]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/block-group.c
btrfs: fix deadlock with concurrent chunk allocations involving system chunks
[people/ms/linux.git] / fs / btrfs / block-group.c
CommitLineData
2e405ad8
JB
1// SPDX-License-Identifier: GPL-2.0
2
784352fe 3#include "misc.h"
2e405ad8
JB
4#include "ctree.h"
5#include "block-group.h"
3eeb3226 6#include "space-info.h"
9f21246d
JB
7#include "disk-io.h"
8#include "free-space-cache.h"
9#include "free-space-tree.h"
e3e0520b
JB
10#include "volumes.h"
11#include "transaction.h"
12#include "ref-verify.h"
4358d963
JB
13#include "sysfs.h"
14#include "tree-log.h"
77745c05 15#include "delalloc-space.h"
b0643e59 16#include "discard.h"
96a14336 17#include "raid56.h"
08e11a3d 18#include "zoned.h"
2e405ad8 19
878d7b67
JB
20/*
21 * Return target flags in extended format or 0 if restripe for this chunk_type
22 * is not in progress
23 *
24 * Should be called with balance_lock held
25 */
e11c0406 26static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
878d7b67
JB
27{
28 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 u64 target = 0;
30
31 if (!bctl)
32 return 0;
33
34 if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 }
44
45 return target;
46}
47
48/*
49 * @flags: available profiles in extended format (see ctree.h)
50 *
51 * Return reduced profile in chunk format. If profile changing is in progress
52 * (either running or paused) picks the target profile (if it's already
53 * available), otherwise falls back to plain reducing.
54 */
55static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56{
57 u64 num_devices = fs_info->fs_devices->rw_devices;
58 u64 target;
59 u64 raid_type;
60 u64 allowed = 0;
61
62 /*
63 * See if restripe for this chunk_type is in progress, if so try to
64 * reduce to the target profile
65 */
66 spin_lock(&fs_info->balance_lock);
e11c0406 67 target = get_restripe_target(fs_info, flags);
878d7b67 68 if (target) {
162e0a16
JB
69 spin_unlock(&fs_info->balance_lock);
70 return extended_to_chunk(target);
878d7b67
JB
71 }
72 spin_unlock(&fs_info->balance_lock);
73
74 /* First, mask out the RAID levels which aren't possible */
75 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77 allowed |= btrfs_raid_array[raid_type].bg_flag;
78 }
79 allowed &= flags;
80
81 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
82 allowed = BTRFS_BLOCK_GROUP_RAID6;
83 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
84 allowed = BTRFS_BLOCK_GROUP_RAID5;
85 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
86 allowed = BTRFS_BLOCK_GROUP_RAID10;
87 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
88 allowed = BTRFS_BLOCK_GROUP_RAID1;
89 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
90 allowed = BTRFS_BLOCK_GROUP_RAID0;
91
92 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93
94 return extended_to_chunk(flags | allowed);
95}
96
ef0a82da 97u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
878d7b67
JB
98{
99 unsigned seq;
100 u64 flags;
101
102 do {
103 flags = orig_flags;
104 seq = read_seqbegin(&fs_info->profiles_lock);
105
106 if (flags & BTRFS_BLOCK_GROUP_DATA)
107 flags |= fs_info->avail_data_alloc_bits;
108 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
109 flags |= fs_info->avail_system_alloc_bits;
110 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
111 flags |= fs_info->avail_metadata_alloc_bits;
112 } while (read_seqretry(&fs_info->profiles_lock, seq));
113
114 return btrfs_reduce_alloc_profile(fs_info, flags);
115}
116
32da5386 117void btrfs_get_block_group(struct btrfs_block_group *cache)
3cad1284 118{
48aaeebe 119 refcount_inc(&cache->refs);
3cad1284
JB
120}
121
32da5386 122void btrfs_put_block_group(struct btrfs_block_group *cache)
3cad1284 123{
48aaeebe 124 if (refcount_dec_and_test(&cache->refs)) {
3cad1284
JB
125 WARN_ON(cache->pinned > 0);
126 WARN_ON(cache->reserved > 0);
127
b0643e59
DZ
128 /*
129 * A block_group shouldn't be on the discard_list anymore.
130 * Remove the block_group from the discard_list to prevent us
131 * from causing a panic due to NULL pointer dereference.
132 */
133 if (WARN_ON(!list_empty(&cache->discard_list)))
134 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
135 cache);
136
3cad1284
JB
137 /*
138 * If not empty, someone is still holding mutex of
139 * full_stripe_lock, which can only be released by caller.
140 * And it will definitely cause use-after-free when caller
141 * tries to release full stripe lock.
142 *
143 * No better way to resolve, but only to warn.
144 */
145 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
146 kfree(cache->free_space_ctl);
147 kfree(cache);
148 }
149}
150
4358d963
JB
151/*
152 * This adds the block group to the fs_info rb tree for the block group cache
153 */
154static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
32da5386 155 struct btrfs_block_group *block_group)
4358d963
JB
156{
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
32da5386 159 struct btrfs_block_group *cache;
4358d963 160
9afc6649
QW
161 ASSERT(block_group->length != 0);
162
4358d963
JB
163 spin_lock(&info->block_group_cache_lock);
164 p = &info->block_group_cache_tree.rb_node;
165
166 while (*p) {
167 parent = *p;
32da5386 168 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
b3470b5d 169 if (block_group->start < cache->start) {
4358d963 170 p = &(*p)->rb_left;
b3470b5d 171 } else if (block_group->start > cache->start) {
4358d963
JB
172 p = &(*p)->rb_right;
173 } else {
174 spin_unlock(&info->block_group_cache_lock);
175 return -EEXIST;
176 }
177 }
178
179 rb_link_node(&block_group->cache_node, parent, p);
180 rb_insert_color(&block_group->cache_node,
181 &info->block_group_cache_tree);
182
b3470b5d
DS
183 if (info->first_logical_byte > block_group->start)
184 info->first_logical_byte = block_group->start;
4358d963
JB
185
186 spin_unlock(&info->block_group_cache_lock);
187
188 return 0;
189}
190
2e405ad8
JB
191/*
192 * This will return the block group at or after bytenr if contains is 0, else
193 * it will return the block group that contains the bytenr
194 */
32da5386 195static struct btrfs_block_group *block_group_cache_tree_search(
2e405ad8
JB
196 struct btrfs_fs_info *info, u64 bytenr, int contains)
197{
32da5386 198 struct btrfs_block_group *cache, *ret = NULL;
2e405ad8
JB
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
32da5386 206 cache = rb_entry(n, struct btrfs_block_group, cache_node);
b3470b5d
DS
207 end = cache->start + cache->length - 1;
208 start = cache->start;
2e405ad8
JB
209
210 if (bytenr < start) {
b3470b5d 211 if (!contains && (!ret || start < ret->start))
2e405ad8
JB
212 ret = cache;
213 n = n->rb_left;
214 } else if (bytenr > start) {
215 if (contains && bytenr <= end) {
216 ret = cache;
217 break;
218 }
219 n = n->rb_right;
220 } else {
221 ret = cache;
222 break;
223 }
224 }
225 if (ret) {
226 btrfs_get_block_group(ret);
b3470b5d
DS
227 if (bytenr == 0 && info->first_logical_byte > ret->start)
228 info->first_logical_byte = ret->start;
2e405ad8
JB
229 }
230 spin_unlock(&info->block_group_cache_lock);
231
232 return ret;
233}
234
235/*
236 * Return the block group that starts at or after bytenr
237 */
32da5386 238struct btrfs_block_group *btrfs_lookup_first_block_group(
2e405ad8
JB
239 struct btrfs_fs_info *info, u64 bytenr)
240{
241 return block_group_cache_tree_search(info, bytenr, 0);
242}
243
244/*
245 * Return the block group that contains the given bytenr
246 */
32da5386 247struct btrfs_block_group *btrfs_lookup_block_group(
2e405ad8
JB
248 struct btrfs_fs_info *info, u64 bytenr)
249{
250 return block_group_cache_tree_search(info, bytenr, 1);
251}
252
32da5386
DS
253struct btrfs_block_group *btrfs_next_block_group(
254 struct btrfs_block_group *cache)
2e405ad8
JB
255{
256 struct btrfs_fs_info *fs_info = cache->fs_info;
257 struct rb_node *node;
258
259 spin_lock(&fs_info->block_group_cache_lock);
260
261 /* If our block group was removed, we need a full search. */
262 if (RB_EMPTY_NODE(&cache->cache_node)) {
b3470b5d 263 const u64 next_bytenr = cache->start + cache->length;
2e405ad8
JB
264
265 spin_unlock(&fs_info->block_group_cache_lock);
266 btrfs_put_block_group(cache);
267 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268 }
269 node = rb_next(&cache->cache_node);
270 btrfs_put_block_group(cache);
271 if (node) {
32da5386 272 cache = rb_entry(node, struct btrfs_block_group, cache_node);
2e405ad8
JB
273 btrfs_get_block_group(cache);
274 } else
275 cache = NULL;
276 spin_unlock(&fs_info->block_group_cache_lock);
277 return cache;
278}
3eeb3226
JB
279
280bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281{
32da5386 282 struct btrfs_block_group *bg;
3eeb3226
JB
283 bool ret = true;
284
285 bg = btrfs_lookup_block_group(fs_info, bytenr);
286 if (!bg)
287 return false;
288
289 spin_lock(&bg->lock);
290 if (bg->ro)
291 ret = false;
292 else
293 atomic_inc(&bg->nocow_writers);
294 spin_unlock(&bg->lock);
295
296 /* No put on block group, done by btrfs_dec_nocow_writers */
297 if (!ret)
298 btrfs_put_block_group(bg);
299
300 return ret;
301}
302
303void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304{
32da5386 305 struct btrfs_block_group *bg;
3eeb3226
JB
306
307 bg = btrfs_lookup_block_group(fs_info, bytenr);
308 ASSERT(bg);
309 if (atomic_dec_and_test(&bg->nocow_writers))
310 wake_up_var(&bg->nocow_writers);
311 /*
312 * Once for our lookup and once for the lookup done by a previous call
313 * to btrfs_inc_nocow_writers()
314 */
315 btrfs_put_block_group(bg);
316 btrfs_put_block_group(bg);
317}
318
32da5386 319void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
3eeb3226
JB
320{
321 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
322}
323
324void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
325 const u64 start)
326{
32da5386 327 struct btrfs_block_group *bg;
3eeb3226
JB
328
329 bg = btrfs_lookup_block_group(fs_info, start);
330 ASSERT(bg);
331 if (atomic_dec_and_test(&bg->reservations))
332 wake_up_var(&bg->reservations);
333 btrfs_put_block_group(bg);
334}
335
32da5386 336void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
3eeb3226
JB
337{
338 struct btrfs_space_info *space_info = bg->space_info;
339
340 ASSERT(bg->ro);
341
342 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
343 return;
344
345 /*
346 * Our block group is read only but before we set it to read only,
347 * some task might have had allocated an extent from it already, but it
348 * has not yet created a respective ordered extent (and added it to a
349 * root's list of ordered extents).
350 * Therefore wait for any task currently allocating extents, since the
351 * block group's reservations counter is incremented while a read lock
352 * on the groups' semaphore is held and decremented after releasing
353 * the read access on that semaphore and creating the ordered extent.
354 */
355 down_write(&space_info->groups_sem);
356 up_write(&space_info->groups_sem);
357
358 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
359}
9f21246d
JB
360
361struct btrfs_caching_control *btrfs_get_caching_control(
32da5386 362 struct btrfs_block_group *cache)
9f21246d
JB
363{
364 struct btrfs_caching_control *ctl;
365
366 spin_lock(&cache->lock);
367 if (!cache->caching_ctl) {
368 spin_unlock(&cache->lock);
369 return NULL;
370 }
371
372 ctl = cache->caching_ctl;
373 refcount_inc(&ctl->count);
374 spin_unlock(&cache->lock);
375 return ctl;
376}
377
378void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379{
380 if (refcount_dec_and_test(&ctl->count))
381 kfree(ctl);
382}
383
384/*
385 * When we wait for progress in the block group caching, its because our
386 * allocation attempt failed at least once. So, we must sleep and let some
387 * progress happen before we try again.
388 *
389 * This function will sleep at least once waiting for new free space to show
390 * up, and then it will check the block group free space numbers for our min
391 * num_bytes. Another option is to have it go ahead and look in the rbtree for
392 * a free extent of a given size, but this is a good start.
393 *
394 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
395 * any of the information in this block group.
396 */
32da5386 397void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
9f21246d
JB
398 u64 num_bytes)
399{
400 struct btrfs_caching_control *caching_ctl;
401
402 caching_ctl = btrfs_get_caching_control(cache);
403 if (!caching_ctl)
404 return;
405
32da5386 406 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
9f21246d
JB
407 (cache->free_space_ctl->free_space >= num_bytes));
408
409 btrfs_put_caching_control(caching_ctl);
410}
411
32da5386 412int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
9f21246d
JB
413{
414 struct btrfs_caching_control *caching_ctl;
415 int ret = 0;
416
417 caching_ctl = btrfs_get_caching_control(cache);
418 if (!caching_ctl)
419 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420
32da5386 421 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
9f21246d
JB
422 if (cache->cached == BTRFS_CACHE_ERROR)
423 ret = -EIO;
424 btrfs_put_caching_control(caching_ctl);
425 return ret;
426}
427
e747853c
JB
428static bool space_cache_v1_done(struct btrfs_block_group *cache)
429{
430 bool ret;
431
432 spin_lock(&cache->lock);
433 ret = cache->cached != BTRFS_CACHE_FAST;
434 spin_unlock(&cache->lock);
435
436 return ret;
437}
438
439void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
440 struct btrfs_caching_control *caching_ctl)
441{
442 wait_event(caching_ctl->wait, space_cache_v1_done(cache));
443}
444
9f21246d 445#ifdef CONFIG_BTRFS_DEBUG
32da5386 446static void fragment_free_space(struct btrfs_block_group *block_group)
9f21246d
JB
447{
448 struct btrfs_fs_info *fs_info = block_group->fs_info;
b3470b5d
DS
449 u64 start = block_group->start;
450 u64 len = block_group->length;
9f21246d
JB
451 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
452 fs_info->nodesize : fs_info->sectorsize;
453 u64 step = chunk << 1;
454
455 while (len > chunk) {
456 btrfs_remove_free_space(block_group, start, chunk);
457 start += step;
458 if (len < step)
459 len = 0;
460 else
461 len -= step;
462 }
463}
464#endif
465
466/*
467 * This is only called by btrfs_cache_block_group, since we could have freed
468 * extents we need to check the pinned_extents for any extents that can't be
469 * used yet since their free space will be released as soon as the transaction
470 * commits.
471 */
32da5386 472u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
9f21246d
JB
473{
474 struct btrfs_fs_info *info = block_group->fs_info;
475 u64 extent_start, extent_end, size, total_added = 0;
476 int ret;
477
478 while (start < end) {
fe119a6e 479 ret = find_first_extent_bit(&info->excluded_extents, start,
9f21246d
JB
480 &extent_start, &extent_end,
481 EXTENT_DIRTY | EXTENT_UPTODATE,
482 NULL);
483 if (ret)
484 break;
485
486 if (extent_start <= start) {
487 start = extent_end + 1;
488 } else if (extent_start > start && extent_start < end) {
489 size = extent_start - start;
490 total_added += size;
b0643e59
DZ
491 ret = btrfs_add_free_space_async_trimmed(block_group,
492 start, size);
9f21246d
JB
493 BUG_ON(ret); /* -ENOMEM or logic error */
494 start = extent_end + 1;
495 } else {
496 break;
497 }
498 }
499
500 if (start < end) {
501 size = end - start;
502 total_added += size;
b0643e59
DZ
503 ret = btrfs_add_free_space_async_trimmed(block_group, start,
504 size);
9f21246d
JB
505 BUG_ON(ret); /* -ENOMEM or logic error */
506 }
507
508 return total_added;
509}
510
511static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512{
32da5386 513 struct btrfs_block_group *block_group = caching_ctl->block_group;
9f21246d
JB
514 struct btrfs_fs_info *fs_info = block_group->fs_info;
515 struct btrfs_root *extent_root = fs_info->extent_root;
516 struct btrfs_path *path;
517 struct extent_buffer *leaf;
518 struct btrfs_key key;
519 u64 total_found = 0;
520 u64 last = 0;
521 u32 nritems;
522 int ret;
523 bool wakeup = true;
524
525 path = btrfs_alloc_path();
526 if (!path)
527 return -ENOMEM;
528
b3470b5d 529 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
9f21246d
JB
530
531#ifdef CONFIG_BTRFS_DEBUG
532 /*
533 * If we're fragmenting we don't want to make anybody think we can
534 * allocate from this block group until we've had a chance to fragment
535 * the free space.
