]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/mvneta.c
mvebu: neta: Add support for board init function
[people/ms/u-boot.git] / drivers / net / mvneta.c
CommitLineData
19fc2eae
SR
1/*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * U-Boot version:
e3b9c98a 5 * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
19fc2eae
SR
6 *
7 * Based on the Linux version which is:
8 * Copyright (C) 2012 Marvell
9 *
10 * Rami Rosen <rosenr@marvell.com>
11 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
12 *
13 * SPDX-License-Identifier: GPL-2.0
14 */
15
16#include <common.h>
e3b9c98a 17#include <dm.h>
19fc2eae
SR
18#include <net.h>
19#include <netdev.h>
20#include <config.h>
21#include <malloc.h>
22#include <asm/io.h>
1221ce45 23#include <linux/errno.h>
19fc2eae
SR
24#include <phy.h>
25#include <miiphy.h>
26#include <watchdog.h>
27#include <asm/arch/cpu.h>
28#include <asm/arch/soc.h>
29#include <linux/compat.h>
30#include <linux/mbus.h>
31
e3b9c98a
SR
32DECLARE_GLOBAL_DATA_PTR;
33
19fc2eae
SR
34#if !defined(CONFIG_PHYLIB)
35# error Marvell mvneta requires PHYLIB
36#endif
37
38/* Some linux -> U-Boot compatibility stuff */
39#define netdev_err(dev, fmt, args...) \
40 printf(fmt, ##args)
41#define netdev_warn(dev, fmt, args...) \
42 printf(fmt, ##args)
43#define netdev_info(dev, fmt, args...) \
44 printf(fmt, ##args)
45
46#define CONFIG_NR_CPUS 1
19fc2eae
SR
47#define ETH_HLEN 14 /* Total octets in header */
48
49/* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
50#define WRAP (2 + ETH_HLEN + 4 + 32)
51#define MTU 1500
52#define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
53
54#define MVNETA_SMI_TIMEOUT 10000
55
56/* Registers */
57#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
58#define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
59#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
60#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
61#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
62#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
63#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
64#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
65#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
66#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
67#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
68#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
69#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
70#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
71#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
72#define MVNETA_PORT_RX_RESET 0x1cc0
73#define MVNETA_PORT_RX_DMA_RESET BIT(0)
74#define MVNETA_PHY_ADDR 0x2000
75#define MVNETA_PHY_ADDR_MASK 0x1f
76#define MVNETA_SMI 0x2004
77#define MVNETA_PHY_REG_MASK 0x1f
78/* SMI register fields */
79#define MVNETA_SMI_DATA_OFFS 0 /* Data */
80#define MVNETA_SMI_DATA_MASK (0xffff << MVNETA_SMI_DATA_OFFS)
81#define MVNETA_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
82#define MVNETA_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
83#define MVNETA_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
84#define MVNETA_SMI_OPCODE_READ (1 << MVNETA_SMI_OPCODE_OFFS)
85#define MVNETA_SMI_READ_VALID (1 << 27) /* Read Valid */
86#define MVNETA_SMI_BUSY (1 << 28) /* Busy */
87#define MVNETA_MBUS_RETRY 0x2010
88#define MVNETA_UNIT_INTR_CAUSE 0x2080
89#define MVNETA_UNIT_CONTROL 0x20B0
90#define MVNETA_PHY_POLLING_ENABLE BIT(1)
91#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
92#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
93#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
544eefe0 94#define MVNETA_WIN_SIZE_MASK (0xffff0000)
19fc2eae 95#define MVNETA_BASE_ADDR_ENABLE 0x2290
544eefe0
SR
96#define MVNETA_BASE_ADDR_ENABLE_BIT 0x1
97#define MVNETA_PORT_ACCESS_PROTECT 0x2294
98#define MVNETA_PORT_ACCESS_PROTECT_WIN0_RW 0x3
19fc2eae
SR
99#define MVNETA_PORT_CONFIG 0x2400
100#define MVNETA_UNI_PROMISC_MODE BIT(0)
101#define MVNETA_DEF_RXQ(q) ((q) << 1)
102#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
103#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
104#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
105#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
106#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
107#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
108#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
109 MVNETA_DEF_RXQ_ARP(q) | \
110 MVNETA_DEF_RXQ_TCP(q) | \
111 MVNETA_DEF_RXQ_UDP(q) | \
112 MVNETA_DEF_RXQ_BPDU(q) | \
113 MVNETA_TX_UNSET_ERR_SUM | \
114 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
115#define MVNETA_PORT_CONFIG_EXTEND 0x2404
116#define MVNETA_MAC_ADDR_LOW 0x2414
117#define MVNETA_MAC_ADDR_HIGH 0x2418
118#define MVNETA_SDMA_CONFIG 0x241c
119#define MVNETA_SDMA_BRST_SIZE_16 4
120#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
121#define MVNETA_RX_NO_DATA_SWAP BIT(4)
122#define MVNETA_TX_NO_DATA_SWAP BIT(5)
123#define MVNETA_DESC_SWAP BIT(6)
124#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
125#define MVNETA_PORT_STATUS 0x2444
126#define MVNETA_TX_IN_PRGRS BIT(1)
127#define MVNETA_TX_FIFO_EMPTY BIT(8)
128#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
129#define MVNETA_SERDES_CFG 0x24A0
130#define MVNETA_SGMII_SERDES_PROTO 0x0cc7
131#define MVNETA_QSGMII_SERDES_PROTO 0x0667
132#define MVNETA_TYPE_PRIO 0x24bc
133#define MVNETA_FORCE_UNI BIT(21)
134#define MVNETA_TXQ_CMD_1 0x24e4
135#define MVNETA_TXQ_CMD 0x2448
136#define MVNETA_TXQ_DISABLE_SHIFT 8
137#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
138#define MVNETA_ACC_MODE 0x2500
139#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
140#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
141#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
142#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
143
144/* Exception Interrupt Port/Queue Cause register */
145
146#define MVNETA_INTR_NEW_CAUSE 0x25a0
147#define MVNETA_INTR_NEW_MASK 0x25a4
148
149/* bits 0..7 = TXQ SENT, one bit per queue.
150 * bits 8..15 = RXQ OCCUP, one bit per queue.
151 * bits 16..23 = RXQ FREE, one bit per queue.
152 * bit 29 = OLD_REG_SUM, see old reg ?
