]> git.ipfire.org Git - people/ms/u-boot.git/blame - board/gdsys/p1022/controlcenterd-id.c
sandbox: Prepare API change for files greater than 2GB
[people/ms/u-boot.git] / board / gdsys / p1022 / controlcenterd-id.c
CommitLineData
b9944a77
DE
1/*
2 * (C) Copyright 2013
3 * Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the Free
7 * Software Foundation; either version 2 of the License, or (at your option)
8 * any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
18 * MA 02110-1301, USA.
19 */
20
21/* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */
22
23#ifdef CCDM_ID_DEBUG
24#define DEBUG
25#endif
26
27#include <common.h>
28#include <malloc.h>
29#include <fs.h>
30#include <i2c.h>
31#include <mmc.h>
32#include <tpm.h>
2b9912e6 33#include <u-boot/sha1.h>
b9944a77
DE
34#include <asm/byteorder.h>
35#include <asm/unaligned.h>
36#include <pca9698.h>
37
38#undef CCDM_FIRST_STAGE
39#undef CCDM_SECOND_STAGE
40#undef CCDM_AUTO_FIRST_STAGE
41
42#ifdef CONFIG_DEVELOP
43#define CCDM_DEVELOP
44#endif
45
46#ifdef CONFIG_TRAILBLAZER
47#define CCDM_FIRST_STAGE
48#undef CCDM_SECOND_STAGE
49#else
50#undef CCDM_FIRST_STAGE
51#define CCDM_SECOND_STAGE
52#endif
53
54#if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \
55 !defined(CCCM_FIRST_STAGE)
56#define CCDM_AUTO_FIRST_STAGE
57#endif
58
59/* enums from TCG specs */
60enum {
61 /* capability areas */
62 TPM_CAP_NV_INDEX = 0x00000011,
63 TPM_CAP_HANDLE = 0x00000014,
64 /* resource types */
65 TPM_RT_KEY = 0x00000001,
66};
67
68/* CCDM specific contants */
69enum {
70 /* NV indices */
71 NV_COMMON_DATA_INDEX = 0x40000001,
72 /* magics for key blob chains */
73 MAGIC_KEY_PROGRAM = 0x68726500,
74 MAGIC_HMAC = 0x68616300,
75 MAGIC_END_OF_CHAIN = 0x00000000,
76 /* sizes */
77 NV_COMMON_DATA_MIN_SIZE = 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t),
78};
79
80/* other constants */
81enum {
82 ESDHC_BOOT_IMAGE_SIG_OFS = 0x40,
83 ESDHC_BOOT_IMAGE_SIZE_OFS = 0x48,
84 ESDHC_BOOT_IMAGE_ADDR_OFS = 0x50,
85 ESDHC_BOOT_IMAGE_TARGET_OFS = 0x58,
86 ESDHC_BOOT_IMAGE_ENTRY_OFS = 0x60,
87};
88
35ecf752
DE
89enum {
90 I2C_SOC_0 = 0,
91 I2C_SOC_1 = 1,
92};
93
b9944a77
DE
94struct key_program {
95 uint32_t magic;
96 uint32_t code_crc;
97 uint32_t code_size;
98 uint8_t code[];
99};
100
101struct h_reg {
102 bool valid;
103 uint8_t digest[20];
104};
105
106
107enum access_mode {
108 HREG_NONE = 0,
109 HREG_RD = 1,
110 HREG_WR = 2,
111 HREG_RDWR = 3,
112};
113
114/* register constants */
115enum {
116 FIX_HREG_DEVICE_ID_HASH = 0,
117 FIX_HREG_SELF_HASH = 1,
118 FIX_HREG_STAGE2_HASH = 2,
119 FIX_HREG_VENDOR = 3,
120 COUNT_FIX_HREGS
121};
122
123
124/* hre opcodes */
125enum {
126 /* opcodes w/o data */
127 HRE_NOP = 0x00,
128 HRE_SYNC = HRE_NOP,
129 HRE_CHECK0 = 0x01,
130 /* opcodes w/o data, w/ sync dst */
131 /* opcodes w/ data */
132 HRE_LOAD = 0x81,
133 /* opcodes w/data, w/sync dst */
134 HRE_XOR = 0xC1,
135 HRE_AND = 0xC2,
136 HRE_OR = 0xC3,
137 HRE_EXTEND = 0xC4,
138 HRE_LOADKEY = 0xC5,
139};
140
141/* hre errors */
142enum {
143 HRE_E_OK = 0,
144 HRE_E_TPM_FAILURE,
145 HRE_E_INVALID_HREG,
146};
147
148static uint64_t device_id;
149static uint64_t device_cl;
150static uint64_t device_type;
151
152static uint32_t platform_key_handle;
153
154static void(*bl2_entry)(void);
155
156static struct h_reg pcr_hregs[24];
157static struct h_reg fix_hregs[COUNT_FIX_HREGS];
158static struct h_reg var_hregs[8];
159static uint32_t hre_tpm_err;
160static int hre_err = HRE_E_OK;
161
162#define IS_PCR_HREG(spec) ((spec) & 0x20)
163#define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08)
164#define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10)
165#define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7))
166
167
168static const uint8_t prg_stage1_prepare[] = {
169 0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */
170 0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */
171 0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */
172 0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */
173 0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */
174 0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */
175 0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */
176 0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */
177 0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */
178 0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */
179};
180
181static const uint8_t prg_stage2_prepare[] = {
182 0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */
183 0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */
184 0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */
185 0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */
186 0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */
187};
188
189static const uint8_t prg_stage2_success[] = {
190 0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */
191 0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */
192 0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */
193 0xe4, 0xd2, 0x81, 0xe0, /* data */
194};
195
196static const uint8_t prg_stage_fail[] = {
197 0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */
198 0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */
199 0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */
200 0xea, 0xdf, 0x14, 0x4b, /* data */
201 0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */
202 0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */
203};
204
205static const uint8_t vendor[] = "Guntermann & Drunck";
206
207
208/**
209 * @brief read a bunch of data from MMC into memory.
