]> git.ipfire.org Git - thirdparty/u-boot.git/blame - drivers/net/fec_mxc.c
Revert "Merge patch series "arm: dts: am62-beagleplay: Fix Beagleplay Ethernet""
[thirdparty/u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
0b23fb36
IY
2/*
3 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
4 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
5 * (C) Copyright 2008 Armadeus Systems nc
6 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
7 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
0b23fb36
IY
8 */
9
d678a59d 10#include <common.h>
1eb69ae4 11#include <cpu_func.h>
60752ca8 12#include <dm.h>
9fb625ce 13#include <env.h>
f7ae49fc 14#include <log.h>
0b23fb36 15#include <malloc.h>
cf92e05c 16#include <memalign.h>
567173a6 17#include <miiphy.h>
0b23fb36 18#include <net.h>
84f64c8b 19#include <netdev.h>
90526e9f 20#include <asm/cache.h>
401d1c4f 21#include <asm/global_data.h>
c05ed00a 22#include <linux/delay.h>
ad8c43cb 23#include <power/regulator.h>
0b23fb36 24
0b23fb36 25#include <asm/io.h>
1221ce45 26#include <linux/errno.h>
e2a66e60 27#include <linux/compiler.h>
0b23fb36 28
567173a6
JT
29#include <asm/arch/clock.h>
30#include <asm/arch/imx-regs.h>
552a848e 31#include <asm/mach-imx/sys_proto.h>
efd0b791 32#include <asm-generic/gpio.h>
3b8f99a3
TH
33#include <dm/device_compat.h>
34#include <dm/lists.h>
efd0b791
MT
35
36#include "fec_mxc.h"
6a895d03 37#include <eth_phy.h>
567173a6 38
0b23fb36
IY
39DECLARE_GLOBAL_DATA_PTR;
40
bc1ce150
MV
41/*
42 * Timeout the transfer after 5 mS. This is usually a bit more, since
43 * the code in the tightloops this timeout is used in adds some overhead.
44 */
45#define FEC_XFER_TIMEOUT 5000
46
db5b7f56
FE
47/*
48 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
49 * 64-byte alignment in the DMA RX FEC buffer.
50 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
51 * satisfies the alignment on other SoCs (32-bytes)
52 */
53#define FEC_DMA_RX_MINALIGN 64
54
0b23fb36
IY
55#ifndef CONFIG_MII
56#error "CONFIG_MII has to be defined!"
57#endif
58
be7e87e2
MV
59/*
60 * The i.MX28 operates with packets in big endian. We need to swap them before
61 * sending and after receiving.
62 */
5c1ad3e6 63#ifdef CONFIG_MX28
6e7df1d1 64#define CFG_FEC_MXC_SWAP_PACKET
5c1ad3e6
EN
65#endif
66
67#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
68
69/* Check various alignment issues at compile time */
70#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
71#error "ARCH_DMA_MINALIGN must be multiple of 16!"
72#endif
73
74#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
75 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
76#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
be7e87e2
MV
77#endif
78
0b23fb36
IY
79#undef DEBUG
80
6e7df1d1 81#ifdef CFG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
82static void swap_packet(uint32_t *packet, int length)
83{
84 int i;
85
86 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
87 packet[i] = __swab32(packet[i]);
88}
89#endif
90
567173a6
JT
91/* MII-interface related functions */
92static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
93 uint8_t regaddr)
0b23fb36 94{
0b23fb36
IY
95 uint32_t reg; /* convenient holder for the PHY register */
96 uint32_t phy; /* convenient holder for the PHY */
97 uint32_t start;
13947f43 98 int val;
0b23fb36
IY
99
100 /*
101 * reading from any PHY's register is done by properly
102 * programming the FEC's MII data register.
103 */
d133b881 104 writel(FEC_IEVENT_MII, &eth->ievent);
567173a6
JT
105 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
106 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
0b23fb36
IY
107
108 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 109 phy | reg, &eth->mii_data);
0b23fb36 110
567173a6 111 /* wait for the related interrupt */
a60d1e5b 112 start = get_timer(0);
d133b881 113 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
114 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
115 printf("Read MDIO failed...\n");
116 return -1;
117 }
118 }
119
567173a6 120 /* clear mii interrupt bit */
d133b881 121 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36 122
567173a6 123 /* it's now safe to read the PHY's register */
13947f43 124 val = (unsigned short)readl(&eth->mii_data);
567173a6
JT
125 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
126 regaddr, val);
13947f43 127 return val;
0b23fb36
IY
128}
129
673f6597
PF
130#ifndef imx_get_fecclk
131u32 __weak imx_get_fecclk(void)
132{
133 return 0;
134}
135#endif
136
58ec4d33
AG
137static int fec_get_clk_rate(void *udev, int idx)
138{
58ec4d33
AG
139 struct fec_priv *fec;
140 struct udevice *dev;
141 int ret;
142
673f6597
PF
143 if (IS_ENABLED(CONFIG_IMX8) ||
144 CONFIG_IS_ENABLED(CLK_CCF)) {
145 dev = udev;
146 if (!dev) {
b247fa7b 147 ret = uclass_get_device_by_seq(UCLASS_ETH, idx, &dev);
673f6597
PF
148 if (ret < 0) {
149 debug("Can't get FEC udev: %d\n", ret);
150 return ret;
151 }
58ec4d33 152 }
58ec4d33 153
673f6597
PF
154 fec = dev_get_priv(dev);
155 if (fec)
156 return fec->clk_rate;
58ec4d33 157
673f6597
PF
158 return -EINVAL;
159 } else {
160 return imx_get_fecclk();
161 }
58ec4d33
AG
162}
163
575c5cc0 164static void fec_mii_setspeed(struct ethernet_regs *eth)
4294b248
SB
165{
166 /*
167 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
168 * and do not drop the Preamble.
843a3e58
MR
169 *
170 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
171 * MII_SPEED) register that defines the MDIO output hold time. Earlier
172 * versions are RAZ there, so just ignore the difference and write the
173 * register always.
174 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
175 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
176 * output.
177 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
178 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
179 * holdtime cannot result in a value greater than 3.
