]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/threads_win.c
Raise an error on syscall failure in tls_retry_write_records
[thirdparty/openssl.git] / crypto / threads_win.c
CommitLineData
aa6bb135 1/*
b6461792 2 * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
71a04cfc 3 *
0e9725bc 4 * Licensed under the Apache License 2.0 (the "License"). You may not use
aa6bb135
RS
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
71a04cfc
AG
8 */
9
f1f5ee17
AP
10#if defined(_WIN32)
11# include <windows.h>
f70863d9 12# if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x600
f70863d9
VD
13# define USE_RWLOCK
14# endif
f1f5ee17 15#endif
d0e1a0ae 16#include <assert.h>
f1f5ee17 17
2d46a44f
DN
18/*
19 * VC++ 2008 or earlier x86 compilers do not have an inline implementation
20 * of InterlockedOr64 for 32bit and will fail to run on Windows XP 32bit.
21 * https://docs.microsoft.com/en-us/cpp/intrinsics/interlockedor-intrinsic-functions#requirements
22 * To work around this problem, we implement a manual locking mechanism for
23 * only VC++ 2008 or earlier x86 compilers.
24 */
25
8bdc3708 26#if (defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER <= 1600)
2d46a44f
DN
27# define NO_INTERLOCKEDOR64
28#endif
29
71a04cfc 30#include <openssl/crypto.h>
d0e1a0ae
NH
31#include <crypto/cryptlib.h>
32#include "internal/common.h"
33#include "internal/thread_arch.h"
34#include "internal/rcu.h"
35#include "rcu_internal.h"
71a04cfc
AG
36
37#if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && defined(OPENSSL_SYS_WINDOWS)
38
f70863d9
VD
39# ifdef USE_RWLOCK
40typedef struct {
41 SRWLOCK lock;
42 int exclusive;
43} CRYPTO_win_rwlock;
44# endif
45
d0e1a0ae
NH
46# define READER_SHIFT 0
47# define ID_SHIFT 32
48# define READER_SIZE 32
49# define ID_SIZE 32
50
51# define READER_MASK (((LONG64)1 << READER_SIZE)-1)
52# define ID_MASK (((LONG64)1 << ID_SIZE)-1)
53# define READER_COUNT(x) (((LONG64)(x) >> READER_SHIFT) & READER_MASK)
54# define ID_VAL(x) (((LONG64)(x) >> ID_SHIFT) & ID_MASK)
55# define VAL_READER ((LONG64)1 << READER_SHIFT)
56# define VAL_ID(x) ((LONG64)x << ID_SHIFT)
57
58/*
59 * This defines a quescent point (qp)
60 * This is the barrier beyond which a writer
61 * must wait before freeing data that was
62 * atomically updated
63 */
64struct rcu_qp {
65 volatile LONG64 users;
66};
67
68struct thread_qp {
69 struct rcu_qp *qp;
70 unsigned int depth;
71 CRYPTO_RCU_LOCK *lock;
72};
73
74#define MAX_QPS 10
75/*
76 * This is the per thread tracking data
77 * that is assigned to each thread participating
78 * in an rcu qp
79 *
80 * qp points to the qp that it last acquired
81 *
82 */
83struct rcu_thr_data {
84 struct thread_qp thread_qps[MAX_QPS];
85};
86
87/*
88 * This is the internal version of a CRYPTO_RCU_LOCK
89 * it is cast from CRYPTO_RCU_LOCK
90 */
91struct rcu_lock_st {
92 struct rcu_cb_item *cb_items;
24d16d3a 93 OSSL_LIB_CTX *ctx;
d0e1a0ae
NH
94 uint32_t id_ctr;
95 struct rcu_qp *qp_group;
96 size_t group_count;
97 uint32_t next_to_retire;
98 volatile long int reader_idx;
99 uint32_t current_alloc_idx;
100 uint32_t writers_alloced;
101 CRYPTO_MUTEX *write_lock;
102 CRYPTO_MUTEX *alloc_lock;
103 CRYPTO_CONDVAR *alloc_signal;
104 CRYPTO_MUTEX *prior_lock;
105 CRYPTO_CONDVAR *prior_signal;
106};
107
d0e1a0ae
NH
108static struct rcu_qp *allocate_new_qp_group(struct rcu_lock_st *lock,
109 int count)
110{
111 struct rcu_qp *new =
