]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/mtd/nand/omap_gpmc.c
asm/omap_gpmc.h: consolidate common defines
[people/ms/u-boot.git] / drivers / mtd / nand / omap_gpmc.c
CommitLineData
12201a13
DB
1/*
2 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3 * Rohit Choraria <rohitkc@ti.com>
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <asm/io.h>
26#include <asm/errno.h>
27#include <asm/arch/mem.h>
98f92001 28#include <asm/arch/cpu.h>
5bf299bc 29#include <asm/omap_gpmc.h>
12201a13 30#include <linux/mtd/nand_ecc.h>
f7dad8f1 31#include <linux/compiler.h>
12201a13 32#include <nand.h>
c3754e9c
MA
33#ifdef CONFIG_AM33XX
34#include <asm/arch/elm.h>
35#endif
12201a13
DB
36
37static uint8_t cs;
f7dad8f1
SB
38static __maybe_unused struct nand_ecclayout hw_nand_oob =
39 GPMC_NAND_HW_ECC_LAYOUT;
12201a13
DB
40
41/*
42 * omap_nand_hwcontrol - Set the address pointers corretly for the
43 * following address/data/command operation
44 */
45static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
46 uint32_t ctrl)
47{
48 register struct nand_chip *this = mtd->priv;
49
50 /*
51 * Point the IO_ADDR to DATA and ADDRESS registers instead
52 * of chip address
53 */
54 switch (ctrl) {
55 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
89411352 56 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
12201a13
DB
57 break;
58 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
89411352 59 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
12201a13
DB
60 break;
61 case NAND_CTRL_CHANGE | NAND_NCE:
89411352 62 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
12201a13
DB
63 break;
64 }
65
66 if (cmd != NAND_CMD_NONE)
67 writeb(cmd, this->IO_ADDR_W);
68}
69
12c2f1ee
SS
70#ifdef CONFIG_SPL_BUILD
71/* Check wait pin as dev ready indicator */
72int omap_spl_dev_ready(struct mtd_info *mtd)
73{
74 return gpmc_cfg->status & (1 << 8);
75}
76#endif
77
12201a13
DB
78/*
79 * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
80 * GPMC controller
81 * @mtd: MTD device structure
82 *
83 */
f7dad8f1 84static void __maybe_unused omap_hwecc_init(struct nand_chip *chip)
12201a13
DB
85{
86 /*
87 * Init ECC Control Register
88 * Clear all ECC | Enable Reg1
89 */
89411352
DB
90 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
91 writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
12201a13
DB
92}
93
94/*
95 * gen_true_ecc - This function will generate true ECC value, which
96 * can be used when correcting data read from NAND flash memory core
97 *
98 * @ecc_buf: buffer to store ecc code
99 *
100 * @return: re-formatted ECC value
101 */
102static uint32_t gen_true_ecc(uint8_t *ecc_buf)
103{
104 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
105 ((ecc_buf[2] & 0x0F) << 8);
106}
107
108/*
109 * omap_correct_data - Compares the ecc read from nand spare area with ECC
110 * registers values and corrects one bit error if it has occured
111 * Further details can be had from OMAP TRM and the following selected links:
112 * http://en.wikipedia.org/wiki/Hamming_code
113 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
114 *
115 * @mtd: MTD device structure
116 * @dat: page data
117 * @read_ecc: ecc read from nand flash
118 * @calc_ecc: ecc read from ECC registers
119 *
120 * @return 0 if data is OK or corrected, else returns -1
121 */
f7dad8f1 122static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
12201a13
DB
123 uint8_t *read_ecc, uint8_t *calc_ecc)
124{
125 uint32_t orig_ecc, new_ecc, res, hm;
126 uint16_t parity_bits, byte;
127 uint8_t bit;
128
129 /* Regenerate the orginal ECC */
130 orig_ecc = gen_true_ecc(read_ecc);
131 new_ecc = gen_true_ecc(calc_ecc);
132 /* Get the XOR of real ecc */
133 res = orig_ecc ^ new_ecc;
134 if (res) {
135 /* Get the hamming width */
136 hm = hweight32(res);
137 /* Single bit errors can be corrected! */
138 if (hm == 12) {
139 /* Correctable data! */
140 parity_bits = res >> 16;
141 bit = (parity_bits & 0x7);
142 byte = (parity_bits >> 3) & 0x1FF;
143 /* Flip the bit to correct */
144 dat[byte] ^= (0x1 << bit);
145 } else if (hm == 1) {
146 printf("Error: Ecc is wrong\n");
147 /* ECC itself is corrupted */
148 return 2;
149 } else {
150 /*
151 * hm distance != parity pairs OR one, could mean 2 bit
152 * error OR potentially be on a blank page..
