]> git.ipfire.org Git - thirdparty/openssl.git/blame - doc/apps/pkcs8.pod
Updates from 1.0.0-stable.
[thirdparty/openssl.git] / doc / apps / pkcs8.pod
CommitLineData
aba3e65f
DSH
1=pod
2
3=head1 NAME
4
174a4a8c 5pkcs8 - PKCS#8 format private key conversion tool
aba3e65f
DSH
6
7=head1 SYNOPSIS
8
9B<openssl> B<pkcs8>
10[B<-topk8>]
11[B<-inform PEM|DER>]
12[B<-outform PEM|DER>]
13[B<-in filename>]
a3fe382e 14[B<-passin arg>]
aba3e65f 15[B<-out filename>]
a3fe382e 16[B<-passout arg>]
aba3e65f
DSH
17[B<-noiter>]
18[B<-nocrypt>]
19[B<-nooct>]
66430207
DSH
20[B<-embed>]
21[B<-nsdb>]
aba3e65f 22[B<-v2 alg>]
525f51f6 23[B<-v1 alg>]
bfa35550 24[B<-engine id>]
aba3e65f
DSH
25
26=head1 DESCRIPTION
27
28The B<pkcs8> command processes private keys in PKCS#8 format. It can handle
29both unencrypted PKCS#8 PrivateKeyInfo format and EncryptedPrivateKeyInfo
30format with a variety of PKCS#5 (v1.5 and v2.0) and PKCS#12 algorithms.
31
32=head1 COMMAND OPTIONS
33
34=over 4
35
36=item B<-topk8>
37
174a4a8c 38Normally a PKCS#8 private key is expected on input and a traditional format
aba3e65f
DSH
39private key will be written. With the B<-topk8> option the situation is
40reversed: it reads a traditional format private key and writes a PKCS#8
41format key.
42
43=item B<-inform DER|PEM>
44
45This specifies the input format. If a PKCS#8 format key is expected on input
46then either a B<DER> or B<PEM> encoded version of a PKCS#8 key will be
174a4a8c 47expected. Otherwise the B<DER> or B<PEM> format of the traditional format
aba3e65f
DSH
48private key is used.
49
174a4a8c 50=item B<-outform DER|PEM>
aba3e65f
DSH
51
52This specifies the output format, the options have the same meaning as the
53B<-inform> option.
54
55=item B<-in filename>
56
57This specifies the input filename to read a key from or standard input if this
58option is not specified. If the key is encrypted a pass phrase will be
59prompted for.
60
a3fe382e 61=item B<-passin arg>
20432eae 62
a3fe382e
DSH
63the input file password source. For more information about the format of B<arg>
64see the B<PASS PHRASE ARGUMENTS> section in L<openssl(1)|openssl(1)>.
20432eae 65
aba3e65f
DSH
66=item B<-out filename>
67
68This specifies the output filename to write a key to or standard output by
174a4a8c 69default. If any encryption options are set then a pass phrase will be
aba3e65f
DSH
70prompted for. The output filename should B<not> be the same as the input
71filename.
72
a3fe382e 73=item B<-passout arg>
20432eae 74
a3fe382e
DSH
75the output file password source. For more information about the format of B<arg>
76see the B<PASS PHRASE ARGUMENTS> section in L<openssl(1)|openssl(1)>.
20432eae 77
174a4a8c 78=item B<-nocrypt>
aba3e65f 79
174a4a8c
DSH
80PKCS#8 keys generated or input are normally PKCS#8 EncryptedPrivateKeyInfo
81structures using an appropriate password based encryption algorithm. With
82this option an unencrypted PrivateKeyInfo structure is expected or output.
83This option does not encrypt private keys at all and should only be used
84when absolutely necessary. Certain software such as some versions of Java
85code signing software used unencrypted private keys.
aba3e65f 86
174a4a8c 87=item B<-nooct>
aba3e65f 88
66430207 89This option generates RSA private keys in a broken format that some software
174a4a8c
DSH
90uses. Specifically the private key should be enclosed in a OCTET STRING
91but some software just includes the structure itself without the
92surrounding OCTET STRING.
aba3e65f 93
66430207
DSH
94=item B<-embed>
95
96This option generates DSA keys in a broken format. The DSA parameters are
97embedded inside the PrivateKey structure. In this form the OCTET STRING
98contains an ASN1 SEQUENCE consisting of two structures: a SEQUENCE containing
99the parameters and an ASN1 INTEGER containing the private key.
100
101=item B<-nsdb>
102
103This option generates DSA keys in a broken format compatible with Netscape
104private key databases. The PrivateKey contains a SEQUENCE consisting of
105the public and private keys respectively.
106
174a4a8c 107=item B<-v2 alg>
aba3e65f 108
174a4a8c
DSH
109This option enables the use of PKCS#5 v2.0 algorithms. Normally PKCS#8
110private keys are encrypted with the password based encryption algorithm
111called B<pbeWithMD5AndDES-CBC> this uses 56 bit DES encryption but it
112was the strongest encryption algorithm supported in PKCS#5 v1.5. Using
113the B<-v2> option PKCS#5 v2.0 algorithms are used which can use any
114encryption algorithm such as 168 bit triple DES or 128 bit RC2 however
115not many implementations support PKCS#5 v2.0 yet. If you are just using
116private keys with OpenSSL then this doesn't matter.
aba3e65f 117
174a4a8c
DSH
118The B<alg> argument is the encryption algorithm to use, valid values include
119B<des>, B<des3> and B<rc2>. It is recommended that B<des3> is used.
aba3e65f 120
525f51f6
DSH
121=item B<-v1 alg>
122
123This option specifies a PKCS#5 v1.5 or PKCS#12 algorithm to use. A complete
124list of possible algorithms is included below.
