]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/block-group.c
btrfs: replace offset_in_entry with in_range
[people/ms/linux.git] / fs / btrfs / block-group.c
CommitLineData
2e405ad8
JB
1// SPDX-License-Identifier: GPL-2.0
2
784352fe 3#include "misc.h"
2e405ad8
JB
4#include "ctree.h"
5#include "block-group.h"
3eeb3226 6#include "space-info.h"
9f21246d
JB
7#include "disk-io.h"
8#include "free-space-cache.h"
9#include "free-space-tree.h"
e3e0520b
JB
10#include "volumes.h"
11#include "transaction.h"
12#include "ref-verify.h"
4358d963
JB
13#include "sysfs.h"
14#include "tree-log.h"
77745c05 15#include "delalloc-space.h"
b0643e59 16#include "discard.h"
96a14336 17#include "raid56.h"
08e11a3d 18#include "zoned.h"
2e405ad8 19
878d7b67
JB
20/*
21 * Return target flags in extended format or 0 if restripe for this chunk_type
22 * is not in progress
23 *
24 * Should be called with balance_lock held
25 */
e11c0406 26static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
878d7b67
JB
27{
28 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 u64 target = 0;
30
31 if (!bctl)
32 return 0;
33
34 if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 }
44
45 return target;
46}
47
48/*
49 * @flags: available profiles in extended format (see ctree.h)
50 *
51 * Return reduced profile in chunk format. If profile changing is in progress
52 * (either running or paused) picks the target profile (if it's already
53 * available), otherwise falls back to plain reducing.
54 */
55static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56{
57 u64 num_devices = fs_info->fs_devices->rw_devices;
58 u64 target;
59 u64 raid_type;
60 u64 allowed = 0;
61
62 /*
63 * See if restripe for this chunk_type is in progress, if so try to
64 * reduce to the target profile
65 */
66 spin_lock(&fs_info->balance_lock);
e11c0406 67 target = get_restripe_target(fs_info, flags);
878d7b67 68 if (target) {
162e0a16
JB
69 spin_unlock(&fs_info->balance_lock);
70 return extended_to_chunk(target);
878d7b67
JB
71 }
72 spin_unlock(&fs_info->balance_lock);
73
74 /* First, mask out the RAID levels which aren't possible */
75 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77 allowed |= btrfs_raid_array[raid_type].bg_flag;
78 }
79 allowed &= flags;
80
81 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
82 allowed = BTRFS_BLOCK_GROUP_RAID6;
83 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
84 allowed = BTRFS_BLOCK_GROUP_RAID5;
85 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
86 allowed = BTRFS_BLOCK_GROUP_RAID10;
87 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
88 allowed = BTRFS_BLOCK_GROUP_RAID1;
89 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
90 allowed = BTRFS_BLOCK_GROUP_RAID0;
91
92 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93
94 return extended_to_chunk(flags | allowed);
95}
96
ef0a82da 97u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
878d7b67
JB
98{
99 unsigned seq;
100 u64 flags;
101
102 do {
103 flags = orig_flags;
104 seq = read_seqbegin(&fs_info->profiles_lock);
105
106 if (flags & BTRFS_BLOCK_GROUP_DATA)
107 flags |= fs_info->avail_data_alloc_bits;
108 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
109 flags |= fs_info->avail_system_alloc_bits;
110 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
111 flags |= fs_info->avail_metadata_alloc_bits;
112 } while (read_seqretry(&fs_info->profiles_lock, seq));
113
114 return btrfs_reduce_alloc_profile(fs_info, flags);
115}
116
32da5386 117void btrfs_get_block_group(struct btrfs_block_group *cache)
3cad1284 118{
48aaeebe 119 refcount_inc(&cache->refs);
3cad1284
JB
120}
121
32da5386 122void btrfs_put_block_group(struct btrfs_block_group *cache)
3cad1284 123{
48aaeebe 124 if (refcount_dec_and_test(&cache->refs)) {
3cad1284
JB
125 WARN_ON(cache->pinned > 0);
126 WARN_ON(cache->reserved > 0);
127
b0643e59
DZ
128 /*
129 * A block_group shouldn't be on the discard_list anymore.
130 * Remove the block_group from the discard_list to prevent us
131 * from causing a panic due to NULL pointer dereference.
132 */
133 if (WARN_ON(!list_empty(&cache->discard_list)))
134 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
135 cache);
136
3cad1284
JB
137 /*
138 * If not empty, someone is still holding mutex of
139 * full_stripe_lock, which can only be released by caller.
140 * And it will definitely cause use-after-free when caller
141 * tries to release full stripe lock.
142 *
143 * No better way to resolve, but only to warn.
144 */
145 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
146 kfree(cache->free_space_ctl);
147 kfree(cache);
148 }
149}
150
4358d963
JB
151/*
152 * This adds the block group to the fs_info rb tree for the block group cache
153 */
154static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
32da5386 155 struct btrfs_block_group *block_group)
4358d963
JB
156{
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
32da5386 159 struct btrfs_block_group *cache;
4358d963 160
9afc6649
QW
161 ASSERT(block_group->length != 0);
162
4358d963
JB
163 spin_lock(&info->block_group_cache_lock);
164 p = &info->block_group_cache_tree.rb_node;
165
166 while (*p) {
167 parent = *p;
32da5386 168 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
b3470b5d 169 if (block_group->start < cache->start) {
4358d963 170 p = &(*p)->rb_left;
b3470b5d 171 } else if (block_group->start > cache->start) {
4358d963
JB
172 p = &(*p)->rb_right;
173 } else {
174 spin_unlock(&info->block_group_cache_lock);
175 return -EEXIST;
176 }
177 }
178
179 rb_link_node(&block_group->cache_node, parent, p);
180 rb_insert_color(&block_group->cache_node,
181 &info->block_group_cache_tree);
182
b3470b5d
DS
183 if (info->first_logical_byte > block_group->start)
184 info->first_logical_byte = block_group->start;
4358d963
JB
185
186 spin_unlock(&info->block_group_cache_lock);
187
188 return 0;
189}
190
2e405ad8
JB
191/*
192 * This will return the block group at or after bytenr if contains is 0, else
193 * it will return the block group that contains the bytenr
194 */
32da5386 195static struct btrfs_block_group *block_group_cache_tree_search(
2e405ad8
JB
196 struct btrfs_fs_info *info, u64 bytenr, int contains)
197{
32da5386 198 struct btrfs_block_group *cache, *ret = NULL;
2e405ad8
JB
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
32da5386 206 cache = rb_entry(n, struct btrfs_block_group, cache_node);
b3470b5d
DS
207 end = cache->start + cache->length - 1;
208 start = cache->start;
2e405ad8
JB
209
210 if (bytenr < start) {
b3470b5d 211 if (!contains && (!ret || start < ret->start))
2e405ad8
JB
212 ret = cache;
213 n = n->rb_left;
214 } else if (bytenr > start) {
215 if (contains && bytenr <= end) {
216 ret = cache;
217 break;
218 }
219 n = n->rb_right;
220 } else {
221 ret = cache;
222 break;
223 }
224 }
225 if (ret) {
226 btrfs_get_block_group(ret);
b3470b5d
DS
227 if (bytenr == 0 && info->first_logical_byte > ret->start)
228 info->first_logical_byte = ret->start;
2e405ad8
JB
229 }
230 spin_unlock(&info->block_group_cache_lock);
231
232 return ret;
233}
234
235/*
236 * Return the block group that starts at or after bytenr
237 */
32da5386 238struct btrfs_block_group *btrfs_lookup_first_block_group(
2e405ad8
JB
239 struct btrfs_fs_info *info, u64 bytenr)
240{
241 return block_group_cache_tree_search(info, bytenr, 0);
242}
243
244/*
245 * Return the block group that contains the given bytenr
246 */
32da5386 247struct btrfs_block_group *btrfs_lookup_block_group(
2e405ad8
JB
248 struct btrfs_fs_info *info, u64 bytenr)
249{
250 return block_group_cache_tree_search(info, bytenr, 1);
251}
252
32da5386
DS
253struct btrfs_block_group *btrfs_next_block_group(
254 struct btrfs_block_group *cache)
2e405ad8
JB
255{
256 struct btrfs_fs_info *fs_info = cache->fs_info;
257 struct rb_node *node;
258
259 spin_lock(&fs_info->block_group_cache_lock);
260
261 /* If our block group was removed, we need a full search. */
262 if (RB_EMPTY_NODE(&cache->cache_node)) {
b3470b5d 263 const u64 next_bytenr = cache->start + cache->length;
2e405ad8
JB
264
265 spin_unlock(&fs_info->block_group_cache_lock);
266 btrfs_put_block_group(cache);
267 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268 }
269 node = rb_next(&cache->cache_node);
270 btrfs_put_block_group(cache);
271 if (node) {
32da5386 272 cache = rb_entry(node, struct btrfs_block_group, cache_node);
2e405ad8
JB
273 btrfs_get_block_group(cache);
274 } else
275 cache = NULL;
276 spin_unlock(&fs_info->block_group_cache_lock);
277 return cache;
278}
3eeb3226
JB
279
280bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281{
32da5386 282 struct btrfs_block_group *bg;
3eeb3226
JB
283 bool ret = true;
284
285 bg = btrfs_lookup_block_group(fs_info, bytenr);
286 if (!bg)
287 return false;
288
289 spin_lock(&bg->lock);
290 if (bg->ro)
291 ret = false;
292 else
293 atomic_inc(&bg->nocow_writers);
294 spin_unlock(&bg->lock);
295
296 /* No put on block group, done by btrfs_dec_nocow_writers */
297 if (!ret)
298 btrfs_put_block_group(bg);
299
300 return ret;
301}
302
303void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304{
32da5386 305 struct btrfs_block_group *bg;
3eeb3226
JB
306
307 bg = btrfs_lookup_block_group(fs_info, bytenr);
308 ASSERT(bg);
309 if (atomic_dec_and_test(&bg->nocow_writers))
310 wake_up_var(&bg->nocow_writers);
311 /*
312 * Once for our lookup and once for the lookup done by a previous call
313 * to btrfs_inc_nocow_writers()
314 */
315 btrfs_put_block_group(bg);
316 btrfs_put_block_group(bg);
317}
318
32da5386 319void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
3eeb3226
JB
320{
321 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
322}
323
324void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
325 const u64 start)
326{
32da5386 327 struct btrfs_block_group *bg;
3eeb3226
JB
328
329 bg = btrfs_lookup_block_group(fs_info, start);
330 ASSERT(bg);
331 if (atomic_dec_and_test(&bg->reservations))
332 wake_up_var(&bg->reservations);
333 btrfs_put_block_group(bg);
334}
335
32da5386 336void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
3eeb3226
JB
337{
338 struct btrfs_space_info *space_info = bg->space_info;
339
340 ASSERT(bg->ro);
341
342 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
343 return;
344
345 /*
346 * Our block group is read only but before we set it to read only,
347 * some task might have had allocated an extent from it already, but it
348 * has not yet created a respective ordered extent (and added it to a
349 * root's list of ordered extents).
350 * Therefore wait for any task currently allocating extents, since the
351 * block group's reservations counter is incremented while a read lock
352 * on the groups' semaphore is held and decremented after releasing
353 * the read access on that semaphore and creating the ordered extent.
354 */
355 down_write(&space_info->groups_sem);
356 up_write(&space_info->groups_sem);
357
358 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
359}
9f21246d
JB
360
361struct btrfs_caching_control *btrfs_get_caching_control(
32da5386 362 struct btrfs_block_group *cache)
9f21246d
JB
363{
364 struct btrfs_caching_control *ctl;
365
366 spin_lock(&cache->lock);
367 if (!cache->caching_ctl) {
368 spin_unlock(&cache->lock);
369 return NULL;
370 }
371
372 ctl = cache->caching_ctl;
373 refcount_inc(&ctl->count);
374 spin_unlock(&cache->lock);
375 return ctl;
376}
377
378void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379{
380 if (refcount_dec_and_test(&ctl->count))
381 kfree(ctl);
382}
383
384/*
385 * When we wait for progress in the block group caching, its because our
386 * allocation attempt failed at least once. So, we must sleep and let some
387 * progress happen before we try again.
388 *
389 * This function will sleep at least once waiting for new free space to show
390 * up, and then it will check the block group free space numbers for our min
391 * num_bytes. Another option is to have it go ahead and look in the rbtree for
392 * a free extent of a given size, but this is a good start.
393 *
394 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
395 * any of the information in this block group.
396 */
32da5386 397void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
9f21246d
JB
398 u64 num_bytes)
399{
400 struct btrfs_caching_control *caching_ctl;
401
402 caching_ctl = btrfs_get_caching_control(cache);
403 if (!caching_ctl)
404 return;
405
32da5386 406 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
9f21246d
JB
407 (cache->free_space_ctl->free_space >= num_bytes));
408
409 btrfs_put_caching_control(caching_ctl);
410}
411
32da5386 412int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
9f21246d
JB
413{
414 struct btrfs_caching_control *caching_ctl;
415 int ret = 0;
416
417 caching_ctl = btrfs_get_caching_control(cache);
418 if (!caching_ctl)
419 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420
32da5386 421 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
9f21246d
JB
422 if (cache->cached == BTRFS_CACHE_ERROR)
423 ret = -EIO;
424 btrfs_put_caching_control(caching_ctl);
425 return ret;
426}
427
e747853c
JB
428static bool space_cache_v1_done(struct btrfs_block_group *cache)
429{
430 bool ret;
431
432 spin_lock(&cache->lock);
433 ret = cache->cached != BTRFS_CACHE_FAST;
434 spin_unlock(&cache->lock);
435
436 return ret;
437}
438
439void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
440 struct btrfs_caching_control *caching_ctl)
441{
442 wait_event(caching_ctl->wait, space_cache_v1_done(cache));
443}
444
9f21246d 445#ifdef CONFIG_BTRFS_DEBUG
32da5386 446static void fragment_free_space(struct btrfs_block_group *block_group)
9f21246d
JB
447{
448 struct btrfs_fs_info *fs_info = block_group->fs_info;
b3470b5d
DS
449 u64 start = block_group->start;
450 u64 len = block_group->length;
9f21246d
JB
451 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
452 fs_info->nodesize : fs_info->sectorsize;
453 u64 step = chunk << 1;
454
455 while (len > chunk) {
456 btrfs_remove_free_space(block_group, start, chunk);
457 start += step;
458 if (len < step)
459 len = 0;
460 else
461 len -= step;
462 }
463}
464#endif
465
466/*
467 * This is only called by btrfs_cache_block_group, since we could have freed
468 * extents we need to check the pinned_extents for any extents that can't be
469 * used yet since their free space will be released as soon as the transaction
470 * commits.
