]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/block-group.c
fs: allow cross-vfsmount reflink/dedupe
[people/ms/linux.git] / fs / btrfs / block-group.c
CommitLineData
2e405ad8
JB
1// SPDX-License-Identifier: GPL-2.0
2
2ca0ec77 3#include <linux/list_sort.h>
784352fe 4#include "misc.h"
2e405ad8
JB
5#include "ctree.h"
6#include "block-group.h"
3eeb3226 7#include "space-info.h"
9f21246d
JB
8#include "disk-io.h"
9#include "free-space-cache.h"
10#include "free-space-tree.h"
e3e0520b
JB
11#include "volumes.h"
12#include "transaction.h"
13#include "ref-verify.h"
4358d963
JB
14#include "sysfs.h"
15#include "tree-log.h"
77745c05 16#include "delalloc-space.h"
b0643e59 17#include "discard.h"
96a14336 18#include "raid56.h"
08e11a3d 19#include "zoned.h"
2e405ad8 20
878d7b67
JB
21/*
22 * Return target flags in extended format or 0 if restripe for this chunk_type
23 * is not in progress
24 *
25 * Should be called with balance_lock held
26 */
e11c0406 27static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
878d7b67
JB
28{
29 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 u64 target = 0;
31
32 if (!bctl)
33 return 0;
34
35 if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 }
45
46 return target;
47}
48
49/*
50 * @flags: available profiles in extended format (see ctree.h)
51 *
52 * Return reduced profile in chunk format. If profile changing is in progress
53 * (either running or paused) picks the target profile (if it's already
54 * available), otherwise falls back to plain reducing.
55 */
56static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57{
58 u64 num_devices = fs_info->fs_devices->rw_devices;
59 u64 target;
60 u64 raid_type;
61 u64 allowed = 0;
62
63 /*
64 * See if restripe for this chunk_type is in progress, if so try to
65 * reduce to the target profile
66 */
67 spin_lock(&fs_info->balance_lock);
e11c0406 68 target = get_restripe_target(fs_info, flags);
878d7b67 69 if (target) {
162e0a16
JB
70 spin_unlock(&fs_info->balance_lock);
71 return extended_to_chunk(target);
878d7b67
JB
72 }
73 spin_unlock(&fs_info->balance_lock);
74
75 /* First, mask out the RAID levels which aren't possible */
76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 allowed |= btrfs_raid_array[raid_type].bg_flag;
79 }
80 allowed &= flags;
81
82 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 allowed = BTRFS_BLOCK_GROUP_RAID6;
84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 allowed = BTRFS_BLOCK_GROUP_RAID5;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 allowed = BTRFS_BLOCK_GROUP_RAID10;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 allowed = BTRFS_BLOCK_GROUP_RAID1;
90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 allowed = BTRFS_BLOCK_GROUP_RAID0;
92
93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94
95 return extended_to_chunk(flags | allowed);
96}
97
ef0a82da 98u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
878d7b67
JB
99{
100 unsigned seq;
101 u64 flags;
102
103 do {
104 flags = orig_flags;
105 seq = read_seqbegin(&fs_info->profiles_lock);
106
107 if (flags & BTRFS_BLOCK_GROUP_DATA)
108 flags |= fs_info->avail_data_alloc_bits;
109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 flags |= fs_info->avail_system_alloc_bits;
111 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 flags |= fs_info->avail_metadata_alloc_bits;
113 } while (read_seqretry(&fs_info->profiles_lock, seq));
114
115 return btrfs_reduce_alloc_profile(fs_info, flags);
116}
117
32da5386 118void btrfs_get_block_group(struct btrfs_block_group *cache)
3cad1284 119{
48aaeebe 120 refcount_inc(&cache->refs);
3cad1284
JB
121}
122
32da5386 123void btrfs_put_block_group(struct btrfs_block_group *cache)
3cad1284 124{
48aaeebe 125 if (refcount_dec_and_test(&cache->refs)) {
3cad1284 126 WARN_ON(cache->pinned > 0);
40cdc509
FM
127 /*
128 * If there was a failure to cleanup a log tree, very likely due
129 * to an IO failure on a writeback attempt of one or more of its
130 * extent buffers, we could not do proper (and cheap) unaccounting
131 * of their reserved space, so don't warn on reserved > 0 in that
132 * case.
133 */
134 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
135 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
136 WARN_ON(cache->reserved > 0);
3cad1284 137
b0643e59
DZ
138 /*
139 * A block_group shouldn't be on the discard_list anymore.
140 * Remove the block_group from the discard_list to prevent us
141 * from causing a panic due to NULL pointer dereference.
142 */
143 if (WARN_ON(!list_empty(&cache->discard_list)))
144 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
145 cache);
146
3cad1284
JB
147 /*
148 * If not empty, someone is still holding mutex of
149 * full_stripe_lock, which can only be released by caller.
150 * And it will definitely cause use-after-free when caller
151 * tries to release full stripe lock.
152 *
153 * No better way to resolve, but only to warn.
154 */
155 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
156 kfree(cache->free_space_ctl);
dafc340d 157 kfree(cache->physical_map);
3cad1284
JB
158 kfree(cache);
159 }
160}
161
4358d963
JB
162/*
163 * This adds the block group to the fs_info rb tree for the block group cache
164 */
165static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
32da5386 166 struct btrfs_block_group *block_group)
4358d963
JB
167{
168 struct rb_node **p;
169 struct rb_node *parent = NULL;
32da5386 170 struct btrfs_block_group *cache;
4358d963 171
9afc6649
QW
172 ASSERT(block_group->length != 0);
173
4358d963
JB
174 spin_lock(&info->block_group_cache_lock);
175 p = &info->block_group_cache_tree.rb_node;
176
177 while (*p) {
178 parent = *p;
32da5386 179 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
b3470b5d 180 if (block_group->start < cache->start) {
4358d963 181 p = &(*p)->rb_left;
b3470b5d 182 } else if (block_group->start > cache->start) {
4358d963
JB
183 p = &(*p)->rb_right;
184 } else {
185 spin_unlock(&info->block_group_cache_lock);
186 return -EEXIST;
187 }
188 }
189
190 rb_link_node(&block_group->cache_node, parent, p);
191 rb_insert_color(&block_group->cache_node,
192 &info->block_group_cache_tree);
193
b3470b5d
DS
194 if (info->first_logical_byte > block_group->start)
195 info->first_logical_byte = block_group->start;
4358d963
JB
196
197 spin_unlock(&info->block_group_cache_lock);
198
199 return 0;
200}
201
2e405ad8
JB
202/*
203 * This will return the block group at or after bytenr if contains is 0, else
204 * it will return the block group that contains the bytenr
205 */
32da5386 206static struct btrfs_block_group *block_group_cache_tree_search(
2e405ad8
JB
207 struct btrfs_fs_info *info, u64 bytenr, int contains)
208{
32da5386 209 struct btrfs_block_group *cache, *ret = NULL;
2e405ad8
JB
210 struct rb_node *n;
211 u64 end, start;
212
213 spin_lock(&info->block_group_cache_lock);
214 n = info->block_group_cache_tree.rb_node;
215
216 while (n) {
32da5386 217 cache = rb_entry(n, struct btrfs_block_group, cache_node);
b3470b5d
DS
218 end = cache->start + cache->length - 1;
219 start = cache->start;
2e405ad8
JB
220
221 if (bytenr < start) {
b3470b5d 222 if (!contains && (!ret || start < ret->start))
2e405ad8
JB
223 ret = cache;
224 n = n->rb_left;
225 } else if (bytenr > start) {
226 if (contains && bytenr <= end) {
227 ret = cache;
228 break;
229 }
230 n = n->rb_right;
231 } else {
232 ret = cache;
233 break;
234 }
235 }
236 if (ret) {
237 btrfs_get_block_group(ret);
b3470b5d
DS
238 if (bytenr == 0 && info->first_logical_byte > ret->start)
239 info->first_logical_byte = ret->start;
2e405ad8
JB
240 }
241 spin_unlock(&info->block_group_cache_lock);
242
243 return ret;
244}
245
246/*
247 * Return the block group that starts at or after bytenr
248 */
32da5386 249struct btrfs_block_group *btrfs_lookup_first_block_group(
2e405ad8
JB
250 struct btrfs_fs_info *info, u64 bytenr)
251{
252 return block_group_cache_tree_search(info, bytenr, 0);
253}
254
255/*
256 * Return the block group that contains the given bytenr
257 */
32da5386 258struct btrfs_block_group *btrfs_lookup_block_group(
2e405ad8
JB
259 struct btrfs_fs_info *info, u64 bytenr)
260{
261 return block_group_cache_tree_search(info, bytenr, 1);
262}
263
32da5386
DS
264struct btrfs_block_group *btrfs_next_block_group(
265 struct btrfs_block_group *cache)
2e405ad8
JB
266{
267 struct btrfs_fs_info *fs_info = cache->fs_info;
268 struct rb_node *node;
269
270 spin_lock(&fs_info->block_group_cache_lock);
271
272 /* If our block group was removed, we need a full search. */
273 if (RB_EMPTY_NODE(&cache->cache_node)) {
b3470b5d 274 const u64 next_bytenr = cache->start + cache->length;
2e405ad8
JB
275
276 spin_unlock(&fs_info->block_group_cache_lock);
277 btrfs_put_block_group(cache);
278 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
279 }
280 node = rb_next(&cache->cache_node);
281 btrfs_put_block_group(cache);
282 if (node) {
32da5386 283 cache = rb_entry(node, struct btrfs_block_group, cache_node);
2e405ad8
JB
284 btrfs_get_block_group(cache);
285 } else
286 cache = NULL;
287 spin_unlock(&fs_info->block_group_cache_lock);
288 return cache;
289}
3eeb3226
JB
290
291bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
292{
32da5386 293 struct btrfs_block_group *bg;
3eeb3226
JB
294 bool ret = true;
295
296 bg = btrfs_lookup_block_group(fs_info, bytenr);
297 if (!bg)
298 return false;
299
300 spin_lock(&bg->lock);
301 if (bg->ro)
302 ret = false;
303 else
304 atomic_inc(&bg->nocow_writers);
305 spin_unlock(&bg->lock);
306
307 /* No put on block group, done by btrfs_dec_nocow_writers */
308 if (!ret)
309 btrfs_put_block_group(bg);
310
311 return ret;
312}
313
314void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
315{
32da5386 316 struct btrfs_block_group *bg;
3eeb3226
JB
317
318 bg = btrfs_lookup_block_group(fs_info, bytenr);
319 ASSERT(bg);
320 if (atomic_dec_and_test(&bg->nocow_writers))
321 wake_up_var(&bg->nocow_writers);
322 /*
323 * Once for our lookup and once for the lookup done by a previous call
324 * to btrfs_inc_nocow_writers()
325 */
326 btrfs_put_block_group(bg);
327 btrfs_put_block_group(bg);
328}
329
32da5386 330void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
3eeb3226
JB
331{
332 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
333}
334
335void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
336 const u64 start)
337{
32da5386 338 struct btrfs_block_group *bg;
3eeb3226
JB
339
340 bg = btrfs_lookup_block_group(fs_info, start);
341 ASSERT(bg);
342 if (atomic_dec_and_test(&bg->reservations))
343 wake_up_var(&bg->reservations);
344 btrfs_put_block_group(bg);
345}
346
32da5386 347void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
3eeb3226
JB
348{
349 struct btrfs_space_info *space_info = bg->space_info;
350
351 ASSERT(bg->ro);
352
353 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
354 return;
355
356 /*
357 * Our block group is read only but before we set it to read only,
358 * some task might have had allocated an extent from it already, but it
359 * has not yet created a respective ordered extent (and added it to a
360 * root's list of ordered extents).
361 * Therefore wait for any task currently allocating extents, since the
362 * block group's reservations counter is incremented while a read lock
363 * on the groups' semaphore is held and decremented after releasing
364 * the read access on that semaphore and creating the ordered extent.
365 */
366 down_write(&space_info->groups_sem);
367 up_write(&space_info->groups_sem);
368
369 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
370}
9f21246d
JB
371
372struct btrfs_caching_control *btrfs_get_caching_control(
32da5386 373 struct btrfs_block_group *cache)
9f21246d
JB
374{
375 struct btrfs_caching_control *ctl;
376
377 spin_lock(&cache->lock);
378 if (!cache->caching_ctl) {
379 spin_unlock(&cache->lock);
380 return NULL;
381 }
382
383 ctl = cache->caching_ctl;
384 refcount_inc(&ctl->count);
385 spin_unlock(&cache->lock);
386 return ctl;
387}
388
389void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
390{
391 if (refcount_dec_and_test(&ctl->count))
392 kfree(ctl);
393}
394
395/*
396 * When we wait for progress in the block group caching, its because our
397 * allocation attempt failed at least once. So, we must sleep and let some
398 * progress happen before we try again.
399 *
400 * This function will sleep at least once waiting for new free space to show
401 * up, and then it will check the block group free space numbers for our min
402 * num_bytes. Another option is to have it go ahead and look in the rbtree for
403 * a free extent of a given size, but this is a good start.
404 *
405 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
406 * any of the information in this block group.
407 */
32da5386 408void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
9f21246d
JB
409 u64 num_bytes)
410{
411 struct btrfs_caching_control *caching_ctl;
412
413 caching_ctl = btrfs_get_caching_control(cache);
414 if (!caching_ctl)
415 return;
416
32da5386 417 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
9f21246d
JB
418 (cache->free_space_ctl->free_space >= num_bytes));
419
420 btrfs_put_caching_control(caching_ctl);
421}
422
32da5386 423int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
9f21246d
JB
424{
425 struct btrfs_caching_control *caching_ctl;
426 int ret = 0;
427
428 caching_ctl = btrfs_get_caching_control(cache);
429 if (!caching_ctl)
430 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
431
32da5386 432 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
9f21246d
JB
433 if (cache->cached == BTRFS_CACHE_ERROR)
434 ret = -EIO;
435 btrfs_put_caching_control(caching_ctl);
436 return ret;
437}
438
e747853c
JB
439static bool space_cache_v1_done(struct btrfs_block_group *cache)
440{
441 bool ret;
442
443 spin_lock(&cache->lock);
444 ret = cache->cached != BTRFS_CACHE_FAST;
445 spin_unlock(&cache->lock);
446
447 return ret;
448}
449
450void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
451 struct btrfs_caching_control *caching_ctl)
452{
453 wait_event(caching_ctl->wait, space_cache_v1_done(cache));
454}
455
9f21246d 456#ifdef CONFIG_BTRFS_DEBUG
32da5386 457static void fragment_free_space(struct btrfs_block_group *block_group)
9f21246d
JB
458{
459 struct btrfs_fs_info *fs_info = block_group->fs_info;
b3470b5d
DS
460 u64 start = block_group->start;
461 u64 len = block_group->length;
9f21246d
JB
462 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
463 fs_info->nodesize : fs_info->sectorsize;
464 u64 step = chunk << 1;
465
466 while (len > chunk) {
467 btrfs_remove_free_space(block_group, start, chunk);
468 start += step;
469 if (len < step)
470 len = 0;
471 else
472 len -= step;
473 }
474}
475#endif
476
477/*
478 * This is only called by btrfs_cache_block_group, since we could have freed
479 * extents we need to check the pinned_extents for any extents that can't be
480 * used yet since their free space will be released as soon as the transaction
481 * commits.
482 */
32da5386 483u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
9f21246d
JB
484{
485 struct btrfs_fs_info *info = block_group->fs_info;
486 u64 extent_start, extent_end, size, total_added = 0;
487 int ret;
488
489 while (start < end) {
fe119a6e 490 ret = find_first_extent_bit(&info->excluded_extents, start,
9f21246d
JB
491 &extent_start, &extent_end,
492 EXTENT_DIRTY | EXTENT_UPTODATE,
493 NULL);
494 if (ret)
495 break;
496
497 if (extent_start <= start) {
498 start = extent_end + 1;
499 } else if (extent_start > start && extent_start < end) {
500 size = extent_start - start;
501 total_added += size;
b0643e59
DZ
502 ret = btrfs_add_free_space_async_trimmed(block_group,
503 start, size);
9f21246d
JB
504 BUG_ON(ret); /* -ENOMEM or logic error */
505 start = extent_end + 1;
506 } else {
507 break;
508 }
509 }
510
511 if (start < end) {
512 size = end - start;
513 total_added += size;
b0643e59
DZ
514 ret = btrfs_add_free_space_async_trimmed(block_group, start,
515 size);
9f21246d
JB
516 BUG_ON(ret); /* -ENOMEM or logic error */
517 }
518
519 return total_added;
520}
521
522static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
523{
32da5386 524 struct btrfs_block_group *block_group = caching_ctl->block_group;
9f21246d 525 struct btrfs_fs_info *fs_info = block_group->fs_info;
29cbcf40 526 struct btrfs_root *extent_root;
9f21246d
JB
527 struct btrfs_path *path;
528 struct extent_buffer *leaf;
529 struct btrfs_key key;
530 u64 total_found = 0;
531 u64 last = 0;
532 u32 nritems;
533 int ret;
534 bool wakeup = true;
535
536 path = btrfs_alloc_path();
537 if (!path)
538 return -ENOMEM;
539
b3470b5d 540 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
29cbcf40 541 extent_root = btrfs_extent_root(fs_info, last);
9f21246d
JB
542
543#ifdef CONFIG_BTRFS_DEBUG
544 /*
545 * If we're fragmenting we don't want to make anybody think we can
546 * allocate from this block group until we've had a chance to fragment
547 * the free space.
