]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/evp/e_aes_cbc_hmac_sha256.c
Don't use a ssl specific DRBG anymore
[thirdparty/openssl.git] / crypto / evp / e_aes_cbc_hmac_sha256.c
CommitLineData
aa6bb135
RS
1/*
2 * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved.
8a97a330 3 *
aa6bb135
RS
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8a97a330
AP
8 */
9
10#include <openssl/opensslconf.h>
11
12#include <stdio.h>
13#include <string.h>
14
0f113f3e 15
5158c763
MC
16#include <openssl/evp.h>
17#include <openssl/objects.h>
18#include <openssl/aes.h>
19#include <openssl/sha.h>
20#include <openssl/rand.h>
21#include "modes_lcl.h"
70428ead 22#include "internal/constant_time_locl.h"
5158c763
MC
23#include "internal/evp_int.h"
24
0f113f3e
MC
25typedef struct {
26 AES_KEY ks;
27 SHA256_CTX head, tail, md;
28 size_t payload_length; /* AAD length in decrypt case */
8a97a330 29 union {
0f113f3e
MC
30 unsigned int tls_ver;
31 unsigned char tls_aad[16]; /* 13 used */
8a97a330 32 } aux;
0f113f3e 33} EVP_AES_HMAC_SHA256;
8a97a330 34
0f113f3e 35# define NO_PAYLOAD_LENGTH ((size_t)-1)
8a97a330 36
5158c763 37#if defined(AES_ASM) && ( \
0f113f3e 38 defined(__x86_64) || defined(__x86_64__) || \
b1a07c38 39 defined(_M_AMD64) || defined(_M_X64) )
8a97a330 40
f0fa5c83 41extern unsigned int OPENSSL_ia32cap_P[];
5158c763 42# define AESNI_CAPABLE (1<<(57-32))
8a97a330
AP
43
44int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
0f113f3e 45 AES_KEY *key);
8a97a330 46int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
0f113f3e 47 AES_KEY *key);
8a97a330
AP
48
49void aesni_cbc_encrypt(const unsigned char *in,
0f113f3e
MC
50 unsigned char *out,
51 size_t length,
52 const AES_KEY *key, unsigned char *ivec, int enc);
8a97a330 53
0f113f3e
MC
54int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks,
55 const AES_KEY *key, unsigned char iv[16],
56 SHA256_CTX *ctx, const void *in0);
8a97a330 57
5158c763 58# define data(ctx) ((EVP_AES_HMAC_SHA256 *)EVP_CIPHER_CTX_get_cipher_data(ctx))
8a97a330
AP
59
60static int aesni_cbc_hmac_sha256_init_key(EVP_CIPHER_CTX *ctx,
0f113f3e
MC
61 const unsigned char *inkey,
62 const unsigned char *iv, int enc)
63{
64 EVP_AES_HMAC_SHA256 *key = data(ctx);
65 int ret;
8a97a330 66
0f113f3e 67 if (enc)
b88e95f3
KC
68 ret = aesni_set_encrypt_key(inkey,
69 EVP_CIPHER_CTX_key_length(ctx) * 8,
70 &key->ks);
0f113f3e 71 else
936166af
RL
72 ret = aesni_set_decrypt_key(inkey,
73 EVP_CIPHER_CTX_key_length(ctx) * 8,
74 &key->ks);
8a97a330 75
0f113f3e
MC
76 SHA256_Init(&key->head); /* handy when benchmarking */
77 key->tail = key->head;
78 key->md = key->head;
8a97a330 79
0f113f3e 80 key->payload_length = NO_PAYLOAD_LENGTH;
8a97a330 81
0f113f3e
MC
82 return ret < 0 ? 0 : 1;
83}
8a97a330 84
5158c763 85# define STITCHED_CALL
8a97a330 86
5158c763
MC
87# if !defined(STITCHED_CALL)
88# define aes_off 0
89# endif
8a97a330 90
0f113f3e 91void sha256_block_data_order(void *c, const void *p, size_t len);
8a97a330 92
0f113f3e
MC
93static void sha256_update(SHA256_CTX *c, const void *data, size_t len)
94{
95 const unsigned char *ptr = data;
96 size_t res;
97
98 if ((res = c->num)) {
99 res = SHA256_CBLOCK - res;
100 if (len < res)
101 res = len;
102 SHA256_Update(c, ptr, res);
103 ptr += res;
104 len -= res;
105 }
106
107 res = len % SHA256_CBLOCK;
108 len -= res;
109
110 if (len) {
111 sha256_block_data_order(c, ptr, len / SHA256_CBLOCK);
112
113 ptr += len;
114 c->Nh += len >> 29;
115 c->Nl += len <<= 3;
116 if (c->Nl < (unsigned int)len)