153 * bit 30 = TX_ERR_SUM, one bit for 4 ports
154 * bit 31 = MISC_SUM, one bit for 4 ports
155 */
156#define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
157#define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
158#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
159#define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
160
161#define MVNETA_INTR_OLD_CAUSE 0x25a8
162#define MVNETA_INTR_OLD_MASK 0x25ac
163
164/* Data Path Port/Queue Cause Register */
165#define MVNETA_INTR_MISC_CAUSE 0x25b0
166#define MVNETA_INTR_MISC_MASK 0x25b4
167#define MVNETA_INTR_ENABLE 0x25b8
168
169#define MVNETA_RXQ_CMD 0x2680
170#define MVNETA_RXQ_DISABLE_SHIFT 8
171#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
172#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
173#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
174#define MVNETA_GMAC_CTRL_0 0x2c00
175#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
176#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
177#define MVNETA_GMAC0_PORT_ENABLE BIT(0)
178#define MVNETA_GMAC_CTRL_2 0x2c08
179#define MVNETA_GMAC2_PCS_ENABLE BIT(3)
180#define MVNETA_GMAC2_PORT_RGMII BIT(4)
181#define MVNETA_GMAC2_PORT_RESET BIT(6)
182#define MVNETA_GMAC_STATUS 0x2c10
183#define MVNETA_GMAC_LINK_UP BIT(0)
184#define MVNETA_GMAC_SPEED_1000 BIT(1)
185#define MVNETA_GMAC_SPEED_100 BIT(2)
186#define MVNETA_GMAC_FULL_DUPLEX BIT(3)
187#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
188#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
189#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
190#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
191#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
192#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
193#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
194#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
195#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
196#define MVNETA_GMAC_AN_SPEED_EN BIT(7)
197#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
198#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
199#define MVNETA_MIB_COUNTERS_BASE 0x3080
200#define MVNETA_MIB_LATE_COLLISION 0x7c
201#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
202#define MVNETA_DA_FILT_OTH_MCAST 0x3500
203#define MVNETA_DA_FILT_UCAST_BASE 0x3600
204#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
205#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
206#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
207#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
208#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
209#define MVNETA_TXQ_DEC_SENT_SHIFT 16
210#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
211#define MVNETA_TXQ_SENT_DESC_SHIFT 16
212#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
213#define MVNETA_PORT_TX_RESET 0x3cf0
214#define MVNETA_PORT_TX_DMA_RESET BIT(0)
215#define MVNETA_TX_MTU 0x3e0c
216#define MVNETA_TX_TOKEN_SIZE 0x3e14
217#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
218#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
219#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
220
221/* Descriptor ring Macros */
222#define MVNETA_QUEUE_NEXT_DESC(q, index) \
223 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
224
225/* Various constants */
226
227/* Coalescing */
228#define MVNETA_TXDONE_COAL_PKTS 16
229#define MVNETA_RX_COAL_PKTS 32
230#define MVNETA_RX_COAL_USEC 100
231
232/* The two bytes Marvell header. Either contains a special value used
233 * by Marvell switches when a specific hardware mode is enabled (not
234 * supported by this driver) or is filled automatically by zeroes on
235 * the RX side. Those two bytes being at the front of the Ethernet
236 * header, they allow to have the IP header aligned on a 4 bytes
237 * boundary automatically: the hardware skips those two bytes on its
238 * own.
239 */
240#define MVNETA_MH_SIZE 2
241
242#define MVNETA_VLAN_TAG_LEN 4
243
244#define MVNETA_CPU_D_CACHE_LINE_SIZE 32
245#define MVNETA_TX_CSUM_MAX_SIZE 9800
246#define MVNETA_ACC_MODE_EXT 1
247
248/* Timeout constants */
249#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
250#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
251#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
252
253#define MVNETA_TX_MTU_MAX 0x3ffff
254
255/* Max number of Rx descriptors */
256#define MVNETA_MAX_RXD 16
257
258/* Max number of Tx descriptors */
259#define MVNETA_MAX_TXD 16
260
261/* descriptor aligned size */
262#define MVNETA_DESC_ALIGNED_SIZE 32
263
264struct mvneta_port {
265 void __iomem *base;
266 struct mvneta_rx_queue *rxqs;
267 struct mvneta_tx_queue *txqs;
268
269 u8 mcast_count[256];
270 u16 tx_ring_size;
271 u16 rx_ring_size;
272
273 phy_interface_t phy_interface;
274 unsigned int link;
275 unsigned int duplex;
276 unsigned int speed;
277
278 int init;
279 int phyaddr;
280 struct phy_device *phydev;
281 struct mii_dev *bus;
282};
283
284/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
285 * layout of the transmit and reception DMA descriptors, and their
286 * layout is therefore defined by the hardware design
287 */
288
289#define MVNETA_TX_L3_OFF_SHIFT 0
290#define MVNETA_TX_IP_HLEN_SHIFT 8
291#define MVNETA_TX_L4_UDP BIT(16)
292#define MVNETA_TX_L3_IP6 BIT(17)
293#define MVNETA_TXD_IP_CSUM BIT(18)
294#define MVNETA_TXD_Z_PAD BIT(19)
295#define MVNETA_TXD_L_DESC BIT(20)
296#define MVNETA_TXD_F_DESC BIT(21)
297#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
298 MVNETA_TXD_L_DESC | \
299 MVNETA_TXD_F_DESC)
300#define MVNETA_TX_L4_CSUM_FULL BIT(30)
301#define MVNETA_TX_L4_CSUM_NOT BIT(31)
302
303#define MVNETA_RXD_ERR_CRC 0x0
304#define MVNETA_RXD_ERR_SUMMARY BIT(16)
305#define MVNETA_RXD_ERR_OVERRUN BIT(17)
306#define MVNETA_RXD_ERR_LEN BIT(18)
307#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
308#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
309#define MVNETA_RXD_L3_IP4 BIT(25)
310#define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
311#define MVNETA_RXD_L4_CSUM_OK BIT(30)
312
313struct mvneta_tx_desc {
314 u32 command; /* Options used by HW for packet transmitting.*/
315 u16 reserverd1; /* csum_l4 (for future use) */
316 u16 data_size; /* Data size of transmitted packet in bytes */
317 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
318 u32 reserved2; /* hw_cmd - (for future use, PMT) */
319 u32 reserved3[4]; /* Reserved - (for future use) */
320};
321
322struct mvneta_rx_desc {
323 u32 status; /* Info about received packet */
324 u16 reserved1; /* pnc_info - (for future use, PnC) */
325 u16 data_size; /* Size of received packet in bytes */
326
327 u32 buf_phys_addr; /* Physical address of the buffer */
328 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
329
330 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
331 u16 reserved3; /* prefetch_cmd, for future use */
332 u16 reserved4; /* csum_l4 - (for future use, PnC) */
333
334 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
335 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
336};
337
338struct mvneta_tx_queue {
339 /* Number of this TX queue, in the range 0-7 */
340 u8 id;
341
342 /* Number of TX DMA descriptors in the descriptor ring */
343 int size;
344
345 /* Index of last TX DMA descriptor that was inserted */
346 int txq_put_index;
347
348 /* Index of the TX DMA descriptor to be cleaned up */
349 int txq_get_index;
350
351 /* Virtual address of the TX DMA descriptors array */
352 struct mvneta_tx_desc *descs;
353
354 /* DMA address of the TX DMA descriptors array */
355 dma_addr_t descs_phys;
356
357 /* Index of the last TX DMA descriptor */
358 int last_desc;
359
360 /* Index of the next TX DMA descriptor to process */
361 int next_desc_to_proc;
362};
363
364struct mvneta_rx_queue {
365 /* rx queue number, in the range 0-7 */
366 u8 id;
367
368 /* num of rx descriptors in the rx descriptor ring */
369 int size;
370
371 /* Virtual address of the RX DMA descriptors array */
372 struct mvneta_rx_desc *descs;
373
374 /* DMA address of the RX DMA descriptors array */
375 dma_addr_t descs_phys;
376
377 /* Index of the last RX DMA descriptor */
378 int last_desc;
379
380 /* Index of the next RX DMA descriptor to process */
381 int next_desc_to_proc;
382};
383
384/* U-Boot doesn't use the queues, so set the number to 1 */
385static int rxq_number = 1;
386static int txq_number = 1;
387static int rxq_def;
388
389struct buffer_location {
390 struct mvneta_tx_desc *tx_descs;
391 struct mvneta_rx_desc *rx_descs;
392 u32 rx_buffers;
393};
394
395/*
396 * All 4 interfaces use the same global buffer, since only one interface
397 * can be enabled at once
398 */
399static struct buffer_location buffer_loc;
400
401/*
402 * Page table entries are set to 1MB, or multiples of 1MB
403 * (not < 1MB). driver uses less bd's so use 1MB bdspace.