210 *
211 * @param mmc pointer to the mmc structure to use.
212 * @param src offset where the data starts on MMC/SD device (in bytes).
213 * @param dst pointer to the location where the read data should be stored.
214 * @param size number of bytes to read from the MMC/SD device.
215 * @return number of bytes read or -1 on error.
216 */
217static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size)
218{
219 int result = 0;
220 u32 blk_len, ofs;
221 ulong block_no, n, cnt;
222 u8 *tmp_buf = NULL;
223
224 if (size <= 0)
225 goto end;
226
227 blk_len = mmc->read_bl_len;
228 tmp_buf = malloc(blk_len);
229 if (!tmp_buf)
230 goto failure;
231 block_no = src / blk_len;
232 ofs = src % blk_len;
233
234 if (ofs) {
235 n = mmc->block_dev.block_read(mmc->block_dev.dev, block_no++, 1,
236 tmp_buf);
237 if (!n)
238 goto failure;
b4141195 239 result = min(size, (int)(blk_len - ofs));
b9944a77
DE
240 memcpy(dst, tmp_buf + ofs, result);
241 dst += result;
242 size -= result;
243 }
244 cnt = size / blk_len;
245 if (cnt) {
246 n = mmc->block_dev.block_read(mmc->block_dev.dev, block_no, cnt,
247 dst);
248 if (n != cnt)
249 goto failure;
250 size -= cnt * blk_len;
251 result += cnt * blk_len;
252 dst += cnt * blk_len;
253 block_no += cnt;
254 }
255 if (size) {
256 n = mmc->block_dev.block_read(mmc->block_dev.dev, block_no++, 1,
257 tmp_buf);
258 if (!n)
259 goto failure;
260 memcpy(dst, tmp_buf, size);
261 result += size;
262 }
263 goto end;
264failure:
265 result = -1;
266end:
267 if (tmp_buf)
268 free(tmp_buf);
269 return result;
270}
271
272/**
273 * @brief returns a location where the 2nd stage bootloader can be(/ is) placed.
274 *
275 * @return pointer to the location for/of the 2nd stage bootloader
276 */
277static u8 *get_2nd_stage_bl_location(ulong target_addr)
278{
279 ulong addr;
280#ifdef CCDM_SECOND_STAGE
281 addr = getenv_ulong("loadaddr", 16, CONFIG_LOADADDR);
282#else
283 addr = target_addr;
284#endif
285 return (u8 *)(addr);
286}
287
288
289#ifdef CCDM_SECOND_STAGE
290/**
291 * @brief returns a location where the image can be(/ is) placed.
292 *
293 * @return pointer to the location for/of the image
294 */
295static u8 *get_image_location(void)
296{
297 ulong addr;
298 /* TODO use other area? */
299 addr = getenv_ulong("loadaddr", 16, CONFIG_LOADADDR);
300 return (u8 *)(addr);
301}
302#endif
303
304/**
305 * @brief get the size of a given (TPM) NV area
306 * @param index NV index of the area to get size for
307 * @param size pointer to the size
308 * @return 0 on success, != 0 on error
309 */
310static int get_tpm_nv_size(uint32_t index, uint32_t *size)
311{
312 uint32_t err;
313 uint8_t info[72];
314 uint8_t *ptr;
315 uint16_t v16;
316
317 err = tpm_get_capability(TPM_CAP_NV_INDEX, index,
318 info, sizeof(info));
319 if (err) {
320 printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n",
321 index, err);
322 return 1;
323 }
324
325 /* skip tag and nvIndex */
326 ptr = info + 6;
327 /* skip 2 pcr info fields */
328 v16 = get_unaligned_be16(ptr);
329 ptr += 2 + v16 + 1 + 20;
330 v16 = get_unaligned_be16(ptr);
331 ptr += 2 + v16 + 1 + 20;
332 /* skip permission and flags */
333 ptr += 6 + 3;
334
335 *size = get_unaligned_be32(ptr);
336 return 0;
337}
338
339/**
340 * @brief search for a key by usage auth and pub key hash.