536 */
537 if (btrfs_should_fragment_free_space(block_group))
538 wakeup = false;
539#endif
540 /*
541 * We don't want to deadlock with somebody trying to allocate a new
542 * extent for the extent root while also trying to search the extent
543 * root to add free space. So we skip locking and search the commit
544 * root, since its read-only
545 */
546 path->skip_locking = 1;
547 path->search_commit_root = 1;
548 path->reada = READA_FORWARD;
549
550 key.objectid = last;
551 key.offset = 0;
552 key.type = BTRFS_EXTENT_ITEM_KEY;
553
554next:
555 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
556 if (ret < 0)
557 goto out;
558
559 leaf = path->nodes[0];
560 nritems = btrfs_header_nritems(leaf);
561
562 while (1) {
563 if (btrfs_fs_closing(fs_info) > 1) {
564 last = (u64)-1;
565 break;
566 }
567
568 if (path->slots[0] < nritems) {
569 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
570 } else {
571 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
572 if (ret)
573 break;
574
575 if (need_resched() ||
576 rwsem_is_contended(&fs_info->commit_root_sem)) {
577 if (wakeup)
578 caching_ctl->progress = last;
579 btrfs_release_path(path);
580 up_read(&fs_info->commit_root_sem);
581 mutex_unlock(&caching_ctl->mutex);
582 cond_resched();
583 mutex_lock(&caching_ctl->mutex);
584 down_read(&fs_info->commit_root_sem);
585 goto next;
586 }
587
588 ret = btrfs_next_leaf(extent_root, path);
589 if (ret < 0)
590 goto out;
591 if (ret)
592 break;
593 leaf = path->nodes[0];
594 nritems = btrfs_header_nritems(leaf);
595 continue;
596 }
597
598 if (key.objectid < last) {
599 key.objectid = last;
600 key.offset = 0;
601 key.type = BTRFS_EXTENT_ITEM_KEY;
602
603 if (wakeup)
604 caching_ctl->progress = last;
605 btrfs_release_path(path);
606 goto next;
607 }
608
b3470b5d 609 if (key.objectid < block_group->start) {
9f21246d
JB
610 path->slots[0]++;
611 continue;
612 }
613
b3470b5d 614 if (key.objectid >= block_group->start + block_group->length)
9f21246d
JB
615 break;
616
617 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
618 key.type == BTRFS_METADATA_ITEM_KEY) {
619 total_found += add_new_free_space(block_group, last,
620 key.objectid);
621 if (key.type == BTRFS_METADATA_ITEM_KEY)
622 last = key.objectid +
623 fs_info->nodesize;
624 else
625 last = key.objectid + key.offset;
626
627 if (total_found > CACHING_CTL_WAKE_UP) {
628 total_found = 0;
629 if (wakeup)
630 wake_up(&caching_ctl->wait);
631 }
632 }
633 path->slots[0]++;
634 }
635 ret = 0;
636
637 total_found += add_new_free_space(block_group, last,
b3470b5d 638 block_group->start + block_group->length);
9f21246d
JB
639 caching_ctl->progress = (u64)-1;
640
641out:
642 btrfs_free_path(path);
643 return ret;
644}
645
646static noinline void caching_thread(struct btrfs_work *work)
647{
32da5386 648 struct btrfs_block_group *block_group;
9f21246d
JB
649 struct btrfs_fs_info *fs_info;
650 struct btrfs_caching_control *caching_ctl;
651 int ret;
652
653 caching_ctl = container_of(work, struct btrfs_caching_control, work);
654 block_group = caching_ctl->block_group;
655 fs_info = block_group->fs_info;
656
657 mutex_lock(&caching_ctl->mutex);
658 down_read(&fs_info->commit_root_sem);
659
e747853c
JB
660 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
661 ret = load_free_space_cache(block_group);
662 if (ret == 1) {
663 ret = 0;
664 goto done;
665 }
666
667 /*
668 * We failed to load the space cache, set ourselves to
669 * CACHE_STARTED and carry on.
670 */
671 spin_lock(&block_group->lock);
672 block_group->cached = BTRFS_CACHE_STARTED;
673 spin_unlock(&block_group->lock);
674 wake_up(&caching_ctl->wait);
675 }
676
2f96e402
JB
677 /*
678 * If we are in the transaction that populated the free space tree we
679 * can't actually cache from the free space tree as our commit root and
680 * real root are the same, so we could change the contents of the blocks
681 * while caching. Instead do the slow caching in this case, and after
682 * the transaction has committed we will be safe.
683 */
684 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
685 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
9f21246d
JB
686 ret = load_free_space_tree(caching_ctl);
687 else
688 ret = load_extent_tree_free(caching_ctl);
e747853c 689done:
9f21246d
JB
690 spin_lock(&block_group->lock);
691 block_group->caching_ctl = NULL;
692 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
693 spin_unlock(&block_group->lock);
694
695#ifdef CONFIG_BTRFS_DEBUG
696 if (btrfs_should_fragment_free_space(block_group)) {
697 u64 bytes_used;
698
699 spin_lock(&block_group->space_info->lock);
700 spin_lock(&block_group->lock);
b3470b5d 701 bytes_used = block_group->length - block_group->used;
9f21246d
JB
702 block_group->space_info->bytes_used += bytes_used >> 1;
703 spin_unlock(&block_group->lock);
704 spin_unlock(&block_group->space_info->lock);
e11c0406 705 fragment_free_space(block_group);
9f21246d
JB
706 }
707#endif
708
709 caching_ctl->progress = (u64)-1;
710
711 up_read(&fs_info->commit_root_sem);
712 btrfs_free_excluded_extents(block_group);
713 mutex_unlock(&caching_ctl->mutex);
714
715 wake_up(&caching_ctl->wait);
716
717 btrfs_put_caching_control(caching_ctl);
718 btrfs_put_block_group(block_group);
719}
720
32da5386 721int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
9f21246d
JB
722{
723 DEFINE_WAIT(wait);
724 struct btrfs_fs_info *fs_info = cache->fs_info;
e747853c 725 struct btrfs_caching_control *caching_ctl = NULL;
9f21246d
JB
726 int ret = 0;
727
2eda5708
NA
728 /* Allocator for zoned filesystems does not use the cache at all */
729 if (btrfs_is_zoned(fs_info))
730 return 0;
731
9f21246d
JB
732 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
733 if (!caching_ctl)
734 return -ENOMEM;
735
736 INIT_LIST_HEAD(&caching_ctl->list);
737 mutex_init(&caching_ctl->mutex);
738 init_waitqueue_head(&caching_ctl->wait);
739 caching_ctl->block_group = cache;
b3470b5d 740 caching_ctl->progress = cache->start;
e747853c 741 refcount_set(&caching_ctl->count, 2);
a0cac0ec 742 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
9f21246d
JB
743
744 spin_lock(&cache->lock);
9f21246d 745 if (cache->cached != BTRFS_CACHE_NO) {
9f21246d 746 kfree(caching_ctl);
e747853c
JB
747
748 caching_ctl = cache->caching_ctl;
749 if (caching_ctl)
750 refcount_inc(&caching_ctl->count);
751 spin_unlock(&cache->lock);
752 goto out;
9f21246d
JB
753 }
754 WARN_ON(cache->caching_ctl);
755 cache->caching_ctl = caching_ctl;
e747853c
JB
756 if (btrfs_test_opt(fs_info, SPACE_CACHE))
757 cache->cached = BTRFS_CACHE_FAST;
758 else
759 cache->cached = BTRFS_CACHE_STARTED;
760 cache->has_caching_ctl = 1;
9f21246d
JB
761 spin_unlock(&cache->lock);
762
bbb86a37 763 spin_lock(&fs_info->block_group_cache_lock);
9f21246d
JB
764 refcount_inc(&caching_ctl->count);
765 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
bbb86a37 766 spin_unlock(&fs_info->block_group_cache_lock);
9f21246d
JB
767
768 btrfs_get_block_group(cache);
769
770 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
e747853c
JB
771out:
772 if (load_cache_only && caching_ctl)
773 btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
774 if (caching_ctl)
775 btrfs_put_caching_control(caching_ctl);
9f21246d
JB
776
777 return ret;
778}
e3e0520b
JB
779
780static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
781{
782 u64 extra_flags = chunk_to_extended(flags) &
783 BTRFS_EXTENDED_PROFILE_MASK;
784
785 write_seqlock(&fs_info->profiles_lock);
786 if (flags & BTRFS_BLOCK_GROUP_DATA)
787 fs_info->avail_data_alloc_bits &= ~extra_flags;
788 if (flags & BTRFS_BLOCK_GROUP_METADATA)
789 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
790 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
791 fs_info->avail_system_alloc_bits &= ~extra_flags;
792 write_sequnlock(&fs_info->profiles_lock);
793}
794
795/*
796 * Clear incompat bits for the following feature(s):
797 *
798 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
799 * in the whole filesystem
9c907446
DS
800 *
801 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
e3e0520b
JB
802 */
803static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
804{
9c907446
DS
805 bool found_raid56 = false;
806 bool found_raid1c34 = false;
807
808 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
809 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
810 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
e3e0520b
JB
811 struct list_head *head = &fs_info->space_info;
812 struct btrfs_space_info *sinfo;
813
814 list_for_each_entry_rcu(sinfo, head, list) {
e3e0520b
JB
815 down_read(&sinfo->groups_sem);
816 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
9c907446 817 found_raid56 = true;
e3e0520b 818 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
9c907446
DS
819 found_raid56 = true;
820 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
821 found_raid1c34 = true;
822 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
823 found_raid1c34 = true;
e3e0520b 824 up_read(&sinfo->groups_sem);
e3e0520b 825 }
d8e6fd5c 826 if (!found_raid56)
9c907446 827 btrfs_clear_fs_incompat(fs_info, RAID56);
d8e6fd5c 828 if (!found_raid1c34)
9c907446 829 btrfs_clear_fs_incompat(fs_info, RAID1C34);
e3e0520b
JB
830 }
831}
832
7357623a
QW
833static int remove_block_group_item(struct btrfs_trans_handle *trans,
834 struct btrfs_path *path,
835 struct btrfs_block_group *block_group)
836{
837 struct btrfs_fs_info *fs_info = trans->fs_info;
838 struct btrfs_root *root;
839 struct btrfs_key key;
840 int ret;
841
842 root = fs_info->extent_root;
843 key.objectid = block_group->start;
844 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
845 key.offset = block_group->length;
846
847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
848 if (ret > 0)
849 ret = -ENOENT;
850 if (ret < 0)
851 return ret;
852
853 ret = btrfs_del_item(trans, root, path);
854 return ret;
855}
856
e3e0520b
JB
857int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
858 u64 group_start, struct extent_map *em)
859{
860 struct btrfs_fs_info *fs_info = trans->fs_info;
e3e0520b 861 struct btrfs_path *path;
32da5386 862 struct btrfs_block_group *block_group;
e3e0520b 863 struct btrfs_free_cluster *cluster;
e3e0520b
JB
864 struct inode *inode;
865 struct kobject *kobj = NULL;
866 int ret;
867 int index;
868 int factor;
869 struct btrfs_caching_control *caching_ctl = NULL;
870 bool remove_em;
871 bool remove_rsv = false;
872
873 block_group = btrfs_lookup_block_group(fs_info, group_start);
874 BUG_ON(!block_group);
875 BUG_ON(!block_group->ro);
876
877 trace_btrfs_remove_block_group(block_group);
878 /*
879 * Free the reserved super bytes from this block group before
880 * remove it.
881 */
882 btrfs_free_excluded_extents(block_group);
b3470b5d
DS
883 btrfs_free_ref_tree_range(fs_info, block_group->start,
884 block_group->length);
e3e0520b 885
e3e0520b
JB
886 index = btrfs_bg_flags_to_raid_index(block_group->flags);
887 factor = btrfs_bg_type_to_factor(block_group->flags);
888
889 /* make sure this block group isn't part of an allocation cluster */
890 cluster = &fs_info->data_alloc_cluster;
891 spin_lock(&cluster->refill_lock);
892 btrfs_return_cluster_to_free_space(block_group, cluster);
893 spin_unlock(&cluster->refill_lock);
894
895 /*
896 * make sure this block group isn't part of a metadata
897 * allocation cluster
898 */
899 cluster = &fs_info->meta_alloc_cluster;
900 spin_lock(&cluster->refill_lock);
901 btrfs_return_cluster_to_free_space(block_group, cluster);
902 spin_unlock(&cluster->refill_lock);
903
40ab3be1
NA
904 btrfs_clear_treelog_bg(block_group);
905
e3e0520b
JB
906 path = btrfs_alloc_path();
907 if (!path) {
908 ret = -ENOMEM;
9fecd132 909 goto out;
e3e0520b
JB
910 }
911
912 /*
913 * get the inode first so any iput calls done for the io_list
914 * aren't the final iput (no unlinks allowed now)
915 */
916 inode = lookup_free_space_inode(block_group, path);
917
918 mutex_lock(&trans->transaction->cache_write_mutex);
919 /*
920 * Make sure our free space cache IO is done before removing the
921 * free space inode
922 */
923 spin_lock(&trans->transaction->dirty_bgs_lock);
924 if (!list_empty(&block_group->io_list)) {
925 list_del_init(&block_group->io_list);
926
927 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928
929 spin_unlock(&trans->transaction->dirty_bgs_lock);
930 btrfs_wait_cache_io(trans, block_group, path);
931 btrfs_put_block_group(block_group);
932 spin_lock(&trans->transaction->dirty_bgs_lock);
933 }
934
935 if (!list_empty(&block_group->dirty_list)) {
936 list_del_init(&block_group->dirty_list);
937 remove_rsv = true;
938 btrfs_put_block_group(block_group);
939 }
940 spin_unlock(&trans->transaction->dirty_bgs_lock);
941 mutex_unlock(&trans->transaction->cache_write_mutex);
942
36b216c8
BB
943 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944 if (ret)
9fecd132 945 goto out;
e3e0520b
JB
946
947 spin_lock(&fs_info->block_group_cache_lock);
948 rb_erase(&block_group->cache_node,
949 &fs_info->block_group_cache_tree);
950 RB_CLEAR_NODE(&block_group->cache_node);
951
9fecd132
FM
952 /* Once for the block groups rbtree */
953 btrfs_put_block_group(block_group);
954
b3470b5d 955 if (fs_info->first_logical_byte == block_group->start)
e3e0520b
JB
956 fs_info->first_logical_byte = (u64)-1;
957 spin_unlock(&fs_info->block_group_cache_lock);
958
959 down_write(&block_group->space_info->groups_sem);
960 /*
961 * we must use list_del_init so people can check to see if they
962 * are still on the list after taking the semaphore
963 */
964 list_del_init(&block_group->list);
965 if (list_empty(&block_group->space_info->block_groups[index])) {
966 kobj = block_group->space_info->block_group_kobjs[index];
967 block_group->space_info->block_group_kobjs[index] = NULL;
968 clear_avail_alloc_bits(fs_info, block_group->flags);
969 }
970 up_write(&block_group->space_info->groups_sem);
971 clear_incompat_bg_bits(fs_info, block_group->flags);
972 if (kobj) {
973 kobject_del(kobj);
974 kobject_put(kobj);
975 }
976
977 if (block_group->has_caching_ctl)
978 caching_ctl = btrfs_get_caching_control(block_group);
979 if (block_group->cached == BTRFS_CACHE_STARTED)
980 btrfs_wait_block_group_cache_done(block_group);
981 if (block_group->has_caching_ctl) {
bbb86a37 982 spin_lock(&fs_info->block_group_cache_lock);
e3e0520b
JB
983 if (!caching_ctl) {
984 struct btrfs_caching_control *ctl;
985
986 list_for_each_entry(ctl,
987 &fs_info->caching_block_groups, list)
988 if (ctl->block_group == block_group) {
989 caching_ctl = ctl;
990 refcount_inc(&caching_ctl->count);
991 break;
992 }
993 }
994 if (caching_ctl)
995 list_del_init(&caching_ctl->list);
bbb86a37 996 spin_unlock(&fs_info->block_group_cache_lock);
e3e0520b
JB
997 if (caching_ctl) {
998 /* Once for the caching bgs list and once for us. */
999 btrfs_put_caching_control(caching_ctl);
1000 btrfs_put_caching_control(caching_ctl);
1001 }
1002 }
1003
1004 spin_lock(&trans->transaction->dirty_bgs_lock);
1005 WARN_ON(!list_empty(&block_group->dirty_list));
1006 WARN_ON(!list_empty(&block_group->io_list));
1007 spin_unlock(&trans->transaction->dirty_bgs_lock);
1008
1009 btrfs_remove_free_space_cache(block_group);
1010
1011 spin_lock(&block_group->space_info->lock);
1012 list_del_init(&block_group->ro_list);
1013
1014 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015 WARN_ON(block_group->space_info->total_bytes
b3470b5d 1016 < block_group->length);
e3e0520b 1017 WARN_ON(block_group->space_info->bytes_readonly
169e0da9
NA
1018 < block_group->length - block_group->zone_unusable);
1019 WARN_ON(block_group->space_info->bytes_zone_unusable
1020 < block_group->zone_unusable);
e3e0520b 1021 WARN_ON(block_group->space_info->disk_total
b3470b5d 1022 < block_group->length * factor);
e3e0520b 1023 }
b3470b5d 1024 block_group->space_info->total_bytes -= block_group->length;
169e0da9
NA
1025 block_group->space_info->bytes_readonly -=
1026 (block_group->length - block_group->zone_unusable);
1027 block_group->space_info->bytes_zone_unusable -=
1028 block_group->zone_unusable;
b3470b5d 1029 block_group->space_info->disk_total -= block_group->length * factor;
e3e0520b
JB
1030
1031 spin_unlock(&block_group->space_info->lock);
1032
ffcb9d44
FM
1033 /*
1034 * Remove the free space for the block group from the free space tree
1035 * and the block group's item from the extent tree before marking the
1036 * block group as removed. This is to prevent races with tasks that
1037 * freeze and unfreeze a block group, this task and another task
1038 * allocating a new block group - the unfreeze task ends up removing
1039 * the block group's extent map before the task calling this function
1040 * deletes the block group item from the extent tree, allowing for
1041 * another task to attempt to create another block group with the same
1042 * item key (and failing with -EEXIST and a transaction abort).