471 */
32da5386 472u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
9f21246d
JB
473{
474 struct btrfs_fs_info *info = block_group->fs_info;
475 u64 extent_start, extent_end, size, total_added = 0;
476 int ret;
477
478 while (start < end) {
fe119a6e 479 ret = find_first_extent_bit(&info->excluded_extents, start,
9f21246d
JB
480 &extent_start, &extent_end,
481 EXTENT_DIRTY | EXTENT_UPTODATE,
482 NULL);
483 if (ret)
484 break;
485
486 if (extent_start <= start) {
487 start = extent_end + 1;
488 } else if (extent_start > start && extent_start < end) {
489 size = extent_start - start;
490 total_added += size;
b0643e59
DZ
491 ret = btrfs_add_free_space_async_trimmed(block_group,
492 start, size);
9f21246d
JB
493 BUG_ON(ret); /* -ENOMEM or logic error */
494 start = extent_end + 1;
495 } else {
496 break;
497 }
498 }
499
500 if (start < end) {
501 size = end - start;
502 total_added += size;
b0643e59
DZ
503 ret = btrfs_add_free_space_async_trimmed(block_group, start,
504 size);
9f21246d
JB
505 BUG_ON(ret); /* -ENOMEM or logic error */
506 }
507
508 return total_added;
509}
510
511static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512{
32da5386 513 struct btrfs_block_group *block_group = caching_ctl->block_group;
9f21246d
JB
514 struct btrfs_fs_info *fs_info = block_group->fs_info;
515 struct btrfs_root *extent_root = fs_info->extent_root;
516 struct btrfs_path *path;
517 struct extent_buffer *leaf;
518 struct btrfs_key key;
519 u64 total_found = 0;
520 u64 last = 0;
521 u32 nritems;
522 int ret;
523 bool wakeup = true;
524
525 path = btrfs_alloc_path();
526 if (!path)
527 return -ENOMEM;
528
b3470b5d 529 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
9f21246d
JB
530
531#ifdef CONFIG_BTRFS_DEBUG
532 /*
533 * If we're fragmenting we don't want to make anybody think we can
534 * allocate from this block group until we've had a chance to fragment
535 * the free space.
536 */
537 if (btrfs_should_fragment_free_space(block_group))
538 wakeup = false;
539#endif
540 /*
541 * We don't want to deadlock with somebody trying to allocate a new
542 * extent for the extent root while also trying to search the extent
543 * root to add free space. So we skip locking and search the commit
544 * root, since its read-only
545 */
546 path->skip_locking = 1;
547 path->search_commit_root = 1;
548 path->reada = READA_FORWARD;
549
550 key.objectid = last;
551 key.offset = 0;
552 key.type = BTRFS_EXTENT_ITEM_KEY;
553
554next:
555 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
556 if (ret < 0)
557 goto out;
558
559 leaf = path->nodes[0];
560 nritems = btrfs_header_nritems(leaf);
561
562 while (1) {
563 if (btrfs_fs_closing(fs_info) > 1) {
564 last = (u64)-1;
565 break;
566 }
567
568 if (path->slots[0] < nritems) {
569 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
570 } else {
571 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
572 if (ret)
573 break;
574
575 if (need_resched() ||
576 rwsem_is_contended(&fs_info->commit_root_sem)) {
577 if (wakeup)
578 caching_ctl->progress = last;
579 btrfs_release_path(path);
580 up_read(&fs_info->commit_root_sem);
581 mutex_unlock(&caching_ctl->mutex);
582 cond_resched();
583 mutex_lock(&caching_ctl->mutex);
584 down_read(&fs_info->commit_root_sem);
585 goto next;
586 }
587
588 ret = btrfs_next_leaf(extent_root, path);
589 if (ret < 0)
590 goto out;
591 if (ret)
592 break;
593 leaf = path->nodes[0];
594 nritems = btrfs_header_nritems(leaf);
595 continue;
596 }
597
598 if (key.objectid < last) {
599 key.objectid = last;
600 key.offset = 0;
601 key.type = BTRFS_EXTENT_ITEM_KEY;
602
603 if (wakeup)
604 caching_ctl->progress = last;
605 btrfs_release_path(path);
606 goto next;
607 }
608
b3470b5d 609 if (key.objectid < block_group->start) {
9f21246d
JB
610 path->slots[0]++;
611 continue;
612 }
613
b3470b5d 614 if (key.objectid >= block_group->start + block_group->length)
9f21246d
JB
615 break;
616
617 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
618 key.type == BTRFS_METADATA_ITEM_KEY) {
619 total_found += add_new_free_space(block_group, last,
620 key.objectid);
621 if (key.type == BTRFS_METADATA_ITEM_KEY)
622 last = key.objectid +
623 fs_info->nodesize;
624 else
625 last = key.objectid + key.offset;
626
627 if (total_found > CACHING_CTL_WAKE_UP) {
628 total_found = 0;
629 if (wakeup)
630 wake_up(&caching_ctl->wait);
631 }
632 }
633 path->slots[0]++;
634 }
635 ret = 0;
636
637 total_found += add_new_free_space(block_group, last,
b3470b5d 638 block_group->start + block_group->length);
9f21246d
JB
639 caching_ctl->progress = (u64)-1;
640
641out:
642 btrfs_free_path(path);
643 return ret;
644}
645
646static noinline void caching_thread(struct btrfs_work *work)
647{
32da5386 648 struct btrfs_block_group *block_group;
9f21246d
JB
649 struct btrfs_fs_info *fs_info;
650 struct btrfs_caching_control *caching_ctl;
651 int ret;
652
653 caching_ctl = container_of(work, struct btrfs_caching_control, work);
654 block_group = caching_ctl->block_group;
655 fs_info = block_group->fs_info;
656
657 mutex_lock(&caching_ctl->mutex);
658 down_read(&fs_info->commit_root_sem);
659
e747853c
JB
660 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
661 ret = load_free_space_cache(block_group);
662 if (ret == 1) {
663 ret = 0;
664 goto done;
665 }
666
667 /*
668 * We failed to load the space cache, set ourselves to
669 * CACHE_STARTED and carry on.
670 */
671 spin_lock(&block_group->lock);
672 block_group->cached = BTRFS_CACHE_STARTED;
673 spin_unlock(&block_group->lock);
674 wake_up(&caching_ctl->wait);
675 }
676
2f96e402
JB
677 /*
678 * If we are in the transaction that populated the free space tree we
679 * can't actually cache from the free space tree as our commit root and
680 * real root are the same, so we could change the contents of the blocks
681 * while caching. Instead do the slow caching in this case, and after
682 * the transaction has committed we will be safe.
683 */
684 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
685 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
9f21246d
JB
686 ret = load_free_space_tree(caching_ctl);
687 else
688 ret = load_extent_tree_free(caching_ctl);
e747853c 689done:
9f21246d
JB
690 spin_lock(&block_group->lock);
691 block_group->caching_ctl = NULL;
692 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
693 spin_unlock(&block_group->lock);
694
695#ifdef CONFIG_BTRFS_DEBUG
696 if (btrfs_should_fragment_free_space(block_group)) {
697 u64 bytes_used;
698
699 spin_lock(&block_group->space_info->lock);
700 spin_lock(&block_group->lock);
b3470b5d 701 bytes_used = block_group->length - block_group->used;
9f21246d
JB
702 block_group->space_info->bytes_used += bytes_used >> 1;
703 spin_unlock(&block_group->lock);
704 spin_unlock(&block_group->space_info->lock);
e11c0406 705 fragment_free_space(block_group);
9f21246d
JB
706 }
707#endif
708
709 caching_ctl->progress = (u64)-1;
710
711 up_read(&fs_info->commit_root_sem);
712 btrfs_free_excluded_extents(block_group);
713 mutex_unlock(&caching_ctl->mutex);
714
715 wake_up(&caching_ctl->wait);
716
717 btrfs_put_caching_control(caching_ctl);
718 btrfs_put_block_group(block_group);
719}
720
32da5386 721int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
9f21246d
JB
722{
723 DEFINE_WAIT(wait);
724 struct btrfs_fs_info *fs_info = cache->fs_info;
e747853c 725 struct btrfs_caching_control *caching_ctl = NULL;
9f21246d
JB
726 int ret = 0;
727
2eda5708
NA
728 /* Allocator for zoned filesystems does not use the cache at all */
729 if (btrfs_is_zoned(fs_info))
730 return 0;
731
9f21246d
JB
732 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
733 if (!caching_ctl)
734 return -ENOMEM;
735
736 INIT_LIST_HEAD(&caching_ctl->list);
737 mutex_init(&caching_ctl->mutex);
738 init_waitqueue_head(&caching_ctl->wait);
739 caching_ctl->block_group = cache;
b3470b5d 740 caching_ctl->progress = cache->start;
e747853c 741 refcount_set(&caching_ctl->count, 2);
a0cac0ec 742 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
9f21246d
JB
743
744 spin_lock(&cache->lock);
9f21246d 745 if (cache->cached != BTRFS_CACHE_NO) {
9f21246d 746 kfree(caching_ctl);
e747853c
JB
747
748 caching_ctl = cache->caching_ctl;
749 if (caching_ctl)
750 refcount_inc(&caching_ctl->count);
751 spin_unlock(&cache->lock);
752 goto out;
9f21246d
JB
753 }
754 WARN_ON(cache->caching_ctl);
755 cache->caching_ctl = caching_ctl;
e747853c
JB
756 if (btrfs_test_opt(fs_info, SPACE_CACHE))
757 cache->cached = BTRFS_CACHE_FAST;
758 else
759 cache->cached = BTRFS_CACHE_STARTED;
760 cache->has_caching_ctl = 1;
9f21246d
JB
761 spin_unlock(&cache->lock);
762
bbb86a37 763 spin_lock(&fs_info->block_group_cache_lock);
9f21246d
JB
764 refcount_inc(&caching_ctl->count);
765 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
bbb86a37 766 spin_unlock(&fs_info->block_group_cache_lock);
9f21246d
JB
767
768 btrfs_get_block_group(cache);
769
770 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
e747853c
JB
771out:
772 if (load_cache_only && caching_ctl)
773 btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
774 if (caching_ctl)
775 btrfs_put_caching_control(caching_ctl);
9f21246d
JB
776
777 return ret;
778}
e3e0520b
JB
779
780static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
781{
782 u64 extra_flags = chunk_to_extended(flags) &
783 BTRFS_EXTENDED_PROFILE_MASK;
784
785 write_seqlock(&fs_info->profiles_lock);
786 if (flags & BTRFS_BLOCK_GROUP_DATA)
787 fs_info->avail_data_alloc_bits &= ~extra_flags;
788 if (flags & BTRFS_BLOCK_GROUP_METADATA)
789 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
790 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
791 fs_info->avail_system_alloc_bits &= ~extra_flags;
792 write_sequnlock(&fs_info->profiles_lock);
793}
794
795/*
796 * Clear incompat bits for the following feature(s):
797 *
798 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
799 * in the whole filesystem
9c907446
DS
800 *
801 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
e3e0520b
JB
802 */
803static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
804{
9c907446
DS
805 bool found_raid56 = false;
806 bool found_raid1c34 = false;
807
808 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
809 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
810 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
e3e0520b
JB
811 struct list_head *head = &fs_info->space_info;
812 struct btrfs_space_info *sinfo;
813
814 list_for_each_entry_rcu(sinfo, head, list) {
e3e0520b
JB
815 down_read(&sinfo->groups_sem);
816 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
9c907446 817 found_raid56 = true;
e3e0520b 818 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
9c907446
DS
819 found_raid56 = true;
820 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
821 found_raid1c34 = true;
822 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
823 found_raid1c34 = true;
e3e0520b 824 up_read(&sinfo->groups_sem);
e3e0520b 825 }
d8e6fd5c 826 if (!found_raid56)
9c907446 827 btrfs_clear_fs_incompat(fs_info, RAID56);
d8e6fd5c 828 if (!found_raid1c34)
9c907446 829 btrfs_clear_fs_incompat(fs_info, RAID1C34);
e3e0520b
JB
830 }
831}
832
7357623a
QW
833static int remove_block_group_item(struct btrfs_trans_handle *trans,
834 struct btrfs_path *path,
835 struct btrfs_block_group *block_group)
836{
837 struct btrfs_fs_info *fs_info = trans->fs_info;
838 struct btrfs_root *root;
839 struct btrfs_key key;
840 int ret;
841
842 root = fs_info->extent_root;
843 key.objectid = block_group->start;
844 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
845 key.offset = block_group->length;
846
847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
848 if (ret > 0)
849 ret = -ENOENT;
850 if (ret < 0)
851 return ret;
852
853 ret = btrfs_del_item(trans, root, path);
854 return ret;
855}
856
e3e0520b
JB
857int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
858 u64 group_start, struct extent_map *em)
859{
860 struct btrfs_fs_info *fs_info = trans->fs_info;
e3e0520b 861 struct btrfs_path *path;
32da5386 862 struct btrfs_block_group *block_group;
e3e0520b 863 struct btrfs_free_cluster *cluster;
e3e0520b
JB
864 struct inode *inode;
865 struct kobject *kobj = NULL;
866 int ret;
867 int index;
868 int factor;
869 struct btrfs_caching_control *caching_ctl = NULL;
870 bool remove_em;
871 bool remove_rsv = false;
872
873 block_group = btrfs_lookup_block_group(fs_info, group_start);
874 BUG_ON(!block_group);
875 BUG_ON(!block_group->ro);
876
877 trace_btrfs_remove_block_group(block_group);
878 /*
879 * Free the reserved super bytes from this block group before
880 * remove it.