112 OPENSSL_zalloc(sizeof(*new) * count);
113
114 lock->group_count = count;
115 return new;
116}
117
24d16d3a 118CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
d0e1a0ae
NH
119{
120 struct rcu_lock_st *new;
121
d0e1a0ae
NH
122 if (num_writers < 1)
123 num_writers = 1;
124
24d16d3a
NH
125 ctx = ossl_lib_ctx_get_concrete(ctx);
126 if (ctx == NULL)
127 return 0;
128
d0e1a0ae
NH
129 new = OPENSSL_zalloc(sizeof(*new));
130
131 if (new == NULL)
132 return NULL;
133
24d16d3a 134 new->ctx = ctx;
d0e1a0ae
NH
135 new->write_lock = ossl_crypto_mutex_new();
136 new->alloc_signal = ossl_crypto_condvar_new();
137 new->prior_signal = ossl_crypto_condvar_new();
138 new->alloc_lock = ossl_crypto_mutex_new();
139 new->prior_lock = ossl_crypto_mutex_new();
d0e1a0ae
NH
140 new->qp_group = allocate_new_qp_group(new, num_writers + 1);
141 if (new->qp_group == NULL
142 || new->alloc_signal == NULL
143 || new->prior_signal == NULL
144 || new->write_lock == NULL
145 || new->alloc_lock == NULL
146 || new->prior_lock == NULL) {
147 OPENSSL_free(new->qp_group);
148 ossl_crypto_condvar_free(&new->alloc_signal);
149 ossl_crypto_condvar_free(&new->prior_signal);
150 ossl_crypto_mutex_free(&new->alloc_lock);
151 ossl_crypto_mutex_free(&new->prior_lock);
152 ossl_crypto_mutex_free(&new->write_lock);
153 OPENSSL_free(new);
154 new = NULL;
155 }
156 return new;
157
158}
159
160void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
161{
162 OPENSSL_free(lock->qp_group);
163 ossl_crypto_condvar_free(&lock->alloc_signal);
164 ossl_crypto_condvar_free(&lock->prior_signal);
165 ossl_crypto_mutex_free(&lock->alloc_lock);
166 ossl_crypto_mutex_free(&lock->prior_lock);
167 ossl_crypto_mutex_free(&lock->write_lock);
168 OPENSSL_free(lock);
169}
170
171static inline struct rcu_qp *get_hold_current_qp(CRYPTO_RCU_LOCK *lock)
172{
173 uint32_t qp_idx;
174
175 /* get the current qp index */
176 for (;;) {
177 qp_idx = InterlockedOr(&lock->reader_idx, 0);
178 InterlockedAdd64(&lock->qp_group[qp_idx].users, VAL_READER);
179 if (qp_idx == InterlockedOr(&lock->reader_idx, 0))
180 break;
181 InterlockedAdd64(&lock->qp_group[qp_idx].users, -VAL_READER);
182 }
183
184 return &lock->qp_group[qp_idx];
185}
186
24d16d3a
NH
187static void ossl_rcu_free_local_data(void *arg)
188{
189 OSSL_LIB_CTX *ctx = arg;
190 CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
191 struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
192 OPENSSL_free(data);
193}
194
d0e1a0ae
NH
195void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
196{
197 struct rcu_thr_data *data;
198 int i;
199 int available_qp = -1;
24d16d3a 200 CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
d0e1a0ae
NH
201
202 /*
203 * we're going to access current_qp here so ask the
204 * processor to fetch it
205 */
24d16d3a 206 data = CRYPTO_THREAD_get_local(lkey);
d0e1a0ae
NH
207
208 if (data == NULL) {
209 data = OPENSSL_zalloc(sizeof(*data));
210 OPENSSL_assert(data != NULL);
24d16d3a
NH
211 CRYPTO_THREAD_set_local(lkey, data);
212 ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
d0e1a0ae
NH
213 }
214
215 for (i = 0; i < MAX_QPS; i++) {
216 if (data->thread_qps[i].qp == NULL && available_qp == -1)
217 available_qp = i;
218 /* If we have a hold on this lock already, we're good */
219 if (data->thread_qps[i].lock == lock)
220 return;
221 }
222
223 /*
224 * if we get here, then we don't have a hold on this lock yet
225 */
226 assert(available_qp != -1);