117 c->Nh++;
118 }
119
120 if (res)
121 SHA256_Update(c, ptr, res);
8a97a330
AP
122}
123
5158c763
MC
124# ifdef SHA256_Update
125# undef SHA256_Update
126# endif
127# define SHA256_Update sha256_update
8a97a330 128
9d6fcd42 129# if !defined(OPENSSL_NO_MULTIBLOCK)
7f893258 130
0f113f3e
MC
131typedef struct {
132 unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8];
133} SHA256_MB_CTX;
134typedef struct {
135 const unsigned char *ptr;
136 int blocks;
137} HASH_DESC;
7f893258 138
0f113f3e 139void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int);
7f893258 140
0f113f3e
MC
141typedef struct {
142 const unsigned char *inp;
143 unsigned char *out;
144 int blocks;
145 u64 iv[2];
146} CIPH_DESC;
7f893258 147
0f113f3e 148void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
7f893258 149
a69c0a1b 150static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA256 *key,
0f113f3e
MC
151 unsigned char *out,
152 const unsigned char *inp,
16cfc2c9 153 size_t inp_len, int n4x)
0f113f3e
MC
154{ /* n4x is 1 or 2 */
155 HASH_DESC hash_d[8], edges[8];
156 CIPH_DESC ciph_d[8];
157 unsigned char storage[sizeof(SHA256_MB_CTX) + 32];
158 union {
159 u64 q[16];
160 u32 d[32];
161 u8 c[128];
162 } blocks[8];
163 SHA256_MB_CTX *ctx;
164 unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
165 0;
166 size_t ret = 0;
167 u8 *IVs;
5158c763 168# if defined(BSWAP8)
0f113f3e 169 u64 seqnum;
5158c763 170# endif
0f113f3e
MC
171
172 /* ask for IVs in bulk */
16cfc2c9 173 if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
0f113f3e
MC
174 return 0;
175
176 /* align */
177 ctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32));
178
179 frag = (unsigned int)inp_len >> (1 + n4x);
180 last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
181 if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
182 frag++;
183 last -= x4 - 1;
184 }
185
186 packlen = 5 + 16 + ((frag + 32 + 16) & -16);
187
188 /* populate descriptors with pointers and IVs */
189 hash_d[0].ptr = inp;
190 ciph_d[0].inp = inp;
191 /* 5+16 is place for header and explicit IV */
192 ciph_d[0].out = out + 5 + 16;
193 memcpy(ciph_d[0].out - 16, IVs, 16);
194 memcpy(ciph_d[0].iv, IVs, 16);
195 IVs += 16;
196
197 for (i = 1; i < x4; i++) {
198 ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
199 ciph_d[i].out = ciph_d[i - 1].out + packlen;
200 memcpy(ciph_d[i].out - 16, IVs, 16);
201 memcpy(ciph_d[i].iv, IVs, 16);
202 IVs += 16;
203 }
204
5158c763 205# if defined(BSWAP8)
0f113f3e
MC
206 memcpy(blocks[0].c, key->md.data, 8);
207 seqnum = BSWAP8(blocks[0].q[0]);
5158c763 208# endif
0f113f3e
MC
209 for (i = 0; i < x4; i++) {
210 unsigned int len = (i == (x4 - 1) ? last : frag);
5158c763 211# if !defined(BSWAP8)
0f113f3e 212 unsigned int carry, j;
5158c763 213# endif
0f113f3e
MC
214
215 ctx->A[i] = key->md.h[0];
216 ctx->B[i] = key->md.h[1];
217 ctx->C[i] = key->md.h[2];
218 ctx->D[i] = key->md.h[3];
219 ctx->E[i] = key->md.h[4];
220 ctx->F[i] = key->md.h[5];
221 ctx->G[i] = key->md.h[6];
222 ctx->H[i] = key->md.h[7];
223
224 /* fix seqnum */
5158c763 225# if defined(BSWAP8)
0f113f3e 226 blocks[i].q[0] = BSWAP8(seqnum + i);
5158c763 227# else
0f113f3e
MC
228 for (carry = i, j = 8; j--;) {
229 blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
230 carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
231 }
5158c763 232# endif
0f113f3e
MC
233 blocks[i].c[8] = ((u8 *)key->md.data)[8];
234 blocks[i].c[9] = ((u8 *)key->md.data)[9];
235 blocks[i].c[10] = ((u8 *)key->md.data)[10];