4294b248 180 */
58ec4d33
AG
181 u32 pclk;
182 u32 speed;
183 u32 hold;
184 int ret;
185
186 ret = fec_get_clk_rate(NULL, 0);
187 if (ret < 0) {
188 printf("Can't find FEC0 clk rate: %d\n", ret);
189 return;
190 }
191 pclk = ret;
192 speed = DIV_ROUND_UP(pclk, 5000000);
193 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
194
6ba45cc0
MN
195#ifdef FEC_QUIRK_ENET_MAC
196 speed--;
197#endif
843a3e58 198 writel(speed << 1 | hold << 8, &eth->mii_speed);
575c5cc0 199 debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
4294b248 200}
0b23fb36 201
567173a6
JT
202static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
203 uint8_t regaddr, uint16_t data)
13947f43 204{
0b23fb36
IY
205 uint32_t reg; /* convenient holder for the PHY register */
206 uint32_t phy; /* convenient holder for the PHY */
207 uint32_t start;
208
567173a6
JT
209 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
210 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
0b23fb36
IY
211
212 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 213 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36 214
567173a6 215 /* wait for the MII interrupt */
a60d1e5b 216 start = get_timer(0);
d133b881 217 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
218 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
219 printf("Write MDIO failed...\n");
220 return -1;
221 }
222 }
223
567173a6 224 /* clear MII interrupt bit */
d133b881 225 writel(FEC_IEVENT_MII, &eth->ievent);
567173a6
JT
226 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
227 regaddr, data);
0b23fb36
IY
228
229 return 0;
230}
231
567173a6
JT
232static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
233 int regaddr)
13947f43 234{
567173a6 235 return fec_mdio_read(bus->priv, phyaddr, regaddr);
13947f43
TK
236}
237
567173a6
JT
238static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
239 int regaddr, u16 data)
13947f43 240{
567173a6 241 return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
13947f43
TK
242}
243
244#ifndef CONFIG_PHYLIB
0b23fb36
IY
245static int miiphy_restart_aneg(struct eth_device *dev)
246{
b774fe9d
SB
247 int ret = 0;
248#if !defined(CONFIG_FEC_MXC_NO_ANEG)
9e27e9dc 249 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 250 struct ethernet_regs *eth = fec->bus->priv;
9e27e9dc 251
0b23fb36
IY
252 /*
253 * Wake up from sleep if necessary
254 * Reset PHY, then delay 300ns
255 */
13947f43 256 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
0b23fb36
IY
257 udelay(1000);
258
567173a6 259 /* Set the auto-negotiation advertisement register bits */
13947f43 260 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
567173a6
JT
261 LPA_100FULL | LPA_100HALF | LPA_10FULL |
262 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
13947f43 263 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
567173a6 264 BMCR_ANENABLE | BMCR_ANRESTART);
2e5f4421
MV
265
266 if (fec->mii_postcall)
267 ret = fec->mii_postcall(fec->phy_id);
268
b774fe9d 269#endif
2e5f4421 270 return ret;
0b23fb36
IY
271}
272
273static int miiphy_wait_aneg(struct eth_device *dev)
274{
275 uint32_t start;
13947f43 276 int status;
9e27e9dc 277 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 278 struct ethernet_regs *eth = fec->bus->priv;
0b23fb36 279
567173a6 280 /* Wait for AN completion */
a60d1e5b 281 start = get_timer(0);
0b23fb36
IY
282 do {
283 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
284 printf("%s: Autonegotiation timeout\n", dev->name);
285 return -1;
286 }
287
13947f43
TK
288 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
289 if (status < 0) {
290 printf("%s: Autonegotiation failed. status: %d\n",
567173a6 291 dev->name, status);
0b23fb36
IY
292 return -1;
293 }
8ef583a0 294 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
295
296 return 0;
297}
13947f43
TK
298#endif
299
0b23fb36
IY
300static int fec_rx_task_enable(struct fec_priv *fec)
301{
c0b5a3bb 302 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
0b23fb36
IY
303 return 0;
304}
305
306static int fec_rx_task_disable(struct fec_priv *fec)
307{
308 return 0;
309}
310
311static int fec_tx_task_enable(struct fec_priv *fec)
312{
c0b5a3bb 313 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
0b23fb36
IY
314 return 0;
315}
316
317static int fec_tx_task_disable(struct fec_priv *fec)
318{
319 return 0;
320}
321
322/**
323 * Initialize receive task's buffer descriptors
324 * @param[in] fec all we know about the device yet
325 * @param[in] count receive buffer count to be allocated
5c1ad3e6 326 * @param[in] dsize desired size of each receive buffer
185f812c 327 * Return: 0 on success
0b23fb36 328 *
79e5f27b 329 * Init all RX descriptors to default values.
0b23fb36 330 */
79e5f27b 331static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
0b23fb36 332{
5c1ad3e6 333 uint32_t size;
f24e482a 334 ulong data;
5c1ad3e6
EN
335 int i;
336
0b23fb36 337 /*
79e5f27b
MV
338 * Reload the RX descriptors with default values and wipe
339 * the RX buffers.
0b23fb36 340 */
5c1ad3e6
EN
341 size = roundup(dsize, ARCH_DMA_MINALIGN);
342 for (i = 0; i < count; i++) {
f24e482a
YL
343 data = fec->rbd_base[i].data_pointer;
344 memset((void *)data, 0, dsize);
345 flush_dcache_range(data, data + size);
79e5f27b
MV
346
347 fec->rbd_base[i].status = FEC_RBD_EMPTY;
348 fec->rbd_base[i].data_length = 0;
5c1ad3e6
EN
349 }
350
351 /* Mark the last RBD to close the ring. */
79e5f27b 352 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
0b23fb36
IY
353 fec->rbd_index = 0;
354
f24e482a
YL
355 flush_dcache_range((ulong)fec->rbd_base,
356 (ulong)fec->rbd_base + size);
0b23fb36
IY
357}
358
359/**
360 * Initialize transmit task's buffer descriptors
361 * @param[in] fec all we know about the device yet
362 *
363 * Transmit buffers are created externally. We only have to init the BDs here.\n
364 * Note: There is a race condition in the hardware. When only one BD is in
365 * use it must be marked with the WRAP bit to use it for every transmitt.
366 * This bit in combination with the READY bit results into double transmit
367 * of each data buffer. It seems the state machine checks READY earlier then
368 * resetting it after the first transfer.
369 * Using two BDs solves this issue.
