]>
Commit | Line | Data |
---|---|---|
4f7cb08e WD |
1 | /* |
2 | * (C) Copyright 2002-2003 | |
3 | * Wolfgang Denk, DENX Software Engineering, wd@denx.de. | |
4 | * | |
5 | * See file CREDITS for list of people who contributed to this | |
6 | * project. | |
7 | * | |
8 | * This program is free software; you can redistribute it and/or | |
9 | * modify it under the terms of the GNU General Public License as | |
10 | * published by the Free Software Foundation; either version 2 of | |
11 | * the License, or (at your option) any later version. | |
12 | * | |
13 | * This program is distributed in the hope that it will be useful, | |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | * GNU General Public License for more details. | |
17 | * | |
18 | * You should have received a copy of the GNU General Public License | |
19 | * along with this program; if not, write to the Free Software | |
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | |
21 | * MA 02111-1307 USA | |
22 | */ | |
23 | ||
24 | #include <common.h> | |
25 | ||
26 | /* Memory test | |
27 | * | |
28 | * General observations: | |
29 | * o The recommended test sequence is to test the data lines: if they are | |
30 | * broken, nothing else will work properly. Then test the address | |
31 | * lines. Finally, test the cells in the memory now that the test | |
32 | * program knows that the address and data lines work properly. | |
33 | * This sequence also helps isolate and identify what is faulty. | |
34 | * | |
35 | * o For the address line test, it is a good idea to use the base | |
36 | * address of the lowest memory location, which causes a '1' bit to | |
37 | * walk through a field of zeros on the address lines and the highest | |
38 | * memory location, which causes a '0' bit to walk through a field of | |
39 | * '1's on the address line. | |
40 | * | |
41 | * o Floating buses can fool memory tests if the test routine writes | |
42 | * a value and then reads it back immediately. The problem is, the | |
43 | * write will charge the residual capacitance on the data bus so the | |
44 | * bus retains its state briefely. When the test program reads the | |
45 | * value back immediately, the capacitance of the bus can allow it | |
46 | * to read back what was written, even though the memory circuitry | |
47 | * is broken. To avoid this, the test program should write a test | |
48 | * pattern to the target location, write a different pattern elsewhere | |
49 | * to charge the residual capacitance in a differnt manner, then read | |
50 | * the target location back. | |
51 | * | |
52 | * o Always read the target location EXACTLY ONCE and save it in a local | |
53 | * variable. The problem with reading the target location more than | |
54 | * once is that the second and subsequent reads may work properly, | |
55 | * resulting in a failed test that tells the poor technician that | |
56 | * "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which | |
57 | * doesn't help him one bit and causes puzzled phone calls. Been there, | |
58 | * done that. | |
59 | * | |
60 | * Data line test: | |
61 | * --------------- | |
62 | * This tests data lines for shorts and opens by forcing adjacent data | |
63 | * to opposite states. Because the data lines could be routed in an | |
64 | * arbitrary manner the must ensure test patterns ensure that every case | |
65 | * is tested. By using the following series of binary patterns every | |
66 | * combination of adjacent bits is test regardless of routing. | |
67 | * | |
68 | * ...101010101010101010101010 | |
69 | * ...110011001100110011001100 | |