548 */
549 if (btrfs_should_fragment_free_space(block_group))
550 wakeup = false;
551#endif
552 /*
553 * We don't want to deadlock with somebody trying to allocate a new
554 * extent for the extent root while also trying to search the extent
555 * root to add free space. So we skip locking and search the commit
556 * root, since its read-only
557 */
558 path->skip_locking = 1;
559 path->search_commit_root = 1;
560 path->reada = READA_FORWARD;
561
562 key.objectid = last;
563 key.offset = 0;
564 key.type = BTRFS_EXTENT_ITEM_KEY;
565
566next:
567 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
568 if (ret < 0)
569 goto out;
570
571 leaf = path->nodes[0];
572 nritems = btrfs_header_nritems(leaf);
573
574 while (1) {
575 if (btrfs_fs_closing(fs_info) > 1) {
576 last = (u64)-1;
577 break;
578 }
579
580 if (path->slots[0] < nritems) {
581 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
582 } else {
583 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
584 if (ret)
585 break;
586
587 if (need_resched() ||
588 rwsem_is_contended(&fs_info->commit_root_sem)) {
589 if (wakeup)
590 caching_ctl->progress = last;
591 btrfs_release_path(path);
592 up_read(&fs_info->commit_root_sem);
593 mutex_unlock(&caching_ctl->mutex);
594 cond_resched();
595 mutex_lock(&caching_ctl->mutex);
596 down_read(&fs_info->commit_root_sem);
597 goto next;
598 }
599
600 ret = btrfs_next_leaf(extent_root, path);
601 if (ret < 0)
602 goto out;
603 if (ret)
604 break;
605 leaf = path->nodes[0];
606 nritems = btrfs_header_nritems(leaf);
607 continue;
608 }
609
610 if (key.objectid < last) {
611 key.objectid = last;
612 key.offset = 0;
613 key.type = BTRFS_EXTENT_ITEM_KEY;
614
615 if (wakeup)
616 caching_ctl->progress = last;
617 btrfs_release_path(path);
618 goto next;
619 }
620
b3470b5d 621 if (key.objectid < block_group->start) {
9f21246d
JB
622 path->slots[0]++;
623 continue;
624 }
625
b3470b5d 626 if (key.objectid >= block_group->start + block_group->length)
9f21246d
JB
627 break;
628
629 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
630 key.type == BTRFS_METADATA_ITEM_KEY) {
631 total_found += add_new_free_space(block_group, last,
632 key.objectid);
633 if (key.type == BTRFS_METADATA_ITEM_KEY)
634 last = key.objectid +
635 fs_info->nodesize;
636 else
637 last = key.objectid + key.offset;
638
639 if (total_found > CACHING_CTL_WAKE_UP) {
640 total_found = 0;
641 if (wakeup)
642 wake_up(&caching_ctl->wait);
643 }
644 }
645 path->slots[0]++;
646 }
647 ret = 0;
648
649 total_found += add_new_free_space(block_group, last,
b3470b5d 650 block_group->start + block_group->length);
9f21246d
JB
651 caching_ctl->progress = (u64)-1;
652
653out:
654 btrfs_free_path(path);
655 return ret;
656}
657
658static noinline void caching_thread(struct btrfs_work *work)
659{
32da5386 660 struct btrfs_block_group *block_group;
9f21246d
JB
661 struct btrfs_fs_info *fs_info;
662 struct btrfs_caching_control *caching_ctl;
663 int ret;
664
665 caching_ctl = container_of(work, struct btrfs_caching_control, work);
666 block_group = caching_ctl->block_group;
667 fs_info = block_group->fs_info;
668
669 mutex_lock(&caching_ctl->mutex);
670 down_read(&fs_info->commit_root_sem);
671
e747853c
JB
672 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
673 ret = load_free_space_cache(block_group);
674 if (ret == 1) {
675 ret = 0;
676 goto done;
677 }
678
679 /*
680 * We failed to load the space cache, set ourselves to
681 * CACHE_STARTED and carry on.
682 */
683 spin_lock(&block_group->lock);
684 block_group->cached = BTRFS_CACHE_STARTED;
685 spin_unlock(&block_group->lock);
686 wake_up(&caching_ctl->wait);
687 }
688
2f96e402
JB
689 /*
690 * If we are in the transaction that populated the free space tree we
691 * can't actually cache from the free space tree as our commit root and
692 * real root are the same, so we could change the contents of the blocks
693 * while caching. Instead do the slow caching in this case, and after
694 * the transaction has committed we will be safe.
695 */
696 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
697 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
9f21246d
JB
698 ret = load_free_space_tree(caching_ctl);
699 else
700 ret = load_extent_tree_free(caching_ctl);
e747853c 701done:
9f21246d
JB
702 spin_lock(&block_group->lock);
703 block_group->caching_ctl = NULL;
704 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
705 spin_unlock(&block_group->lock);
706
707#ifdef CONFIG_BTRFS_DEBUG
708 if (btrfs_should_fragment_free_space(block_group)) {
709 u64 bytes_used;
710
711 spin_lock(&block_group->space_info->lock);
712 spin_lock(&block_group->lock);
b3470b5d 713 bytes_used = block_group->length - block_group->used;
9f21246d
JB
714 block_group->space_info->bytes_used += bytes_used >> 1;
715 spin_unlock(&block_group->lock);
716 spin_unlock(&block_group->space_info->lock);
e11c0406 717 fragment_free_space(block_group);
9f21246d
JB
718 }
719#endif
720
721 caching_ctl->progress = (u64)-1;
722
723 up_read(&fs_info->commit_root_sem);
724 btrfs_free_excluded_extents(block_group);
725 mutex_unlock(&caching_ctl->mutex);
726
727 wake_up(&caching_ctl->wait);
728
729 btrfs_put_caching_control(caching_ctl);
730 btrfs_put_block_group(block_group);
731}
732
32da5386 733int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
9f21246d
JB
734{
735 DEFINE_WAIT(wait);
736 struct btrfs_fs_info *fs_info = cache->fs_info;
e747853c 737 struct btrfs_caching_control *caching_ctl = NULL;
9f21246d
JB
738 int ret = 0;
739
2eda5708
NA
740 /* Allocator for zoned filesystems does not use the cache at all */
741 if (btrfs_is_zoned(fs_info))
742 return 0;
743
9f21246d
JB
744 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
745 if (!caching_ctl)
746 return -ENOMEM;
747
748 INIT_LIST_HEAD(&caching_ctl->list);
749 mutex_init(&caching_ctl->mutex);
750 init_waitqueue_head(&caching_ctl->wait);
751 caching_ctl->block_group = cache;
b3470b5d 752 caching_ctl->progress = cache->start;
e747853c 753 refcount_set(&caching_ctl->count, 2);
a0cac0ec 754 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
9f21246d
JB
755
756 spin_lock(&cache->lock);
9f21246d 757 if (cache->cached != BTRFS_CACHE_NO) {
9f21246d 758 kfree(caching_ctl);
e747853c
JB
759
760 caching_ctl = cache->caching_ctl;
761 if (caching_ctl)
762 refcount_inc(&caching_ctl->count);
763 spin_unlock(&cache->lock);
764 goto out;
9f21246d
JB
765 }
766 WARN_ON(cache->caching_ctl);
767 cache->caching_ctl = caching_ctl;
e747853c
JB
768 if (btrfs_test_opt(fs_info, SPACE_CACHE))
769 cache->cached = BTRFS_CACHE_FAST;
770 else
771 cache->cached = BTRFS_CACHE_STARTED;
772 cache->has_caching_ctl = 1;
9f21246d
JB
773 spin_unlock(&cache->lock);
774
bbb86a37 775 spin_lock(&fs_info->block_group_cache_lock);
9f21246d
JB
776 refcount_inc(&caching_ctl->count);
777 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
bbb86a37 778 spin_unlock(&fs_info->block_group_cache_lock);
9f21246d
JB
779
780 btrfs_get_block_group(cache);
781
782 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
e747853c
JB
783out:
784 if (load_cache_only && caching_ctl)
785 btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
786 if (caching_ctl)
787 btrfs_put_caching_control(caching_ctl);
9f21246d
JB
788
789 return ret;
790}
e3e0520b
JB
791
792static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
793{
794 u64 extra_flags = chunk_to_extended(flags) &
795 BTRFS_EXTENDED_PROFILE_MASK;
796
797 write_seqlock(&fs_info->profiles_lock);
798 if (flags & BTRFS_BLOCK_GROUP_DATA)
799 fs_info->avail_data_alloc_bits &= ~extra_flags;
800 if (flags & BTRFS_BLOCK_GROUP_METADATA)
801 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
802 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
803 fs_info->avail_system_alloc_bits &= ~extra_flags;
804 write_sequnlock(&fs_info->profiles_lock);
805}
806
807/*
808 * Clear incompat bits for the following feature(s):
809 *
810 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
811 * in the whole filesystem
9c907446
DS
812 *
813 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
e3e0520b
JB
814 */
815static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
816{
9c907446
DS
817 bool found_raid56 = false;
818 bool found_raid1c34 = false;
819
820 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
821 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
822 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
e3e0520b
JB
823 struct list_head *head = &fs_info->space_info;
824 struct btrfs_space_info *sinfo;
825
826 list_for_each_entry_rcu(sinfo, head, list) {
e3e0520b
JB
827 down_read(&sinfo->groups_sem);
828 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
9c907446 829 found_raid56 = true;
e3e0520b 830 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
9c907446
DS
831 found_raid56 = true;
832 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
833 found_raid1c34 = true;
834 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
835 found_raid1c34 = true;
e3e0520b 836 up_read(&sinfo->groups_sem);
e3e0520b 837 }
d8e6fd5c 838 if (!found_raid56)
9c907446 839 btrfs_clear_fs_incompat(fs_info, RAID56);
d8e6fd5c 840 if (!found_raid1c34)
9c907446 841 btrfs_clear_fs_incompat(fs_info, RAID1C34);
e3e0520b
JB
842 }
843}
844
7357623a
QW
845static int remove_block_group_item(struct btrfs_trans_handle *trans,
846 struct btrfs_path *path,
847 struct btrfs_block_group *block_group)
848{
849 struct btrfs_fs_info *fs_info = trans->fs_info;
850 struct btrfs_root *root;
851 struct btrfs_key key;
852 int ret;
853
dfe8aec4 854 root = btrfs_block_group_root(fs_info);
7357623a
QW
855 key.objectid = block_group->start;
856 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
857 key.offset = block_group->length;
858
859 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
860 if (ret > 0)
861 ret = -ENOENT;
862 if (ret < 0)
863 return ret;
864
865 ret = btrfs_del_item(trans, root, path);
866 return ret;
867}
868
e3e0520b
JB
869int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
870 u64 group_start, struct extent_map *em)
871{
872 struct btrfs_fs_info *fs_info = trans->fs_info;
e3e0520b 873 struct btrfs_path *path;
32da5386 874 struct btrfs_block_group *block_group;
e3e0520b 875 struct btrfs_free_cluster *cluster;
e3e0520b
JB
876 struct inode *inode;
877 struct kobject *kobj = NULL;
878 int ret;
879 int index;
880 int factor;
881 struct btrfs_caching_control *caching_ctl = NULL;
882 bool remove_em;
883 bool remove_rsv = false;
884
885 block_group = btrfs_lookup_block_group(fs_info, group_start);
886 BUG_ON(!block_group);
887 BUG_ON(!block_group->ro);
888
889 trace_btrfs_remove_block_group(block_group);
890 /*
891 * Free the reserved super bytes from this block group before
892 * remove it.
893 */
894 btrfs_free_excluded_extents(block_group);
b3470b5d
DS
895 btrfs_free_ref_tree_range(fs_info, block_group->start,
896 block_group->length);
e3e0520b 897
e3e0520b
JB
898 index = btrfs_bg_flags_to_raid_index(block_group->flags);
899 factor = btrfs_bg_type_to_factor(block_group->flags);
900
901 /* make sure this block group isn't part of an allocation cluster */
902 cluster = &fs_info->data_alloc_cluster;
903 spin_lock(&cluster->refill_lock);
904 btrfs_return_cluster_to_free_space(block_group, cluster);
905 spin_unlock(&cluster->refill_lock);
906
907 /*
908 * make sure this block group isn't part of a metadata
909 * allocation cluster
910 */
911 cluster = &fs_info->meta_alloc_cluster;
912 spin_lock(&cluster->refill_lock);
913 btrfs_return_cluster_to_free_space(block_group, cluster);
914 spin_unlock(&cluster->refill_lock);
915
40ab3be1 916 btrfs_clear_treelog_bg(block_group);
c2707a25 917 btrfs_clear_data_reloc_bg(block_group);
40ab3be1 918
e3e0520b
JB
919 path = btrfs_alloc_path();
920 if (!path) {
921 ret = -ENOMEM;
9fecd132 922 goto out;
e3e0520b
JB
923 }
924
925 /*
926 * get the inode first so any iput calls done for the io_list
927 * aren't the final iput (no unlinks allowed now)
928 */
929 inode = lookup_free_space_inode(block_group, path);
930
931 mutex_lock(&trans->transaction->cache_write_mutex);
932 /*
933 * Make sure our free space cache IO is done before removing the
934 * free space inode
935 */
936 spin_lock(&trans->transaction->dirty_bgs_lock);
937 if (!list_empty(&block_group->io_list)) {
938 list_del_init(&block_group->io_list);
939
940 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
941
942 spin_unlock(&trans->transaction->dirty_bgs_lock);
943 btrfs_wait_cache_io(trans, block_group, path);
944 btrfs_put_block_group(block_group);
945 spin_lock(&trans->transaction->dirty_bgs_lock);
946 }
947
948 if (!list_empty(&block_group->dirty_list)) {
949 list_del_init(&block_group->dirty_list);
950 remove_rsv = true;
951 btrfs_put_block_group(block_group);
952 }
953 spin_unlock(&trans->transaction->dirty_bgs_lock);
954 mutex_unlock(&trans->transaction->cache_write_mutex);
955
36b216c8
BB
956 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
957 if (ret)
9fecd132 958 goto out;
e3e0520b
JB
959
960 spin_lock(&fs_info->block_group_cache_lock);
961 rb_erase(&block_group->cache_node,
962 &fs_info->block_group_cache_tree);
963 RB_CLEAR_NODE(&block_group->cache_node);
964
9fecd132
FM
965 /* Once for the block groups rbtree */
966 btrfs_put_block_group(block_group);
967
b3470b5d 968 if (fs_info->first_logical_byte == block_group->start)
e3e0520b
JB
969 fs_info->first_logical_byte = (u64)-1;
970 spin_unlock(&fs_info->block_group_cache_lock);
971
972 down_write(&block_group->space_info->groups_sem);
973 /*
974 * we must use list_del_init so people can check to see if they
975 * are still on the list after taking the semaphore
976 */
977 list_del_init(&block_group->list);
978 if (list_empty(&block_group->space_info->block_groups[index])) {
979 kobj = block_group->space_info->block_group_kobjs[index];
980 block_group->space_info->block_group_kobjs[index] = NULL;
981 clear_avail_alloc_bits(fs_info, block_group->flags);
982 }
983 up_write(&block_group->space_info->groups_sem);
984 clear_incompat_bg_bits(fs_info, block_group->flags);
985 if (kobj) {
986 kobject_del(kobj);
987 kobject_put(kobj);
988 }
989
990 if (block_group->has_caching_ctl)
991 caching_ctl = btrfs_get_caching_control(block_group);
992 if (block_group->cached == BTRFS_CACHE_STARTED)
993 btrfs_wait_block_group_cache_done(block_group);
994 if (block_group->has_caching_ctl) {
bbb86a37 995 spin_lock(&fs_info->block_group_cache_lock);
e3e0520b
JB
996 if (!caching_ctl) {
997 struct btrfs_caching_control *ctl;
998
999 list_for_each_entry(ctl,
1000 &fs_info->caching_block_groups, list)
1001 if (ctl->block_group == block_group) {
1002 caching_ctl = ctl;
1003 refcount_inc(&caching_ctl->count);
1004 break;
1005 }
1006 }
1007 if (caching_ctl)
1008 list_del_init(&caching_ctl->list);
bbb86a37 1009 spin_unlock(&fs_info->block_group_cache_lock);
e3e0520b
JB
1010 if (caching_ctl) {
1011 /* Once for the caching bgs list and once for us. */
1012 btrfs_put_caching_control(caching_ctl);
1013 btrfs_put_caching_control(caching_ctl);
1014 }
1015 }
1016
1017 spin_lock(&trans->transaction->dirty_bgs_lock);
1018 WARN_ON(!list_empty(&block_group->dirty_list));
1019 WARN_ON(!list_empty(&block_group->io_list));
1020 spin_unlock(&trans->transaction->dirty_bgs_lock);
1021
1022 btrfs_remove_free_space_cache(block_group);
1023
1024 spin_lock(&block_group->space_info->lock);
1025 list_del_init(&block_group->ro_list);
1026
1027 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1028 WARN_ON(block_group->space_info->total_bytes
b3470b5d 1029 < block_group->length);
e3e0520b 1030 WARN_ON(block_group->space_info->bytes_readonly
169e0da9
NA
1031 < block_group->length - block_group->zone_unusable);
1032 WARN_ON(block_group->space_info->bytes_zone_unusable
1033 < block_group->zone_unusable);
e3e0520b 1034 WARN_ON(block_group->space_info->disk_total
b3470b5d 1035 < block_group->length * factor);
e3e0520b 1036 }
b3470b5d 1037 block_group->space_info->total_bytes -= block_group->length;
169e0da9
NA
1038 block_group->space_info->bytes_readonly -=
1039 (block_group->length - block_group->zone_unusable);
1040 block_group->space_info->bytes_zone_unusable -=
1041 block_group->zone_unusable;
b3470b5d 1042 block_group->space_info->disk_total -= block_group->length * factor;
e3e0520b
JB
1043
1044 spin_unlock(&block_group->space_info->lock);
1045
ffcb9d44
FM
1046 /*
1047 * Remove the free space for the block group from the free space tree
1048 * and the block group's item from the extent tree before marking the
1049 * block group as removed. This is to prevent races with tasks that
1050 * freeze and unfreeze a block group, this task and another task
1051 * allocating a new block group - the unfreeze task ends up removing
1052 * the block group's extent map before the task calling this function
1053 * deletes the block group item from the extent tree, allowing for
1054 * another task to attempt to create another block group with the same
1055 * item key (and failing with -EEXIST and a transaction abort).
1056 */
1057 ret = remove_block_group_free_space(trans, block_group);
1058 if (ret)
1059 goto out;
1060
1061 ret = remove_block_group_item(trans, path, block_group);
1062 if (ret < 0)
1063 goto out;
1064
e3e0520b
JB
1065 spin_lock(&block_group->lock);
1066 block_group->removed = 1;
1067 /*
6b7304af
FM
1068 * At this point trimming or scrub can't start on this block group,
1069 * because we removed the block group from the rbtree
1070 * fs_info->block_group_cache_tree so no one can't find it anymore and
1071 * even if someone already got this block group before we removed it
1072 * from the rbtree, they have already incremented block_group->frozen -
1073 * if they didn't, for the trimming case they won't find any free space
1074 * entries because we already removed them all when we called
1075 * btrfs_remove_free_space_cache().
e3e0520b
JB
1076 *
1077 * And we must not remove the extent map from the fs_info->mapping_tree
1078 * to prevent the same logical address range and physical device space
6b7304af
FM
1079 * ranges from being reused for a new block group. This is needed to
1080 * avoid races with trimming and scrub.