370 */
371static void fec_tbd_init(struct fec_priv *fec)
372{
f24e482a 373 ulong addr = (ulong)fec->tbd_base;
5c1ad3e6
EN
374 unsigned size = roundup(2 * sizeof(struct fec_bd),
375 ARCH_DMA_MINALIGN);
79e5f27b
MV
376
377 memset(fec->tbd_base, 0, size);
378 fec->tbd_base[0].status = 0;
379 fec->tbd_base[1].status = FEC_TBD_WRAP;
0b23fb36 380 fec->tbd_index = 0;
79e5f27b 381 flush_dcache_range(addr, addr + size);
0b23fb36
IY
382}
383
384/**
385 * Mark the given read buffer descriptor as free
386 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
567173a6 387 * @param[in] prbd buffer descriptor to mark free again
0b23fb36 388 */
567173a6 389static void fec_rbd_clean(int last, struct fec_bd *prbd)
0b23fb36 390{
5c1ad3e6 391 unsigned short flags = FEC_RBD_EMPTY;
0b23fb36 392 if (last)
5c1ad3e6 393 flags |= FEC_RBD_WRAP;
567173a6
JT
394 writew(flags, &prbd->status);
395 writew(0, &prbd->data_length);
0b23fb36
IY
396}
397
f54183e6 398static int fec_get_hwaddr(int dev_id, unsigned char *mac)
0b23fb36 399{
be252b65 400 imx_get_mac_from_fuse(dev_id, mac);
0adb5b76 401 return !is_valid_ethaddr(mac);
0b23fb36
IY
402}
403
60752ca8 404static int fecmxc_set_hwaddr(struct udevice *dev)
0b23fb36 405{
60752ca8 406 struct fec_priv *fec = dev_get_priv(dev);
c69cda25 407 struct eth_pdata *pdata = dev_get_plat(dev);
60752ca8 408 uchar *mac = pdata->enetaddr;
0b23fb36
IY
409
410 writel(0, &fec->eth->iaddr1);
411 writel(0, &fec->eth->iaddr2);
412 writel(0, &fec->eth->gaddr1);
413 writel(0, &fec->eth->gaddr2);
414
567173a6 415 /* Set physical address */
0b23fb36 416 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
567173a6 417 &fec->eth->paddr1);
0b23fb36
IY
418 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
419
420 return 0;
421}
422
567173a6 423/* Do initial configuration of the FEC registers */
a5990b26
MV
424static void fec_reg_setup(struct fec_priv *fec)
425{
426 uint32_t rcntrl;
427
567173a6 428 /* Set interrupt mask register */
a5990b26
MV
429 writel(0x00000000, &fec->eth->imask);
430
567173a6 431 /* Clear FEC-Lite interrupt event register(IEVENT) */
a5990b26
MV
432 writel(0xffffffff, &fec->eth->ievent);
433
567173a6 434 /* Set FEC-Lite receive control register(R_CNTRL): */
a5990b26
MV
435
436 /* Start with frame length = 1518, common for all modes. */
437 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
9d2d924a 438 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
439 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
440 if (fec->xcv_type == RGMII)
a5990b26
MV
441 rcntrl |= FEC_RCNTRL_RGMII;
442 else if (fec->xcv_type == RMII)
443 rcntrl |= FEC_RCNTRL_RMII;
a5990b26 444
87550a81
TH
445 if (fec->promisc)
446 rcntrl |= 0x8;
447
a5990b26
MV
448 writel(rcntrl, &fec->eth->r_cntrl);
449}
450
0b23fb36
IY
451/**
452 * Start the FEC engine
453 * @param[in] dev Our device to handle
454 */
60752ca8 455static int fec_open(struct udevice *dev)
0b23fb36 456{
60752ca8 457 struct fec_priv *fec = dev_get_priv(dev);
28774cba 458 int speed;
f24e482a 459 ulong addr, size;
5c1ad3e6 460 int i;
0b23fb36
IY
461
462 debug("fec_open: fec_open(dev)\n");
463 /* full-duplex, heartbeat disabled */
464 writel(1 << 2, &fec->eth->x_cntrl);
465 fec->rbd_index = 0;
466
5c1ad3e6
EN
467 /* Invalidate all descriptors */
468 for (i = 0; i < FEC_RBD_NUM - 1; i++)
469 fec_rbd_clean(0, &fec->rbd_base[i]);
470 fec_rbd_clean(1, &fec->rbd_base[i]);
471
472 /* Flush the descriptors into RAM */
473 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
474 ARCH_DMA_MINALIGN);
f24e482a 475 addr = (ulong)fec->rbd_base;
5c1ad3e6
EN
476 flush_dcache_range(addr, addr + size);
477
28774cba 478#ifdef FEC_QUIRK_ENET_MAC
2ef2b950
JL
479 /* Enable ENET HW endian SWAP */
480 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
567173a6 481 &fec->eth->ecntrl);
2ef2b950
JL
482 /* Enable ENET store and forward mode */
483 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
567173a6 484 &fec->eth->x_wmrk);
2ef2b950 485#endif
567173a6 486 /* Enable FEC-Lite controller */
cb17b92d 487 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
567173a6
JT
488 &fec->eth->ecntrl);
489
a1a34fae
PS
490#ifdef FEC_ENET_ENABLE_TXC_DELAY
491 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_TXC_DLY,
492 &fec->eth->ecntrl);
493#endif
494
495#ifdef FEC_ENET_ENABLE_RXC_DELAY
496 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RXC_DLY,
497 &fec->eth->ecntrl);
498#endif
499
8ba59608 500#if defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
740d6ae5 501 udelay(100);
740d6ae5 502
567173a6 503 /* setup the MII gasket for RMII mode */
740d6ae5
JR
504 /* disable the gasket */
505 writew(0, &fec->eth->miigsk_enr);
506
507 /* wait for the gasket to be disabled */
508 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
509 udelay(2);
510
511 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
512 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
513
514 /* re-enable the gasket */
515 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
516
517 /* wait until MII gasket is ready */
518 int max_loops = 10;
519 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
520 if (--max_loops <= 0) {
521 printf("WAIT for MII Gasket ready timed out\n");
522 break;
523 }
524 }
525#endif
0b23fb36 526
13947f43 527#ifdef CONFIG_PHYLIB
4dc27eed 528 {
13947f43 529 /* Start up the PHY */
11af8d65
TT
530 int ret = phy_startup(fec->phydev);
531
532 if (ret) {
533 printf("Could not initialize PHY %s\n",
534 fec->phydev->dev->name);
535 return ret;
536 }
13947f43 537 speed = fec->phydev->speed;
13947f43
TK
538 }
539#else
0b23fb36 540 miiphy_wait_aneg(edev);
28774cba 541 speed = miiphy_speed(edev->name, fec->phy_id);
9e27e9dc 542 miiphy_duplex(edev->name, fec->phy_id);
13947f43 543#endif
0b23fb36 544
28774cba
TK
545#ifdef FEC_QUIRK_ENET_MAC
546 {
547 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
bcb6e902 548 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
28774cba
TK
549 if (speed == _1000BASET)
550 ecr |= FEC_ECNTRL_SPEED;
551 else if (speed != _100BASET)
552 rcr |= FEC_RCNTRL_RMII_10T;
553 writel(ecr, &fec->eth->ecntrl);
554 writel(rcr, &fec->eth->r_cntrl);
555 }
556#endif
557 debug("%s:Speed=%i\n", __func__, speed);
558
567173a6 559 /* Enable SmartDMA receive task */
0b23fb36
IY
560 fec_rx_task_enable(fec);
561
562 udelay(100000);
563 return 0;
564}
565
60752ca8 566static int fecmxc_init(struct udevice *dev)
0b23fb36 567{
60752ca8 568 struct fec_priv *fec = dev_get_priv(dev);
f24e482a
YL
569 u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
570 u8 *i;
571 ulong addr;
0b23fb36 572
e9319f11 573 /* Initialize MAC address */
60752ca8 574 fecmxc_set_hwaddr(dev);
e9319f11 575
567173a6 576 /* Setup transmit descriptors, there are two in total. */
79e5f27b 577 fec_tbd_init(fec);
0b23fb36 578
79e5f27b
MV