227
228 data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
229 data->thread_qps[available_qp].depth = 1;
230 data->thread_qps[available_qp].lock = lock;
231}
232
233void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
234{
235 ossl_crypto_mutex_lock(lock->write_lock);
236}
237
238void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
239{
240 ossl_crypto_mutex_unlock(lock->write_lock);
241}
242
243void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
244{
24d16d3a
NH
245 CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
246 struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
d0e1a0ae
NH
247 int i;
248 LONG64 ret;
249
250 assert(data != NULL);
251
252 for (i = 0; i < MAX_QPS; i++) {
253 if (data->thread_qps[i].lock == lock) {
254 data->thread_qps[i].depth--;
255 if (data->thread_qps[i].depth == 0) {
256 ret = InterlockedAdd64(&data->thread_qps[i].qp->users, -VAL_READER);
257 OPENSSL_assert(ret >= 0);
258 data->thread_qps[i].qp = NULL;
259 data->thread_qps[i].lock = NULL;
260 }
261 return;
262 }
263 }
264}
265
266static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
267{
268 uint64_t new_id;
269 uint32_t current_idx;
270 uint32_t tmp;
271
272 ossl_crypto_mutex_lock(lock->alloc_lock);
273 /*
274 * we need at least one qp to be available with one
275 * left over, so that readers can start working on
276 * one that isn't yet being waited on
277 */
278 while (lock->group_count - lock->writers_alloced < 2)
279 ossl_crypto_condvar_wait(lock->alloc_signal, lock->alloc_lock);
280
281 current_idx = lock->current_alloc_idx;
282 /* Allocate the qp */
283 lock->writers_alloced++;
284
285 /* increment the allocation index */
286 lock->current_alloc_idx =
287 (lock->current_alloc_idx + 1) % lock->group_count;
288
289 /* get and insert a new id */
290 new_id = lock->id_ctr;
291 lock->id_ctr++;
292
293 new_id = VAL_ID(new_id);
294 InterlockedAnd64(&lock->qp_group[current_idx].users, ID_MASK);
295 InterlockedAdd64(&lock->qp_group[current_idx].users, new_id);
296
297 /* update the reader index to be the prior qp */
298 tmp = lock->current_alloc_idx;
299 InterlockedExchange(&lock->reader_idx, tmp);
300
301 /* wake up any waiters */
302 ossl_crypto_condvar_broadcast(lock->alloc_signal);
303 ossl_crypto_mutex_unlock(lock->alloc_lock);
304 return &lock->qp_group[current_idx];
305}
306
307static void retire_qp(CRYPTO_RCU_LOCK *lock,
308 struct rcu_qp *qp)
309{
310 ossl_crypto_mutex_lock(lock->alloc_lock);
311 lock->writers_alloced--;
312 ossl_crypto_condvar_broadcast(lock->alloc_signal);
313 ossl_crypto_mutex_unlock(lock->alloc_lock);
314}
315
316
317void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
318{
319 struct rcu_qp *qp;
320 uint64_t count;
321 struct rcu_cb_item *cb_items, *tmpcb;
322
323 /* before we do anything else, lets grab the cb list */
324 cb_items = InterlockedExchangePointer((void * volatile *)&lock->cb_items, NULL);
325
326 qp = update_qp(lock);
327
328 /* wait for the reader count to reach zero */
329 do {
330 count = InterlockedOr64(&qp->users, 0);
331 } while (READER_COUNT(count) != 0);
332
333 /* retire in order */
334 ossl_crypto_mutex_lock(lock->prior_lock);
335 while (lock->next_to_retire != ID_VAL(count))
336 ossl_crypto_condvar_wait(lock->prior_signal, lock->prior_lock);
337
338 lock->next_to_retire++;
339 ossl_crypto_condvar_broadcast(lock->prior_signal);
340 ossl_crypto_mutex_unlock(lock->prior_lock);