1043 */
1044 ret = remove_block_group_free_space(trans, block_group);
1045 if (ret)
1046 goto out;
1047
1048 ret = remove_block_group_item(trans, path, block_group);
1049 if (ret < 0)
1050 goto out;
1051
e3e0520b
JB
1052 spin_lock(&block_group->lock);
1053 block_group->removed = 1;
1054 /*
6b7304af
FM
1055 * At this point trimming or scrub can't start on this block group,
1056 * because we removed the block group from the rbtree
1057 * fs_info->block_group_cache_tree so no one can't find it anymore and
1058 * even if someone already got this block group before we removed it
1059 * from the rbtree, they have already incremented block_group->frozen -
1060 * if they didn't, for the trimming case they won't find any free space
1061 * entries because we already removed them all when we called
1062 * btrfs_remove_free_space_cache().
e3e0520b
JB
1063 *
1064 * And we must not remove the extent map from the fs_info->mapping_tree
1065 * to prevent the same logical address range and physical device space
6b7304af
FM
1066 * ranges from being reused for a new block group. This is needed to
1067 * avoid races with trimming and scrub.
1068 *
1069 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
e3e0520b
JB
1070 * completely transactionless, so while it is trimming a range the
1071 * currently running transaction might finish and a new one start,
1072 * allowing for new block groups to be created that can reuse the same
1073 * physical device locations unless we take this special care.
1074 *
1075 * There may also be an implicit trim operation if the file system
1076 * is mounted with -odiscard. The same protections must remain
1077 * in place until the extents have been discarded completely when
1078 * the transaction commit has completed.
1079 */
6b7304af 1080 remove_em = (atomic_read(&block_group->frozen) == 0);
e3e0520b
JB
1081 spin_unlock(&block_group->lock);
1082
e3e0520b
JB
1083 if (remove_em) {
1084 struct extent_map_tree *em_tree;
1085
1086 em_tree = &fs_info->mapping_tree;
1087 write_lock(&em_tree->lock);
1088 remove_extent_mapping(em_tree, em);
1089 write_unlock(&em_tree->lock);
1090 /* once for the tree */
1091 free_extent_map(em);
1092 }
f6033c5e 1093
9fecd132 1094out:
f6033c5e
XY
1095 /* Once for the lookup reference */
1096 btrfs_put_block_group(block_group);
e3e0520b
JB
1097 if (remove_rsv)
1098 btrfs_delayed_refs_rsv_release(fs_info, 1);
1099 btrfs_free_path(path);
1100 return ret;
1101}
1102
1103struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105{
1106 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107 struct extent_map *em;
1108 struct map_lookup *map;
1109 unsigned int num_items;
1110
1111 read_lock(&em_tree->lock);
1112 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113 read_unlock(&em_tree->lock);
1114 ASSERT(em && em->start == chunk_offset);
1115
1116 /*
1117 * We need to reserve 3 + N units from the metadata space info in order
1118 * to remove a block group (done at btrfs_remove_chunk() and at
1119 * btrfs_remove_block_group()), which are used for:
1120 *
1121 * 1 unit for adding the free space inode's orphan (located in the tree
1122 * of tree roots).
1123 * 1 unit for deleting the block group item (located in the extent
1124 * tree).
1125 * 1 unit for deleting the free space item (located in tree of tree
1126 * roots).
1127 * N units for deleting N device extent items corresponding to each
1128 * stripe (located in the device tree).
1129 *
1130 * In order to remove a block group we also need to reserve units in the
1131 * system space info in order to update the chunk tree (update one or
1132 * more device items and remove one chunk item), but this is done at
1133 * btrfs_remove_chunk() through a call to check_system_chunk().
1134 */
1135 map = em->map_lookup;
1136 num_items = 3 + map->num_stripes;
1137 free_extent_map(em);
1138
1139 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7f9fe614 1140 num_items);
e3e0520b
JB
1141}
1142
26ce2095
JB
1143/*
1144 * Mark block group @cache read-only, so later write won't happen to block
1145 * group @cache.
1146 *
1147 * If @force is not set, this function will only mark the block group readonly
1148 * if we have enough free space (1M) in other metadata/system block groups.
1149 * If @force is not set, this function will mark the block group readonly
1150 * without checking free space.
1151 *
1152 * NOTE: This function doesn't care if other block groups can contain all the
1153 * data in this block group. That check should be done by relocation routine,
1154 * not this function.
1155 */
32da5386 1156static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
26ce2095
JB
1157{
1158 struct btrfs_space_info *sinfo = cache->space_info;
1159 u64 num_bytes;
26ce2095
JB
1160 int ret = -ENOSPC;
1161
26ce2095
JB
1162 spin_lock(&sinfo->lock);
1163 spin_lock(&cache->lock);
1164
195a49ea
FM
1165 if (cache->swap_extents) {
1166 ret = -ETXTBSY;
1167 goto out;
1168 }
1169
26ce2095
JB
1170 if (cache->ro) {
1171 cache->ro++;
1172 ret = 0;
1173 goto out;
1174 }
1175
b3470b5d 1176 num_bytes = cache->length - cache->reserved - cache->pinned -
169e0da9 1177 cache->bytes_super - cache->zone_unusable - cache->used;
26ce2095
JB
1178
1179 /*
a30a3d20
JB
1180 * Data never overcommits, even in mixed mode, so do just the straight
1181 * check of left over space in how much we have allocated.
26ce2095 1182 */
a30a3d20
JB
1183 if (force) {
1184 ret = 0;
1185 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187
1188 /*
1189 * Here we make sure if we mark this bg RO, we still have enough
1190 * free space as buffer.
1191 */
1192 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193 ret = 0;
1194 } else {
1195 /*
1196 * We overcommit metadata, so we need to do the
1197 * btrfs_can_overcommit check here, and we need to pass in
1198 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199 * leeway to allow us to mark this block group as read only.
1200 */
1201 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202 BTRFS_RESERVE_NO_FLUSH))
1203 ret = 0;
1204 }
1205
1206 if (!ret) {
26ce2095 1207 sinfo->bytes_readonly += num_bytes;
169e0da9
NA
1208 if (btrfs_is_zoned(cache->fs_info)) {
1209 /* Migrate zone_unusable bytes to readonly */
1210 sinfo->bytes_readonly += cache->zone_unusable;
1211 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212 cache->zone_unusable = 0;
1213 }
26ce2095
JB
1214 cache->ro++;
1215 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
26ce2095
JB
1216 }
1217out:
1218 spin_unlock(&cache->lock);
1219 spin_unlock(&sinfo->lock);
1220 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221 btrfs_info(cache->fs_info,
b3470b5d 1222 "unable to make block group %llu ro", cache->start);
26ce2095
JB
1223 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224 }
1225 return ret;
1226}
1227
fe119a6e
NB
1228static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229 struct btrfs_block_group *bg)
45bb5d6a
NB
1230{
1231 struct btrfs_fs_info *fs_info = bg->fs_info;
fe119a6e 1232 struct btrfs_transaction *prev_trans = NULL;
45bb5d6a
NB
1233 const u64 start = bg->start;
1234 const u64 end = start + bg->length - 1;
1235 int ret;
1236
fe119a6e
NB
1237 spin_lock(&fs_info->trans_lock);
1238 if (trans->transaction->list.prev != &fs_info->trans_list) {
1239 prev_trans = list_last_entry(&trans->transaction->list,
1240 struct btrfs_transaction, list);
1241 refcount_inc(&prev_trans->use_count);
1242 }
1243 spin_unlock(&fs_info->trans_lock);
1244
45bb5d6a
NB
1245 /*
1246 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247 * btrfs_finish_extent_commit(). If we are at transaction N, another
1248 * task might be running finish_extent_commit() for the previous
1249 * transaction N - 1, and have seen a range belonging to the block
fe119a6e
NB
1250 * group in pinned_extents before we were able to clear the whole block
1251 * group range from pinned_extents. This means that task can lookup for
1252 * the block group after we unpinned it from pinned_extents and removed
1253 * it, leading to a BUG_ON() at unpin_extent_range().
45bb5d6a
NB
1254 */
1255 mutex_lock(&fs_info->unused_bg_unpin_mutex);
fe119a6e
NB
1256 if (prev_trans) {
1257 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258 EXTENT_DIRTY);
1259 if (ret)
534cf531 1260 goto out;
fe119a6e 1261 }
45bb5d6a 1262
fe119a6e 1263 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
45bb5d6a 1264 EXTENT_DIRTY);
534cf531 1265out:
45bb5d6a 1266 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5150bf19
FM
1267 if (prev_trans)
1268 btrfs_put_transaction(prev_trans);
45bb5d6a 1269
534cf531 1270 return ret == 0;
45bb5d6a
NB
1271}
1272
e3e0520b
JB
1273/*
1274 * Process the unused_bgs list and remove any that don't have any allocated
1275 * space inside of them.
1276 */
1277void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278{
32da5386 1279 struct btrfs_block_group *block_group;
e3e0520b
JB
1280 struct btrfs_space_info *space_info;
1281 struct btrfs_trans_handle *trans;
6e80d4f8 1282 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
e3e0520b
JB
1283 int ret = 0;
1284
1285 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286 return;
1287
ddfd08cb
JB
1288 /*
1289 * Long running balances can keep us blocked here for eternity, so
1290 * simply skip deletion if we're unable to get the mutex.
1291 */
f3372065 1292 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
ddfd08cb
JB
1293 return;
1294
e3e0520b
JB
1295 spin_lock(&fs_info->unused_bgs_lock);
1296 while (!list_empty(&fs_info->unused_bgs)) {
e3e0520b
JB
1297 int trimming;
1298
1299 block_group = list_first_entry(&fs_info->unused_bgs,
32da5386 1300 struct btrfs_block_group,
e3e0520b
JB
1301 bg_list);
1302 list_del_init(&block_group->bg_list);
1303
1304 space_info = block_group->space_info;
1305
1306 if (ret || btrfs_mixed_space_info(space_info)) {
1307 btrfs_put_block_group(block_group);
1308 continue;
1309 }
1310 spin_unlock(&fs_info->unused_bgs_lock);
1311
b0643e59
DZ
1312 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313
e3e0520b
JB
1314 /* Don't want to race with allocators so take the groups_sem */
1315 down_write(&space_info->groups_sem);
6e80d4f8
DZ
1316
1317 /*
1318 * Async discard moves the final block group discard to be prior
1319 * to the unused_bgs code path. Therefore, if it's not fully
1320 * trimmed, punt it back to the async discard lists.
1321 */
1322 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323 !btrfs_is_free_space_trimmed(block_group)) {
1324 trace_btrfs_skip_unused_block_group(block_group);
1325 up_write(&space_info->groups_sem);
1326 /* Requeue if we failed because of async discard */
1327 btrfs_discard_queue_work(&fs_info->discard_ctl,
1328 block_group);
1329 goto next;
1330 }
1331
e3e0520b
JB
1332 spin_lock(&block_group->lock);
1333 if (block_group->reserved || block_group->pinned ||
bf38be65 1334 block_group->used || block_group->ro ||
e3e0520b
JB
1335 list_is_singular(&block_group->list)) {
1336 /*
1337 * We want to bail if we made new allocations or have
1338 * outstanding allocations in this block group. We do
1339 * the ro check in case balance is currently acting on
1340 * this block group.
1341 */
1342 trace_btrfs_skip_unused_block_group(block_group);
1343 spin_unlock(&block_group->lock);
1344 up_write(&space_info->groups_sem);
1345 goto next;
1346 }
1347 spin_unlock(&block_group->lock);
1348
1349 /* We don't want to force the issue, only flip if it's ok. */
e11c0406 1350 ret = inc_block_group_ro(block_group, 0);
e3e0520b
JB
1351 up_write(&space_info->groups_sem);
1352 if (ret < 0) {
1353 ret = 0;
1354 goto next;
1355 }
1356
1357 /*
1358 * Want to do this before we do anything else so we can recover
1359 * properly if we fail to join the transaction.
1360 */
1361 trans = btrfs_start_trans_remove_block_group(fs_info,
b3470b5d 1362 block_group->start);
e3e0520b
JB
1363 if (IS_ERR(trans)) {
1364 btrfs_dec_block_group_ro(block_group);
1365 ret = PTR_ERR(trans);
1366 goto next;
1367 }
1368
1369 /*
1370 * We could have pending pinned extents for this block group,
1371 * just delete them, we don't care about them anymore.
1372 */
534cf531
FM
1373 if (!clean_pinned_extents(trans, block_group)) {
1374 btrfs_dec_block_group_ro(block_group);
e3e0520b 1375 goto end_trans;
534cf531 1376 }
e3e0520b 1377
b0643e59
DZ
1378 /*
1379 * At this point, the block_group is read only and should fail
1380 * new allocations. However, btrfs_finish_extent_commit() can
1381 * cause this block_group to be placed back on the discard
1382 * lists because now the block_group isn't fully discarded.
1383 * Bail here and try again later after discarding everything.
