]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/rc4/asm/rc4-x86_64.pl
Add some missing cfi frame info in rc4-md5-x86_64.pl
[thirdparty/openssl.git] / crypto / rc4 / asm / rc4-x86_64.pl
CommitLineData
6aa36e8e
RS
1#! /usr/bin/env perl
2# Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
5e4435a7 4# Licensed under the Apache License 2.0 (the "License"). You may not use
6aa36e8e
RS
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
5f1841cd
AP
9#
10# ====================================================================
e3713c36 11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
20c04a13
AP
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
5f1841cd
AP
15# ====================================================================
16#
0ca9a483
AP
17# July 2004
18#
5f1841cd
AP
19# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
20# "hand-coded assembler"] doesn't stand for the whole improvement
21# coefficient. It turned out that eliminating RC4_CHAR from config
22# line results in ~40% improvement (yes, even for C implementation).
23# Presumably it has everything to do with AMD cache architecture and
24# RAW or whatever penalties. Once again! The module *requires* config
25# line *without* RC4_CHAR! As for coding "secret," I bet on partial
26# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
27# I simply 'inc %r8b'. Even though optimization manual discourages
28# to operate on partial registers, it turned out to be the best bet.
29# At least for AMD... How IA32E would perform remains to be seen...
30
0ca9a483
AP
31# November 2004
32#
5f1841cd
AP
33# As was shown by Marc Bevand reordering of couple of load operations
34# results in even higher performance gain of 3.3x:-) At least on
35# Opteron... For reference, 1x in this case is RC4_CHAR C-code
36# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
37# Latter means that if you want to *estimate* what to expect from
38# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
39
0ca9a483
AP
40# November 2004
41#
5f1841cd
AP
42# Intel P4 EM64T core was found to run the AMD64 code really slow...
43# The only way to achieve comparable performance on P4 was to keep
44# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
45# compose blended code, which would perform even within 30% marginal
46# on either AMD and Intel platforms, I implement both cases. See
47# rc4_skey.c for further details...
48
0ca9a483
AP
49# April 2005
50#
609b0852 51# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
5f1841cd
AP
52# those with add/sub results in 50% performance improvement of folded
53# loop...
54
0ca9a483
AP
55# May 2005
56#
5f1841cd
AP
57# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
58# performance by >30% [unlike P4 32-bit case that is]. But this is
59# provided that loads are reordered even more aggressively! Both code
60250017 60# paths, AMD64 and EM64T, reorder loads in essentially same manner
5f1841cd
AP
61# as my IA-64 implementation. On Opteron this resulted in modest 5%
62# improvement [I had to test it], while final Intel P4 performance
63# achieves respectful 432MBps on 2.8GHz processor now. For reference.
64# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
64790791 65# RC4_INT code-path. While if executed on Opteron, it's only 25%
053fa39a 66# slower than the RC4_INT one [meaning that if CPU ยต-arch detection
0ee88365
AP
67# is not implemented, then this final RC4_CHAR code-path should be
68# preferred, as it provides better *all-round* performance].
5f1841cd 69
0ca9a483
AP
70# March 2007
71#
9babf392
AP
72# Intel Core2 was observed to perform poorly on both code paths:-( It
73# apparently suffers from some kind of partial register stall, which
74# occurs in 64-bit mode only [as virtually identical 32-bit loop was
75# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
76# cloop1 boosts its performance by 80%! This loop appears to be optimal
77# fit for Core2 and therefore the code was modified to skip cloop8 on
78# this CPU.
79
0ca9a483
AP
80# May 2010
81#
629fd3aa
AP
82# Intel Westmere was observed to perform suboptimally. Adding yet
83# another movzb to cloop1 improved performance by almost 50%! Core2
84# performance is improved too, but nominally...
85
0ca9a483
AP
86# May 2011
87#
f44cb15f
AP
88# The only code path that was not modified is P4-specific one. Non-P4
89# Intel code path optimization is heavily based on submission by Maxim
90# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
46f4e1be 91# some of the ideas even in attempt to optimize the original RC4_INT
f44cb15f
AP
92# code path... Current performance in cycles per processed byte (less
93# is better) and improvement coefficients relative to previous
94# version of this module are:
0ca9a483 95#
0772f3b4 96# Opteron 5.3/+0%(*)
0ca9a483 97# P4 6.5
0772f3b4 98# Core2 6.2/+15%(**)
0ca9a483
AP
99# Westmere 4.2/+60%
100# Sandy Bridge 4.2/+120%
101# Atom 9.3/+80%
d2e18031
AP
102# VIA Nano 6.4/+4%
103# Ivy Bridge 4.1/+30%
104# Bulldozer 4.5/+30%(*)
0ca9a483 105#
0772f3b4
AP
106# (*) But corresponding loop has less instructions, which should have
107# positive effect on upcoming Bulldozer, which has one less ALU.
