]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/poly1305/poly1305_ieee754.c
Copyright consolidation 05/10
[thirdparty/openssl.git] / crypto / poly1305 / poly1305_ieee754.c
CommitLineData
aa6bb135
RS
1/*
2 * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
c8d1c9b0 3 *
aa6bb135
RS
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
c8d1c9b0
AP
8 */
9
10/*
11 * This module is meant to be used as template for non-x87 floating-
12 * point assembly modules. The template itself is x86_64-specific
13 * though, as it was debugged on x86_64. So that implementor would
14 * have to recognize platform-specific parts, UxTOy and inline asm,
15 * and act accordingly.
16 *
17 * Huh? x86_64-specific code as template for non-x87? Note seven, which
18 * is not a typo, but reference to 80-bit precision. This module on the
19 * other hand relies on 64-bit precision operations, which are default
20 * for x86_64 code. And since we are at it, just for sense of it,
21 * large-block performance in cycles per processed byte for *this* code
22 * is:
23 * gcc-4.8 icc-15.0 clang-3.4(*)
24 *
25 * Westmere 4.96 5.09 4.37
26 * Sandy Bridge 4.95 4.90 4.17
27 * Haswell 4.92 4.87 3.78
28 * Bulldozer 4.67 4.49 4.68
29 * VIA Nano 7.07 7.05 5.98
30 * Silvermont 10.6 9.61 12.6
31 *
32 * (*) clang managed to discover parallelism and deployed SIMD;
33 *
34 * And for range of other platforms with unspecified gcc versions:
35 *
36 * Freescale e300 12.5
37 * PPC74x0 10.8
38 * POWER6 4.92
39 * POWER7 4.50
40 * POWER8 4.10
41 *
42 * z10 11.2
43 * z196+ 7.30
44 *
45 * UltraSPARC III 16.0
46 * SPARC T4 16.1
47 */
48
49#if !(defined(__GNUC__) && __GNUC__>=2)
50# error "this is gcc-specific template"
51#endif
52
53#include <stdlib.h>
54
55typedef unsigned char u8;
56typedef unsigned int u32;
57typedef unsigned long long u64;
58typedef union { double d; u64 u; } elem64;
59
60#define TWO(p) ((double)(1ULL<<(p)))
61#define TWO0 TWO(0)
62#define TWO32 TWO(32)
63#define TWO64 (TWO32*TWO(32))
64#define TWO96 (TWO64*TWO(32))
65#define TWO130 (TWO96*TWO(34))
66
67#define EXP(p) ((1023ULL+(p))<<52)
68
69#if defined(__x86_64__) || (defined(__PPC__) && defined(__LITTLE_ENDIAN__))
70# define U8TOU32(p) (*(const u32 *)(p))
71# define U32TO8(p,v) (*(u32 *)(p) = (v))
72#elif defined(__PPC__)
73# define U8TOU32(p) ({u32 ret; asm ("lwbrx %0,0,%1":"=r"(ret):"b"(p)); ret; })
74# define U32TO8(p,v) asm ("stwbrx %0,0,%1"::"r"(v),"b"(p):"memory")
75#elif defined(__s390x__)
76# define U8TOU32(p) ({u32 ret; asm ("lrv %0,%1":"=d"(ret):"m"(*(u32 *)(p))); ret; })
77# define U32TO8(p,v) asm ("strv %1,%0":"=m"(*(u32 *)(p)):"d"(v))
78#endif
79
80#ifndef U8TOU32
81# define U8TOU32(p) ((u32)(p)[0] | (u32)(p)[1]<<8 | \
82 (u32)(p)[2]<<16 | (u32)(p)[3]<<24 )
83#endif
84#ifndef U32TO8
85# define U32TO8(p,v) ((p)[0] = (u8)(v), (p)[1] = (u8)((v)>>8), \
86 (p)[2] = (u8)((v)>>16), (p)[3] = (u8)((v)>>24) )
87#endif
88
89typedef struct {
90 elem64 h[4];
91 double r[8];
92 double s[6];