341 * @param auth usage auth of the key to search for
342 * @param pubkey_digest (SHA1) hash of the pub key structure of the key
343 * @param[out] handle the handle of the key iff found
344 * @return 0 if key was found in TPM; != 0 if not.
345 */
346static int find_key(const uint8_t auth[20], const uint8_t pubkey_digest[20],
347 uint32_t *handle)
348{
349 uint16_t key_count;
350 uint32_t key_handles[10];
351 uint8_t buf[288];
352 uint8_t *ptr;
353 uint32_t err;
354 uint8_t digest[20];
355 size_t buf_len;
356 unsigned int i;
357
358 /* fetch list of already loaded keys in the TPM */
359 err = tpm_get_capability(TPM_CAP_HANDLE, TPM_RT_KEY, buf, sizeof(buf));
360 if (err)
361 return -1;
362 key_count = get_unaligned_be16(buf);
363 ptr = buf + 2;
364 for (i = 0; i < key_count; ++i, ptr += 4)
365 key_handles[i] = get_unaligned_be32(ptr);
366
367 /* now search a(/ the) key which we can access with the given auth */
368 for (i = 0; i < key_count; ++i) {
369 buf_len = sizeof(buf);
370 err = tpm_get_pub_key_oiap(key_handles[i], auth, buf, &buf_len);
371 if (err && err != TPM_AUTHFAIL)
372 return -1;
373 if (err)
374 continue;
375 sha1_csum(buf, buf_len, digest);
376 if (!memcmp(digest, pubkey_digest, 20)) {
377 *handle = key_handles[i];
378 return 0;
379 }
380 }
381 return 1;
382}
383
384/**
385 * @brief read CCDM common data from TPM NV
386 * @return 0 if CCDM common data was found and read, !=0 if something failed.
387 */
388static int read_common_data(void)
389{
390 uint32_t size;
391 uint32_t err;
392 uint8_t buf[256];
393 sha1_context ctx;
394
395 if (get_tpm_nv_size(NV_COMMON_DATA_INDEX, &size) ||
396 size < NV_COMMON_DATA_MIN_SIZE)
397 return 1;
398 err = tpm_nv_read_value(NV_COMMON_DATA_INDEX,
399 buf, min(sizeof(buf), size));
400 if (err) {
401 printf("tpm_nv_read_value() failed: %u\n", err);
402 return 1;
403 }
404
405 device_id = get_unaligned_be64(buf);
406 device_cl = get_unaligned_be64(buf + 8);
407 device_type = get_unaligned_be64(buf + 16);
408
409 sha1_starts(&ctx);
410 sha1_update(&ctx, buf, 24);
411 sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest);
412 fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true;
413
414 platform_key_handle = get_unaligned_be32(buf + 24);
415
416 return 0;
417}
418
419/**
420 * @brief compute hash of bootloader itself.
421 * @param[out] dst hash register where the hash should be stored
422 * @return 0 on success, != 0 on failure.
423 *
424 * @note MUST be called at a time where the boot loader is accessible at the
425 * configured location (; so take care when code is reallocated).
426 */
427static int compute_self_hash(struct h_reg *dst)
428{
429 sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE,
430 CONFIG_SYS_MONITOR_LEN, dst->digest);
431 dst->valid = true;
432 return 0;
433}
434
435int ccdm_compute_self_hash(void)
436{
437 if (!fix_hregs[FIX_HREG_SELF_HASH].valid)
438 compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]);
439 return 0;
440}
441
442/**
443 * @brief compute the hash of the 2nd stage boot loader (on SD card)
444 * @param[out] dst hash register to store the computed hash
445 * @return 0 on success, != 0 on failure
446 *
447 * Determines the size and location of the 2nd stage boot loader on SD card,
448 * loads the 2nd stage boot loader and computes the (SHA1) hash value.
449 * Within the 1st stage boot loader, the 2nd stage boot loader is loaded at
450 * the desired memory location and the variable @a bl2_entry is set.
451 *
452 * @note This sets the variable @a bl2_entry to the entry point when the
453 * 2nd stage boot loader is loaded at its configured memory location.