236 /* fix length */
237 blocks[i].c[11] = (u8)(len >> 8);
238 blocks[i].c[12] = (u8)(len);
239
240 memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
241 hash_d[i].ptr += 64 - 13;
242 hash_d[i].blocks = (len - (64 - 13)) / 64;
243
244 edges[i].ptr = blocks[i].c;
245 edges[i].blocks = 1;
246 }
247
248 /* hash 13-byte headers and first 64-13 bytes of inputs */
249 sha256_multi_block(ctx, edges, n4x);
250 /* hash bulk inputs */
5158c763
MC
251# define MAXCHUNKSIZE 2048
252# if MAXCHUNKSIZE%64
253# error "MAXCHUNKSIZE is not divisible by 64"
254# elif MAXCHUNKSIZE
0f113f3e
MC
255 /*
256 * goal is to minimize pressure on L1 cache by moving in shorter steps,
257 * so that hashed data is still in the cache by the time we encrypt it
258 */
259 minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
260 if (minblocks > MAXCHUNKSIZE / 64) {
261 for (i = 0; i < x4; i++) {
262 edges[i].ptr = hash_d[i].ptr;
263 edges[i].blocks = MAXCHUNKSIZE / 64;
264 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
265 }
266 do {
267 sha256_multi_block(ctx, edges, n4x);
268 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
269
270 for (i = 0; i < x4; i++) {
271 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
272 hash_d[i].blocks -= MAXCHUNKSIZE / 64;
273 edges[i].blocks = MAXCHUNKSIZE / 64;
274 ciph_d[i].inp += MAXCHUNKSIZE;
275 ciph_d[i].out += MAXCHUNKSIZE;
276 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
277 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
278 }
279 processed += MAXCHUNKSIZE;
280 minblocks -= MAXCHUNKSIZE / 64;
281 } while (minblocks > MAXCHUNKSIZE / 64);
282 }
5158c763
MC
283# endif
284# undef MAXCHUNKSIZE
0f113f3e
MC
285 sha256_multi_block(ctx, hash_d, n4x);
286
287 memset(blocks, 0, sizeof(blocks));
288 for (i = 0; i < x4; i++) {
289 unsigned int len = (i == (x4 - 1) ? last : frag),
290 off = hash_d[i].blocks * 64;
291 const unsigned char *ptr = hash_d[i].ptr + off;
292
293 off = (len - processed) - (64 - 13) - off; /* remainder actually */
294 memcpy(blocks[i].c, ptr, off);
295 blocks[i].c[off] = 0x80;
296 len += 64 + 13; /* 64 is HMAC header */
297 len *= 8; /* convert to bits */
298 if (off < (64 - 8)) {
5158c763 299# ifdef BSWAP4
0f113f3e 300 blocks[i].d[15] = BSWAP4(len);
5158c763 301# else
0f113f3e 302 PUTU32(blocks[i].c + 60, len);
5158c763 303# endif
0f113f3e
MC
304 edges[i].blocks = 1;
305 } else {
5158c763 306# ifdef BSWAP4
0f113f3e 307 blocks[i].d[31] = BSWAP4(len);
5158c763 308# else
0f113f3e 309 PUTU32(blocks[i].c + 124, len);
5158c763 310# endif
0f113f3e
MC
311 edges[i].blocks = 2;
312 }
313 edges[i].ptr = blocks[i].c;
314 }
315
316 /* hash input tails and finalize */
317 sha256_multi_block(ctx, edges, n4x);
318
319 memset(blocks, 0, sizeof(blocks));
320 for (i = 0; i < x4; i++) {
5158c763 321# ifdef BSWAP4
0f113f3e
MC
322 blocks[i].d[0] = BSWAP4(ctx->A[i]);
323 ctx->A[i] = key->tail.h[0];
324 blocks[i].d[1] = BSWAP4(ctx->B[i]);
325 ctx->B[i] = key->tail.h[1];
326 blocks[i].d[2] = BSWAP4(ctx->C[i]);
327 ctx->C[i] = key->tail.h[2];
328 blocks[i].d[3] = BSWAP4(ctx->D[i]);
329 ctx->D[i] = key->tail.h[3];
330 blocks[i].d[4] = BSWAP4(ctx->E[i]);
331 ctx->E[i] = key->tail.h[4];
332 blocks[i].d[5] = BSWAP4(ctx->F[i]);
333 ctx->F[i] = key->tail.h[5];
334 blocks[i].d[6] = BSWAP4(ctx->G[i]);
335 ctx->G[i] = key->tail.h[6];
336 blocks[i].d[7] = BSWAP4(ctx->H[i]);
337 ctx->H[i] = key->tail.h[7];
338 blocks[i].c[32] = 0x80;
339 blocks[i].d[15] = BSWAP4((64 + 32) * 8);
5158c763 340# else