93} poly1305_internal;
94
95/* "round toward zero (truncate), mask all exceptions" */
96#if defined(__x86_64__)
97static const u32 mxcsr = 0x7f80;
98#elif defined(__PPC__)
99static const u64 one = 1;
100#elif defined(__s390x__)
101static const u32 fpc = 1;
102#elif defined(__sparc__)
103static const u64 fsr = 1ULL<<30;
104#else
105#error "unrecognized platform"
106#endif
107
108int poly1305_init(void *ctx, const unsigned char key[16])
109{
110 poly1305_internal *st = (poly1305_internal *) ctx;
111 elem64 r0, r1, r2, r3;
112
113 /* h = 0, biased */
114#if 0
115 st->h[0].d = TWO(52)*TWO0;
116 st->h[1].d = TWO(52)*TWO32;
117 st->h[2].d = TWO(52)*TWO64;
118 st->h[3].d = TWO(52)*TWO96;
119#else
120 st->h[0].u = EXP(52+0);
121 st->h[1].u = EXP(52+32);
122 st->h[2].u = EXP(52+64);
123 st->h[3].u = EXP(52+96);
124#endif
125
126 if (key) {
127 /*
128 * set "truncate" rounding mode
129 */
130#if defined(__x86_64__)
131 u32 mxcsr_orig;
132
133 asm volatile ("stmxcsr %0":"=m"(mxcsr_orig));
134 asm volatile ("ldmxcsr %0"::"m"(mxcsr));
135#elif defined(__PPC__)
136 double fpscr_orig, fpscr = *(double *)&one;
137
138 asm volatile ("mffs %0":"=f"(fpscr_orig));
139 asm volatile ("mtfsf 255,%0"::"f"(fpscr));
140#elif defined(__s390x__)
141 u32 fpc_orig;
142
143 asm volatile ("stfpc %0":"=m"(fpc_orig));
144 asm volatile ("lfpc %0"::"m"(fpc));
145#elif defined(__sparc__)
146 u64 fsr_orig;
147
148 asm volatile ("stx %%fsr,%0":"=m"(fsr_orig));
149 asm volatile ("ldx %0,%%fsr"::"m"(fsr));
150#endif
151
152 /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
153 r0.u = EXP(52+0) | (U8TOU32(&key[0]) & 0x0fffffff);
154 r1.u = EXP(52+32) | (U8TOU32(&key[4]) & 0x0ffffffc);
155 r2.u = EXP(52+64) | (U8TOU32(&key[8]) & 0x0ffffffc);
156 r3.u = EXP(52+96) | (U8TOU32(&key[12]) & 0x0ffffffc);
157
158 st->r[0] = r0.d - TWO(52)*TWO0;
159 st->r[2] = r1.d - TWO(52)*TWO32;
160 st->r[4] = r2.d - TWO(52)*TWO64;
161 st->r[6] = r3.d - TWO(52)*TWO96;
162
163 st->s[0] = st->r[2] * (5.0/TWO130);
164 st->s[2] = st->r[4] * (5.0/TWO130);
165 st->s[4] = st->r[6] * (5.0/TWO130);
166
167 /*
168 * base 2^32 -> base 2^16
169 */
170 st->r[1] = (st->r[0] + TWO(52)*TWO(16)*TWO0) -
171 TWO(52)*TWO(16)*TWO0;
172 st->r[0] -= st->r[1];
173
174 st->r[3] = (st->r[2] + TWO(52)*TWO(16)*TWO32) -
175 TWO(52)*TWO(16)*TWO32;
176 st->r[2] -= st->r[3];
177
178 st->r[5] = (st->r[4] + TWO(52)*TWO(16)*TWO64) -
179 TWO(52)*TWO(16)*TWO64;
180 st->r[4] -= st->r[5];
181
182 st->r[7] = (st->r[6] + TWO(52)*TWO(16)*TWO96) -
183 TWO(52)*TWO(16)*TWO96;
184 st->r[6] -= st->r[7];
185
186 st->s[1] = (st->s[0] + TWO(52)*TWO(16)*TWO0/TWO96) -
187 TWO(52)*TWO(16)*TWO0/TWO96;
188 st->s[0] -= st->s[1];
189
190 st->s[3] = (st->s[2] + TWO(52)*TWO(16)*TWO32/TWO96) -
191 TWO(52)*TWO(16)*TWO32/TWO96;
192 st->s[2] -= st->s[3];
193
194 st->s[5] = (st->s[4] + TWO(52)*TWO(16)*TWO64/TWO96) -
195 TWO(52)*TWO(16)*TWO64/TWO96;
196 st->s[4] -= st->s[5];
197
198 /*
199 * restore original FPU control register