153 * orig_ecc: contains spare area data from nand flash.
154 * new_ecc: generated ecc while reading data area.
155 * Note: if the ecc = 0, all data bits from which it was
156 * generated are 0xFF.
157 * The 3 byte(24 bits) ecc is generated per 512byte
158 * chunk of a page. If orig_ecc(from spare area)
159 * is 0xFF && new_ecc(computed now from data area)=0x0,
160 * this means that data area is 0xFF and spare area is
161 * 0xFF. A sure sign of a erased page!
162 */
163 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
164 return 0;
165 printf("Error: Bad compare! failed\n");
166 /* detected 2 bit error */
167 return -1;
168 }
169 }
170 return 0;
171}
172
173/*
174 * omap_calculate_ecc - Generate non-inverted ECC bytes.
175 *
176 * Using noninverted ECC can be considered ugly since writing a blank
177 * page ie. padding will clear the ECC bytes. This is no problem as
178 * long nobody is trying to write data on the seemingly unused page.
179 * Reading an erased page will produce an ECC mismatch between
180 * generated and read ECC bytes that has to be dealt with separately.
181 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
182 * is used, the result of read will be 0x0 while the ECC offsets of the
183 * spare area will be 0xFF which will result in an ECC mismatch.
184 * @mtd: MTD structure
185 * @dat: unused
186 * @ecc_code: ecc_code buffer
187 */
f7dad8f1
SB
188static int __maybe_unused omap_calculate_ecc(struct mtd_info *mtd,
189 const uint8_t *dat, uint8_t *ecc_code)
12201a13
DB
190{
191 u_int32_t val;
192
193 /* Start Reading from HW ECC1_Result = 0x200 */
89411352 194 val = readl(&gpmc_cfg->ecc1_result);
12201a13
DB
195
196 ecc_code[0] = val & 0xFF;
197 ecc_code[1] = (val >> 16) & 0xFF;
198 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
199
200 /*
201 * Stop reading anymore ECC vals and clear old results
202 * enable will be called if more reads are required
203 */
89411352 204 writel(0x000, &gpmc_cfg->ecc_config);
12201a13
DB
205
206 return 0;
207}
208
209/*
210 * omap_enable_ecc - This function enables the hardware ecc functionality
211 * @mtd: MTD device structure
212 * @mode: Read/Write mode
213 */
f7dad8f1 214static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
12201a13
DB
215{
216 struct nand_chip *chip = mtd->priv;
217 uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
218
219 switch (mode) {
220 case NAND_ECC_READ:
221 case NAND_ECC_WRITE:
222 /* Clear the ecc result registers, select ecc reg as 1 */
89411352 223 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
12201a13
DB
224
225 /*
226 * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
227 * tell all regs to generate size0 sized regs
228 * we just have a single ECC engine for all CS
229 */
230 writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
89411352 231 &gpmc_cfg->ecc_size_config);
12201a13 232 val = (dev_width << 7) | (cs << 1) | (0x1);
89411352 233 writel(val, &gpmc_cfg->ecc_config);
12201a13
DB
234 break;
235 default:
236 printf("Error: Unrecognized Mode[%d]!\n", mode);
237 break;
238 }
239}
240
c3754e9c
MA
241/*
242 * BCH8 support (needs ELM and thus AM33xx-only)
243 */
244#ifdef CONFIG_AM33XX
245struct nand_bch_priv {
246 uint8_t mode;
247 uint8_t type;
248 uint8_t nibbles;
249};
250
251/* bch types */
252#define ECC_BCH4 0
253#define ECC_BCH8 1
254#define ECC_BCH16 2
255
256/* BCH nibbles for diff bch levels */
257#define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1)
258#define ECC_BCH4_NIBBLES 13
259#define ECC_BCH8_NIBBLES 26
260#define ECC_BCH16_NIBBLES 52
261
262static struct nand_ecclayout hw_bch8_nand_oob = GPMC_NAND_HW_BCH8_ECC_LAYOUT;
263
264static struct nand_bch_priv bch_priv = {
265 .mode = NAND_ECC_HW_BCH,
266 .type = ECC_BCH8,
267 .nibbles = ECC_BCH8_NIBBLES
268};
269
270/*
271 * omap_read_bch8_result - Read BCH result for BCH8 level
272 *
273 * @mtd: MTD device structure
274 * @big_endian: When set read register 3 first
275 * @ecc_code: Read syndrome from BCH result registers
276 */
277static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian,