1384 */
1385 spin_lock(&fs_info->discard_ctl.lock);
1386 if (!list_empty(&block_group->discard_list)) {
1387 spin_unlock(&fs_info->discard_ctl.lock);
1388 btrfs_dec_block_group_ro(block_group);
1389 btrfs_discard_queue_work(&fs_info->discard_ctl,
1390 block_group);
1391 goto end_trans;
1392 }
1393 spin_unlock(&fs_info->discard_ctl.lock);
1394
e3e0520b
JB
1395 /* Reset pinned so btrfs_put_block_group doesn't complain */
1396 spin_lock(&space_info->lock);
1397 spin_lock(&block_group->lock);
1398
1399 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400 -block_group->pinned);
1401 space_info->bytes_readonly += block_group->pinned;
e3e0520b
JB
1402 block_group->pinned = 0;
1403
1404 spin_unlock(&block_group->lock);
1405 spin_unlock(&space_info->lock);
1406
6e80d4f8
DZ
1407 /*
1408 * The normal path here is an unused block group is passed here,
1409 * then trimming is handled in the transaction commit path.
1410 * Async discard interposes before this to do the trimming
1411 * before coming down the unused block group path as trimming
1412 * will no longer be done later in the transaction commit path.
1413 */
1414 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1415 goto flip_async;
1416
dcba6e48
NA
1417 /*
1418 * DISCARD can flip during remount. On zoned filesystems, we
1419 * need to reset sequential-required zones.
1420 */
1421 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1422 btrfs_is_zoned(fs_info);
e3e0520b
JB
1423
1424 /* Implicit trim during transaction commit. */
1425 if (trimming)
6b7304af 1426 btrfs_freeze_block_group(block_group);
e3e0520b
JB
1427
1428 /*
1429 * Btrfs_remove_chunk will abort the transaction if things go
1430 * horribly wrong.
1431 */
b3470b5d 1432 ret = btrfs_remove_chunk(trans, block_group->start);
e3e0520b
JB
1433
1434 if (ret) {
1435 if (trimming)
6b7304af 1436 btrfs_unfreeze_block_group(block_group);
e3e0520b
JB
1437 goto end_trans;
1438 }
1439
1440 /*
1441 * If we're not mounted with -odiscard, we can just forget
1442 * about this block group. Otherwise we'll need to wait
1443 * until transaction commit to do the actual discard.
1444 */
1445 if (trimming) {
1446 spin_lock(&fs_info->unused_bgs_lock);
1447 /*
1448 * A concurrent scrub might have added us to the list
1449 * fs_info->unused_bgs, so use a list_move operation
1450 * to add the block group to the deleted_bgs list.
1451 */
1452 list_move(&block_group->bg_list,
1453 &trans->transaction->deleted_bgs);
1454 spin_unlock(&fs_info->unused_bgs_lock);
1455 btrfs_get_block_group(block_group);
1456 }
1457end_trans:
1458 btrfs_end_transaction(trans);
1459next:
e3e0520b
JB
1460 btrfs_put_block_group(block_group);
1461 spin_lock(&fs_info->unused_bgs_lock);
1462 }
1463 spin_unlock(&fs_info->unused_bgs_lock);
f3372065 1464 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1465 return;
1466
1467flip_async:
1468 btrfs_end_transaction(trans);
f3372065 1469 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1470 btrfs_put_block_group(block_group);
1471 btrfs_discard_punt_unused_bgs_list(fs_info);
e3e0520b
JB
1472}
1473
32da5386 1474void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
e3e0520b
JB
1475{
1476 struct btrfs_fs_info *fs_info = bg->fs_info;
1477
1478 spin_lock(&fs_info->unused_bgs_lock);
1479 if (list_empty(&bg->bg_list)) {
1480 btrfs_get_block_group(bg);
1481 trace_btrfs_add_unused_block_group(bg);
1482 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1483 }
1484 spin_unlock(&fs_info->unused_bgs_lock);
1485}
4358d963 1486
18bb8bbf
JT
1487void btrfs_reclaim_bgs_work(struct work_struct *work)
1488{
1489 struct btrfs_fs_info *fs_info =
1490 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1491 struct btrfs_block_group *bg;
1492 struct btrfs_space_info *space_info;
1cea5cf0 1493 LIST_HEAD(again_list);
18bb8bbf
JT
1494
1495 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1496 return;
1497
1498 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1499 return;
1500
1501 mutex_lock(&fs_info->reclaim_bgs_lock);
1502 spin_lock(&fs_info->unused_bgs_lock);
1503 while (!list_empty(&fs_info->reclaim_bgs)) {
5f93e776 1504 u64 zone_unusable;
1cea5cf0
FM
1505 int ret = 0;
1506
18bb8bbf
JT
1507 bg = list_first_entry(&fs_info->reclaim_bgs,
1508 struct btrfs_block_group,
1509 bg_list);
1510 list_del_init(&bg->bg_list);
1511
1512 space_info = bg->space_info;
1513 spin_unlock(&fs_info->unused_bgs_lock);
1514
1515 /* Don't race with allocators so take the groups_sem */
1516 down_write(&space_info->groups_sem);
1517
1518 spin_lock(&bg->lock);
1519 if (bg->reserved || bg->pinned || bg->ro) {
1520 /*
1521 * We want to bail if we made new allocations or have
1522 * outstanding allocations in this block group. We do
1523 * the ro check in case balance is currently acting on
1524 * this block group.
1525 */
1526 spin_unlock(&bg->lock);
1527 up_write(&space_info->groups_sem);
1528 goto next;
1529 }
1530 spin_unlock(&bg->lock);
1531
1532 /* Get out fast, in case we're unmounting the filesystem */
1533 if (btrfs_fs_closing(fs_info)) {
1534 up_write(&space_info->groups_sem);
1535 goto next;
1536 }
1537
5f93e776
JT
1538 /*
1539 * Cache the zone_unusable value before turning the block group
1540 * to read only. As soon as the blog group is read only it's
1541 * zone_unusable value gets moved to the block group's read-only
1542 * bytes and isn't available for calculations anymore.
1543 */
1544 zone_unusable = bg->zone_unusable;
18bb8bbf
JT
1545 ret = inc_block_group_ro(bg, 0);
1546 up_write(&space_info->groups_sem);
1547 if (ret < 0)
1548 goto next;
1549
5f93e776
JT
1550 btrfs_info(fs_info,
1551 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1552 bg->start, div_u64(bg->used * 100, bg->length),
1553 div64_u64(zone_unusable * 100, bg->length));
18bb8bbf
JT
1554 trace_btrfs_reclaim_block_group(bg);
1555 ret = btrfs_relocate_chunk(fs_info, bg->start);
1556 if (ret)
1557 btrfs_err(fs_info, "error relocating chunk %llu",
1558 bg->start);
1559
1560next:
18bb8bbf 1561 spin_lock(&fs_info->unused_bgs_lock);
1cea5cf0
FM
1562 if (ret == -EAGAIN && list_empty(&bg->bg_list))
1563 list_add_tail(&bg->bg_list, &again_list);
1564 else
1565 btrfs_put_block_group(bg);
18bb8bbf 1566 }
1cea5cf0 1567 list_splice_tail(&again_list, &fs_info->reclaim_bgs);
18bb8bbf
JT
1568 spin_unlock(&fs_info->unused_bgs_lock);
1569 mutex_unlock(&fs_info->reclaim_bgs_lock);
1570 btrfs_exclop_finish(fs_info);
1571}
1572
1573void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1574{
1575 spin_lock(&fs_info->unused_bgs_lock);
1576 if (!list_empty(&fs_info->reclaim_bgs))
1577 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1578 spin_unlock(&fs_info->unused_bgs_lock);
1579}
1580
1581void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1582{
1583 struct btrfs_fs_info *fs_info = bg->fs_info;
1584
1585 spin_lock(&fs_info->unused_bgs_lock);
1586 if (list_empty(&bg->bg_list)) {
1587 btrfs_get_block_group(bg);
1588 trace_btrfs_add_reclaim_block_group(bg);
1589 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1590 }
1591 spin_unlock(&fs_info->unused_bgs_lock);
1592}
1593
e3ba67a1
JT
1594static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1595 struct btrfs_path *path)
1596{
1597 struct extent_map_tree *em_tree;
1598 struct extent_map *em;
1599 struct btrfs_block_group_item bg;
1600 struct extent_buffer *leaf;
1601 int slot;
1602 u64 flags;
1603 int ret = 0;
1604
1605 slot = path->slots[0];
1606 leaf = path->nodes[0];
1607
1608 em_tree = &fs_info->mapping_tree;
1609 read_lock(&em_tree->lock);
1610 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1611 read_unlock(&em_tree->lock);
1612 if (!em) {
1613 btrfs_err(fs_info,
1614 "logical %llu len %llu found bg but no related chunk",
1615 key->objectid, key->offset);
1616 return -ENOENT;
1617 }
1618
1619 if (em->start != key->objectid || em->len != key->offset) {
1620 btrfs_err(fs_info,
1621 "block group %llu len %llu mismatch with chunk %llu len %llu",
1622 key->objectid, key->offset, em->start, em->len);
1623 ret = -EUCLEAN;
1624 goto out_free_em;
1625 }
1626
1627 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1628 sizeof(bg));
1629 flags = btrfs_stack_block_group_flags(&bg) &
1630 BTRFS_BLOCK_GROUP_TYPE_MASK;
1631
1632 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1633 btrfs_err(fs_info,
1634"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1635 key->objectid, key->offset, flags,
1636 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1637 ret = -EUCLEAN;
1638 }
1639
1640out_free_em:
1641 free_extent_map(em);
1642 return ret;
1643}
1644
4358d963
JB
1645static int find_first_block_group(struct btrfs_fs_info *fs_info,
1646 struct btrfs_path *path,
1647 struct btrfs_key *key)
1648{
1649 struct btrfs_root *root = fs_info->extent_root;
e3ba67a1 1650 int ret;
4358d963
JB
1651 struct btrfs_key found_key;
1652 struct extent_buffer *leaf;
4358d963
JB
1653 int slot;
1654
1655 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1656 if (ret < 0)
e3ba67a1 1657 return ret;
4358d963
JB
1658
1659 while (1) {
1660 slot = path->slots[0];
1661 leaf = path->nodes[0];
1662 if (slot >= btrfs_header_nritems(leaf)) {
1663 ret = btrfs_next_leaf(root, path);
1664 if (ret == 0)
1665 continue;
1666 if (ret < 0)
1667 goto out;
1668 break;
1669 }
1670 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1671
1672 if (found_key.objectid >= key->objectid &&
1673 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
e3ba67a1
JT
1674 ret = read_bg_from_eb(fs_info, &found_key, path);
1675 break;
4358d963 1676 }
e3ba67a1 1677
4358d963
JB
1678 path->slots[0]++;
1679 }
1680out:
1681 return ret;
1682}
1683
1684static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1685{
1686 u64 extra_flags = chunk_to_extended(flags) &
1687 BTRFS_EXTENDED_PROFILE_MASK;
1688
1689 write_seqlock(&fs_info->profiles_lock);
1690 if (flags & BTRFS_BLOCK_GROUP_DATA)
1691 fs_info->avail_data_alloc_bits |= extra_flags;
1692 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1693 fs_info->avail_metadata_alloc_bits |= extra_flags;
1694 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1695 fs_info->avail_system_alloc_bits |= extra_flags;
1696 write_sequnlock(&fs_info->profiles_lock);
1697}
1698
96a14336 1699/**
9ee9b979
NB
1700 * Map a physical disk address to a list of logical addresses
1701 *
1702 * @fs_info: the filesystem
96a14336 1703 * @chunk_start: logical address of block group
138082f3 1704 * @bdev: physical device to resolve, can be NULL to indicate any device
96a14336
NB
1705 * @physical: physical address to map to logical addresses
1706 * @logical: return array of logical addresses which map to @physical
1707 * @naddrs: length of @logical
1708 * @stripe_len: size of IO stripe for the given block group
1709 *
1710 * Maps a particular @physical disk address to a list of @logical addresses.
1711 * Used primarily to exclude those portions of a block group that contain super
1712 * block copies.
1713 */
96a14336 1714int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
138082f3
NA
1715 struct block_device *bdev, u64 physical, u64 **logical,
1716 int *naddrs, int *stripe_len)
96a14336
NB
1717{
1718 struct extent_map *em;
1719 struct map_lookup *map;
1720 u64 *buf;
1721 u64 bytenr;
1776ad17
NB
1722 u64 data_stripe_length;
1723 u64 io_stripe_size;
1724 int i, nr = 0;
1725 int ret = 0;
96a14336
NB
1726
1727 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1728 if (IS_ERR(em))
1729 return -EIO;
1730
1731 map = em->map_lookup;
9e22b925 1732 data_stripe_length = em->orig_block_len;
1776ad17 1733 io_stripe_size = map->stripe_len;
138082f3 1734 chunk_start = em->start;
96a14336 1735
9e22b925
NB
1736 /* For RAID5/6 adjust to a full IO stripe length */
1737 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1776ad17 1738 io_stripe_size = map->stripe_len * nr_data_stripes(map);
96a14336
NB
1739
1740 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1776ad17
NB
1741 if (!buf) {
1742 ret = -ENOMEM;
1743 goto out;
1744 }
96a14336
NB
1745
1746 for (i = 0; i < map->num_stripes; i++) {
1776ad17
NB
1747 bool already_inserted = false;
1748 u64 stripe_nr;
138082f3 1749 u64 offset;
1776ad17
NB
1750 int j;
1751
1752 if (!in_range(physical, map->stripes[i].physical,
1753 data_stripe_length))
96a14336
NB
1754 continue;
1755
138082f3
NA
1756 if (bdev && map->stripes[i].dev->bdev != bdev)
1757 continue;
1758
96a14336 1759 stripe_nr = physical - map->stripes[i].physical;
138082f3 1760 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
96a14336
NB
1761
1762 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1763 stripe_nr = stripe_nr * map->num_stripes + i;
1764 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1765 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1766 stripe_nr = stripe_nr * map->num_stripes + i;
1767 }
1768 /*
1769 * The remaining case would be for RAID56, multiply by
1770 * nr_data_stripes(). Alternatively, just use rmap_len below
1771 * instead of map->stripe_len
1772 */
1773
138082f3 1774 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1776ad17
NB
1775
1776 /* Ensure we don't add duplicate addresses */
96a14336 1777 for (j = 0; j < nr; j++) {
1776ad17
NB
1778 if (buf[j] == bytenr) {
1779 already_inserted = true;
96a14336 1780 break;
1776ad17 1781 }
96a14336 1782 }
1776ad17
NB
1783
1784 if (!already_inserted)
96a14336 1785 buf[nr++] = bytenr;
96a14336
NB
1786 }
1787
1788 *logical = buf;
1789 *naddrs = nr;
1776ad17
NB
1790 *stripe_len = io_stripe_size;
1791out:
96a14336 1792 free_extent_map(em);
1776ad17 1793 return ret;
96a14336
NB
1794}
1795
32da5386 1796static int exclude_super_stripes(struct btrfs_block_group *cache)
4358d963
JB
1797{
1798 struct btrfs_fs_info *fs_info = cache->fs_info;
12659251 1799 const bool zoned = btrfs_is_zoned(fs_info);
4358d963
JB
1800 u64 bytenr;
1801 u64 *logical;
1802 int stripe_len;
1803 int i, nr, ret;
1804
b3470b5d
DS
1805 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1806 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
4358d963 1807 cache->bytes_super += stripe_len;
b3470b5d 1808 ret = btrfs_add_excluded_extent(fs_info, cache->start,
4358d963
JB
1809 stripe_len);
1810 if (ret)
1811 return ret;
1812 }
1813
1814 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1815 bytenr = btrfs_sb_offset(i);
138082f3 1816 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
4358d963
JB
1817 bytenr, &logical, &nr, &stripe_len);
1818 if (ret)
1819 return ret;
1820
12659251
NA
1821 /* Shouldn't have super stripes in sequential zones */
1822 if (zoned && nr) {
1823 btrfs_err(fs_info,
1824 "zoned: block group %llu must not contain super block",
1825 cache->start);
1826 return -EUCLEAN;
1827 }
1828
4358d963 1829 while (nr--) {
96f9b0f2
NB
1830 u64 len = min_t(u64, stripe_len,
1831 cache->start + cache->length - logical[nr]);
4358d963
JB
1832
1833 cache->bytes_super += len;
96f9b0f2
NB
1834 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1835 len);
4358d963
JB
1836 if (ret) {
1837 kfree(logical);
1838 return ret;
1839 }
1840 }
1841
1842 kfree(logical);
1843 }
1844 return 0;
1845}
1846
32da5386 1847static void link_block_group(struct btrfs_block_group *cache)
4358d963
JB
1848{
1849 struct btrfs_space_info *space_info = cache->space_info;
1850 int index = btrfs_bg_flags_to_raid_index(cache->flags);
4358d963
JB
1851
1852 down_write(&space_info->groups_sem);
4358d963
JB
1853 list_add_tail(&cache->list, &space_info->block_groups[index]);
1854 up_write(&space_info->groups_sem);
4358d963
JB
1855}
1856
32da5386 1857static struct btrfs_block_group *btrfs_create_block_group_cache(
9afc6649 1858 struct btrfs_fs_info *fs_info, u64 start)
4358d963 1859{
32da5386 1860 struct btrfs_block_group *cache;
4358d963
JB
1861
1862 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1863 if (!cache)
1864 return NULL;
1865
1866 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1867 GFP_NOFS);
1868 if (!cache->free_space_ctl) {
1869 kfree(cache);
1870 return NULL;
1871 }
1872
b3470b5d 1873 cache->start = start;
4358d963
JB
1874
1875 cache->fs_info = fs_info;
1876 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
4358d963 1877
6e80d4f8
DZ
1878 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1879
48aaeebe 1880 refcount_set(&cache->refs, 1);
4358d963
JB
1881 spin_lock_init(&cache->lock);
1882 init_rwsem(&cache->data_rwsem);
1883 INIT_LIST_HEAD(&cache->list);
1884 INIT_LIST_HEAD(&cache->cluster_list);
1885 INIT_LIST_HEAD(&cache->bg_list);
1886 INIT_LIST_HEAD(&cache->ro_list);
b0643e59 1887 INIT_LIST_HEAD(&cache->discard_list);
4358d963
JB
1888 INIT_LIST_HEAD(&cache->dirty_list);
1889 INIT_LIST_HEAD(&cache->io_list);
cd79909b 1890 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
6b7304af 1891 atomic_set(&cache->frozen, 0);
4358d963
JB
1892 mutex_init(&cache->free_space_lock);
1893 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1894
1895 return cache;
1896}
1897
1898/*
1899 * Iterate all chunks and verify that each of them has the corresponding block
1900 * group
1901 */
1902static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1903{
1904 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1905 struct extent_map *em;
32da5386 1906 struct btrfs_block_group *bg;
4358d963
JB
1907 u64 start = 0;
1908 int ret = 0;
1909
1910 while (1) {
1911 read_lock(&map_tree->lock);
1912 /*
1913 * lookup_extent_mapping will return the first extent map
1914 * intersecting the range, so setting @len to 1 is enough to
1915 * get the first chunk.