1081 *
1082 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
e3e0520b
JB
1083 * completely transactionless, so while it is trimming a range the
1084 * currently running transaction might finish and a new one start,
1085 * allowing for new block groups to be created that can reuse the same
1086 * physical device locations unless we take this special care.
1087 *
1088 * There may also be an implicit trim operation if the file system
1089 * is mounted with -odiscard. The same protections must remain
1090 * in place until the extents have been discarded completely when
1091 * the transaction commit has completed.
1092 */
6b7304af 1093 remove_em = (atomic_read(&block_group->frozen) == 0);
e3e0520b
JB
1094 spin_unlock(&block_group->lock);
1095
e3e0520b
JB
1096 if (remove_em) {
1097 struct extent_map_tree *em_tree;
1098
1099 em_tree = &fs_info->mapping_tree;
1100 write_lock(&em_tree->lock);
1101 remove_extent_mapping(em_tree, em);
1102 write_unlock(&em_tree->lock);
1103 /* once for the tree */
1104 free_extent_map(em);
1105 }
f6033c5e 1106
9fecd132 1107out:
f6033c5e
XY
1108 /* Once for the lookup reference */
1109 btrfs_put_block_group(block_group);
e3e0520b
JB
1110 if (remove_rsv)
1111 btrfs_delayed_refs_rsv_release(fs_info, 1);
1112 btrfs_free_path(path);
1113 return ret;
1114}
1115
1116struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1117 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1118{
dfe8aec4 1119 struct btrfs_root *root = btrfs_block_group_root(fs_info);
e3e0520b
JB
1120 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1121 struct extent_map *em;
1122 struct map_lookup *map;
1123 unsigned int num_items;
1124
1125 read_lock(&em_tree->lock);
1126 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1127 read_unlock(&em_tree->lock);
1128 ASSERT(em && em->start == chunk_offset);
1129
1130 /*
1131 * We need to reserve 3 + N units from the metadata space info in order
1132 * to remove a block group (done at btrfs_remove_chunk() and at
1133 * btrfs_remove_block_group()), which are used for:
1134 *
1135 * 1 unit for adding the free space inode's orphan (located in the tree
1136 * of tree roots).
1137 * 1 unit for deleting the block group item (located in the extent
1138 * tree).
1139 * 1 unit for deleting the free space item (located in tree of tree
1140 * roots).
1141 * N units for deleting N device extent items corresponding to each
1142 * stripe (located in the device tree).
1143 *
1144 * In order to remove a block group we also need to reserve units in the
1145 * system space info in order to update the chunk tree (update one or
1146 * more device items and remove one chunk item), but this is done at
1147 * btrfs_remove_chunk() through a call to check_system_chunk().
1148 */
1149 map = em->map_lookup;
1150 num_items = 3 + map->num_stripes;
1151 free_extent_map(em);
1152
dfe8aec4 1153 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
e3e0520b
JB
1154}
1155
26ce2095
JB
1156/*
1157 * Mark block group @cache read-only, so later write won't happen to block
1158 * group @cache.
1159 *
1160 * If @force is not set, this function will only mark the block group readonly
1161 * if we have enough free space (1M) in other metadata/system block groups.
1162 * If @force is not set, this function will mark the block group readonly
1163 * without checking free space.
1164 *
1165 * NOTE: This function doesn't care if other block groups can contain all the
1166 * data in this block group. That check should be done by relocation routine,
1167 * not this function.
1168 */
32da5386 1169static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
26ce2095
JB
1170{
1171 struct btrfs_space_info *sinfo = cache->space_info;
1172 u64 num_bytes;
26ce2095
JB
1173 int ret = -ENOSPC;
1174
26ce2095
JB
1175 spin_lock(&sinfo->lock);
1176 spin_lock(&cache->lock);
1177
195a49ea
FM
1178 if (cache->swap_extents) {
1179 ret = -ETXTBSY;
1180 goto out;
1181 }
1182
26ce2095
JB
1183 if (cache->ro) {
1184 cache->ro++;
1185 ret = 0;
1186 goto out;
1187 }
1188
b3470b5d 1189 num_bytes = cache->length - cache->reserved - cache->pinned -
169e0da9 1190 cache->bytes_super - cache->zone_unusable - cache->used;
26ce2095
JB
1191
1192 /*
a30a3d20
JB
1193 * Data never overcommits, even in mixed mode, so do just the straight
1194 * check of left over space in how much we have allocated.
26ce2095 1195 */
a30a3d20
JB
1196 if (force) {
1197 ret = 0;
1198 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1199 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1200
1201 /*
1202 * Here we make sure if we mark this bg RO, we still have enough
1203 * free space as buffer.
1204 */
1205 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1206 ret = 0;
1207 } else {
1208 /*
1209 * We overcommit metadata, so we need to do the
1210 * btrfs_can_overcommit check here, and we need to pass in
1211 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1212 * leeway to allow us to mark this block group as read only.
1213 */
1214 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1215 BTRFS_RESERVE_NO_FLUSH))
1216 ret = 0;
1217 }
1218
1219 if (!ret) {
26ce2095 1220 sinfo->bytes_readonly += num_bytes;
169e0da9
NA
1221 if (btrfs_is_zoned(cache->fs_info)) {
1222 /* Migrate zone_unusable bytes to readonly */
1223 sinfo->bytes_readonly += cache->zone_unusable;
1224 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1225 cache->zone_unusable = 0;
1226 }
26ce2095
JB
1227 cache->ro++;
1228 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
26ce2095
JB
1229 }
1230out:
1231 spin_unlock(&cache->lock);
1232 spin_unlock(&sinfo->lock);
1233 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1234 btrfs_info(cache->fs_info,
b3470b5d 1235 "unable to make block group %llu ro", cache->start);
26ce2095
JB
1236 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1237 }
1238 return ret;
1239}
1240
fe119a6e
NB
1241static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1242 struct btrfs_block_group *bg)
45bb5d6a
NB
1243{
1244 struct btrfs_fs_info *fs_info = bg->fs_info;
fe119a6e 1245 struct btrfs_transaction *prev_trans = NULL;
45bb5d6a
NB
1246 const u64 start = bg->start;
1247 const u64 end = start + bg->length - 1;
1248 int ret;
1249
fe119a6e
NB
1250 spin_lock(&fs_info->trans_lock);
1251 if (trans->transaction->list.prev != &fs_info->trans_list) {
1252 prev_trans = list_last_entry(&trans->transaction->list,
1253 struct btrfs_transaction, list);
1254 refcount_inc(&prev_trans->use_count);
1255 }
1256 spin_unlock(&fs_info->trans_lock);
1257
45bb5d6a
NB
1258 /*
1259 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1260 * btrfs_finish_extent_commit(). If we are at transaction N, another
1261 * task might be running finish_extent_commit() for the previous
1262 * transaction N - 1, and have seen a range belonging to the block
fe119a6e
NB
1263 * group in pinned_extents before we were able to clear the whole block
1264 * group range from pinned_extents. This means that task can lookup for
1265 * the block group after we unpinned it from pinned_extents and removed
1266 * it, leading to a BUG_ON() at unpin_extent_range().
45bb5d6a
NB
1267 */
1268 mutex_lock(&fs_info->unused_bg_unpin_mutex);
fe119a6e
NB
1269 if (prev_trans) {
1270 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1271 EXTENT_DIRTY);
1272 if (ret)
534cf531 1273 goto out;
fe119a6e 1274 }
45bb5d6a 1275
fe119a6e 1276 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
45bb5d6a 1277 EXTENT_DIRTY);
534cf531 1278out:
45bb5d6a 1279 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5150bf19
FM
1280 if (prev_trans)
1281 btrfs_put_transaction(prev_trans);
45bb5d6a 1282
534cf531 1283 return ret == 0;
45bb5d6a
NB
1284}
1285
e3e0520b
JB
1286/*
1287 * Process the unused_bgs list and remove any that don't have any allocated
1288 * space inside of them.
1289 */
1290void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1291{
32da5386 1292 struct btrfs_block_group *block_group;
e3e0520b
JB
1293 struct btrfs_space_info *space_info;
1294 struct btrfs_trans_handle *trans;
6e80d4f8 1295 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
e3e0520b
JB
1296 int ret = 0;
1297
1298 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1299 return;
1300
ddfd08cb
JB
1301 /*
1302 * Long running balances can keep us blocked here for eternity, so
1303 * simply skip deletion if we're unable to get the mutex.
1304 */
f3372065 1305 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
ddfd08cb
JB
1306 return;
1307
e3e0520b
JB
1308 spin_lock(&fs_info->unused_bgs_lock);
1309 while (!list_empty(&fs_info->unused_bgs)) {
e3e0520b
JB
1310 int trimming;
1311
1312 block_group = list_first_entry(&fs_info->unused_bgs,
32da5386 1313 struct btrfs_block_group,
e3e0520b
JB
1314 bg_list);
1315 list_del_init(&block_group->bg_list);
1316
1317 space_info = block_group->space_info;
1318
1319 if (ret || btrfs_mixed_space_info(space_info)) {
1320 btrfs_put_block_group(block_group);
1321 continue;
1322 }
1323 spin_unlock(&fs_info->unused_bgs_lock);
1324
b0643e59
DZ
1325 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1326
e3e0520b
JB
1327 /* Don't want to race with allocators so take the groups_sem */
1328 down_write(&space_info->groups_sem);
6e80d4f8
DZ
1329
1330 /*
1331 * Async discard moves the final block group discard to be prior
1332 * to the unused_bgs code path. Therefore, if it's not fully
1333 * trimmed, punt it back to the async discard lists.
1334 */
1335 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1336 !btrfs_is_free_space_trimmed(block_group)) {
1337 trace_btrfs_skip_unused_block_group(block_group);
1338 up_write(&space_info->groups_sem);
1339 /* Requeue if we failed because of async discard */
1340 btrfs_discard_queue_work(&fs_info->discard_ctl,
1341 block_group);
1342 goto next;
1343 }
1344
e3e0520b
JB
1345 spin_lock(&block_group->lock);
1346 if (block_group->reserved || block_group->pinned ||
bf38be65 1347 block_group->used || block_group->ro ||
e3e0520b
JB
1348 list_is_singular(&block_group->list)) {
1349 /*
1350 * We want to bail if we made new allocations or have
1351 * outstanding allocations in this block group. We do
1352 * the ro check in case balance is currently acting on
1353 * this block group.
1354 */
1355 trace_btrfs_skip_unused_block_group(block_group);
1356 spin_unlock(&block_group->lock);
1357 up_write(&space_info->groups_sem);
1358 goto next;
1359 }
1360 spin_unlock(&block_group->lock);
1361
1362 /* We don't want to force the issue, only flip if it's ok. */
e11c0406 1363 ret = inc_block_group_ro(block_group, 0);
e3e0520b
JB
1364 up_write(&space_info->groups_sem);
1365 if (ret < 0) {
1366 ret = 0;
1367 goto next;
1368 }
1369
1370 /*
1371 * Want to do this before we do anything else so we can recover
1372 * properly if we fail to join the transaction.
1373 */
1374 trans = btrfs_start_trans_remove_block_group(fs_info,
b3470b5d 1375 block_group->start);
e3e0520b
JB
1376 if (IS_ERR(trans)) {
1377 btrfs_dec_block_group_ro(block_group);
1378 ret = PTR_ERR(trans);
1379 goto next;
1380 }
1381
1382 /*
1383 * We could have pending pinned extents for this block group,
1384 * just delete them, we don't care about them anymore.
1385 */
534cf531
FM
1386 if (!clean_pinned_extents(trans, block_group)) {
1387 btrfs_dec_block_group_ro(block_group);
e3e0520b 1388 goto end_trans;
534cf531 1389 }
e3e0520b 1390
b0643e59
DZ
1391 /*
1392 * At this point, the block_group is read only and should fail
1393 * new allocations. However, btrfs_finish_extent_commit() can
1394 * cause this block_group to be placed back on the discard
1395 * lists because now the block_group isn't fully discarded.
1396 * Bail here and try again later after discarding everything.
1397 */
1398 spin_lock(&fs_info->discard_ctl.lock);
1399 if (!list_empty(&block_group->discard_list)) {
1400 spin_unlock(&fs_info->discard_ctl.lock);
1401 btrfs_dec_block_group_ro(block_group);
1402 btrfs_discard_queue_work(&fs_info->discard_ctl,
1403 block_group);
1404 goto end_trans;
1405 }
1406 spin_unlock(&fs_info->discard_ctl.lock);
1407
e3e0520b
JB
1408 /* Reset pinned so btrfs_put_block_group doesn't complain */
1409 spin_lock(&space_info->lock);
1410 spin_lock(&block_group->lock);
1411
1412 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1413 -block_group->pinned);
1414 space_info->bytes_readonly += block_group->pinned;
e3e0520b
JB
1415 block_group->pinned = 0;
1416
1417 spin_unlock(&block_group->lock);
1418 spin_unlock(&space_info->lock);
1419
6e80d4f8
DZ
1420 /*
1421 * The normal path here is an unused block group is passed here,
1422 * then trimming is handled in the transaction commit path.
1423 * Async discard interposes before this to do the trimming
1424 * before coming down the unused block group path as trimming
1425 * will no longer be done later in the transaction commit path.
1426 */
1427 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1428 goto flip_async;
1429
dcba6e48
NA
1430 /*
1431 * DISCARD can flip during remount. On zoned filesystems, we
1432 * need to reset sequential-required zones.
1433 */
1434 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1435 btrfs_is_zoned(fs_info);
e3e0520b
JB
1436
1437 /* Implicit trim during transaction commit. */
1438 if (trimming)
6b7304af 1439 btrfs_freeze_block_group(block_group);
e3e0520b
JB
1440
1441 /*
1442 * Btrfs_remove_chunk will abort the transaction if things go
1443 * horribly wrong.
1444 */
b3470b5d 1445 ret = btrfs_remove_chunk(trans, block_group->start);
e3e0520b
JB
1446
1447 if (ret) {
1448 if (trimming)
6b7304af 1449 btrfs_unfreeze_block_group(block_group);
e3e0520b
JB
1450 goto end_trans;
1451 }
1452
1453 /*
1454 * If we're not mounted with -odiscard, we can just forget
1455 * about this block group. Otherwise we'll need to wait
1456 * until transaction commit to do the actual discard.
1457 */
1458 if (trimming) {
1459 spin_lock(&fs_info->unused_bgs_lock);
1460 /*
1461 * A concurrent scrub might have added us to the list
1462 * fs_info->unused_bgs, so use a list_move operation
1463 * to add the block group to the deleted_bgs list.
1464 */
1465 list_move(&block_group->bg_list,
1466 &trans->transaction->deleted_bgs);
1467 spin_unlock(&fs_info->unused_bgs_lock);
1468 btrfs_get_block_group(block_group);
1469 }
1470end_trans:
1471 btrfs_end_transaction(trans);
1472next:
e3e0520b
JB
1473 btrfs_put_block_group(block_group);
1474 spin_lock(&fs_info->unused_bgs_lock);
1475 }
1476 spin_unlock(&fs_info->unused_bgs_lock);
f3372065 1477 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1478 return;
1479
1480flip_async:
1481 btrfs_end_transaction(trans);
f3372065 1482 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1483 btrfs_put_block_group(block_group);
1484 btrfs_discard_punt_unused_bgs_list(fs_info);
e3e0520b
JB
1485}
1486
32da5386 1487void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
e3e0520b
JB
1488{
1489 struct btrfs_fs_info *fs_info = bg->fs_info;
1490
1491 spin_lock(&fs_info->unused_bgs_lock);
1492 if (list_empty(&bg->bg_list)) {
1493 btrfs_get_block_group(bg);
1494 trace_btrfs_add_unused_block_group(bg);
1495 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1496 }
1497 spin_unlock(&fs_info->unused_bgs_lock);
1498}
4358d963 1499
2ca0ec77
JT
1500/*
1501 * We want block groups with a low number of used bytes to be in the beginning
1502 * of the list, so they will get reclaimed first.
1503 */
1504static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1505 const struct list_head *b)
1506{
1507 const struct btrfs_block_group *bg1, *bg2;
1508
1509 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1510 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1511
1512 return bg1->used > bg2->used;
1513}
1514
18bb8bbf
JT
1515void btrfs_reclaim_bgs_work(struct work_struct *work)
1516{
1517 struct btrfs_fs_info *fs_info =
1518 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1519 struct btrfs_block_group *bg;
1520 struct btrfs_space_info *space_info;
18bb8bbf
JT
1521
1522 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1523 return;
1524
1525 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1526 return;
1527
9cc0b837
JT
1528 /*
1529 * Long running balances can keep us blocked here for eternity, so
1530 * simply skip reclaim if we're unable to get the mutex.
1531 */
1532 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1533 btrfs_exclop_finish(fs_info);
1534 return;
1535 }
1536
18bb8bbf 1537 spin_lock(&fs_info->unused_bgs_lock);
2ca0ec77
JT
1538 /*
1539 * Sort happens under lock because we can't simply splice it and sort.
1540 * The block groups might still be in use and reachable via bg_list,
1541 * and their presence in the reclaim_bgs list must be preserved.
1542 */
1543 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
18bb8bbf 1544 while (!list_empty(&fs_info->reclaim_bgs)) {
5f93e776 1545 u64 zone_unusable;
1cea5cf0
FM
1546 int ret = 0;
1547
18bb8bbf
JT
1548 bg = list_first_entry(&fs_info->reclaim_bgs,
1549 struct btrfs_block_group,
1550 bg_list);
1551 list_del_init(&bg->bg_list);
1552
1553 space_info = bg->space_info;
1554 spin_unlock(&fs_info->unused_bgs_lock);
1555
1556 /* Don't race with allocators so take the groups_sem */
1557 down_write(&space_info->groups_sem);
1558
1559 spin_lock(&bg->lock);
1560 if (bg->reserved || bg->pinned || bg->ro) {
1561 /*
1562 * We want to bail if we made new allocations or have
1563 * outstanding allocations in this block group. We do
1564 * the ro check in case balance is currently acting on
1565 * this block group.