0f113f3e
MC
341 PUTU32(blocks[i].c + 0, ctx->A[i]);
342 ctx->A[i] = key->tail.h[0];
343 PUTU32(blocks[i].c + 4, ctx->B[i]);
344 ctx->B[i] = key->tail.h[1];
345 PUTU32(blocks[i].c + 8, ctx->C[i]);
346 ctx->C[i] = key->tail.h[2];
347 PUTU32(blocks[i].c + 12, ctx->D[i]);
348 ctx->D[i] = key->tail.h[3];
349 PUTU32(blocks[i].c + 16, ctx->E[i]);
350 ctx->E[i] = key->tail.h[4];
351 PUTU32(blocks[i].c + 20, ctx->F[i]);
352 ctx->F[i] = key->tail.h[5];
353 PUTU32(blocks[i].c + 24, ctx->G[i]);
354 ctx->G[i] = key->tail.h[6];
355 PUTU32(blocks[i].c + 28, ctx->H[i]);
356 ctx->H[i] = key->tail.h[7];
357 blocks[i].c[32] = 0x80;
358 PUTU32(blocks[i].c + 60, (64 + 32) * 8);
5158c763 359# endif
0f113f3e
MC
360 edges[i].ptr = blocks[i].c;
361 edges[i].blocks = 1;
362 }
363
364 /* finalize MACs */
365 sha256_multi_block(ctx, edges, n4x);
366
367 for (i = 0; i < x4; i++) {
368 unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
369 unsigned char *out0 = out;
370
371 memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
372 ciph_d[i].inp = ciph_d[i].out;
373
374 out += 5 + 16 + len;
375
376 /* write MAC */
377 PUTU32(out + 0, ctx->A[i]);
378 PUTU32(out + 4, ctx->B[i]);
379 PUTU32(out + 8, ctx->C[i]);
380 PUTU32(out + 12, ctx->D[i]);
381 PUTU32(out + 16, ctx->E[i]);
382 PUTU32(out + 20, ctx->F[i]);
383 PUTU32(out + 24, ctx->G[i]);
384 PUTU32(out + 28, ctx->H[i]);
385 out += 32;
386 len += 32;
387
388 /* pad */
389 pad = 15 - len % 16;
390 for (j = 0; j <= pad; j++)
391 *(out++) = pad;
392 len += pad + 1;
393
394 ciph_d[i].blocks = (len - processed) / 16;
395 len += 16; /* account for explicit iv */
396
397 /* arrange header */
398 out0[0] = ((u8 *)key->md.data)[8];
399 out0[1] = ((u8 *)key->md.data)[9];
400 out0[2] = ((u8 *)key->md.data)[10];
401 out0[3] = (u8)(len >> 8);
402 out0[4] = (u8)(len);
403
404 ret += len + 5;
405 inp += frag;
406 }
407
408 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
409
410 OPENSSL_cleanse(blocks, sizeof(blocks));
411 OPENSSL_cleanse(ctx, sizeof(*ctx));
412
413 return ret;
7f893258 414}
5158c763 415# endif
7f893258 416
0f113f3e
MC
417static int aesni_cbc_hmac_sha256_cipher(EVP_CIPHER_CTX *ctx,
418 unsigned char *out,
419 const unsigned char *in, size_t len)
420{
421 EVP_AES_HMAC_SHA256 *key = data(ctx);
422 unsigned int l;
423 size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
424 * later */
425 sha_off = 0;
5158c763 426# if defined(STITCHED_CALL)
0f113f3e
MC
427 size_t aes_off = 0, blocks;
428
429 sha_off = SHA256_CBLOCK - key->md.num;
5158c763 430# endif
0f113f3e
MC
431
432 key->payload_length = NO_PAYLOAD_LENGTH;
433
434 if (len % AES_BLOCK_SIZE)
435 return 0;
436
936166af 437 if (EVP_CIPHER_CTX_encrypting(ctx)) {
0f113f3e
MC
438 if (plen == NO_PAYLOAD_LENGTH)
439 plen = len;
440 else if (len !=
441 ((plen + SHA256_DIGEST_LENGTH +
442 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
443 return 0;
444 else if (key->aux.tls_ver >= TLS1_1_VERSION)
445 iv = AES_BLOCK_SIZE;
446
5158c763 447# if defined(STITCHED_CALL)
a5fd24d1
AP
448 /*
449 * Assembly stitch handles AVX-capable processors, but its
450 * performance is not optimal on AMD Jaguar, ~40% worse, for
451 * unknown reasons. Incidentally processor in question supports
452 * AVX, but not AMD-specific XOP extension, which can be used
453 * to identify it and avoid stitch invocation. So that after we
454 * establish that current CPU supports AVX, we even see if it's
455 * either even XOP-capable Bulldozer-based or GenuineIntel one.