881 */
882 btrfs_free_excluded_extents(block_group);
b3470b5d
DS
883 btrfs_free_ref_tree_range(fs_info, block_group->start,
884 block_group->length);
e3e0520b 885
e3e0520b
JB
886 index = btrfs_bg_flags_to_raid_index(block_group->flags);
887 factor = btrfs_bg_type_to_factor(block_group->flags);
888
889 /* make sure this block group isn't part of an allocation cluster */
890 cluster = &fs_info->data_alloc_cluster;
891 spin_lock(&cluster->refill_lock);
892 btrfs_return_cluster_to_free_space(block_group, cluster);
893 spin_unlock(&cluster->refill_lock);
894
895 /*
896 * make sure this block group isn't part of a metadata
897 * allocation cluster
898 */
899 cluster = &fs_info->meta_alloc_cluster;
900 spin_lock(&cluster->refill_lock);
901 btrfs_return_cluster_to_free_space(block_group, cluster);
902 spin_unlock(&cluster->refill_lock);
903
40ab3be1
NA
904 btrfs_clear_treelog_bg(block_group);
905
e3e0520b
JB
906 path = btrfs_alloc_path();
907 if (!path) {
908 ret = -ENOMEM;
9fecd132 909 goto out;
e3e0520b
JB
910 }
911
912 /*
913 * get the inode first so any iput calls done for the io_list
914 * aren't the final iput (no unlinks allowed now)
915 */
916 inode = lookup_free_space_inode(block_group, path);
917
918 mutex_lock(&trans->transaction->cache_write_mutex);
919 /*
920 * Make sure our free space cache IO is done before removing the
921 * free space inode
922 */
923 spin_lock(&trans->transaction->dirty_bgs_lock);
924 if (!list_empty(&block_group->io_list)) {
925 list_del_init(&block_group->io_list);
926
927 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928
929 spin_unlock(&trans->transaction->dirty_bgs_lock);
930 btrfs_wait_cache_io(trans, block_group, path);
931 btrfs_put_block_group(block_group);
932 spin_lock(&trans->transaction->dirty_bgs_lock);
933 }
934
935 if (!list_empty(&block_group->dirty_list)) {
936 list_del_init(&block_group->dirty_list);
937 remove_rsv = true;
938 btrfs_put_block_group(block_group);
939 }
940 spin_unlock(&trans->transaction->dirty_bgs_lock);
941 mutex_unlock(&trans->transaction->cache_write_mutex);
942
36b216c8
BB
943 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944 if (ret)
9fecd132 945 goto out;
e3e0520b
JB
946
947 spin_lock(&fs_info->block_group_cache_lock);
948 rb_erase(&block_group->cache_node,
949 &fs_info->block_group_cache_tree);
950 RB_CLEAR_NODE(&block_group->cache_node);
951
9fecd132
FM
952 /* Once for the block groups rbtree */
953 btrfs_put_block_group(block_group);
954
b3470b5d 955 if (fs_info->first_logical_byte == block_group->start)
e3e0520b
JB
956 fs_info->first_logical_byte = (u64)-1;
957 spin_unlock(&fs_info->block_group_cache_lock);
958
959 down_write(&block_group->space_info->groups_sem);
960 /*
961 * we must use list_del_init so people can check to see if they
962 * are still on the list after taking the semaphore
963 */
964 list_del_init(&block_group->list);
965 if (list_empty(&block_group->space_info->block_groups[index])) {
966 kobj = block_group->space_info->block_group_kobjs[index];
967 block_group->space_info->block_group_kobjs[index] = NULL;
968 clear_avail_alloc_bits(fs_info, block_group->flags);
969 }
970 up_write(&block_group->space_info->groups_sem);
971 clear_incompat_bg_bits(fs_info, block_group->flags);
972 if (kobj) {
973 kobject_del(kobj);
974 kobject_put(kobj);
975 }
976
977 if (block_group->has_caching_ctl)
978 caching_ctl = btrfs_get_caching_control(block_group);
979 if (block_group->cached == BTRFS_CACHE_STARTED)
980 btrfs_wait_block_group_cache_done(block_group);
981 if (block_group->has_caching_ctl) {
bbb86a37 982 spin_lock(&fs_info->block_group_cache_lock);
e3e0520b
JB
983 if (!caching_ctl) {
984 struct btrfs_caching_control *ctl;
985
986 list_for_each_entry(ctl,
987 &fs_info->caching_block_groups, list)
988 if (ctl->block_group == block_group) {
989 caching_ctl = ctl;
990 refcount_inc(&caching_ctl->count);
991 break;
992 }
993 }
994 if (caching_ctl)
995 list_del_init(&caching_ctl->list);
bbb86a37 996 spin_unlock(&fs_info->block_group_cache_lock);
e3e0520b
JB
997 if (caching_ctl) {
998 /* Once for the caching bgs list and once for us. */
999 btrfs_put_caching_control(caching_ctl);
1000 btrfs_put_caching_control(caching_ctl);
1001 }
1002 }
1003
1004 spin_lock(&trans->transaction->dirty_bgs_lock);
1005 WARN_ON(!list_empty(&block_group->dirty_list));
1006 WARN_ON(!list_empty(&block_group->io_list));
1007 spin_unlock(&trans->transaction->dirty_bgs_lock);
1008
1009 btrfs_remove_free_space_cache(block_group);
1010
1011 spin_lock(&block_group->space_info->lock);
1012 list_del_init(&block_group->ro_list);
1013
1014 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015 WARN_ON(block_group->space_info->total_bytes
b3470b5d 1016 < block_group->length);
e3e0520b 1017 WARN_ON(block_group->space_info->bytes_readonly
169e0da9
NA
1018 < block_group->length - block_group->zone_unusable);
1019 WARN_ON(block_group->space_info->bytes_zone_unusable
1020 < block_group->zone_unusable);
e3e0520b 1021 WARN_ON(block_group->space_info->disk_total
b3470b5d 1022 < block_group->length * factor);
e3e0520b 1023 }
b3470b5d 1024 block_group->space_info->total_bytes -= block_group->length;
169e0da9
NA
1025 block_group->space_info->bytes_readonly -=
1026 (block_group->length - block_group->zone_unusable);
1027 block_group->space_info->bytes_zone_unusable -=
1028 block_group->zone_unusable;
b3470b5d 1029 block_group->space_info->disk_total -= block_group->length * factor;
e3e0520b
JB
1030
1031 spin_unlock(&block_group->space_info->lock);
1032
ffcb9d44
FM
1033 /*
1034 * Remove the free space for the block group from the free space tree
1035 * and the block group's item from the extent tree before marking the
1036 * block group as removed. This is to prevent races with tasks that
1037 * freeze and unfreeze a block group, this task and another task
1038 * allocating a new block group - the unfreeze task ends up removing
1039 * the block group's extent map before the task calling this function
1040 * deletes the block group item from the extent tree, allowing for
1041 * another task to attempt to create another block group with the same
1042 * item key (and failing with -EEXIST and a transaction abort).
1043 */
1044 ret = remove_block_group_free_space(trans, block_group);
1045 if (ret)
1046 goto out;
1047
1048 ret = remove_block_group_item(trans, path, block_group);
1049 if (ret < 0)
1050 goto out;
1051
e3e0520b
JB
1052 spin_lock(&block_group->lock);
1053 block_group->removed = 1;
1054 /*
6b7304af
FM
1055 * At this point trimming or scrub can't start on this block group,
1056 * because we removed the block group from the rbtree
1057 * fs_info->block_group_cache_tree so no one can't find it anymore and
1058 * even if someone already got this block group before we removed it
1059 * from the rbtree, they have already incremented block_group->frozen -
1060 * if they didn't, for the trimming case they won't find any free space
1061 * entries because we already removed them all when we called
1062 * btrfs_remove_free_space_cache().
e3e0520b
JB
1063 *
1064 * And we must not remove the extent map from the fs_info->mapping_tree
1065 * to prevent the same logical address range and physical device space
6b7304af
FM
1066 * ranges from being reused for a new block group. This is needed to
1067 * avoid races with trimming and scrub.
1068 *
1069 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
e3e0520b
JB
1070 * completely transactionless, so while it is trimming a range the
1071 * currently running transaction might finish and a new one start,
1072 * allowing for new block groups to be created that can reuse the same
1073 * physical device locations unless we take this special care.
1074 *
1075 * There may also be an implicit trim operation if the file system
1076 * is mounted with -odiscard. The same protections must remain
1077 * in place until the extents have been discarded completely when
1078 * the transaction commit has completed.
1079 */
6b7304af 1080 remove_em = (atomic_read(&block_group->frozen) == 0);
e3e0520b
JB
1081 spin_unlock(&block_group->lock);
1082
e3e0520b
JB
1083 if (remove_em) {
1084 struct extent_map_tree *em_tree;
1085
1086 em_tree = &fs_info->mapping_tree;
1087 write_lock(&em_tree->lock);
1088 remove_extent_mapping(em_tree, em);
1089 write_unlock(&em_tree->lock);
1090 /* once for the tree */
1091 free_extent_map(em);
1092 }
f6033c5e 1093
9fecd132 1094out:
f6033c5e
XY
1095 /* Once for the lookup reference */
1096 btrfs_put_block_group(block_group);
e3e0520b
JB
1097 if (remove_rsv)
1098 btrfs_delayed_refs_rsv_release(fs_info, 1);
1099 btrfs_free_path(path);
1100 return ret;
1101}
1102
1103struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105{
1106 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107 struct extent_map *em;
1108 struct map_lookup *map;
1109 unsigned int num_items;
1110
1111 read_lock(&em_tree->lock);
1112 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113 read_unlock(&em_tree->lock);
1114 ASSERT(em && em->start == chunk_offset);
1115
1116 /*
1117 * We need to reserve 3 + N units from the metadata space info in order
1118 * to remove a block group (done at btrfs_remove_chunk() and at
1119 * btrfs_remove_block_group()), which are used for:
1120 *
1121 * 1 unit for adding the free space inode's orphan (located in the tree
1122 * of tree roots).
1123 * 1 unit for deleting the block group item (located in the extent
1124 * tree).
1125 * 1 unit for deleting the free space item (located in tree of tree
1126 * roots).
1127 * N units for deleting N device extent items corresponding to each
1128 * stripe (located in the device tree).
1129 *
1130 * In order to remove a block group we also need to reserve units in the
1131 * system space info in order to update the chunk tree (update one or
1132 * more device items and remove one chunk item), but this is done at
1133 * btrfs_remove_chunk() through a call to check_system_chunk().
1134 */
1135 map = em->map_lookup;
1136 num_items = 3 + map->num_stripes;
1137 free_extent_map(em);
1138
1139 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7f9fe614 1140 num_items);
e3e0520b
JB
1141}
1142
26ce2095
JB
1143/*
1144 * Mark block group @cache read-only, so later write won't happen to block
1145 * group @cache.
1146 *
1147 * If @force is not set, this function will only mark the block group readonly
1148 * if we have enough free space (1M) in other metadata/system block groups.
1149 * If @force is not set, this function will mark the block group readonly
1150 * without checking free space.
1151 *
1152 * NOTE: This function doesn't care if other block groups can contain all the
1153 * data in this block group. That check should be done by relocation routine,
1154 * not this function.
1155 */
32da5386 1156static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
26ce2095
JB
1157{
1158 struct btrfs_space_info *sinfo = cache->space_info;
1159 u64 num_bytes;
26ce2095
JB
1160 int ret = -ENOSPC;
1161
26ce2095
JB
1162 spin_lock(&sinfo->lock);
1163 spin_lock(&cache->lock);
1164
195a49ea
FM
1165 if (cache->swap_extents) {
1166 ret = -ETXTBSY;
1167 goto out;
1168 }
1169
26ce2095
JB
1170 if (cache->ro) {
1171 cache->ro++;
1172 ret = 0;
1173 goto out;
1174 }
1175
b3470b5d 1176 num_bytes = cache->length - cache->reserved - cache->pinned -
169e0da9 1177 cache->bytes_super - cache->zone_unusable - cache->used;
26ce2095
JB
1178
1179 /*
a30a3d20
JB
1180 * Data never overcommits, even in mixed mode, so do just the straight
1181 * check of left over space in how much we have allocated.
26ce2095 1182 */
a30a3d20
JB
1183 if (force) {
1184 ret = 0;
1185 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187
1188 /*
1189 * Here we make sure if we mark this bg RO, we still have enough
1190 * free space as buffer.
1191 */
1192 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193 ret = 0;
1194 } else {
1195 /*
1196 * We overcommit metadata, so we need to do the
1197 * btrfs_can_overcommit check here, and we need to pass in
1198 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199 * leeway to allow us to mark this block group as read only.
1200 */
1201 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202 BTRFS_RESERVE_NO_FLUSH))
1203 ret = 0;
1204 }
1205
1206 if (!ret) {
26ce2095 1207 sinfo->bytes_readonly += num_bytes;
169e0da9
NA
1208 if (btrfs_is_zoned(cache->fs_info)) {
1209 /* Migrate zone_unusable bytes to readonly */
1210 sinfo->bytes_readonly += cache->zone_unusable;
1211 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212 cache->zone_unusable = 0;
1213 }
26ce2095
JB
1214 cache->ro++;
1215 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
26ce2095
JB
1216 }
1217out:
1218 spin_unlock(&cache->lock);
1219 spin_unlock(&sinfo->lock);
1220 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221 btrfs_info(cache->fs_info,
b3470b5d 1222 "unable to make block group %llu ro", cache->start);
26ce2095
JB
1223 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224 }
1225 return ret;
1226}
1227
fe119a6e
NB
1228static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229 struct btrfs_block_group *bg)
45bb5d6a
NB
1230{
1231 struct btrfs_fs_info *fs_info = bg->fs_info;
fe119a6e 1232 struct btrfs_transaction *prev_trans = NULL;
45bb5d6a
NB
1233 const u64 start = bg->start;
1234 const u64 end = start + bg->length - 1;
1235 int ret;
1236
fe119a6e
NB
1237 spin_lock(&fs_info->trans_lock);
1238 if (trans->transaction->list.prev != &fs_info->trans_list) {
1239 prev_trans = list_last_entry(&trans->transaction->list,
1240 struct btrfs_transaction, list);
1241 refcount_inc(&prev_trans->use_count);
1242 }
1243 spin_unlock(&fs_info->trans_lock);
1244
45bb5d6a
NB
1245 /*
1246 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247 * btrfs_finish_extent_commit(). If we are at transaction N, another
1248 * task might be running finish_extent_commit() for the previous
1249 * transaction N - 1, and have seen a range belonging to the block
fe119a6e
NB
1250 * group in pinned_extents before we were able to clear the whole block
1251 * group range from pinned_extents. This means that task can lookup for
1252 * the block group after we unpinned it from pinned_extents and removed
1253 * it, leading to a BUG_ON() at unpin_extent_range().
45bb5d6a
NB
1254 */
1255 mutex_lock(&fs_info->unused_bg_unpin_mutex);
fe119a6e
NB
1256 if (prev_trans) {
1257 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258 EXTENT_DIRTY);
1259 if (ret)
534cf531 1260 goto out;
fe119a6e 1261 }
45bb5d6a 1262
fe119a6e 1263 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
45bb5d6a 1264 EXTENT_DIRTY);
534cf531 1265out:
45bb5d6a 1266 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5150bf19
FM
1267 if (prev_trans)
1268 btrfs_put_transaction(prev_trans);
45bb5d6a 1269
534cf531 1270 return ret == 0;
45bb5d6a
NB
1271}
1272
e3e0520b
JB
1273/*
1274 * Process the unused_bgs list and remove any that don't have any allocated
1275 * space inside of them.
1276 */
1277void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278{
32da5386 1279 struct btrfs_block_group *block_group;
e3e0520b
JB
1280 struct btrfs_space_info *space_info;
1281 struct btrfs_trans_handle *trans;
6e80d4f8 1282 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
e3e0520b
JB
1283 int ret = 0;
1284
1285 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286 return;
1287
ddfd08cb
JB
1288 /*
1289 * Long running balances can keep us blocked here for eternity, so
1290 * simply skip deletion if we're unable to get the mutex.
1291 */
1292 if (!mutex_trylock(&fs_info->delete_unused_bgs_mutex))
1293 return;
1294
e3e0520b
JB
1295 spin_lock(&fs_info->unused_bgs_lock);
1296 while (!list_empty(&fs_info->unused_bgs)) {
e3e0520b
JB
1297 int trimming;
1298
1299 block_group = list_first_entry(&fs_info->unused_bgs,
32da5386 1300 struct btrfs_block_group,
e3e0520b
JB
1301 bg_list);
1302 list_del_init(&block_group->bg_list);
1303
1304 space_info = block_group->space_info;
1305
1306 if (ret || btrfs_mixed_space_info(space_info)) {
1307 btrfs_put_block_group(block_group);
1308 continue;
1309 }
1310 spin_unlock(&fs_info->unused_bgs_lock);
1311
b0643e59
DZ
1312 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313
e3e0520b
JB
1314 /* Don't want to race with allocators so take the groups_sem */
1315 down_write(&space_info->groups_sem);
6e80d4f8
DZ
1316
1317 /*
1318 * Async discard moves the final block group discard to be prior
1319 * to the unused_bgs code path. Therefore, if it's not fully
1320 * trimmed, punt it back to the async discard lists.
1321 */
1322 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323 !btrfs_is_free_space_trimmed(block_group)) {
1324 trace_btrfs_skip_unused_block_group(block_group);
1325 up_write(&space_info->groups_sem);
1326 /* Requeue if we failed because of async discard */
1327 btrfs_discard_queue_work(&fs_info->discard_ctl,
1328 block_group);
1329 goto next;
1330 }
1331
e3e0520b
JB
1332 spin_lock(&block_group->lock);
1333 if (block_group->reserved || block_group->pinned ||
bf38be65 1334 block_group->used || block_group->ro ||
e3e0520b
JB
1335 list_is_singular(&block_group->list)) {
1336 /*
1337 * We want to bail if we made new allocations or have
1338 * outstanding allocations in this block group. We do
1339 * the ro check in case balance is currently acting on
1340 * this block group.