278 uint8_t *ecc_code)
279{
280 uint32_t *ptr;
281 int8_t i = 0, j;
282
283 if (big_endian) {
284 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
285 ecc_code[i++] = readl(ptr) & 0xFF;
286 ptr--;
287 for (j = 0; j < 3; j++) {
288 ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
289 ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
290 ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
291 ecc_code[i++] = readl(ptr) & 0xFF;
292 ptr--;
293 }
294 } else {
295 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0];
296 for (j = 0; j < 3; j++) {
297 ecc_code[i++] = readl(ptr) & 0xFF;
298 ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
299 ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
300 ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
301 ptr++;
302 }
303 ecc_code[i++] = readl(ptr) & 0xFF;
304 ecc_code[i++] = 0; /* 14th byte is always zero */
305 }
306}
307
308/*
309 * omap_ecc_disable - Disable H/W ECC calculation
310 *
311 * @mtd: MTD device structure
312 *
313 */
314static void omap_ecc_disable(struct mtd_info *mtd)
315{
316 writel((readl(&gpmc_cfg->ecc_config) & ~0x1),
317 &gpmc_cfg->ecc_config);
318}
319
320/*
321 * omap_rotate_ecc_bch - Rotate the syndrome bytes
322 *
323 * @mtd: MTD device structure
324 * @calc_ecc: ECC read from ECC registers
325 * @syndrome: Rotated syndrome will be retuned in this array
326 *
327 */
328static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
329 uint8_t *syndrome)
330{
331 struct nand_chip *chip = mtd->priv;
332 struct nand_bch_priv *bch = chip->priv;
333 uint8_t n_bytes = 0;
334 int8_t i, j;
335
336 switch (bch->type) {
337 case ECC_BCH4:
338 n_bytes = 8;
339 break;
340
341 case ECC_BCH16:
342 n_bytes = 28;
343 break;
344
345 case ECC_BCH8:
346 default:
347 n_bytes = 13;
348 break;
349 }
350
351 for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
352 syndrome[i] = calc_ecc[j];
353}
354
355/*
356 * omap_calculate_ecc_bch - Read BCH ECC result
357 *
358 * @mtd: MTD structure
359 * @dat: unused
360 * @ecc_code: ecc_code buffer
361 */
362static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
363 uint8_t *ecc_code)
364{
365 struct nand_chip *chip = mtd->priv;
366 struct nand_bch_priv *bch = chip->priv;
367 uint8_t big_endian = 1;
368 int8_t ret = 0;
369
370 if (bch->type == ECC_BCH8)
371 omap_read_bch8_result(mtd, big_endian, ecc_code);
372 else /* BCH4 and BCH16 currently not supported */
373 ret = -1;
374
375 /*
376 * Stop reading anymore ECC vals and clear old results
377 * enable will be called if more reads are required
378 */
379 omap_ecc_disable(mtd);
380
381 return ret;
382}
383
384/*
385 * omap_fix_errors_bch - Correct bch error in the data
386 *
387 * @mtd: MTD device structure
388 * @data: Data read from flash
389 * @error_count:Number of errors in data
390 * @error_loc: Locations of errors in the data
391 *
392 */
393static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
394 uint32_t error_count, uint32_t *error_loc)
395{
396 struct nand_chip *chip = mtd->priv;
397 struct nand_bch_priv *bch = chip->priv;
398 uint8_t count = 0;
399 uint32_t error_byte_pos;
400 uint32_t error_bit_mask;
401 uint32_t last_bit = (bch->nibbles * 4) - 1;
402
403 /* Flip all bits as specified by the error location array. */
404 /* FOR( each found error location flip the bit ) */
405 for (count = 0; count < error_count; count++) {
406 if (error_loc[count] > last_bit) {
407 /* Remove the ECC spare bits from correction. */
408 error_loc[count] -= (last_bit + 1);
409 /* Offset bit in data region */
410 error_byte_pos = ((512 * 8) -
411 (error_loc[count]) - 1) / 8;
412 /* Error Bit mask */
413 error_bit_mask = 0x1 << (error_loc[count] % 8);
414 /* Toggle the error bit to make the correction. */
415 data[error_byte_pos] ^= error_bit_mask;
416 }
417 }
418}
419
420/*
421 * omap_correct_data_bch - Compares the ecc read from nand spare area
422 * with ECC registers values and corrects one bit error if it has occured
423 *
424 * @mtd: MTD device structure
425 * @dat: page data
426 * @read_ecc: ecc read from nand flash (ignored)