579 /* Setup receive descriptors. */
580 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
0b23fb36 581
a5990b26 582 fec_reg_setup(fec);
9eb3770b 583
f41471e6 584 if (fec->xcv_type != SEVENWIRE)
575c5cc0 585 fec_mii_setspeed(fec->bus->priv);
9eb3770b 586
567173a6 587 /* Set Opcode/Pause Duration Register */
0b23fb36
IY
588 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
589 writel(0x2, &fec->eth->x_wmrk);
567173a6
JT
590
591 /* Set multicast address filter */
0b23fb36
IY
592 writel(0x00000000, &fec->eth->gaddr1);
593 writel(0x00000000, &fec->eth->gaddr2);
594
238a53c7 595 /* Do not access reserved register */
09de565f
PF
596 if (!is_mx6ul() && !is_mx6ull() && !is_imx8() && !is_imx8m() && !is_imx8ulp() &&
597 !is_imx93()) {
fbecbaa1
PF
598 /* clear MIB RAM */
599 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
600 writel(0, i);
0b23fb36 601
fbecbaa1
PF
602 /* FIFO receive start register */
603 writel(0x520, &fec->eth->r_fstart);
604 }
0b23fb36
IY
605
606 /* size and address of each buffer */
607 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
f24e482a
YL
608
609 addr = (ulong)fec->tbd_base;
610 writel((uint32_t)addr, &fec->eth->etdsr);
611
612 addr = (ulong)fec->rbd_base;
613 writel((uint32_t)addr, &fec->eth->erdsr);
0b23fb36 614
13947f43 615#ifndef CONFIG_PHYLIB
0b23fb36
IY
616 if (fec->xcv_type != SEVENWIRE)
617 miiphy_restart_aneg(dev);
13947f43 618#endif
0b23fb36
IY
619 fec_open(dev);
620 return 0;
621}
622
623/**
624 * Halt the FEC engine
625 * @param[in] dev Our device to handle
626 */
60752ca8 627static void fecmxc_halt(struct udevice *dev)
0b23fb36 628{
60752ca8 629 struct fec_priv *fec = dev_get_priv(dev);
0b23fb36
IY
630 int counter = 0xffff;
631
567173a6 632 /* issue graceful stop command to the FEC transmitter if necessary */
cb17b92d 633 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
567173a6 634 &fec->eth->x_cntrl);
0b23fb36
IY
635
636 debug("eth_halt: wait for stop regs\n");
567173a6 637 /* wait for graceful stop to register */
0b23fb36 638 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 639 udelay(1);
0b23fb36 640
567173a6 641 /* Disable SmartDMA tasks */
0b23fb36
IY
642 fec_tx_task_disable(fec);
643 fec_rx_task_disable(fec);
644
645 /*
646 * Disable the Ethernet Controller
647 * Note: this will also reset the BD index counter!
648 */
740d6ae5 649 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
567173a6 650 &fec->eth->ecntrl);
0b23fb36
IY
651 fec->rbd_index = 0;
652 fec->tbd_index = 0;
0b23fb36
IY
653 debug("eth_halt: done\n");
654}
655
656/**
657 * Transmit one frame
658 * @param[in] dev Our ethernet device to handle
659 * @param[in] packet Pointer to the data to be transmitted
660 * @param[in] length Data count in bytes
185f812c 661 * Return: 0 on success
0b23fb36 662 */
60752ca8 663static int fecmxc_send(struct udevice *dev, void *packet, int length)
0b23fb36
IY
664{
665 unsigned int status;
f24e482a
YL
666 u32 size;
667 ulong addr, end;
bc1ce150
MV
668 int timeout = FEC_XFER_TIMEOUT;
669 int ret = 0;
0b23fb36
IY
670
671 /*
672 * This routine transmits one frame. This routine only accepts
673 * 6-byte Ethernet addresses.
674 */
60752ca8 675 struct fec_priv *fec = dev_get_priv(dev);
0b23fb36
IY
676
677 /*
678 * Check for valid length of data.
679 */
680 if ((length > 1500) || (length <= 0)) {
4294b248 681 printf("Payload (%d) too large\n", length);
0b23fb36
IY
682 return -1;
683 }
684
685 /*
5c1ad3e6
EN
686 * Setup the transmit buffer. We are always using the first buffer for
687 * transmission, the second will be empty and only used to stop the DMA
688 * engine. We also flush the packet to RAM here to avoid cache trouble.
0b23fb36 689 */
6e7df1d1 690#ifdef CFG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
691 swap_packet((uint32_t *)packet, length);
692#endif
5c1ad3e6 693
f24e482a 694 addr = (ulong)packet;
efe24d2e
MV
695 end = roundup(addr + length, ARCH_DMA_MINALIGN);
696 addr &= ~(ARCH_DMA_MINALIGN - 1);
697 flush_dcache_range(addr, end);
5c1ad3e6 698
0b23fb36 699 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
f24e482a 700 writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
5c1ad3e6 701
0b23fb36
IY
702 /*
703 * update BD's status now
704 * This block:
705 * - is always the last in a chain (means no chain)
706 * - should transmitt the CRC
707 * - might be the last BD in the list, so the address counter should
708 * wrap (-> keep the WRAP flag)
709 */
710 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
711 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
712 writew(status, &fec->tbd_base[fec->tbd_index].status);
713
5c1ad3e6
EN
714 /*
715 * Flush data cache. This code flushes both TX descriptors to RAM.
716 * After this code, the descriptors will be safely in RAM and we
717 * can start DMA.
718 */
719 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
f24e482a 720 addr = (ulong)fec->tbd_base;
5c1ad3e6
EN
721 flush_dcache_range(addr, addr + size);
722
ab94cd49
MV
723 /*
724 * Below we read the DMA descriptor's last four bytes back from the
725 * DRAM. This is important in order to make sure that all WRITE
726 * operations on the bus that were triggered by previous cache FLUSH
727 * have completed.
728 *
729 * Otherwise, on MX28, it is possible to observe a corruption of the
730 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
731 * for the bus structure of MX28. The scenario is as follows:
732 *
733 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
734 * to DRAM due to flush_dcache_range()
735 * 2) ARM core writes the FEC registers via AHB_ARB2
736 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
737 *
738 * Note that 2) does sometimes finish before 1) due to reordering of
739 * WRITE accesses on the AHB bus, therefore triggering 3) before the
740 * DMA descriptor is fully written into DRAM. This results in occasional
741 * corruption of the DMA descriptor.
742 */
743 readl(addr + size - 4);
744
567173a6 745 /* Enable SmartDMA transmit task */
0b23fb36
IY
746 fec_tx_task_enable(fec);
747
748 /*
5c1ad3e6
EN
749 * Wait until frame is sent. On each turn of the wait cycle, we must
750 * invalidate data cache to see what's really in RAM. Also, we need
751 * barrier here.
0b23fb36 752 */
67449098 753 while (--timeout) {
c0b5a3bb 754 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
bc1ce150 755 break;
0b23fb36 756 }
5c1ad3e6 757
f599288d 758 if (!timeout) {
67449098 759 ret = -EINVAL;
f599288d
FE
760 goto out;
761 }
762
763 /*
764 * The TDAR bit is cleared when the descriptors are all out from TX
765 * but on mx6solox we noticed that the READY bit is still not cleared
766 * right after TDAR.
767 * These are two distinct signals, and in IC simulation, we found that
768 * TDAR always gets cleared prior than the READY bit of last BD becomes
769 * cleared.