1341 */
1342 trace_btrfs_skip_unused_block_group(block_group);
1343 spin_unlock(&block_group->lock);
1344 up_write(&space_info->groups_sem);
1345 goto next;
1346 }
1347 spin_unlock(&block_group->lock);
1348
1349 /* We don't want to force the issue, only flip if it's ok. */
e11c0406 1350 ret = inc_block_group_ro(block_group, 0);
e3e0520b
JB
1351 up_write(&space_info->groups_sem);
1352 if (ret < 0) {
1353 ret = 0;
1354 goto next;
1355 }
1356
1357 /*
1358 * Want to do this before we do anything else so we can recover
1359 * properly if we fail to join the transaction.
1360 */
1361 trans = btrfs_start_trans_remove_block_group(fs_info,
b3470b5d 1362 block_group->start);
e3e0520b
JB
1363 if (IS_ERR(trans)) {
1364 btrfs_dec_block_group_ro(block_group);
1365 ret = PTR_ERR(trans);
1366 goto next;
1367 }
1368
1369 /*
1370 * We could have pending pinned extents for this block group,
1371 * just delete them, we don't care about them anymore.
1372 */
534cf531
FM
1373 if (!clean_pinned_extents(trans, block_group)) {
1374 btrfs_dec_block_group_ro(block_group);
e3e0520b 1375 goto end_trans;
534cf531 1376 }
e3e0520b 1377
b0643e59
DZ
1378 /*
1379 * At this point, the block_group is read only and should fail
1380 * new allocations. However, btrfs_finish_extent_commit() can
1381 * cause this block_group to be placed back on the discard
1382 * lists because now the block_group isn't fully discarded.
1383 * Bail here and try again later after discarding everything.
1384 */
1385 spin_lock(&fs_info->discard_ctl.lock);
1386 if (!list_empty(&block_group->discard_list)) {
1387 spin_unlock(&fs_info->discard_ctl.lock);
1388 btrfs_dec_block_group_ro(block_group);
1389 btrfs_discard_queue_work(&fs_info->discard_ctl,
1390 block_group);
1391 goto end_trans;
1392 }
1393 spin_unlock(&fs_info->discard_ctl.lock);
1394
e3e0520b
JB
1395 /* Reset pinned so btrfs_put_block_group doesn't complain */
1396 spin_lock(&space_info->lock);
1397 spin_lock(&block_group->lock);
1398
1399 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400 -block_group->pinned);
1401 space_info->bytes_readonly += block_group->pinned;
2187374f 1402 __btrfs_mod_total_bytes_pinned(space_info, -block_group->pinned);
e3e0520b
JB
1403 block_group->pinned = 0;
1404
1405 spin_unlock(&block_group->lock);
1406 spin_unlock(&space_info->lock);
1407
6e80d4f8
DZ
1408 /*
1409 * The normal path here is an unused block group is passed here,
1410 * then trimming is handled in the transaction commit path.
1411 * Async discard interposes before this to do the trimming
1412 * before coming down the unused block group path as trimming
1413 * will no longer be done later in the transaction commit path.
1414 */
1415 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1416 goto flip_async;
1417
dcba6e48
NA
1418 /*
1419 * DISCARD can flip during remount. On zoned filesystems, we
1420 * need to reset sequential-required zones.
1421 */
1422 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1423 btrfs_is_zoned(fs_info);
e3e0520b
JB
1424
1425 /* Implicit trim during transaction commit. */
1426 if (trimming)
6b7304af 1427 btrfs_freeze_block_group(block_group);
e3e0520b
JB
1428
1429 /*
1430 * Btrfs_remove_chunk will abort the transaction if things go
1431 * horribly wrong.
1432 */
b3470b5d 1433 ret = btrfs_remove_chunk(trans, block_group->start);
e3e0520b
JB
1434
1435 if (ret) {
1436 if (trimming)
6b7304af 1437 btrfs_unfreeze_block_group(block_group);
e3e0520b
JB
1438 goto end_trans;
1439 }
1440
1441 /*
1442 * If we're not mounted with -odiscard, we can just forget
1443 * about this block group. Otherwise we'll need to wait
1444 * until transaction commit to do the actual discard.
1445 */
1446 if (trimming) {
1447 spin_lock(&fs_info->unused_bgs_lock);
1448 /*
1449 * A concurrent scrub might have added us to the list
1450 * fs_info->unused_bgs, so use a list_move operation
1451 * to add the block group to the deleted_bgs list.
1452 */
1453 list_move(&block_group->bg_list,
1454 &trans->transaction->deleted_bgs);
1455 spin_unlock(&fs_info->unused_bgs_lock);
1456 btrfs_get_block_group(block_group);
1457 }
1458end_trans:
1459 btrfs_end_transaction(trans);
1460next:
e3e0520b
JB
1461 btrfs_put_block_group(block_group);
1462 spin_lock(&fs_info->unused_bgs_lock);
1463 }
1464 spin_unlock(&fs_info->unused_bgs_lock);
ddfd08cb 1465 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
6e80d4f8
DZ
1466 return;
1467
1468flip_async:
1469 btrfs_end_transaction(trans);
1470 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1471 btrfs_put_block_group(block_group);
1472 btrfs_discard_punt_unused_bgs_list(fs_info);
e3e0520b
JB
1473}
1474
32da5386 1475void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
e3e0520b
JB
1476{
1477 struct btrfs_fs_info *fs_info = bg->fs_info;
1478
1479 spin_lock(&fs_info->unused_bgs_lock);
1480 if (list_empty(&bg->bg_list)) {
1481 btrfs_get_block_group(bg);
1482 trace_btrfs_add_unused_block_group(bg);
1483 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1484 }
1485 spin_unlock(&fs_info->unused_bgs_lock);
1486}
4358d963 1487
e3ba67a1
JT
1488static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1489 struct btrfs_path *path)
1490{
1491 struct extent_map_tree *em_tree;
1492 struct extent_map *em;
1493 struct btrfs_block_group_item bg;
1494 struct extent_buffer *leaf;
1495 int slot;
1496 u64 flags;
1497 int ret = 0;
1498
1499 slot = path->slots[0];
1500 leaf = path->nodes[0];
1501
1502 em_tree = &fs_info->mapping_tree;
1503 read_lock(&em_tree->lock);
1504 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1505 read_unlock(&em_tree->lock);
1506 if (!em) {
1507 btrfs_err(fs_info,
1508 "logical %llu len %llu found bg but no related chunk",
1509 key->objectid, key->offset);
1510 return -ENOENT;
1511 }
1512
1513 if (em->start != key->objectid || em->len != key->offset) {
1514 btrfs_err(fs_info,
1515 "block group %llu len %llu mismatch with chunk %llu len %llu",
1516 key->objectid, key->offset, em->start, em->len);
1517 ret = -EUCLEAN;
1518 goto out_free_em;
1519 }
1520
1521 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1522 sizeof(bg));
1523 flags = btrfs_stack_block_group_flags(&bg) &
1524 BTRFS_BLOCK_GROUP_TYPE_MASK;
1525
1526 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1527 btrfs_err(fs_info,
1528"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1529 key->objectid, key->offset, flags,
1530 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1531 ret = -EUCLEAN;
1532 }
1533
1534out_free_em:
1535 free_extent_map(em);
1536 return ret;
1537}
1538
4358d963
JB
1539static int find_first_block_group(struct btrfs_fs_info *fs_info,
1540 struct btrfs_path *path,
1541 struct btrfs_key *key)
1542{
1543 struct btrfs_root *root = fs_info->extent_root;
e3ba67a1 1544 int ret;
4358d963
JB
1545 struct btrfs_key found_key;
1546 struct extent_buffer *leaf;
4358d963
JB
1547 int slot;
1548
1549 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1550 if (ret < 0)
e3ba67a1 1551 return ret;
4358d963
JB
1552
1553 while (1) {
1554 slot = path->slots[0];
1555 leaf = path->nodes[0];
1556 if (slot >= btrfs_header_nritems(leaf)) {
1557 ret = btrfs_next_leaf(root, path);
1558 if (ret == 0)
1559 continue;
1560 if (ret < 0)
1561 goto out;
1562 break;
1563 }
1564 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1565
1566 if (found_key.objectid >= key->objectid &&
1567 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
e3ba67a1
JT
1568 ret = read_bg_from_eb(fs_info, &found_key, path);
1569 break;
4358d963 1570 }
e3ba67a1 1571
4358d963
JB
1572 path->slots[0]++;
1573 }
1574out:
1575 return ret;
1576}
1577
1578static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1579{
1580 u64 extra_flags = chunk_to_extended(flags) &
1581 BTRFS_EXTENDED_PROFILE_MASK;
1582
1583 write_seqlock(&fs_info->profiles_lock);
1584 if (flags & BTRFS_BLOCK_GROUP_DATA)
1585 fs_info->avail_data_alloc_bits |= extra_flags;
1586 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1587 fs_info->avail_metadata_alloc_bits |= extra_flags;
1588 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1589 fs_info->avail_system_alloc_bits |= extra_flags;
1590 write_sequnlock(&fs_info->profiles_lock);
1591}
1592
96a14336 1593/**
9ee9b979
NB
1594 * Map a physical disk address to a list of logical addresses
1595 *
1596 * @fs_info: the filesystem
96a14336 1597 * @chunk_start: logical address of block group
138082f3 1598 * @bdev: physical device to resolve, can be NULL to indicate any device
96a14336
NB
1599 * @physical: physical address to map to logical addresses
1600 * @logical: return array of logical addresses which map to @physical
1601 * @naddrs: length of @logical
1602 * @stripe_len: size of IO stripe for the given block group
1603 *
1604 * Maps a particular @physical disk address to a list of @logical addresses.
1605 * Used primarily to exclude those portions of a block group that contain super
1606 * block copies.
1607 */
96a14336 1608int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
138082f3
NA
1609 struct block_device *bdev, u64 physical, u64 **logical,
1610 int *naddrs, int *stripe_len)
96a14336
NB
1611{
1612 struct extent_map *em;
1613 struct map_lookup *map;
1614 u64 *buf;
1615 u64 bytenr;
1776ad17
NB
1616 u64 data_stripe_length;
1617 u64 io_stripe_size;
1618 int i, nr = 0;
1619 int ret = 0;
96a14336
NB
1620
1621 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1622 if (IS_ERR(em))
1623 return -EIO;
1624
1625 map = em->map_lookup;
9e22b925 1626 data_stripe_length = em->orig_block_len;
1776ad17 1627 io_stripe_size = map->stripe_len;
138082f3 1628 chunk_start = em->start;
96a14336 1629
9e22b925
NB
1630 /* For RAID5/6 adjust to a full IO stripe length */
1631 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1776ad17 1632 io_stripe_size = map->stripe_len * nr_data_stripes(map);
96a14336
NB
1633
1634 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1776ad17
NB
1635 if (!buf) {
1636 ret = -ENOMEM;
1637 goto out;
1638 }
96a14336
NB
1639
1640 for (i = 0; i < map->num_stripes; i++) {
1776ad17
NB
1641 bool already_inserted = false;
1642 u64 stripe_nr;
138082f3 1643 u64 offset;
1776ad17
NB
1644 int j;
1645
1646 if (!in_range(physical, map->stripes[i].physical,
1647 data_stripe_length))
96a14336
NB
1648 continue;
1649
138082f3
NA
1650 if (bdev && map->stripes[i].dev->bdev != bdev)
1651 continue;
1652
96a14336 1653 stripe_nr = physical - map->stripes[i].physical;
138082f3 1654 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
96a14336
NB
1655
1656 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1657 stripe_nr = stripe_nr * map->num_stripes + i;
1658 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1659 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1660 stripe_nr = stripe_nr * map->num_stripes + i;
1661 }
1662 /*
1663 * The remaining case would be for RAID56, multiply by
1664 * nr_data_stripes(). Alternatively, just use rmap_len below
1665 * instead of map->stripe_len
1666 */
1667
138082f3 1668 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1776ad17
NB
1669
1670 /* Ensure we don't add duplicate addresses */
96a14336 1671 for (j = 0; j < nr; j++) {
1776ad17
NB
1672 if (buf[j] == bytenr) {
1673 already_inserted = true;
96a14336 1674 break;
1776ad17 1675 }
96a14336 1676 }
1776ad17
NB
1677
1678 if (!already_inserted)
96a14336 1679 buf[nr++] = bytenr;
96a14336
NB
1680 }
1681
1682 *logical = buf;
1683 *naddrs = nr;
1776ad17
NB
1684 *stripe_len = io_stripe_size;
1685out:
96a14336 1686 free_extent_map(em);
1776ad17 1687 return ret;
96a14336
NB
1688}
1689
32da5386 1690static int exclude_super_stripes(struct btrfs_block_group *cache)
4358d963
JB
1691{
1692 struct btrfs_fs_info *fs_info = cache->fs_info;
12659251 1693 const bool zoned = btrfs_is_zoned(fs_info);
4358d963
JB
1694 u64 bytenr;
1695 u64 *logical;
1696 int stripe_len;
1697 int i, nr, ret;
1698
b3470b5d
DS
1699 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1700 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
4358d963 1701 cache->bytes_super += stripe_len;
b3470b5d 1702 ret = btrfs_add_excluded_extent(fs_info, cache->start,
4358d963
JB
1703 stripe_len);
1704 if (ret)
1705 return ret;
1706 }
1707
1708 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1709 bytenr = btrfs_sb_offset(i);
138082f3 1710 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
4358d963
JB
1711 bytenr, &logical, &nr, &stripe_len);
1712 if (ret)
1713 return ret;
1714
12659251
NA
1715 /* Shouldn't have super stripes in sequential zones */
1716 if (zoned && nr) {
1717 btrfs_err(fs_info,
1718 "zoned: block group %llu must not contain super block",
1719 cache->start);
1720 return -EUCLEAN;
1721 }
1722
4358d963 1723 while (nr--) {
96f9b0f2
NB
1724 u64 len = min_t(u64, stripe_len,
1725 cache->start + cache->length - logical[nr]);
4358d963
JB
1726
1727 cache->bytes_super += len;
96f9b0f2
NB
1728 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1729 len);
4358d963
JB
1730 if (ret) {
1731 kfree(logical);
1732 return ret;
1733 }
1734 }
1735
1736 kfree(logical);
1737 }
1738 return 0;
1739}
1740
32da5386 1741static void link_block_group(struct btrfs_block_group *cache)
4358d963
JB
1742{
1743 struct btrfs_space_info *space_info = cache->space_info;
1744 int index = btrfs_bg_flags_to_raid_index(cache->flags);
4358d963
JB
1745
1746 down_write(&space_info->groups_sem);
4358d963
JB
1747 list_add_tail(&cache->list, &space_info->block_groups[index]);
1748 up_write(&space_info->groups_sem);
4358d963
JB
1749}
1750
32da5386 1751static struct btrfs_block_group *btrfs_create_block_group_cache(
9afc6649 1752 struct btrfs_fs_info *fs_info, u64 start)
4358d963 1753{
32da5386 1754 struct btrfs_block_group *cache;
4358d963
JB
1755
1756 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1757 if (!cache)
1758 return NULL;
1759
1760 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1761 GFP_NOFS);
1762 if (!cache->free_space_ctl) {
1763 kfree(cache);
1764 return NULL;
1765 }
1766
b3470b5d 1767 cache->start = start;
4358d963
JB
1768
1769 cache->fs_info = fs_info;
1770 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
4358d963 1771
6e80d4f8
DZ
1772 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1773
48aaeebe 1774 refcount_set(&cache->refs, 1);
4358d963
JB
1775 spin_lock_init(&cache->lock);
1776 init_rwsem(&cache->data_rwsem);
1777 INIT_LIST_HEAD(&cache->list);
1778 INIT_LIST_HEAD(&cache->cluster_list);
1779 INIT_LIST_HEAD(&cache->bg_list);
1780 INIT_LIST_HEAD(&cache->ro_list);
b0643e59 1781 INIT_LIST_HEAD(&cache->discard_list);
4358d963
JB
1782 INIT_LIST_HEAD(&cache->dirty_list);
1783 INIT_LIST_HEAD(&cache->io_list);
cd79909b 1784 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
6b7304af 1785 atomic_set(&cache->frozen, 0);
4358d963
JB
1786 mutex_init(&cache->free_space_lock);
1787 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1788
1789 return cache;
1790}
1791
1792/*
1793 * Iterate all chunks and verify that each of them has the corresponding block
1794 * group
1795 */
1796static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1797{
1798 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1799 struct extent_map *em;
32da5386 1800 struct btrfs_block_group *bg;
4358d963
JB
1801 u64 start = 0;
1802 int ret = 0;
1803
1804 while (1) {
1805 read_lock(&map_tree->lock);
1806 /*
1807 * lookup_extent_mapping will return the first extent map
1808 * intersecting the range, so setting @len to 1 is enough to
1809 * get the first chunk.
