]> git.ipfire.org Git - thirdparty/u-boot.git/blame - drivers/spi/fsl_qspi.c
Revert "Merge patch series "arm: dts: am62-beagleplay: Fix Beagleplay Ethernet""
[thirdparty/u-boot.git] / drivers / spi / fsl_qspi.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
91afd36f 2
6b57ff6f 3/*
91afd36f
KS
4 * Freescale QuadSPI driver.
5 *
6 * Copyright (C) 2013 Freescale Semiconductor, Inc.
7 * Copyright (C) 2018 Bootlin
8 * Copyright (C) 2018 exceet electronics GmbH
9 * Copyright (C) 2018 Kontron Electronics GmbH
10 * Copyright 2019-2020 NXP
11 *
12 * This driver is a ported version of Linux Freescale QSPI driver taken from
13 * v5.5-rc1 tag having following information.
6b57ff6f 14 *
91afd36f
KS
15 * Transition to SPI MEM interface:
16 * Authors:
17 * Boris Brezillon <bbrezillon@kernel.org>
18 * Frieder Schrempf <frieder.schrempf@kontron.de>
19 * Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
20 * Suresh Gupta <suresh.gupta@nxp.com>
21 *
22 * Based on the original fsl-quadspi.c spi-nor driver.
23 * Transition to spi-mem in spi-fsl-qspi.c
6b57ff6f
AW
24 */
25
d678a59d 26#include <common.h>
d13da03f
SA
27#include <dm.h>
28#include <dm/device_compat.h>
f7ae49fc 29#include <log.h>
d13da03f
SA
30#include <spi.h>
31#include <spi-mem.h>
401d1c4f 32#include <asm/global_data.h>
cd93d625 33#include <linux/bitops.h>
c05ed00a 34#include <linux/delay.h>
4d72caa5
SG
35#include <linux/libfdt.h>
36#include <linux/sizes.h>
37#include <linux/iopoll.h>
91afd36f
KS
38#include <linux/iopoll.h>
39#include <linux/sizes.h>
40#include <linux/err.h>
d13da03f 41#include <asm/io.h>
6b57ff6f 42
5bc48308
HW
43DECLARE_GLOBAL_DATA_PTR;
44
91afd36f
KS
45/*
46 * The driver only uses one single LUT entry, that is updated on
47 * each call of exec_op(). Index 0 is preset at boot with a basic
48 * read operation, so let's use the last entry (15).
49 */
50#define SEQID_LUT 15
def88bce 51#define SEQID_LUT_AHB 14
91afd36f
KS
52
53/* Registers used by the driver */
54#define QUADSPI_MCR 0x00
55#define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16)
56#define QUADSPI_MCR_MDIS_MASK BIT(14)
57#define QUADSPI_MCR_CLR_TXF_MASK BIT(11)
58#define QUADSPI_MCR_CLR_RXF_MASK BIT(10)
59#define QUADSPI_MCR_DDR_EN_MASK BIT(7)
60#define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2)
61#define QUADSPI_MCR_SWRSTHD_MASK BIT(1)
62#define QUADSPI_MCR_SWRSTSD_MASK BIT(0)
63
64#define QUADSPI_IPCR 0x08
65#define QUADSPI_IPCR_SEQID(x) ((x) << 24)
66#define QUADSPI_FLSHCR 0x0c
67#define QUADSPI_FLSHCR_TCSS_MASK GENMASK(3, 0)
68#define QUADSPI_FLSHCR_TCSH_MASK GENMASK(11, 8)
69#define QUADSPI_FLSHCR_TDH_MASK GENMASK(17, 16)
70
71#define QUADSPI_BUF3CR 0x1c
72#define QUADSPI_BUF3CR_ALLMST_MASK BIT(31)
73#define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8)
74#define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8)
75
76#define QUADSPI_BFGENCR 0x20
77#define QUADSPI_BFGENCR_SEQID(x) ((x) << 12)
78
79#define QUADSPI_BUF0IND 0x30
80#define QUADSPI_BUF1IND 0x34
81#define QUADSPI_BUF2IND 0x38
82#define QUADSPI_SFAR 0x100
83
84#define QUADSPI_SMPR 0x108
85#define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16)
86#define QUADSPI_SMPR_FSDLY_MASK BIT(6)
87#define QUADSPI_SMPR_FSPHS_MASK BIT(5)
88#define QUADSPI_SMPR_HSENA_MASK BIT(0)
89
90#define QUADSPI_RBCT 0x110
