]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/block-group.c
btrfs: remove the redundant parameter level in btrfs_bin_search()
[people/ms/linux.git] / fs / btrfs / block-group.c
CommitLineData
2e405ad8
JB
1// SPDX-License-Identifier: GPL-2.0
2
784352fe 3#include "misc.h"
2e405ad8
JB
4#include "ctree.h"
5#include "block-group.h"
3eeb3226 6#include "space-info.h"
9f21246d
JB
7#include "disk-io.h"
8#include "free-space-cache.h"
9#include "free-space-tree.h"
e3e0520b
JB
10#include "disk-io.h"
11#include "volumes.h"
12#include "transaction.h"
13#include "ref-verify.h"
4358d963
JB
14#include "sysfs.h"
15#include "tree-log.h"
77745c05 16#include "delalloc-space.h"
b0643e59 17#include "discard.h"
96a14336 18#include "raid56.h"
2e405ad8 19
878d7b67
JB
20/*
21 * Return target flags in extended format or 0 if restripe for this chunk_type
22 * is not in progress
23 *
24 * Should be called with balance_lock held
25 */
e11c0406 26static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
878d7b67
JB
27{
28 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 u64 target = 0;
30
31 if (!bctl)
32 return 0;
33
34 if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 }
44
45 return target;
46}
47
48/*
49 * @flags: available profiles in extended format (see ctree.h)
50 *
51 * Return reduced profile in chunk format. If profile changing is in progress
52 * (either running or paused) picks the target profile (if it's already
53 * available), otherwise falls back to plain reducing.
54 */
55static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56{
57 u64 num_devices = fs_info->fs_devices->rw_devices;
58 u64 target;
59 u64 raid_type;
60 u64 allowed = 0;
61
62 /*
63 * See if restripe for this chunk_type is in progress, if so try to
64 * reduce to the target profile
65 */
66 spin_lock(&fs_info->balance_lock);
e11c0406 67 target = get_restripe_target(fs_info, flags);
878d7b67
JB
68 if (target) {
69 /* Pick target profile only if it's already available */
70 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
71 spin_unlock(&fs_info->balance_lock);
72 return extended_to_chunk(target);
73 }
74 }
75 spin_unlock(&fs_info->balance_lock);
76
77 /* First, mask out the RAID levels which aren't possible */
78 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
79 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
80 allowed |= btrfs_raid_array[raid_type].bg_flag;
81 }
82 allowed &= flags;
83
84 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
85 allowed = BTRFS_BLOCK_GROUP_RAID6;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
87 allowed = BTRFS_BLOCK_GROUP_RAID5;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
89 allowed = BTRFS_BLOCK_GROUP_RAID10;
90 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
91 allowed = BTRFS_BLOCK_GROUP_RAID1;
92 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
93 allowed = BTRFS_BLOCK_GROUP_RAID0;
94
95 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
96
97 return extended_to_chunk(flags | allowed);
98}
99
ef0a82da 100u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
878d7b67
JB
101{
102 unsigned seq;
103 u64 flags;
104
105 do {
106 flags = orig_flags;
107 seq = read_seqbegin(&fs_info->profiles_lock);
108
109 if (flags & BTRFS_BLOCK_GROUP_DATA)
110 flags |= fs_info->avail_data_alloc_bits;
111 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
112 flags |= fs_info->avail_system_alloc_bits;
113 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
114 flags |= fs_info->avail_metadata_alloc_bits;
115 } while (read_seqretry(&fs_info->profiles_lock, seq));
116
117 return btrfs_reduce_alloc_profile(fs_info, flags);
118}
119
32da5386 120void btrfs_get_block_group(struct btrfs_block_group *cache)
3cad1284
JB
121{
122 atomic_inc(&cache->count);
123}
124
32da5386 125void btrfs_put_block_group(struct btrfs_block_group *cache)
3cad1284
JB
126{
127 if (atomic_dec_and_test(&cache->count)) {
128 WARN_ON(cache->pinned > 0);
129 WARN_ON(cache->reserved > 0);
130
b0643e59
DZ
131 /*
132 * A block_group shouldn't be on the discard_list anymore.
133 * Remove the block_group from the discard_list to prevent us
134 * from causing a panic due to NULL pointer dereference.
135 */
136 if (WARN_ON(!list_empty(&cache->discard_list)))
137 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
138 cache);
139
3cad1284
JB
140 /*
141 * If not empty, someone is still holding mutex of
142 * full_stripe_lock, which can only be released by caller.