1916 */
1917 em = lookup_extent_mapping(map_tree, start, 1);
1918 read_unlock(&map_tree->lock);
1919 if (!em)
1920 break;
1921
1922 bg = btrfs_lookup_block_group(fs_info, em->start);
1923 if (!bg) {
1924 btrfs_err(fs_info,
1925 "chunk start=%llu len=%llu doesn't have corresponding block group",
1926 em->start, em->len);
1927 ret = -EUCLEAN;
1928 free_extent_map(em);
1929 break;
1930 }
b3470b5d 1931 if (bg->start != em->start || bg->length != em->len ||
4358d963
JB
1932 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1933 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1934 btrfs_err(fs_info,
1935"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1936 em->start, em->len,
1937 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
b3470b5d 1938 bg->start, bg->length,
4358d963
JB
1939 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1940 ret = -EUCLEAN;
1941 free_extent_map(em);
1942 btrfs_put_block_group(bg);
1943 break;
1944 }
1945 start = em->start + em->len;
1946 free_extent_map(em);
1947 btrfs_put_block_group(bg);
1948 }
1949 return ret;
1950}
1951
ffb9e0f0 1952static int read_one_block_group(struct btrfs_fs_info *info,
4afd2fe8 1953 struct btrfs_block_group_item *bgi,
d49a2ddb 1954 const struct btrfs_key *key,
ffb9e0f0
QW
1955 int need_clear)
1956{
32da5386 1957 struct btrfs_block_group *cache;
ffb9e0f0 1958 struct btrfs_space_info *space_info;
ffb9e0f0 1959 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
ffb9e0f0
QW
1960 int ret;
1961
d49a2ddb 1962 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
ffb9e0f0 1963
9afc6649 1964 cache = btrfs_create_block_group_cache(info, key->objectid);
ffb9e0f0
QW
1965 if (!cache)
1966 return -ENOMEM;
1967
4afd2fe8
JT
1968 cache->length = key->offset;
1969 cache->used = btrfs_stack_block_group_used(bgi);
1970 cache->flags = btrfs_stack_block_group_flags(bgi);
9afc6649 1971
e3e39c72
MPS
1972 set_free_space_tree_thresholds(cache);
1973
ffb9e0f0
QW
1974 if (need_clear) {
1975 /*
1976 * When we mount with old space cache, we need to
1977 * set BTRFS_DC_CLEAR and set dirty flag.
1978 *
1979 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1980 * truncate the old free space cache inode and
1981 * setup a new one.
1982 * b) Setting 'dirty flag' makes sure that we flush
1983 * the new space cache info onto disk.
1984 */
1985 if (btrfs_test_opt(info, SPACE_CACHE))
1986 cache->disk_cache_state = BTRFS_DC_CLEAR;
1987 }
ffb9e0f0
QW
1988 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1989 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1990 btrfs_err(info,
1991"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1992 cache->start);
1993 ret = -EINVAL;
1994 goto error;
1995 }
1996
a94794d5 1997 ret = btrfs_load_block_group_zone_info(cache, false);
08e11a3d
NA
1998 if (ret) {
1999 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2000 cache->start);
2001 goto error;
2002 }
2003
ffb9e0f0
QW
2004 /*
2005 * We need to exclude the super stripes now so that the space info has
2006 * super bytes accounted for, otherwise we'll think we have more space
2007 * than we actually do.
2008 */
2009 ret = exclude_super_stripes(cache);
2010 if (ret) {
2011 /* We may have excluded something, so call this just in case. */
2012 btrfs_free_excluded_extents(cache);
2013 goto error;
2014 }
2015
2016 /*
169e0da9
NA
2017 * For zoned filesystem, space after the allocation offset is the only
2018 * free space for a block group. So, we don't need any caching work.
2019 * btrfs_calc_zone_unusable() will set the amount of free space and
2020 * zone_unusable space.
2021 *
2022 * For regular filesystem, check for two cases, either we are full, and
2023 * therefore don't need to bother with the caching work since we won't
2024 * find any space, or we are empty, and we can just add all the space
2025 * in and be done with it. This saves us _a_lot_ of time, particularly
2026 * in the full case.
ffb9e0f0 2027 */
169e0da9
NA
2028 if (btrfs_is_zoned(info)) {
2029 btrfs_calc_zone_unusable(cache);
2030 } else if (cache->length == cache->used) {
ffb9e0f0
QW
2031 cache->last_byte_to_unpin = (u64)-1;
2032 cache->cached = BTRFS_CACHE_FINISHED;
2033 btrfs_free_excluded_extents(cache);
2034 } else if (cache->used == 0) {
2035 cache->last_byte_to_unpin = (u64)-1;
2036 cache->cached = BTRFS_CACHE_FINISHED;
9afc6649
QW
2037 add_new_free_space(cache, cache->start,
2038 cache->start + cache->length);
ffb9e0f0
QW
2039 btrfs_free_excluded_extents(cache);
2040 }
2041
2042 ret = btrfs_add_block_group_cache(info, cache);
2043 if (ret) {
2044 btrfs_remove_free_space_cache(cache);
2045 goto error;
2046 }
2047 trace_btrfs_add_block_group(info, cache, 0);
9afc6649 2048 btrfs_update_space_info(info, cache->flags, cache->length,
169e0da9
NA
2049 cache->used, cache->bytes_super,
2050 cache->zone_unusable, &space_info);
ffb9e0f0
QW
2051
2052 cache->space_info = space_info;
2053
2054 link_block_group(cache);
2055
2056 set_avail_alloc_bits(info, cache->flags);
2057 if (btrfs_chunk_readonly(info, cache->start)) {
2058 inc_block_group_ro(cache, 1);
2059 } else if (cache->used == 0) {
2060 ASSERT(list_empty(&cache->bg_list));
6e80d4f8
DZ
2061 if (btrfs_test_opt(info, DISCARD_ASYNC))
2062 btrfs_discard_queue_work(&info->discard_ctl, cache);
2063 else
2064 btrfs_mark_bg_unused(cache);
ffb9e0f0
QW
2065 }
2066 return 0;
2067error:
2068 btrfs_put_block_group(cache);
2069 return ret;
2070}
2071
42437a63
JB
2072static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2073{
2074 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2075 struct btrfs_space_info *space_info;
2076 struct rb_node *node;
2077 int ret = 0;
2078
2079 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2080 struct extent_map *em;
2081 struct map_lookup *map;
2082 struct btrfs_block_group *bg;
2083
2084 em = rb_entry(node, struct extent_map, rb_node);
2085 map = em->map_lookup;
2086 bg = btrfs_create_block_group_cache(fs_info, em->start);
2087 if (!bg) {
2088 ret = -ENOMEM;
2089 break;
2090 }
2091
2092 /* Fill dummy cache as FULL */
2093 bg->length = em->len;
2094 bg->flags = map->type;
2095 bg->last_byte_to_unpin = (u64)-1;
2096 bg->cached = BTRFS_CACHE_FINISHED;
2097 bg->used = em->len;
2098 bg->flags = map->type;
2099 ret = btrfs_add_block_group_cache(fs_info, bg);
2100 if (ret) {
2101 btrfs_remove_free_space_cache(bg);
2102 btrfs_put_block_group(bg);
2103 break;
2104 }
2105 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
169e0da9 2106 0, 0, &space_info);
42437a63
JB
2107 bg->space_info = space_info;
2108 link_block_group(bg);
2109
2110 set_avail_alloc_bits(fs_info, bg->flags);
2111 }
2112 if (!ret)
2113 btrfs_init_global_block_rsv(fs_info);
2114 return ret;
2115}
2116
4358d963
JB
2117int btrfs_read_block_groups(struct btrfs_fs_info *info)
2118{
2119 struct btrfs_path *path;
2120 int ret;
32da5386 2121 struct btrfs_block_group *cache;
4358d963
JB
2122 struct btrfs_space_info *space_info;
2123 struct btrfs_key key;
4358d963
JB
2124 int need_clear = 0;
2125 u64 cache_gen;
4358d963 2126
42437a63
JB
2127 if (!info->extent_root)
2128 return fill_dummy_bgs(info);
2129
4358d963
JB
2130 key.objectid = 0;
2131 key.offset = 0;
2132 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2133 path = btrfs_alloc_path();
2134 if (!path)
2135 return -ENOMEM;
4358d963
JB
2136
2137 cache_gen = btrfs_super_cache_generation(info->super_copy);
2138 if (btrfs_test_opt(info, SPACE_CACHE) &&
2139 btrfs_super_generation(info->super_copy) != cache_gen)
2140 need_clear = 1;
2141 if (btrfs_test_opt(info, CLEAR_CACHE))
2142 need_clear = 1;
2143
2144 while (1) {
4afd2fe8
JT
2145 struct btrfs_block_group_item bgi;
2146 struct extent_buffer *leaf;
2147 int slot;
2148
4358d963
JB
2149 ret = find_first_block_group(info, path, &key);
2150 if (ret > 0)
2151 break;
2152 if (ret != 0)
2153 goto error;
2154
4afd2fe8
JT
2155 leaf = path->nodes[0];
2156 slot = path->slots[0];
2157
2158 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2159 sizeof(bgi));
2160
2161 btrfs_item_key_to_cpu(leaf, &key, slot);
2162 btrfs_release_path(path);
2163 ret = read_one_block_group(info, &bgi, &key, need_clear);
ffb9e0f0 2164 if (ret < 0)
4358d963 2165 goto error;
ffb9e0f0
QW
2166 key.objectid += key.offset;
2167 key.offset = 0;
4358d963 2168 }
7837fa88 2169 btrfs_release_path(path);
4358d963 2170
72804905 2171 list_for_each_entry(space_info, &info->space_info, list) {
49ea112d
JB
2172 int i;
2173
2174 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2175 if (list_empty(&space_info->block_groups[i]))
2176 continue;
2177 cache = list_first_entry(&space_info->block_groups[i],
2178 struct btrfs_block_group,
2179 list);
2180 btrfs_sysfs_add_block_group_type(cache);
2181 }
2182
4358d963
JB
2183 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2184 (BTRFS_BLOCK_GROUP_RAID10 |
2185 BTRFS_BLOCK_GROUP_RAID1_MASK |
2186 BTRFS_BLOCK_GROUP_RAID56_MASK |
2187 BTRFS_BLOCK_GROUP_DUP)))
2188 continue;
2189 /*
2190 * Avoid allocating from un-mirrored block group if there are
2191 * mirrored block groups.
2192 */
2193 list_for_each_entry(cache,
2194 &space_info->block_groups[BTRFS_RAID_RAID0],
2195 list)
e11c0406 2196 inc_block_group_ro(cache, 1);
4358d963
JB
2197 list_for_each_entry(cache,
2198 &space_info->block_groups[BTRFS_RAID_SINGLE],
2199 list)
e11c0406 2200 inc_block_group_ro(cache, 1);
4358d963
JB
2201 }
2202
2203 btrfs_init_global_block_rsv(info);
2204 ret = check_chunk_block_group_mappings(info);
2205error:
2206 btrfs_free_path(path);
2207 return ret;
2208}
2209
97f4728a
QW
2210static int insert_block_group_item(struct btrfs_trans_handle *trans,
2211 struct btrfs_block_group *block_group)
2212{
2213 struct btrfs_fs_info *fs_info = trans->fs_info;
2214 struct btrfs_block_group_item bgi;
2215 struct btrfs_root *root;
2216 struct btrfs_key key;
2217
2218 spin_lock(&block_group->lock);
2219 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2220 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2221 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2222 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2223 key.objectid = block_group->start;
2224 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2225 key.offset = block_group->length;
2226 spin_unlock(&block_group->lock);
2227
2228 root = fs_info->extent_root;
2229 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2230}
2231
4358d963
JB
2232void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2233{
2234 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2235 struct btrfs_block_group *block_group;
4358d963
JB
2236 int ret = 0;
2237
2238 if (!trans->can_flush_pending_bgs)
2239 return;
2240
2241 while (!list_empty(&trans->new_bgs)) {
49ea112d
JB
2242 int index;
2243
4358d963 2244 block_group = list_first_entry(&trans->new_bgs,
32da5386 2245 struct btrfs_block_group,
4358d963
JB
2246 bg_list);
2247 if (ret)
2248 goto next;
2249
49ea112d
JB
2250 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2251
97f4728a 2252 ret = insert_block_group_item(trans, block_group);
4358d963
JB
2253 if (ret)
2254 btrfs_abort_transaction(trans, ret);
97f4728a
QW
2255 ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2256 block_group->length);
4358d963
JB
2257 if (ret)
2258 btrfs_abort_transaction(trans, ret);
2259 add_block_group_free_space(trans, block_group);
49ea112d
JB
2260
2261 /*
2262 * If we restriped during balance, we may have added a new raid
2263 * type, so now add the sysfs entries when it is safe to do so.
2264 * We don't have to worry about locking here as it's handled in
2265 * btrfs_sysfs_add_block_group_type.