108# For reference, Intel code runs at 6.8 cpb rate on Opteron.
109# (**) Note that Core2 result is ~15% lower than corresponding result
f44cb15f
AP
110# for 32-bit code, meaning that it's possible to improve it,
111# but more than likely at the cost of the others (see rc4-586.pl
112# to get the idea)...
0ca9a483 113
1aa89a7a
RL
114# $output is the last argument if it looks like a file (it has an extension)
115# $flavour is the first argument if it doesn't look like a file
116$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
117$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
be01f79d
AP
118
119$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
20c04a13
AP
120
121$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
122( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
123( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
124die "can't locate x86_64-xlate.pl";
125
1aa89a7a
RL
126open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
127 or die "can't call $xlate: $!";
46bf83f0 128*STDOUT=*OUT;
5f1841cd
AP
129
130$dat="%rdi"; # arg1
131$len="%rsi"; # arg2
132$inp="%rdx"; # arg3
133$out="%rcx"; # arg4
134
0ca9a483 135{
5f1841cd
AP
136$code=<<___;
137.text
fe9a5107 138.extern OPENSSL_ia32cap_P
5f1841cd
AP
139
140.globl RC4
141.type RC4,\@function,4
142.align 16
143RC4: or $len,$len
144 jne .Lentry
145 ret
146.Lentry:
2dfb52d3 147.cfi_startproc
75d448dd 148 push %rbx
2dfb52d3 149.cfi_push %rbx
5f1841cd 150 push %r12
2dfb52d3 151.cfi_push %r12
5f1841cd 152 push %r13
2dfb52d3 153.cfi_push %r13
be01f79d 154.Lprologue:
0ca9a483
AP
155 mov $len,%r11
156 mov $inp,%r12
157 mov $out,%r13
158___
159my $len="%r11"; # reassign input arguments
160my $inp="%r12";
161my $out="%r13";
162
163my @XX=("%r10","%rsi");
164my @TX=("%rax","%rbx");
165my $YY="%rcx";
166my $TY="%rdx";
5f1841cd 167
0ca9a483
AP
168$code.=<<___;
169 xor $XX[0],$XX[0]
170 xor $YY,$YY
171
172 lea 8($dat),$dat
173 mov -8($dat),$XX[0]#b
174 mov -4($dat),$YY#b
5f1841cd
AP
175 cmpl \$-1,256($dat)
176 je .LRC4_CHAR
0ca9a483
AP
177 mov OPENSSL_ia32cap_P(%rip),%r8d
178 xor $TX[1],$TX[1]
5f1841cd 179 inc $XX[0]#b
0ca9a483
AP
180 sub $XX[0],$TX[1]
181 sub $inp,$out
5f1841cd 182 movl ($dat,$XX[0],4),$TX[0]#d
0ca9a483 183 test \$-16,$len
5f1841cd 184 jz .Lloop1
4bb90087
AP
185 bt \$30,%r8d # Intel CPU?