404 */
405#define BD_SPACE (1 << 20)
406
976feda2
KP
407/*
408 * Dummy implementation that can be overwritten by a board
409 * specific function
410 */
411__weak int board_network_enable(struct mii_dev *bus)
412{
413 return 0;
414}
415
19fc2eae
SR
416/* Utility/helper methods */
417
418/* Write helper method */
419static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
420{
421 writel(data, pp->base + offset);
422}
423
424/* Read helper method */
425static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
426{
427 return readl(pp->base + offset);
428}
429
430/* Clear all MIB counters */
431static void mvneta_mib_counters_clear(struct mvneta_port *pp)
432{
433 int i;
434
435 /* Perform dummy reads from MIB counters */
436 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
437 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
438}
439
440/* Rx descriptors helper methods */
441
442/* Checks whether the RX descriptor having this status is both the first
443 * and the last descriptor for the RX packet. Each RX packet is currently
444 * received through a single RX descriptor, so not having each RX
445 * descriptor with its first and last bits set is an error
446 */
447static int mvneta_rxq_desc_is_first_last(u32 status)
448{
449 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
450 MVNETA_RXD_FIRST_LAST_DESC;
451}
452
453/* Add number of descriptors ready to receive new packets */
454static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
455 struct mvneta_rx_queue *rxq,
456 int ndescs)
457{
458 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
459 * be added at once
460 */
461 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
462 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
463 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
464 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
465 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
466 }
467
468 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
469 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
470}
471
472/* Get number of RX descriptors occupied by received packets */
473static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
474 struct mvneta_rx_queue *rxq)
475{
476 u32 val;
477
478 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
479 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
480}
481
482/* Update num of rx desc called upon return from rx path or
483 * from mvneta_rxq_drop_pkts().
484 */
485static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
486 struct mvneta_rx_queue *rxq,
487 int rx_done, int rx_filled)
488{
489 u32 val;
490
491 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
492 val = rx_done |
493 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
494 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
495 return;
496 }
497
498 /* Only 255 descriptors can be added at once */
499 while ((rx_done > 0) || (rx_filled > 0)) {
500 if (rx_done <= 0xff) {
501 val = rx_done;
502 rx_done = 0;
503 } else {
504 val = 0xff;
505 rx_done -= 0xff;
506 }
507 if (rx_filled <= 0xff) {
508 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
509 rx_filled = 0;
510 } else {
511 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
512 rx_filled -= 0xff;
513 }
514 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
515 }
516}
517
518/* Get pointer to next RX descriptor to be processed by SW */
519static struct mvneta_rx_desc *
520mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
521{
522 int rx_desc = rxq->next_desc_to_proc;
523
524 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
525 return rxq->descs + rx_desc;
526}
527
528/* Tx descriptors helper methods */
529
530/* Update HW with number of TX descriptors to be sent */
531static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
532 struct mvneta_tx_queue *txq,
533 int pend_desc)
534{
535 u32 val;
536
537 /* Only 255 descriptors can be added at once ; Assume caller
538 * process TX desriptors in quanta less than 256
539 */
540 val = pend_desc;
541 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
542}
543
544/* Get pointer to next TX descriptor to be processed (send) by HW */
545static struct mvneta_tx_desc *
546mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
547{
548 int tx_desc = txq->next_desc_to_proc;
549
550 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
551 return txq->descs + tx_desc;
552}
553
554/* Set rxq buf size */
555static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
556 struct mvneta_rx_queue *rxq,
557 int buf_size)
558{
559 u32 val;
560
561 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
562
563 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
564 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
565
566 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
567}
568
569/* Start the Ethernet port RX and TX activity */
570static void mvneta_port_up(struct mvneta_port *pp)
571{
572 int queue;
573 u32 q_map;
574
575 /* Enable all initialized TXs. */
576 mvneta_mib_counters_clear(pp);
577 q_map = 0;
578 for (queue = 0; queue < txq_number; queue++) {
579 struct mvneta_tx_queue *txq = &pp->txqs[queue];
580 if (txq->descs != NULL)
581 q_map |= (1 << queue);
582 }
583 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
584
585 /* Enable all initialized RXQs. */
586 q_map = 0;
587 for (queue = 0; queue < rxq_number; queue++) {
588 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
589 if (rxq->descs != NULL)
590 q_map |= (1 << queue);
591 }
592 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
593}
594
595/* Stop the Ethernet port activity */
596static void mvneta_port_down(struct mvneta_port *pp)
597{
598 u32 val;
599 int count;
600
601 /* Stop Rx port activity. Check port Rx activity. */
602 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
603
604 /* Issue stop command for active channels only */
605 if (val != 0)
606 mvreg_write(pp, MVNETA_RXQ_CMD,
607 val << MVNETA_RXQ_DISABLE_SHIFT);
608
609 /* Wait for all Rx activity to terminate. */
610 count = 0;
611 do {
612 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
613 netdev_warn(pp->dev,
614 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
615 val);
616 break;
617 }
618 mdelay(1);
619
620 val = mvreg_read(pp, MVNETA_RXQ_CMD);
621 } while (val & 0xff);
622
623 /* Stop Tx port activity. Check port Tx activity. Issue stop
624 * command for active channels only
625 */
626 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
627
628 if (val != 0)
629 mvreg_write(pp, MVNETA_TXQ_CMD,
630 (val << MVNETA_TXQ_DISABLE_SHIFT));
631
632 /* Wait for all Tx activity to terminate. */
633 count = 0;
634 do {
635 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
636 netdev_warn(pp->dev,
637 "TIMEOUT for TX stopped status=0x%08x\n",
638 val);
639 break;
640 }
641 mdelay(1);
642
643 /* Check TX Command reg that all Txqs are stopped */
644 val = mvreg_read(pp, MVNETA_TXQ_CMD);
645
646 } while (val & 0xff);
647
648 /* Double check to verify that TX FIFO is empty */
649 count = 0;
650 do {
651 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
652 netdev_warn(pp->dev,
653 "TX FIFO empty timeout status=0x08%x\n",
654 val);
655 break;
656 }
657 mdelay(1);
658
659 val = mvreg_read(pp, MVNETA_PORT_STATUS);