d0f6eb1d 456 * But SHAEXT-capable go ahead...
a5fd24d1 457 */
d0f6eb1d
AP
458 if (((OPENSSL_ia32cap_P[2] & (1 << 29)) || /* SHAEXT? */
459 ((OPENSSL_ia32cap_P[1] & (1 << (60 - 32))) && /* AVX? */
460 ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32))) /* XOP? */
461 | (OPENSSL_ia32cap_P[0] & (1 << 30))))) && /* "Intel CPU"? */
0f113f3e
MC
462 plen > (sha_off + iv) &&
463 (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) {
464 SHA256_Update(&key->md, in + iv, sha_off);
465
466 (void)aesni_cbc_sha256_enc(in, out, blocks, &key->ks,
936166af
RL
467 EVP_CIPHER_CTX_iv_noconst(ctx),
468 &key->md, in + iv + sha_off);
0f113f3e
MC
469 blocks *= SHA256_CBLOCK;
470 aes_off += blocks;
471 sha_off += blocks;
472 key->md.Nh += blocks >> 29;
473 key->md.Nl += blocks <<= 3;
474 if (key->md.Nl < (unsigned int)blocks)
475 key->md.Nh++;
476 } else {
477 sha_off = 0;
478 }
5158c763 479# endif
0f113f3e
MC
480 sha_off += iv;
481 SHA256_Update(&key->md, in + sha_off, plen - sha_off);
482
483 if (plen != len) { /* "TLS" mode of operation */
484 if (in != out)
485 memcpy(out + aes_off, in + aes_off, plen - aes_off);
486
487 /* calculate HMAC and append it to payload */
488 SHA256_Final(out + plen, &key->md);
489 key->md = key->tail;
490 SHA256_Update(&key->md, out + plen, SHA256_DIGEST_LENGTH);
491 SHA256_Final(out + plen, &key->md);
492
493 /* pad the payload|hmac */
494 plen += SHA256_DIGEST_LENGTH;
495 for (l = len - plen - 1; plen < len; plen++)
496 out[plen] = l;
497 /* encrypt HMAC|padding at once */
498 aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
936166af 499 &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1);
0f113f3e
MC
500 } else {
501 aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
936166af 502 &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1);
0f113f3e
MC
503 }
504 } else {
505 union {
506 unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)];
507 unsigned char c[64 + SHA256_DIGEST_LENGTH];
508 } mac, *pmac;
509
510 /* arrange cache line alignment */
511 pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64));
512
513 /* decrypt HMAC|padding at once */
936166af
RL
514 aesni_cbc_encrypt(in, out, len, &key->ks,
515 EVP_CIPHER_CTX_iv_noconst(ctx), 0);
0f113f3e
MC
516
517 if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
518 size_t inp_len, mask, j, i;
519 unsigned int res, maxpad, pad, bitlen;
520 int ret = 1;
521 union {
522 unsigned int u[SHA_LBLOCK];
523 unsigned char c[SHA256_CBLOCK];
524 } *data = (void *)key->md.data;
525
526 if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
527 >= TLS1_1_VERSION)
528 iv = AES_BLOCK_SIZE;
529
530 if (len < (iv + SHA256_DIGEST_LENGTH + 1))
531 return 0;
532
533 /* omit explicit iv */
534 out += iv;
535 len -= iv;
536
537 /* figure out payload length */
538 pad = out[len - 1];
539 maxpad = len - (SHA256_DIGEST_LENGTH + 1);
540 maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
541 maxpad &= 255;
542
335d0a46
MC
543 mask = constant_time_ge(maxpad, pad);
544 ret &= mask;
545 /*
546 * If pad is invalid then we will fail the above test but we must
547 * continue anyway because we are in constant time code. However,
548 * we'll use the maxpad value instead of the supplied pad to make
549 * sure we perform well defined pointer arithmetic.
