]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/ec/ec_mult.c
Convert CRYPTO_LOCK_EVP_PKEY to new multi-threading API
[thirdparty/openssl.git] / crypto / ec / ec_mult.c
CommitLineData
35b73a1f 1/*
37c660ff 2 * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
35b73a1f 3 */
65e81670 4/* ====================================================================
19f6c524 5 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
65e81670
BM
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
0f113f3e 12 * notice, this list of conditions and the following disclaimer.
65e81670
BM
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * openssl-core@openssl.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */
7793f30e
BM
57/* ====================================================================
58 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
59 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
60 * and contributed to the OpenSSL project.
61 */
65e81670 62
28f573a2 63#include <string.h>
48fe4d62
BM
64#include <openssl/err.h>
65
5784a521 66#include "internal/bn_int.h"
65e81670 67#include "ec_lcl.h"
48fe4d62 68
37c660ff 69/*
0d4fb843 70 * This file implements the wNAF-based interleaving multi-exponentiation method
37c660ff
BM
71 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
72 * for multiplication with precomputation, we use wNAF splitting
73 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
74 */
48fe4d62 75
37c660ff 76/* structure for precomputed multiples of the generator */
3aef36ff 77struct ec_pre_comp_st {
0f113f3e
MC
78 const EC_GROUP *group; /* parent EC_GROUP object */
79 size_t blocksize; /* block size for wNAF splitting */
80 size_t numblocks; /* max. number of blocks for which we have
81 * precomputation */
82 size_t w; /* window size */
83 EC_POINT **points; /* array with pre-calculated multiples of
84 * generator: 'num' pointers to EC_POINT
85 * objects followed by a NULL */
86 size_t num; /* numblocks * 2^(w-1) */
87 int references;
3aef36ff 88};
37c660ff
BM
89
90static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
0f113f3e
MC
91{
92 EC_PRE_COMP *ret = NULL;
93
94 if (!group)
95 return NULL;
96
64b25758 97 ret = OPENSSL_zalloc(sizeof(*ret));
90945fa3 98 if (ret == NULL) {
0f113f3e
MC
99 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
100 return ret;
101 }
102 ret->group = group;
103 ret->blocksize = 8; /* default */
0f113f3e 104 ret->w = 4; /* default */
0f113f3e
MC
105 ret->references = 1;
106 return ret;
107}
37c660ff 108
3aef36ff 109EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
0f113f3e 110{
3aef36ff
RS
111 if (pre != NULL)
112 CRYPTO_add(&pre->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
113 return pre;
0f113f3e 114}
37c660ff 115
3aef36ff 116void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
0f113f3e 117{
3aef36ff
RS
118 if (pre == NULL
119 || CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP) > 0)
0f113f3e 120 return;
ba729265 121
3aef36ff
RS
122 if (pre->points != NULL) {
123 EC_POINT **pts;
37c660ff 124
3aef36ff
RS
125 for (pts = pre->points; *pts != NULL; pts++)
126 EC_POINT_free(*pts);
0f113f3e
MC
127 OPENSSL_free(pre->points);
128 }
129 OPENSSL_free(pre);
130}
37c660ff 131
0f113f3e
MC
132/*
133 * TODO: table should be optimised for the wNAF-based implementation,
134 * sometimes smaller windows will give better performance (thus the
135 * boundaries should be increased)
c05940ed 136 */
3ba1f111 137#define EC_window_bits_for_scalar_size(b) \
0f113f3e
MC
138 ((size_t) \
139 ((b) >= 2000 ? 6 : \
140 (b) >= 800 ? 5 : \
141 (b) >= 300 ? 4 : \
142 (b) >= 70 ? 3 : \
143 (b) >= 20 ? 2 : \
144 1))
3ba1f111 145
c80fd6b2
MC
146/*-
147 * Compute
3ba1f111
BM
148 * \sum scalars[i]*points[i],
149 * also including
150 * scalar*generator
151 * in the addition if scalar != NULL
152 */
7793f30e 153int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
0f113f3e
MC
154 size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
155 BN_CTX *ctx)
156{
157 BN_CTX *new_ctx = NULL;
158 const EC_POINT *generator = NULL;
159 EC_POINT *tmp = NULL;
160 size_t totalnum;
161 size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
162 size_t pre_points_per_block = 0;
163 size_t i, j;
164 int k;
165 int r_is_inverted = 0;
166 int r_is_at_infinity = 1;
167 size_t *wsize = NULL; /* individual window sizes */
168 signed char **wNAF = NULL; /* individual wNAFs */
169 size_t *wNAF_len = NULL;
170 size_t max_len = 0;
171 size_t num_val;
172 EC_POINT **val = NULL; /* precomputation */
173 EC_POINT **v;
174 EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
175 * 'pre_comp->points' */
176 const EC_PRE_COMP *pre_comp = NULL;
177 int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
178 * treated like other scalars, i.e.