341
342 retire_qp(lock, qp);
343
344 /* handle any callbacks that we have */
345 while (cb_items != NULL) {
346 tmpcb = cb_items;
347 cb_items = cb_items->next;
348 tmpcb->fn(tmpcb->data);
349 OPENSSL_free(tmpcb);
350 }
351
352 /* and we're done */
353 return;
354
355}
356
357int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
358{
359 struct rcu_cb_item *new;
d0e1a0ae
NH
360
361 new = OPENSSL_zalloc(sizeof(struct rcu_cb_item));
362 if (new == NULL)
363 return 0;
d0e1a0ae
NH
364 new->data = data;
365 new->fn = cb;
366
f39a8628 367 new->next = InterlockedExchangePointer((void * volatile *)&lock->cb_items, new);
d0e1a0ae
NH
368 return 1;
369}
370
371void *ossl_rcu_uptr_deref(void **p)
372{
373 return (void *)*p;
374}
375
376void ossl_rcu_assign_uptr(void **p, void **v)
377{
378 InterlockedExchangePointer((void * volatile *)p, (void *)*v);
379}
380
381
71a04cfc
AG
382CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
383{
7de2b9c4 384 CRYPTO_RWLOCK *lock;
f70863d9
VD
385# ifdef USE_RWLOCK
386 CRYPTO_win_rwlock *rwlock;
387
d0e1a0ae 388 if ((lock = OPENSSL_zalloc(sizeof(CRYPTO_win_rwlock))) == NULL)
894f2166 389 /* Don't set error, to avoid recursion blowup. */
f70863d9
VD
390 return NULL;
391 rwlock = lock;
392 InitializeSRWLock(&rwlock->lock);
393# else
7de2b9c4 394
d0e1a0ae 395 if ((lock = OPENSSL_zalloc(sizeof(CRITICAL_SECTION))) == NULL)
7de2b9c4 396 /* Don't set error, to avoid recursion blowup. */
71a04cfc
AG
397 return NULL;
398
f70863d9 399# if !defined(_WIN32_WCE)
71a04cfc 400 /* 0x400 is the spin count value suggested in the documentation */
0b2fc928
F
401 if (!InitializeCriticalSectionAndSpinCount(lock, 0x400)) {
402 OPENSSL_free(lock);
71a04cfc 403 return NULL;
0b2fc928 404 }
f70863d9 405# else
09305a7d 406 InitializeCriticalSection(lock);
f70863d9 407# endif
7f0a8dc7 408# endif
71a04cfc
AG
409
410 return lock;
411}
412
cd3f8c1b 413__owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
71a04cfc 414{
f70863d9
VD
415# ifdef USE_RWLOCK
416 CRYPTO_win_rwlock *rwlock = lock;
417
418 AcquireSRWLockShared(&rwlock->lock);
419# else
71a04cfc 420 EnterCriticalSection(lock);
f70863d9 421# endif
71a04cfc
AG
422 return 1;
423}
424
cd3f8c1b 425__owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
71a04cfc 426{
f70863d9
VD
427# ifdef USE_RWLOCK
428 CRYPTO_win_rwlock *rwlock = lock;
429
430 AcquireSRWLockExclusive(&rwlock->lock);
431 rwlock->exclusive = 1;
432# else
71a04cfc 433 EnterCriticalSection(lock);
f70863d9 434# endif
71a04cfc
AG
435 return 1;
436}
437
438int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
439{
f70863d9
VD
440# ifdef USE_RWLOCK
441 CRYPTO_win_rwlock *rwlock = lock;
442
443 if (rwlock->exclusive) {
444 rwlock->exclusive = 0;
445 ReleaseSRWLockExclusive(&rwlock->lock);
446 } else {
447 ReleaseSRWLockShared(&rwlock->lock);
448 }
449# else
71a04cfc 450 LeaveCriticalSection(lock);
f70863d9 451# endif
71a04cfc
AG
452 return 1;
453}
454
455void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
456{
457 if (lock == NULL)
458 return;
459
f70863d9 460# ifndef USE_RWLOCK
71a04cfc 461 DeleteCriticalSection(lock);
f70863d9 462# endif
71a04cfc
AG
463 OPENSSL_free(lock);
464
465 return;
466}
467
d5e742de
MC
468# define ONCE_UNINITED 0
469# define ONCE_ININIT 1
470# define ONCE_DONE 2
71a04cfc 471
fcb318c6
MC
472/*
473 * We don't use InitOnceExecuteOnce because that isn't available in WinXP which
474 * we still have to support.