550 */
551 pad = constant_time_select(mask, pad, maxpad);
70428ead 552
0f113f3e 553 inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1);
0f113f3e
MC
554
555 key->aux.tls_aad[plen - 2] = inp_len >> 8;
556 key->aux.tls_aad[plen - 1] = inp_len;
557
558 /* calculate HMAC */
559 key->md = key->head;
560 SHA256_Update(&key->md, key->aux.tls_aad, plen);
561
5908555c 562# if 1 /* see original reference version in #else */
0f113f3e
MC
563 len -= SHA256_DIGEST_LENGTH; /* amend mac */
564 if (len >= (256 + SHA256_CBLOCK)) {
565 j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK);
566 j += SHA256_CBLOCK - key->md.num;
567 SHA256_Update(&key->md, out, j);
568 out += j;
569 len -= j;
570 inp_len -= j;
571 }
572
573 /* but pretend as if we hashed padded payload */
574 bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
5158c763 575# ifdef BSWAP4
0f113f3e 576 bitlen = BSWAP4(bitlen);
5158c763 577# else
0f113f3e
MC
578 mac.c[0] = 0;
579 mac.c[1] = (unsigned char)(bitlen >> 16);
580 mac.c[2] = (unsigned char)(bitlen >> 8);
581 mac.c[3] = (unsigned char)bitlen;
582 bitlen = mac.u[0];
5158c763 583# endif
0f113f3e
MC
584
585 pmac->u[0] = 0;
586 pmac->u[1] = 0;
587 pmac->u[2] = 0;
588 pmac->u[3] = 0;
589 pmac->u[4] = 0;
590 pmac->u[5] = 0;
591 pmac->u[6] = 0;
592 pmac->u[7] = 0;
593
594 for (res = key->md.num, j = 0; j < len; j++) {
595 size_t c = out[j];
596 mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
597 c &= mask;
598 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
599 data->c[res++] = (unsigned char)c;
600
601 if (res != SHA256_CBLOCK)
602 continue;
603
604 /* j is not incremented yet */
605 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
606 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
607 sha256_block_data_order(&key->md, data, 1);
608 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
609 pmac->u[0] |= key->md.h[0] & mask;
610 pmac->u[1] |= key->md.h[1] & mask;
611 pmac->u[2] |= key->md.h[2] & mask;
612 pmac->u[3] |= key->md.h[3] & mask;
613 pmac->u[4] |= key->md.h[4] & mask;
614 pmac->u[5] |= key->md.h[5] & mask;
615 pmac->u[6] |= key->md.h[6] & mask;
616 pmac->u[7] |= key->md.h[7] & mask;
617 res = 0;
618 }
619
620 for (i = res; i < SHA256_CBLOCK; i++, j++)
621 data->c[i] = 0;
622
623 if (res > SHA256_CBLOCK - 8) {
624 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
625 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
626 sha256_block_data_order(&key->md, data, 1);
627 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
628 pmac->u[0] |= key->md.h[0] & mask;
629 pmac->u[1] |= key->md.h[1] & mask;
630 pmac->u[2] |= key->md.h[2] & mask;
631 pmac->u[3] |= key->md.h[3] & mask;
632 pmac->u[4] |= key->md.h[4] & mask;
633 pmac->u[5] |= key->md.h[5] & mask;
634 pmac->u[6] |= key->md.h[6] & mask;
635 pmac->u[7] |= key->md.h[7] & mask;
636
637 memset(data, 0, SHA256_CBLOCK);
638 j += 64;
639 }
640 data->u[SHA_LBLOCK - 1] = bitlen;
641 sha256_block_data_order(&key->md, data, 1);
642 mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
643 pmac->u[0] |= key->md.h[0] & mask;
644 pmac->u[1] |= key->md.h[1] & mask;
645 pmac->u[2] |= key->md.h[2] & mask;
646 pmac->u[3] |= key->md.h[3] & mask;
647 pmac->u[4] |= key->md.h[4] & mask;
648 pmac->u[5] |= key->md.h[5] & mask;
649 pmac->u[6] |= key->md.h[6] & mask;
650 pmac->u[7] |= key->md.h[7] & mask;
651
5158c763 652# ifdef BSWAP4
0f113f3e
MC
653 pmac->u[0] = BSWAP4(pmac->u[0]);
654 pmac->u[1] = BSWAP4(pmac->u[1]);
655 pmac->u[2] = BSWAP4(pmac->u[2]);
656 pmac->u[3] = BSWAP4(pmac->u[3]);
657 pmac->u[4] = BSWAP4(pmac->u[4]);
658 pmac->u[5] = BSWAP4(pmac->u[5]);
659 pmac->u[6] = BSWAP4(pmac->u[6]);
660 pmac->u[7] = BSWAP4(pmac->u[7]);
5158c763 661# else
0f113f3e
MC
662 for (i = 0; i < 8; i++) {
663 res = pmac->u[i];
664 pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
665 pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
666 pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
667 pmac->c[4 * i + 3] = (unsigned char)res;
668 }
5158c763 669# endif
0f113f3e 670 len += SHA256_DIGEST_LENGTH;
5158c763 671# else
0f113f3e
MC
672 SHA256_Update(&key->md, out, inp_len);
673 res = key->md.num;