125
bfa35550
RL
126=item B<-engine id>
127
e5fa864f 128specifying an engine (by its unique B<id> string) will cause B<pkcs8>
bfa35550
RL
129to attempt to obtain a functional reference to the specified engine,
130thus initialising it if needed. The engine will then be set as the default
131for all available algorithms.
132
174a4a8c 133=back
aba3e65f 134
174a4a8c 135=head1 NOTES
aba3e65f 136
0286d944
DSH
137The encrypted form of a PEM encode PKCS#8 files uses the following
138headers and footers:
139
140 -----BEGIN ENCRYPTED PRIVATE KEY-----
141 -----END ENCRYPTED PRIVATE KEY-----
142
143The unencrypted form uses:
144
145 -----BEGIN PRIVATE KEY-----
146 -----END PRIVATE KEY-----
147
174a4a8c
DSH
148Private keys encrypted using PKCS#5 v2.0 algorithms and high iteration
149counts are more secure that those encrypted using the traditional
150SSLeay compatible formats. So if additional security is considered
151important the keys should be converted.
aba3e65f 152
174a4a8c
DSH
153The default encryption is only 56 bits because this is the encryption
154that most current implementations of PKCS#8 will support.
aba3e65f 155
174a4a8c
DSH
156Some software may use PKCS#12 password based encryption algorithms
157with PKCS#8 format private keys: these are handled automatically
158but there is no option to produce them.
aba3e65f 159
174a4a8c
DSH
160It is possible to write out DER encoded encrypted private keys in
161PKCS#8 format because the encryption details are included at an ASN1
162level whereas the traditional format includes them at a PEM level.
aba3e65f 163
525f51f6
DSH
164=head1 PKCS#5 v1.5 and PKCS#12 algorithms.
165
166Various algorithms can be used with the B<-v1> command line option,
167including PKCS#5 v1.5 and PKCS#12. These are described in more detail
168below.
169
170=over 4
171
172=item B<PBE-MD2-DES PBE-MD5-DES>
173
174These algorithms were included in the original PKCS#5 v1.5 specification.
175They only offer 56 bits of protection since they both use DES.
176
177=item B<PBE-SHA1-RC2-64 PBE-MD2-RC2-64 PBE-MD5-RC2-64 PBE-SHA1-DES>
178
179These algorithms are not mentioned in the original PKCS#5 v1.5 specification
180but they use the same key derivation algorithm and are supported by some
c3ed3b6e 181software. They are mentioned in PKCS#5 v2.0. They use either 64 bit RC2 or
525f51f6
DSH
18256 bit DES.
183
184=item B<PBE-SHA1-RC4-128 PBE-SHA1-RC4-40 PBE-SHA1-3DES PBE-SHA1-2DES PBE-SHA1-RC2-128 PBE-SHA1-RC2-40>
185
186These algorithms use the PKCS#12 password based encryption algorithm and
187allow strong encryption algorithms like triple DES or 128 bit RC2 to be used.
188
189=back
190
aba3e65f
DSH
191=head1 EXAMPLES
192
174a4a8c
DSH
193Convert a private from traditional to PKCS#5 v2.0 format using triple
194DES:
aba3e65f 195
174a4a8c 196 openssl pkcs8 -in key.pem -topk8 -v2 des3 -out enckey.pem
aba3e65f 197
174a4a8c
DSH
198Convert a private key to PKCS#8 using a PKCS#5 1.5 compatible algorithm
199(DES):
aba3e65f 200
174a4a8c 201 openssl pkcs8 -in key.pem -topk8 -out enckey.pem
aba3e65f 202
525f51f6
DSH
203Convert a private key to PKCS#8 using a PKCS#12 compatible algorithm
204(3DES):
205
206 openssl pkcs8 -in key.pem -topk8 -out enckey.pem -v1 PBE-SHA1-3DES
207
174a4a8c 208Read a DER unencrypted PKCS#8 format private key:
aba3e65f 209
174a4a8c 210 openssl pkcs8 -inform DER -nocrypt -in key.der -out key.pem
aba3e65f 211
174a4a8c 212Convert a private key from any PKCS#8 format to traditional format:
aba3e65f 213
174a4a8c 214 openssl pkcs8 -in pk8.pem -out key.pem
aba3e65f 215
174a4a8c 216=head1 STANDARDS
aba3e65f 217
66430207
DSH
218Test vectors from this PKCS#5 v2.0 implementation were posted to the
219pkcs-tng mailing list using triple DES, DES and RC2 with high iteration
220counts, several people confirmed that they could decrypt the private
221keys produced and Therefore it can be assumed that the PKCS#5 v2.0
222implementation is reasonably accurate at least as far as these
223algorithms are concerned.
224
225The format of PKCS#8 DSA (and other) private keys is not well documented:
0cd4498b
DSH
226it is hidden away in PKCS#11 v2.01, section 11.9. OpenSSL's default DSA
227PKCS#8 private key format complies with this standard.
aba3e65f
DSH
228
229=head1 BUGS
230
174a4a8c
DSH
231There should be an option that prints out the encryption algorithm
232in use and other details such as the iteration count.
233
234PKCS#8 using triple DES and PKCS#5 v2.0 should be the default private
19d2bb57 235key format for OpenSSL: for compatibility several of the utilities use
174a4a8c 236the old format at present.
aba3e65f
DSH
237
238=head1 SEE ALSO
239
bb075f88
RL
240L<dsa(1)|dsa(1)>, L<rsa(1)|rsa(1)>, L<genrsa(1)|genrsa(1)>,
241L<gendsa(1)|gendsa(1)>
aba3e65f
DSH
242
243=cut