454 */
455static int compute_second_stage_hash(struct h_reg *dst)
456{
457 int result = 0;
458 u32 code_len, code_offset, target_addr, exec_entry;
459 struct mmc *mmc;
460 u8 *load_addr = NULL;
461 u8 buf[128];
462
463 mmc = find_mmc_device(0);
464 if (!mmc)
465 goto failure;
466 mmc_init(mmc);
467
468 if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0)
469 goto failure;
470
471 code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
472 code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
473 target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS);
474 exec_entry = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS);
475
476 load_addr = get_2nd_stage_bl_location(target_addr);
477 if (load_addr == (u8 *)target_addr)
478 bl2_entry = (void(*)(void))exec_entry;
479
480 if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0)
481 goto failure;
482
483 sha1_csum(load_addr, code_len, dst->digest);
484 dst->valid = true;
485
486 goto end;
487failure:
488 result = 1;
489 bl2_entry = NULL;
490end:
491 return result;
492}
493
494/**
495 * @brief get pointer to hash register by specification
496 * @param spec specification of a hash register
497 * @return pointer to hash register or NULL if @a spec does not qualify a
498 * valid hash register; NULL else.
499 */
500static struct h_reg *get_hreg(uint8_t spec)
501{
502 uint8_t idx;
503
504 idx = HREG_IDX(spec);
505 if (IS_FIX_HREG(spec)) {
506 if (idx < ARRAY_SIZE(fix_hregs))
507 return fix_hregs + idx;
508 hre_err = HRE_E_INVALID_HREG;
509 } else if (IS_PCR_HREG(spec)) {
510 if (idx < ARRAY_SIZE(pcr_hregs))
511 return pcr_hregs + idx;
512 hre_err = HRE_E_INVALID_HREG;
513 } else if (IS_VAR_HREG(spec)) {
514 if (idx < ARRAY_SIZE(var_hregs))
515 return var_hregs + idx;
516 hre_err = HRE_E_INVALID_HREG;
517 }
518 return NULL;
519}
520
521/**
522 * @brief get pointer of a hash register by specification and usage.
523 * @param spec specification of a hash register
524 * @param mode access mode (read or write or read/write)
525 * @return pointer to hash register if found and valid; NULL else.
526 *
527 * This func uses @a get_reg() to determine the hash register for a given spec.
528 * If a register is found it is validated according to the desired access mode.
529 * The value of automatic registers (PCR register and fixed registers) is
530 * loaded or computed on read access.
531 */
532static struct h_reg *access_hreg(uint8_t spec, enum access_mode mode)
533{
534 struct h_reg *result;
535
536 result = get_hreg(spec);
537 if (!result)
538 return NULL;
539
540 if (mode & HREG_WR) {
541 if (IS_FIX_HREG(spec)) {
542 hre_err = HRE_E_INVALID_HREG;
543 return NULL;
544 }
545 }
546 if (mode & HREG_RD) {
547 if (!result->valid) {
548 if (IS_PCR_HREG(spec)) {
549 hre_tpm_err = tpm_pcr_read(HREG_IDX(spec),
550 result->digest, 20);
551 result->valid = (hre_tpm_err == TPM_SUCCESS);
552 } else if (IS_FIX_HREG(spec)) {
553 switch (HREG_IDX(spec)) {
554 case FIX_HREG_DEVICE_ID_HASH:
555 read_common_data();
556 break;
557 case FIX_HREG_SELF_HASH:
558 ccdm_compute_self_hash();
559 break;
560 case FIX_HREG_STAGE2_HASH:
561 compute_second_stage_hash(result);
562 break;
563 case FIX_HREG_VENDOR:
564 memcpy(result->digest, vendor, 20);
565 result->valid = true;
566 break;
567 }
568 } else {
569 result->valid = true;
570 }
571 }
572 if (!result->valid) {
573 hre_err = HRE_E_INVALID_HREG;
574 return NULL;
575 }
576 }
577
578 return result;
579}
580
581static void *compute_and(void *_dst, const void *_src, size_t n)
582{
583 uint8_t *dst = _dst;
584 const uint8_t *src = _src;
585 size_t i;
586
587 for (i = n; i-- > 0; )
588 *dst++ &= *src++;
589
590 return _dst;
591}
592
593static void *compute_or(void *_dst, const void *_src, size_t n)
594{
595 uint8_t *dst = _dst;
596 const uint8_t *src = _src;
597 size_t i;
598
599 for (i = n; i-- > 0; )
600 *dst++ |= *src++;
601
602 return _dst;
603}
604
605static void *compute_xor(void *_dst, const void *_src, size_t n)
606{
607 uint8_t *dst = _dst;
608 const uint8_t *src = _src;
609 size_t i;
610
611 for (i = n; i-- > 0; )
612 *dst++ ^= *src++;
613
614 return _dst;
615}
616
617static void *compute_extend(void *_dst, const void *_src, size_t n)
618{
619 uint8_t digest[20];
620 sha1_context ctx;
621
622 sha1_starts(&ctx);
623 sha1_update(&ctx, _dst, n);
624 sha1_update(&ctx, _src, n);
625 sha1_finish(&ctx, digest);
626 memcpy(_dst, digest, min(n, sizeof(digest)));
627
628 return _dst;
629}
630
631static int hre_op_loadkey(struct h_reg *src_reg, struct h_reg *dst_reg,
632 const void *key, size_t key_size)
633{
634 uint32_t parent_handle;
635 uint32_t key_handle;
636
637 if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid)
638 return -1;
639 if (find_key(src_reg->digest, dst_reg->digest, &parent_handle))
640 return -1;
641 hre_tpm_err = tpm_load_key2_oiap(parent_handle, key, key_size,
642 src_reg->digest, &key_handle);
643 if (hre_tpm_err) {
644 hre_err = HRE_E_TPM_FAILURE;
645 return -1;
646 }
647 /* TODO remember key handle somehow? */
648
649 return 0;
650}
651
652/**
653 * @brief executes the next opcode on the hash register engine.