2266 */
2267 if (block_group->space_info->block_group_kobjs[index] == NULL)
2268 btrfs_sysfs_add_block_group_type(block_group);
2269
4358d963
JB
2270 /* Already aborted the transaction if it failed. */
2271next:
2272 btrfs_delayed_refs_rsv_release(fs_info, 1);
2273 list_del_init(&block_group->bg_list);
2274 }
2275 btrfs_trans_release_chunk_metadata(trans);
2276}
2277
2278int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2279 u64 type, u64 chunk_offset, u64 size)
2280{
2281 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2282 struct btrfs_block_group *cache;
4358d963
JB
2283 int ret;
2284
2285 btrfs_set_log_full_commit(trans);
2286
9afc6649 2287 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
4358d963
JB
2288 if (!cache)
2289 return -ENOMEM;
2290
9afc6649 2291 cache->length = size;
e3e39c72 2292 set_free_space_tree_thresholds(cache);
bf38be65 2293 cache->used = bytes_used;
4358d963
JB
2294 cache->flags = type;
2295 cache->last_byte_to_unpin = (u64)-1;
2296 cache->cached = BTRFS_CACHE_FINISHED;
997e3e2e
BB
2297 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2298 cache->needs_free_space = 1;
08e11a3d 2299
a94794d5 2300 ret = btrfs_load_block_group_zone_info(cache, true);
08e11a3d
NA
2301 if (ret) {
2302 btrfs_put_block_group(cache);
2303 return ret;
2304 }
2305
4358d963
JB
2306 ret = exclude_super_stripes(cache);
2307 if (ret) {
2308 /* We may have excluded something, so call this just in case */
2309 btrfs_free_excluded_extents(cache);
2310 btrfs_put_block_group(cache);
2311 return ret;
2312 }
2313
2314 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2315
2316 btrfs_free_excluded_extents(cache);
2317
2318#ifdef CONFIG_BTRFS_DEBUG
2319 if (btrfs_should_fragment_free_space(cache)) {
2320 u64 new_bytes_used = size - bytes_used;
2321
2322 bytes_used += new_bytes_used >> 1;
e11c0406 2323 fragment_free_space(cache);
4358d963
JB
2324 }
2325#endif
2326 /*
2327 * Ensure the corresponding space_info object is created and
2328 * assigned to our block group. We want our bg to be added to the rbtree
2329 * with its ->space_info set.
2330 */
2331 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2332 ASSERT(cache->space_info);
2333
2334 ret = btrfs_add_block_group_cache(fs_info, cache);
2335 if (ret) {
2336 btrfs_remove_free_space_cache(cache);
2337 btrfs_put_block_group(cache);
2338 return ret;
2339 }
2340
2341 /*
2342 * Now that our block group has its ->space_info set and is inserted in
2343 * the rbtree, update the space info's counters.
2344 */
2345 trace_btrfs_add_block_group(fs_info, cache, 1);
2346 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
169e0da9 2347 cache->bytes_super, 0, &cache->space_info);
4358d963
JB
2348 btrfs_update_global_block_rsv(fs_info);
2349
2350 link_block_group(cache);
2351
2352 list_add_tail(&cache->bg_list, &trans->new_bgs);
2353 trans->delayed_ref_updates++;
2354 btrfs_update_delayed_refs_rsv(trans);
2355
2356 set_avail_alloc_bits(fs_info, type);
2357 return 0;
2358}
26ce2095 2359
b12de528
QW
2360/*
2361 * Mark one block group RO, can be called several times for the same block
2362 * group.
2363 *
2364 * @cache: the destination block group
2365 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2366 * ensure we still have some free space after marking this
2367 * block group RO.
2368 */
2369int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2370 bool do_chunk_alloc)
26ce2095
JB
2371{
2372 struct btrfs_fs_info *fs_info = cache->fs_info;
2373 struct btrfs_trans_handle *trans;
2374 u64 alloc_flags;
2375 int ret;
b6e9f16c 2376 bool dirty_bg_running;
26ce2095 2377
b6e9f16c
NB
2378 do {
2379 trans = btrfs_join_transaction(fs_info->extent_root);
2380 if (IS_ERR(trans))
2381 return PTR_ERR(trans);
26ce2095 2382
b6e9f16c 2383 dirty_bg_running = false;
26ce2095 2384
b6e9f16c
NB
2385 /*
2386 * We're not allowed to set block groups readonly after the dirty
2387 * block group cache has started writing. If it already started,
2388 * back off and let this transaction commit.
2389 */
2390 mutex_lock(&fs_info->ro_block_group_mutex);
2391 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2392 u64 transid = trans->transid;
26ce2095 2393
b6e9f16c
NB
2394 mutex_unlock(&fs_info->ro_block_group_mutex);
2395 btrfs_end_transaction(trans);
2396
2397 ret = btrfs_wait_for_commit(fs_info, transid);
2398 if (ret)
2399 return ret;
2400 dirty_bg_running = true;
2401 }
2402 } while (dirty_bg_running);
26ce2095 2403
b12de528 2404 if (do_chunk_alloc) {
26ce2095 2405 /*
b12de528
QW
2406 * If we are changing raid levels, try to allocate a
2407 * corresponding block group with the new raid level.
26ce2095 2408 */
349e120e 2409 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
b12de528
QW
2410 if (alloc_flags != cache->flags) {
2411 ret = btrfs_chunk_alloc(trans, alloc_flags,
2412 CHUNK_ALLOC_FORCE);
2413 /*
2414 * ENOSPC is allowed here, we may have enough space
2415 * already allocated at the new raid level to carry on
2416 */
2417 if (ret == -ENOSPC)
2418 ret = 0;
2419 if (ret < 0)
2420 goto out;
2421 }
26ce2095
JB
2422 }
2423
a7a63acc 2424 ret = inc_block_group_ro(cache, 0);
195a49ea 2425 if (!do_chunk_alloc || ret == -ETXTBSY)
b12de528 2426 goto unlock_out;
26ce2095
JB
2427 if (!ret)
2428 goto out;
2429 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2430 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2431 if (ret < 0)
2432 goto out;
e11c0406 2433 ret = inc_block_group_ro(cache, 0);
195a49ea
FM
2434 if (ret == -ETXTBSY)
2435 goto unlock_out;
26ce2095
JB
2436out:
2437 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
349e120e 2438 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
26ce2095
JB
2439 mutex_lock(&fs_info->chunk_mutex);
2440 check_system_chunk(trans, alloc_flags);
2441 mutex_unlock(&fs_info->chunk_mutex);
2442 }
b12de528 2443unlock_out:
26ce2095
JB
2444 mutex_unlock(&fs_info->ro_block_group_mutex);
2445
2446 btrfs_end_transaction(trans);
2447 return ret;
2448}
2449
32da5386 2450void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
26ce2095
JB
2451{
2452 struct btrfs_space_info *sinfo = cache->space_info;
2453 u64 num_bytes;
2454
2455 BUG_ON(!cache->ro);
2456
2457 spin_lock(&sinfo->lock);
2458 spin_lock(&cache->lock);
2459 if (!--cache->ro) {
169e0da9
NA
2460 if (btrfs_is_zoned(cache->fs_info)) {
2461 /* Migrate zone_unusable bytes back */
2462 cache->zone_unusable = cache->alloc_offset - cache->used;
2463 sinfo->bytes_zone_unusable += cache->zone_unusable;
2464 sinfo->bytes_readonly -= cache->zone_unusable;
2465 }
f9f28e5b
NA
2466 num_bytes = cache->length - cache->reserved -
2467 cache->pinned - cache->bytes_super -
2468 cache->zone_unusable - cache->used;
2469 sinfo->bytes_readonly -= num_bytes;
26ce2095
JB
2470 list_del_init(&cache->ro_list);
2471 }
2472 spin_unlock(&cache->lock);
2473 spin_unlock(&sinfo->lock);
2474}
77745c05 2475
3be4d8ef
QW
2476static int update_block_group_item(struct btrfs_trans_handle *trans,
2477 struct btrfs_path *path,
2478 struct btrfs_block_group *cache)
77745c05
JB
2479{
2480 struct btrfs_fs_info *fs_info = trans->fs_info;
2481 int ret;
3be4d8ef 2482 struct btrfs_root *root = fs_info->extent_root;
77745c05
JB
2483 unsigned long bi;
2484 struct extent_buffer *leaf;
bf38be65 2485 struct btrfs_block_group_item bgi;
b3470b5d
DS
2486 struct btrfs_key key;
2487
2488 key.objectid = cache->start;
2489 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2490 key.offset = cache->length;
77745c05 2491
3be4d8ef 2492 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
77745c05
JB
2493 if (ret) {
2494 if (ret > 0)
2495 ret = -ENOENT;
2496 goto fail;
2497 }
2498
2499 leaf = path->nodes[0];
2500 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
de0dc456
DS
2501 btrfs_set_stack_block_group_used(&bgi, cache->used);
2502 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3d976388 2503 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
de0dc456 2504 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
bf38be65 2505 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
77745c05
JB
2506 btrfs_mark_buffer_dirty(leaf);
2507fail:
2508 btrfs_release_path(path);
2509 return ret;
2510
2511}
2512
32da5386 2513static int cache_save_setup(struct btrfs_block_group *block_group,
77745c05
JB
2514 struct btrfs_trans_handle *trans,
2515 struct btrfs_path *path)
2516{
2517 struct btrfs_fs_info *fs_info = block_group->fs_info;
2518 struct btrfs_root *root = fs_info->tree_root;
2519 struct inode *inode = NULL;
2520 struct extent_changeset *data_reserved = NULL;
2521 u64 alloc_hint = 0;
2522 int dcs = BTRFS_DC_ERROR;
0044ae11 2523 u64 cache_size = 0;
77745c05
JB
2524 int retries = 0;
2525 int ret = 0;
2526
af456a2c
BB
2527 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2528 return 0;
2529
77745c05
JB
2530 /*
2531 * If this block group is smaller than 100 megs don't bother caching the
2532 * block group.
2533 */
b3470b5d 2534 if (block_group->length < (100 * SZ_1M)) {
77745c05
JB
2535 spin_lock(&block_group->lock);
2536 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2537 spin_unlock(&block_group->lock);
2538 return 0;
2539 }
2540
bf31f87f 2541 if (TRANS_ABORTED(trans))
77745c05
JB
2542 return 0;
2543again:
2544 inode = lookup_free_space_inode(block_group, path);
2545 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2546 ret = PTR_ERR(inode);
2547 btrfs_release_path(path);
2548 goto out;
2549 }
2550
2551 if (IS_ERR(inode)) {
2552 BUG_ON(retries);
2553 retries++;
2554
2555 if (block_group->ro)
2556 goto out_free;
2557
2558 ret = create_free_space_inode(trans, block_group, path);
2559 if (ret)
2560 goto out_free;
2561 goto again;
2562 }
2563
2564 /*
2565 * We want to set the generation to 0, that way if anything goes wrong
2566 * from here on out we know not to trust this cache when we load up next
2567 * time.
2568 */
2569 BTRFS_I(inode)->generation = 0;
9a56fcd1 2570 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
77745c05
JB
2571 if (ret) {
2572 /*
2573 * So theoretically we could recover from this, simply set the
2574 * super cache generation to 0 so we know to invalidate the
2575 * cache, but then we'd have to keep track of the block groups
2576 * that fail this way so we know we _have_ to reset this cache
2577 * before the next commit or risk reading stale cache. So to
2578 * limit our exposure to horrible edge cases lets just abort the
2579 * transaction, this only happens in really bad situations
2580 * anyway.
2581 */
2582 btrfs_abort_transaction(trans, ret);
2583 goto out_put;
2584 }
2585 WARN_ON(ret);
2586
2587 /* We've already setup this transaction, go ahead and exit */
2588 if (block_group->cache_generation == trans->transid &&
2589 i_size_read(inode)) {
2590 dcs = BTRFS_DC_SETUP;
2591 goto out_put;
2592 }
2593
2594 if (i_size_read(inode) > 0) {
2595 ret = btrfs_check_trunc_cache_free_space(fs_info,
2596 &fs_info->global_block_rsv);
2597 if (ret)
2598 goto out_put;
2599
2600 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2601 if (ret)
2602 goto out_put;
2603 }
2604
2605 spin_lock(&block_group->lock);
2606 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2607 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2608 /*
2609 * don't bother trying to write stuff out _if_
2610 * a) we're not cached,
2611 * b) we're with nospace_cache mount option,
2612 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2613 */
2614 dcs = BTRFS_DC_WRITTEN;
2615 spin_unlock(&block_group->lock);
2616 goto out_put;
2617 }
2618 spin_unlock(&block_group->lock);
2619
2620 /*
2621 * We hit an ENOSPC when setting up the cache in this transaction, just
2622 * skip doing the setup, we've already cleared the cache so we're safe.
2623 */
2624 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2625 ret = -ENOSPC;
2626 goto out_put;
2627 }
2628
2629 /*
2630 * Try to preallocate enough space based on how big the block group is.
2631 * Keep in mind this has to include any pinned space which could end up
2632 * taking up quite a bit since it's not folded into the other space
2633 * cache.
2634 */
0044ae11
QW
2635 cache_size = div_u64(block_group->length, SZ_256M);
2636 if (!cache_size)
2637 cache_size = 1;
77745c05 2638
0044ae11
QW
2639 cache_size *= 16;
2640 cache_size *= fs_info->sectorsize;
77745c05 2641
36ea6f3e 2642 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
0044ae11 2643 cache_size);
77745c05
JB
2644 if (ret)
2645 goto out_put;
2646
0044ae11
QW
2647 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2648 cache_size, cache_size,
77745c05
JB
2649 &alloc_hint);
2650 /*
2651 * Our cache requires contiguous chunks so that we don't modify a bunch
2652 * of metadata or split extents when writing the cache out, which means
2653 * we can enospc if we are heavily fragmented in addition to just normal
2654 * out of space conditions. So if we hit this just skip setting up any
2655 * other block groups for this transaction, maybe we'll unpin enough
2656 * space the next time around.
2657 */
2658 if (!ret)
2659 dcs = BTRFS_DC_SETUP;
2660 else if (ret == -ENOSPC)
2661 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2662
2663out_put:
2664 iput(inode);
2665out_free:
2666 btrfs_release_path(path);
2667out:
2668 spin_lock(&block_group->lock);
2669 if (!ret && dcs == BTRFS_DC_SETUP)
2670 block_group->cache_generation = trans->transid;
2671 block_group->disk_cache_state = dcs;
2672 spin_unlock(&block_group->lock);
2673
2674 extent_changeset_free(data_reserved);
2675 return ret;
2676}
2677
2678int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2679{
2680 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2681 struct btrfs_block_group *cache, *tmp;
77745c05
JB
2682 struct btrfs_transaction *cur_trans = trans->transaction;
2683 struct btrfs_path *path;
2684
2685 if (list_empty(&cur_trans->dirty_bgs) ||
2686 !btrfs_test_opt(fs_info, SPACE_CACHE))
2687 return 0;
2688
2689 path = btrfs_alloc_path();
2690 if (!path)
2691 return -ENOMEM;
2692
2693 /* Could add new block groups, use _safe just in case */
2694 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2695 dirty_list) {
2696 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2697 cache_save_setup(cache, trans, path);
2698 }
2699
2700 btrfs_free_path(path);
2701 return 0;
2702}
2703
2704/*
2705 * Transaction commit does final block group cache writeback during a critical
2706 * section where nothing is allowed to change the FS. This is required in
2707 * order for the cache to actually match the block group, but can introduce a
2708 * lot of latency into the commit.
2709 *
2710 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2711 * There's a chance we'll have to redo some of it if the block group changes
2712 * again during the commit, but it greatly reduces the commit latency by
2713 * getting rid of the easy block groups while we're still allowing others to
2714 * join the commit.