660 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
661 (val & MVNETA_TX_IN_PRGRS));
662
663 udelay(200);
664}
665
666/* Enable the port by setting the port enable bit of the MAC control register */
667static void mvneta_port_enable(struct mvneta_port *pp)
668{
669 u32 val;
670
671 /* Enable port */
672 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
673 val |= MVNETA_GMAC0_PORT_ENABLE;
674 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
675}
676
677/* Disable the port and wait for about 200 usec before retuning */
678static void mvneta_port_disable(struct mvneta_port *pp)
679{
680 u32 val;
681
682 /* Reset the Enable bit in the Serial Control Register */
683 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
684 val &= ~MVNETA_GMAC0_PORT_ENABLE;
685 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
686
687 udelay(200);
688}
689
690/* Multicast tables methods */
691
692/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
693static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
694{
695 int offset;
696 u32 val;
697
698 if (queue == -1) {
699 val = 0;
700 } else {
701 val = 0x1 | (queue << 1);
702 val |= (val << 24) | (val << 16) | (val << 8);
703 }
704
705 for (offset = 0; offset <= 0xc; offset += 4)
706 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
707}
708
709/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
710static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
711{
712 int offset;
713 u32 val;
714
715 if (queue == -1) {
716 val = 0;
717 } else {
718 val = 0x1 | (queue << 1);
719 val |= (val << 24) | (val << 16) | (val << 8);
720 }
721
722 for (offset = 0; offset <= 0xfc; offset += 4)
723 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
724}
725
726/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
727static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
728{
729 int offset;
730 u32 val;
731
732 if (queue == -1) {
733 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
734 val = 0;
735 } else {
736 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
737 val = 0x1 | (queue << 1);
738 val |= (val << 24) | (val << 16) | (val << 8);
739 }
740
741 for (offset = 0; offset <= 0xfc; offset += 4)
742 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
743}
744
745/* This method sets defaults to the NETA port:
746 * Clears interrupt Cause and Mask registers.
747 * Clears all MAC tables.
748 * Sets defaults to all registers.
749 * Resets RX and TX descriptor rings.
750 * Resets PHY.
751 * This method can be called after mvneta_port_down() to return the port
752 * settings to defaults.
753 */
754static void mvneta_defaults_set(struct mvneta_port *pp)
755{
756 int cpu;
757 int queue;
758 u32 val;
759
760 /* Clear all Cause registers */
761 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
762 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
763 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
764
765 /* Mask all interrupts */
766 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
767 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
768 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
769 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
770
771 /* Enable MBUS Retry bit16 */
772 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
773
774 /* Set CPU queue access map - all CPUs have access to all RX
775 * queues and to all TX queues
776 */
777 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
778 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
779 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
780 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
781
782 /* Reset RX and TX DMAs */
783 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
784 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
785
786 /* Disable Legacy WRR, Disable EJP, Release from reset */
787 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
788 for (queue = 0; queue < txq_number; queue++) {
789 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
790 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
791 }
792
793 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
794 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
795
796 /* Set Port Acceleration Mode */
797 val = MVNETA_ACC_MODE_EXT;
798 mvreg_write(pp, MVNETA_ACC_MODE, val);
799
800 /* Update val of portCfg register accordingly with all RxQueue types */
801 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
802 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
803
804 val = 0;
805 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
806 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
807
808 /* Build PORT_SDMA_CONFIG_REG */
809 val = 0;
810
811 /* Default burst size */
812 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
813 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
814 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
815
816 /* Assign port SDMA configuration */
817 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
818
819 /* Enable PHY polling in hardware for U-Boot */
820 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
821 val |= MVNETA_PHY_POLLING_ENABLE;
822 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
823
824 mvneta_set_ucast_table(pp, -1);
825 mvneta_set_special_mcast_table(pp, -1);
826 mvneta_set_other_mcast_table(pp, -1);
827}
828
829/* Set unicast address */
830static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
831 int queue)
832{
833 unsigned int unicast_reg;
834 unsigned int tbl_offset;
835 unsigned int reg_offset;
836
837 /* Locate the Unicast table entry */
838 last_nibble = (0xf & last_nibble);
839
840 /* offset from unicast tbl base */
841 tbl_offset = (last_nibble / 4) * 4;
842
843 /* offset within the above reg */
844 reg_offset = last_nibble % 4;
845
846 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
847
848 if (queue == -1) {
849 /* Clear accepts frame bit at specified unicast DA tbl entry */
850 unicast_reg &= ~(0xff << (8 * reg_offset));
851 } else {
852 unicast_reg &= ~(0xff << (8 * reg_offset));
853 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
854 }
855
856 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
857}
858
859/* Set mac address */
860static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
861 int queue)
862{
863 unsigned int mac_h;
864 unsigned int mac_l;
865
866 if (queue != -1) {
867 mac_l = (addr[4] << 8) | (addr[5]);
868 mac_h = (addr[0] << 24) | (addr[1] << 16) |
869 (addr[2] << 8) | (addr[3] << 0);
870
871 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
872 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
873 }
874
875 /* Accept frames of this address */
876 mvneta_set_ucast_addr(pp, addr[5], queue);
877}
878
879/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
880static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
881 u32 phys_addr, u32 cookie)
882{
883 rx_desc->buf_cookie = cookie;
884 rx_desc->buf_phys_addr = phys_addr;
885}
886
887/* Decrement sent descriptors counter */
888static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
889 struct mvneta_tx_queue *txq,
890 int sent_desc)
891{
892 u32 val;
893
894 /* Only 255 TX descriptors can be updated at once */