427 * @calc_ecc: ecc read from ECC registers
428 *
429 * @return 0 if data is OK or corrected, else returns -1
430 */
431static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
432 uint8_t *read_ecc, uint8_t *calc_ecc)
433{
434 struct nand_chip *chip = mtd->priv;
435 struct nand_bch_priv *bch = chip->priv;
436 uint8_t syndrome[28];
437 uint32_t error_count = 0;
438 uint32_t error_loc[8];
439 uint32_t i, ecc_flag;
440
441 ecc_flag = 0;
442 for (i = 0; i < chip->ecc.bytes; i++)
443 if (read_ecc[i] != 0xff)
444 ecc_flag = 1;
445
446 if (!ecc_flag)
447 return 0;
448
449 elm_reset();
450 elm_config((enum bch_level)(bch->type));
451
452 /*
453 * while reading ECC result we read it in big endian.
454 * Hence while loading to ELM we have rotate to get the right endian.
455 */
456 omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
457
458 /* use elm module to check for errors */
459 if (elm_check_error(syndrome, bch->nibbles, &error_count,
460 error_loc) != 0) {
461 printf("ECC: uncorrectable.\n");
462 return -1;
463 }
464
465 /* correct bch error */
466 if (error_count > 0)
467 omap_fix_errors_bch(mtd, dat, error_count, error_loc);
468
469 return 0;
470}
471/*
472 * omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in
473 * GPMC controller
474 * @mtd: MTD device structure
475 * @mode: Read/Write mode
476 */
477static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
478{
479 uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
480 uint32_t unused_length = 0;
481 struct nand_bch_priv *bch = chip->priv;
482
483 switch (bch->nibbles) {
484 case ECC_BCH4_NIBBLES:
485 unused_length = 3;
486 break;
487 case ECC_BCH8_NIBBLES:
488 unused_length = 2;
489 break;
490 case ECC_BCH16_NIBBLES:
491 unused_length = 0;
492 break;
493 }
494
495 /* Clear the ecc result registers, select ecc reg as 1 */
496 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
497
498 switch (mode) {
499 case NAND_ECC_WRITE:
500 /* eccsize1 config */
501 val = ((unused_length + bch->nibbles) << 22);
502 break;
503
504 case NAND_ECC_READ:
505 default:
506 /* by default eccsize0 selected for ecc1resultsize */
507 /* eccsize0 config */
508 val = (bch->nibbles << 12);
509 /* eccsize1 config */
510 val |= (unused_length << 22);
511 break;
512 }
513 /* ecc size configuration */
514 writel(val, &gpmc_cfg->ecc_size_config);
515 /* by default 512bytes sector page is selected */
516 /* set bch mode */
517 val = (1 << 16);
518 /* bch4 / bch8 / bch16 */
519 val |= (bch->type << 12);
520 /* set wrap mode to 1 */
521 val |= (1 << 8);
522 val |= (dev_width << 7);
523 val |= (cs << 1);
524 writel(val, &gpmc_cfg->ecc_config);
525}
526
527/*
528 * omap_enable_ecc_bch- This function enables the bch h/w ecc functionality
529 * @mtd: MTD device structure
530 * @mode: Read/Write mode
531 *
532 */
533static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode)
534{
535 struct nand_chip *chip = mtd->priv;
536
537 omap_hwecc_init_bch(chip, mode);
538 /* enable ecc */
539 writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config);
540}
541
542/**
543 * omap_read_page_bch - hardware ecc based page read function
544 * @mtd: mtd info structure
545 * @chip: nand chip info structure
546 * @buf: buffer to store read data
547 * @page: page number to read
548 *
549 */
550static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
551 uint8_t *buf, int page)
552{
553 int i, eccsize = chip->ecc.size;
554 int eccbytes = chip->ecc.bytes;
555 int eccsteps = chip->ecc.steps;
556 uint8_t *p = buf;
557 uint8_t *ecc_calc = chip->buffers->ecccalc;
558 uint8_t *ecc_code = chip->buffers->ecccode;
559 uint32_t *eccpos = chip->ecc.layout->eccpos;
560 uint8_t *oob = chip->oob_poi;
561 uint32_t data_pos;
562 uint32_t oob_pos;
563
564 data_pos = 0;
565 /* oob area start */
566 oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
567 oob += chip->ecc.layout->eccpos[0];
568
569 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
570 oob += eccbytes) {
571 chip->ecc.hwctl(mtd, NAND_ECC_READ);
572 /* read data */