1566 */
1567 spin_unlock(&bg->lock);
1568 up_write(&space_info->groups_sem);
1569 goto next;
1570 }
1571 spin_unlock(&bg->lock);
1572
1573 /* Get out fast, in case we're unmounting the filesystem */
1574 if (btrfs_fs_closing(fs_info)) {
1575 up_write(&space_info->groups_sem);
1576 goto next;
1577 }
1578
5f93e776
JT
1579 /*
1580 * Cache the zone_unusable value before turning the block group
1581 * to read only. As soon as the blog group is read only it's
1582 * zone_unusable value gets moved to the block group's read-only
1583 * bytes and isn't available for calculations anymore.
1584 */
1585 zone_unusable = bg->zone_unusable;
18bb8bbf
JT
1586 ret = inc_block_group_ro(bg, 0);
1587 up_write(&space_info->groups_sem);
1588 if (ret < 0)
1589 goto next;
1590
5f93e776
JT
1591 btrfs_info(fs_info,
1592 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1593 bg->start, div_u64(bg->used * 100, bg->length),
1594 div64_u64(zone_unusable * 100, bg->length));
18bb8bbf
JT
1595 trace_btrfs_reclaim_block_group(bg);
1596 ret = btrfs_relocate_chunk(fs_info, bg->start);
d96b3424 1597 if (ret)
18bb8bbf
JT
1598 btrfs_err(fs_info, "error relocating chunk %llu",
1599 bg->start);
1600
1601next:
d96b3424 1602 btrfs_put_block_group(bg);
18bb8bbf
JT
1603 spin_lock(&fs_info->unused_bgs_lock);
1604 }
1605 spin_unlock(&fs_info->unused_bgs_lock);
1606 mutex_unlock(&fs_info->reclaim_bgs_lock);
1607 btrfs_exclop_finish(fs_info);
1608}
1609
1610void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1611{
1612 spin_lock(&fs_info->unused_bgs_lock);
1613 if (!list_empty(&fs_info->reclaim_bgs))
1614 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1615 spin_unlock(&fs_info->unused_bgs_lock);
1616}
1617
1618void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1619{
1620 struct btrfs_fs_info *fs_info = bg->fs_info;
1621
1622 spin_lock(&fs_info->unused_bgs_lock);
1623 if (list_empty(&bg->bg_list)) {
1624 btrfs_get_block_group(bg);
1625 trace_btrfs_add_reclaim_block_group(bg);
1626 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1627 }
1628 spin_unlock(&fs_info->unused_bgs_lock);
1629}
1630
e3ba67a1
JT
1631static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1632 struct btrfs_path *path)
1633{
1634 struct extent_map_tree *em_tree;
1635 struct extent_map *em;
1636 struct btrfs_block_group_item bg;
1637 struct extent_buffer *leaf;
1638 int slot;
1639 u64 flags;
1640 int ret = 0;
1641
1642 slot = path->slots[0];
1643 leaf = path->nodes[0];
1644
1645 em_tree = &fs_info->mapping_tree;
1646 read_lock(&em_tree->lock);
1647 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1648 read_unlock(&em_tree->lock);
1649 if (!em) {
1650 btrfs_err(fs_info,
1651 "logical %llu len %llu found bg but no related chunk",
1652 key->objectid, key->offset);
1653 return -ENOENT;
1654 }
1655
1656 if (em->start != key->objectid || em->len != key->offset) {
1657 btrfs_err(fs_info,
1658 "block group %llu len %llu mismatch with chunk %llu len %llu",
1659 key->objectid, key->offset, em->start, em->len);
1660 ret = -EUCLEAN;
1661 goto out_free_em;
1662 }
1663
1664 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1665 sizeof(bg));
1666 flags = btrfs_stack_block_group_flags(&bg) &
1667 BTRFS_BLOCK_GROUP_TYPE_MASK;
1668
1669 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1670 btrfs_err(fs_info,
1671"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1672 key->objectid, key->offset, flags,
1673 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1674 ret = -EUCLEAN;
1675 }
1676
1677out_free_em:
1678 free_extent_map(em);
1679 return ret;
1680}
1681
4358d963
JB
1682static int find_first_block_group(struct btrfs_fs_info *fs_info,
1683 struct btrfs_path *path,
1684 struct btrfs_key *key)
1685{
dfe8aec4 1686 struct btrfs_root *root = btrfs_block_group_root(fs_info);
e3ba67a1 1687 int ret;
4358d963
JB
1688 struct btrfs_key found_key;
1689 struct extent_buffer *leaf;
4358d963
JB
1690 int slot;
1691
1692 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1693 if (ret < 0)
e3ba67a1 1694 return ret;
4358d963
JB
1695
1696 while (1) {
1697 slot = path->slots[0];
1698 leaf = path->nodes[0];
1699 if (slot >= btrfs_header_nritems(leaf)) {
1700 ret = btrfs_next_leaf(root, path);
1701 if (ret == 0)
1702 continue;
1703 if (ret < 0)
1704 goto out;
1705 break;
1706 }
1707 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1708
1709 if (found_key.objectid >= key->objectid &&
1710 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
e3ba67a1
JT
1711 ret = read_bg_from_eb(fs_info, &found_key, path);
1712 break;
4358d963 1713 }
e3ba67a1 1714
4358d963
JB
1715 path->slots[0]++;
1716 }
1717out:
1718 return ret;
1719}
1720
1721static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1722{
1723 u64 extra_flags = chunk_to_extended(flags) &
1724 BTRFS_EXTENDED_PROFILE_MASK;
1725
1726 write_seqlock(&fs_info->profiles_lock);
1727 if (flags & BTRFS_BLOCK_GROUP_DATA)
1728 fs_info->avail_data_alloc_bits |= extra_flags;
1729 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1730 fs_info->avail_metadata_alloc_bits |= extra_flags;
1731 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1732 fs_info->avail_system_alloc_bits |= extra_flags;
1733 write_sequnlock(&fs_info->profiles_lock);
1734}
1735
96a14336 1736/**
9ee9b979
NB
1737 * Map a physical disk address to a list of logical addresses
1738 *
1739 * @fs_info: the filesystem
96a14336 1740 * @chunk_start: logical address of block group
138082f3 1741 * @bdev: physical device to resolve, can be NULL to indicate any device
96a14336
NB
1742 * @physical: physical address to map to logical addresses
1743 * @logical: return array of logical addresses which map to @physical
1744 * @naddrs: length of @logical
1745 * @stripe_len: size of IO stripe for the given block group
1746 *
1747 * Maps a particular @physical disk address to a list of @logical addresses.
1748 * Used primarily to exclude those portions of a block group that contain super
1749 * block copies.
1750 */
96a14336 1751int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
138082f3
NA
1752 struct block_device *bdev, u64 physical, u64 **logical,
1753 int *naddrs, int *stripe_len)
96a14336
NB
1754{
1755 struct extent_map *em;
1756 struct map_lookup *map;
1757 u64 *buf;
1758 u64 bytenr;
1776ad17
NB
1759 u64 data_stripe_length;
1760 u64 io_stripe_size;
1761 int i, nr = 0;
1762 int ret = 0;
96a14336
NB
1763
1764 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1765 if (IS_ERR(em))
1766 return -EIO;
1767
1768 map = em->map_lookup;
9e22b925 1769 data_stripe_length = em->orig_block_len;
1776ad17 1770 io_stripe_size = map->stripe_len;
138082f3 1771 chunk_start = em->start;
96a14336 1772
9e22b925
NB
1773 /* For RAID5/6 adjust to a full IO stripe length */
1774 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1776ad17 1775 io_stripe_size = map->stripe_len * nr_data_stripes(map);
96a14336
NB
1776
1777 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1776ad17
NB
1778 if (!buf) {
1779 ret = -ENOMEM;
1780 goto out;
1781 }
96a14336
NB
1782
1783 for (i = 0; i < map->num_stripes; i++) {
1776ad17
NB
1784 bool already_inserted = false;
1785 u64 stripe_nr;
138082f3 1786 u64 offset;
1776ad17
NB
1787 int j;
1788
1789 if (!in_range(physical, map->stripes[i].physical,
1790 data_stripe_length))
96a14336
NB
1791 continue;
1792
138082f3
NA
1793 if (bdev && map->stripes[i].dev->bdev != bdev)
1794 continue;
1795
96a14336 1796 stripe_nr = physical - map->stripes[i].physical;
138082f3 1797 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
96a14336
NB
1798
1799 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1800 stripe_nr = stripe_nr * map->num_stripes + i;
1801 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1802 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1803 stripe_nr = stripe_nr * map->num_stripes + i;
1804 }
1805 /*
1806 * The remaining case would be for RAID56, multiply by
1807 * nr_data_stripes(). Alternatively, just use rmap_len below
1808 * instead of map->stripe_len
1809 */
1810
138082f3 1811 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1776ad17
NB
1812
1813 /* Ensure we don't add duplicate addresses */
96a14336 1814 for (j = 0; j < nr; j++) {
1776ad17
NB
1815 if (buf[j] == bytenr) {
1816 already_inserted = true;
96a14336 1817 break;
1776ad17 1818 }
96a14336 1819 }
1776ad17
NB
1820
1821 if (!already_inserted)
96a14336 1822 buf[nr++] = bytenr;
96a14336
NB
1823 }
1824
1825 *logical = buf;
1826 *naddrs = nr;
1776ad17
NB
1827 *stripe_len = io_stripe_size;
1828out:
96a14336 1829 free_extent_map(em);
1776ad17 1830 return ret;
96a14336
NB
1831}
1832
32da5386 1833static int exclude_super_stripes(struct btrfs_block_group *cache)
4358d963
JB
1834{
1835 struct btrfs_fs_info *fs_info = cache->fs_info;
12659251 1836 const bool zoned = btrfs_is_zoned(fs_info);
4358d963
JB
1837 u64 bytenr;
1838 u64 *logical;
1839 int stripe_len;
1840 int i, nr, ret;
1841
b3470b5d
DS
1842 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1843 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
4358d963 1844 cache->bytes_super += stripe_len;
b3470b5d 1845 ret = btrfs_add_excluded_extent(fs_info, cache->start,
4358d963
JB
1846 stripe_len);
1847 if (ret)
1848 return ret;
1849 }
1850
1851 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1852 bytenr = btrfs_sb_offset(i);
138082f3 1853 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
4358d963
JB
1854 bytenr, &logical, &nr, &stripe_len);
1855 if (ret)
1856 return ret;
1857
12659251
NA
1858 /* Shouldn't have super stripes in sequential zones */
1859 if (zoned && nr) {
1860 btrfs_err(fs_info,
1861 "zoned: block group %llu must not contain super block",
1862 cache->start);
1863 return -EUCLEAN;
1864 }
1865
4358d963 1866 while (nr--) {
96f9b0f2
NB
1867 u64 len = min_t(u64, stripe_len,
1868 cache->start + cache->length - logical[nr]);
4358d963
JB
1869
1870 cache->bytes_super += len;
96f9b0f2
NB
1871 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1872 len);
4358d963
JB
1873 if (ret) {
1874 kfree(logical);
1875 return ret;
1876 }
1877 }
1878
1879 kfree(logical);
1880 }
1881 return 0;
1882}
1883
32da5386 1884static void link_block_group(struct btrfs_block_group *cache)
4358d963
JB
1885{
1886 struct btrfs_space_info *space_info = cache->space_info;
1887 int index = btrfs_bg_flags_to_raid_index(cache->flags);
4358d963
JB
1888
1889 down_write(&space_info->groups_sem);
4358d963
JB
1890 list_add_tail(&cache->list, &space_info->block_groups[index]);
1891 up_write(&space_info->groups_sem);
4358d963
JB
1892}
1893
32da5386 1894static struct btrfs_block_group *btrfs_create_block_group_cache(
9afc6649 1895 struct btrfs_fs_info *fs_info, u64 start)
4358d963 1896{
32da5386 1897 struct btrfs_block_group *cache;
4358d963
JB
1898
1899 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1900 if (!cache)
1901 return NULL;
1902
1903 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1904 GFP_NOFS);
1905 if (!cache->free_space_ctl) {
1906 kfree(cache);
1907 return NULL;
1908 }
1909
b3470b5d 1910 cache->start = start;
4358d963
JB
1911
1912 cache->fs_info = fs_info;
1913 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
4358d963 1914
6e80d4f8
DZ
1915 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1916
48aaeebe 1917 refcount_set(&cache->refs, 1);
4358d963
JB
1918 spin_lock_init(&cache->lock);
1919 init_rwsem(&cache->data_rwsem);
1920 INIT_LIST_HEAD(&cache->list);
1921 INIT_LIST_HEAD(&cache->cluster_list);
1922 INIT_LIST_HEAD(&cache->bg_list);
1923 INIT_LIST_HEAD(&cache->ro_list);
b0643e59 1924 INIT_LIST_HEAD(&cache->discard_list);
4358d963
JB
1925 INIT_LIST_HEAD(&cache->dirty_list);
1926 INIT_LIST_HEAD(&cache->io_list);
afba2bc0 1927 INIT_LIST_HEAD(&cache->active_bg_list);
cd79909b 1928 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
6b7304af 1929 atomic_set(&cache->frozen, 0);
4358d963
JB
1930 mutex_init(&cache->free_space_lock);
1931 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1932
1933 return cache;
1934}
1935
1936/*
1937 * Iterate all chunks and verify that each of them has the corresponding block
1938 * group
1939 */
1940static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1941{
1942 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1943 struct extent_map *em;
32da5386 1944 struct btrfs_block_group *bg;
4358d963
JB
1945 u64 start = 0;
1946 int ret = 0;
1947
1948 while (1) {
1949 read_lock(&map_tree->lock);
1950 /*
1951 * lookup_extent_mapping will return the first extent map
1952 * intersecting the range, so setting @len to 1 is enough to
1953 * get the first chunk.
1954 */
1955 em = lookup_extent_mapping(map_tree, start, 1);
1956 read_unlock(&map_tree->lock);
1957 if (!em)
1958 break;
1959
1960 bg = btrfs_lookup_block_group(fs_info, em->start);
1961 if (!bg) {
1962 btrfs_err(fs_info,
1963 "chunk start=%llu len=%llu doesn't have corresponding block group",
1964 em->start, em->len);
1965 ret = -EUCLEAN;
1966 free_extent_map(em);
1967 break;
1968 }
b3470b5d 1969 if (bg->start != em->start || bg->length != em->len ||
4358d963
JB
1970 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1971 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1972 btrfs_err(fs_info,
1973"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1974 em->start, em->len,
1975 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
b3470b5d 1976 bg->start, bg->length,
4358d963
JB
1977 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1978 ret = -EUCLEAN;
1979 free_extent_map(em);
1980 btrfs_put_block_group(bg);
1981 break;
1982 }
1983 start = em->start + em->len;
1984 free_extent_map(em);
1985 btrfs_put_block_group(bg);
1986 }
1987 return ret;
1988}
1989
ffb9e0f0 1990static int read_one_block_group(struct btrfs_fs_info *info,
4afd2fe8 1991 struct btrfs_block_group_item *bgi,
d49a2ddb 1992 const struct btrfs_key *key,
ffb9e0f0
QW
1993 int need_clear)
1994{
32da5386 1995 struct btrfs_block_group *cache;
ffb9e0f0 1996 struct btrfs_space_info *space_info;
ffb9e0f0 1997 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
ffb9e0f0
QW
1998 int ret;
1999
d49a2ddb 2000 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
ffb9e0f0 2001
9afc6649 2002 cache = btrfs_create_block_group_cache(info, key->objectid);
ffb9e0f0
QW
2003 if (!cache)
2004 return -ENOMEM;
2005
4afd2fe8
JT
2006 cache->length = key->offset;
2007 cache->used = btrfs_stack_block_group_used(bgi);
2008 cache->flags = btrfs_stack_block_group_flags(bgi);
f7238e50 2009 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
9afc6649 2010
e3e39c72
MPS
2011 set_free_space_tree_thresholds(cache);
2012
ffb9e0f0
QW
2013 if (need_clear) {
2014 /*
2015 * When we mount with old space cache, we need to
2016 * set BTRFS_DC_CLEAR and set dirty flag.
2017 *
2018 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2019 * truncate the old free space cache inode and
2020 * setup a new one.
2021 * b) Setting 'dirty flag' makes sure that we flush
2022 * the new space cache info onto disk.
2023 */
2024 if (btrfs_test_opt(info, SPACE_CACHE))
2025 cache->disk_cache_state = BTRFS_DC_CLEAR;
2026 }
ffb9e0f0
QW
2027 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2028 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2029 btrfs_err(info,
2030"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2031 cache->start);
2032 ret = -EINVAL;
2033 goto error;
2034 }
2035
a94794d5 2036 ret = btrfs_load_block_group_zone_info(cache, false);
08e11a3d
NA
2037 if (ret) {
2038 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2039 cache->start);
2040 goto error;
2041 }
2042
ffb9e0f0
QW
2043 /*
2044 * We need to exclude the super stripes now so that the space info has
2045 * super bytes accounted for, otherwise we'll think we have more space
2046 * than we actually do.
2047 */
2048 ret = exclude_super_stripes(cache);
2049 if (ret) {
2050 /* We may have excluded something, so call this just in case. */
2051 btrfs_free_excluded_extents(cache);
2052 goto error;
2053 }
2054
2055 /*
169e0da9
NA
2056 * For zoned filesystem, space after the allocation offset is the only
2057 * free space for a block group. So, we don't need any caching work.
2058 * btrfs_calc_zone_unusable() will set the amount of free space and
2059 * zone_unusable space.