179 * precomputation is not available */
180 int ret = 0;
181
182 if (group->meth != r->meth) {
183 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
184 return 0;
185 }
186
187 if ((scalar == NULL) && (num == 0)) {
188 return EC_POINT_set_to_infinity(group, r);
189 }
190
191 for (i = 0; i < num; i++) {
192 if (group->meth != points[i]->meth) {
193 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
194 return 0;
195 }
196 }
197
198 if (ctx == NULL) {
199 ctx = new_ctx = BN_CTX_new();
200 if (ctx == NULL)
201 goto err;
202 }
203
204 if (scalar != NULL) {
205 generator = EC_GROUP_get0_generator(group);
206 if (generator == NULL) {
207 ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
208 goto err;
209 }
210
211 /* look if we can use precomputed multiples of generator */
212
3aef36ff 213 pre_comp = group->pre_comp.ec;
0f113f3e
MC
214 if (pre_comp && pre_comp->numblocks
215 && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
216 0)) {
217 blocksize = pre_comp->blocksize;
218
219 /*
220 * determine maximum number of blocks that wNAF splitting may
221 * yield (NB: maximum wNAF length is bit length plus one)
222 */
223 numblocks = (BN_num_bits(scalar) / blocksize) + 1;
224
225 /*
226 * we cannot use more blocks than we have precomputation for
227 */
228 if (numblocks > pre_comp->numblocks)
229 numblocks = pre_comp->numblocks;
230
231 pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
232
233 /* check that pre_comp looks sane */
234 if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
235 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
236 goto err;
237 }
238 } else {
239 /* can't use precomputation */
240 pre_comp = NULL;
241 numblocks = 1;
242 num_scalar = 1; /* treat 'scalar' like 'num'-th element of
243 * 'scalars' */
244 }
245 }
246
247 totalnum = num + numblocks;
248
249 wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
250 wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
251 wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space
252 * for pivot */
253 val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
254
255 /* Ensure wNAF is initialised in case we end up going to err */
90945fa3 256 if (wNAF != NULL)
0f113f3e
MC
257 wNAF[0] = NULL; /* preliminary pivot */
258
90945fa3 259 if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
0f113f3e
MC
260 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
261 goto err;
262 }
263
264 /*
265 * num_val will be the total number of temporarily precomputed points
266 */
267 num_val = 0;
268
269 for (i = 0; i < num + num_scalar; i++) {
270 size_t bits;
271
272 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
273 wsize[i] = EC_window_bits_for_scalar_size(bits);
274 num_val += (size_t)1 << (wsize[i] - 1);
275 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
276 wNAF[i] =
277 bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
278 &wNAF_len[i]);
279 if (wNAF[i] == NULL)
280 goto err;
281 if (wNAF_len[i] > max_len)
282 max_len = wNAF_len[i];
283 }
284
285 if (numblocks) {
286 /* we go here iff scalar != NULL */
287
288 if (pre_comp == NULL) {
289 if (num_scalar != 1) {
290 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
291 goto err;
292 }
293 /* we have already generated a wNAF for 'scalar' */
294 } else {
295 signed char *tmp_wNAF = NULL;
296 size_t tmp_len = 0;
297
298 if (num_scalar != 0) {
299 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
300 goto err;
301 }
302
303 /*
304 * use the window size for which we have precomputation
305 */
306 wsize[num] = pre_comp->w;
307 tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
308 if (!tmp_wNAF)
309 goto err;
310
311 if (tmp_len <= max_len) {
312 /*
313 * One of the other wNAFs is at least as long as the wNAF
314 * belonging to the generator, so wNAF splitting will not buy
315 * us anything.