1810 */
1811 em = lookup_extent_mapping(map_tree, start, 1);
1812 read_unlock(&map_tree->lock);
1813 if (!em)
1814 break;
1815
1816 bg = btrfs_lookup_block_group(fs_info, em->start);
1817 if (!bg) {
1818 btrfs_err(fs_info,
1819 "chunk start=%llu len=%llu doesn't have corresponding block group",
1820 em->start, em->len);
1821 ret = -EUCLEAN;
1822 free_extent_map(em);
1823 break;
1824 }
b3470b5d 1825 if (bg->start != em->start || bg->length != em->len ||
4358d963
JB
1826 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1827 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1828 btrfs_err(fs_info,
1829"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1830 em->start, em->len,
1831 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
b3470b5d 1832 bg->start, bg->length,
4358d963
JB
1833 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1834 ret = -EUCLEAN;
1835 free_extent_map(em);
1836 btrfs_put_block_group(bg);
1837 break;
1838 }
1839 start = em->start + em->len;
1840 free_extent_map(em);
1841 btrfs_put_block_group(bg);
1842 }
1843 return ret;
1844}
1845
ffb9e0f0 1846static int read_one_block_group(struct btrfs_fs_info *info,
4afd2fe8 1847 struct btrfs_block_group_item *bgi,
d49a2ddb 1848 const struct btrfs_key *key,
ffb9e0f0
QW
1849 int need_clear)
1850{
32da5386 1851 struct btrfs_block_group *cache;
ffb9e0f0 1852 struct btrfs_space_info *space_info;
ffb9e0f0 1853 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
ffb9e0f0
QW
1854 int ret;
1855
d49a2ddb 1856 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
ffb9e0f0 1857
9afc6649 1858 cache = btrfs_create_block_group_cache(info, key->objectid);
ffb9e0f0
QW
1859 if (!cache)
1860 return -ENOMEM;
1861
4afd2fe8
JT
1862 cache->length = key->offset;
1863 cache->used = btrfs_stack_block_group_used(bgi);
1864 cache->flags = btrfs_stack_block_group_flags(bgi);
9afc6649 1865
e3e39c72
MPS
1866 set_free_space_tree_thresholds(cache);
1867
ffb9e0f0
QW
1868 if (need_clear) {
1869 /*
1870 * When we mount with old space cache, we need to
1871 * set BTRFS_DC_CLEAR and set dirty flag.
1872 *
1873 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1874 * truncate the old free space cache inode and
1875 * setup a new one.
1876 * b) Setting 'dirty flag' makes sure that we flush
1877 * the new space cache info onto disk.
1878 */
1879 if (btrfs_test_opt(info, SPACE_CACHE))
1880 cache->disk_cache_state = BTRFS_DC_CLEAR;
1881 }
ffb9e0f0
QW
1882 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1883 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1884 btrfs_err(info,
1885"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1886 cache->start);
1887 ret = -EINVAL;
1888 goto error;
1889 }
1890
a94794d5 1891 ret = btrfs_load_block_group_zone_info(cache, false);
08e11a3d
NA
1892 if (ret) {
1893 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
1894 cache->start);
1895 goto error;
1896 }
1897
ffb9e0f0
QW
1898 /*
1899 * We need to exclude the super stripes now so that the space info has
1900 * super bytes accounted for, otherwise we'll think we have more space
1901 * than we actually do.
1902 */
1903 ret = exclude_super_stripes(cache);
1904 if (ret) {
1905 /* We may have excluded something, so call this just in case. */
1906 btrfs_free_excluded_extents(cache);
1907 goto error;
1908 }
1909
1910 /*
169e0da9
NA
1911 * For zoned filesystem, space after the allocation offset is the only
1912 * free space for a block group. So, we don't need any caching work.
1913 * btrfs_calc_zone_unusable() will set the amount of free space and
1914 * zone_unusable space.
1915 *
1916 * For regular filesystem, check for two cases, either we are full, and
1917 * therefore don't need to bother with the caching work since we won't
1918 * find any space, or we are empty, and we can just add all the space
1919 * in and be done with it. This saves us _a_lot_ of time, particularly
1920 * in the full case.
ffb9e0f0 1921 */
169e0da9
NA
1922 if (btrfs_is_zoned(info)) {
1923 btrfs_calc_zone_unusable(cache);
1924 } else if (cache->length == cache->used) {
ffb9e0f0
QW
1925 cache->last_byte_to_unpin = (u64)-1;
1926 cache->cached = BTRFS_CACHE_FINISHED;
1927 btrfs_free_excluded_extents(cache);
1928 } else if (cache->used == 0) {
1929 cache->last_byte_to_unpin = (u64)-1;
1930 cache->cached = BTRFS_CACHE_FINISHED;
9afc6649
QW
1931 add_new_free_space(cache, cache->start,
1932 cache->start + cache->length);
ffb9e0f0
QW
1933 btrfs_free_excluded_extents(cache);
1934 }
1935
1936 ret = btrfs_add_block_group_cache(info, cache);
1937 if (ret) {
1938 btrfs_remove_free_space_cache(cache);
1939 goto error;
1940 }
1941 trace_btrfs_add_block_group(info, cache, 0);
9afc6649 1942 btrfs_update_space_info(info, cache->flags, cache->length,
169e0da9
NA
1943 cache->used, cache->bytes_super,
1944 cache->zone_unusable, &space_info);
ffb9e0f0
QW
1945
1946 cache->space_info = space_info;
1947
1948 link_block_group(cache);
1949
1950 set_avail_alloc_bits(info, cache->flags);
1951 if (btrfs_chunk_readonly(info, cache->start)) {
1952 inc_block_group_ro(cache, 1);
1953 } else if (cache->used == 0) {
1954 ASSERT(list_empty(&cache->bg_list));
6e80d4f8
DZ
1955 if (btrfs_test_opt(info, DISCARD_ASYNC))
1956 btrfs_discard_queue_work(&info->discard_ctl, cache);
1957 else
1958 btrfs_mark_bg_unused(cache);
ffb9e0f0
QW
1959 }
1960 return 0;
1961error:
1962 btrfs_put_block_group(cache);
1963 return ret;
1964}
1965
42437a63
JB
1966static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
1967{
1968 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1969 struct btrfs_space_info *space_info;
1970 struct rb_node *node;
1971 int ret = 0;
1972
1973 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
1974 struct extent_map *em;
1975 struct map_lookup *map;
1976 struct btrfs_block_group *bg;
1977
1978 em = rb_entry(node, struct extent_map, rb_node);
1979 map = em->map_lookup;
1980 bg = btrfs_create_block_group_cache(fs_info, em->start);
1981 if (!bg) {
1982 ret = -ENOMEM;
1983 break;
1984 }
1985
1986 /* Fill dummy cache as FULL */
1987 bg->length = em->len;
1988 bg->flags = map->type;
1989 bg->last_byte_to_unpin = (u64)-1;
1990 bg->cached = BTRFS_CACHE_FINISHED;
1991 bg->used = em->len;
1992 bg->flags = map->type;
1993 ret = btrfs_add_block_group_cache(fs_info, bg);
1994 if (ret) {
1995 btrfs_remove_free_space_cache(bg);
1996 btrfs_put_block_group(bg);
1997 break;
1998 }
1999 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
169e0da9 2000 0, 0, &space_info);
42437a63
JB
2001 bg->space_info = space_info;
2002 link_block_group(bg);
2003
2004 set_avail_alloc_bits(fs_info, bg->flags);
2005 }
2006 if (!ret)
2007 btrfs_init_global_block_rsv(fs_info);
2008 return ret;
2009}
2010
4358d963
JB
2011int btrfs_read_block_groups(struct btrfs_fs_info *info)
2012{
2013 struct btrfs_path *path;
2014 int ret;
32da5386 2015 struct btrfs_block_group *cache;
4358d963
JB
2016 struct btrfs_space_info *space_info;
2017 struct btrfs_key key;
4358d963
JB
2018 int need_clear = 0;
2019 u64 cache_gen;
4358d963 2020
42437a63
JB
2021 if (!info->extent_root)
2022 return fill_dummy_bgs(info);
2023
4358d963
JB
2024 key.objectid = 0;
2025 key.offset = 0;
2026 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2027 path = btrfs_alloc_path();
2028 if (!path)
2029 return -ENOMEM;
4358d963
JB
2030
2031 cache_gen = btrfs_super_cache_generation(info->super_copy);
2032 if (btrfs_test_opt(info, SPACE_CACHE) &&
2033 btrfs_super_generation(info->super_copy) != cache_gen)
2034 need_clear = 1;
2035 if (btrfs_test_opt(info, CLEAR_CACHE))
2036 need_clear = 1;
2037
2038 while (1) {
4afd2fe8
JT
2039 struct btrfs_block_group_item bgi;
2040 struct extent_buffer *leaf;
2041 int slot;
2042
4358d963
JB
2043 ret = find_first_block_group(info, path, &key);
2044 if (ret > 0)
2045 break;
2046 if (ret != 0)
2047 goto error;
2048
4afd2fe8
JT
2049 leaf = path->nodes[0];
2050 slot = path->slots[0];
2051
2052 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2053 sizeof(bgi));
2054
2055 btrfs_item_key_to_cpu(leaf, &key, slot);
2056 btrfs_release_path(path);
2057 ret = read_one_block_group(info, &bgi, &key, need_clear);
ffb9e0f0 2058 if (ret < 0)
4358d963 2059 goto error;
ffb9e0f0
QW
2060 key.objectid += key.offset;
2061 key.offset = 0;
4358d963 2062 }
7837fa88 2063 btrfs_release_path(path);
4358d963 2064
72804905 2065 list_for_each_entry(space_info, &info->space_info, list) {
49ea112d
JB
2066 int i;
2067
2068 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2069 if (list_empty(&space_info->block_groups[i]))
2070 continue;
2071 cache = list_first_entry(&space_info->block_groups[i],
2072 struct btrfs_block_group,
2073 list);
2074 btrfs_sysfs_add_block_group_type(cache);
2075 }
2076
4358d963
JB
2077 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2078 (BTRFS_BLOCK_GROUP_RAID10 |
2079 BTRFS_BLOCK_GROUP_RAID1_MASK |
2080 BTRFS_BLOCK_GROUP_RAID56_MASK |
2081 BTRFS_BLOCK_GROUP_DUP)))
2082 continue;
2083 /*
2084 * Avoid allocating from un-mirrored block group if there are
2085 * mirrored block groups.
2086 */
2087 list_for_each_entry(cache,
2088 &space_info->block_groups[BTRFS_RAID_RAID0],
2089 list)
e11c0406 2090 inc_block_group_ro(cache, 1);
4358d963
JB
2091 list_for_each_entry(cache,
2092 &space_info->block_groups[BTRFS_RAID_SINGLE],
2093 list)
e11c0406 2094 inc_block_group_ro(cache, 1);
4358d963
JB
2095 }
2096
2097 btrfs_init_global_block_rsv(info);
2098 ret = check_chunk_block_group_mappings(info);
2099error:
2100 btrfs_free_path(path);
2101 return ret;
2102}
2103
97f4728a
QW
2104static int insert_block_group_item(struct btrfs_trans_handle *trans,
2105 struct btrfs_block_group *block_group)
2106{
2107 struct btrfs_fs_info *fs_info = trans->fs_info;
2108 struct btrfs_block_group_item bgi;
2109 struct btrfs_root *root;
2110 struct btrfs_key key;
2111
2112 spin_lock(&block_group->lock);
2113 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2114 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2115 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2116 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2117 key.objectid = block_group->start;
2118 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2119 key.offset = block_group->length;
2120 spin_unlock(&block_group->lock);
2121
2122 root = fs_info->extent_root;
2123 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2124}
2125
4358d963
JB
2126void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2127{
2128 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2129 struct btrfs_block_group *block_group;
4358d963
JB
2130 int ret = 0;
2131
2132 if (!trans->can_flush_pending_bgs)
2133 return;
2134
2135 while (!list_empty(&trans->new_bgs)) {
49ea112d
JB
2136 int index;
2137
4358d963 2138 block_group = list_first_entry(&trans->new_bgs,
32da5386 2139 struct btrfs_block_group,
4358d963
JB
2140 bg_list);
2141 if (ret)
2142 goto next;
2143
49ea112d
JB
2144 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2145
97f4728a 2146 ret = insert_block_group_item(trans, block_group);
4358d963
JB
2147 if (ret)
2148 btrfs_abort_transaction(trans, ret);
97f4728a
QW
2149 ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2150 block_group->length);
4358d963
JB
2151 if (ret)
2152 btrfs_abort_transaction(trans, ret);
2153 add_block_group_free_space(trans, block_group);
49ea112d
JB
2154
2155 /*
2156 * If we restriped during balance, we may have added a new raid
2157 * type, so now add the sysfs entries when it is safe to do so.
2158 * We don't have to worry about locking here as it's handled in
2159 * btrfs_sysfs_add_block_group_type.