573 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
574 chip->read_buf(mtd, p, eccsize);
575
576 /* read respective ecc from oob area */
577 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
578 chip->read_buf(mtd, oob, eccbytes);
579 /* read syndrome */
580 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
581
582 data_pos += eccsize;
583 oob_pos += eccbytes;
584 }
585
586 for (i = 0; i < chip->ecc.total; i++)
587 ecc_code[i] = chip->oob_poi[eccpos[i]];
588
589 eccsteps = chip->ecc.steps;
590 p = buf;
591
592 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
593 int stat;
594
595 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
596 if (stat < 0)
597 mtd->ecc_stats.failed++;
598 else
599 mtd->ecc_stats.corrected += stat;
600 }
601 return 0;
602}
603#endif /* CONFIG_AM33XX */
604
12c2f1ee 605#ifndef CONFIG_SPL_BUILD
12201a13
DB
606/*
607 * omap_nand_switch_ecc - switch the ECC operation b/w h/w ecc and s/w ecc.
608 * The default is to come up on s/w ecc
609 *
610 * @hardware - 1 -switch to h/w ecc, 0 - s/w ecc
611 *
612 */
613void omap_nand_switch_ecc(int32_t hardware)
614{
615 struct nand_chip *nand;
616 struct mtd_info *mtd;
617
618 if (nand_curr_device < 0 ||
619 nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
620 !nand_info[nand_curr_device].name) {
621 printf("Error: Can't switch ecc, no devices available\n");
622 return;
623 }
624
625 mtd = &nand_info[nand_curr_device];
626 nand = mtd->priv;
627
628 nand->options |= NAND_OWN_BUFFERS;
629
630 /* Reset ecc interface */
631 nand->ecc.read_page = NULL;
632 nand->ecc.write_page = NULL;
633 nand->ecc.read_oob = NULL;
634 nand->ecc.write_oob = NULL;
635 nand->ecc.hwctl = NULL;
636 nand->ecc.correct = NULL;
637 nand->ecc.calculate = NULL;
638
639 /* Setup the ecc configurations again */
c3754e9c 640 if (hardware == 1) {
12201a13
DB
641 nand->ecc.mode = NAND_ECC_HW;
642 nand->ecc.layout = &hw_nand_oob;
643 nand->ecc.size = 512;
644 nand->ecc.bytes = 3;
645 nand->ecc.hwctl = omap_enable_hwecc;
646 nand->ecc.correct = omap_correct_data;
647 nand->ecc.calculate = omap_calculate_ecc;
648 omap_hwecc_init(nand);
649 printf("HW ECC selected\n");
c3754e9c
MA
650#ifdef CONFIG_AM33XX
651 } else if (hardware == 2) {
652 nand->ecc.mode = NAND_ECC_HW;
653 nand->ecc.layout = &hw_bch8_nand_oob;
654 nand->ecc.size = 512;
655 nand->ecc.bytes = 14;
656 nand->ecc.read_page = omap_read_page_bch;
657 nand->ecc.hwctl = omap_enable_ecc_bch;
658 nand->ecc.correct = omap_correct_data_bch;
659 nand->ecc.calculate = omap_calculate_ecc_bch;
660 omap_hwecc_init_bch(nand, NAND_ECC_READ);
661 printf("HW BCH8 selected\n");
662#endif
12201a13
DB
663 } else {
664 nand->ecc.mode = NAND_ECC_SOFT;
665 /* Use mtd default settings */
666 nand->ecc.layout = NULL;
d4395046 667 nand->ecc.size = 0;
12201a13
DB
668 printf("SW ECC selected\n");
669 }
670
671 /* Update NAND handling after ECC mode switch */
672 nand_scan_tail(mtd);
673
674 nand->options &= ~NAND_OWN_BUFFERS;
675}
12c2f1ee 676#endif /* CONFIG_SPL_BUILD */
12201a13
DB
677
678/*
679 * Board-specific NAND initialization. The following members of the
680 * argument are board-specific:
681 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
682 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
683 * - cmd_ctrl: hardwarespecific function for accesing control-lines
684 * - waitfunc: hardwarespecific function for accesing device ready/busy line
685 * - ecc.hwctl: function to enable (reset) hardware ecc generator
686 * - ecc.mode: mode of ecc, see defines
687 * - chip_delay: chip dependent delay for transfering data from array to
688 * read regs (tR)
689 * - options: various chip options. They can partly be set to inform
690 * nand_scan about special functionality. See the defines for further
691 * explanation
692 */
693int board_nand_init(struct nand_chip *nand)
694{
695 int32_t gpmc_config = 0;
696 cs = 0;
697
698 /*
699 * xloader/Uboot's gpmc configuration would have configured GPMC for
700 * nand type of memory. The following logic scans and latches on to the
701 * first CS with NAND type memory.