200 */
201#if defined(__x86_64__)
202 asm volatile ("ldmxcsr %0"::"m"(mxcsr_orig));
203#elif defined(__PPC__)
204 asm volatile ("mtfsf 255,%0"::"f"(fpscr_orig));
205#elif defined(__s390x__)
206 asm volatile ("lfpc %0"::"m"(fpc_orig));
207#elif defined(__sparc__)
208 asm volatile ("ldx %0,%%fsr"::"m"(fsr_orig));
209#endif
210 }
211
212 return 0;
213}
214
215void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
216 int padbit)
217{
218 poly1305_internal *st = (poly1305_internal *)ctx;
219 elem64 in0, in1, in2, in3;
220 u64 pad = (u64)padbit<<32;
221
222 double x0, x1, x2, x3;
223 double h0lo, h0hi, h1lo, h1hi, h2lo, h2hi, h3lo, h3hi;
224 double c0lo, c0hi, c1lo, c1hi, c2lo, c2hi, c3lo, c3hi;
225
226 const double r0lo = st->r[0];
227 const double r0hi = st->r[1];
228 const double r1lo = st->r[2];
229 const double r1hi = st->r[3];
230 const double r2lo = st->r[4];
231 const double r2hi = st->r[5];
232 const double r3lo = st->r[6];
233 const double r3hi = st->r[7];
234
235 const double s1lo = st->s[0];
236 const double s1hi = st->s[1];
237 const double s2lo = st->s[2];
238 const double s2hi = st->s[3];
239 const double s3lo = st->s[4];
240 const double s3hi = st->s[5];
241
242 /*
243 * set "truncate" rounding mode
244 */
245#if defined(__x86_64__)
246 u32 mxcsr_orig;
247
248 asm volatile ("stmxcsr %0":"=m"(mxcsr_orig));
249 asm volatile ("ldmxcsr %0"::"m"(mxcsr));
250#elif defined(__PPC__)
251 double fpscr_orig, fpscr = *(double *)&one;
252
253 asm volatile ("mffs %0":"=f"(fpscr_orig));
254 asm volatile ("mtfsf 255,%0"::"f"(fpscr));
255#elif defined(__s390x__)
256 u32 fpc_orig;
257
258 asm volatile ("stfpc %0":"=m"(fpc_orig));
259 asm volatile ("lfpc %0"::"m"(fpc));
260#elif defined(__sparc__)
261 u64 fsr_orig;
262
263 asm volatile ("stx %%fsr,%0":"=m"(fsr_orig));
264 asm volatile ("ldx %0,%%fsr"::"m"(fsr));
265#endif
266
267 /*
268 * load base 2^32 and de-bias
269 */
270 h0lo = st->h[0].d - TWO(52)*TWO0;
271 h1lo = st->h[1].d - TWO(52)*TWO32;
272 h2lo = st->h[2].d - TWO(52)*TWO64;
273 h3lo = st->h[3].d - TWO(52)*TWO96;
274
275#ifdef __clang__
276 h0hi = 0;
277 h1hi = 0;
278 h2hi = 0;
279 h3hi = 0;
280#else
281 in0.u = EXP(52+0) | U8TOU32(&inp[0]);
282 in1.u = EXP(52+32) | U8TOU32(&inp[4]);
283 in2.u = EXP(52+64) | U8TOU32(&inp[8]);
284 in3.u = EXP(52+96) | U8TOU32(&inp[12]) | pad;
285
286 x0 = in0.d - TWO(52)*TWO0;
287 x1 = in1.d - TWO(52)*TWO32;
288 x2 = in2.d - TWO(52)*TWO64;
289 x3 = in3.d - TWO(52)*TWO96;
290
291 x0 += h0lo;
292 x1 += h1lo;
293 x2 += h2lo;
294 x3 += h3lo;
295
296 goto fast_entry;
297#endif
298
299 do {
300 in0.u = EXP(52+0) | U8TOU32(&inp[0]);
301 in1.u = EXP(52+32) | U8TOU32(&inp[4]);
302 in2.u = EXP(52+64) | U8TOU32(&inp[8]);
303 in3.u = EXP(52+96) | U8TOU32(&inp[12]) | pad;
304
305 x0 = in0.d - TWO(52)*TWO0;
306 x1 = in1.d - TWO(52)*TWO32;
307 x2 = in2.d - TWO(52)*TWO64;
308 x3 = in3.d - TWO(52)*TWO96;
309
310 /*
311 * note that there are multiple ways to accumulate input, e.g.