895 while (sent_desc > 0xff) {
896 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
897 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
898 sent_desc = sent_desc - 0xff;
899 }
900
901 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
902 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
903}
904
905/* Get number of TX descriptors already sent by HW */
906static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
907 struct mvneta_tx_queue *txq)
908{
909 u32 val;
910 int sent_desc;
911
912 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
913 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
914 MVNETA_TXQ_SENT_DESC_SHIFT;
915
916 return sent_desc;
917}
918
919/* Display more error info */
920static void mvneta_rx_error(struct mvneta_port *pp,
921 struct mvneta_rx_desc *rx_desc)
922{
923 u32 status = rx_desc->status;
924
925 if (!mvneta_rxq_desc_is_first_last(status)) {
926 netdev_err(pp->dev,
927 "bad rx status %08x (buffer oversize), size=%d\n",
928 status, rx_desc->data_size);
929 return;
930 }
931
932 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
933 case MVNETA_RXD_ERR_CRC:
934 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
935 status, rx_desc->data_size);
936 break;
937 case MVNETA_RXD_ERR_OVERRUN:
938 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
939 status, rx_desc->data_size);
940 break;
941 case MVNETA_RXD_ERR_LEN:
942 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
943 status, rx_desc->data_size);
944 break;
945 case MVNETA_RXD_ERR_RESOURCE:
946 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
947 status, rx_desc->data_size);
948 break;
949 }
950}
951
952static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
953 int rxq)
954{
955 return &pp->rxqs[rxq];
956}
957
958
959/* Drop packets received by the RXQ and free buffers */
960static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
961 struct mvneta_rx_queue *rxq)
962{
963 int rx_done;
964
965 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
966 if (rx_done)
967 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
968}
969
970/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
971static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
972 int num)
973{
974 int i;
975
976 for (i = 0; i < num; i++) {
977 u32 addr;
978
979 /* U-Boot special: Fill in the rx buffer addresses */
980 addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
981 mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
982 }
983
984 /* Add this number of RX descriptors as non occupied (ready to
985 * get packets)
986 */
987 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
988
989 return 0;
990}
991
992/* Rx/Tx queue initialization/cleanup methods */
993
994/* Create a specified RX queue */
995static int mvneta_rxq_init(struct mvneta_port *pp,
996 struct mvneta_rx_queue *rxq)
997
998{
999 rxq->size = pp->rx_ring_size;
1000
1001 /* Allocate memory for RX descriptors */
1002 rxq->descs_phys = (dma_addr_t)rxq->descs;
1003 if (rxq->descs == NULL)
1004 return -ENOMEM;
1005
1006 rxq->last_desc = rxq->size - 1;
1007
1008 /* Set Rx descriptors queue starting address */
1009 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1010 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1011
1012 /* Fill RXQ with buffers from RX pool */
1013 mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
1014 mvneta_rxq_fill(pp, rxq, rxq->size);
1015
1016 return 0;
1017}
1018
1019/* Cleanup Rx queue */
1020static void mvneta_rxq_deinit(struct mvneta_port *pp,
1021 struct mvneta_rx_queue *rxq)
1022{
1023 mvneta_rxq_drop_pkts(pp, rxq);
1024
1025 rxq->descs = NULL;
1026 rxq->last_desc = 0;
1027 rxq->next_desc_to_proc = 0;
1028 rxq->descs_phys = 0;
1029}
1030
1031/* Create and initialize a tx queue */
1032static int mvneta_txq_init(struct mvneta_port *pp,
1033 struct mvneta_tx_queue *txq)
1034{
1035 txq->size = pp->tx_ring_size;
1036
1037 /* Allocate memory for TX descriptors */
3cbc11da 1038 txq->descs_phys = (dma_addr_t)txq->descs;
19fc2eae
SR
1039 if (txq->descs == NULL)
1040 return -ENOMEM;
1041
1042 txq->last_desc = txq->size - 1;
1043
1044 /* Set maximum bandwidth for enabled TXQs */
1045 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
1046 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
1047
1048 /* Set Tx descriptors queue starting address */
1049 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
1050 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
1051
1052 return 0;
1053}
1054
1055/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
1056static void mvneta_txq_deinit(struct mvneta_port *pp,
1057 struct mvneta_tx_queue *txq)
1058{
1059 txq->descs = NULL;
1060 txq->last_desc = 0;
1061 txq->next_desc_to_proc = 0;
1062 txq->descs_phys = 0;
1063
1064 /* Set minimum bandwidth for disabled TXQs */
1065 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
1066 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
1067
1068 /* Set Tx descriptors queue starting address and size */
1069 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
1070 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
1071}
1072
1073/* Cleanup all Tx queues */
1074static void mvneta_cleanup_txqs(struct mvneta_port *pp)
1075{
1076 int queue;
1077
1078 for (queue = 0; queue < txq_number; queue++)
1079 mvneta_txq_deinit(pp, &pp->txqs[queue]);
1080}
1081
1082/* Cleanup all Rx queues */
1083static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
1084{
1085 int queue;
1086
1087 for (queue = 0; queue < rxq_number; queue++)
1088 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
1089}
1090
1091
1092/* Init all Rx queues */
1093static int mvneta_setup_rxqs(struct mvneta_port *pp)
1094{
1095 int queue;
1096
1097 for (queue = 0; queue < rxq_number; queue++) {
1098 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
1099 if (err) {
1100 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
1101 __func__, queue);
1102 mvneta_cleanup_rxqs(pp);
1103 return err;
1104 }
1105 }
1106
1107 return 0;
1108}
1109
1110/* Init all tx queues */
1111static int mvneta_setup_txqs(struct mvneta_port *pp)
1112{
1113 int queue;
1114
1115 for (queue = 0; queue < txq_number; queue++) {
1116 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
1117 if (err) {
1118 netdev_err(pp->dev, "%s: can't create txq=%d\n",
1119 __func__, queue);
1120 mvneta_cleanup_txqs(pp);
1121 return err;
1122 }
1123 }
1124
1125 return 0;
1126}
1127
1128static void mvneta_start_dev(struct mvneta_port *pp)
1129{
1130 /* start the Rx/Tx activity */
1131 mvneta_port_enable(pp);
1132}
1133
e3b9c98a 1134static void mvneta_adjust_link(struct udevice *dev)
19fc2eae 1135{
e3b9c98a 1136 struct mvneta_port *pp = dev_get_priv(dev);
19fc2eae
SR
1137 struct phy_device *phydev = pp->phydev;
1138 int status_change = 0;
1139
1140 if (phydev->link) {
1141 if ((pp->speed != phydev->speed) ||
1142 (pp->duplex != phydev->duplex)) {
1143 u32 val;
1144
1145 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1146 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
1147 MVNETA_GMAC_CONFIG_GMII_SPEED |
1148 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
1149 MVNETA_GMAC_AN_SPEED_EN |
1150 MVNETA_GMAC_AN_DUPLEX_EN);
1151
1152 if (phydev->duplex)