91#define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0)
92#define QUADSPI_RBCT_RXBRD_USEIPS BIT(8)
93
94#define QUADSPI_TBDR 0x154
95
96#define QUADSPI_SR 0x15c
97#define QUADSPI_SR_IP_ACC_MASK BIT(1)
98#define QUADSPI_SR_AHB_ACC_MASK BIT(2)
99
100#define QUADSPI_FR 0x160
101#define QUADSPI_FR_TFF_MASK BIT(0)
102
103#define QUADSPI_RSER 0x164
104#define QUADSPI_RSER_TFIE BIT(0)
105
106#define QUADSPI_SPTRCLR 0x16c
107#define QUADSPI_SPTRCLR_IPPTRC BIT(8)
108#define QUADSPI_SPTRCLR_BFPTRC BIT(0)
109
110#define QUADSPI_SFA1AD 0x180
111#define QUADSPI_SFA2AD 0x184
112#define QUADSPI_SFB1AD 0x188
113#define QUADSPI_SFB2AD 0x18c
114#define QUADSPI_RBDR(x) (0x200 + ((x) * 4))
115
116#define QUADSPI_LUTKEY 0x300
117#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
118
119#define QUADSPI_LCKCR 0x304
120#define QUADSPI_LCKER_LOCK BIT(0)
121#define QUADSPI_LCKER_UNLOCK BIT(1)
122
123#define QUADSPI_LUT_BASE 0x310
124#define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
125#define QUADSPI_LUT_REG(idx) \
126 (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
127
def88bce
YL
128#define QUADSPI_AHB_LUT_OFFSET (SEQID_LUT_AHB * 4 * 4)
129#define QUADSPI_AHB_LUT_REG(idx) \
130 (QUADSPI_LUT_BASE + QUADSPI_AHB_LUT_OFFSET + (idx) * 4)
131
91afd36f
KS
132/* Instruction set for the LUT register */
133#define LUT_STOP 0
134#define LUT_CMD 1
135#define LUT_ADDR 2
136#define LUT_DUMMY 3
137#define LUT_MODE 4
138#define LUT_MODE2 5
139#define LUT_MODE4 6
140#define LUT_FSL_READ 7
141#define LUT_FSL_WRITE 8
142#define LUT_JMP_ON_CS 9
143#define LUT_ADDR_DDR 10
144#define LUT_MODE_DDR 11
145#define LUT_MODE2_DDR 12
146#define LUT_MODE4_DDR 13
147#define LUT_FSL_READ_DDR 14
148#define LUT_FSL_WRITE_DDR 15
149#define LUT_DATA_LEARN 16
150
151/*
152 * The PAD definitions for LUT register.
153 *
154 * The pad stands for the number of IO lines [0:3].
155 * For example, the quad read needs four IO lines,
156 * so you should use LUT_PAD(4).
157 */
158#define LUT_PAD(x) (fls(x) - 1)
159
160/*
161 * Macro for constructing the LUT entries with the following
162 * register layout:
163 *
164 * ---------------------------------------------------
165 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
166 * ---------------------------------------------------
167 */
168#define LUT_DEF(idx, ins, pad, opr) \
169 ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
170
171/* Controller needs driver to swap endianness */
ce7575a8
YL
172#define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0)
173
91afd36f
KS
174/* Controller needs 4x internal clock */
175#define QUADSPI_QUIRK_4X_INT_CLK BIT(1)
ce7575a8 176
91afd36f
KS
177/*
178 * TKT253890, the controller needs the driver to fill the txfifo with
179 * 16 bytes at least to trigger a data transfer, even though the extra
180 * data won't be transferred.
181 */
182#define QUADSPI_QUIRK_TKT253890 BIT(2)
ce7575a8 183
91afd36f
KS
184/* TKT245618, the controller cannot wake up from wait mode */
185#define QUADSPI_QUIRK_TKT245618 BIT(3)
186
187/*
188 * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
189 * internally. No need to add it when setting SFXXAD and SFAR registers
5bc48308 190 */
91afd36f 191#define QUADSPI_QUIRK_BASE_INTERNAL BIT(4)
5bc48308 192
91afd36f
KS
193/*
194 * Controller uses TDH bits in register QUADSPI_FLSHCR.