143 * And it will definitely cause use-after-free when caller
144 * tries to release full stripe lock.
145 *
146 * No better way to resolve, but only to warn.
147 */
148 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
149 kfree(cache->free_space_ctl);
150 kfree(cache);
151 }
152}
153
4358d963
JB
154/*
155 * This adds the block group to the fs_info rb tree for the block group cache
156 */
157static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
32da5386 158 struct btrfs_block_group *block_group)
4358d963
JB
159{
160 struct rb_node **p;
161 struct rb_node *parent = NULL;
32da5386 162 struct btrfs_block_group *cache;
4358d963
JB
163
164 spin_lock(&info->block_group_cache_lock);
165 p = &info->block_group_cache_tree.rb_node;
166
167 while (*p) {
168 parent = *p;
32da5386 169 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
b3470b5d 170 if (block_group->start < cache->start) {
4358d963 171 p = &(*p)->rb_left;
b3470b5d 172 } else if (block_group->start > cache->start) {
4358d963
JB
173 p = &(*p)->rb_right;
174 } else {
175 spin_unlock(&info->block_group_cache_lock);
176 return -EEXIST;
177 }
178 }
179
180 rb_link_node(&block_group->cache_node, parent, p);
181 rb_insert_color(&block_group->cache_node,
182 &info->block_group_cache_tree);
183
b3470b5d
DS
184 if (info->first_logical_byte > block_group->start)
185 info->first_logical_byte = block_group->start;
4358d963
JB
186
187 spin_unlock(&info->block_group_cache_lock);
188
189 return 0;
190}
191
2e405ad8
JB
192/*
193 * This will return the block group at or after bytenr if contains is 0, else
194 * it will return the block group that contains the bytenr
195 */
32da5386 196static struct btrfs_block_group *block_group_cache_tree_search(
2e405ad8
JB
197 struct btrfs_fs_info *info, u64 bytenr, int contains)
198{
32da5386 199 struct btrfs_block_group *cache, *ret = NULL;
2e405ad8
JB
200 struct rb_node *n;
201 u64 end, start;
202
203 spin_lock(&info->block_group_cache_lock);
204 n = info->block_group_cache_tree.rb_node;
205
206 while (n) {
32da5386 207 cache = rb_entry(n, struct btrfs_block_group, cache_node);
b3470b5d
DS
208 end = cache->start + cache->length - 1;
209 start = cache->start;
2e405ad8
JB
210
211 if (bytenr < start) {
b3470b5d 212 if (!contains && (!ret || start < ret->start))
2e405ad8
JB
213 ret = cache;
214 n = n->rb_left;
215 } else if (bytenr > start) {
216 if (contains && bytenr <= end) {
217 ret = cache;
218 break;
219 }
220 n = n->rb_right;
221 } else {
222 ret = cache;
223 break;
224 }
225 }
226 if (ret) {
227 btrfs_get_block_group(ret);
b3470b5d
DS
228 if (bytenr == 0 && info->first_logical_byte > ret->start)
229 info->first_logical_byte = ret->start;
2e405ad8
JB
230 }
231 spin_unlock(&info->block_group_cache_lock);
232
233 return ret;
234}
235
236/*
237 * Return the block group that starts at or after bytenr
238 */
32da5386 239struct btrfs_block_group *btrfs_lookup_first_block_group(
2e405ad8
JB
240 struct btrfs_fs_info *info, u64 bytenr)
241{
242 return block_group_cache_tree_search(info, bytenr, 0);
243}
244
245/*
246 * Return the block group that contains the given bytenr
247 */
32da5386 248struct btrfs_block_group *btrfs_lookup_block_group(
2e405ad8
JB
249 struct btrfs_fs_info *info, u64 bytenr)
250{
251 return block_group_cache_tree_search(info, bytenr, 1);
252}
253
32da5386
DS
254struct btrfs_block_group *btrfs_next_block_group(
255 struct btrfs_block_group *cache)
2e405ad8
JB
256{
257 struct btrfs_fs_info *fs_info = cache->fs_info;
258 struct rb_node *node;
259
260 spin_lock(&fs_info->block_group_cache_lock);
261
262 /* If our block group was removed, we need a full search. */
263 if (RB_EMPTY_NODE(&cache->cache_node)) {
b3470b5d 264 const u64 next_bytenr = cache->start + cache->length;
2e405ad8
JB
265
266 spin_unlock(&fs_info->block_group_cache_lock);
267 btrfs_put_block_group(cache);
268 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
269 }