1153 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1154
1155 if (phydev->speed == SPEED_1000)
1156 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1157 else
1158 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1159
1160 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1161
1162 pp->duplex = phydev->duplex;
1163 pp->speed = phydev->speed;
1164 }
1165 }
1166
1167 if (phydev->link != pp->link) {
1168 if (!phydev->link) {
1169 pp->duplex = -1;
1170 pp->speed = 0;
1171 }
1172
1173 pp->link = phydev->link;
1174 status_change = 1;
1175 }
1176
1177 if (status_change) {
1178 if (phydev->link) {
1179 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1180 val |= (MVNETA_GMAC_FORCE_LINK_PASS |
1181 MVNETA_GMAC_FORCE_LINK_DOWN);
1182 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1183 mvneta_port_up(pp);
1184 } else {
1185 mvneta_port_down(pp);
1186 }
1187 }
1188}
1189
e3b9c98a 1190static int mvneta_open(struct udevice *dev)
19fc2eae 1191{
e3b9c98a 1192 struct mvneta_port *pp = dev_get_priv(dev);
19fc2eae
SR
1193 int ret;
1194
1195 ret = mvneta_setup_rxqs(pp);
1196 if (ret)
1197 return ret;
1198
1199 ret = mvneta_setup_txqs(pp);
1200 if (ret)
1201 return ret;
1202
1203 mvneta_adjust_link(dev);
1204
1205 mvneta_start_dev(pp);
1206
1207 return 0;
1208}
1209
1210/* Initialize hw */
e3b9c98a 1211static int mvneta_init2(struct mvneta_port *pp)
19fc2eae
SR
1212{
1213 int queue;
1214
1215 /* Disable port */
1216 mvneta_port_disable(pp);
1217
1218 /* Set port default values */
1219 mvneta_defaults_set(pp);
1220
1221 pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
1222 GFP_KERNEL);
1223 if (!pp->txqs)
1224 return -ENOMEM;
1225
1226 /* U-Boot special: use preallocated area */
1227 pp->txqs[0].descs = buffer_loc.tx_descs;
1228
1229 /* Initialize TX descriptor rings */
1230 for (queue = 0; queue < txq_number; queue++) {
1231 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1232 txq->id = queue;
1233 txq->size = pp->tx_ring_size;
1234 }
1235
1236 pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
1237 GFP_KERNEL);
1238 if (!pp->rxqs) {
1239 kfree(pp->txqs);
1240 return -ENOMEM;
1241 }
1242
1243 /* U-Boot special: use preallocated area */
1244 pp->rxqs[0].descs = buffer_loc.rx_descs;
1245
1246 /* Create Rx descriptor rings */
1247 for (queue = 0; queue < rxq_number; queue++) {
1248 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1249 rxq->id = queue;
1250 rxq->size = pp->rx_ring_size;
1251 }
1252
1253 return 0;
1254}
1255
1256/* platform glue : initialize decoding windows */
544eefe0
SR
1257
1258/*
1259 * Not like A380, in Armada3700, there are two layers of decode windows for GBE:
1260 * First layer is: GbE Address window that resides inside the GBE unit,
1261 * Second layer is: Fabric address window which is located in the NIC400
1262 * (South Fabric).
1263 * To simplify the address decode configuration for Armada3700, we bypass the
1264 * first layer of GBE decode window by setting the first window to 4GB.
1265 */
1266static void mvneta_bypass_mbus_windows(struct mvneta_port *pp)
1267{
1268 /*
1269 * Set window size to 4GB, to bypass GBE address decode, leave the
1270 * work to MBUS decode window
1271 */
1272 mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK);
1273
1274 /* Enable GBE address decode window 0 by set bit 0 to 0 */
1275 clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE,
1276 MVNETA_BASE_ADDR_ENABLE_BIT);
1277
1278 /* Set GBE address decode window 0 to full Access (read or write) */
1279 setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT,
1280 MVNETA_PORT_ACCESS_PROTECT_WIN0_RW);
1281}
1282
19fc2eae
SR
1283static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
1284{
1285 const struct mbus_dram_target_info *dram;
1286 u32 win_enable;
1287 u32 win_protect;
1288 int i;
1289
1290 dram = mvebu_mbus_dram_info();
1291 for (i = 0; i < 6; i++) {
1292 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1293 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1294
1295 if (i < 4)
1296 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1297 }
1298
1299 win_enable = 0x3f;
1300 win_protect = 0;
1301
1302 for (i = 0; i < dram->num_cs; i++) {
1303 const struct mbus_dram_window *cs = dram->cs + i;
1304 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
1305 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
1306
1307 mvreg_write(pp, MVNETA_WIN_SIZE(i),
1308 (cs->size - 1) & 0xffff0000);
1309
1310 win_enable &= ~(1 << i);
1311 win_protect |= 3 << (2 * i);
1312 }
1313
1314 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1315}
1316
1317/* Power up the port */
1318static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
1319{
1320 u32 ctrl;
1321
1322 /* MAC Cause register should be cleared */
1323 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
1324
1325 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1326
1327 /* Even though it might look weird, when we're configured in
1328 * SGMII or QSGMII mode, the RGMII bit needs to be set.
1329 */
1330 switch (phy_mode) {
1331 case PHY_INTERFACE_MODE_QSGMII:
1332 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
1333 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1334 break;
1335 case PHY_INTERFACE_MODE_SGMII:
1336 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
1337 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1338 break;
1339 case PHY_INTERFACE_MODE_RGMII:
1340 case PHY_INTERFACE_MODE_RGMII_ID:
1341 ctrl |= MVNETA_GMAC2_PORT_RGMII;
1342 break;
1343 default:
1344 return -EINVAL;
1345 }
1346
1347 /* Cancel Port Reset */
1348 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
1349 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
1350
1351 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
1352 MVNETA_GMAC2_PORT_RESET) != 0)
1353 continue;
1354
1355 return 0;
1356}
1357
1358/* Device initialization routine */
e3b9c98a 1359static int mvneta_init(struct udevice *dev)
19fc2eae 1360{
e3b9c98a
SR
1361 struct eth_pdata *pdata = dev_get_platdata(dev);
1362 struct mvneta_port *pp = dev_get_priv(dev);
19fc2eae
SR
1363 int err;
1364
1365 pp->tx_ring_size = MVNETA_MAX_TXD;
1366 pp->rx_ring_size = MVNETA_MAX_RXD;
1367
e3b9c98a 1368 err = mvneta_init2(pp);
19fc2eae
SR
1369 if (err < 0) {
1370 dev_err(&pdev->dev, "can't init eth hal\n");
1371 return err;
1372 }
1373
e3b9c98a 1374 mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
19fc2eae
SR
1375
1376 err = mvneta_port_power_up(pp, pp->phy_interface);
1377 if (err < 0) {
1378 dev_err(&pdev->dev, "can't power up port\n");
1379 return err;
1380 }
1381
1382 /* Call open() now as it needs to be done before runing send() */
1383 mvneta_open(dev);
1384
1385 return 0;
1386}
1387
1388/* U-Boot only functions follow here */
1389
1390/* SMI / MDIO functions */
1391
1392static int smi_wait_ready(struct mvneta_port *pp)
1393{
1394 u32 timeout = MVNETA_SMI_TIMEOUT;
1395 u32 smi_reg;
1396
1397 /* wait till the SMI is not busy */
1398 do {
1399 /* read smi register */
1400 smi_reg = mvreg_read(pp, MVNETA_SMI);
1401 if (timeout-- == 0) {
1402 printf("Error: SMI busy timeout\n");
1403 return -EFAULT;
1404 }
1405 } while (smi_reg & MVNETA_SMI_BUSY);
1406
1407 return 0;
1408}
1409
1410/*
e3b9c98a 1411 * mvneta_mdio_read - miiphy_read callback function.