654 * @param[in,out] ip pointer to the opcode (instruction pointer)
655 * @param[in,out] code_size (remaining) size of the code
656 * @return new instruction pointer on success, NULL on error.
657 */
658static const uint8_t *hre_execute_op(const uint8_t **ip, size_t *code_size)
659{
660 bool dst_modified = false;
661 uint32_t ins;
662 uint8_t opcode;
663 uint8_t src_spec;
664 uint8_t dst_spec;
665 uint16_t data_size;
666 struct h_reg *src_reg, *dst_reg;
667 uint8_t buf[20];
668 const uint8_t *src_buf, *data;
669 uint8_t *ptr;
670 int i;
671 void * (*bin_func)(void *, const void *, size_t);
672
673 if (*code_size < 4)
674 return NULL;
675
676 ins = get_unaligned_be32(*ip);
677 opcode = **ip;
678 data = *ip + 4;
679 src_spec = (ins >> 18) & 0x3f;
680 dst_spec = (ins >> 12) & 0x3f;
681 data_size = (ins & 0x7ff);
682
683 debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins,
684 opcode, src_spec, dst_spec, data_size);
685
686 if ((opcode & 0x80) && (data_size + 4) > *code_size)
687 return NULL;
688
689 src_reg = access_hreg(src_spec, HREG_RD);
690 if (hre_err || hre_tpm_err)
691 return NULL;
692 dst_reg = access_hreg(dst_spec, (opcode & 0x40) ? HREG_RDWR : HREG_WR);
693 if (hre_err || hre_tpm_err)
694 return NULL;
695
696 switch (opcode) {
697 case HRE_NOP:
698 goto end;
699 case HRE_CHECK0:
700 if (src_reg) {
701 for (i = 0; i < 20; ++i) {
702 if (src_reg->digest[i])
703 return NULL;
704 }
705 }
706 break;
707 case HRE_LOAD:
708 bin_func = memcpy;
709 goto do_bin_func;
710 case HRE_XOR:
711 bin_func = compute_xor;
712 goto do_bin_func;
713 case HRE_AND:
714 bin_func = compute_and;
715 goto do_bin_func;
716 case HRE_OR:
717 bin_func = compute_or;
718 goto do_bin_func;
719 case HRE_EXTEND:
720 bin_func = compute_extend;
721do_bin_func:
722 if (!dst_reg)
723 return NULL;
724 if (src_reg) {
725 src_buf = src_reg->digest;
726 } else {
727 if (!data_size) {
728 memset(buf, 0, 20);
729 src_buf = buf;
730 } else if (data_size == 1) {
731 memset(buf, *data, 20);
732 src_buf = buf;
733 } else if (data_size >= 20) {
734 src_buf = data;
735 } else {
736 src_buf = buf;
737 for (ptr = (uint8_t *)src_buf, i = 20; i > 0;
738 i -= data_size, ptr += data_size)
b4141195
MY
739 memcpy(ptr, data,
740 min_t(size_t, i, data_size));
b9944a77
DE
741 }
742 }
743 bin_func(dst_reg->digest, src_buf, 20);
744 dst_reg->valid = true;
745 dst_modified = true;
746 break;
747 case HRE_LOADKEY:
748 if (hre_op_loadkey(src_reg, dst_reg, data, data_size))
749 return NULL;
750 break;
751 default:
752 return NULL;
753 }
754
755 if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) {
756 hre_tpm_err = tpm_extend(HREG_IDX(dst_spec), dst_reg->digest,
757 dst_reg->digest);
758 if (hre_tpm_err) {
759 hre_err = HRE_E_TPM_FAILURE;
760 return NULL;
761 }
762 }
763end:
764 *ip += 4;
765 *code_size -= 4;
766 if (opcode & 0x80) {
767 *ip += data_size;
768 *code_size -= data_size;
769 }
770
771 return *ip;
772}
773
774/**
775 * @brief runs a program on the hash register engine.