2060 *
2061 * For regular filesystem, check for two cases, either we are full, and
2062 * therefore don't need to bother with the caching work since we won't
2063 * find any space, or we are empty, and we can just add all the space
2064 * in and be done with it. This saves us _a_lot_ of time, particularly
2065 * in the full case.
ffb9e0f0 2066 */
169e0da9
NA
2067 if (btrfs_is_zoned(info)) {
2068 btrfs_calc_zone_unusable(cache);
c46c4247
NA
2069 /* Should not have any excluded extents. Just in case, though. */
2070 btrfs_free_excluded_extents(cache);
169e0da9 2071 } else if (cache->length == cache->used) {
ffb9e0f0
QW
2072 cache->last_byte_to_unpin = (u64)-1;
2073 cache->cached = BTRFS_CACHE_FINISHED;
2074 btrfs_free_excluded_extents(cache);
2075 } else if (cache->used == 0) {
2076 cache->last_byte_to_unpin = (u64)-1;
2077 cache->cached = BTRFS_CACHE_FINISHED;
9afc6649
QW
2078 add_new_free_space(cache, cache->start,
2079 cache->start + cache->length);
ffb9e0f0
QW
2080 btrfs_free_excluded_extents(cache);
2081 }
2082
2083 ret = btrfs_add_block_group_cache(info, cache);
2084 if (ret) {
2085 btrfs_remove_free_space_cache(cache);
2086 goto error;
2087 }
2088 trace_btrfs_add_block_group(info, cache, 0);
9afc6649 2089 btrfs_update_space_info(info, cache->flags, cache->length,
169e0da9
NA
2090 cache->used, cache->bytes_super,
2091 cache->zone_unusable, &space_info);
ffb9e0f0
QW
2092
2093 cache->space_info = space_info;
2094
2095 link_block_group(cache);
2096
2097 set_avail_alloc_bits(info, cache->flags);
a09f23c3
AJ
2098 if (btrfs_chunk_writeable(info, cache->start)) {
2099 if (cache->used == 0) {
2100 ASSERT(list_empty(&cache->bg_list));
2101 if (btrfs_test_opt(info, DISCARD_ASYNC))
2102 btrfs_discard_queue_work(&info->discard_ctl, cache);
2103 else
2104 btrfs_mark_bg_unused(cache);
2105 }
2106 } else {
ffb9e0f0 2107 inc_block_group_ro(cache, 1);
ffb9e0f0 2108 }
a09f23c3 2109
ffb9e0f0
QW
2110 return 0;
2111error:
2112 btrfs_put_block_group(cache);
2113 return ret;
2114}
2115
42437a63
JB
2116static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2117{
2118 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2119 struct btrfs_space_info *space_info;
2120 struct rb_node *node;
2121 int ret = 0;
2122
2123 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2124 struct extent_map *em;
2125 struct map_lookup *map;
2126 struct btrfs_block_group *bg;
2127
2128 em = rb_entry(node, struct extent_map, rb_node);
2129 map = em->map_lookup;
2130 bg = btrfs_create_block_group_cache(fs_info, em->start);
2131 if (!bg) {
2132 ret = -ENOMEM;
2133 break;
2134 }
2135
2136 /* Fill dummy cache as FULL */
2137 bg->length = em->len;
2138 bg->flags = map->type;
2139 bg->last_byte_to_unpin = (u64)-1;
2140 bg->cached = BTRFS_CACHE_FINISHED;
2141 bg->used = em->len;
2142 bg->flags = map->type;
2143 ret = btrfs_add_block_group_cache(fs_info, bg);
2b29726c
QW
2144 /*
2145 * We may have some valid block group cache added already, in
2146 * that case we skip to the next one.
2147 */
2148 if (ret == -EEXIST) {
2149 ret = 0;
2150 btrfs_put_block_group(bg);
2151 continue;
2152 }
2153
42437a63
JB
2154 if (ret) {
2155 btrfs_remove_free_space_cache(bg);
2156 btrfs_put_block_group(bg);
2157 break;
2158 }
2b29726c 2159
42437a63 2160 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
169e0da9 2161 0, 0, &space_info);
42437a63
JB
2162 bg->space_info = space_info;
2163 link_block_group(bg);
2164
2165 set_avail_alloc_bits(fs_info, bg->flags);
2166 }
2167 if (!ret)
2168 btrfs_init_global_block_rsv(fs_info);
2169 return ret;
2170}
2171
4358d963
JB
2172int btrfs_read_block_groups(struct btrfs_fs_info *info)
2173{
dfe8aec4 2174 struct btrfs_root *root = btrfs_block_group_root(info);
4358d963
JB
2175 struct btrfs_path *path;
2176 int ret;
32da5386 2177 struct btrfs_block_group *cache;
4358d963
JB
2178 struct btrfs_space_info *space_info;
2179 struct btrfs_key key;
4358d963
JB
2180 int need_clear = 0;
2181 u64 cache_gen;
4358d963 2182
dfe8aec4 2183 if (!root)
42437a63
JB
2184 return fill_dummy_bgs(info);
2185
4358d963
JB
2186 key.objectid = 0;
2187 key.offset = 0;
2188 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2189 path = btrfs_alloc_path();
2190 if (!path)
2191 return -ENOMEM;
4358d963
JB
2192
2193 cache_gen = btrfs_super_cache_generation(info->super_copy);
2194 if (btrfs_test_opt(info, SPACE_CACHE) &&
2195 btrfs_super_generation(info->super_copy) != cache_gen)
2196 need_clear = 1;
2197 if (btrfs_test_opt(info, CLEAR_CACHE))
2198 need_clear = 1;
2199
2200 while (1) {
4afd2fe8
JT
2201 struct btrfs_block_group_item bgi;
2202 struct extent_buffer *leaf;
2203 int slot;
2204
4358d963
JB
2205 ret = find_first_block_group(info, path, &key);
2206 if (ret > 0)
2207 break;
2208 if (ret != 0)
2209 goto error;
2210
4afd2fe8
JT
2211 leaf = path->nodes[0];
2212 slot = path->slots[0];
2213
2214 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2215 sizeof(bgi));
2216
2217 btrfs_item_key_to_cpu(leaf, &key, slot);
2218 btrfs_release_path(path);
2219 ret = read_one_block_group(info, &bgi, &key, need_clear);
ffb9e0f0 2220 if (ret < 0)
4358d963 2221 goto error;
ffb9e0f0
QW
2222 key.objectid += key.offset;
2223 key.offset = 0;
4358d963 2224 }
7837fa88 2225 btrfs_release_path(path);
4358d963 2226
72804905 2227 list_for_each_entry(space_info, &info->space_info, list) {
49ea112d
JB
2228 int i;
2229
2230 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2231 if (list_empty(&space_info->block_groups[i]))
2232 continue;
2233 cache = list_first_entry(&space_info->block_groups[i],
2234 struct btrfs_block_group,
2235 list);
2236 btrfs_sysfs_add_block_group_type(cache);
2237 }
2238
4358d963
JB
2239 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2240 (BTRFS_BLOCK_GROUP_RAID10 |
2241 BTRFS_BLOCK_GROUP_RAID1_MASK |
2242 BTRFS_BLOCK_GROUP_RAID56_MASK |
2243 BTRFS_BLOCK_GROUP_DUP)))
2244 continue;
2245 /*
2246 * Avoid allocating from un-mirrored block group if there are
2247 * mirrored block groups.
2248 */
2249 list_for_each_entry(cache,
2250 &space_info->block_groups[BTRFS_RAID_RAID0],
2251 list)
e11c0406 2252 inc_block_group_ro(cache, 1);
4358d963
JB
2253 list_for_each_entry(cache,
2254 &space_info->block_groups[BTRFS_RAID_SINGLE],
2255 list)
e11c0406 2256 inc_block_group_ro(cache, 1);
4358d963
JB
2257 }
2258
2259 btrfs_init_global_block_rsv(info);
2260 ret = check_chunk_block_group_mappings(info);
2261error:
2262 btrfs_free_path(path);
2b29726c
QW
2263 /*
2264 * We've hit some error while reading the extent tree, and have
2265 * rescue=ibadroots mount option.
2266 * Try to fill the tree using dummy block groups so that the user can
2267 * continue to mount and grab their data.
2268 */
2269 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2270 ret = fill_dummy_bgs(info);
4358d963
JB
2271 return ret;
2272}
2273
79bd3712
FM
2274/*
2275 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2276 * allocation.
2277 *
2278 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2279 * phases.
2280 */
97f4728a
QW
2281static int insert_block_group_item(struct btrfs_trans_handle *trans,
2282 struct btrfs_block_group *block_group)
2283{
2284 struct btrfs_fs_info *fs_info = trans->fs_info;
2285 struct btrfs_block_group_item bgi;
dfe8aec4 2286 struct btrfs_root *root = btrfs_block_group_root(fs_info);
97f4728a
QW
2287 struct btrfs_key key;
2288
2289 spin_lock(&block_group->lock);
2290 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2291 btrfs_set_stack_block_group_chunk_objectid(&bgi,
f7238e50 2292 block_group->global_root_id);
97f4728a
QW
2293 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2294 key.objectid = block_group->start;
2295 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2296 key.offset = block_group->length;
2297 spin_unlock(&block_group->lock);
2298
97f4728a
QW
2299 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2300}
2301
2eadb9e7
NB
2302static int insert_dev_extent(struct btrfs_trans_handle *trans,
2303 struct btrfs_device *device, u64 chunk_offset,
2304 u64 start, u64 num_bytes)
2305{
2306 struct btrfs_fs_info *fs_info = device->fs_info;
2307 struct btrfs_root *root = fs_info->dev_root;
2308 struct btrfs_path *path;
2309 struct btrfs_dev_extent *extent;
2310 struct extent_buffer *leaf;
2311 struct btrfs_key key;
2312 int ret;
2313
2314 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2315 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2316 path = btrfs_alloc_path();
2317 if (!path)
2318 return -ENOMEM;
2319
2320 key.objectid = device->devid;
2321 key.type = BTRFS_DEV_EXTENT_KEY;
2322 key.offset = start;
2323 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2324 if (ret)
2325 goto out;
2326
2327 leaf = path->nodes[0];
2328 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2329 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2330 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2331 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2332 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2333
2334 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2335 btrfs_mark_buffer_dirty(leaf);
2336out:
2337 btrfs_free_path(path);
2338 return ret;
2339}
2340
2341/*
2342 * This function belongs to phase 2.
2343 *
2344 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2345 * phases.
2346 */
2347static int insert_dev_extents(struct btrfs_trans_handle *trans,
2348 u64 chunk_offset, u64 chunk_size)
2349{
2350 struct btrfs_fs_info *fs_info = trans->fs_info;
2351 struct btrfs_device *device;
2352 struct extent_map *em;
2353 struct map_lookup *map;
2354 u64 dev_offset;
2355 u64 stripe_size;
2356 int i;
2357 int ret = 0;
2358
2359 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2360 if (IS_ERR(em))
2361 return PTR_ERR(em);
2362
2363 map = em->map_lookup;
2364 stripe_size = em->orig_block_len;
2365
2366 /*
2367 * Take the device list mutex to prevent races with the final phase of
2368 * a device replace operation that replaces the device object associated
2369 * with the map's stripes, because the device object's id can change
2370 * at any time during that final phase of the device replace operation
2371 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2372 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2373 * resulting in persisting a device extent item with such ID.
2374 */
2375 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2376 for (i = 0; i < map->num_stripes; i++) {
2377 device = map->stripes[i].dev;
2378 dev_offset = map->stripes[i].physical;
2379
2380 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2381 stripe_size);
2382 if (ret)
2383 break;
2384 }
2385 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2386
2387 free_extent_map(em);
2388 return ret;
2389}
2390
79bd3712
FM
2391/*
2392 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2393 * chunk allocation.
2394 *
2395 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2396 * phases.
2397 */
4358d963
JB
2398void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2399{
2400 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2401 struct btrfs_block_group *block_group;
4358d963
JB
2402 int ret = 0;
2403
4358d963 2404 while (!list_empty(&trans->new_bgs)) {
49ea112d
JB
2405 int index;
2406
4358d963 2407 block_group = list_first_entry(&trans->new_bgs,
32da5386 2408 struct btrfs_block_group,
4358d963
JB
2409 bg_list);
2410 if (ret)
2411 goto next;
2412
49ea112d
JB
2413 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2414
97f4728a 2415 ret = insert_block_group_item(trans, block_group);
4358d963
JB
2416 if (ret)
2417 btrfs_abort_transaction(trans, ret);
79bd3712
FM
2418 if (!block_group->chunk_item_inserted) {
2419 mutex_lock(&fs_info->chunk_mutex);
2420 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2421 mutex_unlock(&fs_info->chunk_mutex);
2422 if (ret)
2423 btrfs_abort_transaction(trans, ret);
2424 }
2eadb9e7
NB
2425 ret = insert_dev_extents(trans, block_group->start,
2426 block_group->length);
4358d963
JB
2427 if (ret)
2428 btrfs_abort_transaction(trans, ret);
2429 add_block_group_free_space(trans, block_group);
49ea112d
JB
2430
2431 /*
2432 * If we restriped during balance, we may have added a new raid
2433 * type, so now add the sysfs entries when it is safe to do so.
2434 * We don't have to worry about locking here as it's handled in
2435 * btrfs_sysfs_add_block_group_type.
2436 */
2437 if (block_group->space_info->block_group_kobjs[index] == NULL)
2438 btrfs_sysfs_add_block_group_type(block_group);
2439
4358d963
JB
2440 /* Already aborted the transaction if it failed. */
2441next:
2442 btrfs_delayed_refs_rsv_release(fs_info, 1);
2443 list_del_init(&block_group->bg_list);
2444 }
2445 btrfs_trans_release_chunk_metadata(trans);
2446}
2447
f7238e50
JB
2448/*
2449 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2450 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2451 */
2452static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2453{
2454 u64 div = SZ_1G;
2455 u64 index;
2456
2457 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2458 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2459
2460 /* If we have a smaller fs index based on 128MiB. */
2461 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2462 div = SZ_128M;
2463
2464 offset = div64_u64(offset, div);
2465 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2466 return index;
2467}
2468
79bd3712
FM
2469struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2470 u64 bytes_used, u64 type,
2471 u64 chunk_offset, u64 size)
4358d963
JB
2472{
2473 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2474 struct btrfs_block_group *cache;
4358d963
JB
2475 int ret;
2476
2477 btrfs_set_log_full_commit(trans);
2478
9afc6649 2479 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
4358d963 2480 if (!cache)
79bd3712 2481 return ERR_PTR(-ENOMEM);
4358d963 2482
9afc6649 2483 cache->length = size;
e3e39c72 2484 set_free_space_tree_thresholds(cache);
bf38be65 2485 cache->used = bytes_used;
4358d963
JB
2486 cache->flags = type;
2487 cache->last_byte_to_unpin = (u64)-1;
2488 cache->cached = BTRFS_CACHE_FINISHED;
f7238e50
JB
2489 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2490
997e3e2e
BB
2491 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2492 cache->needs_free_space = 1;
08e11a3d 2493
a94794d5 2494 ret = btrfs_load_block_group_zone_info(cache, true);
08e11a3d
NA
2495 if (ret) {
2496 btrfs_put_block_group(cache);
79bd3712 2497 return ERR_PTR(ret);
08e11a3d
NA
2498 }
2499
eb66a010
NA
2500 /*
2501 * New block group is likely to be used soon. Try to activate it now.
2502 * Failure is OK for now.
2503 */
2504 btrfs_zone_activate(cache);
2505
4358d963
JB
2506 ret = exclude_super_stripes(cache);
2507 if (ret) {
2508 /* We may have excluded something, so call this just in case */
2509 btrfs_free_excluded_extents(cache);
2510 btrfs_put_block_group(cache);
79bd3712 2511 return ERR_PTR(ret);
4358d963
JB
2512 }
2513
2514 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2515
2516 btrfs_free_excluded_extents(cache);
2517
2518#ifdef CONFIG_BTRFS_DEBUG
2519 if (btrfs_should_fragment_free_space(cache)) {
2520 u64 new_bytes_used = size - bytes_used;
2521
2522 bytes_used += new_bytes_used >> 1;
e11c0406 2523 fragment_free_space(cache);
4358d963
JB
2524 }
2525#endif
2526 /*
2527 * Ensure the corresponding space_info object is created and
2528 * assigned to our block group. We want our bg to be added to the rbtree
2529 * with its ->space_info set.
2530 */
2531 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2532 ASSERT(cache->space_info);
2533
2534 ret = btrfs_add_block_group_cache(fs_info, cache);
2535 if (ret) {
2536 btrfs_remove_free_space_cache(cache);
2537 btrfs_put_block_group(cache);
79bd3712 2538 return ERR_PTR(ret);
4358d963
JB
2539 }
2540
2541 /*
2542 * Now that our block group has its ->space_info set and is inserted in
2543 * the rbtree, update the space info's counters.
2544 */
2545 trace_btrfs_add_block_group(fs_info, cache, 1);
2546 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
98173255
NA
2547 cache->bytes_super, cache->zone_unusable,
2548 &cache->space_info);
4358d963
JB
2549 btrfs_update_global_block_rsv(fs_info);
2550
2551 link_block_group(cache);
2552
2553 list_add_tail(&cache->bg_list, &trans->new_bgs);
2554 trans->delayed_ref_updates++;
2555 btrfs_update_delayed_refs_rsv(trans);
2556
2557 set_avail_alloc_bits(fs_info, type);
79bd3712 2558 return cache;
4358d963 2559}
26ce2095 2560
b12de528
QW
2561/*
2562 * Mark one block group RO, can be called several times for the same block
2563 * group.
2564 *
2565 * @cache: the destination block group
2566 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2567 * ensure we still have some free space after marking this
2568 * block group RO.
2569 */
2570int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2571 bool do_chunk_alloc)
26ce2095
JB
2572{
2573 struct btrfs_fs_info *fs_info = cache->fs_info;
2574 struct btrfs_trans_handle *trans;
dfe8aec4 2575 struct btrfs_root *root = btrfs_block_group_root(fs_info);
26ce2095
JB
2576 u64 alloc_flags;
2577 int ret;
b6e9f16c 2578 bool dirty_bg_running;
26ce2095 2579
2d192fc4
QW
2580 /*
2581 * This can only happen when we are doing read-only scrub on read-only
2582 * mount.
2583 * In that case we should not start a new transaction on read-only fs.
2584 * Thus here we skip all chunk allocations.
2585 */
2586 if (sb_rdonly(fs_info->sb)) {
2587 mutex_lock(&fs_info->ro_block_group_mutex);
2588 ret = inc_block_group_ro(cache, 0);
2589 mutex_unlock(&fs_info->ro_block_group_mutex);
2590 return ret;
2591 }
2592
b6e9f16c 2593 do {
dfe8aec4 2594 trans = btrfs_join_transaction(root);
b6e9f16c
NB
2595 if (IS_ERR(trans))
2596 return PTR_ERR(trans);
26ce2095 2597
b6e9f16c 2598 dirty_bg_running = false;
26ce2095 2599
b6e9f16c
NB
2600 /*
2601 * We're not allowed to set block groups readonly after the dirty
2602 * block group cache has started writing. If it already started,
2603 * back off and let this transaction commit.
2604 */
2605 mutex_lock(&fs_info->ro_block_group_mutex);
2606 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2607 u64 transid = trans->transid;
26ce2095 2608
b6e9f16c
NB
2609 mutex_unlock(&fs_info->ro_block_group_mutex);
2610 btrfs_end_transaction(trans);
2611
2612 ret = btrfs_wait_for_commit(fs_info, transid);
2613 if (ret)
2614 return ret;
2615 dirty_bg_running = true;
2616 }
2617 } while (dirty_bg_running);
26ce2095 2618
b12de528 2619 if (do_chunk_alloc) {
26ce2095 2620 /*
b12de528
QW
2621 * If we are changing raid levels, try to allocate a
2622 * corresponding block group with the new raid level.