19fc2eae
SR
1412 *
1413 * Returns 16bit phy register value, or 0xffff on error
1414 */
e3b9c98a 1415static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
19fc2eae 1416{
e3b9c98a 1417 struct mvneta_port *pp = bus->priv;
19fc2eae
SR
1418 u32 smi_reg;
1419 u32 timeout;
1420
1421 /* check parameters */
e3b9c98a
SR
1422 if (addr > MVNETA_PHY_ADDR_MASK) {
1423 printf("Error: Invalid PHY address %d\n", addr);
19fc2eae
SR
1424 return -EFAULT;
1425 }
1426
e3b9c98a
SR
1427 if (reg > MVNETA_PHY_REG_MASK) {
1428 printf("Err: Invalid register offset %d\n", reg);
19fc2eae
SR
1429 return -EFAULT;
1430 }
1431
1432 /* wait till the SMI is not busy */
1433 if (smi_wait_ready(pp) < 0)
1434 return -EFAULT;
1435
1436 /* fill the phy address and regiser offset and read opcode */
e3b9c98a
SR
1437 smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1438 | (reg << MVNETA_SMI_REG_ADDR_OFFS)
19fc2eae
SR
1439 | MVNETA_SMI_OPCODE_READ;
1440
1441 /* write the smi register */
1442 mvreg_write(pp, MVNETA_SMI, smi_reg);
1443
e3b9c98a 1444 /* wait till read value is ready */
19fc2eae
SR
1445 timeout = MVNETA_SMI_TIMEOUT;
1446
1447 do {
1448 /* read smi register */
1449 smi_reg = mvreg_read(pp, MVNETA_SMI);
1450 if (timeout-- == 0) {
1451 printf("Err: SMI read ready timeout\n");
1452 return -EFAULT;
1453 }
1454 } while (!(smi_reg & MVNETA_SMI_READ_VALID));
1455
1456 /* Wait for the data to update in the SMI register */
1457 for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
1458 ;
1459
e3b9c98a 1460 return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
19fc2eae
SR
1461}
1462
1463/*
e3b9c98a 1464 * mvneta_mdio_write - miiphy_write callback function.
19fc2eae
SR
1465 *
1466 * Returns 0 if write succeed, -EINVAL on bad parameters
1467 * -ETIME on timeout
1468 */
e3b9c98a
SR
1469static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
1470 u16 value)
19fc2eae 1471{
e3b9c98a 1472 struct mvneta_port *pp = bus->priv;
19fc2eae
SR
1473 u32 smi_reg;
1474
1475 /* check parameters */
e3b9c98a
SR
1476 if (addr > MVNETA_PHY_ADDR_MASK) {
1477 printf("Error: Invalid PHY address %d\n", addr);
19fc2eae
SR
1478 return -EFAULT;
1479 }
1480
e3b9c98a
SR
1481 if (reg > MVNETA_PHY_REG_MASK) {
1482 printf("Err: Invalid register offset %d\n", reg);
19fc2eae
SR
1483 return -EFAULT;
1484 }
1485
1486 /* wait till the SMI is not busy */
1487 if (smi_wait_ready(pp) < 0)
1488 return -EFAULT;
1489
1490 /* fill the phy addr and reg offset and write opcode and data */
e3b9c98a
SR
1491 smi_reg = value << MVNETA_SMI_DATA_OFFS;
1492 smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1493 | (reg << MVNETA_SMI_REG_ADDR_OFFS);
19fc2eae
SR
1494 smi_reg &= ~MVNETA_SMI_OPCODE_READ;
1495
1496 /* write the smi register */
1497 mvreg_write(pp, MVNETA_SMI, smi_reg);
1498
1499 return 0;
1500}
1501
e3b9c98a 1502static int mvneta_start(struct udevice *dev)
19fc2eae 1503{
e3b9c98a 1504 struct mvneta_port *pp = dev_get_priv(dev);
19fc2eae
SR
1505 struct phy_device *phydev;
1506
1507 mvneta_port_power_up(pp, pp->phy_interface);
1508
1509 if (!pp->init || pp->link == 0) {
1510 /* Set phy address of the port */
1511 mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
1512 phydev = phy_connect(pp->bus, pp->phyaddr, dev,
1513 pp->phy_interface);
1514
1515 pp->phydev = phydev;
1516 phy_config(phydev);
1517 phy_startup(phydev);
1518 if (!phydev->link) {
1519 printf("%s: No link.\n", phydev->dev->name);
1520 return -1;
1521 }
1522
1523 /* Full init on first call */
e3b9c98a 1524 mvneta_init(dev);
19fc2eae
SR
1525 pp->init = 1;
1526 } else {
1527 /* Upon all following calls, this is enough */
1528 mvneta_port_up(pp);
1529 mvneta_port_enable(pp);
1530 }
1531
1532 return 0;
1533}
1534
e3b9c98a 1535static int mvneta_send(struct udevice *dev, void *packet, int length)
19fc2eae 1536{
e3b9c98a 1537 struct mvneta_port *pp = dev_get_priv(dev);
19fc2eae
SR
1538 struct mvneta_tx_queue *txq = &pp->txqs[0];
1539 struct mvneta_tx_desc *tx_desc;
1540 int sent_desc;
1541 u32 timeout = 0;
1542
1543 /* Get a descriptor for the first part of the packet */
1544 tx_desc = mvneta_txq_next_desc_get(txq);
1545
3cbc11da 1546 tx_desc->buf_phys_addr = (u32)(uintptr_t)packet;
e3b9c98a 1547 tx_desc->data_size = length;
3cbc11da
SR
1548 flush_dcache_range((ulong)packet,
1549 (ulong)packet + ALIGN(length, PKTALIGN));
19fc2eae
SR
1550
1551 /* First and Last descriptor */
1552 tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
1553 mvneta_txq_pend_desc_add(pp, txq, 1);
1554
1555 /* Wait for packet to be sent (queue might help with speed here) */
1556 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1557 while (!sent_desc) {
1558 if (timeout++ > 10000) {
1559 printf("timeout: packet not sent\n");
1560 return -1;
1561 }
1562 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1563 }
1564
1565 /* txDone has increased - hw sent packet */
1566 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
19fc2eae
SR
1567
1568 return 0;
1569}
1570
e3b9c98a 1571static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
19fc2eae 1572{
e3b9c98a 1573 struct mvneta_port *pp = dev_get_priv(dev);
19fc2eae 1574 int rx_done;
19fc2eae 1575 struct mvneta_rx_queue *rxq;
e3b9c98a 1576 int rx_bytes = 0;
19fc2eae
SR
1577
1578 /* get rx queue */
1579 rxq = mvneta_rxq_handle_get(pp, rxq_def);