776 * @param code pointer to the (HRE) code.
777 * @param code_size size of the code (in bytes).
778 * @return 0 on success, != 0 on failure.
779 */
780static int hre_run_program(const uint8_t *code, size_t code_size)
781{
782 size_t code_left;
783 const uint8_t *ip = code;
784
785 code_left = code_size;
786 hre_tpm_err = 0;
787 hre_err = HRE_E_OK;
788 while (code_left > 0)
789 if (!hre_execute_op(&ip, &code_left))
790 return -1;
791
792 return hre_err;
793}
794
795static int check_hmac(struct key_program *hmac,
796 const uint8_t *data, size_t data_size)
797{
798 uint8_t key[20], computed_hmac[20];
799 uint32_t type;
800
801 type = get_unaligned_be32(hmac->code);
802 if (type != 0)
803 return 1;
804 memset(key, 0, sizeof(key));
805 compute_extend(key, pcr_hregs[1].digest, 20);
806 compute_extend(key, pcr_hregs[2].digest, 20);
807 compute_extend(key, pcr_hregs[3].digest, 20);
808 compute_extend(key, pcr_hregs[4].digest, 20);
809
810 sha1_hmac(key, sizeof(key), data, data_size, computed_hmac);
811
812 return memcmp(computed_hmac, hmac->code + 4, 20);
813}
814
815static int verify_program(struct key_program *prg)
816{
817 uint32_t crc;
818 crc = crc32(0, prg->code, prg->code_size);
819
820 if (crc != prg->code_crc) {
821 printf("HRC crc mismatch: %08x != %08x\n",
822 crc, prg->code_crc);
823 return 1;
824 }
825 return 0;
826}
827
828#if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
829static struct key_program *load_sd_key_program(void)
830{
831 u32 code_len, code_offset;
832 struct mmc *mmc;
833 u8 buf[128];
834 struct key_program *result = NULL, *hmac = NULL;
835 struct key_program header;
836
837 mmc = find_mmc_device(0);
838 if (!mmc)
839 return NULL;
840 mmc_init(mmc);
841
842 if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0)
843 goto failure;
844
845 code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
846 code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
847
848 code_offset += code_len;
849 /* TODO: the following needs to be the size of the 2nd stage env */
850 code_offset += CONFIG_ENV_SIZE;
851
852 if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
853 goto failure;
854
855 header.magic = get_unaligned_be32(buf);
856 header.code_crc = get_unaligned_be32(buf + 4);
857 header.code_size = get_unaligned_be32(buf + 8);
858
859 if (header.magic != MAGIC_KEY_PROGRAM)
860 goto failure;
861
862 result = malloc(sizeof(struct key_program) + header.code_size);
863 if (!result)
864 goto failure;
865 *result = header;
866
867 printf("load key program chunk from SD card (%u bytes) ",
868 header.code_size);
869 code_offset += 12;
870 if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size)
871 < 0)
872 goto failure;
873 code_offset += header.code_size;
874 puts("\n");
875
876 if (verify_program(result))
877 goto failure;
878
879 if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
880 goto failure;
881
882 header.magic = get_unaligned_be32(buf);
883 header.code_crc = get_unaligned_be32(buf + 4);
884 header.code_size = get_unaligned_be32(buf + 8);
885
886 if (header.magic == MAGIC_HMAC) {
887 puts("check integrity\n");
888 hmac = malloc(sizeof(struct key_program) + header.code_size);
889 if (!hmac)
890 goto failure;
891 *hmac = header;
892 code_offset += 12;
893 if (ccdm_mmc_read(mmc, code_offset, hmac->code,
894 hmac->code_size) < 0)
895 goto failure;
896 if (verify_program(hmac))
897 goto failure;
898 if (check_hmac(hmac, result->code, result->code_size)) {
899 puts("key program integrity could not be verified\n");
900 goto failure;
901 }
902 puts("key program verified\n");
903 }
904
905 goto end;
906failure:
907 if (result)
908 free(result);
909 result = NULL;
910end:
911 if (hmac)
912 free(hmac);
913
914 return result;
915}
916#endif
917
918#ifdef CCDM_SECOND_STAGE
919/**
920 * @brief load a key program from file system.