316 */
317
318 numblocks = 1;
319 totalnum = num + 1; /* don't use wNAF splitting */
320 wNAF[num] = tmp_wNAF;
321 wNAF[num + 1] = NULL;
322 wNAF_len[num] = tmp_len;
0f113f3e
MC
323 /*
324 * pre_comp->points starts with the points that we need here:
325 */
326 val_sub[num] = pre_comp->points;
327 } else {
328 /*
329 * don't include tmp_wNAF directly into wNAF array - use wNAF
330 * splitting and include the blocks
331 */
332
333 signed char *pp;
334 EC_POINT **tmp_points;
335
336 if (tmp_len < numblocks * blocksize) {
337 /*
338 * possibly we can do with fewer blocks than estimated
339 */
340 numblocks = (tmp_len + blocksize - 1) / blocksize;
341 if (numblocks > pre_comp->numblocks) {
342 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
343 goto err;
344 }
345 totalnum = num + numblocks;
346 }
347
348 /* split wNAF in 'numblocks' parts */
349 pp = tmp_wNAF;
350 tmp_points = pre_comp->points;
351
352 for (i = num; i < totalnum; i++) {
353 if (i < totalnum - 1) {
354 wNAF_len[i] = blocksize;
355 if (tmp_len < blocksize) {
356 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
357 goto err;
358 }
359 tmp_len -= blocksize;
360 } else
361 /*
362 * last block gets whatever is left (this could be
363 * more or less than 'blocksize'!)
364 */
365 wNAF_len[i] = tmp_len;
366
367 wNAF[i + 1] = NULL;
368 wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
369 if (wNAF[i] == NULL) {
370 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
371 OPENSSL_free(tmp_wNAF);
372 goto err;
373 }
374 memcpy(wNAF[i], pp, wNAF_len[i]);
375 if (wNAF_len[i] > max_len)
376 max_len = wNAF_len[i];
377
378 if (*tmp_points == NULL) {
379 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
380 OPENSSL_free(tmp_wNAF);
381 goto err;
382 }
383 val_sub[i] = tmp_points;
384 tmp_points += pre_points_per_block;
385 pp += blocksize;
386 }
387 OPENSSL_free(tmp_wNAF);
388 }
389 }
390 }
391
392 /*
393 * All points we precompute now go into a single array 'val'.
394 * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
395 * subarray of 'pre_comp->points' if we already have precomputation.
396 */
397 val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
398 if (val == NULL) {
399 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
400 goto err;
401 }
402 val[num_val] = NULL; /* pivot element */
403
404 /* allocate points for precomputation */
405 v = val;
406 for (i = 0; i < num + num_scalar; i++) {
407 val_sub[i] = v;
408 for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
409 *v = EC_POINT_new(group);
410 if (*v == NULL)
411 goto err;
412 v++;
413 }
414 }
415 if (!(v == val + num_val)) {
416 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
417 goto err;
418 }
419
75ebbd9a 420 if ((tmp = EC_POINT_new(group)) == NULL)
0f113f3e
MC
421 goto err;
422
50e735f9
MC
423 /*-
424 * prepare precomputed values:
425 * val_sub[i][0] := points[i]
426 * val_sub[i][1] := 3 * points[i]
427 * val_sub[i][2] := 5 * points[i]
428 * ...