70 | * ...111100001111000011110000 | |
71 | * ...111111110000000011111111 | |
72 | * | |
73 | * Carrying this out, gives us six hex patterns as follows: | |
74 | * | |
75 | * 0xaaaaaaaaaaaaaaaa | |
76 | * 0xcccccccccccccccc | |
77 | * 0xf0f0f0f0f0f0f0f0 | |
78 | * 0xff00ff00ff00ff00 | |
79 | * 0xffff0000ffff0000 | |
80 | * 0xffffffff00000000 | |
81 | * | |
82 | * To test for short and opens to other signals on our boards, we | |
83 | * simply test with the 1's complemnt of the paterns as well, resulting | |
84 | * in twelve patterns total. | |
85 | * | |
86 | * After writing a test pattern. a special pattern 0x0123456789ABCDEF is | |
87 | * written to a different address in case the data lines are floating. | |
88 | * Thus, if a byte lane fails, you will see part of the special | |
89 | * pattern in that byte lane when the test runs. For example, if the | |
90 | * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa | |
91 | * (for the 'a' test pattern). | |
92 | * | |
93 | * Address line test: | |
94 | * ------------------ | |
95 | * This function performs a test to verify that all the address lines | |
96 | * hooked up to the RAM work properly. If there is an address line | |
97 | * fault, it usually shows up as two different locations in the address | |
98 | * map (related by the faulty address line) mapping to one physical | |
99 | * memory storage location. The artifact that shows up is writing to | |
100 | * the first location "changes" the second location. | |
101 | * | |
102 | * To test all address lines, we start with the given base address and | |
103 | * xor the address with a '1' bit to flip one address line. For each | |
104 | * test, we shift the '1' bit left to test the next address line. | |
105 | * | |
106 | * In the actual code, we start with address sizeof(ulong) since our | |
107 | * test pattern we use is a ulong and thus, if we tried to test lower | |
108 | * order address bits, it wouldn't work because our pattern would | |
109 | * overwrite itself. | |
110 | * | |
111 | * Example for a 4 bit address space with the base at 0000: | |
112 | * 0000 <- base | |
113 | * 0001 <- test 1 | |
114 | * 0010 <- test 2 | |
115 | * 0100 <- test 3 | |
116 | * 1000 <- test 4 | |
117 | * Example for a 4 bit address space with the base at 0010: | |
118 | * 0010 <- base | |
119 | * 0011 <- test 1 | |
120 | * 0000 <- (below the base address, skipped) | |
121 | * 0110 <- test 2 | |
122 | * 1010 <- test 3 | |
123 | * | |
124 | * The test locations are successively tested to make sure that they are | |
125 | * not "mirrored" onto the base address due to a faulty address line. | |
126 | * Note that the base and each test location are related by one address | |
127 | * line flipped. Note that the base address need not be all zeros. | |
128 | * | |
129 | * Memory tests 1-4: | |
130 | * ----------------- | |
131 | * These tests verify RAM using sequential writes and reads | |
132 | * to/from RAM. There are several test cases that use different patterns to | |
133 | * verify RAM. Each test case fills a region of RAM with one pattern and | |
134 | * then reads the region back and compares its contents with the pattern. | |
135 | * The following patterns are used: | |
136 | * | |
137 | * 1a) zero pattern (0x00000000) | |
138 | * 1b) negative pattern (0xffffffff) | |
139 | * 1c) checkerboard pattern (0x55555555) | |
140 | * 1d) checkerboard pattern (0xaaaaaaaa) | |
141 | * 2) bit-flip pattern ((1 << (offset % 32)) | |
142 | * 3) address pattern (offset) | |
143 | * 4) address pattern (~offset) | |
144 | * | |
145 | * Being run in normal mode, the test verifies only small 4Kb | |