1580 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
19fc2eae 1581
e3b9c98a 1582 if (rx_done) {
19fc2eae
SR
1583 struct mvneta_rx_desc *rx_desc;
1584 unsigned char *data;
1585 u32 rx_status;
19fc2eae
SR
1586
1587 /*
1588 * No cache invalidation needed here, since the desc's are
1589 * located in a uncached memory region
1590 */
1591 rx_desc = mvneta_rxq_next_desc_get(rxq);
1592
1593 rx_status = rx_desc->status;
1594 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1595 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1596 mvneta_rx_error(pp, rx_desc);
1597 /* leave the descriptor untouched */
e3b9c98a 1598 return -EIO;
19fc2eae
SR
1599 }
1600
1601 /* 2 bytes for marvell header. 4 bytes for crc */
1602 rx_bytes = rx_desc->data_size - 6;
1603
1604 /* give packet to stack - skip on first 2 bytes */
3cbc11da 1605 data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2;
19fc2eae
SR
1606 /*
1607 * No cache invalidation needed here, since the rx_buffer's are
1608 * located in a uncached memory region
1609 */
e3b9c98a 1610 *packetp = data;
19fc2eae 1611
19fc2eae 1612 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
e3b9c98a 1613 }
19fc2eae 1614
e3b9c98a 1615 return rx_bytes;
19fc2eae
SR
1616}
1617
e3b9c98a 1618static int mvneta_probe(struct udevice *dev)
19fc2eae 1619{
e3b9c98a
SR
1620 struct eth_pdata *pdata = dev_get_platdata(dev);
1621 struct mvneta_port *pp = dev_get_priv(dev);
1622 void *blob = (void *)gd->fdt_blob;
e160f7d4 1623 int node = dev_of_offset(dev);
e3b9c98a
SR
1624 struct mii_dev *bus;
1625 unsigned long addr;
19fc2eae 1626 void *bd_space;
976feda2 1627 int ret;
19fc2eae 1628
19fc2eae
SR
1629 /*
1630 * Allocate buffer area for descs and rx_buffers. This is only
1631 * done once for all interfaces. As only one interface can
6723b235 1632 * be active. Make this area DMA safe by disabling the D-cache
19fc2eae
SR
1633 */
1634 if (!buffer_loc.tx_descs) {
1635 /* Align buffer area for descs and rx_buffers to 1MiB */
1636 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
3cbc11da 1637 mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE,
19fc2eae
SR
1638 DCACHE_OFF);
1639 buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
1640 buffer_loc.rx_descs = (struct mvneta_rx_desc *)
3cbc11da 1641 ((phys_addr_t)bd_space +
19fc2eae 1642 MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc));
3cbc11da 1643 buffer_loc.rx_buffers = (phys_addr_t)
19fc2eae
SR
1644 (bd_space +
1645 MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc) +
1646 MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc));
1647 }
1648
e3b9c98a 1649 pp->base = (void __iomem *)pdata->iobase;
19fc2eae 1650
e3b9c98a 1651 /* Configure MBUS address windows */
544eefe0
SR
1652 if (of_device_is_compatible(dev, "marvell,armada-3700-neta"))
1653 mvneta_bypass_mbus_windows(pp);
1654 else
1655 mvneta_conf_mbus_windows(pp);
19fc2eae 1656
e3b9c98a
SR
1657 /* PHY interface is already decoded in mvneta_ofdata_to_platdata() */
1658 pp->phy_interface = pdata->phy_interface;
1659
1660 /* Now read phyaddr from DT */
1661 addr = fdtdec_get_int(blob, node, "phy", 0);
1662 addr = fdt_node_offset_by_phandle(blob, addr);
1663 pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
1664
1665 bus = mdio_alloc();
1666 if (!bus) {
1667 printf("Failed to allocate MDIO bus\n");
1668 return -ENOMEM;
1669 }
1670
1671 bus->read = mvneta_mdio_read;
1672 bus->write = mvneta_mdio_write;
1673 snprintf(bus->name, sizeof(bus->name), dev->name);
1674 bus->priv = (void *)pp;
1675 pp->bus = bus;
19fc2eae 1676
976feda2
KP
1677 ret = mdio_register(bus);
1678 if (ret)
1679 return ret;
1680
1681 return board_network_enable(bus);
e3b9c98a 1682}
19fc2eae 1683
e3b9c98a
SR
1684static void mvneta_stop(struct udevice *dev)
1685{
1686 struct mvneta_port *pp = dev_get_priv(dev);
19fc2eae 1687
e3b9c98a
SR
1688 mvneta_port_down(pp);
1689 mvneta_port_disable(pp);
19fc2eae 1690}
e3b9c98a
SR
1691
1692static const struct eth_ops mvneta_ops = {
1693 .start = mvneta_start,
1694 .send = mvneta_send,
1695 .recv = mvneta_recv,
1696 .stop = mvneta_stop,
1697};
1698
1699static int mvneta_ofdata_to_platdata(struct udevice *dev)
1700{
1701 struct eth_pdata *pdata = dev_get_platdata(dev);
1702 const char *phy_mode;
1703
1704 pdata->iobase = dev_get_addr(dev);
1705
1706 /* Get phy-mode / phy_interface from DT */
1707 pdata->phy_interface = -1;
e160f7d4
SG
1708 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1709 NULL);
e3b9c98a
SR
1710 if (phy_mode)
1711 pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1712 if (pdata->phy_interface == -1) {
1713 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1714 return -EINVAL;
1715 }
1716
1717 return 0;
1718}
1719
1720static const struct udevice_id mvneta_ids[] = {
1721 { .compatible = "marvell,armada-370-neta" },
1722 { .compatible = "marvell,armada-xp-neta" },
544eefe0 1723 { .compatible = "marvell,armada-3700-neta" },
e3b9c98a
SR
1724 { }
1725};
1726
1727U_BOOT_DRIVER(mvneta) = {
1728 .name = "mvneta",
1729 .id = UCLASS_ETH,
1730 .of_match = mvneta_ids,
1731 .ofdata_to_platdata = mvneta_ofdata_to_platdata,
1732 .probe = mvneta_probe,
1733 .ops = &mvneta_ops,
1734 .priv_auto_alloc_size = sizeof(struct mvneta_port),
1735 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1736};