186 jc .Lintel
0ca9a483
AP
187 and \$7,$TX[1]
188 lea 1($XX[0]),$XX[1]
189 jz .Loop8
190 sub $TX[1],$len
191.Loop8_warmup:
192 add $TX[0]#b,$YY#b
193 movl ($dat,$YY,4),$TY#d
194 movl $TX[0]#d,($dat,$YY,4)
195 movl $TY#d,($dat,$XX[0],4)
196 add $TY#b,$TX[0]#b
197 inc $XX[0]#b
198 movl ($dat,$TX[0],4),$TY#d
199 movl ($dat,$XX[0],4),$TX[0]#d
200 xorb ($inp),$TY#b
201 movb $TY#b,($out,$inp)
202 lea 1($inp),$inp
203 dec $TX[1]
204 jnz .Loop8_warmup
205
206 lea 1($XX[0]),$XX[1]
207 jmp .Loop8
5f1841cd 208.align 16
0ca9a483 209.Loop8:
5f1841cd
AP
210___
211for ($i=0;$i<8;$i++) {
0ca9a483
AP
212$code.=<<___ if ($i==7);
213 add \$8,$XX[1]#b
214___
5f1841cd
AP
215$code.=<<___;
216 add $TX[0]#b,$YY#b
5f1841cd 217 movl ($dat,$YY,4),$TY#d
5f1841cd 218 movl $TX[0]#d,($dat,$YY,4)
0ca9a483
AP
219 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
220 ror \$8,%r8 # ror is redundant when $i=0
221 movl $TY#d,4*$i($dat,$XX[0],4)
5f1841cd 222 add $TX[0]#b,$TY#b
0ca9a483 223 movb ($dat,$TY,4),%r8b
5f1841cd 224___
0ca9a483 225push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
5f1841cd
AP
226}
227$code.=<<___;
0ca9a483
AP
228 add \$8,$XX[0]#b
229 ror \$8,%r8
5f1841cd
AP
230 sub \$8,$len
231
0ca9a483
AP
232 xor ($inp),%r8
233 mov %r8,($out,$inp)
234 lea 8($inp),$inp
5f1841cd
AP
235
236 test \$-8,$len
0ca9a483
AP
237 jnz .Loop8
238 cmp \$0,$len
239 jne .Lloop1
240 jmp .Lexit
241
242.align 16
4bb90087 243.Lintel:
0ca9a483
AP
244 test \$-32,$len
245 jz .Lloop1
246 and \$15,$TX[1]
247 jz .Loop16_is_hot
248 sub $TX[1],$len
249.Loop16_warmup:
250 add $TX[0]#b,$YY#b
251 movl ($dat,$YY,4),$TY#d
252 movl $TX[0]#d,($dat,$YY,4)
253 movl $TY#d,($dat,$XX[0],4)
254 add $TY#b,$TX[0]#b
255 inc $XX[0]#b
256 movl ($dat,$TX[0],4),$TY#d
257 movl ($dat,$XX[0],4),$TX[0]#d
258 xorb ($inp),$TY#b
259 movb $TY#b,($out,$inp)
260 lea 1($inp),$inp
261 dec $TX[1]
262 jnz .Loop16_warmup
263
264 mov $YY,$TX[1]
265 xor $YY,$YY
266 mov $TX[1]#b,$YY#b
267
268.Loop16_is_hot:
269 lea ($dat,$XX[0],4),$XX[1]
270___
271sub RC4_loop {
272 my $i=shift;
273 my $j=$i<0?0:$i;
274 my $xmm="%xmm".($j&1);
275
276 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
277 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
278 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
279 $code.=" movl ($dat,$YY,4),$TY#d\n";
280 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
281 $code.=" psllq \$8,%xmm1\n" if ($i==0);
282 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
283 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
284 $code.=" add $TY#b,$TX[0]#b\n";
285 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
286 $code.=" movz $TX[0]#b,$TX[0]#d\n";
287 $code.=" movl $TY#d,4*$j($XX[1])\n";
288 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
289 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
290 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
291 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
292 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
293 $code.=" lea 16($inp),$inp\n" if ($i==0);
294 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
295}
296 RC4_loop(-1);
297$code.=<<___;
298 jmp .Loop16_enter
299.align 16
300.Loop16:
301___
302
303for ($i=0;$i<16;$i++) {
304 $code.=".Loop16_enter:\n" if ($i==1);
305 RC4_loop($i);
306 push(@TX,shift(@TX)); # "rotate" registers
307}
308$code.=<<___;
309 mov $YY,$TX[1]
310 xor $YY,$YY # keyword to partial register
311 sub \$16,$len
312 mov $TX[1]#b,$YY#b
313 test \$-16,$len
314 jnz .Loop16
315
316 psllq \$8,%xmm1
317 pxor %xmm0,%xmm2
318 pxor %xmm1,%xmm2