2715 */
2716int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2717{
2718 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2719 struct btrfs_block_group *cache;
77745c05
JB
2720 struct btrfs_transaction *cur_trans = trans->transaction;
2721 int ret = 0;
2722 int should_put;
2723 struct btrfs_path *path = NULL;
2724 LIST_HEAD(dirty);
2725 struct list_head *io = &cur_trans->io_bgs;
2726 int num_started = 0;
2727 int loops = 0;
2728
2729 spin_lock(&cur_trans->dirty_bgs_lock);
2730 if (list_empty(&cur_trans->dirty_bgs)) {
2731 spin_unlock(&cur_trans->dirty_bgs_lock);
2732 return 0;
2733 }
2734 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2735 spin_unlock(&cur_trans->dirty_bgs_lock);
2736
2737again:
2738 /* Make sure all the block groups on our dirty list actually exist */
2739 btrfs_create_pending_block_groups(trans);
2740
2741 if (!path) {
2742 path = btrfs_alloc_path();
938fcbfb
JB
2743 if (!path) {
2744 ret = -ENOMEM;
2745 goto out;
2746 }
77745c05
JB
2747 }
2748
2749 /*
2750 * cache_write_mutex is here only to save us from balance or automatic
2751 * removal of empty block groups deleting this block group while we are
2752 * writing out the cache
2753 */
2754 mutex_lock(&trans->transaction->cache_write_mutex);
2755 while (!list_empty(&dirty)) {
2756 bool drop_reserve = true;
2757
32da5386 2758 cache = list_first_entry(&dirty, struct btrfs_block_group,
77745c05
JB
2759 dirty_list);
2760 /*
2761 * This can happen if something re-dirties a block group that
2762 * is already under IO. Just wait for it to finish and then do
2763 * it all again
2764 */
2765 if (!list_empty(&cache->io_list)) {
2766 list_del_init(&cache->io_list);
2767 btrfs_wait_cache_io(trans, cache, path);
2768 btrfs_put_block_group(cache);
2769 }
2770
2771
2772 /*
2773 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2774 * it should update the cache_state. Don't delete until after
2775 * we wait.
2776 *
2777 * Since we're not running in the commit critical section
2778 * we need the dirty_bgs_lock to protect from update_block_group
2779 */
2780 spin_lock(&cur_trans->dirty_bgs_lock);
2781 list_del_init(&cache->dirty_list);
2782 spin_unlock(&cur_trans->dirty_bgs_lock);
2783
2784 should_put = 1;
2785
2786 cache_save_setup(cache, trans, path);
2787
2788 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2789 cache->io_ctl.inode = NULL;
2790 ret = btrfs_write_out_cache(trans, cache, path);
2791 if (ret == 0 && cache->io_ctl.inode) {
2792 num_started++;
2793 should_put = 0;
2794
2795 /*
2796 * The cache_write_mutex is protecting the
2797 * io_list, also refer to the definition of
2798 * btrfs_transaction::io_bgs for more details
2799 */
2800 list_add_tail(&cache->io_list, io);
2801 } else {
2802 /*
2803 * If we failed to write the cache, the
2804 * generation will be bad and life goes on
2805 */
2806 ret = 0;
2807 }
2808 }
2809 if (!ret) {
3be4d8ef 2810 ret = update_block_group_item(trans, path, cache);
77745c05
JB
2811 /*
2812 * Our block group might still be attached to the list
2813 * of new block groups in the transaction handle of some
2814 * other task (struct btrfs_trans_handle->new_bgs). This
2815 * means its block group item isn't yet in the extent
2816 * tree. If this happens ignore the error, as we will
2817 * try again later in the critical section of the
2818 * transaction commit.
2819 */
2820 if (ret == -ENOENT) {
2821 ret = 0;
2822 spin_lock(&cur_trans->dirty_bgs_lock);
2823 if (list_empty(&cache->dirty_list)) {
2824 list_add_tail(&cache->dirty_list,
2825 &cur_trans->dirty_bgs);
2826 btrfs_get_block_group(cache);
2827 drop_reserve = false;
2828 }
2829 spin_unlock(&cur_trans->dirty_bgs_lock);
2830 } else if (ret) {
2831 btrfs_abort_transaction(trans, ret);
2832 }
2833 }
2834
2835 /* If it's not on the io list, we need to put the block group */
2836 if (should_put)
2837 btrfs_put_block_group(cache);
2838 if (drop_reserve)
2839 btrfs_delayed_refs_rsv_release(fs_info, 1);
77745c05
JB
2840 /*
2841 * Avoid blocking other tasks for too long. It might even save
2842 * us from writing caches for block groups that are going to be
2843 * removed.
2844 */
2845 mutex_unlock(&trans->transaction->cache_write_mutex);
938fcbfb
JB
2846 if (ret)
2847 goto out;
77745c05
JB
2848 mutex_lock(&trans->transaction->cache_write_mutex);
2849 }
2850 mutex_unlock(&trans->transaction->cache_write_mutex);
2851
2852 /*
2853 * Go through delayed refs for all the stuff we've just kicked off
2854 * and then loop back (just once)
2855 */
34d1eb0e
JB
2856 if (!ret)
2857 ret = btrfs_run_delayed_refs(trans, 0);
77745c05
JB
2858 if (!ret && loops == 0) {
2859 loops++;
2860 spin_lock(&cur_trans->dirty_bgs_lock);
2861 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2862 /*
2863 * dirty_bgs_lock protects us from concurrent block group
2864 * deletes too (not just cache_write_mutex).
2865 */
2866 if (!list_empty(&dirty)) {
2867 spin_unlock(&cur_trans->dirty_bgs_lock);
2868 goto again;
2869 }
2870 spin_unlock(&cur_trans->dirty_bgs_lock);
938fcbfb
JB
2871 }
2872out:
2873 if (ret < 0) {
2874 spin_lock(&cur_trans->dirty_bgs_lock);
2875 list_splice_init(&dirty, &cur_trans->dirty_bgs);
2876 spin_unlock(&cur_trans->dirty_bgs_lock);
77745c05
JB
2877 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2878 }
2879
2880 btrfs_free_path(path);
2881 return ret;
2882}
2883
2884int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2885{
2886 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2887 struct btrfs_block_group *cache;
77745c05
JB
2888 struct btrfs_transaction *cur_trans = trans->transaction;
2889 int ret = 0;
2890 int should_put;
2891 struct btrfs_path *path;
2892 struct list_head *io = &cur_trans->io_bgs;
2893 int num_started = 0;
2894
2895 path = btrfs_alloc_path();
2896 if (!path)
2897 return -ENOMEM;
2898
2899 /*
2900 * Even though we are in the critical section of the transaction commit,
2901 * we can still have concurrent tasks adding elements to this
2902 * transaction's list of dirty block groups. These tasks correspond to
2903 * endio free space workers started when writeback finishes for a
2904 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2905 * allocate new block groups as a result of COWing nodes of the root
2906 * tree when updating the free space inode. The writeback for the space
2907 * caches is triggered by an earlier call to
2908 * btrfs_start_dirty_block_groups() and iterations of the following
2909 * loop.
2910 * Also we want to do the cache_save_setup first and then run the
2911 * delayed refs to make sure we have the best chance at doing this all
2912 * in one shot.
2913 */
2914 spin_lock(&cur_trans->dirty_bgs_lock);
2915 while (!list_empty(&cur_trans->dirty_bgs)) {
2916 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 2917 struct btrfs_block_group,
77745c05
JB
2918 dirty_list);
2919
2920 /*
2921 * This can happen if cache_save_setup re-dirties a block group
2922 * that is already under IO. Just wait for it to finish and
2923 * then do it all again
2924 */
2925 if (!list_empty(&cache->io_list)) {
2926 spin_unlock(&cur_trans->dirty_bgs_lock);
2927 list_del_init(&cache->io_list);
2928 btrfs_wait_cache_io(trans, cache, path);
2929 btrfs_put_block_group(cache);
2930 spin_lock(&cur_trans->dirty_bgs_lock);
2931 }
2932
2933 /*
2934 * Don't remove from the dirty list until after we've waited on
2935 * any pending IO
2936 */
2937 list_del_init(&cache->dirty_list);
2938 spin_unlock(&cur_trans->dirty_bgs_lock);
2939 should_put = 1;
2940
2941 cache_save_setup(cache, trans, path);
2942
2943 if (!ret)
2944 ret = btrfs_run_delayed_refs(trans,
2945 (unsigned long) -1);
2946
2947 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2948 cache->io_ctl.inode = NULL;
2949 ret = btrfs_write_out_cache(trans, cache, path);
2950 if (ret == 0 && cache->io_ctl.inode) {
2951 num_started++;
2952 should_put = 0;
2953 list_add_tail(&cache->io_list, io);
2954 } else {
2955 /*
2956 * If we failed to write the cache, the
2957 * generation will be bad and life goes on
2958 */
2959 ret = 0;
2960 }
2961 }
2962 if (!ret) {
3be4d8ef 2963 ret = update_block_group_item(trans, path, cache);
77745c05
JB
2964 /*
2965 * One of the free space endio workers might have
2966 * created a new block group while updating a free space
2967 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2968 * and hasn't released its transaction handle yet, in
2969 * which case the new block group is still attached to
2970 * its transaction handle and its creation has not
2971 * finished yet (no block group item in the extent tree
2972 * yet, etc). If this is the case, wait for all free
2973 * space endio workers to finish and retry. This is a
260db43c 2974 * very rare case so no need for a more efficient and
77745c05
JB
2975 * complex approach.
2976 */
2977 if (ret == -ENOENT) {
2978 wait_event(cur_trans->writer_wait,
2979 atomic_read(&cur_trans->num_writers) == 1);
3be4d8ef 2980 ret = update_block_group_item(trans, path, cache);
77745c05
JB
2981 }
2982 if (ret)
2983 btrfs_abort_transaction(trans, ret);
2984 }
2985
2986 /* If its not on the io list, we need to put the block group */
2987 if (should_put)
2988 btrfs_put_block_group(cache);
2989 btrfs_delayed_refs_rsv_release(fs_info, 1);
2990 spin_lock(&cur_trans->dirty_bgs_lock);
2991 }
2992 spin_unlock(&cur_trans->dirty_bgs_lock);
2993
2994 /*
2995 * Refer to the definition of io_bgs member for details why it's safe
2996 * to use it without any locking
2997 */
2998 while (!list_empty(io)) {
32da5386 2999 cache = list_first_entry(io, struct btrfs_block_group,
77745c05
JB
3000 io_list);
3001 list_del_init(&cache->io_list);
3002 btrfs_wait_cache_io(trans, cache, path);
3003 btrfs_put_block_group(cache);
3004 }
3005
3006 btrfs_free_path(path);
3007 return ret;
3008}
606d1bf1
JB
3009
3010int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3011 u64 bytenr, u64 num_bytes, int alloc)
3012{
3013 struct btrfs_fs_info *info = trans->fs_info;
32da5386 3014 struct btrfs_block_group *cache = NULL;
606d1bf1
JB
3015 u64 total = num_bytes;
3016 u64 old_val;
3017 u64 byte_in_group;
3018 int factor;
3019 int ret = 0;
3020
3021 /* Block accounting for super block */
3022 spin_lock(&info->delalloc_root_lock);
3023 old_val = btrfs_super_bytes_used(info->super_copy);
3024 if (alloc)
3025 old_val += num_bytes;
3026 else
3027 old_val -= num_bytes;
3028 btrfs_set_super_bytes_used(info->super_copy, old_val);
3029 spin_unlock(&info->delalloc_root_lock);
3030
3031 while (total) {
3032 cache = btrfs_lookup_block_group(info, bytenr);
3033 if (!cache) {
3034 ret = -ENOENT;
3035 break;
3036 }
3037 factor = btrfs_bg_type_to_factor(cache->flags);
3038
3039 /*
3040 * If this block group has free space cache written out, we
3041 * need to make sure to load it if we are removing space. This
3042 * is because we need the unpinning stage to actually add the
3043 * space back to the block group, otherwise we will leak space.
3044 */
32da5386 3045 if (!alloc && !btrfs_block_group_done(cache))
606d1bf1
JB
3046 btrfs_cache_block_group(cache, 1);
3047
b3470b5d
DS
3048 byte_in_group = bytenr - cache->start;
3049 WARN_ON(byte_in_group > cache->length);
606d1bf1
JB
3050
3051 spin_lock(&cache->space_info->lock);
3052 spin_lock(&cache->lock);
3053
3054 if (btrfs_test_opt(info, SPACE_CACHE) &&
3055 cache->disk_cache_state < BTRFS_DC_CLEAR)
3056 cache->disk_cache_state = BTRFS_DC_CLEAR;
3057
bf38be65 3058 old_val = cache->used;
b3470b5d 3059 num_bytes = min(total, cache->length - byte_in_group);
606d1bf1
JB
3060 if (alloc) {
3061 old_val += num_bytes;
bf38be65 3062 cache->used = old_val;
606d1bf1
JB
3063 cache->reserved -= num_bytes;
3064 cache->space_info->bytes_reserved -= num_bytes;
3065 cache->space_info->bytes_used += num_bytes;
3066 cache->space_info->disk_used += num_bytes * factor;
3067 spin_unlock(&cache->lock);
3068 spin_unlock(&cache->space_info->lock);
3069 } else {
3070 old_val -= num_bytes;
bf38be65 3071 cache->used = old_val;
606d1bf1
JB
3072 cache->pinned += num_bytes;
3073 btrfs_space_info_update_bytes_pinned(info,
3074 cache->space_info, num_bytes);
3075 cache->space_info->bytes_used -= num_bytes;
3076 cache->space_info->disk_used -= num_bytes * factor;
3077 spin_unlock(&cache->lock);
3078 spin_unlock(&cache->space_info->lock);
3079
fe119a6e 3080 set_extent_dirty(&trans->transaction->pinned_extents,
606d1bf1
JB
3081 bytenr, bytenr + num_bytes - 1,
3082 GFP_NOFS | __GFP_NOFAIL);
3083 }
3084
3085 spin_lock(&trans->transaction->dirty_bgs_lock);
3086 if (list_empty(&cache->dirty_list)) {
3087 list_add_tail(&cache->dirty_list,
3088 &trans->transaction->dirty_bgs);
3089 trans->delayed_ref_updates++;
3090 btrfs_get_block_group(cache);
3091 }
3092 spin_unlock(&trans->transaction->dirty_bgs_lock);
3093
3094 /*
3095 * No longer have used bytes in this block group, queue it for
3096 * deletion. We do this after adding the block group to the
3097 * dirty list to avoid races between cleaner kthread and space
3098 * cache writeout.
3099 */
6e80d4f8
DZ
3100 if (!alloc && old_val == 0) {
3101 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3102 btrfs_mark_bg_unused(cache);
3103 }
606d1bf1
JB
3104
3105 btrfs_put_block_group(cache);
3106 total -= num_bytes;
3107 bytenr += num_bytes;
3108 }
3109
3110 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3111 btrfs_update_delayed_refs_rsv(trans);
3112 return ret;
3113}
3114
3115/**
3116 * btrfs_add_reserved_bytes - update the block_group and space info counters
3117 * @cache: The cache we are manipulating
3118 * @ram_bytes: The number of bytes of file content, and will be same to
3119 * @num_bytes except for the compress path.
3120 * @num_bytes: The number of bytes in question
3121 * @delalloc: The blocks are allocated for the delalloc write
3122 *
3123 * This is called by the allocator when it reserves space. If this is a
3124 * reservation and the block group has become read only we cannot make the
3125 * reservation and return -EAGAIN, otherwise this function always succeeds.
3126 */
32da5386 3127int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3128 u64 ram_bytes, u64 num_bytes, int delalloc)
3129{
3130 struct btrfs_space_info *space_info = cache->space_info;
3131 int ret = 0;
3132
3133 spin_lock(&space_info->lock);
3134 spin_lock(&cache->lock);
3135 if (cache->ro) {
3136 ret = -EAGAIN;
3137 } else {
3138 cache->reserved += num_bytes;
3139 space_info->bytes_reserved += num_bytes;
a43c3835
JB
3140 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3141 space_info->flags, num_bytes, 1);
606d1bf1
JB
3142 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3143 space_info, -ram_bytes);
3144 if (delalloc)
3145 cache->delalloc_bytes += num_bytes;
99ffb43e
JB
3146
3147 /*
3148 * Compression can use less space than we reserved, so wake
3149 * tickets if that happens
3150 */
3151 if (num_bytes < ram_bytes)
3152 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3153 }
3154 spin_unlock(&cache->lock);
3155 spin_unlock(&space_info->lock);
3156 return ret;
3157}
3158
3159/**
3160 * btrfs_free_reserved_bytes - update the block_group and space info counters
3161 * @cache: The cache we are manipulating
3162 * @num_bytes: The number of bytes in question
3163 * @delalloc: The blocks are allocated for the delalloc write
3164 *
3165 * This is called by somebody who is freeing space that was never actually used
3166 * on disk. For example if you reserve some space for a new leaf in transaction
3167 * A and before transaction A commits you free that leaf, you call this with
3168 * reserve set to 0 in order to clear the reservation.