312 * one can as well accumulate to h0lo-h1lo-h1hi-h2hi...
313 */
314 h0lo += x0;
315 h0hi += x1;
316 h2lo += x2;
317 h2hi += x3;
318
319 /*
320 * carries that cross 32n-bit (and 130-bit) boundaries
321 */
322 c0lo = (h0lo + TWO(52)*TWO32) - TWO(52)*TWO32;
323 c1lo = (h1lo + TWO(52)*TWO64) - TWO(52)*TWO64;
324 c2lo = (h2lo + TWO(52)*TWO96) - TWO(52)*TWO96;
325 c3lo = (h3lo + TWO(52)*TWO130) - TWO(52)*TWO130;
326
327 c0hi = (h0hi + TWO(52)*TWO32) - TWO(52)*TWO32;
328 c1hi = (h1hi + TWO(52)*TWO64) - TWO(52)*TWO64;
329 c2hi = (h2hi + TWO(52)*TWO96) - TWO(52)*TWO96;
330 c3hi = (h3hi + TWO(52)*TWO130) - TWO(52)*TWO130;
331
332 /*
333 * base 2^48 -> base 2^32 with last reduction step
334 */
335 x1 = (h1lo - c1lo) + c0lo;
336 x2 = (h2lo - c2lo) + c1lo;
337 x3 = (h3lo - c3lo) + c2lo;
338 x0 = (h0lo - c0lo) + c3lo * (5.0/TWO130);
339
340 x1 += (h1hi - c1hi) + c0hi;
341 x2 += (h2hi - c2hi) + c1hi;
342 x3 += (h3hi - c3hi) + c2hi;
343 x0 += (h0hi - c0hi) + c3hi * (5.0/TWO130);
344
345#ifndef __clang__
346 fast_entry:
347#endif
348 /*
349 * base 2^32 * base 2^16 = base 2^48
350 */
351 h0lo = s3lo * x1 + s2lo * x2 + s1lo * x3 + r0lo * x0;
352 h1lo = r0lo * x1 + s3lo * x2 + s2lo * x3 + r1lo * x0;
353 h2lo = r1lo * x1 + r0lo * x2 + s3lo * x3 + r2lo * x0;
354 h3lo = r2lo * x1 + r1lo * x2 + r0lo * x3 + r3lo * x0;
355
356 h0hi = s3hi * x1 + s2hi * x2 + s1hi * x3 + r0hi * x0;
357 h1hi = r0hi * x1 + s3hi * x2 + s2hi * x3 + r1hi * x0;
358 h2hi = r1hi * x1 + r0hi * x2 + s3hi * x3 + r2hi * x0;
359 h3hi = r2hi * x1 + r1hi * x2 + r0hi * x3 + r3hi * x0;
360
361 inp += 16;
362 len -= 16;
363
364 } while (len >= 16);
365
366 /*
367 * carries that cross 32n-bit (and 130-bit) boundaries
368 */
369 c0lo = (h0lo + TWO(52)*TWO32) - TWO(52)*TWO32;
370 c1lo = (h1lo + TWO(52)*TWO64) - TWO(52)*TWO64;
371 c2lo = (h2lo + TWO(52)*TWO96) - TWO(52)*TWO96;
372 c3lo = (h3lo + TWO(52)*TWO130) - TWO(52)*TWO130;
373
374 c0hi = (h0hi + TWO(52)*TWO32) - TWO(52)*TWO32;
375 c1hi = (h1hi + TWO(52)*TWO64) - TWO(52)*TWO64;
376 c2hi = (h2hi + TWO(52)*TWO96) - TWO(52)*TWO96;
377 c3hi = (h3hi + TWO(52)*TWO130) - TWO(52)*TWO130;
378
379 /*
380 * base 2^48 -> base 2^32 with last reduction step
381 */
382 x1 = (h1lo - c1lo) + c0lo;
383 x2 = (h2lo - c2lo) + c1lo;
384 x3 = (h3lo - c3lo) + c2lo;
