q->limits,
1122 bdev->bd_start_sect);
1123 return q->limits.discard_alignment;
1124}
1125EXPORT_SYMBOL_GPL(bdev_discard_alignment);