3169 */
32da5386 3170void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3171 u64 num_bytes, int delalloc)
3172{
3173 struct btrfs_space_info *space_info = cache->space_info;
3174
3175 spin_lock(&space_info->lock);
3176 spin_lock(&cache->lock);
3177 if (cache->ro)
3178 space_info->bytes_readonly += num_bytes;
3179 cache->reserved -= num_bytes;
3180 space_info->bytes_reserved -= num_bytes;
3181 space_info->max_extent_size = 0;
3182
3183 if (delalloc)
3184 cache->delalloc_bytes -= num_bytes;
3185 spin_unlock(&cache->lock);
3308234a
JB
3186
3187 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3188 spin_unlock(&space_info->lock);
3189}
07730d87
JB
3190
3191static void force_metadata_allocation(struct btrfs_fs_info *info)
3192{
3193 struct list_head *head = &info->space_info;
3194 struct btrfs_space_info *found;
3195
72804905 3196 list_for_each_entry(found, head, list) {
07730d87
JB
3197 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3198 found->force_alloc = CHUNK_ALLOC_FORCE;
3199 }
07730d87
JB
3200}
3201
3202static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3203 struct btrfs_space_info *sinfo, int force)
3204{
3205 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3206 u64 thresh;
3207
3208 if (force == CHUNK_ALLOC_FORCE)
3209 return 1;
3210
3211 /*
3212 * in limited mode, we want to have some free space up to
3213 * about 1% of the FS size.
3214 */
3215 if (force == CHUNK_ALLOC_LIMITED) {
3216 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3217 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3218
3219 if (sinfo->total_bytes - bytes_used < thresh)
3220 return 1;
3221 }
3222
3223 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3224 return 0;
3225 return 1;
3226}
3227
3228int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3229{
3230 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3231
3232 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3233}
3234
3235/*
3236 * If force is CHUNK_ALLOC_FORCE:
3237 * - return 1 if it successfully allocates a chunk,
3238 * - return errors including -ENOSPC otherwise.
3239 * If force is NOT CHUNK_ALLOC_FORCE:
3240 * - return 0 if it doesn't need to allocate a new chunk,
3241 * - return 1 if it successfully allocates a chunk,
3242 * - return errors including -ENOSPC otherwise.
3243 */
3244int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3245 enum btrfs_chunk_alloc_enum force)
3246{
3247 struct btrfs_fs_info *fs_info = trans->fs_info;
3248 struct btrfs_space_info *space_info;
3249 bool wait_for_alloc = false;
3250 bool should_alloc = false;
3251 int ret = 0;
3252
3253 /* Don't re-enter if we're already allocating a chunk */
3254 if (trans->allocating_chunk)
3255 return -ENOSPC;
3256
3257 space_info = btrfs_find_space_info(fs_info, flags);
3258 ASSERT(space_info);
3259
3260 do {
3261 spin_lock(&space_info->lock);
3262 if (force < space_info->force_alloc)
3263 force = space_info->force_alloc;
3264 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3265 if (space_info->full) {
3266 /* No more free physical space */
3267 if (should_alloc)
3268 ret = -ENOSPC;
3269 else
3270 ret = 0;
3271 spin_unlock(&space_info->lock);
3272 return ret;
3273 } else if (!should_alloc) {
3274 spin_unlock(&space_info->lock);
3275 return 0;
3276 } else if (space_info->chunk_alloc) {
3277 /*
3278 * Someone is already allocating, so we need to block
3279 * until this someone is finished and then loop to
3280 * recheck if we should continue with our allocation
3281 * attempt.
3282 */
3283 wait_for_alloc = true;
3284 spin_unlock(&space_info->lock);
3285 mutex_lock(&fs_info->chunk_mutex);
3286 mutex_unlock(&fs_info->chunk_mutex);
3287 } else {
3288 /* Proceed with allocation */
3289 space_info->chunk_alloc = 1;
3290 wait_for_alloc = false;
3291 spin_unlock(&space_info->lock);
3292 }
3293
3294 cond_resched();
3295 } while (wait_for_alloc);
3296
3297 mutex_lock(&fs_info->chunk_mutex);
3298 trans->allocating_chunk = true;
3299
3300 /*
3301 * If we have mixed data/metadata chunks we want to make sure we keep
3302 * allocating mixed chunks instead of individual chunks.
3303 */
3304 if (btrfs_mixed_space_info(space_info))
3305 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3306
3307 /*
3308 * if we're doing a data chunk, go ahead and make sure that
3309 * we keep a reasonable number of metadata chunks allocated in the
3310 * FS as well.
3311 */
3312 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3313 fs_info->data_chunk_allocations++;
3314 if (!(fs_info->data_chunk_allocations %
3315 fs_info->metadata_ratio))
3316 force_metadata_allocation(fs_info);
3317 }
3318
3319 /*
3320 * Check if we have enough space in SYSTEM chunk because we may need
3321 * to update devices.
3322 */
3323 check_system_chunk(trans, flags);
3324
3325 ret = btrfs_alloc_chunk(trans, flags);
3326 trans->allocating_chunk = false;
3327
3328 spin_lock(&space_info->lock);
3329 if (ret < 0) {
3330 if (ret == -ENOSPC)
3331 space_info->full = 1;
3332 else
3333 goto out;
3334 } else {
3335 ret = 1;
3336 space_info->max_extent_size = 0;
3337 }
3338
3339 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3340out:
3341 space_info->chunk_alloc = 0;
3342 spin_unlock(&space_info->lock);
3343 mutex_unlock(&fs_info->chunk_mutex);
3344 /*
3345 * When we allocate a new chunk we reserve space in the chunk block
3346 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3347 * add new nodes/leafs to it if we end up needing to do it when
3348 * inserting the chunk item and updating device items as part of the
3349 * second phase of chunk allocation, performed by
3350 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3351 * large number of new block groups to create in our transaction
3352 * handle's new_bgs list to avoid exhausting the chunk block reserve
3353 * in extreme cases - like having a single transaction create many new
3354 * block groups when starting to write out the free space caches of all
3355 * the block groups that were made dirty during the lifetime of the
3356 * transaction.
3357 */
3358 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3359 btrfs_create_pending_block_groups(trans);
3360
3361 return ret;
3362}
3363
3364static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3365{
3366 u64 num_dev;
3367
3368 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3369 if (!num_dev)
3370 num_dev = fs_info->fs_devices->rw_devices;
3371
3372 return num_dev;
3373}
3374
3375/*
a9143bd3 3376 * Reserve space in the system space for allocating or removing a chunk
07730d87
JB
3377 */
3378void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3379{
3380 struct btrfs_fs_info *fs_info = trans->fs_info;
3381 struct btrfs_space_info *info;
3382 u64 left;
3383 u64 thresh;
3384 int ret = 0;
3385 u64 num_devs;
3386
3387 /*
3388 * Needed because we can end up allocating a system chunk and for an
3389 * atomic and race free space reservation in the chunk block reserve.
3390 */
3391 lockdep_assert_held(&fs_info->chunk_mutex);
3392
3393 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3394 spin_lock(&info->lock);
3395 left = info->total_bytes - btrfs_space_info_used(info, true);
3396 spin_unlock(&info->lock);
3397
3398 num_devs = get_profile_num_devs(fs_info, type);
3399
3400 /* num_devs device items to update and 1 chunk item to add or remove */
2bd36e7b
JB
3401 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3402 btrfs_calc_insert_metadata_size(fs_info, 1);
07730d87
JB
3403
3404 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3405 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3406 left, thresh, type);
3407 btrfs_dump_space_info(fs_info, info, 0, 0);
3408 }
3409
3410 if (left < thresh) {
3411 u64 flags = btrfs_system_alloc_profile(fs_info);
3412
3413 /*
3414 * Ignore failure to create system chunk. We might end up not
3415 * needing it, as we might not need to COW all nodes/leafs from
3416 * the paths we visit in the chunk tree (they were already COWed
3417 * or created in the current transaction for example).
3418 */
3419 ret = btrfs_alloc_chunk(trans, flags);
3420 }
3421
3422 if (!ret) {
3423 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3424 &fs_info->chunk_block_rsv,
3425 thresh, BTRFS_RESERVE_NO_FLUSH);
1cb3db1c 3426 if (!ret)
07730d87
JB
3427 trans->chunk_bytes_reserved += thresh;
3428 }
3429}
3430
3e43c279
JB
3431void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3432{
32da5386 3433 struct btrfs_block_group *block_group;
3e43c279
JB
3434 u64 last = 0;
3435
3436 while (1) {
3437 struct inode *inode;
3438
3439 block_group = btrfs_lookup_first_block_group(info, last);
3440 while (block_group) {
3441 btrfs_wait_block_group_cache_done(block_group);
3442 spin_lock(&block_group->lock);
3443 if (block_group->iref)
3444 break;
3445 spin_unlock(&block_group->lock);
3446 block_group = btrfs_next_block_group(block_group);
3447 }
3448 if (!block_group) {
3449 if (last == 0)
3450 break;
3451 last = 0;
3452 continue;
3453 }
3454
3455 inode = block_group->inode;
3456 block_group->iref = 0;
3457 block_group->inode = NULL;
3458 spin_unlock(&block_group->lock);
3459 ASSERT(block_group->io_ctl.inode == NULL);
3460 iput(inode);
b3470b5d 3461 last = block_group->start + block_group->length;
3e43c279
JB
3462 btrfs_put_block_group(block_group);
3463 }
3464}
3465
3466/*
3467 * Must be called only after stopping all workers, since we could have block
3468 * group caching kthreads running, and therefore they could race with us if we
3469 * freed the block groups before stopping them.
3470 */
3471int btrfs_free_block_groups(struct btrfs_fs_info *info)
3472{
32da5386 3473 struct btrfs_block_group *block_group;
3e43c279
JB
3474 struct btrfs_space_info *space_info;
3475 struct btrfs_caching_control *caching_ctl;
3476 struct rb_node *n;
3477
bbb86a37 3478 spin_lock(&info->block_group_cache_lock);
3e43c279
JB
3479 while (!list_empty(&info->caching_block_groups)) {
3480 caching_ctl = list_entry(info->caching_block_groups.next,
3481 struct btrfs_caching_control, list);
3482 list_del(&caching_ctl->list);
3483 btrfs_put_caching_control(caching_ctl);
3484 }
bbb86a37 3485 spin_unlock(&info->block_group_cache_lock);
3e43c279
JB
3486
3487 spin_lock(&info->unused_bgs_lock);
3488 while (!list_empty(&info->unused_bgs)) {
3489 block_group = list_first_entry(&info->unused_bgs,
32da5386 3490 struct btrfs_block_group,
3e43c279
JB
3491 bg_list);
3492 list_del_init(&block_group->bg_list);
3493 btrfs_put_block_group(block_group);
3494 }
3495 spin_unlock(&info->unused_bgs_lock);
3496
18bb8bbf
JT
3497 spin_lock(&info->unused_bgs_lock);
3498 while (!list_empty(&info->reclaim_bgs)) {
3499 block_group = list_first_entry(&info->reclaim_bgs,
3500 struct btrfs_block_group,
3501 bg_list);
3502 list_del_init(&block_group->bg_list);
3503 btrfs_put_block_group(block_group);
3504 }
3505 spin_unlock(&info->unused_bgs_lock);
3506
3e43c279
JB
3507 spin_lock(&info->block_group_cache_lock);
3508 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
32da5386 3509 block_group = rb_entry(n, struct btrfs_block_group,
3e43c279
JB
3510 cache_node);
3511 rb_erase(&block_group->cache_node,
3512 &info->block_group_cache_tree);
3513 RB_CLEAR_NODE(&block_group->cache_node);
3514 spin_unlock(&info->block_group_cache_lock);
3515
3516 down_write(&block_group->space_info->groups_sem);
3517 list_del(&block_group->list);
3518 up_write(&block_group->space_info->groups_sem);
3519
3520 /*
3521 * We haven't cached this block group, which means we could
3522 * possibly have excluded extents on this block group.
3523 */
3524 if (block_group->cached == BTRFS_CACHE_NO ||
3525 block_group->cached == BTRFS_CACHE_ERROR)
3526 btrfs_free_excluded_extents(block_group);
3527
3528 btrfs_remove_free_space_cache(block_group);
3529 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3530 ASSERT(list_empty(&block_group->dirty_list));
3531 ASSERT(list_empty(&block_group->io_list));
3532 ASSERT(list_empty(&block_group->bg_list));
48aaeebe 3533 ASSERT(refcount_read(&block_group->refs) == 1);
195a49ea 3534 ASSERT(block_group->swap_extents == 0);
3e43c279
JB
3535 btrfs_put_block_group(block_group);
3536
3537 spin_lock(&info->block_group_cache_lock);
3538 }
3539 spin_unlock(&info->block_group_cache_lock);
3540
3e43c279
JB
3541 btrfs_release_global_block_rsv(info);
3542
3543 while (!list_empty(&info->space_info)) {
3544 space_info = list_entry(info->space_info.next,
3545 struct btrfs_space_info,
3546 list);
3547
3548 /*
3549 * Do not hide this behind enospc_debug, this is actually
3550 * important and indicates a real bug if this happens.
3551 */
3552 if (WARN_ON(space_info->bytes_pinned > 0 ||
3553 space_info->bytes_reserved > 0 ||
3554 space_info->bytes_may_use > 0))
3555 btrfs_dump_space_info(info, space_info, 0, 0);
d611add4 3556 WARN_ON(space_info->reclaim_size > 0);
3e43c279
JB
3557 list_del(&space_info->list);
3558 btrfs_sysfs_remove_space_info(space_info);
3559 }
3560 return 0;
3561}
684b752b
FM
3562
3563void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3564{
3565 atomic_inc(&cache->frozen);
3566}
3567
3568void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3569{
3570 struct btrfs_fs_info *fs_info = block_group->fs_info;
3571 struct extent_map_tree *em_tree;
3572 struct extent_map *em;
3573 bool cleanup;
3574
3575 spin_lock(&block_group->lock);
3576 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3577 block_group->removed);
3578 spin_unlock(&block_group->lock);
3579
3580 if (cleanup) {
684b752b
FM
3581 em_tree = &fs_info->mapping_tree;
3582 write_lock(&em_tree->lock);
3583 em = lookup_extent_mapping(em_tree, block_group->start,
3584 1);
3585 BUG_ON(!em); /* logic error, can't happen */
3586 remove_extent_mapping(em_tree, em);
3587 write_unlock(&em_tree->lock);
684b752b
FM
3588
3589 /* once for us and once for the tree */
3590 free_extent_map(em);
3591 free_extent_map(em);
3592
3593 /*
3594 * We may have left one free space entry and other possible
3595 * tasks trimming this block group have left 1 entry each one.
3596 * Free them if any.
3597 */
3598 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3599 }
3600}
195a49ea
FM
3601
3602bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3603{
3604 bool ret = true;
3605
3606 spin_lock(&bg->lock);
3607 if (bg->ro)
3608 ret = false;
3609 else
3610 bg->swap_extents++;
3611 spin_unlock(&bg->lock);
3612
3613 return ret;
3614}
3615
3616void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3617{
3618 spin_lock(&bg->lock);
3619 ASSERT(!bg->ro);
3620 ASSERT(bg->swap_extents >= amount);
3621 bg->swap_extents -= amount;
3622 spin_unlock(&bg->lock);
3623}