26ce2095 2623 */
349e120e 2624 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
b12de528
QW
2625 if (alloc_flags != cache->flags) {
2626 ret = btrfs_chunk_alloc(trans, alloc_flags,
2627 CHUNK_ALLOC_FORCE);
2628 /*
2629 * ENOSPC is allowed here, we may have enough space
2630 * already allocated at the new raid level to carry on
2631 */
2632 if (ret == -ENOSPC)
2633 ret = 0;
2634 if (ret < 0)
2635 goto out;
2636 }
26ce2095
JB
2637 }
2638
a7a63acc 2639 ret = inc_block_group_ro(cache, 0);
195a49ea 2640 if (!do_chunk_alloc || ret == -ETXTBSY)
b12de528 2641 goto unlock_out;
26ce2095
JB
2642 if (!ret)
2643 goto out;
2644 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2645 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2646 if (ret < 0)
2647 goto out;
e11c0406 2648 ret = inc_block_group_ro(cache, 0);
195a49ea
FM
2649 if (ret == -ETXTBSY)
2650 goto unlock_out;
26ce2095
JB
2651out:
2652 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
349e120e 2653 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
26ce2095
JB
2654 mutex_lock(&fs_info->chunk_mutex);
2655 check_system_chunk(trans, alloc_flags);
2656 mutex_unlock(&fs_info->chunk_mutex);
2657 }
b12de528 2658unlock_out:
26ce2095
JB
2659 mutex_unlock(&fs_info->ro_block_group_mutex);
2660
2661 btrfs_end_transaction(trans);
2662 return ret;
2663}
2664
32da5386 2665void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
26ce2095
JB
2666{
2667 struct btrfs_space_info *sinfo = cache->space_info;
2668 u64 num_bytes;
2669
2670 BUG_ON(!cache->ro);
2671
2672 spin_lock(&sinfo->lock);
2673 spin_lock(&cache->lock);
2674 if (!--cache->ro) {
169e0da9
NA
2675 if (btrfs_is_zoned(cache->fs_info)) {
2676 /* Migrate zone_unusable bytes back */
98173255
NA
2677 cache->zone_unusable =
2678 (cache->alloc_offset - cache->used) +
2679 (cache->length - cache->zone_capacity);
169e0da9
NA
2680 sinfo->bytes_zone_unusable += cache->zone_unusable;
2681 sinfo->bytes_readonly -= cache->zone_unusable;
2682 }
f9f28e5b
NA
2683 num_bytes = cache->length - cache->reserved -
2684 cache->pinned - cache->bytes_super -
2685 cache->zone_unusable - cache->used;
2686 sinfo->bytes_readonly -= num_bytes;
26ce2095
JB
2687 list_del_init(&cache->ro_list);
2688 }
2689 spin_unlock(&cache->lock);
2690 spin_unlock(&sinfo->lock);
2691}
77745c05 2692
3be4d8ef
QW
2693static int update_block_group_item(struct btrfs_trans_handle *trans,
2694 struct btrfs_path *path,
2695 struct btrfs_block_group *cache)
77745c05
JB
2696{
2697 struct btrfs_fs_info *fs_info = trans->fs_info;
2698 int ret;
dfe8aec4 2699 struct btrfs_root *root = btrfs_block_group_root(fs_info);
77745c05
JB
2700 unsigned long bi;
2701 struct extent_buffer *leaf;
bf38be65 2702 struct btrfs_block_group_item bgi;
b3470b5d
DS
2703 struct btrfs_key key;
2704
2705 key.objectid = cache->start;
2706 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2707 key.offset = cache->length;
77745c05 2708
3be4d8ef 2709 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
77745c05
JB
2710 if (ret) {
2711 if (ret > 0)
2712 ret = -ENOENT;
2713 goto fail;
2714 }
2715
2716 leaf = path->nodes[0];
2717 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
de0dc456
DS
2718 btrfs_set_stack_block_group_used(&bgi, cache->used);
2719 btrfs_set_stack_block_group_chunk_objectid(&bgi,
f7238e50 2720 cache->global_root_id);
de0dc456 2721 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
bf38be65 2722 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
77745c05
JB
2723 btrfs_mark_buffer_dirty(leaf);
2724fail:
2725 btrfs_release_path(path);
2726 return ret;
2727
2728}
2729
32da5386 2730static int cache_save_setup(struct btrfs_block_group *block_group,
77745c05
JB
2731 struct btrfs_trans_handle *trans,
2732 struct btrfs_path *path)
2733{
2734 struct btrfs_fs_info *fs_info = block_group->fs_info;
2735 struct btrfs_root *root = fs_info->tree_root;
2736 struct inode *inode = NULL;
2737 struct extent_changeset *data_reserved = NULL;
2738 u64 alloc_hint = 0;
2739 int dcs = BTRFS_DC_ERROR;
0044ae11 2740 u64 cache_size = 0;
77745c05
JB
2741 int retries = 0;
2742 int ret = 0;
2743
af456a2c
BB
2744 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2745 return 0;
2746
77745c05
JB
2747 /*
2748 * If this block group is smaller than 100 megs don't bother caching the
2749 * block group.
2750 */
b3470b5d 2751 if (block_group->length < (100 * SZ_1M)) {
77745c05
JB
2752 spin_lock(&block_group->lock);
2753 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2754 spin_unlock(&block_group->lock);
2755 return 0;
2756 }
2757
bf31f87f 2758 if (TRANS_ABORTED(trans))
77745c05
JB
2759 return 0;
2760again:
2761 inode = lookup_free_space_inode(block_group, path);
2762 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2763 ret = PTR_ERR(inode);
2764 btrfs_release_path(path);
2765 goto out;
2766 }
2767
2768 if (IS_ERR(inode)) {
2769 BUG_ON(retries);
2770 retries++;
2771
2772 if (block_group->ro)
2773 goto out_free;
2774
2775 ret = create_free_space_inode(trans, block_group, path);
2776 if (ret)
2777 goto out_free;
2778 goto again;
2779 }
2780
2781 /*
2782 * We want to set the generation to 0, that way if anything goes wrong
2783 * from here on out we know not to trust this cache when we load up next
2784 * time.
2785 */
2786 BTRFS_I(inode)->generation = 0;
9a56fcd1 2787 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
77745c05
JB
2788 if (ret) {
2789 /*
2790 * So theoretically we could recover from this, simply set the
2791 * super cache generation to 0 so we know to invalidate the
2792 * cache, but then we'd have to keep track of the block groups
2793 * that fail this way so we know we _have_ to reset this cache
2794 * before the next commit or risk reading stale cache. So to
2795 * limit our exposure to horrible edge cases lets just abort the
2796 * transaction, this only happens in really bad situations
2797 * anyway.
2798 */
2799 btrfs_abort_transaction(trans, ret);
2800 goto out_put;
2801 }
2802 WARN_ON(ret);
2803
2804 /* We've already setup this transaction, go ahead and exit */
2805 if (block_group->cache_generation == trans->transid &&
2806 i_size_read(inode)) {
2807 dcs = BTRFS_DC_SETUP;
2808 goto out_put;
2809 }
2810
2811 if (i_size_read(inode) > 0) {
2812 ret = btrfs_check_trunc_cache_free_space(fs_info,
2813 &fs_info->global_block_rsv);
2814 if (ret)
2815 goto out_put;
2816
2817 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2818 if (ret)
2819 goto out_put;
2820 }
2821
2822 spin_lock(&block_group->lock);
2823 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2824 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2825 /*
2826 * don't bother trying to write stuff out _if_
2827 * a) we're not cached,
2828 * b) we're with nospace_cache mount option,
2829 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2830 */
2831 dcs = BTRFS_DC_WRITTEN;
2832 spin_unlock(&block_group->lock);
2833 goto out_put;
2834 }
2835 spin_unlock(&block_group->lock);
2836
2837 /*
2838 * We hit an ENOSPC when setting up the cache in this transaction, just
2839 * skip doing the setup, we've already cleared the cache so we're safe.
2840 */
2841 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2842 ret = -ENOSPC;
2843 goto out_put;
2844 }
2845
2846 /*
2847 * Try to preallocate enough space based on how big the block group is.
2848 * Keep in mind this has to include any pinned space which could end up
2849 * taking up quite a bit since it's not folded into the other space
2850 * cache.
2851 */
0044ae11
QW
2852 cache_size = div_u64(block_group->length, SZ_256M);
2853 if (!cache_size)
2854 cache_size = 1;
77745c05 2855
0044ae11
QW
2856 cache_size *= 16;
2857 cache_size *= fs_info->sectorsize;
77745c05 2858
36ea6f3e 2859 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
0044ae11 2860 cache_size);
77745c05
JB
2861 if (ret)
2862 goto out_put;
2863
0044ae11
QW
2864 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2865 cache_size, cache_size,
77745c05
JB
2866 &alloc_hint);
2867 /*
2868 * Our cache requires contiguous chunks so that we don't modify a bunch
2869 * of metadata or split extents when writing the cache out, which means
2870 * we can enospc if we are heavily fragmented in addition to just normal
2871 * out of space conditions. So if we hit this just skip setting up any
2872 * other block groups for this transaction, maybe we'll unpin enough
2873 * space the next time around.
2874 */
2875 if (!ret)
2876 dcs = BTRFS_DC_SETUP;
2877 else if (ret == -ENOSPC)
2878 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2879
2880out_put:
2881 iput(inode);
2882out_free:
2883 btrfs_release_path(path);
2884out:
2885 spin_lock(&block_group->lock);
2886 if (!ret && dcs == BTRFS_DC_SETUP)
2887 block_group->cache_generation = trans->transid;
2888 block_group->disk_cache_state = dcs;
2889 spin_unlock(&block_group->lock);
2890
2891 extent_changeset_free(data_reserved);
2892 return ret;
2893}
2894
2895int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2896{
2897 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2898 struct btrfs_block_group *cache, *tmp;
77745c05
JB
2899 struct btrfs_transaction *cur_trans = trans->transaction;
2900 struct btrfs_path *path;
2901
2902 if (list_empty(&cur_trans->dirty_bgs) ||
2903 !btrfs_test_opt(fs_info, SPACE_CACHE))
2904 return 0;
2905
2906 path = btrfs_alloc_path();
2907 if (!path)
2908 return -ENOMEM;
2909
2910 /* Could add new block groups, use _safe just in case */
2911 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2912 dirty_list) {
2913 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2914 cache_save_setup(cache, trans, path);
2915 }
2916
2917 btrfs_free_path(path);
2918 return 0;
2919}
2920
2921/*
2922 * Transaction commit does final block group cache writeback during a critical
2923 * section where nothing is allowed to change the FS. This is required in
2924 * order for the cache to actually match the block group, but can introduce a
2925 * lot of latency into the commit.
2926 *
2927 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2928 * There's a chance we'll have to redo some of it if the block group changes
2929 * again during the commit, but it greatly reduces the commit latency by
2930 * getting rid of the easy block groups while we're still allowing others to
2931 * join the commit.
2932 */
2933int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2934{
2935 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2936 struct btrfs_block_group *cache;
77745c05
JB
2937 struct btrfs_transaction *cur_trans = trans->transaction;
2938 int ret = 0;
2939 int should_put;
2940 struct btrfs_path *path = NULL;
2941 LIST_HEAD(dirty);
2942 struct list_head *io = &cur_trans->io_bgs;
2943 int num_started = 0;
2944 int loops = 0;
2945
2946 spin_lock(&cur_trans->dirty_bgs_lock);
2947 if (list_empty(&cur_trans->dirty_bgs)) {
2948 spin_unlock(&cur_trans->dirty_bgs_lock);
2949 return 0;
2950 }
2951 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2952 spin_unlock(&cur_trans->dirty_bgs_lock);
2953
2954again:
2955 /* Make sure all the block groups on our dirty list actually exist */
2956 btrfs_create_pending_block_groups(trans);
2957
2958 if (!path) {
2959 path = btrfs_alloc_path();
938fcbfb
JB
2960 if (!path) {
2961 ret = -ENOMEM;
2962 goto out;
2963 }
77745c05
JB
2964 }
2965
2966 /*
2967 * cache_write_mutex is here only to save us from balance or automatic
2968 * removal of empty block groups deleting this block group while we are
2969 * writing out the cache
2970 */
2971 mutex_lock(&trans->transaction->cache_write_mutex);
2972 while (!list_empty(&dirty)) {
2973 bool drop_reserve = true;
2974
32da5386 2975 cache = list_first_entry(&dirty, struct btrfs_block_group,
77745c05
JB
2976 dirty_list);
2977 /*
2978 * This can happen if something re-dirties a block group that
2979 * is already under IO. Just wait for it to finish and then do
2980 * it all again
2981 */
2982 if (!list_empty(&cache->io_list)) {
2983 list_del_init(&cache->io_list);
2984 btrfs_wait_cache_io(trans, cache, path);
2985 btrfs_put_block_group(cache);
2986 }
2987
2988
2989 /*
2990 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2991 * it should update the cache_state. Don't delete until after
2992 * we wait.
2993 *
2994 * Since we're not running in the commit critical section
2995 * we need the dirty_bgs_lock to protect from update_block_group
2996 */
2997 spin_lock(&cur_trans->dirty_bgs_lock);
2998 list_del_init(&cache->dirty_list);
2999 spin_unlock(&cur_trans->dirty_bgs_lock);
3000
3001 should_put = 1;
3002
3003 cache_save_setup(cache, trans, path);
3004
3005 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3006 cache->io_ctl.inode = NULL;
3007 ret = btrfs_write_out_cache(trans, cache, path);
3008 if (ret == 0 && cache->io_ctl.inode) {
3009 num_started++;
3010 should_put = 0;
3011
3012 /*
3013 * The cache_write_mutex is protecting the
3014 * io_list, also refer to the definition of
3015 * btrfs_transaction::io_bgs for more details
3016 */
3017 list_add_tail(&cache->io_list, io);
3018 } else {
3019 /*
3020 * If we failed to write the cache, the
3021 * generation will be bad and life goes on
3022 */
3023 ret = 0;
3024 }
3025 }
3026 if (!ret) {
3be4d8ef 3027 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3028 /*
3029 * Our block group might still be attached to the list
3030 * of new block groups in the transaction handle of some
3031 * other task (struct btrfs_trans_handle->new_bgs). This
3032 * means its block group item isn't yet in the extent
3033 * tree. If this happens ignore the error, as we will
3034 * try again later in the critical section of the
3035 * transaction commit.
3036 */
3037 if (ret == -ENOENT) {
3038 ret = 0;
3039 spin_lock(&cur_trans->dirty_bgs_lock);
3040 if (list_empty(&cache->dirty_list)) {
3041 list_add_tail(&cache->dirty_list,
3042 &cur_trans->dirty_bgs);
3043 btrfs_get_block_group(cache);
3044 drop_reserve = false;
3045 }
3046 spin_unlock(&cur_trans->dirty_bgs_lock);
3047 } else if (ret) {
3048 btrfs_abort_transaction(trans, ret);
3049 }
3050 }
3051
3052 /* If it's not on the io list, we need to put the block group */
3053 if (should_put)
3054 btrfs_put_block_group(cache);
3055 if (drop_reserve)
3056 btrfs_delayed_refs_rsv_release(fs_info, 1);
77745c05
JB
3057 /*
3058 * Avoid blocking other tasks for too long. It might even save
3059 * us from writing caches for block groups that are going to be
3060 * removed.
3061 */
3062 mutex_unlock(&trans->transaction->cache_write_mutex);
938fcbfb
JB
3063 if (ret)
3064 goto out;
77745c05
JB
3065 mutex_lock(&trans->transaction->cache_write_mutex);
3066 }
3067 mutex_unlock(&trans->transaction->cache_write_mutex);
3068
3069 /*
3070 * Go through delayed refs for all the stuff we've just kicked off
3071 * and then loop back (just once)
3072 */
34d1eb0e
JB
3073 if (!ret)
3074 ret = btrfs_run_delayed_refs(trans, 0);
77745c05
JB
3075 if (!ret && loops == 0) {
3076 loops++;
3077 spin_lock(&cur_trans->dirty_bgs_lock);
3078 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3079 /*
3080 * dirty_bgs_lock protects us from concurrent block group
3081 * deletes too (not just cache_write_mutex).
3082 */
3083 if (!list_empty(&dirty)) {
3084 spin_unlock(&cur_trans->dirty_bgs_lock);
3085 goto again;
3086 }
3087 spin_unlock(&cur_trans->dirty_bgs_lock);
938fcbfb
JB
3088 }
3089out:
3090 if (ret < 0) {
3091 spin_lock(&cur_trans->dirty_bgs_lock);
3092 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3093 spin_unlock(&cur_trans->dirty_bgs_lock);
77745c05
JB
3094 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3095 }
3096
3097 btrfs_free_path(path);
3098 return ret;
3099}
3100
3101int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3102{
3103 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 3104 struct btrfs_block_group *cache;
77745c05
JB
3105 struct btrfs_transaction *cur_trans = trans->transaction;
3106 int ret = 0;
3107 int should_put;
3108 struct btrfs_path *path;
3109 struct list_head *io = &cur_trans->io_bgs;
3110 int num_started = 0;
3111
3112 path = btrfs_alloc_path();
3113 if (!path)
3114 return -ENOMEM;
3115
3116 /*
3117 * Even though we are in the critical section of the transaction commit,
3118 * we can still have concurrent tasks adding elements to this
3119 * transaction's list of dirty block groups. These tasks correspond to
3120 * endio free space workers started when writeback finishes for a
3121 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3122 * allocate new block groups as a result of COWing nodes of the root
3123 * tree when updating the free space inode. The writeback for the space
3124 * caches is triggered by an earlier call to
3125 * btrfs_start_dirty_block_groups() and iterations of the following
3126 * loop.
3127 * Also we want to do the cache_save_setup first and then run the
3128 * delayed refs to make sure we have the best chance at doing this all
3129 * in one shot.