770 * In mx6solox, we use a later version of FEC IP. It looks like that
771 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
772 * version.
773 *
774 * Fix this by polling the READY bit of BD after the TDAR polling,
775 * which covers the mx6solox case and does not harm the other SoCs.
776 */
777 timeout = FEC_XFER_TIMEOUT;
778 while (--timeout) {
779 invalidate_dcache_range(addr, addr + size);
780 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
781 FEC_TBD_READY))
782 break;
783 }
67449098 784
f599288d 785 if (!timeout)
67449098
MV
786 ret = -EINVAL;
787
f599288d 788out:
67449098 789 debug("fec_send: status 0x%x index %d ret %i\n",
567173a6
JT
790 readw(&fec->tbd_base[fec->tbd_index].status),
791 fec->tbd_index, ret);
0b23fb36
IY
792 /* for next transmission use the other buffer */
793 if (fec->tbd_index)
794 fec->tbd_index = 0;
795 else
796 fec->tbd_index = 1;
797
bc1ce150 798 return ret;
0b23fb36
IY
799}
800
801/**
802 * Pull one frame from the card
803 * @param[in] dev Our ethernet device to handle
185f812c 804 * Return: Length of packet read
0b23fb36 805 */
60752ca8 806static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
0b23fb36 807{
60752ca8 808 struct fec_priv *fec = dev_get_priv(dev);
0b23fb36
IY
809 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
810 unsigned long ievent;
811 int frame_length, len = 0;
0b23fb36 812 uint16_t bd_status;
f24e482a 813 ulong addr, size, end;
5c1ad3e6 814 int i;
07763ac9 815
07763ac9
YL
816 *packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
817 if (*packetp == 0) {
818 printf("%s: error allocating packetp\n", __func__);
819 return -ENOMEM;
820 }
0b23fb36 821
567173a6 822 /* Check if any critical events have happened */
0b23fb36
IY
823 ievent = readl(&fec->eth->ievent);
824 writel(ievent, &fec->eth->ievent);
eda959f3 825 debug("fec_recv: ievent 0x%lx\n", ievent);
0b23fb36 826 if (ievent & FEC_IEVENT_BABR) {
60752ca8
JT
827 fecmxc_halt(dev);
828 fecmxc_init(dev);
0b23fb36
IY
829 printf("some error: 0x%08lx\n", ievent);
830 return 0;
831 }
832 if (ievent & FEC_IEVENT_HBERR) {
833 /* Heartbeat error */
834 writel(0x00000001 | readl(&fec->eth->x_cntrl),
567173a6 835 &fec->eth->x_cntrl);
0b23fb36
IY
836 }
837 if (ievent & FEC_IEVENT_GRA) {
838 /* Graceful stop complete */
839 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
60752ca8 840 fecmxc_halt(dev);
0b23fb36 841 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
567173a6 842 &fec->eth->x_cntrl);
60752ca8 843 fecmxc_init(dev);
0b23fb36
IY
844 }
845 }
846
847 /*
5c1ad3e6
EN
848 * Read the buffer status. Before the status can be read, the data cache
849 * must be invalidated, because the data in RAM might have been changed
850 * by DMA. The descriptors are properly aligned to cachelines so there's
851 * no need to worry they'd overlap.
852 *
853 * WARNING: By invalidating the descriptor here, we also invalidate
854 * the descriptors surrounding this one. Therefore we can NOT change the
855 * contents of this descriptor nor the surrounding ones. The problem is
856 * that in order to mark the descriptor as processed, we need to change
857 * the descriptor. The solution is to mark the whole cache line when all
858 * descriptors in the cache line are processed.
0b23fb36 859 */
f24e482a 860 addr = (ulong)rbd;
5c1ad3e6
EN
861 addr &= ~(ARCH_DMA_MINALIGN - 1);
862 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
863 invalidate_dcache_range(addr, addr + size);
864
0b23fb36
IY
865 bd_status = readw(&rbd->status);
866 debug("fec_recv: status 0x%x\n", bd_status);
867
868 if (!(bd_status & FEC_RBD_EMPTY)) {
869 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
567173a6
JT
870 ((readw(&rbd->data_length) - 4) > 14)) {
871 /* Get buffer address and size */
b189584b 872 addr = readl(&rbd->data_pointer);
0b23fb36 873 frame_length = readw(&rbd->data_length) - 4;
567173a6 874 /* Invalidate data cache over the buffer */
efe24d2e
MV
875 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
876 addr &= ~(ARCH_DMA_MINALIGN - 1);
877 invalidate_dcache_range(addr, end);
5c1ad3e6 878
567173a6 879 /* Fill the buffer and pass it to upper layers */
6e7df1d1 880#ifdef CFG_FEC_MXC_SWAP_PACKET
b189584b 881 swap_packet((uint32_t *)addr, frame_length);
be7e87e2 882#endif
07763ac9 883
07763ac9 884 memcpy(*packetp, (char *)addr, frame_length);
0b23fb36
IY
885 len = frame_length;
886 } else {
887 if (bd_status & FEC_RBD_ERR)
f24e482a
YL
888 debug("error frame: 0x%08lx 0x%08x\n",
889 addr, bd_status);
0b23fb36 890 }
5c1ad3e6 891
0b23fb36 892 /*
5c1ad3e6
EN
893 * Free the current buffer, restart the engine and move forward
894 * to the next buffer. Here we check if the whole cacheline of
895 * descriptors was already processed and if so, we mark it free
896 * as whole.