2160 */
2161 if (block_group->space_info->block_group_kobjs[index] == NULL)
2162 btrfs_sysfs_add_block_group_type(block_group);
2163
4358d963
JB
2164 /* Already aborted the transaction if it failed. */
2165next:
2166 btrfs_delayed_refs_rsv_release(fs_info, 1);
2167 list_del_init(&block_group->bg_list);
2168 }
2169 btrfs_trans_release_chunk_metadata(trans);
2170}
2171
2172int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2173 u64 type, u64 chunk_offset, u64 size)
2174{
2175 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2176 struct btrfs_block_group *cache;
4358d963
JB
2177 int ret;
2178
2179 btrfs_set_log_full_commit(trans);
2180
9afc6649 2181 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
4358d963
JB
2182 if (!cache)
2183 return -ENOMEM;
2184
9afc6649 2185 cache->length = size;
e3e39c72 2186 set_free_space_tree_thresholds(cache);
bf38be65 2187 cache->used = bytes_used;
4358d963
JB
2188 cache->flags = type;
2189 cache->last_byte_to_unpin = (u64)-1;
2190 cache->cached = BTRFS_CACHE_FINISHED;
997e3e2e
BB
2191 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2192 cache->needs_free_space = 1;
08e11a3d 2193
a94794d5 2194 ret = btrfs_load_block_group_zone_info(cache, true);
08e11a3d
NA
2195 if (ret) {
2196 btrfs_put_block_group(cache);
2197 return ret;
2198 }
2199
4358d963
JB
2200 ret = exclude_super_stripes(cache);
2201 if (ret) {
2202 /* We may have excluded something, so call this just in case */
2203 btrfs_free_excluded_extents(cache);
2204 btrfs_put_block_group(cache);
2205 return ret;
2206 }
2207
2208 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2209
2210 btrfs_free_excluded_extents(cache);
2211
2212#ifdef CONFIG_BTRFS_DEBUG
2213 if (btrfs_should_fragment_free_space(cache)) {
2214 u64 new_bytes_used = size - bytes_used;
2215
2216 bytes_used += new_bytes_used >> 1;
e11c0406 2217 fragment_free_space(cache);
4358d963
JB
2218 }
2219#endif
2220 /*
2221 * Ensure the corresponding space_info object is created and
2222 * assigned to our block group. We want our bg to be added to the rbtree
2223 * with its ->space_info set.
2224 */
2225 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2226 ASSERT(cache->space_info);
2227
2228 ret = btrfs_add_block_group_cache(fs_info, cache);
2229 if (ret) {
2230 btrfs_remove_free_space_cache(cache);
2231 btrfs_put_block_group(cache);
2232 return ret;
2233 }
2234
2235 /*
2236 * Now that our block group has its ->space_info set and is inserted in
2237 * the rbtree, update the space info's counters.
2238 */
2239 trace_btrfs_add_block_group(fs_info, cache, 1);
2240 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
169e0da9 2241 cache->bytes_super, 0, &cache->space_info);
4358d963
JB
2242 btrfs_update_global_block_rsv(fs_info);
2243
2244 link_block_group(cache);
2245
2246 list_add_tail(&cache->bg_list, &trans->new_bgs);
2247 trans->delayed_ref_updates++;
2248 btrfs_update_delayed_refs_rsv(trans);
2249
2250 set_avail_alloc_bits(fs_info, type);
2251 return 0;
2252}
26ce2095 2253
b12de528
QW
2254/*
2255 * Mark one block group RO, can be called several times for the same block
2256 * group.
2257 *
2258 * @cache: the destination block group
2259 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2260 * ensure we still have some free space after marking this
2261 * block group RO.
2262 */
2263int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2264 bool do_chunk_alloc)
26ce2095
JB
2265{
2266 struct btrfs_fs_info *fs_info = cache->fs_info;
2267 struct btrfs_trans_handle *trans;
2268 u64 alloc_flags;
2269 int ret;
2270
2271again:
2272 trans = btrfs_join_transaction(fs_info->extent_root);
2273 if (IS_ERR(trans))
2274 return PTR_ERR(trans);
2275
2276 /*
2277 * we're not allowed to set block groups readonly after the dirty
2278 * block groups cache has started writing. If it already started,
2279 * back off and let this transaction commit
2280 */
2281 mutex_lock(&fs_info->ro_block_group_mutex);
2282 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2283 u64 transid = trans->transid;
2284
2285 mutex_unlock(&fs_info->ro_block_group_mutex);
2286 btrfs_end_transaction(trans);
2287
2288 ret = btrfs_wait_for_commit(fs_info, transid);
2289 if (ret)
2290 return ret;
2291 goto again;
2292 }
2293
b12de528 2294 if (do_chunk_alloc) {
26ce2095 2295 /*
b12de528
QW
2296 * If we are changing raid levels, try to allocate a
2297 * corresponding block group with the new raid level.
26ce2095 2298 */
349e120e 2299 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
b12de528
QW
2300 if (alloc_flags != cache->flags) {
2301 ret = btrfs_chunk_alloc(trans, alloc_flags,
2302 CHUNK_ALLOC_FORCE);
2303 /*
2304 * ENOSPC is allowed here, we may have enough space
2305 * already allocated at the new raid level to carry on
2306 */
2307 if (ret == -ENOSPC)
2308 ret = 0;
2309 if (ret < 0)
2310 goto out;
2311 }
26ce2095
JB
2312 }
2313
a7a63acc 2314 ret = inc_block_group_ro(cache, 0);
195a49ea 2315 if (!do_chunk_alloc || ret == -ETXTBSY)
b12de528 2316 goto unlock_out;
26ce2095
JB
2317 if (!ret)
2318 goto out;
2319 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2320 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2321 if (ret < 0)
2322 goto out;
e11c0406 2323 ret = inc_block_group_ro(cache, 0);
195a49ea
FM
2324 if (ret == -ETXTBSY)
2325 goto unlock_out;
26ce2095
JB
2326out:
2327 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
349e120e 2328 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
26ce2095
JB
2329 mutex_lock(&fs_info->chunk_mutex);
2330 check_system_chunk(trans, alloc_flags);
2331 mutex_unlock(&fs_info->chunk_mutex);
2332 }
b12de528 2333unlock_out:
26ce2095
JB
2334 mutex_unlock(&fs_info->ro_block_group_mutex);
2335
2336 btrfs_end_transaction(trans);
2337 return ret;
2338}
2339
32da5386 2340void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
26ce2095
JB
2341{
2342 struct btrfs_space_info *sinfo = cache->space_info;
2343 u64 num_bytes;
2344
2345 BUG_ON(!cache->ro);
2346
2347 spin_lock(&sinfo->lock);
2348 spin_lock(&cache->lock);
2349 if (!--cache->ro) {
b3470b5d 2350 num_bytes = cache->length - cache->reserved -
169e0da9
NA
2351 cache->pinned - cache->bytes_super -
2352 cache->zone_unusable - cache->used;
26ce2095 2353 sinfo->bytes_readonly -= num_bytes;
169e0da9
NA
2354 if (btrfs_is_zoned(cache->fs_info)) {
2355 /* Migrate zone_unusable bytes back */
2356 cache->zone_unusable = cache->alloc_offset - cache->used;
2357 sinfo->bytes_zone_unusable += cache->zone_unusable;
2358 sinfo->bytes_readonly -= cache->zone_unusable;
2359 }
26ce2095
JB
2360 list_del_init(&cache->ro_list);
2361 }
2362 spin_unlock(&cache->lock);
2363 spin_unlock(&sinfo->lock);
2364}
77745c05 2365
3be4d8ef
QW
2366static int update_block_group_item(struct btrfs_trans_handle *trans,
2367 struct btrfs_path *path,
2368 struct btrfs_block_group *cache)
77745c05
JB
2369{
2370 struct btrfs_fs_info *fs_info = trans->fs_info;
2371 int ret;
3be4d8ef 2372 struct btrfs_root *root = fs_info->extent_root;
77745c05
JB
2373 unsigned long bi;
2374 struct extent_buffer *leaf;
bf38be65 2375 struct btrfs_block_group_item bgi;
b3470b5d
DS
2376 struct btrfs_key key;
2377
2378 key.objectid = cache->start;
2379 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2380 key.offset = cache->length;
77745c05 2381
3be4d8ef 2382 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
77745c05
JB
2383 if (ret) {
2384 if (ret > 0)
2385 ret = -ENOENT;
2386 goto fail;
2387 }
2388
2389 leaf = path->nodes[0];
2390 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
de0dc456
DS
2391 btrfs_set_stack_block_group_used(&bgi, cache->used);
2392 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3d976388 2393 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
de0dc456 2394 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
bf38be65 2395 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
77745c05
JB
2396 btrfs_mark_buffer_dirty(leaf);
2397fail:
2398 btrfs_release_path(path);
2399 return ret;
2400
2401}
2402
32da5386 2403static int cache_save_setup(struct btrfs_block_group *block_group,
77745c05
JB
2404 struct btrfs_trans_handle *trans,
2405 struct btrfs_path *path)
2406{
2407 struct btrfs_fs_info *fs_info = block_group->fs_info;
2408 struct btrfs_root *root = fs_info->tree_root;
2409 struct inode *inode = NULL;
2410 struct extent_changeset *data_reserved = NULL;
2411 u64 alloc_hint = 0;
2412 int dcs = BTRFS_DC_ERROR;
2413 u64 num_pages = 0;
2414 int retries = 0;
2415 int ret = 0;
2416
af456a2c
BB
2417 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2418 return 0;
2419
77745c05
JB
2420 /*
2421 * If this block group is smaller than 100 megs don't bother caching the
2422 * block group.
2423 */
b3470b5d 2424 if (block_group->length < (100 * SZ_1M)) {
77745c05
JB
2425 spin_lock(&block_group->lock);
2426 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2427 spin_unlock(&block_group->lock);
2428 return 0;
2429 }
2430
bf31f87f 2431 if (TRANS_ABORTED(trans))
77745c05
JB
2432 return 0;
2433again:
2434 inode = lookup_free_space_inode(block_group, path);
2435 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2436 ret = PTR_ERR(inode);
2437 btrfs_release_path(path);
2438 goto out;
2439 }
2440
2441 if (IS_ERR(inode)) {
2442 BUG_ON(retries);
2443 retries++;
2444
2445 if (block_group->ro)
2446 goto out_free;
2447
2448 ret = create_free_space_inode(trans, block_group, path);
2449 if (ret)
2450 goto out_free;
2451 goto again;
2452 }
2453
2454 /*
2455 * We want to set the generation to 0, that way if anything goes wrong
2456 * from here on out we know not to trust this cache when we load up next
2457 * time.
2458 */
2459 BTRFS_I(inode)->generation = 0;
9a56fcd1 2460 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
77745c05
JB
2461 if (ret) {
2462 /*
2463 * So theoretically we could recover from this, simply set the
2464 * super cache generation to 0 so we know to invalidate the
2465 * cache, but then we'd have to keep track of the block groups
2466 * that fail this way so we know we _have_ to reset this cache
2467 * before the next commit or risk reading stale cache. So to
2468 * limit our exposure to horrible edge cases lets just abort the
2469 * transaction, this only happens in really bad situations
2470 * anyway.
2471 */
2472 btrfs_abort_transaction(trans, ret);
2473 goto out_put;
2474 }
2475 WARN_ON(ret);
2476
2477 /* We've already setup this transaction, go ahead and exit */
2478 if (block_group->cache_generation == trans->transid &&
2479 i_size_read(inode)) {
2480 dcs = BTRFS_DC_SETUP;
2481 goto out_put;
2482 }
2483
2484 if (i_size_read(inode) > 0) {
2485 ret = btrfs_check_trunc_cache_free_space(fs_info,
2486 &fs_info->global_block_rsv);
2487 if (ret)
2488 goto out_put;
2489
2490 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2491 if (ret)
2492 goto out_put;
2493 }
2494
2495 spin_lock(&block_group->lock);
2496 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2497 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2498 /*
2499 * don't bother trying to write stuff out _if_
2500 * a) we're not cached,
2501 * b) we're with nospace_cache mount option,
2502 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2503 */
2504 dcs = BTRFS_DC_WRITTEN;
2505 spin_unlock(&block_group->lock);
2506 goto out_put;
2507 }
2508 spin_unlock(&block_group->lock);
2509
2510 /*
2511 * We hit an ENOSPC when setting up the cache in this transaction, just
2512 * skip doing the setup, we've already cleared the cache so we're safe.
2513 */
2514 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2515 ret = -ENOSPC;
2516 goto out_put;
2517 }
2518
2519 /*
2520 * Try to preallocate enough space based on how big the block group is.
2521 * Keep in mind this has to include any pinned space which could end up
2522 * taking up quite a bit since it's not folded into the other space
2523 * cache.
2524 */
b3470b5d 2525 num_pages = div_u64(block_group->length, SZ_256M);
77745c05
JB
2526 if (!num_pages)
2527 num_pages = 1;
2528
2529 num_pages *= 16;
2530 num_pages *= PAGE_SIZE;
2531
36ea6f3e
NB
2532 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2533 num_pages);
77745c05
JB
2534 if (ret)
2535 goto out_put;
2536
2537 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2538 num_pages, num_pages,
2539 &alloc_hint);
2540 /*
2541 * Our cache requires contiguous chunks so that we don't modify a bunch
2542 * of metadata or split extents when writing the cache out, which means
2543 * we can enospc if we are heavily fragmented in addition to just normal
2544 * out of space conditions. So if we hit this just skip setting up any
2545 * other block groups for this transaction, maybe we'll unpin enough
2546 * space the next time around.
2547 */
2548 if (!ret)
2549 dcs = BTRFS_DC_SETUP;
2550 else if (ret == -ENOSPC)
2551 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2552
2553out_put:
2554 iput(inode);
2555out_free:
2556 btrfs_release_path(path);
2557out:
2558 spin_lock(&block_group->lock);
2559 if (!ret && dcs == BTRFS_DC_SETUP)
2560 block_group->cache_generation = trans->transid;
2561 block_group->disk_cache_state = dcs;
2562 spin_unlock(&block_group->lock);
2563
2564 extent_changeset_free(data_reserved);
2565 return ret;
2566}
2567
2568int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2569{
2570 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2571 struct btrfs_block_group *cache, *tmp;
77745c05
JB
2572 struct btrfs_transaction *cur_trans = trans->transaction;
2573 struct btrfs_path *path;
2574
2575 if (list_empty(&cur_trans->dirty_bgs) ||
2576 !btrfs_test_opt(fs_info, SPACE_CACHE))
2577 return 0;
2578
2579 path = btrfs_alloc_path();
2580 if (!path)
2581 return -ENOMEM;
2582
2583 /* Could add new block groups, use _safe just in case */
2584 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2585 dirty_list) {
2586 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2587 cache_save_setup(cache, trans, path);
2588 }
2589
2590 btrfs_free_path(path);
2591 return 0;
2592}
2593
2594/*
2595 * Transaction commit does final block group cache writeback during a critical
2596 * section where nothing is allowed to change the FS. This is required in
2597 * order for the cache to actually match the block group, but can introduce a
2598 * lot of latency into the commit.
2599 *
2600 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2601 * There's a chance we'll have to redo some of it if the block group changes
2602 * again during the commit, but it greatly reduces the commit latency by
2603 * getting rid of the easy block groups while we're still allowing others to
2604 * join the commit.
2605 */
2606int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2607{
2608 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2609 struct btrfs_block_group *cache;
77745c05
JB
2610 struct btrfs_transaction *cur_trans = trans->transaction;
2611 int ret = 0;
2612 int should_put;
2613 struct btrfs_path *path = NULL;
2614 LIST_HEAD(dirty);
2615 struct list_head *io = &cur_trans->io_bgs;
2616 int num_started = 0;
2617 int loops = 0;
2618
2619 spin_lock(&cur_trans->dirty_bgs_lock);
2620 if (list_empty(&cur_trans->dirty_bgs)) {
2621 spin_unlock(&cur_trans->dirty_bgs_lock);
2622 return 0;
2623 }
2624 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2625 spin_unlock(&cur_trans->dirty_bgs_lock);
2626
2627again:
2628 /* Make sure all the block groups on our dirty list actually exist */
2629 btrfs_create_pending_block_groups(trans);
2630
2631 if (!path) {
2632 path = btrfs_alloc_path();
938fcbfb
JB
2633 if (!path) {
2634 ret = -ENOMEM;
2635 goto out;
2636 }
77745c05
JB
2637 }
2638
2639 /*
2640 * cache_write_mutex is here only to save us from balance or automatic
2641 * removal of empty block groups deleting this block group while we are
2642 * writing out the cache
2643 */
2644 mutex_lock(&trans->transaction->cache_write_mutex);
2645 while (!list_empty(&dirty)) {
2646 bool drop_reserve = true;
2647
32da5386 2648 cache = list_first_entry(&dirty, struct btrfs_block_group,
77745c05
JB
2649 dirty_list);
2650 /*
2651 * This can happen if something re-dirties a block group that
2652 * is already under IO. Just wait for it to finish and then do
2653 * it all again
2654 */
2655 if (!list_empty(&cache->io_list)) {
2656 list_del_init(&cache->io_list);
2657 btrfs_wait_cache_io(trans, cache, path);
2658 btrfs_put_block_group(cache);
2659 }
2660
2661
2662 /*
2663 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2664 * it should update the cache_state. Don't delete until after
2665 * we wait.