921 * @param ifname interface of the file system
922 * @param dev_part_str device part of the file system
923 * @param fs_type tyep of the file system
924 * @param path path of the file to load.
925 * @return the loaded structure or NULL on failure.
926 */
927static struct key_program *load_key_chunk(const char *ifname,
928 const char *dev_part_str, int fs_type,
929 const char *path)
930{
931 struct key_program *result = NULL;
932 struct key_program header;
933 uint32_t crc;
934 uint8_t buf[12];
935 int i;
936
937 if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
938 goto failure;
939 i = fs_read(path, (ulong)buf, 0, 12);
940 if (i < 12)
941 goto failure;
942 header.magic = get_unaligned_be32(buf);
943 header.code_crc = get_unaligned_be32(buf + 4);
944 header.code_size = get_unaligned_be32(buf + 8);
945
946 if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM)
947 goto failure;
948
949 result = malloc(sizeof(struct key_program) + header.code_size);
950 if (!result)
951 goto failure;
952 if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
953 goto failure;
954 i = fs_read(path, (ulong)result, 0,
955 sizeof(struct key_program) + header.code_size);
956 if (i <= 0)
957 goto failure;
958 *result = header;
959
960 crc = crc32(0, result->code, result->code_size);
961
962 if (crc != result->code_crc) {
963 printf("%s: HRC crc mismatch: %08x != %08x\n",
964 path, crc, result->code_crc);
965 goto failure;
966 }
967 goto end;
968failure:
969 if (result) {
970 free(result);
971 result = NULL;
972 }
973end:
974 return result;
975}
976#endif
977
978#if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
979static int first_stage_actions(void)
980{
981 int result = 0;
982 struct key_program *sd_prg = NULL;
983
984 puts("CCDM S1: start actions\n");
985#ifndef CCDM_SECOND_STAGE
986 if (tpm_continue_self_test())
987 goto failure;
988#else
989 tpm_continue_self_test();
990#endif
991 mdelay(37);
992
993 if (hre_run_program(prg_stage1_prepare, sizeof(prg_stage1_prepare)))
994 goto failure;
995
996 sd_prg = load_sd_key_program();
997 if (sd_prg) {
998 if (hre_run_program(sd_prg->code, sd_prg->code_size))
999 goto failure;
1000 puts("SD code run successfully\n");
1001 } else {
1002 puts("no key program found on SD\n");
1003 goto failure;
1004 }
1005 goto end;
1006failure:
1007 result = 1;
1008end:
1009 if (sd_prg)
1010 free(sd_prg);
1011 printf("CCDM S1: actions done (%d)\n", result);
1012 return result;
1013}
1014#endif
1015
1016#ifdef CCDM_FIRST_STAGE
1017static int first_stage_init(void)
1018{
1019 int res = 0;
1020 puts("CCDM S1\n");
1021 if (tpm_init() || tpm_startup(TPM_ST_CLEAR))
1022 return 1;
1023 res = first_stage_actions();
1024#ifndef CCDM_SECOND_STAGE
1025 if (!res) {
1026 if (bl2_entry)
1027 (*bl2_entry)();
1028 res = 1;
1029 }
1030#endif
1031 return res;
1032}
1033#endif
1034
1035#ifdef CCDM_SECOND_STAGE
1036static int second_stage_init(void)
1037{
1038 static const char mac_suffix[] = ".mac";
1039 bool did_first_stage_run = true;
1040 int result = 0;
1041 char *cptr, *mmcdev = NULL;
1042 struct key_program *hmac_blob = NULL;
1043 const char *image_path = "/ccdm.itb";
1044 char *mac_path = NULL;
1045 ulong image_addr;
1046 size_t image_size;
1047 uint32_t err;
1048
1049 printf("CCDM S2\n");
1050 if (tpm_init())
1051 return 1;
1052 err = tpm_startup(TPM_ST_CLEAR);
1053 if (err != TPM_INVALID_POSTINIT)
1054 did_first_stage_run = false;
1055
1056#ifdef CCDM_AUTO_FIRST_STAGE
1057 if (!did_first_stage_run && first_stage_actions())
1058 goto failure;
1059#else
1060 if (!did_first_stage_run)
1061 goto failure;
1062#endif
1063
1064 if (hre_run_program(prg_stage2_prepare, sizeof(prg_stage2_prepare)))
1065 goto failure;
1066
1067 /* run "prepboot" from env to get "mmcdev" set */
1068 cptr = getenv("prepboot");
1069 if (cptr && !run_command(cptr, 0))
1070 mmcdev = getenv("mmcdev");
1071 if (!mmcdev)
1072 goto failure;
1073
1074 cptr = getenv("ramdiskimage");
1075 if (cptr)
1076 image_path = cptr;