429 */
0f113f3e
MC
430 for (i = 0; i < num + num_scalar; i++) {
431 if (i < num) {
432 if (!EC_POINT_copy(val_sub[i][0], points[i]))
433 goto err;
434 } else {
435 if (!EC_POINT_copy(val_sub[i][0], generator))
436 goto err;
437 }
438
439 if (wsize[i] > 1) {
440 if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
441 goto err;
442 for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
443 if (!EC_POINT_add
444 (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
445 goto err;
446 }
447 }
448 }
449
0f113f3e
MC
450 if (!EC_POINTs_make_affine(group, num_val, val, ctx))
451 goto err;
3ba1f111 452
0f113f3e
MC
453 r_is_at_infinity = 1;
454
455 for (k = max_len - 1; k >= 0; k--) {
456 if (!r_is_at_infinity) {
457 if (!EC_POINT_dbl(group, r, r, ctx))
458 goto err;
459 }
460
461 for (i = 0; i < totalnum; i++) {
462 if (wNAF_len[i] > (size_t)k) {
463 int digit = wNAF[i][k];
464 int is_neg;
465
466 if (digit) {
467 is_neg = digit < 0;
468
469 if (is_neg)
470 digit = -digit;
471
472 if (is_neg != r_is_inverted) {
473 if (!r_is_at_infinity) {
474 if (!EC_POINT_invert(group, r, ctx))
475 goto err;
476 }
477 r_is_inverted = !r_is_inverted;
478 }
479
480 /* digit > 0 */
481
482 if (r_is_at_infinity) {
483 if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
484 goto err;
485 r_is_at_infinity = 0;
486 } else {
487 if (!EC_POINT_add
488 (group, r, r, val_sub[i][digit >> 1], ctx))
489 goto err;
490 }
491 }
492 }
493 }
494 }
495
496 if (r_is_at_infinity) {
497 if (!EC_POINT_set_to_infinity(group, r))
498 goto err;
499 } else {
500 if (r_is_inverted)
501 if (!EC_POINT_invert(group, r, ctx))
502 goto err;
503 }
504
505 ret = 1;
3ba1f111
BM
506
507 err:
23a1d5e9 508 BN_CTX_free(new_ctx);
8fdc3734 509 EC_POINT_free(tmp);
b548a1f1
RS
510 OPENSSL_free(wsize);
511 OPENSSL_free(wNAF_len);
0f113f3e
MC
512 if (wNAF != NULL) {
513 signed char **w;
514
515 for (w = wNAF; *w != NULL; w++)
516 OPENSSL_free(*w);
517
518 OPENSSL_free(wNAF);
519 }
520 if (val != NULL) {
521 for (v = val; *v != NULL; v++)
522 EC_POINT_clear_free(*v);
523
524 OPENSSL_free(val);
525 }
b548a1f1 526 OPENSSL_free(val_sub);
0f113f3e
MC
527 return ret;
528}
38374911 529
1d97c843
TH
530/*-
531 * ec_wNAF_precompute_mult()
37c660ff
BM
532 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
533 * for use with wNAF splitting as implemented in ec_wNAF_mul().
0f113f3e 534 *
37c660ff
BM
535 * 'pre_comp->points' is an array of multiples of the generator
536 * of the following form:
537 * points[0] = generator;
538 * points[1] = 3 * generator;
539 * ...
540 * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
541 * points[2^(w-1)] = 2^blocksize * generator;
542 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
543 * ...
544 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
545 * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
546 * ...
547 * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
548 * points[2^(w-1)*numblocks] = NULL
7793f30e 549 */
7793f30e 550int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
0f113f3e
MC
551{
552 const EC_POINT *generator;
553 EC_POINT *tmp_point = NULL, *base = NULL, **var;
554 BN_CTX *new_ctx = NULL;
be2e334f 555 const BIGNUM *order;
0f113f3e
MC
556 size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
557 EC_POINT **points = NULL;
558 EC_PRE_COMP *pre_comp;
559 int ret = 0;
560
561 /* if there is an old EC_PRE_COMP object, throw it away */
2c52ac9b 562 EC_pre_comp_free(group);
0f113f3e
MC
563 if ((pre_comp = ec_pre_comp_new(group)) == NULL)
564 return 0;
565
566 generator = EC_GROUP_get0_generator(group);
567 if (generator == NULL) {
568 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
569 goto err;
570 }
571
572 if (ctx == NULL) {
573 ctx = new_ctx = BN_CTX_new();
574 if (ctx == NULL)
575 goto err;
576 }
577
578 BN_CTX_start(ctx);
0f113f3e 579
be2e334f
DSH
580 order = EC_GROUP_get0_order(group);
581 if (order == NULL)
0f113f3e
MC
582 goto err;
583 if (BN_is_zero(order)) {
584 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
585 goto err;
586 }
587
588 bits = BN_num_bits(order);
589 /*
590 * The following parameters mean we precompute (approximately) one point
591 * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
592 * bit lengths, other parameter combinations might provide better
593 * efficiency.