195 * They need to be set in accordance with the DDR/SDR mode.
5bc48308 196 */
91afd36f
KS
197#define QUADSPI_QUIRK_USE_TDH_SETTING BIT(5)
198
def88bce
YL
199/*
200 * Controller only has Two CS on flash A, no flash B port
201 */
202#define QUADSPI_QUIRK_SINGLE_BUS BIT(6)
203
91afd36f
KS
204struct fsl_qspi_devtype_data {
205 unsigned int rxfifo;
206 unsigned int txfifo;
207 unsigned int ahb_buf_size;
208 unsigned int quirks;
209 bool little_endian;
6b57ff6f
AW
210};
211
ce7575a8 212static const struct fsl_qspi_devtype_data vybrid_data = {
91afd36f
KS
213 .rxfifo = SZ_128,
214 .txfifo = SZ_64,
215 .ahb_buf_size = SZ_1K,
216 .quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
217 .little_endian = true,
ce7575a8
YL
218};
219
220static const struct fsl_qspi_devtype_data imx6sx_data = {
91afd36f
KS
221 .rxfifo = SZ_128,
222 .txfifo = SZ_512,
223 .ahb_buf_size = SZ_1K,
224 .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
225 .little_endian = true,
226};
227
228static const struct fsl_qspi_devtype_data imx7d_data = {
229 .rxfifo = SZ_128,
230 .txfifo = SZ_512,
231 .ahb_buf_size = SZ_1K,
232 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
233 QUADSPI_QUIRK_USE_TDH_SETTING,
234 .little_endian = true,
ce7575a8
YL
235};
236
91afd36f
KS
237static const struct fsl_qspi_devtype_data imx6ul_data = {
238 .rxfifo = SZ_128,
239 .txfifo = SZ_512,
240 .ahb_buf_size = SZ_1K,
241 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
242 QUADSPI_QUIRK_USE_TDH_SETTING,
243 .little_endian = true,
ce7575a8 244};
5bc48308 245
93d6c8f7
YL
246static const struct fsl_qspi_devtype_data imx7ulp_data = {
247 .rxfifo = SZ_64,
248 .txfifo = SZ_64,
249 .ahb_buf_size = SZ_128,
250 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
def88bce 251 QUADSPI_QUIRK_USE_TDH_SETTING | QUADSPI_QUIRK_SINGLE_BUS,
93d6c8f7
YL
252 .little_endian = true,
253};
254
91afd36f
KS
255static const struct fsl_qspi_devtype_data ls1021a_data = {
256 .rxfifo = SZ_128,
257 .txfifo = SZ_64,
258 .ahb_buf_size = SZ_1K,
259 .quirks = 0,
260 .little_endian = false,
9699fb4d
YL
261};
262
91afd36f
KS
263static const struct fsl_qspi_devtype_data ls2080a_data = {
264 .rxfifo = SZ_128,
265 .txfifo = SZ_64,
266 .ahb_buf_size = SZ_1K,
267 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
268 .little_endian = true,
269};
270
271struct fsl_qspi {
272 struct udevice *dev;
273 void __iomem *iobase;
274 void __iomem *ahb_addr;
275 u32 memmap_phy;
def88bce 276 u32 memmap_size;
91afd36f
KS
277 const struct fsl_qspi_devtype_data *devtype_data;
278 int selected;
279};
280
281static inline int needs_swap_endian(struct fsl_qspi *q)
5bc48308 282{
91afd36f 283 return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
5bc48308
HW
284}
285
91afd36f 286static inline int needs_4x_clock(struct fsl_qspi *q)
5bc48308 287{
91afd36f 288 return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
5bc48308 289}
6b57ff6f 290
91afd36f 291static inline int needs_fill_txfifo(struct fsl_qspi *q)
1f553564 292{
91afd36f 293 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
1f553564
RS
294}
295
91afd36f 296static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
6b57ff6f 297{
91afd36f 298 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
6b57ff6f
AW
299}
300
91afd36f 301static inline int needs_amba_base_offset(struct fsl_qspi *q)
6b57ff6f 302{
91afd36f
KS
303 return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
304}
febffe8d 305
91afd36f
KS
306static inline int needs_tdh_setting(struct fsl_qspi *q)
307{
308 return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
6b57ff6f
AW
309}
310
def88bce
YL
311static inline int needs_single_bus(struct fsl_qspi *q)
312{
313 return q->devtype_data->quirks & QUADSPI_QUIRK_SINGLE_BUS;
314}
315
5f7f70c1 316/*
91afd36f
KS
317 * An IC bug makes it necessary to rearrange the 32-bit data.