146 | * regions of RAM around each 1Mb boundary. For example, for 64Mb | |
147 | * RAM the following areas are verified: 0x00000000-0x00000800, | |
148 | * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800- | |
149 | * 0x04000000. If the test is run in slow-test mode, it verifies | |
150 | * the whole RAM. | |
151 | */ | |
152 | ||
153 | /* #ifdef CONFIG_POST */ | |
154 | ||
155 | #include <post.h> | |
156 | #include <watchdog.h> | |
157 | ||
6d0f6bcf | 158 | /* #if CONFIG_POST & CONFIG_SYS_POST_MEMORY */ |
4f7cb08e WD |
159 | |
160 | /* | |
161 | * Define INJECT_*_ERRORS for testing error detection in the presence of | |
162 | * _good_ hardware. | |
163 | */ | |
164 | #undef INJECT_DATA_ERRORS | |
165 | #undef INJECT_ADDRESS_ERRORS | |
166 | ||
167 | #ifdef INJECT_DATA_ERRORS | |
168 | #warning "Injecting data line errors for testing purposes" | |
169 | #endif | |
170 | ||
171 | #ifdef INJECT_ADDRESS_ERRORS | |
172 | #warning "Injecting address line errors for testing purposes" | |
173 | #endif | |
174 | ||
175 | ||
176 | /* | |
177 | * This function performs a double word move from the data at | |
178 | * the source pointer to the location at the destination pointer. | |
179 | * This is helpful for testing memory on processors which have a 64 bit | |
180 | * wide data bus. | |
181 | * | |
182 | * On those PowerPC with FPU, use assembly and a floating point move: | |
183 | * this does a 64 bit move. | |
184 | * | |
185 | * For other processors, let the compiler generate the best code it can. | |
186 | */ | |
187 | static void move64(unsigned long long *src, unsigned long long *dest) | |
188 | { | |
189 | #if defined(CONFIG_MPC8260) || defined(CONFIG_MPC824X) | |
190 | asm ("lfd 0, 0(3)\n\t" /* fpr0 = *scr */ | |
191 | "stfd 0, 0(4)" /* *dest = fpr0 */ | |
192 | : : : "fr0" ); /* Clobbers fr0 */ | |
193 | return; | |
194 | #else | |
195 | *dest = *src; | |
196 | #endif | |
197 | } | |
198 | ||
199 | /* | |
200 | * This is 64 bit wide test patterns. Note that they reside in ROM | |
201 | * (which presumably works) and the tests write them to RAM which may | |
202 | * not work. | |
203 | * | |
204 | * The "otherpattern" is written to drive the data bus to values other | |
205 | * than the test pattern. This is for detecting floating bus lines. | |
206 | * | |
207 | */ | |
208 | const static unsigned long long pattern[] = { | |
eedcd078 WD |
209 | 0xaaaaaaaaaaaaaaaaULL, |
210 | 0xccccccccccccccccULL, | |
211 | 0xf0f0f0f0f0f0f0f0ULL, | |
212 | 0xff00ff00ff00ff00ULL, | |
213 | 0xffff0000ffff0000ULL, | |
214 | 0xffffffff00000000ULL, | |
215 | 0x00000000ffffffffULL, | |
216 | 0x0000ffff0000ffffULL, | |
217 | 0x00ff00ff00ff00ffULL, | |
218 | 0x0f0f0f0f0f0f0f0fULL, | |
219 | 0x3333333333333333ULL, | |
220 | 0x5555555555555555ULL, | |
221 | }; | |
222 | const unsigned long long otherpattern = 0x0123456789abcdefULL; | |
4f7cb08e WD |
223 | |
224 | ||
225 | static int memory_post_dataline(unsigned long long * pmem) | |
226 | { | |
227 | unsigned long long temp64; | |
228 | int num_patterns = sizeof(pattern)/ sizeof(pattern[0]); | |
229 | int i; | |
230 | unsigned int hi, lo, pathi, patlo; | |
231 | int ret = 0; | |
232 | ||
233 | for ( i = 0; i < num_patterns; i++) { | |
234 | move64((unsigned long long *)&(pattern[i]), pmem++); | |
235 | /* | |
236 | * Put a different pattern on the data lines: otherwise they | |
237 | * may float long enough to read back what we wrote. | |
238 | */ | |
239 | move64((unsigned long long *)&otherpattern, pmem--); | |
240 | move64(pmem, &temp64); | |
241 | ||
242 | #ifdef INJECT_DATA_ERRORS | |
243 | temp64 ^= 0x00008000; | |