0b23fb36 897 */
5c1ad3e6
EN
898 size = RXDESC_PER_CACHELINE - 1;
899 if ((fec->rbd_index & size) == size) {
900 i = fec->rbd_index - size;
f24e482a 901 addr = (ulong)&fec->rbd_base[i];
5c1ad3e6
EN
902 for (; i <= fec->rbd_index ; i++) {
903 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
904 &fec->rbd_base[i]);
905 }
906 flush_dcache_range(addr,
567173a6 907 addr + ARCH_DMA_MINALIGN);
5c1ad3e6
EN
908 }
909
0b23fb36
IY
910 fec_rx_task_enable(fec);
911 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
912 }
913 debug("fec_recv: stop\n");
914
915 return len;
916}
917
ef8e3a3b
TK
918static void fec_set_dev_name(char *dest, int dev_id)
919{
920 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
921}
922
79e5f27b
MV
923static int fec_alloc_descs(struct fec_priv *fec)
924{
925 unsigned int size;
926 int i;
927 uint8_t *data;
f24e482a 928 ulong addr;
79e5f27b
MV
929
930 /* Allocate TX descriptors. */
931 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
932 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
933 if (!fec->tbd_base)
934 goto err_tx;
935
936 /* Allocate RX descriptors. */
937 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
938 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
939 if (!fec->rbd_base)
940 goto err_rx;
941
942 memset(fec->rbd_base, 0, size);
943
944 /* Allocate RX buffers. */
945
946 /* Maximum RX buffer size. */
db5b7f56 947 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
79e5f27b 948 for (i = 0; i < FEC_RBD_NUM; i++) {
db5b7f56 949 data = memalign(FEC_DMA_RX_MINALIGN, size);
79e5f27b
MV
950 if (!data) {
951 printf("%s: error allocating rxbuf %d\n", __func__, i);
952 goto err_ring;
953 }
954
955 memset(data, 0, size);
956
f24e482a
YL
957 addr = (ulong)data;
958 fec->rbd_base[i].data_pointer = (uint32_t)addr;
79e5f27b
MV
959 fec->rbd_base[i].status = FEC_RBD_EMPTY;
960 fec->rbd_base[i].data_length = 0;
961 /* Flush the buffer to memory. */
f24e482a 962 flush_dcache_range(addr, addr + size);
79e5f27b
MV
963 }
964
965 /* Mark the last RBD to close the ring. */
966 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
967
968 fec->rbd_index = 0;
969 fec->tbd_index = 0;
970
971 return 0;
972
973err_ring:
f24e482a
YL
974 for (; i >= 0; i--) {
975 addr = fec->rbd_base[i].data_pointer;
976 free((void *)addr);
977 }
79e5f27b
MV
978 free(fec->rbd_base);
979err_rx:
980 free(fec->tbd_base);
981err_tx:
982 return -ENOMEM;
983}
984
985static void fec_free_descs(struct fec_priv *fec)
986{
987 int i;
f24e482a 988 ulong addr;
79e5f27b 989
f24e482a
YL
990 for (i = 0; i < FEC_RBD_NUM; i++) {
991 addr = fec->rbd_base[i].data_pointer;
992 free((void *)addr);
993 }
79e5f27b
MV
994 free(fec->rbd_base);
995 free(fec->tbd_base);
996}
997
1bcabd79 998struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
60752ca8 999{
1bcabd79 1000 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
60752ca8
JT
1001 struct mii_dev *bus;
1002 int ret;
1003
1004 bus = mdio_alloc();
1005 if (!bus) {
1006 printf("mdio_alloc failed\n");
1007 return NULL;
1008 }
1009 bus->read = fec_phy_read;
1010 bus->write = fec_phy_write;
1011 bus->priv = eth;
1012 fec_set_dev_name(bus->name, dev_id);
1013
1014 ret = mdio_register(bus);
1015 if (ret) {
1016 printf("mdio_register failed\n");
1017 free(bus);
1018 return NULL;
1019 }
1020 fec_mii_setspeed(eth);
1021 return bus;
1022}
1023
3b8f99a3
TH
1024#ifdef CONFIG_DM_MDIO
1025struct dm_fec_mdio_priv {
1026 struct ethernet_regs *regs;
1027};
1028
1029static int dm_fec_mdio_read(struct udevice *dev, int addr, int devad, int reg)
1030{
1031 struct dm_fec_mdio_priv *priv = dev_get_priv(dev);
1032
1033 return fec_mdio_read(priv->regs, addr, reg);
1034}
1035
1036static int dm_fec_mdio_write(struct udevice *dev, int addr, int devad, int reg, u16 data)
1037{
1038 struct dm_fec_mdio_priv *priv = dev_get_priv(dev);
1039
1040 return fec_mdio_write(priv->regs, addr, reg, data);
1041}
1042
1043static const struct mdio_ops dm_fec_mdio_ops = {
1044 .read = dm_fec_mdio_read,
1045 .write = dm_fec_mdio_write,
1046};
1047
1048static int dm_fec_mdio_probe(struct udevice *dev)
1049{
1050 struct dm_fec_mdio_priv *priv = dev_get_priv(dev);
1051
1052 priv->regs = (struct ethernet_regs *)ofnode_get_addr(dev_ofnode(dev->parent));
1053
1054 return 0;
1055}
1056
1057U_BOOT_DRIVER(fec_mdio) = {
1058 .name = "fec_mdio",
1059 .id = UCLASS_MDIO,
1060 .probe = dm_fec_mdio_probe,
1061 .ops = &dm_fec_mdio_ops,
1062 .priv_auto = sizeof(struct dm_fec_mdio_priv),
1063};
1064
1065static int dm_fec_bind_mdio(struct udevice *dev)
1066{
1067 struct udevice *mdiodev;
1068 const char *name;
1069 ofnode mdio;
1070 int ret = -ENODEV;
1071
1072 /* for a UCLASS_MDIO driver we need to bind and probe manually
1073 * for an internal MDIO bus that has no dt compatible of its own
1074 */
1075 ofnode_for_each_subnode(mdio, dev_ofnode(dev)) {
1076 name = ofnode_get_name(mdio);
1077
1078 if (strcmp(name, "mdio"))
1079 continue;
1080
1081 ret = device_bind_driver_to_node(dev, "fec_mdio",
1082 name, mdio, &mdiodev);
1083 if (ret) {
1084 printf("%s bind %s failed: %d\n", __func__, name, ret);
1085 break;
1086 }
1087
1088 /* need to probe it as there is no compatible to do so */
1089 ret = uclass_get_device_by_ofnode(UCLASS_MDIO, mdio, &mdiodev);
1090 if (!ret)
1091 return 0;
1092 printf("%s probe %s failed: %d\n", __func__, name, ret);
1093 }
1094
1095 return ret;
1096}
1097#endif
1098
1ed2570f
JT
1099static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1100{
1101 struct fec_priv *priv = dev_get_priv(dev);
c69cda25 1102 struct eth_pdata *pdata = dev_get_plat(dev);
1ed2570f
JT
1103
1104 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1105}
1106
87550a81
TH
1107static int fecmxc_set_promisc(struct udevice *dev, bool enable)