702 * TBD: need to make this logic generic to handle multiple CS NAND
703 * devices.
704 */
705 while (cs < GPMC_MAX_CS) {
12201a13 706 /* Check if NAND type is set */
89411352 707 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
12201a13
DB
708 /* Found it!! */
709 break;
710 }
711 cs++;
712 }
713 if (cs >= GPMC_MAX_CS) {
714 printf("NAND: Unable to find NAND settings in "
715 "GPMC Configuration - quitting\n");
716 return -ENODEV;
717 }
718
89411352 719 gpmc_config = readl(&gpmc_cfg->config);
12201a13
DB
720 /* Disable Write protect */
721 gpmc_config |= 0x10;
89411352 722 writel(gpmc_config, &gpmc_cfg->config);
12201a13 723
89411352
DB
724 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
725 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
12201a13
DB
726
727 nand->cmd_ctrl = omap_nand_hwcontrol;
728 nand->options = NAND_NO_PADDING | NAND_CACHEPRG | NAND_NO_AUTOINCR;
729 /* If we are 16 bit dev, our gpmc config tells us that */
89411352 730 if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
12201a13
DB
731 nand->options |= NAND_BUSWIDTH_16;
732
733 nand->chip_delay = 100;
c3754e9c
MA
734
735#ifdef CONFIG_AM33XX
736 /* required in case of BCH */
737 elm_init();
738
739 /* BCH info that will be correct for SPL or overridden otherwise. */
740 nand->priv = &bch_priv;
741#endif
742
12201a13 743 /* Default ECC mode */
c3754e9c
MA
744#ifdef CONFIG_AM33XX
745 nand->ecc.mode = NAND_ECC_HW;
746 nand->ecc.layout = &hw_bch8_nand_oob;
747 nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
748 nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
749 nand->ecc.hwctl = omap_enable_ecc_bch;
750 nand->ecc.correct = omap_correct_data_bch;
751 nand->ecc.calculate = omap_calculate_ecc_bch;
752 nand->ecc.read_page = omap_read_page_bch;
753 omap_hwecc_init_bch(nand, NAND_ECC_READ);
754#else
ff62fb4c 755#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_NAND_SOFTECC)
12201a13 756 nand->ecc.mode = NAND_ECC_SOFT;
12c2f1ee
SS
757#else
758 nand->ecc.mode = NAND_ECC_HW;
759 nand->ecc.layout = &hw_nand_oob;
760 nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
761 nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
762 nand->ecc.hwctl = omap_enable_hwecc;
763 nand->ecc.correct = omap_correct_data;
764 nand->ecc.calculate = omap_calculate_ecc;
765 omap_hwecc_init(nand);
ff62fb4c 766#endif
c3754e9c 767#endif
12c2f1ee 768
ff62fb4c 769#ifdef CONFIG_SPL_BUILD
12c2f1ee
SS
770 if (nand->options & NAND_BUSWIDTH_16)
771 nand->read_buf = nand_read_buf16;
772 else
773 nand->read_buf = nand_read_buf;
774 nand->dev_ready = omap_spl_dev_ready;
775#endif
12201a13
DB
776
777 return 0;
778}