318 * Later chips, such as IMX6SLX, have fixed this bug.
5f7f70c1 319 */
91afd36f 320static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
5f7f70c1 321{
91afd36f 322 return needs_swap_endian(q) ? __swab32(a) : a;
5f7f70c1
PF
323}
324
91afd36f
KS
325/*
326 * R/W functions for big- or little-endian registers:
327 * The QSPI controller's endianness is independent of
328 * the CPU core's endianness. So far, although the CPU
329 * core is little-endian the QSPI controller can use
330 * big-endian or little-endian.
331 */
332static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
5f7f70c1 333{
91afd36f
KS
334 if (q->devtype_data->little_endian)
335 out_le32(addr, val);
336 else
337 out_be32(addr, val);
338}
5f7f70c1 339
91afd36f
KS
340static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
341{
342 if (q->devtype_data->little_endian)
343 return in_le32(addr);
5f7f70c1 344
91afd36f 345 return in_be32(addr);
5f7f70c1
PF
346}
347
91afd36f 348static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
5f7f70c1 349{
91afd36f
KS
350 switch (width) {
351 case 1:
352 case 2:
353 case 4:
354 return 0;
355 }
5f7f70c1 356
91afd36f 357 return -ENOTSUPP;
5f7f70c1
PF
358}
359
91afd36f
KS
360static bool fsl_qspi_supports_op(struct spi_slave *slave,
361 const struct spi_mem_op *op)
5f7f70c1 362{
91afd36f
KS
363 struct fsl_qspi *q = dev_get_priv(slave->dev->parent);
364 int ret;
365
366 ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
367
368 if (op->addr.nbytes)
369 ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
370
371 if (op->dummy.nbytes)
372 ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
5bc48308 373
91afd36f
KS
374 if (op->data.nbytes)
375 ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
5f7f70c1 376
91afd36f
KS
377 if (ret)
378 return false;
5f7f70c1
PF
379
380 /*
91afd36f
KS
381 * The number of instructions needed for the op, needs
382 * to fit into a single LUT entry.
5f7f70c1 383 */
91afd36f
KS
384 if (op->addr.nbytes +
385 (op->dummy.nbytes ? 1 : 0) +
386 (op->data.nbytes ? 1 : 0) > 6)
387 return false;
388
389 /* Max 64 dummy clock cycles supported */
390 if (op->dummy.nbytes &&
391 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
392 return false;
393
394 /* Max data length, check controller limits and alignment */
395 if (op->data.dir == SPI_MEM_DATA_IN &&
396 (op->data.nbytes > q->devtype_data->ahb_buf_size ||
397 (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
398 !IS_ALIGNED(op->data.nbytes, 8))))
399 return false;
400
401 if (op->data.dir == SPI_MEM_DATA_OUT &&
402 op->data.nbytes > q->devtype_data->txfifo)
403 return false;
404
6b4eb604 405 return spi_mem_default_supports_op(slave, op);
5f7f70c1 406}
5f7f70c1 407
91afd36f
KS
408static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
409 const struct spi_mem_op *op)
a2358783 410{
91afd36f
KS
411 void __iomem *base = q->iobase;
412 u32 lutval[4] = {};
413 int lutidx = 1, i;
a2358783 414
91afd36f
KS
415 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
416 op->cmd.opcode);
a2358783 417
def88bce
YL
418 if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
419 if (op->addr.nbytes) {
420 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
421 LUT_PAD(op->addr.buswidth),
422 (op->addr.nbytes == 4) ? 0x20 : 0x18);
423 lutidx++;
424 }
425 } else {
426 /*
427 * For some unknown reason, using LUT_ADDR doesn't work in some
428 * cases (at least with only one byte long addresses), so
429 * let's use LUT_MODE to write the address bytes one by one
430 */
431 for (i = 0; i < op->addr.nbytes; i++) {
432 u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
433
434 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
435 LUT_PAD(op->addr.buswidth),
436 addrbyte);
437 lutidx++;
438 }
a2358783
PF
439 }
440
91afd36f
KS
441 if (op->dummy.nbytes) {
442 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
443 LUT_PAD(op->dummy.buswidth),
444 op->dummy.nbytes * 8 /
445 op->dummy.buswidth);
446 lutidx++;
6b57ff6f
AW
447 }
448
91afd36f
KS
449 if (op->data.nbytes) {
450 lutval[lutidx / 2] |= LUT_DEF(lutidx,
451 op->data.dir == SPI_MEM_DATA_IN ?