1108{
1109 struct fec_priv *priv = dev_get_priv(dev);
1110
1111 priv->promisc = enable;
1112
1113 return 0;
1114}
1115
07763ac9
YL
1116static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1117{
1118 if (packet)
1119 free(packet);
1120
1121 return 0;
1122}
1123
60752ca8
JT
1124static const struct eth_ops fecmxc_ops = {
1125 .start = fecmxc_init,
1126 .send = fecmxc_send,
1127 .recv = fecmxc_recv,
07763ac9 1128 .free_pkt = fecmxc_free_pkt,
60752ca8
JT
1129 .stop = fecmxc_halt,
1130 .write_hwaddr = fecmxc_set_hwaddr,
1ed2570f 1131 .read_rom_hwaddr = fecmxc_read_rom_hwaddr,
87550a81 1132 .set_promisc = fecmxc_set_promisc,
60752ca8
JT
1133};
1134
89b5bd54 1135static int device_get_phy_addr(struct fec_priv *priv, struct udevice *dev)
774ec60b
MW
1136{
1137 struct ofnode_phandle_args phandle_args;
eccd1329 1138 int reg, ret;
774ec60b 1139
eccd1329
SA
1140 ret = dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0,
1141 &phandle_args);
1142 if (ret) {
69c81d65
TH
1143 priv->phy_of_node = ofnode_find_subnode(dev_ofnode(dev),
1144 "fixed-link");
1145 if (ofnode_valid(priv->phy_of_node))
1146 return 0;
1147 debug("Failed to find phy-handle (err = %d)\n", ret);
eccd1329 1148 return ret;
774ec60b
MW
1149 }
1150
89090661 1151 if (!ofnode_is_enabled(phandle_args.node))
eccd1329 1152 return -ENOENT;
89b5bd54 1153
eccd1329 1154 priv->phy_of_node = phandle_args.node;
774ec60b
MW
1155 reg = ofnode_read_u32_default(phandle_args.node, "reg", 0);
1156
1157 return reg;
1158}
1159
60752ca8
JT
1160static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1161{
3b8f99a3 1162 struct phy_device *phydev = NULL;
774ec60b 1163 int addr;
60752ca8 1164
89b5bd54 1165 addr = device_get_phy_addr(priv, dev);
fa760c32
TR
1166#ifdef CFG_FEC_MXC_PHYADDR
1167 addr = CFG_FEC_MXC_PHYADDR;
60752ca8
JT
1168#endif
1169
3b8f99a3
TH
1170 if (IS_ENABLED(CONFIG_DM_MDIO))
1171 phydev = dm_eth_phy_connect(dev);
1172 if (!phydev)
1173 phydev = phy_connect(priv->bus, addr, dev, priv->interface);
60752ca8
JT
1174 if (!phydev)
1175 return -ENODEV;
1176
60752ca8 1177 priv->phydev = phydev;
89b5bd54 1178 priv->phydev->node = priv->phy_of_node;
60752ca8
JT
1179 phy_config(phydev);
1180
1181 return 0;
1182}
1183
bcee8d67 1184#if CONFIG_IS_ENABLED(DM_GPIO)
efd0b791
MT
1185/* FEC GPIO reset */
1186static void fec_gpio_reset(struct fec_priv *priv)
1187{
1188 debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
1189 if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
1190 dm_gpio_set_value(&priv->phy_reset_gpio, 1);
9b8b9188 1191 mdelay(priv->reset_delay);
efd0b791 1192 dm_gpio_set_value(&priv->phy_reset_gpio, 0);
31d4045d
AC
1193 if (priv->reset_post_delay)
1194 mdelay(priv->reset_post_delay);
efd0b791
MT
1195 }
1196}
1197#endif
1198
80a34e40
MV
1199static int fecmxc_set_ref_clk(struct clk *clk_ref, phy_interface_t interface)
1200{
1201 unsigned int freq;
1202 int ret;
1203
1204 if (!CONFIG_IS_ENABLED(CLK_CCF))
1205 return 0;
1206
1207 if (interface == PHY_INTERFACE_MODE_MII)
1208 freq = 25000000;
1209 else if (interface == PHY_INTERFACE_MODE_RMII)
1210 freq = 50000000;
1211 else if (interface == PHY_INTERFACE_MODE_RGMII ||
1212 interface == PHY_INTERFACE_MODE_RGMII_ID ||
1213 interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1214 interface == PHY_INTERFACE_MODE_RGMII_TXID)
1215 freq = 125000000;
1216 else
1217 return -EINVAL;
1218
1219 ret = clk_set_rate(clk_ref, freq);
1220 if (ret < 0)
1221 return ret;
1222
1223 return 0;
1224}
1225
60752ca8
JT
1226static int fecmxc_probe(struct udevice *dev)
1227{
cd435919 1228 bool dm_mii_bus = true;
c69cda25 1229 struct eth_pdata *pdata = dev_get_plat(dev);
60752ca8
JT
1230 struct fec_priv *priv = dev_get_priv(dev);
1231 struct mii_dev *bus = NULL;
60752ca8
JT
1232 uint32_t start;
1233 int ret;
1234
4bdc3524
MV
1235 ret = board_interface_eth_init(dev, pdata->phy_interface);
1236 if (ret)
1237 return ret;
1238
24f95e14 1239 if (IS_ENABLED(CONFIG_IMX_MODULE_FUSE)) {
3b26d527
PF
1240 if (enet_fused((ulong)priv->eth)) {
1241 printf("SoC fuse indicates Ethernet@0x%lx is unavailable.\n", (ulong)priv->eth);
1242 return -ENODEV;
1243 }
1244 }
1245
58ec4d33
AG
1246 if (IS_ENABLED(CONFIG_IMX8)) {
1247 ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1248 if (ret < 0) {
1249 debug("Can't get FEC ipg clk: %d\n", ret);
1250 return ret;
1251 }
1252 ret = clk_enable(&priv->ipg_clk);
1253 if (ret < 0) {
1254 debug("Can't enable FEC ipg clk: %d\n", ret);
1255 return ret;
1256 }
1257
673f6597
PF
1258 priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1259 } else if (CONFIG_IS_ENABLED(CLK_CCF)) {
1260 ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1261 if (ret < 0) {
1262 debug("Can't get FEC ipg clk: %d\n", ret);
1263 return ret;
1264 }
1265 ret = clk_enable(&priv->ipg_clk);
1266 if(ret)
1267 return ret;
1268
1269 ret = clk_get_by_name(dev, "ahb", &priv->ahb_clk);
1270 if (ret < 0) {
1271 debug("Can't get FEC ahb clk: %d\n", ret);
1272 return ret;
1273 }
1274 ret = clk_enable(&priv->ahb_clk);
1275 if (ret)
1276 return ret;
1277
1278 ret = clk_get_by_name(dev, "enet_out", &priv->clk_enet_out);
1279 if (!ret) {
1280 ret = clk_enable(&priv->clk_enet_out);
1281 if (ret)
1282 return ret;
1283 }
1284
1285 ret = clk_get_by_name(dev, "enet_clk_ref", &priv->clk_ref);
1286 if (!ret) {
80a34e40
MV
1287 ret = fecmxc_set_ref_clk(&priv->clk_ref,
1288 pdata->phy_interface);
1289 if (ret)
1290 return ret;
1291
673f6597
PF
1292 ret = clk_enable(&priv->clk_ref);
1293 if (ret)
1294 return ret;
1295 }
1296
1297 ret = clk_get_by_name(dev, "ptp", &priv->clk_ptp);
1298 if (!ret) {
1299 ret = clk_enable(&priv->clk_ptp);
1300 if (ret)
1301 return ret;
1302 }
1303
58ec4d33
AG