270 node = rb_next(&cache->cache_node);
271 btrfs_put_block_group(cache);
272 if (node) {
32da5386 273 cache = rb_entry(node, struct btrfs_block_group, cache_node);
2e405ad8
JB
274 btrfs_get_block_group(cache);
275 } else
276 cache = NULL;
277 spin_unlock(&fs_info->block_group_cache_lock);
278 return cache;
279}
3eeb3226
JB
280
281bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
282{
32da5386 283 struct btrfs_block_group *bg;
3eeb3226
JB
284 bool ret = true;
285
286 bg = btrfs_lookup_block_group(fs_info, bytenr);
287 if (!bg)
288 return false;
289
290 spin_lock(&bg->lock);
291 if (bg->ro)
292 ret = false;
293 else
294 atomic_inc(&bg->nocow_writers);
295 spin_unlock(&bg->lock);
296
297 /* No put on block group, done by btrfs_dec_nocow_writers */
298 if (!ret)
299 btrfs_put_block_group(bg);
300
301 return ret;
302}
303
304void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
305{
32da5386 306 struct btrfs_block_group *bg;
3eeb3226
JB
307
308 bg = btrfs_lookup_block_group(fs_info, bytenr);
309 ASSERT(bg);
310 if (atomic_dec_and_test(&bg->nocow_writers))
311 wake_up_var(&bg->nocow_writers);
312 /*
313 * Once for our lookup and once for the lookup done by a previous call
314 * to btrfs_inc_nocow_writers()
315 */
316 btrfs_put_block_group(bg);
317 btrfs_put_block_group(bg);
318}
319
32da5386 320void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
3eeb3226
JB
321{
322 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
323}
324
325void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
326 const u64 start)
327{
32da5386 328 struct btrfs_block_group *bg;
3eeb3226
JB
329
330 bg = btrfs_lookup_block_group(fs_info, start);
331 ASSERT(bg);
332 if (atomic_dec_and_test(&bg->reservations))
333 wake_up_var(&bg->reservations);
334 btrfs_put_block_group(bg);
335}
336
32da5386 337void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
3eeb3226
JB
338{
339 struct btrfs_space_info *space_info = bg->space_info;
340
341 ASSERT(bg->ro);
342
343 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
344 return;
345
346 /*
347 * Our block group is read only but before we set it to read only,
348 * some task might have had allocated an extent from it already, but it
349 * has not yet created a respective ordered extent (and added it to a
350 * root's list of ordered extents).
351 * Therefore wait for any task currently allocating extents, since the
352 * block group's reservations counter is incremented while a read lock
353 * on the groups' semaphore is held and decremented after releasing
354 * the read access on that semaphore and creating the ordered extent.
355 */
356 down_write(&space_info->groups_sem);
357 up_write(&space_info->groups_sem);
358
359 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
360}
9f21246d
JB
361
362struct btrfs_caching_control *btrfs_get_caching_control(
32da5386 363 struct btrfs_block_group *cache)
9f21246d
JB
364{
365 struct btrfs_caching_control *ctl;
366
367 spin_lock(&cache->lock);
368 if (!cache->caching_ctl) {
369 spin_unlock(&cache->lock);
370 return NULL;
371 }
372
373 ctl = cache->caching_ctl;
374 refcount_inc(&ctl->count);
375 spin_unlock(&cache->lock);
376 return ctl;
377}
378
379void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
380{
381 if (refcount_dec_and_test(&ctl->count))
382 kfree(ctl);
383}
384
385/*
386 * When we wait for progress in the block group caching, its because our
387 * allocation attempt failed at least once. So, we must sleep and let some
388 * progress happen before we try again.
389 *
390 * This function will sleep at least once waiting for new free space to show
391 * up, and then it will check the block group free space numbers for our min
392 * num_bytes. Another option is to have it go ahead and look in the rbtree for
393 * a free extent of a given size, but this is a good start.
394 *
395 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
396 * any of the information in this block group.