452 LUT_FSL_READ : LUT_FSL_WRITE,
453 LUT_PAD(op->data.buswidth),
454 0);
455 lutidx++;
6b57ff6f
AW
456 }
457
91afd36f 458 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
6b57ff6f 459
91afd36f
KS
460 /* unlock LUT */
461 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
462 qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
463
464 dev_dbg(q->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
465 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
6b57ff6f 466
91afd36f
KS
467 /* fill LUT */
468 for (i = 0; i < ARRAY_SIZE(lutval); i++)
469 qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
a2358783 470
def88bce
YL
471 if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
472 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN &&
473 op->addr.nbytes) {
474 for (i = 0; i < ARRAY_SIZE(lutval); i++)
475 qspi_writel(q, lutval[i], base + QUADSPI_AHB_LUT_REG(i));
476 }
477 }
478
91afd36f
KS
479 /* lock LUT */
480 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
481 qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
482}
a2358783 483
91afd36f
KS
484/*
485 * If we have changed the content of the flash by writing or erasing, or if we
486 * read from flash with a different offset into the page buffer, we need to
487 * invalidate the AHB buffer. If we do not do so, we may read out the wrong
488 * data. The spec tells us reset the AHB domain and Serial Flash domain at
489 * the same time.
490 */
491static void fsl_qspi_invalidate(struct fsl_qspi *q)
492{
493 u32 reg;
6b57ff6f 494
91afd36f
KS
495 reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
496 reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
497 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
6b57ff6f 498
10509987 499 /*
91afd36f
KS
500 * The minimum delay : 1 AHB + 2 SFCK clocks.
501 * Delay 1 us is enough.
10509987 502 */
91afd36f 503 udelay(1);
6b57ff6f 504
91afd36f
KS
505 reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
506 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
6b57ff6f
AW
507}
508
91afd36f 509static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_slave *slave)
6b57ff6f 510{
8a8d24bd 511 struct dm_spi_slave_plat *plat =
caa4daa2 512 dev_get_parent_plat(slave->dev);
91afd36f
KS
513
514 if (q->selected == plat->cs)
515 return;
6b57ff6f 516
91afd36f
KS
517 q->selected = plat->cs;
518 fsl_qspi_invalidate(q);
6b57ff6f
AW
519}
520
def88bce
YL
521static u32 fsl_qspi_memsize_per_cs(struct fsl_qspi *q)
522{
523 if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
524 if (needs_single_bus(q))
525 return q->memmap_size / 2;
526 else
527 return q->memmap_size / 4;
528 } else {
529 return ALIGN(q->devtype_data->ahb_buf_size, 0x400);
530 }
531}
532
91afd36f 533static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
6b57ff6f 534{
def88bce
YL
535 void __iomem *ahb_read_addr = q->ahb_addr;
536
537 if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
538 if (op->addr.nbytes)
539 ahb_read_addr += op->addr.val;
540 }
541
91afd36f 542 memcpy_fromio(op->data.buf.in,
def88bce 543 ahb_read_addr + q->selected * fsl_qspi_memsize_per_cs(q),
91afd36f 544 op->data.nbytes);
6b57ff6f
AW
545}
546
91afd36f
KS
547static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
548 const struct spi_mem_op *op)
6b57ff6f 549{
91afd36f
KS
550 void __iomem *base = q->iobase;
551 int i;
552 u32 val;
6b57ff6f 553
91afd36f
KS
554 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
555 memcpy(&val, op->data.buf.out + i, 4);
556 val = fsl_qspi_endian_xchg(q, val);
557 qspi_writel(q, val, base + QUADSPI_TBDR);
6b57ff6f