1304 priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1305 }
1306
60752ca8
JT
1307 ret = fec_alloc_descs(priv);
1308 if (ret)
1309 return ret;
1310
ad8c43cb
MF
1311#ifdef CONFIG_DM_REGULATOR
1312 if (priv->phy_supply) {
9dc7d527 1313 ret = regulator_set_enable_if_allowed(priv->phy_supply, true);
ad8c43cb
MF
1314 if (ret) {
1315 printf("%s: Error enabling phy supply\n", dev->name);
1316 return ret;
1317 }
1318 }
1319#endif
1320
bcee8d67 1321#if CONFIG_IS_ENABLED(DM_GPIO)
efd0b791
MT
1322 fec_gpio_reset(priv);
1323#endif
60752ca8 1324 /* Reset chip. */
567173a6
JT
1325 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1326 &priv->eth->ecntrl);
60752ca8
JT
1327 start = get_timer(0);
1328 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1329 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
f697addf 1330 printf("FEC MXC: Timeout resetting chip\n");
60752ca8
JT
1331 goto err_timeout;
1332 }
1333 udelay(10);
1334 }
1335
1336 fec_reg_setup(priv);
60752ca8 1337
8b85dfc6 1338 priv->dev_id = dev_seq(dev);
6a895d03 1339
3b8f99a3
TH
1340#ifdef CONFIG_DM_MDIO
1341 ret = dm_fec_bind_mdio(dev);
1342 if (ret && ret != -ENODEV)
1343 return ret;
1344#endif
1345
6a895d03
YL
1346#ifdef CONFIG_DM_ETH_PHY
1347 bus = eth_phy_get_mdio_bus(dev);
1348#endif
1349
1350 if (!bus) {
cd435919 1351 dm_mii_bus = false;
fbada485 1352#ifdef CONFIG_FEC_MXC_MDIO_BASE
8b85dfc6
SG
1353 bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE,
1354 dev_seq(dev));
fbada485 1355#else
8b85dfc6 1356 bus = fec_get_miibus((ulong)priv->eth, dev_seq(dev));
fbada485 1357#endif
6a895d03 1358 }
306dd7da
LW
1359 if (!bus) {
1360 ret = -ENOMEM;
1361 goto err_mii;
1362 }
1363
6a895d03
YL
1364#ifdef CONFIG_DM_ETH_PHY
1365 eth_phy_set_mdio_bus(dev, bus);
1366#endif
1367
306dd7da 1368 priv->bus = bus;
306dd7da 1369 priv->interface = pdata->phy_interface;
0126c641
MF
1370 switch (priv->interface) {
1371 case PHY_INTERFACE_MODE_MII:
1372 priv->xcv_type = MII100;
1373 break;
1374 case PHY_INTERFACE_MODE_RMII:
1375 priv->xcv_type = RMII;
1376 break;
1377 case PHY_INTERFACE_MODE_RGMII:
1378 case PHY_INTERFACE_MODE_RGMII_ID:
1379 case PHY_INTERFACE_MODE_RGMII_RXID:
1380 case PHY_INTERFACE_MODE_RGMII_TXID:
1381 priv->xcv_type = RGMII;
1382 break;
1383 default:
08f1d58a
TR
1384 priv->xcv_type = MII100;
1385 printf("Unsupported interface type %d defaulting to MII100\n",
1386 priv->interface);
0126c641
MF
1387 break;
1388 }
1389
306dd7da
LW
1390 ret = fec_phy_init(priv, dev);
1391 if (ret)
1392 goto err_phy;
1393
60752ca8
JT
1394 return 0;
1395
60752ca8 1396err_phy:
cd435919
SA
1397 if (!dm_mii_bus) {
1398 mdio_unregister(bus);
1399 free(bus);
1400 }
60752ca8 1401err_mii:
2087eac2 1402err_timeout:
60752ca8
JT
1403 fec_free_descs(priv);
1404 return ret;
1405}
1406
1407static int fecmxc_remove(struct udevice *dev)
1408{
1409 struct fec_priv *priv = dev_get_priv(dev);
1410
1411 free(priv->phydev);
1412 fec_free_descs(priv);
1413 mdio_unregister(priv->bus);
1414 mdio_free(priv->bus);
1415
ad8c43cb
MF
1416#ifdef CONFIG_DM_REGULATOR
1417 if (priv->phy_supply)
1418 regulator_set_enable(priv->phy_supply, false);
1419#endif
1420
60752ca8
JT
1421 return 0;
1422}
1423
d1998a9f 1424static int fecmxc_of_to_plat(struct udevice *dev)
60752ca8 1425{
efd0b791 1426 int ret = 0;
c69cda25 1427 struct eth_pdata *pdata = dev_get_plat(dev);
60752ca8 1428 struct fec_priv *priv = dev_get_priv(dev);
60752ca8 1429
2548493a 1430 pdata->iobase = dev_read_addr(dev);
60752ca8
JT
1431 priv->eth = (struct ethernet_regs *)pdata->iobase;
1432
123ca114 1433 pdata->phy_interface = dev_read_phy_mode(dev);
ffb0f6f4 1434 if (pdata->phy_interface == PHY_INTERFACE_MODE_NA)
60752ca8 1435 return -EINVAL;
60752ca8 1436
ad8c43cb
MF
1437#ifdef CONFIG_DM_REGULATOR
1438 device_get_supply_regulator(dev, "phy-supply", &priv->phy_supply);
1439#endif
1440
bcee8d67 1441#if CONFIG_IS_ENABLED(DM_GPIO)
efd0b791 1442 ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
4223fb0e 1443 &priv->phy_reset_gpio, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
331fcabe
MF
1444 if (ret < 0)
1445 return 0; /* property is optional, don't return error! */
60752ca8 1446
331fcabe 1447 priv->reset_delay = dev_read_u32_default(dev, "phy-reset-duration", 1);
efd0b791 1448 if (priv->reset_delay > 1000) {
331fcabe
MF
1449 printf("FEC MXC: phy reset duration should be <= 1000ms\n");
1450 /* property value wrong, use default value */
1451 priv->reset_delay = 1;
efd0b791 1452 }
31d4045d
AC
1453
1454 priv->reset_post_delay = dev_read_u32_default(dev,
1455 "phy-reset-post-delay",
1456 0);
1457 if (priv->reset_post_delay > 1000) {
1458 printf("FEC MXC: phy reset post delay should be <= 1000ms\n");
1459 /* property value wrong, use default value */
1460 priv->reset_post_delay = 0;
1461 }
efd0b791
MT
1462#endif
1463
331fcabe 1464 return 0;
60752ca8
JT
1465}
1466
1467static const struct udevice_id fecmxc_ids[] = {
7782f4e4 1468 { .compatible = "fsl,imx28-fec" },
60752ca8 1469 { .compatible = "fsl,imx6q-fec" },
979e0fc8
PF
1470 { .compatible = "fsl,imx6sl-fec" },
1471 { .compatible = "fsl,imx6sx-fec" },
1472 { .compatible = "fsl,imx6ul-fec" },
948239ea 1473 { .compatible = "fsl,imx53-fec" },
58ec4d33 1474 { .compatible = "fsl,imx7d-fec" },
27589e7d 1475 { .compatible = "fsl,mvf600-fec" },
09de565f 1476 { .compatible = "fsl,imx93-fec" },
60752ca8
JT
1477 { }
1478};
1479
1480U_BOOT_DRIVER(fecmxc_gem) = {
1481 .name = "fecmxc",
1482 .id = UCLASS_ETH,
1483 .of_match = fecmxc_ids,
d1998a9f 1484 .of_to_plat = fecmxc_of_to_plat,
60752ca8
JT
1485 .probe = fecmxc_probe,
1486 .remove = fecmxc_remove,
1487 .ops = &fecmxc_ops,
41575d8e 1488 .priv_auto = sizeof(struct fec_priv),
caa4daa2 1489 .plat_auto = sizeof(struct eth_pdata),
60752ca8 1490};