397 */
32da5386 398void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
9f21246d
JB
399 u64 num_bytes)
400{
401 struct btrfs_caching_control *caching_ctl;
402
403 caching_ctl = btrfs_get_caching_control(cache);
404 if (!caching_ctl)
405 return;
406
32da5386 407 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
9f21246d
JB
408 (cache->free_space_ctl->free_space >= num_bytes));
409
410 btrfs_put_caching_control(caching_ctl);
411}
412
32da5386 413int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
9f21246d
JB
414{
415 struct btrfs_caching_control *caching_ctl;
416 int ret = 0;
417
418 caching_ctl = btrfs_get_caching_control(cache);
419 if (!caching_ctl)
420 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
421
32da5386 422 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
9f21246d
JB
423 if (cache->cached == BTRFS_CACHE_ERROR)
424 ret = -EIO;
425 btrfs_put_caching_control(caching_ctl);
426 return ret;
427}
428
429#ifdef CONFIG_BTRFS_DEBUG
32da5386 430static void fragment_free_space(struct btrfs_block_group *block_group)
9f21246d
JB
431{
432 struct btrfs_fs_info *fs_info = block_group->fs_info;
b3470b5d
DS
433 u64 start = block_group->start;
434 u64 len = block_group->length;
9f21246d
JB
435 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
436 fs_info->nodesize : fs_info->sectorsize;
437 u64 step = chunk << 1;
438
439 while (len > chunk) {
440 btrfs_remove_free_space(block_group, start, chunk);
441 start += step;
442 if (len < step)
443 len = 0;
444 else
445 len -= step;
446 }
447}
448#endif
449
450/*
451 * This is only called by btrfs_cache_block_group, since we could have freed
452 * extents we need to check the pinned_extents for any extents that can't be
453 * used yet since their free space will be released as soon as the transaction
454 * commits.
455 */
32da5386 456u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
9f21246d
JB
457{
458 struct btrfs_fs_info *info = block_group->fs_info;
459 u64 extent_start, extent_end, size, total_added = 0;
460 int ret;
461
462 while (start < end) {
fe119a6e 463 ret = find_first_extent_bit(&info->excluded_extents, start,
9f21246d
JB
464 &extent_start, &extent_end,
465 EXTENT_DIRTY | EXTENT_UPTODATE,
466 NULL);
467 if (ret)
468 break;
469
470 if (extent_start <= start) {
471 start = extent_end + 1;
472 } else if (extent_start > start && extent_start < end) {
473 size = extent_start - start;
474 total_added += size;
b0643e59
DZ
475 ret = btrfs_add_free_space_async_trimmed(block_group,
476 start, size);
9f21246d
JB
477 BUG_ON(ret); /* -ENOMEM or logic error */
478 start = extent_end + 1;
479 } else {
480 break;
481 }
482 }
483
484 if (start < end) {
485 size = end - start;
486 total_added += size;
b0643e59
DZ
487 ret = btrfs_add_free_space_async_trimmed(block_group, start,
488 size);
9f21246d
JB
489 BUG_ON(ret); /* -ENOMEM or logic error */
490 }
491
492 return total_added;
493}
494
495static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
496{
32da5386 497 struct btrfs_block_group *block_group = caching_ctl->block_group;
9f21246d
JB
498 struct btrfs_fs_info *fs_info = block_group->fs_info;
499 struct btrfs_root *extent_root = fs_info->extent_root;
500 struct btrfs_path *path;
501 struct extent_buffer *leaf;
502 struct btrfs_key key;
503 u64 total_found = 0;
504 u64 last = 0;
505 u32 nritems;
506 int ret;
507 bool wakeup = true;
508
509 path = btrfs_alloc_path();
510 if (!path)
511 return -ENOMEM;
512
b3470b5d 513 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
9f21246d
JB
514
515#ifdef CONFIG_BTRFS_DEBUG
516 /*
517 * If we're fragmenting we don't want to make anybody think we can
518 * allocate from this block group until we've had a chance to fragment
519 * the free space.