AW
558 }
559
91afd36f
KS
560 if (i < op->data.nbytes) {
561 memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
562 val = fsl_qspi_endian_xchg(q, val);
563 qspi_writel(q, val, base + QUADSPI_TBDR);
564 }
5bc48308 565
91afd36f
KS
566 if (needs_fill_txfifo(q)) {
567 for (i = op->data.nbytes; i < 16; i += 4)
568 qspi_writel(q, 0, base + QUADSPI_TBDR);
569 }
5bc48308
HW
570}
571
91afd36f
KS
572static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
573 const struct spi_mem_op *op)
5bc48308 574{
91afd36f
KS
575 void __iomem *base = q->iobase;
576 int i;
577 u8 *buf = op->data.buf.in;
578 u32 val;
5bc48308 579
91afd36f
KS
580 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
581 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
582 val = fsl_qspi_endian_xchg(q, val);
583 memcpy(buf + i, &val, 4);
584 }
585
586 if (i < op->data.nbytes) {
587 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
588 val = fsl_qspi_endian_xchg(q, val);
589 memcpy(buf + i, &val, op->data.nbytes - i);
590 }
5bc48308
HW
591}
592
91afd36f
KS
593static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
594 u32 mask, u32 delay_us, u32 timeout_us)
5bc48308 595{
91afd36f 596 u32 reg;
5bc48308 597
91afd36f
KS
598 if (!q->devtype_data->little_endian)
599 mask = (u32)cpu_to_be32(mask);
600
601 return readl_poll_timeout(base, reg, !(reg & mask), timeout_us);
5bc48308 602}
5bc48308 603
91afd36f 604static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
5bc48308 605{
91afd36f
KS
606 void __iomem *base = q->iobase;
607 int err = 0;
5bc48308 608
91afd36f
KS
609 /*
610 * Always start the sequence at the same index since we update
611 * the LUT at each exec_op() call. And also specify the DATA
612 * length, since it's has not been specified in the LUT.
613 */
614 qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
615 base + QUADSPI_IPCR);
5bc48308 616
91afd36f
KS
617 /* wait for the controller being ready */
618 err = fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR,
619 (QUADSPI_SR_IP_ACC_MASK |
620 QUADSPI_SR_AHB_ACC_MASK),
621 10, 1000);
622
623 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
624 fsl_qspi_read_rxfifo(q, op);
625
626 return err;
5bc48308
HW
627}
628
91afd36f
KS
629static int fsl_qspi_exec_op(struct spi_slave *slave,
630 const struct spi_mem_op *op)
5bc48308 631{
91afd36f
KS
632 struct fsl_qspi *q = dev_get_priv(slave->dev->parent);
633 void __iomem *base = q->iobase;
634 u32 addr_offset = 0;
635 int err = 0;
5bc48308 636
91afd36f
KS
637 /* wait for the controller being ready */
638 fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
639 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
5bc48308 640
91afd36f 641 fsl_qspi_select_mem(q, slave);
5bc48308 642
91afd36f
KS
643 if (needs_amba_base_offset(q))
644 addr_offset = q->memmap_phy;
645
def88bce
YL
646 if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
647 if (op->addr.nbytes)
648 addr_offset += op->addr.val;
649 }
650
91afd36f 651 qspi_writel(q,
def88bce 652 q->selected * fsl_qspi_memsize_per_cs(q) + addr_offset,
91afd36f
KS
653 base + QUADSPI_SFAR);
654
655 qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
656 QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
657 base + QUADSPI_MCR);
658
659 qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
660 base + QUADSPI_SPTRCLR);
661
662 fsl_qspi_prepare_lut(q, op);
5bc48308 663
bf9bffa9 664 /*
91afd36f
KS
665 * If we have large chunks of data, we read them through the AHB bus
666 * by accessing the mapped memory. In all other cases we use
667 * IP commands to access the flash.