1077
1078 mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1);
1079 if (mac_path == NULL)
1080 goto failure;
1081 strcpy(mac_path, image_path);
1082 strcat(mac_path, mac_suffix);
1083
1084 /* read image from mmcdev (ccdm.itb) */
1085 image_addr = (ulong)get_image_location();
1086 if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT))
1087 goto failure;
1088 image_size = fs_read(image_path, image_addr, 0, 0);
1089 if (image_size <= 0)
1090 goto failure;
1091 printf("CCDM image found on %s, %d bytes\n", mmcdev, image_size);
1092
1093 hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path);
1094 if (!hmac_blob) {
1095 puts("failed to load mac file\n");
1096 goto failure;
1097 }
1098 if (verify_program(hmac_blob)) {
1099 puts("corrupted mac file\n");
1100 goto failure;
1101 }
1102 if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) {
1103 puts("image integrity could not be verified\n");
1104 goto failure;
1105 }
1106 puts("CCDM image OK\n");
1107
1108 hre_run_program(prg_stage2_success, sizeof(prg_stage2_success));
1109
1110 goto end;
1111failure:
1112 result = 1;
1113 hre_run_program(prg_stage_fail, sizeof(prg_stage_fail));
1114end:
1115 if (hmac_blob)
1116 free(hmac_blob);
1117 if (mac_path)
1118 free(mac_path);
1119
1120 return result;
1121}
1122#endif
1123
1124int show_self_hash(void)
1125{
1126 struct h_reg *hash_ptr;
1127#ifdef CCDM_SECOND_STAGE
1128 struct h_reg hash;
1129
1130 hash_ptr = &hash;
1131 if (compute_self_hash(hash_ptr))
1132 return 1;
1133#else
1134 hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH];
1135#endif
1136 puts("self hash: ");
1137 if (hash_ptr && hash_ptr->valid)
1138 print_buffer(0, hash_ptr->digest, 1, 20, 20);
1139 else
1140 puts("INVALID\n");
1141
1142 return 0;
1143}
1144
1145/**
1146 * @brief let the system hang.
1147 *
1148 * Called on error.
1149 * Will stop the boot process; display a message and signal the error condition
1150 * by blinking the "status" and the "finder" LED of the controller board.
1151 *
1152 * @note the develop version runs the blink cycle 2 times and then returns.
1153 * The release version never returns.
1154 */
1155static void ccdm_hang(void)
1156{
1157 static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */
1158 static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */
1159 u64 f, s;
1160 int i;
1161#ifdef CCDM_DEVELOP
1162 int j;
1163#endif
1164
35ecf752 1165 I2C_SET_BUS(I2C_SOC_0);
b9944a77
DE
1166 pca9698_direction_output(0x22, 0, 0); /* Finder */
1167 pca9698_direction_output(0x22, 4, 0); /* Status */
1168
1169 puts("### ERROR ### Please RESET the board ###\n");
1170 bootstage_error(BOOTSTAGE_ID_NEED_RESET);
1171#ifdef CCDM_DEVELOP
1172 puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1173 puts("** but we continue since this is a DEVELOP version **\n");
1174 puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1175 for (j = 2; j-- > 0;) {
1176 putc('#');
1177#else
1178 for (;;) {
1179#endif
1180 f = f0;
1181 s = s0;
1182 for (i = 54; i-- > 0;) {
1183 pca9698_set_value(0x22, 0, !(f & 1));
1184 pca9698_set_value(0x22, 4, (s & 1));
1185 f >>= 1;
1186 s >>= 1;
1187 mdelay(120);
1188 }
1189 }
1190 puts("\ncontinue...\n");
1191}
1192
1193int startup_ccdm_id_module(void)
1194{
1195 int result = 0;
1196 unsigned int orig_i2c_bus;
1197
35ecf752
DE
1198 orig_i2c_bus = i2c_get_bus_num();
1199 i2c_set_bus_num(I2C_SOC_1);
b9944a77
DE
1200
1201 /* goto end; */
1202
1203#ifdef CCDM_DEVELOP
1204 show_self_hash();
1205#endif
1206#ifdef CCDM_FIRST_STAGE
1207 result = first_stage_init();
1208 if (result) {
1209 puts("1st stage init failed\n");
1210 goto failure;
1211 }
1212#endif
1213#ifdef CCDM_SECOND_STAGE
1214 result = second_stage_init();
1215 if (result) {
1216 puts("2nd stage init failed\n");
1217 goto failure;
1218 }
1219#endif
1220
1221 goto end;
1222failure:
1223 result = 1;
1224end:
35ecf752 1225 i2c_set_bus_num(orig_i2c_bus);
b9944a77
DE
1226 if (result)
1227 ccdm_hang();
1228
1229 return result;
1230}