520 */
521 if (btrfs_should_fragment_free_space(block_group))
522 wakeup = false;
523#endif
524 /*
525 * We don't want to deadlock with somebody trying to allocate a new
526 * extent for the extent root while also trying to search the extent
527 * root to add free space. So we skip locking and search the commit
528 * root, since its read-only
529 */
530 path->skip_locking = 1;
531 path->search_commit_root = 1;
532 path->reada = READA_FORWARD;
533
534 key.objectid = last;
535 key.offset = 0;
536 key.type = BTRFS_EXTENT_ITEM_KEY;
537
538next:
539 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
540 if (ret < 0)
541 goto out;
542
543 leaf = path->nodes[0];
544 nritems = btrfs_header_nritems(leaf);
545
546 while (1) {
547 if (btrfs_fs_closing(fs_info) > 1) {
548 last = (u64)-1;
549 break;
550 }
551
552 if (path->slots[0] < nritems) {
553 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
554 } else {
555 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
556 if (ret)
557 break;
558
559 if (need_resched() ||
560 rwsem_is_contended(&fs_info->commit_root_sem)) {
561 if (wakeup)
562 caching_ctl->progress = last;
563 btrfs_release_path(path);
564 up_read(&fs_info->commit_root_sem);
565 mutex_unlock(&caching_ctl->mutex);
566 cond_resched();
567 mutex_lock(&caching_ctl->mutex);
568 down_read(&fs_info->commit_root_sem);
569 goto next;
570 }
571
572 ret = btrfs_next_leaf(extent_root, path);
573 if (ret < 0)
574 goto out;
575 if (ret)
576 break;
577 leaf = path->nodes[0];
578 nritems = btrfs_header_nritems(leaf);
579 continue;
580 }
581
582 if (key.objectid < last) {
583 key.objectid = last;
584 key.offset = 0;
585 key.type = BTRFS_EXTENT_ITEM_KEY;
586
587 if (wakeup)
588 caching_ctl->progress = last;
589 btrfs_release_path(path);
590 goto next;
591 }
592
b3470b5d 593 if (key.objectid < block_group->start) {
9f21246d
JB
594 path->slots[0]++;
595 continue;
596 }
597
b3470b5d 598 if (key.objectid >= block_group->start + block_group->length)
9f21246d
JB
599 break;
600
601 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
602 key.type == BTRFS_METADATA_ITEM_KEY) {
603 total_found += add_new_free_space(block_group, last,
604 key.objectid);
605 if (key.type == BTRFS_METADATA_ITEM_KEY)
606 last = key.objectid +
607 fs_info->nodesize;
608 else
609 last = key.objectid + key.offset;
610
611 if (total_found > CACHING_CTL_WAKE_UP) {
612 total_found = 0;
613 if (wakeup)
614 wake_up(&caching_ctl->wait);
615 }
616 }
617 path->slots[0]++;
618 }
619 ret = 0;
620
621 total_found += add_new_free_space(block_group, last,
b3470b5d 622 block_group->start + block_group->length);
9f21246d
JB
623 caching_ctl->progress = (u64)-1;
624
625out:
626 btrfs_free_path(path);
627 return ret;
628}
629
630static noinline void caching_thread(struct btrfs_work *work)
631{
32da5386 632 struct btrfs_block_group *block_group;
9f21246d
JB
633 struct btrfs_fs_info *fs_info;
634 struct btrfs_caching_control *caching_ctl;
635 int ret;
636
637 caching_ctl = container_of(work, struct btrfs_caching_control, work);
638 block_group = caching_ctl->block_group;
639 fs_info = block_group->fs_info;
640
641 mutex_lock(&caching_ctl->mutex);
642 down_read(&fs_info->commit_root_sem);
643
644 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
645 ret = load_free_space_tree(caching_ctl);
646 else
647 ret = load_extent_tree_free(caching_ctl);
648
649 spin_lock(&block_group->lock);
650 block_group->caching_ctl = NULL;
651 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
652 spin_unlock(&block_group->lock);
653
654#ifdef CONFIG_BTRFS_DEBUG
655 if (btrfs_should_fragment_free_space(block_group)) {
656 u64 bytes_used;
657
658 spin_lock(&block_group->space_info->lock);
659 spin_lock(&block_group->lock);
b3470b5d 660 bytes_used = block_group->length - block_group->used;
9f21246d
JB
661 block_group->space_info->bytes_used += bytes_used >> 1;
662 spin_unlock(&block_group->lock);
663 spin_unlock(&block_group->space_info->lock);
e11c0406 664 fragment_free_space(block_group);
9f21246d
JB
665 }
666#endif
667
668 caching_ctl->progress = (u64)-1;
669
670 up_read(&fs_info->commit_root_sem);
671 btrfs_free_excluded_extents(block_group);
672 mutex_unlock(&caching_ctl->mutex);
673
674 wake_up(&caching_ctl->wait);
675
676 btrfs_put_caching_control(caching_ctl);
677 btrfs_put_block_group(block_group);
678}
679
32da5386 680int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
9f21246d
JB
681{
682 DEFINE_WAIT(wait);
683 struct btrfs_fs_info *fs_info = cache->fs_info;
684 struct btrfs_caching_control *caching_ctl;
685 int ret = 0;
686
687 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
688 if (!caching_ctl)
689 return -ENOMEM;
690
691 INIT_LIST_HEAD(&caching_ctl->list);
692 mutex_init(&caching_ctl->mutex);
693 init_waitqueue_head(&caching_ctl->wait);
694 caching_ctl->block_group = cache;
b3470b5d 695 caching_ctl->progress = cache->start;
9f21246d 696 refcount_set(&caching_ctl->count, 1);
a0cac0ec 697 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
9f21246d
JB
698
699 spin_lock(&cache->lock);
700 /*
701 * This should be a rare occasion, but this could happen I think in the
702 * case where one thread starts to load the space cache info, and then
703 * some other thread starts a transaction commit which tries to do an
704 * allocation while the other thread is still loading the space cache
705 * info. The previous loop should have kept us from choosing this block
706 * group, but if we've moved to the state where we will wait on caching
707 * block groups we need to first check if we're doing a fast load here,
708 * so we can wait for it to finish, otherwise we could end up allocating
709 * from a block group who's cache gets evicted for one reason or
710 * another.