2666 *
2667 * Since we're not running in the commit critical section
2668 * we need the dirty_bgs_lock to protect from update_block_group
2669 */
2670 spin_lock(&cur_trans->dirty_bgs_lock);
2671 list_del_init(&cache->dirty_list);
2672 spin_unlock(&cur_trans->dirty_bgs_lock);
2673
2674 should_put = 1;
2675
2676 cache_save_setup(cache, trans, path);
2677
2678 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2679 cache->io_ctl.inode = NULL;
2680 ret = btrfs_write_out_cache(trans, cache, path);
2681 if (ret == 0 && cache->io_ctl.inode) {
2682 num_started++;
2683 should_put = 0;
2684
2685 /*
2686 * The cache_write_mutex is protecting the
2687 * io_list, also refer to the definition of
2688 * btrfs_transaction::io_bgs for more details
2689 */
2690 list_add_tail(&cache->io_list, io);
2691 } else {
2692 /*
2693 * If we failed to write the cache, the
2694 * generation will be bad and life goes on
2695 */
2696 ret = 0;
2697 }
2698 }
2699 if (!ret) {
3be4d8ef 2700 ret = update_block_group_item(trans, path, cache);
77745c05
JB
2701 /*
2702 * Our block group might still be attached to the list
2703 * of new block groups in the transaction handle of some
2704 * other task (struct btrfs_trans_handle->new_bgs). This
2705 * means its block group item isn't yet in the extent
2706 * tree. If this happens ignore the error, as we will
2707 * try again later in the critical section of the
2708 * transaction commit.
2709 */
2710 if (ret == -ENOENT) {
2711 ret = 0;
2712 spin_lock(&cur_trans->dirty_bgs_lock);
2713 if (list_empty(&cache->dirty_list)) {
2714 list_add_tail(&cache->dirty_list,
2715 &cur_trans->dirty_bgs);
2716 btrfs_get_block_group(cache);
2717 drop_reserve = false;
2718 }
2719 spin_unlock(&cur_trans->dirty_bgs_lock);
2720 } else if (ret) {
2721 btrfs_abort_transaction(trans, ret);
2722 }
2723 }
2724
2725 /* If it's not on the io list, we need to put the block group */
2726 if (should_put)
2727 btrfs_put_block_group(cache);
2728 if (drop_reserve)
2729 btrfs_delayed_refs_rsv_release(fs_info, 1);
77745c05
JB
2730 /*
2731 * Avoid blocking other tasks for too long. It might even save
2732 * us from writing caches for block groups that are going to be
2733 * removed.
2734 */
2735 mutex_unlock(&trans->transaction->cache_write_mutex);
938fcbfb
JB
2736 if (ret)
2737 goto out;
77745c05
JB
2738 mutex_lock(&trans->transaction->cache_write_mutex);
2739 }
2740 mutex_unlock(&trans->transaction->cache_write_mutex);
2741
2742 /*
2743 * Go through delayed refs for all the stuff we've just kicked off
2744 * and then loop back (just once)
2745 */
34d1eb0e
JB
2746 if (!ret)
2747 ret = btrfs_run_delayed_refs(trans, 0);
77745c05
JB
2748 if (!ret && loops == 0) {
2749 loops++;
2750 spin_lock(&cur_trans->dirty_bgs_lock);
2751 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2752 /*
2753 * dirty_bgs_lock protects us from concurrent block group
2754 * deletes too (not just cache_write_mutex).
2755 */
2756 if (!list_empty(&dirty)) {
2757 spin_unlock(&cur_trans->dirty_bgs_lock);
2758 goto again;
2759 }
2760 spin_unlock(&cur_trans->dirty_bgs_lock);
938fcbfb
JB
2761 }
2762out:
2763 if (ret < 0) {
2764 spin_lock(&cur_trans->dirty_bgs_lock);
2765 list_splice_init(&dirty, &cur_trans->dirty_bgs);
2766 spin_unlock(&cur_trans->dirty_bgs_lock);
77745c05
JB
2767 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2768 }
2769
2770 btrfs_free_path(path);
2771 return ret;
2772}
2773
2774int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2775{
2776 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2777 struct btrfs_block_group *cache;
77745c05
JB
2778 struct btrfs_transaction *cur_trans = trans->transaction;
2779 int ret = 0;
2780 int should_put;
2781 struct btrfs_path *path;
2782 struct list_head *io = &cur_trans->io_bgs;
2783 int num_started = 0;
2784
2785 path = btrfs_alloc_path();
2786 if (!path)
2787 return -ENOMEM;
2788
2789 /*
2790 * Even though we are in the critical section of the transaction commit,
2791 * we can still have concurrent tasks adding elements to this
2792 * transaction's list of dirty block groups. These tasks correspond to
2793 * endio free space workers started when writeback finishes for a
2794 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2795 * allocate new block groups as a result of COWing nodes of the root
2796 * tree when updating the free space inode. The writeback for the space
2797 * caches is triggered by an earlier call to
2798 * btrfs_start_dirty_block_groups() and iterations of the following
2799 * loop.
2800 * Also we want to do the cache_save_setup first and then run the
2801 * delayed refs to make sure we have the best chance at doing this all
2802 * in one shot.
2803 */
2804 spin_lock(&cur_trans->dirty_bgs_lock);
2805 while (!list_empty(&cur_trans->dirty_bgs)) {
2806 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 2807 struct btrfs_block_group,
77745c05
JB
2808 dirty_list);
2809
2810 /*
2811 * This can happen if cache_save_setup re-dirties a block group
2812 * that is already under IO. Just wait for it to finish and
2813 * then do it all again
2814 */
2815 if (!list_empty(&cache->io_list)) {
2816 spin_unlock(&cur_trans->dirty_bgs_lock);
2817 list_del_init(&cache->io_list);
2818 btrfs_wait_cache_io(trans, cache, path);
2819 btrfs_put_block_group(cache);
2820 spin_lock(&cur_trans->dirty_bgs_lock);
2821 }
2822
2823 /*
2824 * Don't remove from the dirty list until after we've waited on
2825 * any pending IO
2826 */
2827 list_del_init(&cache->dirty_list);
2828 spin_unlock(&cur_trans->dirty_bgs_lock);
2829 should_put = 1;
2830
2831 cache_save_setup(cache, trans, path);
2832
2833 if (!ret)
2834 ret = btrfs_run_delayed_refs(trans,
2835 (unsigned long) -1);
2836
2837 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2838 cache->io_ctl.inode = NULL;
2839 ret = btrfs_write_out_cache(trans, cache, path);
2840 if (ret == 0 && cache->io_ctl.inode) {
2841 num_started++;
2842 should_put = 0;
2843 list_add_tail(&cache->io_list, io);
2844 } else {
2845 /*
2846 * If we failed to write the cache, the
2847 * generation will be bad and life goes on
2848 */
2849 ret = 0;
2850 }
2851 }
2852 if (!ret) {
3be4d8ef 2853 ret = update_block_group_item(trans, path, cache);
77745c05
JB
2854 /*
2855 * One of the free space endio workers might have
2856 * created a new block group while updating a free space
2857 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2858 * and hasn't released its transaction handle yet, in
2859 * which case the new block group is still attached to
2860 * its transaction handle and its creation has not
2861 * finished yet (no block group item in the extent tree
2862 * yet, etc). If this is the case, wait for all free
2863 * space endio workers to finish and retry. This is a
260db43c 2864 * very rare case so no need for a more efficient and
77745c05
JB
2865 * complex approach.
2866 */
2867 if (ret == -ENOENT) {
2868 wait_event(cur_trans->writer_wait,
2869 atomic_read(&cur_trans->num_writers) == 1);
3be4d8ef 2870 ret = update_block_group_item(trans, path, cache);
77745c05
JB
2871 }
2872 if (ret)
2873 btrfs_abort_transaction(trans, ret);
2874 }
2875
2876 /* If its not on the io list, we need to put the block group */
2877 if (should_put)
2878 btrfs_put_block_group(cache);
2879 btrfs_delayed_refs_rsv_release(fs_info, 1);
2880 spin_lock(&cur_trans->dirty_bgs_lock);
2881 }
2882 spin_unlock(&cur_trans->dirty_bgs_lock);
2883
2884 /*
2885 * Refer to the definition of io_bgs member for details why it's safe
2886 * to use it without any locking
2887 */
2888 while (!list_empty(io)) {
32da5386 2889 cache = list_first_entry(io, struct btrfs_block_group,
77745c05
JB
2890 io_list);
2891 list_del_init(&cache->io_list);
2892 btrfs_wait_cache_io(trans, cache, path);
2893 btrfs_put_block_group(cache);
2894 }
2895
2896 btrfs_free_path(path);
2897 return ret;
2898}
606d1bf1
JB
2899
2900int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2901 u64 bytenr, u64 num_bytes, int alloc)
2902{
2903 struct btrfs_fs_info *info = trans->fs_info;
32da5386 2904 struct btrfs_block_group *cache = NULL;
606d1bf1
JB
2905 u64 total = num_bytes;
2906 u64 old_val;
2907 u64 byte_in_group;
2908 int factor;
2909 int ret = 0;
2910
2911 /* Block accounting for super block */
2912 spin_lock(&info->delalloc_root_lock);
2913 old_val = btrfs_super_bytes_used(info->super_copy);
2914 if (alloc)
2915 old_val += num_bytes;
2916 else
2917 old_val -= num_bytes;
2918 btrfs_set_super_bytes_used(info->super_copy, old_val);
2919 spin_unlock(&info->delalloc_root_lock);
2920
2921 while (total) {
2922 cache = btrfs_lookup_block_group(info, bytenr);
2923 if (!cache) {
2924 ret = -ENOENT;
2925 break;
2926 }
2927 factor = btrfs_bg_type_to_factor(cache->flags);
2928
2929 /*
2930 * If this block group has free space cache written out, we
2931 * need to make sure to load it if we are removing space. This
2932 * is because we need the unpinning stage to actually add the
2933 * space back to the block group, otherwise we will leak space.
2934 */
32da5386 2935 if (!alloc && !btrfs_block_group_done(cache))
606d1bf1
JB
2936 btrfs_cache_block_group(cache, 1);
2937
b3470b5d
DS
2938 byte_in_group = bytenr - cache->start;
2939 WARN_ON(byte_in_group > cache->length);
606d1bf1
JB
2940
2941 spin_lock(&cache->space_info->lock);
2942 spin_lock(&cache->lock);
2943
2944 if (btrfs_test_opt(info, SPACE_CACHE) &&
2945 cache->disk_cache_state < BTRFS_DC_CLEAR)
2946 cache->disk_cache_state = BTRFS_DC_CLEAR;
2947
bf38be65 2948 old_val = cache->used;
b3470b5d 2949 num_bytes = min(total, cache->length - byte_in_group);
606d1bf1
JB
2950 if (alloc) {
2951 old_val += num_bytes;
bf38be65 2952 cache->used = old_val;
606d1bf1
JB
2953 cache->reserved -= num_bytes;
2954 cache->space_info->bytes_reserved -= num_bytes;
2955 cache->space_info->bytes_used += num_bytes;
2956 cache->space_info->disk_used += num_bytes * factor;
2957 spin_unlock(&cache->lock);
2958 spin_unlock(&cache->space_info->lock);
2959 } else {
2960 old_val -= num_bytes;
bf38be65 2961 cache->used = old_val;
606d1bf1
JB
2962 cache->pinned += num_bytes;
2963 btrfs_space_info_update_bytes_pinned(info,
2964 cache->space_info, num_bytes);
2965 cache->space_info->bytes_used -= num_bytes;
2966 cache->space_info->disk_used -= num_bytes * factor;
2967 spin_unlock(&cache->lock);
2968 spin_unlock(&cache->space_info->lock);
2969
2187374f
JB
2970 __btrfs_mod_total_bytes_pinned(cache->space_info,
2971 num_bytes);
fe119a6e 2972 set_extent_dirty(&trans->transaction->pinned_extents,
606d1bf1
JB
2973 bytenr, bytenr + num_bytes - 1,
2974 GFP_NOFS | __GFP_NOFAIL);
2975 }
2976
2977 spin_lock(&trans->transaction->dirty_bgs_lock);
2978 if (list_empty(&cache->dirty_list)) {
2979 list_add_tail(&cache->dirty_list,
2980 &trans->transaction->dirty_bgs);
2981 trans->delayed_ref_updates++;
2982 btrfs_get_block_group(cache);
2983 }
2984 spin_unlock(&trans->transaction->dirty_bgs_lock);
2985
2986 /*
2987 * No longer have used bytes in this block group, queue it for
2988 * deletion. We do this after adding the block group to the
2989 * dirty list to avoid races between cleaner kthread and space
2990 * cache writeout.
2991 */
6e80d4f8
DZ
2992 if (!alloc && old_val == 0) {
2993 if (!btrfs_test_opt(info, DISCARD_ASYNC))
2994 btrfs_mark_bg_unused(cache);
2995 }
606d1bf1
JB
2996
2997 btrfs_put_block_group(cache);
2998 total -= num_bytes;
2999 bytenr += num_bytes;
3000 }
3001
3002 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3003 btrfs_update_delayed_refs_rsv(trans);
3004 return ret;
3005}
3006
3007/**
3008 * btrfs_add_reserved_bytes - update the block_group and space info counters
3009 * @cache: The cache we are manipulating
3010 * @ram_bytes: The number of bytes of file content, and will be same to
3011 * @num_bytes except for the compress path.
3012 * @num_bytes: The number of bytes in question
3013 * @delalloc: The blocks are allocated for the delalloc write
3014 *
3015 * This is called by the allocator when it reserves space. If this is a
3016 * reservation and the block group has become read only we cannot make the
3017 * reservation and return -EAGAIN, otherwise this function always succeeds.
3018 */
32da5386 3019int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3020 u64 ram_bytes, u64 num_bytes, int delalloc)
3021{
3022 struct btrfs_space_info *space_info = cache->space_info;
3023 int ret = 0;
3024
3025 spin_lock(&space_info->lock);
3026 spin_lock(&cache->lock);
3027 if (cache->ro) {
3028 ret = -EAGAIN;
3029 } else {
3030 cache->reserved += num_bytes;
3031 space_info->bytes_reserved += num_bytes;
a43c3835
JB
3032 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3033 space_info->flags, num_bytes, 1);
606d1bf1
JB
3034 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3035 space_info, -ram_bytes);
3036 if (delalloc)
3037 cache->delalloc_bytes += num_bytes;
99ffb43e
JB
3038
3039 /*
3040 * Compression can use less space than we reserved, so wake
3041 * tickets if that happens
3042 */
3043 if (num_bytes < ram_bytes)
3044 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3045 }
3046 spin_unlock(&cache->lock);
3047 spin_unlock(&space_info->lock);
3048 return ret;
3049}
3050
3051/**
3052 * btrfs_free_reserved_bytes - update the block_group and space info counters
3053 * @cache: The cache we are manipulating
3054 * @num_bytes: The number of bytes in question
3055 * @delalloc: The blocks are allocated for the delalloc write
3056 *
3057 * This is called by somebody who is freeing space that was never actually used
3058 * on disk. For example if you reserve some space for a new leaf in transaction
3059 * A and before transaction A commits you free that leaf, you call this with
3060 * reserve set to 0 in order to clear the reservation.