319 movdqu %xmm2,($out,$inp)
320 lea 16($inp),$inp
321
5f1841cd
AP
322 cmp \$0,$len
323 jne .Lloop1
be01f79d 324 jmp .Lexit
5f1841cd 325
5f1841cd
AP
326.align 16
327.Lloop1:
328 add $TX[0]#b,$YY#b
329 movl ($dat,$YY,4),$TY#d
330 movl $TX[0]#d,($dat,$YY,4)
331 movl $TY#d,($dat,$XX[0],4)
332 add $TY#b,$TX[0]#b
333 inc $XX[0]#b
334 movl ($dat,$TX[0],4),$TY#d
335 movl ($dat,$XX[0],4),$TX[0]#d
336 xorb ($inp),$TY#b
0ca9a483
AP
337 movb $TY#b,($out,$inp)
338 lea 1($inp),$inp
5f1841cd
AP
339 dec $len
340 jnz .Lloop1
341 jmp .Lexit
342
343.align 16
344.LRC4_CHAR:
345 add \$1,$XX[0]#b
346 movzb ($dat,$XX[0]),$TX[0]#d
347 test \$-8,$len
348 jz .Lcloop1
5f1841cd
AP
349 jmp .Lcloop8
350.align 16
351.Lcloop8:
0ca9a483
AP
352 mov ($inp),%r8d
353 mov 4($inp),%r9d
5f1841cd
AP
354___
355# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
356for ($i=0;$i<4;$i++) {
357$code.=<<___;
358 add $TX[0]#b,$YY#b
359 lea 1($XX[0]),$XX[1]
360 movzb ($dat,$YY),$TY#d
361 movzb $XX[1]#b,$XX[1]#d
362 movzb ($dat,$XX[1]),$TX[1]#d
363 movb $TX[0]#b,($dat,$YY)
364 cmp $XX[1],$YY
365 movb $TY#b,($dat,$XX[0])
366 jne .Lcmov$i # Intel cmov is sloooow...
367 mov $TX[0],$TX[1]
368.Lcmov$i:
369 add $TX[0]#b,$TY#b
0ca9a483
AP
370 xor ($dat,$TY),%r8b
371 ror \$8,%r8d
5f1841cd
AP
372___
373push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
374}
375for ($i=4;$i<8;$i++) {
376$code.=<<___;
377 add $TX[0]#b,$YY#b
378 lea 1($XX[0]),$XX[1]
379 movzb ($dat,$YY),$TY#d
0ee88365 380 movzb $XX[1]#b,$XX[1]#d
5f1841cd
AP
381 movzb ($dat,$XX[1]),$TX[1]#d
382 movb $TX[0]#b,($dat,$YY)
383 cmp $XX[1],$YY
384 movb $TY#b,($dat,$XX[0])
385 jne .Lcmov$i # Intel cmov is sloooow...
386 mov $TX[0],$TX[1]
387.Lcmov$i:
388 add $TX[0]#b,$TY#b
0ca9a483
AP
389 xor ($dat,$TY),%r9b
390 ror \$8,%r9d
5f1841cd
AP
391___
392push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
393}
394$code.=<<___;
395 lea -8($len),$len
0ca9a483 396 mov %r8d,($out)
5f1841cd 397 lea 8($inp),$inp
0ca9a483 398 mov %r9d,4($out)
5f1841cd
AP
399 lea 8($out),$out
400
401 test \$-8,$len
402 jnz .Lcloop8
5f1841cd
AP
403 cmp \$0,$len
404 jne .Lcloop1
405 jmp .Lexit
406___
407$code.=<<___;
408.align 16
409.Lcloop1:
410 add $TX[0]#b,$YY#b
629fd3aa 411 movzb $YY#b,$YY#d
5f1841cd
AP
412 movzb ($dat,$YY),$TY#d
413 movb $TX[0]#b,($dat,$YY)
414 movb $TY#b,($dat,$XX[0])
415 add $TX[0]#b,$TY#b
416 add \$1,$XX[0]#b
de504945
AP
417 movzb $TY#b,$TY#d
418 movzb $XX[0]#b,$XX[0]#d
5f1841cd
AP
419 movzb ($dat,$TY),$TY#d
420 movzb ($dat,$XX[0]),$TX[0]#d
421 xorb ($inp),$TY#b
422 lea 1($inp),$inp
423 movb $TY#b,($out)
424 lea 1($out),$out
425 sub \$1,$len
426 jnz .Lcloop1
427 jmp .Lexit
be01f79d
AP
428
429.align 16
430.Lexit:
431 sub \$1,$XX[0]#b
432 movl $XX[0]#d,-8($dat)
433 movl $YY#d,-4($dat)
434
75d448dd 435 mov (%rsp),%r13
2dfb52d3 436.cfi_restore %r13
75d448dd 437 mov 8(%rsp),%r12
2dfb52d3 438.cfi_restore %r12
75d448dd 439 mov 16(%rsp),%rbx
2dfb52d3 440.cfi_restore %rbx
be01f79d 441 add \$24,%rsp
2dfb52d3 442.cfi_adjust_cfa_offset -24
be01f79d
AP
443.Lepilogue:
444 ret
2dfb52d3 445.cfi_endproc
5f1841cd
AP
446.size RC4,.-RC4
447___
0ca9a483 448}
5f1841cd 449
9babf392
AP
450$idx="%r8";
451$ido="%r9";
452
453$code.=<<___;
9babf392
AP
454.globl RC4_set_key
455.type RC4_set_key,\@function,3
456.align 16
457RC4_set_key:
b2a00f62 458.cfi_startproc
9babf392
AP
459 lea 8($dat),$dat
460 lea ($inp,$len),$inp
461 neg $len
462 mov $len,%rcx
463 xor %eax,%eax
464 xor $ido,$ido
465 xor %r10,%r10
466 xor %r11,%r11
467
468 mov OPENSSL_ia32cap_P(%rip),$idx#d
4bb90087
AP
469 bt \$20,$idx#d # RC4_CHAR?