244 | #endif | |
245 | ||
246 | if (temp64 != pattern[i]){ | |
247 | pathi = (pattern[i]>>32) & 0xffffffff; | |
248 | patlo = pattern[i] & 0xffffffff; | |
249 | ||
250 | hi = (temp64>>32) & 0xffffffff; | |
251 | lo = temp64 & 0xffffffff; | |
252 | ||
253 | printf ("Memory (date line) error at %08lx, " | |
254 | "wrote %08x%08x, read %08x%08x !\n", | |
255 | (ulong)pmem, pathi, patlo, hi, lo); | |
256 | ret = -1; | |
257 | } | |
258 | } | |
259 | return ret; | |
260 | } | |
261 | ||
262 | static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size) | |
263 | { | |
264 | ulong *target; | |
265 | ulong *end; | |
266 | ulong readback; | |
267 | ulong xor; | |
268 | int ret = 0; | |
269 | ||
270 | end = (ulong *)((ulong)base + size); /* pointer arith! */ | |
271 | xor = 0; | |
272 | for(xor = sizeof(ulong); xor > 0; xor <<= 1) { | |
273 | target = (ulong *)((ulong)testaddr ^ xor); | |
274 | if((target >= base) && (target < end)) { | |
275 | *testaddr = ~*target; | |
276 | readback = *target; | |
277 | ||
278 | #ifdef INJECT_ADDRESS_ERRORS | |
279 | if(xor == 0x00008000) { | |
280 | readback = *testaddr; | |
281 | } | |
282 | #endif | |
283 | if(readback == *testaddr) { | |
284 | printf ("Memory (address line) error at %08lx<->%08lx, " | |
53677ef1 | 285 | "XOR value %08lx !\n", |
4f7cb08e WD |
286 | (ulong)testaddr, (ulong)target, |
287 | xor); | |
288 | ret = -1; | |
289 | } | |
290 | } | |
291 | } | |
292 | return ret; | |
293 | } | |
294 | ||
295 | static int memory_post_test1 (unsigned long start, | |
296 | unsigned long size, | |
297 | unsigned long val) | |
298 | { | |
299 | unsigned long i; | |
300 | ulong *mem = (ulong *) start; | |
301 | ulong readback; | |
302 | int ret = 0; | |
303 | ||
304 | for (i = 0; i < size / sizeof (ulong); i++) { | |
305 | mem[i] = val; | |
306 | if (i % 1024 == 0) | |
307 | WATCHDOG_RESET (); | |
308 | } | |
309 | ||
310 | for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) { | |
311 | readback = mem[i]; | |
312 | if (readback != val) { | |
313 | printf ("Memory error at %08lx, " | |
314 | "wrote %08lx, read %08lx !\n", | |
315 | (ulong)(mem + i), val, readback); | |
316 | ||
317 | ret = -1; | |
318 | break; | |
319 | } | |
320 | if (i % 1024 == 0) | |
321 | WATCHDOG_RESET (); | |
322 | } | |
323 | ||
324 | return ret; | |
325 | } | |
326 | ||
327 | static int memory_post_test2 (unsigned long start, unsigned long size) | |
328 | { | |
329 | unsigned long i; | |
330 | ulong *mem = (ulong *) start; | |
331 | ulong readback; | |
332 | int ret = 0; | |
333 | ||
334 | for (i = 0; i < size / sizeof (ulong); i++) { | |
335 | mem[i] = 1 << (i % 32); | |
336 | if (i % 1024 == 0) | |
337 | WATCHDOG_RESET (); | |
338 | } | |
339 | ||
340 | for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) { | |
341 | readback = mem[i]; | |
342 | if (readback != (1 << (i % 32))) { | |
343 | printf ("Memory error at %08lx, " | |
344 | "wrote %08x, read %08lx !\n", | |
345 | (ulong)(mem + i), 1 << (i % 32), readback); | |
346 | ||
347 | ret = -1; | |
348 | break; | |
349 | } | |
350 | if (i % 1024 == 0) | |
351 | WATCHDOG_RESET (); | |
352 | } | |
353 | ||
354 | return ret; | |
355 | } | |
356 | ||
357 | static int memory_post_test3 (unsigned long start, unsigned long size) | |
358 | { | |
359 | unsigned long i; | |
360 | ulong *mem = (ulong *) start; | |
361 | ulong readback; | |
362 | int ret = 0; | |
363 | ||
364 | for (i = 0; i < size / sizeof (ulong); i++) { | |
365 | mem[i] = i; | |
366 | if (i % 1024 == 0) | |
367 | WATCHDOG_RESET (); | |
368 | } | |
369 | ||
370 | for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) { | |