bf9bffa9 668 */
91afd36f
KS
669 if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
670 op->data.dir == SPI_MEM_DATA_IN) {
671 fsl_qspi_read_ahb(q, op);
672 } else {
673 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
674 QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
675
676 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
677 fsl_qspi_fill_txfifo(q, op);
678
679 err = fsl_qspi_do_op(q, op);
ce7575a8
YL
680 }
681
91afd36f
KS
682 /* Invalidate the data in the AHB buffer. */
683 fsl_qspi_invalidate(q);
ce7575a8 684
91afd36f
KS
685 return err;
686}
1c631da4 687
91afd36f
KS
688static int fsl_qspi_adjust_op_size(struct spi_slave *slave,
689 struct spi_mem_op *op)
690{
691 struct fsl_qspi *q = dev_get_priv(slave->dev->parent);
692
693 if (op->data.dir == SPI_MEM_DATA_OUT) {
694 if (op->data.nbytes > q->devtype_data->txfifo)
695 op->data.nbytes = q->devtype_data->txfifo;
696 } else {
697 if (op->data.nbytes > q->devtype_data->ahb_buf_size)
698 op->data.nbytes = q->devtype_data->ahb_buf_size;
699 else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
700 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
1c631da4
SG
701 }
702
91afd36f
KS
703 return 0;
704}
705
706static int fsl_qspi_default_setup(struct fsl_qspi *q)
707{
708 void __iomem *base = q->iobase;
def88bce 709 u32 reg, addr_offset = 0, memsize_cs;
91afd36f
KS
710
711 /* Reset the module */
712 qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
713 base + QUADSPI_MCR);
714 udelay(1);
5bc48308 715
91afd36f
KS
716 /* Disable the module */
717 qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
718 base + QUADSPI_MCR);
5bc48308 719
4e147418 720 /*
91afd36f
KS
721 * Previous boot stages (BootROM, bootloader) might have used DDR
722 * mode and did not clear the TDH bits. As we currently use SDR mode
723 * only, clear the TDH bits if necessary.
4e147418 724 */
91afd36f
KS
725 if (needs_tdh_setting(q))
726 qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
727 ~QUADSPI_FLSHCR_TDH_MASK,
728 base + QUADSPI_FLSHCR);
729
730 reg = qspi_readl(q, base + QUADSPI_SMPR);
731 qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
732 | QUADSPI_SMPR_FSPHS_MASK
733 | QUADSPI_SMPR_HSENA_MASK
734 | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
735
736 /* We only use the buffer3 for AHB read */
737 qspi_writel(q, 0, base + QUADSPI_BUF0IND);
738 qspi_writel(q, 0, base + QUADSPI_BUF1IND);
739 qspi_writel(q, 0, base + QUADSPI_BUF2IND);
740
def88bce
YL
741 if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP))
742 qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT_AHB),
743 q->iobase + QUADSPI_BFGENCR);
744 else
745 qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
746 q->iobase + QUADSPI_BFGENCR);
747
91afd36f
KS
748 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
749 qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
750 QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
751 base + QUADSPI_BUF3CR);
752
753 if (needs_amba_base_offset(q))
754 addr_offset = q->memmap_phy;
4e147418 755
5bc48308 756 /*
91afd36f
KS
757 * In HW there can be a maximum of four chips on two buses with
758 * two chip selects on each bus. We use four chip selects in SW
759 * to differentiate between the four chips.
760 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
761 * SFB2AD accordingly.