470 jc .Lc1stloop
0ca9a483 471 jmp .Lw1stloop
9babf392
AP
472
473.align 16
474.Lw1stloop:
475 mov %eax,($dat,%rax,4)
476 add \$1,%al
477 jnc .Lw1stloop
478
479 xor $ido,$ido
480 xor $idx,$idx
481.align 16
482.Lw2ndloop:
483 mov ($dat,$ido,4),%r10d
484 add ($inp,$len,1),$idx#b
485 add %r10b,$idx#b
486 add \$1,$len
487 mov ($dat,$idx,4),%r11d
488 cmovz %rcx,$len
489 mov %r10d,($dat,$idx,4)
490 mov %r11d,($dat,$ido,4)
491 add \$1,$ido#b
492 jnc .Lw2ndloop
493 jmp .Lexit_key
494
495.align 16
496.Lc1stloop:
497 mov %al,($dat,%rax)
498 add \$1,%al
499 jnc .Lc1stloop
500
501 xor $ido,$ido
502 xor $idx,$idx
503.align 16
504.Lc2ndloop:
505 mov ($dat,$ido),%r10b
506 add ($inp,$len),$idx#b
507 add %r10b,$idx#b
508 add \$1,$len
509 mov ($dat,$idx),%r11b
510 jnz .Lcnowrap
511 mov %rcx,$len
512.Lcnowrap:
513 mov %r10b,($dat,$idx)
514 mov %r11b,($dat,$ido)
515 add \$1,$ido#b
516 jnc .Lc2ndloop
517 movl \$-1,256($dat)
518
519.align 16
520.Lexit_key:
521 xor %eax,%eax
522 mov %eax,-8($dat)
523 mov %eax,-4($dat)
524 ret
b2a00f62 525.cfi_endproc
9babf392
AP
526.size RC4_set_key,.-RC4_set_key
527
528.globl RC4_options
be01f79d 529.type RC4_options,\@abi-omnipotent
9babf392
AP
530.align 16
531RC4_options:
aa8f38e4 532 lea .Lopts(%rip),%rax
9babf392
AP
533 mov OPENSSL_ia32cap_P(%rip),%edx
534 bt \$20,%edx
98628960 535 jc .L8xchar
9babf392
AP
536 bt \$30,%edx
537 jnc .Ldone
98628960
AP
538 add \$25,%rax
539 ret
540.L8xchar:
541 add \$12,%rax
9babf392
AP
542.Ldone:
543 ret
544.align 64
545.Lopts:
546.asciz "rc4(8x,int)"
547.asciz "rc4(8x,char)"
0ca9a483 548.asciz "rc4(16x,int)"
20c04a13 549.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
9babf392
AP
550.align 64
551.size RC4_options,.-RC4_options
552___
553
be01f79d
AP
554# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
555# CONTEXT *context,DISPATCHER_CONTEXT *disp)
556if ($win64) {
557$rec="%rcx";
558$frame="%rdx";
559$context="%r8";
560$disp="%r9";
561
562$code.=<<___;
563.extern __imp_RtlVirtualUnwind
564.type stream_se_handler,\@abi-omnipotent
565.align 16
566stream_se_handler:
567 push %rsi
568 push %rdi
569 push %rbx
570 push %rbp
571 push %r12
572 push %r13
573 push %r14
574 push %r15
575 pushfq
576 sub \$64,%rsp
577
578 mov 120($context),%rax # pull context->Rax
579 mov 248($context),%rbx # pull context->Rip
580
581 lea .Lprologue(%rip),%r10
582 cmp %r10,%rbx # context->Rip<prologue label
583 jb .Lin_prologue
584
585 mov 152($context),%rax # pull context->Rsp
586
587 lea .Lepilogue(%rip),%r10
75d448dd 588 cmp %r10,%rbx # context->Rip>=epilogue label
be01f79d
AP
589 jae .Lin_prologue
590
591 lea 24(%rax),%rax
592
75d448dd
AP
593 mov -8(%rax),%rbx
594 mov -16(%rax),%r12