674 SHA256_Final(pmac->c, &key->md);
675
676 {
677 unsigned int inp_blocks, pad_blocks;
678
679 /* but pretend as if we hashed padded payload */
680 inp_blocks =
681 1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
682 res += (unsigned int)(len - inp_len);
683 pad_blocks = res / SHA256_CBLOCK;
684 res %= SHA256_CBLOCK;
685 pad_blocks +=
686 1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
687 for (; inp_blocks < pad_blocks; inp_blocks++)
688 sha1_block_data_order(&key->md, data, 1);
689 }
5908555c 690# endif /* pre-lucky-13 reference version of above */
0f113f3e
MC
691 key->md = key->tail;
692 SHA256_Update(&key->md, pmac->c, SHA256_DIGEST_LENGTH);
693 SHA256_Final(pmac->c, &key->md);
694
695 /* verify HMAC */
696 out += inp_len;
697 len -= inp_len;
5908555c 698# if 1 /* see original reference version in #else */
0f113f3e
MC
699 {
700 unsigned char *p =
701 out + len - 1 - maxpad - SHA256_DIGEST_LENGTH;
702 size_t off = out - p;
703 unsigned int c, cmask;
704
705 maxpad += SHA256_DIGEST_LENGTH;
706 for (res = 0, i = 0, j = 0; j < maxpad; j++) {
707 c = p[j];
708 cmask =
709 ((int)(j - off - SHA256_DIGEST_LENGTH)) >>
710 (sizeof(int) * 8 - 1);
711 res |= (c ^ pad) & ~cmask; /* ... and padding */
712 cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
713 res |= (c ^ pmac->c[i]) & cmask;
714 i += 1 & cmask;
715 }
716 maxpad -= SHA256_DIGEST_LENGTH;
717
718 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
719 ret &= (int)~res;
720 }
5908555c 721# else /* pre-lucky-13 reference version of above */
0f113f3e
MC
722 for (res = 0, i = 0; i < SHA256_DIGEST_LENGTH; i++)
723 res |= out[i] ^ pmac->c[i];
724 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
725 ret &= (int)~res;
726
727 /* verify padding */
728 pad = (pad & ~res) | (maxpad & res);
729 out = out + len - 1 - pad;
730 for (res = 0, i = 0; i < pad; i++)
731 res |= out[i] ^ pad;
732
733 res = (0 - res) >> (sizeof(res) * 8 - 1);
734 ret &= (int)~res;
5158c763 735# endif
0f113f3e
MC
736 return ret;
737 } else {
738 SHA256_Update(&key->md, out, len);
739 }
740 }
741
742 return 1;
743}
8a97a330 744
0f113f3e
MC
745static int aesni_cbc_hmac_sha256_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
746 void *ptr)
747{
748 EVP_AES_HMAC_SHA256 *key = data(ctx);
749 unsigned int u_arg = (unsigned int)arg;
750
751 switch (type) {
752 case EVP_CTRL_AEAD_SET_MAC_KEY:
753 {
754 unsigned int i;
755 unsigned char hmac_key[64];
756
757 memset(hmac_key, 0, sizeof(hmac_key));
758
759 if (arg < 0)
760 return -1;
761
762 if (u_arg > sizeof(hmac_key)) {
763 SHA256_Init(&key->head);
764 SHA256_Update(&key->head, ptr, arg);
765 SHA256_Final(hmac_key, &key->head);
766 } else {
767 memcpy(hmac_key, ptr, arg);
768 }
769
770 for (i = 0; i < sizeof(hmac_key); i++)
771 hmac_key[i] ^= 0x36; /* ipad */
772 SHA256_Init(&key->head);
773 SHA256_Update(&key->head, hmac_key, sizeof(hmac_key));
774
775 for (i = 0; i < sizeof(hmac_key); i++)
776 hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
777 SHA256_Init(&key->tail);
778 SHA256_Update(&key->tail, hmac_key, sizeof(hmac_key));
779
780 OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
781
782 return 1;
783 }
784 case EVP_CTRL_AEAD_TLS1_AAD:
785 {
786 unsigned char *p = ptr;
1b6f5a4d 787 unsigned int len;
0f113f3e 788
c8269881
MC
789 if (arg != EVP_AEAD_TLS1_AAD_LEN)
790 return -1;
791
1b6f5a4d
BE
792 len = p[arg - 2] << 8 | p[arg - 1];
793
936166af 794 if (EVP_CIPHER_CTX_encrypting(ctx)) {
0f113f3e
MC
795 key->payload_length = len;
796 if ((key->aux.tls_ver =
797 p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
a68d3505
RS
798 if (len < AES_BLOCK_SIZE)
799 return 0;
0f113f3e
MC
800 len -= AES_BLOCK_SIZE;
801 p[arg - 2] = len >> 8;
802 p[arg - 1] = len;
803 }
804 key->md = key->head;
805 SHA256_Update(&key->md, p, arg);
806
807 return (int)(((len + SHA256_DIGEST_LENGTH +
808 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
809 - len);
810 } else {
0f113f3e
MC
811 memcpy(key->aux.tls_aad, ptr, arg);
812 key->payload_length = arg;
813
814 return SHA256_DIGEST_LENGTH;
815 }
816 }
9d6fcd42 817# if !defined(OPENSSL_NO_MULTIBLOCK)
0f113f3e
MC