3130 */
3131 spin_lock(&cur_trans->dirty_bgs_lock);
3132 while (!list_empty(&cur_trans->dirty_bgs)) {
3133 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 3134 struct btrfs_block_group,
77745c05
JB
3135 dirty_list);
3136
3137 /*
3138 * This can happen if cache_save_setup re-dirties a block group
3139 * that is already under IO. Just wait for it to finish and
3140 * then do it all again
3141 */
3142 if (!list_empty(&cache->io_list)) {
3143 spin_unlock(&cur_trans->dirty_bgs_lock);
3144 list_del_init(&cache->io_list);
3145 btrfs_wait_cache_io(trans, cache, path);
3146 btrfs_put_block_group(cache);
3147 spin_lock(&cur_trans->dirty_bgs_lock);
3148 }
3149
3150 /*
3151 * Don't remove from the dirty list until after we've waited on
3152 * any pending IO
3153 */
3154 list_del_init(&cache->dirty_list);
3155 spin_unlock(&cur_trans->dirty_bgs_lock);
3156 should_put = 1;
3157
3158 cache_save_setup(cache, trans, path);
3159
3160 if (!ret)
3161 ret = btrfs_run_delayed_refs(trans,
3162 (unsigned long) -1);
3163
3164 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3165 cache->io_ctl.inode = NULL;
3166 ret = btrfs_write_out_cache(trans, cache, path);
3167 if (ret == 0 && cache->io_ctl.inode) {
3168 num_started++;
3169 should_put = 0;
3170 list_add_tail(&cache->io_list, io);
3171 } else {
3172 /*
3173 * If we failed to write the cache, the
3174 * generation will be bad and life goes on
3175 */
3176 ret = 0;
3177 }
3178 }
3179 if (!ret) {
3be4d8ef 3180 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3181 /*
3182 * One of the free space endio workers might have
3183 * created a new block group while updating a free space
3184 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3185 * and hasn't released its transaction handle yet, in
3186 * which case the new block group is still attached to
3187 * its transaction handle and its creation has not
3188 * finished yet (no block group item in the extent tree
3189 * yet, etc). If this is the case, wait for all free
3190 * space endio workers to finish and retry. This is a
260db43c 3191 * very rare case so no need for a more efficient and
77745c05
JB
3192 * complex approach.
3193 */
3194 if (ret == -ENOENT) {
3195 wait_event(cur_trans->writer_wait,
3196 atomic_read(&cur_trans->num_writers) == 1);
3be4d8ef 3197 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3198 }
3199 if (ret)
3200 btrfs_abort_transaction(trans, ret);
3201 }
3202
3203 /* If its not on the io list, we need to put the block group */
3204 if (should_put)
3205 btrfs_put_block_group(cache);
3206 btrfs_delayed_refs_rsv_release(fs_info, 1);
3207 spin_lock(&cur_trans->dirty_bgs_lock);
3208 }
3209 spin_unlock(&cur_trans->dirty_bgs_lock);
3210
3211 /*
3212 * Refer to the definition of io_bgs member for details why it's safe
3213 * to use it without any locking
3214 */
3215 while (!list_empty(io)) {
32da5386 3216 cache = list_first_entry(io, struct btrfs_block_group,
77745c05
JB
3217 io_list);
3218 list_del_init(&cache->io_list);
3219 btrfs_wait_cache_io(trans, cache, path);
3220 btrfs_put_block_group(cache);
3221 }
3222
3223 btrfs_free_path(path);
3224 return ret;
3225}
606d1bf1
JB
3226
3227int btrfs_update_block_group(struct btrfs_trans_handle *trans,
11b66fa6 3228 u64 bytenr, u64 num_bytes, bool alloc)
606d1bf1
JB
3229{
3230 struct btrfs_fs_info *info = trans->fs_info;
32da5386 3231 struct btrfs_block_group *cache = NULL;
606d1bf1
JB
3232 u64 total = num_bytes;
3233 u64 old_val;
3234 u64 byte_in_group;
3235 int factor;
3236 int ret = 0;
3237
3238 /* Block accounting for super block */
3239 spin_lock(&info->delalloc_root_lock);
3240 old_val = btrfs_super_bytes_used(info->super_copy);
3241 if (alloc)
3242 old_val += num_bytes;
3243 else
3244 old_val -= num_bytes;
3245 btrfs_set_super_bytes_used(info->super_copy, old_val);
3246 spin_unlock(&info->delalloc_root_lock);
3247
3248 while (total) {
3249 cache = btrfs_lookup_block_group(info, bytenr);
3250 if (!cache) {
3251 ret = -ENOENT;
3252 break;
3253 }
3254 factor = btrfs_bg_type_to_factor(cache->flags);
3255
3256 /*
3257 * If this block group has free space cache written out, we
3258 * need to make sure to load it if we are removing space. This
3259 * is because we need the unpinning stage to actually add the
3260 * space back to the block group, otherwise we will leak space.
3261 */
32da5386 3262 if (!alloc && !btrfs_block_group_done(cache))
606d1bf1
JB
3263 btrfs_cache_block_group(cache, 1);
3264
b3470b5d
DS
3265 byte_in_group = bytenr - cache->start;
3266 WARN_ON(byte_in_group > cache->length);
606d1bf1
JB
3267
3268 spin_lock(&cache->space_info->lock);
3269 spin_lock(&cache->lock);
3270
3271 if (btrfs_test_opt(info, SPACE_CACHE) &&
3272 cache->disk_cache_state < BTRFS_DC_CLEAR)
3273 cache->disk_cache_state = BTRFS_DC_CLEAR;
3274
bf38be65 3275 old_val = cache->used;
b3470b5d 3276 num_bytes = min(total, cache->length - byte_in_group);
606d1bf1
JB
3277 if (alloc) {
3278 old_val += num_bytes;
bf38be65 3279 cache->used = old_val;
606d1bf1
JB
3280 cache->reserved -= num_bytes;
3281 cache->space_info->bytes_reserved -= num_bytes;
3282 cache->space_info->bytes_used += num_bytes;
3283 cache->space_info->disk_used += num_bytes * factor;
3284 spin_unlock(&cache->lock);
3285 spin_unlock(&cache->space_info->lock);
3286 } else {
3287 old_val -= num_bytes;
bf38be65 3288 cache->used = old_val;
606d1bf1
JB
3289 cache->pinned += num_bytes;
3290 btrfs_space_info_update_bytes_pinned(info,
3291 cache->space_info, num_bytes);
3292 cache->space_info->bytes_used -= num_bytes;
3293 cache->space_info->disk_used -= num_bytes * factor;
3294 spin_unlock(&cache->lock);
3295 spin_unlock(&cache->space_info->lock);
3296
fe119a6e 3297 set_extent_dirty(&trans->transaction->pinned_extents,
606d1bf1
JB
3298 bytenr, bytenr + num_bytes - 1,
3299 GFP_NOFS | __GFP_NOFAIL);
3300 }
3301
3302 spin_lock(&trans->transaction->dirty_bgs_lock);
3303 if (list_empty(&cache->dirty_list)) {
3304 list_add_tail(&cache->dirty_list,
3305 &trans->transaction->dirty_bgs);
3306 trans->delayed_ref_updates++;
3307 btrfs_get_block_group(cache);
3308 }
3309 spin_unlock(&trans->transaction->dirty_bgs_lock);
3310
3311 /*
3312 * No longer have used bytes in this block group, queue it for
3313 * deletion. We do this after adding the block group to the
3314 * dirty list to avoid races between cleaner kthread and space
3315 * cache writeout.
3316 */
6e80d4f8
DZ
3317 if (!alloc && old_val == 0) {
3318 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3319 btrfs_mark_bg_unused(cache);
3320 }
606d1bf1
JB
3321
3322 btrfs_put_block_group(cache);
3323 total -= num_bytes;
3324 bytenr += num_bytes;
3325 }
3326
3327 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3328 btrfs_update_delayed_refs_rsv(trans);
3329 return ret;
3330}
3331
3332/**
3333 * btrfs_add_reserved_bytes - update the block_group and space info counters
3334 * @cache: The cache we are manipulating
3335 * @ram_bytes: The number of bytes of file content, and will be same to
3336 * @num_bytes except for the compress path.
3337 * @num_bytes: The number of bytes in question
3338 * @delalloc: The blocks are allocated for the delalloc write
3339 *
3340 * This is called by the allocator when it reserves space. If this is a
3341 * reservation and the block group has become read only we cannot make the
3342 * reservation and return -EAGAIN, otherwise this function always succeeds.
3343 */
32da5386 3344int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3345 u64 ram_bytes, u64 num_bytes, int delalloc)
3346{
3347 struct btrfs_space_info *space_info = cache->space_info;
3348 int ret = 0;
3349
3350 spin_lock(&space_info->lock);
3351 spin_lock(&cache->lock);
3352 if (cache->ro) {
3353 ret = -EAGAIN;
3354 } else {
3355 cache->reserved += num_bytes;
3356 space_info->bytes_reserved += num_bytes;
a43c3835
JB
3357 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3358 space_info->flags, num_bytes, 1);
606d1bf1
JB
3359 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3360 space_info, -ram_bytes);
3361 if (delalloc)
3362 cache->delalloc_bytes += num_bytes;
99ffb43e
JB
3363
3364 /*
3365 * Compression can use less space than we reserved, so wake
3366 * tickets if that happens
3367 */
3368 if (num_bytes < ram_bytes)
3369 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3370 }
3371 spin_unlock(&cache->lock);
3372 spin_unlock(&space_info->lock);
3373 return ret;
3374}
3375
3376/**
3377 * btrfs_free_reserved_bytes - update the block_group and space info counters
3378 * @cache: The cache we are manipulating
3379 * @num_bytes: The number of bytes in question
3380 * @delalloc: The blocks are allocated for the delalloc write
3381 *
3382 * This is called by somebody who is freeing space that was never actually used
3383 * on disk. For example if you reserve some space for a new leaf in transaction
3384 * A and before transaction A commits you free that leaf, you call this with
3385 * reserve set to 0 in order to clear the reservation.
3386 */
32da5386 3387void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3388 u64 num_bytes, int delalloc)
3389{
3390 struct btrfs_space_info *space_info = cache->space_info;
3391
3392 spin_lock(&space_info->lock);
3393 spin_lock(&cache->lock);
3394 if (cache->ro)
3395 space_info->bytes_readonly += num_bytes;
3396 cache->reserved -= num_bytes;
3397 space_info->bytes_reserved -= num_bytes;
3398 space_info->max_extent_size = 0;
3399
3400 if (delalloc)
3401 cache->delalloc_bytes -= num_bytes;
3402 spin_unlock(&cache->lock);
3308234a
JB
3403
3404 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3405 spin_unlock(&space_info->lock);
3406}
07730d87
JB
3407
3408static void force_metadata_allocation(struct btrfs_fs_info *info)
3409{
3410 struct list_head *head = &info->space_info;
3411 struct btrfs_space_info *found;
3412
72804905 3413 list_for_each_entry(found, head, list) {
07730d87
JB
3414 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3415 found->force_alloc = CHUNK_ALLOC_FORCE;
3416 }
07730d87
JB
3417}
3418
3419static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3420 struct btrfs_space_info *sinfo, int force)
3421{
3422 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3423 u64 thresh;
3424
3425 if (force == CHUNK_ALLOC_FORCE)
3426 return 1;
3427
3428 /*
3429 * in limited mode, we want to have some free space up to
3430 * about 1% of the FS size.
3431 */
3432 if (force == CHUNK_ALLOC_LIMITED) {
3433 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3434 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3435
3436 if (sinfo->total_bytes - bytes_used < thresh)
3437 return 1;
3438 }
3439
3440 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3441 return 0;
3442 return 1;
3443}
3444
3445int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3446{
3447 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3448
3449 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3450}
3451
79bd3712
FM
3452static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3453{
3454 struct btrfs_block_group *bg;
3455 int ret;
3456
3457 /*
3458 * Check if we have enough space in the system space info because we
3459 * will need to update device items in the chunk btree and insert a new
3460 * chunk item in the chunk btree as well. This will allocate a new
3461 * system block group if needed.
3462 */
3463 check_system_chunk(trans, flags);
3464
f6f39f7a 3465 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
3466 if (IS_ERR(bg)) {
3467 ret = PTR_ERR(bg);
3468 goto out;
3469 }
3470
79bd3712
FM
3471 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3472 /*
3473 * Normally we are not expected to fail with -ENOSPC here, since we have
3474 * previously reserved space in the system space_info and allocated one
ecd84d54 3475 * new system chunk if necessary. However there are three exceptions:
79bd3712
FM
3476 *
3477 * 1) We may have enough free space in the system space_info but all the
3478 * existing system block groups have a profile which can not be used
3479 * for extent allocation.
3480 *
3481 * This happens when mounting in degraded mode. For example we have a
3482 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3483 * using the other device in degraded mode. If we then allocate a chunk,
3484 * we may have enough free space in the existing system space_info, but
3485 * none of the block groups can be used for extent allocation since they
3486 * have a RAID1 profile, and because we are in degraded mode with a
3487 * single device, we are forced to allocate a new system chunk with a
3488 * SINGLE profile. Making check_system_chunk() iterate over all system
3489 * block groups and check if they have a usable profile and enough space
3490 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3491 * try again after forcing allocation of a new system chunk. Like this
3492 * we avoid paying the cost of that search in normal circumstances, when
3493 * we were not mounted in degraded mode;
3494 *
3495 * 2) We had enough free space info the system space_info, and one suitable
3496 * block group to allocate from when we called check_system_chunk()
3497 * above. However right after we called it, the only system block group
3498 * with enough free space got turned into RO mode by a running scrub,
3499 * and in this case we have to allocate a new one and retry. We only
3500 * need do this allocate and retry once, since we have a transaction
ecd84d54
FM
3501 * handle and scrub uses the commit root to search for block groups;
3502 *
3503 * 3) We had one system block group with enough free space when we called
3504 * check_system_chunk(), but after that, right before we tried to
3505 * allocate the last extent buffer we needed, a discard operation came
3506 * in and it temporarily removed the last free space entry from the
3507 * block group (discard removes a free space entry, discards it, and
3508 * then adds back the entry to the block group cache).
79bd3712
FM
3509 */
3510 if (ret == -ENOSPC) {
3511 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3512 struct btrfs_block_group *sys_bg;
3513
f6f39f7a 3514 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3515 if (IS_ERR(sys_bg)) {
3516 ret = PTR_ERR(sys_bg);
3517 btrfs_abort_transaction(trans, ret);
3518 goto out;
3519 }
3520
3521 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3522 if (ret) {
3523 btrfs_abort_transaction(trans, ret);
3524 goto out;
3525 }
3526
3527 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3528 if (ret) {
3529 btrfs_abort_transaction(trans, ret);
3530 goto out;
3531 }
3532 } else if (ret) {
3533 btrfs_abort_transaction(trans, ret);
3534 goto out;
3535 }
3536out:
3537 btrfs_trans_release_chunk_metadata(trans);
3538
3539 return ret;
3540}
3541
07730d87 3542/*
79bd3712
FM
3543 * Chunk allocation is done in 2 phases:
3544 *
3545 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3546 * the chunk, the chunk mapping, create its block group and add the items
3547 * that belong in the chunk btree to it - more specifically, we need to
3548 * update device items in the chunk btree and add a new chunk item to it.
3549 *
3550 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3551 * group item to the extent btree and the device extent items to the devices
3552 * btree.
3553 *
3554 * This is done to prevent deadlocks. For example when COWing a node from the
3555 * extent btree we are holding a write lock on the node's parent and if we
3556 * trigger chunk allocation and attempted to insert the new block group item
3557 * in the extent btree right way, we could deadlock because the path for the
3558 * insertion can include that parent node. At first glance it seems impossible
3559 * to trigger chunk allocation after starting a transaction since tasks should
3560 * reserve enough transaction units (metadata space), however while that is true
3561 * most of the time, chunk allocation may still be triggered for several reasons:
3562 *
3563 * 1) When reserving metadata, we check if there is enough free space in the
3564 * metadata space_info and therefore don't trigger allocation of a new chunk.
3565 * However later when the task actually tries to COW an extent buffer from
3566 * the extent btree or from the device btree for example, it is forced to
3567 * allocate a new block group (chunk) because the only one that had enough
3568 * free space was just turned to RO mode by a running scrub for example (or
3569 * device replace, block group reclaim thread, etc), so we can not use it
3570 * for allocating an extent and end up being forced to allocate a new one;
3571 *
3572 * 2) Because we only check that the metadata space_info has enough free bytes,
3573 * we end up not allocating a new metadata chunk in that case. However if
3574 * the filesystem was mounted in degraded mode, none of the existing block
3575 * groups might be suitable for extent allocation due to their incompatible
3576 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3577 * use a RAID1 profile, in degraded mode using a single device). In this case
3578 * when the task attempts to COW some extent buffer of the extent btree for
3579 * example, it will trigger allocation of a new metadata block group with a
3580 * suitable profile (SINGLE profile in the example of the degraded mount of
3581 * the RAID1 filesystem);
3582 *
3583 * 3) The task has reserved enough transaction units / metadata space, but when
3584 * it attempts to COW an extent buffer from the extent or device btree for
3585 * example, it does not find any free extent in any metadata block group,
3586 * therefore forced to try to allocate a new metadata block group.
3587 * This is because some other task allocated all available extents in the
3588 * meanwhile - this typically happens with tasks that don't reserve space
3589 * properly, either intentionally or as a bug. One example where this is
3590 * done intentionally is fsync, as it does not reserve any transaction units
3591 * and ends up allocating a variable number of metadata extents for log
ecd84d54
FM
3592 * tree extent buffers;
3593 *
3594 * 4) The task has reserved enough transaction units / metadata space, but right
3595 * before it tries to allocate the last extent buffer it needs, a discard
3596 * operation comes in and, temporarily, removes the last free space entry from
3597 * the only metadata block group that had free space (discard starts by
3598 * removing a free space entry from a block group, then does the discard
3599 * operation and, once it's done, it adds back the free space entry to the
3600 * block group).
79bd3712
FM
3601 *
3602 * We also need this 2 phases setup when adding a device to a filesystem with
3603 * a seed device - we must create new metadata and system chunks without adding
3604 * any of the block group items to the chunk, extent and device btrees. If we
3605 * did not do it this way, we would get ENOSPC when attempting to update those
3606 * btrees, since all the chunks from the seed device are read-only.
3607 *
3608 * Phase 1 does the updates and insertions to the chunk btree because if we had
3609 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3610 * parallel, we risk having too many system chunks allocated by many tasks if
3611 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3612 * extreme case this leads to exhaustion of the system chunk array in the
3613 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3614 * and with RAID filesystems (so we have more device items in the chunk btree).