595 mov -24(%rax),%r13
596 mov %rbx,144($context) # restore context->Rbx
be01f79d
AP
597 mov %r12,216($context) # restore context->R12
598 mov %r13,224($context) # restore context->R13
599
600.Lin_prologue:
601 mov 8(%rax),%rdi
602 mov 16(%rax),%rsi
603 mov %rax,152($context) # restore context->Rsp
604 mov %rsi,168($context) # restore context->Rsi
605 mov %rdi,176($context) # restore context->Rdi
606
607 jmp .Lcommon_seh_exit
608.size stream_se_handler,.-stream_se_handler
609
610.type key_se_handler,\@abi-omnipotent
611.align 16
612key_se_handler:
613 push %rsi
614 push %rdi
615 push %rbx
616 push %rbp
617 push %r12
618 push %r13
619 push %r14
620 push %r15
621 pushfq
622 sub \$64,%rsp
623
624 mov 152($context),%rax # pull context->Rsp
625 mov 8(%rax),%rdi
626 mov 16(%rax),%rsi
627 mov %rsi,168($context) # restore context->Rsi
628 mov %rdi,176($context) # restore context->Rdi
629
630.Lcommon_seh_exit:
631
632 mov 40($disp),%rdi # disp->ContextRecord
633 mov $context,%rsi # context
634 mov \$154,%ecx # sizeof(CONTEXT)
635 .long 0xa548f3fc # cld; rep movsq
636
637 mov $disp,%rsi
638 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
639 mov 8(%rsi),%rdx # arg2, disp->ImageBase
640 mov 0(%rsi),%r8 # arg3, disp->ControlPc
641 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
642 mov 40(%rsi),%r10 # disp->ContextRecord
643 lea 56(%rsi),%r11 # &disp->HandlerData
644 lea 24(%rsi),%r12 # &disp->EstablisherFrame
645 mov %r10,32(%rsp) # arg5
646 mov %r11,40(%rsp) # arg6
647 mov %r12,48(%rsp) # arg7
648 mov %rcx,56(%rsp) # arg8, (NULL)
649 call *__imp_RtlVirtualUnwind(%rip)
650
651 mov \$1,%eax # ExceptionContinueSearch
652 add \$64,%rsp
653 popfq
654 pop %r15
655 pop %r14
656 pop %r13
657 pop %r12
658 pop %rbp
659 pop %rbx
660 pop %rdi
661 pop %rsi
662 ret
663.size key_se_handler,.-key_se_handler
664
665.section .pdata
666.align 4
667 .rva .LSEH_begin_RC4
668 .rva .LSEH_end_RC4
669 .rva .LSEH_info_RC4
670
671 .rva .LSEH_begin_RC4_set_key
672 .rva .LSEH_end_RC4_set_key
673 .rva .LSEH_info_RC4_set_key
674
675.section .xdata
676.align 8
677.LSEH_info_RC4:
678 .byte 9,0,0,0
679 .rva stream_se_handler
680.LSEH_info_RC4_set_key:
681 .byte 9,0,0,0
682 .rva key_se_handler
683___
684}
685
0ca9a483
AP
686sub reg_part {
687my ($reg,$conv)=@_;
688 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
689 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
690 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
691 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
692 return $reg;
693}
694
695$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
696$code =~ s/\`([^\`]*)\`/eval $1/gem;
5f1841cd
AP
697
698print $code;
699
700close STDOUT;