371 | readback = mem[i]; | |
372 | if (readback != i) { | |
373 | printf ("Memory error at %08lx, " | |
374 | "wrote %08lx, read %08lx !\n", | |
375 | (ulong)(mem + i), i, readback); | |
376 | ||
377 | ret = -1; | |
378 | break; | |
379 | } | |
380 | if (i % 1024 == 0) | |
381 | WATCHDOG_RESET (); | |
382 | } | |
383 | ||
384 | return ret; | |
385 | } | |
386 | ||
387 | static int memory_post_test4 (unsigned long start, unsigned long size) | |
388 | { | |
389 | unsigned long i; | |
390 | ulong *mem = (ulong *) start; | |
391 | ulong readback; | |
392 | int ret = 0; | |
393 | ||
394 | for (i = 0; i < size / sizeof (ulong); i++) { | |
395 | mem[i] = ~i; | |
396 | if (i % 1024 == 0) | |
397 | WATCHDOG_RESET (); | |
398 | } | |
399 | ||
400 | for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) { | |
401 | readback = mem[i]; | |
402 | if (readback != ~i) { | |
403 | printf ("Memory error at %08lx, " | |
404 | "wrote %08lx, read %08lx !\n", | |
405 | (ulong)(mem + i), ~i, readback); | |
406 | ||
407 | ret = -1; | |
408 | break; | |
409 | } | |
410 | if (i % 1024 == 0) | |
411 | WATCHDOG_RESET (); | |
412 | } | |
413 | ||
414 | return ret; | |
415 | } | |
416 | ||
417 | int memory_post_tests (unsigned long start, unsigned long size) | |
418 | { | |
419 | int ret = 0; | |
420 | ||
421 | if (ret == 0) | |
a63c31cf | 422 | ret = memory_post_dataline ((unsigned long long *)start); |
4f7cb08e WD |
423 | WATCHDOG_RESET (); |
424 | if (ret == 0) | |
a63c31cf | 425 | ret = memory_post_addrline ((ulong *)start, (ulong *)start, size); |
4f7cb08e WD |
426 | WATCHDOG_RESET (); |
427 | if (ret == 0) | |
a63c31cf WD |
428 | ret = memory_post_addrline ((ulong *)(start + size - 8), |
429 | (ulong *)start, size); | |
4f7cb08e WD |
430 | WATCHDOG_RESET (); |
431 | if (ret == 0) | |
432 | ret = memory_post_test1 (start, size, 0x00000000); | |
433 | WATCHDOG_RESET (); | |
434 | if (ret == 0) | |
435 | ret = memory_post_test1 (start, size, 0xffffffff); | |
436 | WATCHDOG_RESET (); | |
437 | if (ret == 0) | |
438 | ret = memory_post_test1 (start, size, 0x55555555); | |
439 | WATCHDOG_RESET (); | |
440 | if (ret == 0) | |
441 | ret = memory_post_test1 (start, size, 0xaaaaaaaa); | |
442 | WATCHDOG_RESET (); | |
443 | if (ret == 0) | |
444 | ret = memory_post_test2 (start, size); | |
445 | WATCHDOG_RESET (); | |
446 | if (ret == 0) | |
447 | ret = memory_post_test3 (start, size); | |
448 | WATCHDOG_RESET (); | |
449 | if (ret == 0) | |
450 | ret = memory_post_test4 (start, size); | |
451 | WATCHDOG_RESET (); | |
452 | ||
453 | return ret; | |
454 | } | |
455 | ||
456 | #if 0 | |
d87080b7 WD |
457 | DECLARE_GLOBAL_DATA_PTR; |
458 | ||
4f7cb08e WD |
459 | int memory_post_test (int flags) |
460 | { | |
461 | int ret = 0; | |
4f7cb08e | 462 | bd_t *bd = gd->bd; |
b57ca3e1 | 463 | phys_size_t memsize = (bd->bi_memsize >= 256 << 20 ? |
4f7cb08e WD |
464 | 256 << 20 : bd->bi_memsize) - (1 << 20); |
465 | ||
466 | ||
467 | if (flags & POST_SLOWTEST) { | |
6d0f6bcf | 468 | ret = memory_post_tests (CONFIG_SYS_SDRAM_BASE, memsize); |
4f7cb08e WD |
469 | } else { /* POST_NORMAL */ |
470 | ||
471 | unsigned long i; | |
472 | ||
473 | for (i = 0; i < (memsize >> 20) && ret == 0; i++) { | |
474 | if (ret == 0) | |
475 | ret = memory_post_tests (i << 20, 0x800); | |
476 | if (ret == 0) | |
477 | ret = memory_post_tests ((i << 20) + 0xff800, 0x800); | |
478 | } | |
479 | } | |
480 | ||
481 | return ret; | |
482 | } | |
e86e5a07 | 483 | #endif /* 0 */ |
4f7cb08e | 484 | |
6d0f6bcf | 485 | /* #endif */ /* CONFIG_POST & CONFIG_SYS_POST_MEMORY */ |
4f7cb08e | 486 | /* #endif */ /* CONFIG_POST */ |