5bc48308 762 */
def88bce
YL
763 memsize_cs = fsl_qspi_memsize_per_cs(q);
764 qspi_writel(q, memsize_cs + addr_offset,
91afd36f 765 base + QUADSPI_SFA1AD);
def88bce 766 qspi_writel(q, memsize_cs * 2 + addr_offset,
91afd36f 767 base + QUADSPI_SFA2AD);
def88bce
YL
768 if (!needs_single_bus(q)) {
769 qspi_writel(q, memsize_cs * 3 + addr_offset,
770 base + QUADSPI_SFB1AD);
771 qspi_writel(q, memsize_cs * 4 + addr_offset,
772 base + QUADSPI_SFB2AD);
773 }
91afd36f
KS
774
775 q->selected = -1;
776
777 /* Enable the module */
778 qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
779 base + QUADSPI_MCR);
5bc48308
HW
780 return 0;
781}
782
91afd36f
KS
783static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
784 .adjust_op_size = fsl_qspi_adjust_op_size,
785 .supports_op = fsl_qspi_supports_op,
786 .exec_op = fsl_qspi_exec_op,
787};
788
789static int fsl_qspi_probe(struct udevice *bus)
5bc48308 790{
0fd3d911 791 struct dm_spi_bus *dm_bus = dev_get_uclass_priv(bus);
91afd36f 792 struct fsl_qspi *q = dev_get_priv(bus);
5bc48308 793 const void *blob = gd->fdt_blob;
e160f7d4 794 int node = dev_of_offset(bus);
91afd36f
KS
795 struct fdt_resource res;
796 int ret;
5bc48308 797
91afd36f
KS
798 q->dev = bus;
799 q->devtype_data = (struct fsl_qspi_devtype_data *)
800 dev_get_driver_data(bus);
5bc48308 801
91afd36f
KS
802 /* find the resources */
803 ret = fdt_get_named_resource(blob, node, "reg", "reg-names", "QuadSPI",
804 &res);
bf9bffa9 805 if (ret) {
91afd36f 806 dev_err(bus, "Can't get regs base addresses(ret = %d)!\n", ret);
bf9bffa9
YY
807 return -ENOMEM;
808 }
91afd36f
KS
809
810 q->iobase = map_physmem(res.start, res.end - res.start, MAP_NOCACHE);
811
bf9bffa9 812 ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
91afd36f 813 "QuadSPI-memory", &res);
5bc48308 814 if (ret) {
91afd36f 815 dev_err(bus, "Can't get AMBA base addresses(ret = %d)!\n", ret);
5bc48308
HW
816 return -ENOMEM;
817 }
818
91afd36f
KS
819 q->ahb_addr = map_physmem(res.start, res.end - res.start, MAP_NOCACHE);
820 q->memmap_phy = res.start;
def88bce 821 q->memmap_size = res.end - res.start;
5bc48308 822
91afd36f
KS
823 dm_bus->max_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
824 66000000);
5bc48308 825
91afd36f 826 fsl_qspi_default_setup(q);
5bc48308
HW
827
828 return 0;
829}
830
831static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
91afd36f 832 const void *dout, void *din, unsigned long flags)
5bc48308 833{
91afd36f 834 return 0;
5bc48308
HW
835}
836
837static int fsl_qspi_claim_bus(struct udevice *dev)
838{
5bc48308
HW
839 return 0;
840}
841
842static int fsl_qspi_release_bus(struct udevice *dev)
843{
5bc48308
HW
844 return 0;
845}
846
847static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
848{
5bc48308
HW
849 return 0;
850}
851
852static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
853{
5bc48308
HW
854 return 0;
855}
856
857static const struct dm_spi_ops fsl_qspi_ops = {
858 .claim_bus = fsl_qspi_claim_bus,
859 .release_bus = fsl_qspi_release_bus,
860 .xfer = fsl_qspi_xfer,
861 .set_speed = fsl_qspi_set_speed,
862 .set_mode = fsl_qspi_set_mode,
91afd36f 863 .mem_ops = &fsl_qspi_mem_ops,
5bc48308
HW
864};
865
866static const struct udevice_id fsl_qspi_ids[] = {
91afd36f
KS
867 { .compatible = "fsl,vf610-qspi", .data = (ulong)&vybrid_data, },
868 { .compatible = "fsl,imx6sx-qspi", .data = (ulong)&imx6sx_data, },
869 { .compatible = "fsl,imx6ul-qspi", .data = (ulong)&imx6ul_data, },
870 { .compatible = "fsl,imx7d-qspi", .data = (ulong)&imx7d_data, },
93d6c8f7 871 { .compatible = "fsl,imx7ulp-qspi", .data = (ulong)&imx7ulp_data, },
91afd36f 872 { .compatible = "fsl,ls1021a-qspi", .data = (ulong)&ls1021a_data, },
fd200973 873 { .compatible = "fsl,ls1088a-qspi", .data = (ulong)&ls2080a_data, },
91afd36f 874 { .compatible = "fsl,ls2080a-qspi", .data = (ulong)&ls2080a_data, },
5bc48308
HW
875 { }
876};
877
878U_BOOT_DRIVER(fsl_qspi) = {
879 .name = "fsl_qspi",
880 .id = UCLASS_SPI,
881 .of_match = fsl_qspi_ids,
882 .ops = &fsl_qspi_ops,
41575d8e 883 .priv_auto = sizeof(struct fsl_qspi),
5bc48308 884 .probe = fsl_qspi_probe,
5bc48308 885};