818 case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
819 return (int)(5 + 16 + ((arg + 32 + 16) & -16));
820 case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
821 {
822 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
823 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
824 unsigned int n4x = 1, x4;
825 unsigned int frag, last, packlen, inp_len;
826
827 if (arg < 0)
828 return -1;
829
830 if (u_arg < sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
831 return -1;
832
833 inp_len = param->inp[11] << 8 | param->inp[12];
834
936166af 835 if (EVP_CIPHER_CTX_encrypting(ctx)) {
0f113f3e
MC
836 if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
837 return -1;
838
839 if (inp_len) {
840 if (inp_len < 4096)
841 return 0; /* too short */
842
843 if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
844 n4x = 2; /* AVX2 */
845 } else if ((n4x = param->interleave / 4) && n4x <= 2)
846 inp_len = param->len;
847 else
848 return -1;
849
850 key->md = key->head;
851 SHA256_Update(&key->md, param->inp, 13);
852
853 x4 = 4 * n4x;
854 n4x += 1;
855
856 frag = inp_len >> n4x;
857 last = inp_len + frag - (frag << n4x);
858 if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
859 frag++;
860 last -= x4 - 1;
861 }
862
863 packlen = 5 + 16 + ((frag + 32 + 16) & -16);
864 packlen = (packlen << n4x) - packlen;
865 packlen += 5 + 16 + ((last + 32 + 16) & -16);
866
867 param->interleave = x4;
868
869 return (int)packlen;
870 } else
871 return -1; /* not yet */
872 }
873 case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
874 {
875 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
876 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
877
878 return (int)tls1_1_multi_block_encrypt(key, param->out,
879 param->inp, param->len,
16cfc2c9 880 param->interleave / 4);
0f113f3e
MC
881 }
882 case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
5158c763 883# endif
0f113f3e
MC
884 default:
885 return -1;
886 }
887}
8a97a330 888
0f113f3e 889static EVP_CIPHER aesni_128_cbc_hmac_sha256_cipher = {
5158c763 890# ifdef NID_aes_128_cbc_hmac_sha256
0f113f3e 891 NID_aes_128_cbc_hmac_sha256,
5158c763 892# else
0f113f3e 893 NID_undef,
5158c763 894# endif
936166af 895 AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE,
0f113f3e
MC
896 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
897 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
898 aesni_cbc_hmac_sha256_init_key,
899 aesni_cbc_hmac_sha256_cipher,
900 NULL,
901 sizeof(EVP_AES_HMAC_SHA256),
902 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
903 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
904 aesni_cbc_hmac_sha256_ctrl,
905 NULL
906};
907
908static EVP_CIPHER aesni_256_cbc_hmac_sha256_cipher = {
5158c763 909# ifdef NID_aes_256_cbc_hmac_sha256
0f113f3e 910 NID_aes_256_cbc_hmac_sha256,
5158c763 911# else
0f113f3e 912 NID_undef,
5158c763 913# endif
936166af 914 AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE,
0f113f3e
MC
915 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
916 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
917 aesni_cbc_hmac_sha256_init_key,
918 aesni_cbc_hmac_sha256_cipher,
919 NULL,
920 sizeof(EVP_AES_HMAC_SHA256),
921 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
922 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
923 aesni_cbc_hmac_sha256_ctrl,
924 NULL
925};
8a97a330
AP
926
927const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
0f113f3e
MC
928{
929 return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
930 aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
931 &aesni_128_cbc_hmac_sha256_cipher : NULL);
932}
8a97a330
AP
933
934const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
0f113f3e
MC
935{
936 return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
937 aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
938 &aesni_256_cbc_hmac_sha256_cipher : NULL);
939}
5158c763 940#else
8a97a330 941const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
0f113f3e
MC
942{
943 return NULL;
944}
945
8a97a330 946const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
0f113f3e
MC
947{
948 return NULL;
949}
8a97a330 950#endif