3615 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3616 * the system chunk array due to concurrent allocations") provides more details.
3617 *
2bb2e00e
FM
3618 * Allocation of system chunks does not happen through this function. A task that
3619 * needs to update the chunk btree (the only btree that uses system chunks), must
3620 * preallocate chunk space by calling either check_system_chunk() or
3621 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3622 * metadata chunk or when removing a chunk, while the later is used before doing
3623 * a modification to the chunk btree - use cases for the later are adding,
3624 * removing and resizing a device as well as relocation of a system chunk.
3625 * See the comment below for more details.
79bd3712
FM
3626 *
3627 * The reservation of system space, done through check_system_chunk(), as well
3628 * as all the updates and insertions into the chunk btree must be done while
3629 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3630 * an extent buffer from the chunks btree we never trigger allocation of a new
3631 * system chunk, which would result in a deadlock (trying to lock twice an
3632 * extent buffer of the chunk btree, first time before triggering the chunk
3633 * allocation and the second time during chunk allocation while attempting to
3634 * update the chunks btree). The system chunk array is also updated while holding
3635 * that mutex. The same logic applies to removing chunks - we must reserve system
3636 * space, update the chunk btree and the system chunk array in the superblock
3637 * while holding fs_info->chunk_mutex.
3638 *
3639 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3640 *
3641 * If @force is CHUNK_ALLOC_FORCE:
07730d87
JB
3642 * - return 1 if it successfully allocates a chunk,
3643 * - return errors including -ENOSPC otherwise.
79bd3712 3644 * If @force is NOT CHUNK_ALLOC_FORCE:
07730d87
JB
3645 * - return 0 if it doesn't need to allocate a new chunk,
3646 * - return 1 if it successfully allocates a chunk,
3647 * - return errors including -ENOSPC otherwise.
3648 */
3649int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3650 enum btrfs_chunk_alloc_enum force)
3651{
3652 struct btrfs_fs_info *fs_info = trans->fs_info;
3653 struct btrfs_space_info *space_info;
3654 bool wait_for_alloc = false;
3655 bool should_alloc = false;
3656 int ret = 0;
3657
3658 /* Don't re-enter if we're already allocating a chunk */
3659 if (trans->allocating_chunk)
3660 return -ENOSPC;
79bd3712 3661 /*
2bb2e00e
FM
3662 * Allocation of system chunks can not happen through this path, as we
3663 * could end up in a deadlock if we are allocating a data or metadata
3664 * chunk and there is another task modifying the chunk btree.
3665 *
3666 * This is because while we are holding the chunk mutex, we will attempt
3667 * to add the new chunk item to the chunk btree or update an existing
3668 * device item in the chunk btree, while the other task that is modifying
3669 * the chunk btree is attempting to COW an extent buffer while holding a
3670 * lock on it and on its parent - if the COW operation triggers a system
3671 * chunk allocation, then we can deadlock because we are holding the
3672 * chunk mutex and we may need to access that extent buffer or its parent
3673 * in order to add the chunk item or update a device item.
3674 *
3675 * Tasks that want to modify the chunk tree should reserve system space
3676 * before updating the chunk btree, by calling either
3677 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3678 * It's possible that after a task reserves the space, it still ends up
3679 * here - this happens in the cases described above at do_chunk_alloc().
3680 * The task will have to either retry or fail.
79bd3712 3681 */
2bb2e00e 3682 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
79bd3712 3683 return -ENOSPC;
07730d87
JB
3684
3685 space_info = btrfs_find_space_info(fs_info, flags);
3686 ASSERT(space_info);
3687
3688 do {
3689 spin_lock(&space_info->lock);
3690 if (force < space_info->force_alloc)
3691 force = space_info->force_alloc;
3692 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3693 if (space_info->full) {
3694 /* No more free physical space */
3695 if (should_alloc)
3696 ret = -ENOSPC;
3697 else
3698 ret = 0;
3699 spin_unlock(&space_info->lock);
3700 return ret;
3701 } else if (!should_alloc) {
3702 spin_unlock(&space_info->lock);
3703 return 0;
3704 } else if (space_info->chunk_alloc) {
3705 /*
3706 * Someone is already allocating, so we need to block
3707 * until this someone is finished and then loop to
3708 * recheck if we should continue with our allocation
3709 * attempt.
3710 */
3711 wait_for_alloc = true;
3712 spin_unlock(&space_info->lock);
3713 mutex_lock(&fs_info->chunk_mutex);
3714 mutex_unlock(&fs_info->chunk_mutex);
3715 } else {
3716 /* Proceed with allocation */
3717 space_info->chunk_alloc = 1;
3718 wait_for_alloc = false;
3719 spin_unlock(&space_info->lock);
3720 }
3721
3722 cond_resched();
3723 } while (wait_for_alloc);
3724
3725 mutex_lock(&fs_info->chunk_mutex);
3726 trans->allocating_chunk = true;
3727
3728 /*
3729 * If we have mixed data/metadata chunks we want to make sure we keep
3730 * allocating mixed chunks instead of individual chunks.
3731 */
3732 if (btrfs_mixed_space_info(space_info))
3733 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3734
3735 /*
3736 * if we're doing a data chunk, go ahead and make sure that
3737 * we keep a reasonable number of metadata chunks allocated in the
3738 * FS as well.
3739 */
3740 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3741 fs_info->data_chunk_allocations++;
3742 if (!(fs_info->data_chunk_allocations %
3743 fs_info->metadata_ratio))
3744 force_metadata_allocation(fs_info);
3745 }
3746
79bd3712 3747 ret = do_chunk_alloc(trans, flags);
07730d87
JB
3748 trans->allocating_chunk = false;
3749
3750 spin_lock(&space_info->lock);
3751 if (ret < 0) {
3752 if (ret == -ENOSPC)
3753 space_info->full = 1;
3754 else
3755 goto out;
3756 } else {
3757 ret = 1;
3758 space_info->max_extent_size = 0;
3759 }
3760
3761 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3762out:
3763 space_info->chunk_alloc = 0;
3764 spin_unlock(&space_info->lock);
3765 mutex_unlock(&fs_info->chunk_mutex);
07730d87
JB
3766
3767 return ret;
3768}
3769
3770static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3771{
3772 u64 num_dev;
3773
3774 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3775 if (!num_dev)
3776 num_dev = fs_info->fs_devices->rw_devices;
3777
3778 return num_dev;
3779}
3780
2bb2e00e
FM
3781static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3782 u64 bytes,
3783 u64 type)
07730d87
JB
3784{
3785 struct btrfs_fs_info *fs_info = trans->fs_info;
3786 struct btrfs_space_info *info;
3787 u64 left;
07730d87 3788 int ret = 0;
07730d87
JB
3789
3790 /*
3791 * Needed because we can end up allocating a system chunk and for an
3792 * atomic and race free space reservation in the chunk block reserve.
3793 */
3794 lockdep_assert_held(&fs_info->chunk_mutex);
3795
3796 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3797 spin_lock(&info->lock);
3798 left = info->total_bytes - btrfs_space_info_used(info, true);
3799 spin_unlock(&info->lock);
3800
2bb2e00e 3801 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
07730d87 3802 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
2bb2e00e 3803 left, bytes, type);
07730d87
JB
3804 btrfs_dump_space_info(fs_info, info, 0, 0);
3805 }
3806
2bb2e00e 3807 if (left < bytes) {
07730d87 3808 u64 flags = btrfs_system_alloc_profile(fs_info);
79bd3712 3809 struct btrfs_block_group *bg;
07730d87
JB
3810
3811 /*
3812 * Ignore failure to create system chunk. We might end up not
3813 * needing it, as we might not need to COW all nodes/leafs from
3814 * the paths we visit in the chunk tree (they were already COWed
3815 * or created in the current transaction for example).
3816 */
f6f39f7a 3817 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
3818 if (IS_ERR(bg)) {
3819 ret = PTR_ERR(bg);
2bb2e00e 3820 } else {
79bd3712
FM
3821 /*
3822 * If we fail to add the chunk item here, we end up
3823 * trying again at phase 2 of chunk allocation, at
3824 * btrfs_create_pending_block_groups(). So ignore
2bb2e00e
FM
3825 * any error here. An ENOSPC here could happen, due to
3826 * the cases described at do_chunk_alloc() - the system
3827 * block group we just created was just turned into RO
3828 * mode by a scrub for example, or a running discard
3829 * temporarily removed its free space entries, etc.
79bd3712
FM
3830 */
3831 btrfs_chunk_alloc_add_chunk_item(trans, bg);
3832 }
07730d87
JB
3833 }
3834
3835 if (!ret) {
9270501c 3836 ret = btrfs_block_rsv_add(fs_info,
07730d87 3837 &fs_info->chunk_block_rsv,
2bb2e00e 3838 bytes, BTRFS_RESERVE_NO_FLUSH);
1cb3db1c 3839 if (!ret)
2bb2e00e 3840 trans->chunk_bytes_reserved += bytes;
07730d87
JB
3841 }
3842}
3843
2bb2e00e
FM
3844/*
3845 * Reserve space in the system space for allocating or removing a chunk.
3846 * The caller must be holding fs_info->chunk_mutex.
3847 */
3848void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3849{
3850 struct btrfs_fs_info *fs_info = trans->fs_info;
3851 const u64 num_devs = get_profile_num_devs(fs_info, type);
3852 u64 bytes;
3853
3854 /* num_devs device items to update and 1 chunk item to add or remove. */
3855 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3856 btrfs_calc_insert_metadata_size(fs_info, 1);
3857
3858 reserve_chunk_space(trans, bytes, type);
3859}
3860
3861/*
3862 * Reserve space in the system space, if needed, for doing a modification to the
3863 * chunk btree.
3864 *
3865 * @trans: A transaction handle.
3866 * @is_item_insertion: Indicate if the modification is for inserting a new item
3867 * in the chunk btree or if it's for the deletion or update
3868 * of an existing item.
3869 *
3870 * This is used in a context where we need to update the chunk btree outside
3871 * block group allocation and removal, to avoid a deadlock with a concurrent
3872 * task that is allocating a metadata or data block group and therefore needs to
3873 * update the chunk btree while holding the chunk mutex. After the update to the
3874 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3875 *
3876 */
3877void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3878 bool is_item_insertion)
3879{
3880 struct btrfs_fs_info *fs_info = trans->fs_info;
3881 u64 bytes;
3882
3883 if (is_item_insertion)
3884 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3885 else
3886 bytes = btrfs_calc_metadata_size(fs_info, 1);
3887
3888 mutex_lock(&fs_info->chunk_mutex);
3889 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3890 mutex_unlock(&fs_info->chunk_mutex);
3891}
3892
3e43c279
JB
3893void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3894{
32da5386 3895 struct btrfs_block_group *block_group;
3e43c279
JB
3896 u64 last = 0;
3897
3898 while (1) {
3899 struct inode *inode;
3900
3901 block_group = btrfs_lookup_first_block_group(info, last);
3902 while (block_group) {
3903 btrfs_wait_block_group_cache_done(block_group);
3904 spin_lock(&block_group->lock);
3905 if (block_group->iref)
3906 break;
3907 spin_unlock(&block_group->lock);
3908 block_group = btrfs_next_block_group(block_group);
3909 }
3910 if (!block_group) {
3911 if (last == 0)
3912 break;
3913 last = 0;
3914 continue;
3915 }
3916
3917 inode = block_group->inode;
3918 block_group->iref = 0;
3919 block_group->inode = NULL;
3920 spin_unlock(&block_group->lock);
3921 ASSERT(block_group->io_ctl.inode == NULL);
3922 iput(inode);
b3470b5d 3923 last = block_group->start + block_group->length;
3e43c279
JB
3924 btrfs_put_block_group(block_group);
3925 }
3926}
3927
3928/*
3929 * Must be called only after stopping all workers, since we could have block
3930 * group caching kthreads running, and therefore they could race with us if we
3931 * freed the block groups before stopping them.
3932 */
3933int btrfs_free_block_groups(struct btrfs_fs_info *info)
3934{
32da5386 3935 struct btrfs_block_group *block_group;
3e43c279
JB
3936 struct btrfs_space_info *space_info;
3937 struct btrfs_caching_control *caching_ctl;
3938 struct rb_node *n;
3939
bbb86a37 3940 spin_lock(&info->block_group_cache_lock);
3e43c279
JB
3941 while (!list_empty(&info->caching_block_groups)) {
3942 caching_ctl = list_entry(info->caching_block_groups.next,
3943 struct btrfs_caching_control, list);
3944 list_del(&caching_ctl->list);
3945 btrfs_put_caching_control(caching_ctl);
3946 }
bbb86a37 3947 spin_unlock(&info->block_group_cache_lock);
3e43c279
JB
3948
3949 spin_lock(&info->unused_bgs_lock);
3950 while (!list_empty(&info->unused_bgs)) {
3951 block_group = list_first_entry(&info->unused_bgs,
32da5386 3952 struct btrfs_block_group,
3e43c279
JB
3953 bg_list);
3954 list_del_init(&block_group->bg_list);
3955 btrfs_put_block_group(block_group);
3956 }
3e43c279 3957
18bb8bbf
JT
3958 while (!list_empty(&info->reclaim_bgs)) {
3959 block_group = list_first_entry(&info->reclaim_bgs,
3960 struct btrfs_block_group,
3961 bg_list);
3962 list_del_init(&block_group->bg_list);
3963 btrfs_put_block_group(block_group);
3964 }
3965 spin_unlock(&info->unused_bgs_lock);
3966
afba2bc0
NA
3967 spin_lock(&info->zone_active_bgs_lock);
3968 while (!list_empty(&info->zone_active_bgs)) {
3969 block_group = list_first_entry(&info->zone_active_bgs,
3970 struct btrfs_block_group,
3971 active_bg_list);
3972 list_del_init(&block_group->active_bg_list);
3973 btrfs_put_block_group(block_group);
3974 }
3975 spin_unlock(&info->zone_active_bgs_lock);
3976
3e43c279
JB
3977 spin_lock(&info->block_group_cache_lock);
3978 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
32da5386 3979 block_group = rb_entry(n, struct btrfs_block_group,
3e43c279
JB
3980 cache_node);
3981 rb_erase(&block_group->cache_node,
3982 &info->block_group_cache_tree);
3983 RB_CLEAR_NODE(&block_group->cache_node);
3984 spin_unlock(&info->block_group_cache_lock);
3985
3986 down_write(&block_group->space_info->groups_sem);
3987 list_del(&block_group->list);
3988 up_write(&block_group->space_info->groups_sem);
3989
3990 /*
3991 * We haven't cached this block group, which means we could
3992 * possibly have excluded extents on this block group.
3993 */
3994 if (block_group->cached == BTRFS_CACHE_NO ||
3995 block_group->cached == BTRFS_CACHE_ERROR)
3996 btrfs_free_excluded_extents(block_group);
3997
3998 btrfs_remove_free_space_cache(block_group);
3999 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4000 ASSERT(list_empty(&block_group->dirty_list));
4001 ASSERT(list_empty(&block_group->io_list));
4002 ASSERT(list_empty(&block_group->bg_list));
48aaeebe 4003 ASSERT(refcount_read(&block_group->refs) == 1);
195a49ea 4004 ASSERT(block_group->swap_extents == 0);
3e43c279
JB
4005 btrfs_put_block_group(block_group);
4006
4007 spin_lock(&info->block_group_cache_lock);
4008 }
4009 spin_unlock(&info->block_group_cache_lock);
4010
3e43c279
JB
4011 btrfs_release_global_block_rsv(info);
4012
4013 while (!list_empty(&info->space_info)) {
4014 space_info = list_entry(info->space_info.next,
4015 struct btrfs_space_info,
4016 list);
4017
4018 /*
4019 * Do not hide this behind enospc_debug, this is actually
4020 * important and indicates a real bug if this happens.
4021 */
4022 if (WARN_ON(space_info->bytes_pinned > 0 ||
3e43c279
JB
4023 space_info->bytes_may_use > 0))
4024 btrfs_dump_space_info(info, space_info, 0, 0);
40cdc509
FM
4025
4026 /*
4027 * If there was a failure to cleanup a log tree, very likely due
4028 * to an IO failure on a writeback attempt of one or more of its
4029 * extent buffers, we could not do proper (and cheap) unaccounting
4030 * of their reserved space, so don't warn on bytes_reserved > 0 in
4031 * that case.
4032 */
4033 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4034 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4035 if (WARN_ON(space_info->bytes_reserved > 0))
4036 btrfs_dump_space_info(info, space_info, 0, 0);
4037 }
4038
d611add4 4039 WARN_ON(space_info->reclaim_size > 0);
3e43c279
JB
4040 list_del(&space_info->list);
4041 btrfs_sysfs_remove_space_info(space_info);
4042 }
4043 return 0;
4044}
684b752b
FM
4045
4046void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4047{
4048 atomic_inc(&cache->frozen);
4049}
4050
4051void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4052{
4053 struct btrfs_fs_info *fs_info = block_group->fs_info;
4054 struct extent_map_tree *em_tree;
4055 struct extent_map *em;
4056 bool cleanup;
4057
4058 spin_lock(&block_group->lock);
4059 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4060 block_group->removed);
4061 spin_unlock(&block_group->lock);
4062
4063 if (cleanup) {
684b752b
FM
4064 em_tree = &fs_info->mapping_tree;
4065 write_lock(&em_tree->lock);
4066 em = lookup_extent_mapping(em_tree, block_group->start,
4067 1);
4068 BUG_ON(!em); /* logic error, can't happen */
4069 remove_extent_mapping(em_tree, em);
4070 write_unlock(&em_tree->lock);
684b752b
FM
4071
4072 /* once for us and once for the tree */
4073 free_extent_map(em);
4074 free_extent_map(em);
4075
4076 /*
4077 * We may have left one free space entry and other possible
4078 * tasks trimming this block group have left 1 entry each one.
4079 * Free them if any.
4080 */
4081 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
4082 }
4083}
195a49ea
FM
4084
4085bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4086{
4087 bool ret = true;
4088
4089 spin_lock(&bg->lock);
4090 if (bg->ro)
4091 ret = false;
4092 else
4093 bg->swap_extents++;
4094 spin_unlock(&bg->lock);
4095
4096 return ret;
4097}
4098
4099void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4100{
4101 spin_lock(&bg->lock);
4102 ASSERT(!bg->ro);
4103 ASSERT(bg->swap_extents >= amount);
4104 bg->swap_extents -= amount;
4105 spin_unlock(&bg->lock);
4106}