475 */
71a04cfc
AG
476int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
477{
478 LONG volatile *lock = (LONG *)once;
479 LONG result;
480
481 if (*lock == ONCE_DONE)
482 return 1;
483
484 do {
485 result = InterlockedCompareExchange(lock, ONCE_ININIT, ONCE_UNINITED);
486 if (result == ONCE_UNINITED) {
349d1cfd 487 init();
1fda5bc4 488 *lock = ONCE_DONE;
71a04cfc
AG
489 return 1;
490 }
491 } while (result == ONCE_ININIT);
492
493 return (*lock == ONCE_DONE);
494}
495
71a04cfc
AG
496int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
497{
498 *key = TlsAlloc();
499 if (*key == TLS_OUT_OF_INDEXES)
500 return 0;
501
502 return 1;
503}
504
505void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
506{
2de108df
DB
507 DWORD last_error;
508 void *ret;
509
510 /*
511 * TlsGetValue clears the last error even on success, so that callers may
512 * distinguish it successfully returning NULL or failing. It is documented
513 * to never fail if the argument is a valid index from TlsAlloc, so we do
514 * not need to handle this.
515 *
516 * However, this error-mangling behavior interferes with the caller's use of
517 * GetLastError. In particular SSL_get_error queries the error queue to
518 * determine whether the caller should look at the OS's errors. To avoid
519 * destroying state, save and restore the Windows error.
520 *
521 * https://msdn.microsoft.com/en-us/library/windows/desktop/ms686812(v=vs.85).aspx
522 */
523 last_error = GetLastError();
524 ret = TlsGetValue(*key);
525 SetLastError(last_error);
526 return ret;
71a04cfc
AG
527}
528
529int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
530{
531 if (TlsSetValue(*key, val) == 0)
532 return 0;
533
534 return 1;
535}
536
537int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
538{
539 if (TlsFree(*key) == 0)
540 return 0;
541
542 return 1;
543}
544
545CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
546{
547 return GetCurrentThreadId();
548}
549
550int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
551{
552 return (a == b);
553}
554
555int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
556{
7da7b27e 557 *ret = (int)InterlockedExchangeAdd((long volatile *)val, (long)amount) + amount;
71a04cfc
AG
558 return 1;
559}
560
d5e742de
MC
561int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
562 CRYPTO_RWLOCK *lock)
563{
2d46a44f
DN
564#if (defined(NO_INTERLOCKEDOR64))
565 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
566 return 0;
567 *val |= op;
568 *ret = *val;
569
570 if (!CRYPTO_THREAD_unlock(lock))
571 return 0;
572
573 return 1;
574#else
d5e742de
MC
575 *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, (LONG64)op) | op;
576 return 1;
2d46a44f 577#endif
d5e742de
MC
578}
579
580int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
581{
2d46a44f
DN
582#if (defined(NO_INTERLOCKEDOR64))
583 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
584 return 0;
585 *ret = *val;
586 if (!CRYPTO_THREAD_unlock(lock))
587 return 0;
588
589 return 1;
590#else
d5e742de
MC
591 *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, 0);
592 return 1;
2d46a44f 593#endif
d5e742de
MC
594}
595
7e45ac68
NH
596int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
597{
598#if (defined(NO_INTERLOCKEDOR64))
599 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
600 return 0;
601 *dst = val;
602 if (!CRYPTO_THREAD_unlock(lock))
603 return 0;
604
605 return 1;
606#else
607 InterlockedExchange64(dst, val);
608 return 1;
609#endif
610}
611
629b408c
HL
612int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
613{
614#if (defined(NO_INTERLOCKEDOR64))
615 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
616 return 0;
617 *ret = *val;
618 if (!CRYPTO_THREAD_unlock(lock))
619 return 0;
620
621 return 1;
622#else
a2c61e41 623 /* On Windows, LONG is always the same size as int. */
629b408c
HL
624 *ret = (int)InterlockedOr((LONG volatile *)val, 0);
625 return 1;
626#endif
627}
628
2915fe19
RS
629int openssl_init_fork_handlers(void)
630{
631 return 0;
632}
633
84952925
DMSP
634int openssl_get_fork_id(void)
635{
636 return 0;
637}
71a04cfc 638#endif