3061 */
32da5386 3062void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3063 u64 num_bytes, int delalloc)
3064{
3065 struct btrfs_space_info *space_info = cache->space_info;
3066
3067 spin_lock(&space_info->lock);
3068 spin_lock(&cache->lock);
3069 if (cache->ro)
3070 space_info->bytes_readonly += num_bytes;
3071 cache->reserved -= num_bytes;
3072 space_info->bytes_reserved -= num_bytes;
3073 space_info->max_extent_size = 0;
3074
3075 if (delalloc)
3076 cache->delalloc_bytes -= num_bytes;
3077 spin_unlock(&cache->lock);
3308234a
JB
3078
3079 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3080 spin_unlock(&space_info->lock);
3081}
07730d87
JB
3082
3083static void force_metadata_allocation(struct btrfs_fs_info *info)
3084{
3085 struct list_head *head = &info->space_info;
3086 struct btrfs_space_info *found;
3087
72804905 3088 list_for_each_entry(found, head, list) {
07730d87
JB
3089 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3090 found->force_alloc = CHUNK_ALLOC_FORCE;
3091 }
07730d87
JB
3092}
3093
3094static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3095 struct btrfs_space_info *sinfo, int force)
3096{
3097 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3098 u64 thresh;
3099
3100 if (force == CHUNK_ALLOC_FORCE)
3101 return 1;
3102
3103 /*
3104 * in limited mode, we want to have some free space up to
3105 * about 1% of the FS size.
3106 */
3107 if (force == CHUNK_ALLOC_LIMITED) {
3108 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3109 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3110
3111 if (sinfo->total_bytes - bytes_used < thresh)
3112 return 1;
3113 }
3114
3115 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3116 return 0;
3117 return 1;
3118}
3119
3120int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3121{
3122 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3123
3124 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3125}
3126
3127/*
3128 * If force is CHUNK_ALLOC_FORCE:
3129 * - return 1 if it successfully allocates a chunk,
3130 * - return errors including -ENOSPC otherwise.
3131 * If force is NOT CHUNK_ALLOC_FORCE:
3132 * - return 0 if it doesn't need to allocate a new chunk,
3133 * - return 1 if it successfully allocates a chunk,
3134 * - return errors including -ENOSPC otherwise.
3135 */
3136int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3137 enum btrfs_chunk_alloc_enum force)
3138{
3139 struct btrfs_fs_info *fs_info = trans->fs_info;
3140 struct btrfs_space_info *space_info;
3141 bool wait_for_alloc = false;
3142 bool should_alloc = false;
3143 int ret = 0;
3144
3145 /* Don't re-enter if we're already allocating a chunk */
3146 if (trans->allocating_chunk)
3147 return -ENOSPC;
3148
3149 space_info = btrfs_find_space_info(fs_info, flags);
3150 ASSERT(space_info);
3151
3152 do {
3153 spin_lock(&space_info->lock);
3154 if (force < space_info->force_alloc)
3155 force = space_info->force_alloc;
3156 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3157 if (space_info->full) {
3158 /* No more free physical space */
3159 if (should_alloc)
3160 ret = -ENOSPC;
3161 else
3162 ret = 0;
3163 spin_unlock(&space_info->lock);
3164 return ret;
3165 } else if (!should_alloc) {
3166 spin_unlock(&space_info->lock);
3167 return 0;
3168 } else if (space_info->chunk_alloc) {
3169 /*
3170 * Someone is already allocating, so we need to block
3171 * until this someone is finished and then loop to
3172 * recheck if we should continue with our allocation
3173 * attempt.
3174 */
3175 wait_for_alloc = true;
3176 spin_unlock(&space_info->lock);
3177 mutex_lock(&fs_info->chunk_mutex);
3178 mutex_unlock(&fs_info->chunk_mutex);
3179 } else {
3180 /* Proceed with allocation */
3181 space_info->chunk_alloc = 1;
3182 wait_for_alloc = false;
3183 spin_unlock(&space_info->lock);
3184 }
3185
3186 cond_resched();
3187 } while (wait_for_alloc);
3188
3189 mutex_lock(&fs_info->chunk_mutex);
3190 trans->allocating_chunk = true;
3191
3192 /*
3193 * If we have mixed data/metadata chunks we want to make sure we keep
3194 * allocating mixed chunks instead of individual chunks.
3195 */
3196 if (btrfs_mixed_space_info(space_info))
3197 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3198
3199 /*
3200 * if we're doing a data chunk, go ahead and make sure that
3201 * we keep a reasonable number of metadata chunks allocated in the
3202 * FS as well.
3203 */
3204 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3205 fs_info->data_chunk_allocations++;
3206 if (!(fs_info->data_chunk_allocations %
3207 fs_info->metadata_ratio))
3208 force_metadata_allocation(fs_info);
3209 }
3210
3211 /*
3212 * Check if we have enough space in SYSTEM chunk because we may need
3213 * to update devices.
3214 */
3215 check_system_chunk(trans, flags);
3216
3217 ret = btrfs_alloc_chunk(trans, flags);
3218 trans->allocating_chunk = false;
3219
3220 spin_lock(&space_info->lock);
3221 if (ret < 0) {
3222 if (ret == -ENOSPC)
3223 space_info->full = 1;
3224 else
3225 goto out;
3226 } else {
3227 ret = 1;
3228 space_info->max_extent_size = 0;
3229 }
3230
3231 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3232out:
3233 space_info->chunk_alloc = 0;
3234 spin_unlock(&space_info->lock);
3235 mutex_unlock(&fs_info->chunk_mutex);
3236 /*
3237 * When we allocate a new chunk we reserve space in the chunk block
3238 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3239 * add new nodes/leafs to it if we end up needing to do it when
3240 * inserting the chunk item and updating device items as part of the
3241 * second phase of chunk allocation, performed by
3242 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3243 * large number of new block groups to create in our transaction
3244 * handle's new_bgs list to avoid exhausting the chunk block reserve
3245 * in extreme cases - like having a single transaction create many new
3246 * block groups when starting to write out the free space caches of all
3247 * the block groups that were made dirty during the lifetime of the
3248 * transaction.
3249 */
3250 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3251 btrfs_create_pending_block_groups(trans);
3252
3253 return ret;
3254}
3255
3256static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3257{
3258 u64 num_dev;
3259
3260 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3261 if (!num_dev)
3262 num_dev = fs_info->fs_devices->rw_devices;
3263
3264 return num_dev;
3265}
3266
3267/*
a9143bd3 3268 * Reserve space in the system space for allocating or removing a chunk
07730d87
JB
3269 */
3270void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3271{
3272 struct btrfs_fs_info *fs_info = trans->fs_info;
3273 struct btrfs_space_info *info;
3274 u64 left;
3275 u64 thresh;
3276 int ret = 0;
3277 u64 num_devs;
3278
3279 /*
3280 * Needed because we can end up allocating a system chunk and for an
3281 * atomic and race free space reservation in the chunk block reserve.
3282 */
3283 lockdep_assert_held(&fs_info->chunk_mutex);
3284
3285 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3286 spin_lock(&info->lock);
3287 left = info->total_bytes - btrfs_space_info_used(info, true);
3288 spin_unlock(&info->lock);
3289
3290 num_devs = get_profile_num_devs(fs_info, type);
3291
3292 /* num_devs device items to update and 1 chunk item to add or remove */
2bd36e7b
JB
3293 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3294 btrfs_calc_insert_metadata_size(fs_info, 1);
07730d87
JB
3295
3296 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3297 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3298 left, thresh, type);
3299 btrfs_dump_space_info(fs_info, info, 0, 0);
3300 }
3301
3302 if (left < thresh) {
3303 u64 flags = btrfs_system_alloc_profile(fs_info);
3304
3305 /*
3306 * Ignore failure to create system chunk. We might end up not
3307 * needing it, as we might not need to COW all nodes/leafs from
3308 * the paths we visit in the chunk tree (they were already COWed
3309 * or created in the current transaction for example).
3310 */
3311 ret = btrfs_alloc_chunk(trans, flags);
3312 }
3313
3314 if (!ret) {
3315 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3316 &fs_info->chunk_block_rsv,
3317 thresh, BTRFS_RESERVE_NO_FLUSH);
3318 if (!ret)
3319 trans->chunk_bytes_reserved += thresh;
3320 }
3321}
3322
3e43c279
JB
3323void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3324{
32da5386 3325 struct btrfs_block_group *block_group;
3e43c279
JB
3326 u64 last = 0;
3327
3328 while (1) {
3329 struct inode *inode;
3330
3331 block_group = btrfs_lookup_first_block_group(info, last);
3332 while (block_group) {
3333 btrfs_wait_block_group_cache_done(block_group);
3334 spin_lock(&block_group->lock);
3335 if (block_group->iref)
3336 break;
3337 spin_unlock(&block_group->lock);
3338 block_group = btrfs_next_block_group(block_group);
3339 }
3340 if (!block_group) {
3341 if (last == 0)
3342 break;
3343 last = 0;
3344 continue;
3345 }
3346
3347 inode = block_group->inode;
3348 block_group->iref = 0;
3349 block_group->inode = NULL;
3350 spin_unlock(&block_group->lock);
3351 ASSERT(block_group->io_ctl.inode == NULL);
3352 iput(inode);
b3470b5d 3353 last = block_group->start + block_group->length;
3e43c279
JB
3354 btrfs_put_block_group(block_group);
3355 }
3356}
3357
3358/*
3359 * Must be called only after stopping all workers, since we could have block
3360 * group caching kthreads running, and therefore they could race with us if we
3361 * freed the block groups before stopping them.
3362 */
3363int btrfs_free_block_groups(struct btrfs_fs_info *info)
3364{
32da5386 3365 struct btrfs_block_group *block_group;
3e43c279
JB
3366 struct btrfs_space_info *space_info;
3367 struct btrfs_caching_control *caching_ctl;
3368 struct rb_node *n;
3369
bbb86a37 3370 spin_lock(&info->block_group_cache_lock);
3e43c279
JB
3371 while (!list_empty(&info->caching_block_groups)) {
3372 caching_ctl = list_entry(info->caching_block_groups.next,
3373 struct btrfs_caching_control, list);
3374 list_del(&caching_ctl->list);
3375 btrfs_put_caching_control(caching_ctl);
3376 }
bbb86a37 3377 spin_unlock(&info->block_group_cache_lock);
3e43c279
JB
3378
3379 spin_lock(&info->unused_bgs_lock);
3380 while (!list_empty(&info->unused_bgs)) {
3381 block_group = list_first_entry(&info->unused_bgs,
32da5386 3382 struct btrfs_block_group,
3e43c279
JB
3383 bg_list);
3384 list_del_init(&block_group->bg_list);
3385 btrfs_put_block_group(block_group);
3386 }
3387 spin_unlock(&info->unused_bgs_lock);
3388
3389 spin_lock(&info->block_group_cache_lock);
3390 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
32da5386 3391 block_group = rb_entry(n, struct btrfs_block_group,
3e43c279
JB
3392 cache_node);
3393 rb_erase(&block_group->cache_node,
3394 &info->block_group_cache_tree);
3395 RB_CLEAR_NODE(&block_group->cache_node);
3396 spin_unlock(&info->block_group_cache_lock);
3397
3398 down_write(&block_group->space_info->groups_sem);
3399 list_del(&block_group->list);
3400 up_write(&block_group->space_info->groups_sem);
3401
3402 /*
3403 * We haven't cached this block group, which means we could
3404 * possibly have excluded extents on this block group.
3405 */
3406 if (block_group->cached == BTRFS_CACHE_NO ||
3407 block_group->cached == BTRFS_CACHE_ERROR)
3408 btrfs_free_excluded_extents(block_group);
3409
3410 btrfs_remove_free_space_cache(block_group);
3411 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3412 ASSERT(list_empty(&block_group->dirty_list));
3413 ASSERT(list_empty(&block_group->io_list));
3414 ASSERT(list_empty(&block_group->bg_list));
48aaeebe 3415 ASSERT(refcount_read(&block_group->refs) == 1);
195a49ea 3416 ASSERT(block_group->swap_extents == 0);
3e43c279
JB
3417 btrfs_put_block_group(block_group);
3418
3419 spin_lock(&info->block_group_cache_lock);
3420 }
3421 spin_unlock(&info->block_group_cache_lock);
3422
3e43c279
JB
3423 btrfs_release_global_block_rsv(info);
3424
3425 while (!list_empty(&info->space_info)) {
3426 space_info = list_entry(info->space_info.next,
3427 struct btrfs_space_info,
3428 list);
3429
3430 /*
3431 * Do not hide this behind enospc_debug, this is actually
3432 * important and indicates a real bug if this happens.
3433 */
3434 if (WARN_ON(space_info->bytes_pinned > 0 ||
3435 space_info->bytes_reserved > 0 ||
3436 space_info->bytes_may_use > 0))
3437 btrfs_dump_space_info(info, space_info, 0, 0);
d611add4 3438 WARN_ON(space_info->reclaim_size > 0);
3e43c279
JB
3439 list_del(&space_info->list);
3440 btrfs_sysfs_remove_space_info(space_info);
3441 }
3442 return 0;
3443}
684b752b
FM
3444
3445void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3446{
3447 atomic_inc(&cache->frozen);
3448}
3449
3450void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3451{
3452 struct btrfs_fs_info *fs_info = block_group->fs_info;
3453 struct extent_map_tree *em_tree;
3454 struct extent_map *em;
3455 bool cleanup;
3456
3457 spin_lock(&block_group->lock);
3458 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3459 block_group->removed);
3460 spin_unlock(&block_group->lock);
3461
3462 if (cleanup) {
684b752b
FM
3463 em_tree = &fs_info->mapping_tree;
3464 write_lock(&em_tree->lock);
3465 em = lookup_extent_mapping(em_tree, block_group->start,
3466 1);
3467 BUG_ON(!em); /* logic error, can't happen */
3468 remove_extent_mapping(em_tree, em);
3469 write_unlock(&em_tree->lock);
684b752b
FM
3470
3471 /* once for us and once for the tree */
3472 free_extent_map(em);
3473 free_extent_map(em);
3474
3475 /*
3476 * We may have left one free space entry and other possible
3477 * tasks trimming this block group have left 1 entry each one.
3478 * Free them if any.
3479 */
3480 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3481 }
3482}
195a49ea
FM
3483
3484bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3485{
3486 bool ret = true;
3487
3488 spin_lock(&bg->lock);
3489 if (bg->ro)
3490 ret = false;
3491 else
3492 bg->swap_extents++;
3493 spin_unlock(&bg->lock);
3494
3495 return ret;
3496}
3497
3498void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3499{
3500 spin_lock(&bg->lock);
3501 ASSERT(!bg->ro);
3502 ASSERT(bg->swap_extents >= amount);
3503 bg->swap_extents -= amount;
3504 spin_unlock(&bg->lock);
3505}