594 */
595 blocksize = 8;
596 w = 4;
597 if (EC_window_bits_for_scalar_size(bits) > w) {
598 /* let's not make the window too small ... */
599 w = EC_window_bits_for_scalar_size(bits);
600 }
601
602 numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
603 * to use for wNAF
604 * splitting */
605
606 pre_points_per_block = (size_t)1 << (w - 1);
607 num = pre_points_per_block * numblocks; /* number of points to compute
608 * and store */
609
b4faea50 610 points = OPENSSL_malloc(sizeof(*points) * (num + 1));
90945fa3 611 if (points == NULL) {
0f113f3e
MC
612 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
613 goto err;
614 }
615
616 var = points;
617 var[num] = NULL; /* pivot */
618 for (i = 0; i < num; i++) {
619 if ((var[i] = EC_POINT_new(group)) == NULL) {
620 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
621 goto err;
622 }
623 }
624
75ebbd9a
RS
625 if ((tmp_point = EC_POINT_new(group)) == NULL
626 || (base = EC_POINT_new(group)) == NULL) {
0f113f3e
MC
627 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
628 goto err;
629 }
630
631 if (!EC_POINT_copy(base, generator))
632 goto err;
633
634 /* do the precomputation */
635 for (i = 0; i < numblocks; i++) {
636 size_t j;
637
638 if (!EC_POINT_dbl(group, tmp_point, base, ctx))
639 goto err;
640
641 if (!EC_POINT_copy(*var++, base))
642 goto err;
643
644 for (j = 1; j < pre_points_per_block; j++, var++) {
645 /*
646 * calculate odd multiples of the current base point
647 */
648 if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
649 goto err;
650 }
651
652 if (i < numblocks - 1) {
653 /*
654 * get the next base (multiply current one by 2^blocksize)
655 */
656 size_t k;
657
658 if (blocksize <= 2) {
659 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
660 goto err;
661 }
662
663 if (!EC_POINT_dbl(group, base, tmp_point, ctx))
664 goto err;
665 for (k = 2; k < blocksize; k++) {
666 if (!EC_POINT_dbl(group, base, base, ctx))
667 goto err;
668 }
669 }
670 }
671
672 if (!EC_POINTs_make_affine(group, num, points, ctx))
673 goto err;
674
675 pre_comp->group = group;
676 pre_comp->blocksize = blocksize;
677 pre_comp->numblocks = numblocks;
678 pre_comp->w = w;
679 pre_comp->points = points;
680 points = NULL;
681 pre_comp->num = num;
3aef36ff 682 SETPRECOMP(group, ec, pre_comp);
0f113f3e 683 pre_comp = NULL;
0f113f3e 684 ret = 1;
3aef36ff 685
38374911 686 err:
0f113f3e
MC
687 if (ctx != NULL)
688 BN_CTX_end(ctx);
23a1d5e9 689 BN_CTX_free(new_ctx);
3aef36ff 690 EC_ec_pre_comp_free(pre_comp);
0f113f3e
MC
691 if (points) {
692 EC_POINT **p;
693
694 for (p = points; *p != NULL; p++)
695 EC_POINT_free(*p);
696 OPENSSL_free(points);
697 }
8fdc3734
RS
698 EC_POINT_free(tmp_point);
699 EC_POINT_free(base);
0f113f3e
MC
700 return ret;
701}
7793f30e 702
37c660ff 703int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
0f113f3e 704{
3aef36ff 705 return HAVEPRECOMP(group, ec);
0f113f3e 706}