385 x0 = (h0lo - c0lo) + c3lo * (5.0/TWO130);
386
387 x1 += (h1hi - c1hi) + c0hi;
388 x2 += (h2hi - c2hi) + c1hi;
389 x3 += (h3hi - c3hi) + c2hi;
390 x0 += (h0hi - c0hi) + c3hi * (5.0/TWO130);
391
392 /*
393 * store base 2^32, with bias
394 */
395 st->h[1].d = x1 + TWO(52)*TWO32;
396 st->h[2].d = x2 + TWO(52)*TWO64;
397 st->h[3].d = x3 + TWO(52)*TWO96;
398 st->h[0].d = x0 + TWO(52)*TWO0;
399
400 /*
401 * restore original FPU control register
402 */
403#if defined(__x86_64__)
404 asm volatile ("ldmxcsr %0"::"m"(mxcsr_orig));
405#elif defined(__PPC__)
406 asm volatile ("mtfsf 255,%0"::"f"(fpscr_orig));
407#elif defined(__s390x__)
408 asm volatile ("lfpc %0"::"m"(fpc_orig));
409#elif defined(__sparc__)
410 asm volatile ("ldx %0,%%fsr"::"m"(fsr_orig));
411#endif
412}
413
414void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4])
415{
416 poly1305_internal *st = (poly1305_internal *) ctx;
417 u64 h0, h1, h2, h3, h4;
418 u32 g0, g1, g2, g3, g4;
419 u64 t;
420 u32 mask;
421
422 /*
423 * thanks to bias masking exponent gives integer result
424 */
425 h0 = st->h[0].u & 0x000fffffffffffffULL;
426 h1 = st->h[1].u & 0x000fffffffffffffULL;
427 h2 = st->h[2].u & 0x000fffffffffffffULL;
428 h3 = st->h[3].u & 0x000fffffffffffffULL;
429
430 /*
431 * can be partially reduced, so reduce...
432 */
433 h4 = h3>>32; h3 &= 0xffffffffU;
434 g4 = h4&-4;
435 h4 &= 3;
436 g4 += g4>>2;
437
438 h0 += g4;
439 h1 += h0>>32; h0 &= 0xffffffffU;
440 h2 += h1>>32; h1 &= 0xffffffffU;
441 h3 += h2>>32; h2 &= 0xffffffffU;
442
443 /* compute h + -p */
444 g0 = (u32)(t = h0 + 5);
445 g1 = (u32)(t = h1 + (t >> 32));
446 g2 = (u32)(t = h2 + (t >> 32));
447 g3 = (u32)(t = h3 + (t >> 32));
448 g4 = h4 + (u32)(t >> 32);
449
450 /* if there was carry, select g0-g3 */
451 mask = 0 - (g4 >> 2);
452 g0 &= mask;
453 g1 &= mask;
454 g2 &= mask;
455 g3 &= mask;
456 mask = ~mask;
457 g0 |= (h0 & mask);
458 g1 |= (h1 & mask);
459 g2 |= (h2 & mask);
460 g3 |= (h3 & mask);
461
462 /* mac = (h + nonce) % (2^128) */
463 g0 = (u32)(t = (u64)g0 + nonce[0]);
464 g1 = (u32)(t = (u64)g1 + (t >> 32) + nonce[1]);
465 g2 = (u32)(t = (u64)g2 + (t >> 32) + nonce[2]);
466 g3 = (u32)(t = (u64)g3 + (t >> 32) + nonce[3]);
467
468 U32TO8(mac + 0, g0);
469 U32TO8(mac + 4, g1);
470 U32TO8(mac + 8, g2);
471 U32TO8(mac + 12, g3);
472}