711 */
712 while (cache->cached == BTRFS_CACHE_FAST) {
713 struct btrfs_caching_control *ctl;
714
715 ctl = cache->caching_ctl;
716 refcount_inc(&ctl->count);
717 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
718 spin_unlock(&cache->lock);
719
720 schedule();
721
722 finish_wait(&ctl->wait, &wait);
723 btrfs_put_caching_control(ctl);
724 spin_lock(&cache->lock);
725 }
726
727 if (cache->cached != BTRFS_CACHE_NO) {
728 spin_unlock(&cache->lock);
729 kfree(caching_ctl);
730 return 0;
731 }
732 WARN_ON(cache->caching_ctl);
733 cache->caching_ctl = caching_ctl;
734 cache->cached = BTRFS_CACHE_FAST;
735 spin_unlock(&cache->lock);
736
737 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
738 mutex_lock(&caching_ctl->mutex);
739 ret = load_free_space_cache(cache);
740
741 spin_lock(&cache->lock);
742 if (ret == 1) {
743 cache->caching_ctl = NULL;
744 cache->cached = BTRFS_CACHE_FINISHED;
745 cache->last_byte_to_unpin = (u64)-1;
746 caching_ctl->progress = (u64)-1;
747 } else {
748 if (load_cache_only) {
749 cache->caching_ctl = NULL;
750 cache->cached = BTRFS_CACHE_NO;
751 } else {
752 cache->cached = BTRFS_CACHE_STARTED;
753 cache->has_caching_ctl = 1;
754 }
755 }
756 spin_unlock(&cache->lock);
757#ifdef CONFIG_BTRFS_DEBUG
758 if (ret == 1 &&
759 btrfs_should_fragment_free_space(cache)) {
760 u64 bytes_used;
761
762 spin_lock(&cache->space_info->lock);
763 spin_lock(&cache->lock);
b3470b5d 764 bytes_used = cache->length - cache->used;
9f21246d
JB
765 cache->space_info->bytes_used += bytes_used >> 1;
766 spin_unlock(&cache->lock);
767 spin_unlock(&cache->space_info->lock);
e11c0406 768 fragment_free_space(cache);
9f21246d
JB
769 }
770#endif
771 mutex_unlock(&caching_ctl->mutex);
772
773 wake_up(&caching_ctl->wait);
774 if (ret == 1) {
775 btrfs_put_caching_control(caching_ctl);
776 btrfs_free_excluded_extents(cache);
777 return 0;
778 }
779 } else {
780 /*
781 * We're either using the free space tree or no caching at all.
782 * Set cached to the appropriate value and wakeup any waiters.
783 */
784 spin_lock(&cache->lock);
785 if (load_cache_only) {
786 cache->caching_ctl = NULL;
787 cache->cached = BTRFS_CACHE_NO;
788 } else {
789 cache->cached = BTRFS_CACHE_STARTED;
790 cache->has_caching_ctl = 1;
791 }
792 spin_unlock(&cache->lock);
793 wake_up(&caching_ctl->wait);
794 }
795
796 if (load_cache_only) {
797 btrfs_put_caching_control(caching_ctl);
798 return 0;
799 }
800
801 down_write(&fs_info->commit_root_sem);
802 refcount_inc(&caching_ctl->count);
803 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
804 up_write(&fs_info->commit_root_sem);
805
806 btrfs_get_block_group(cache);
807
808 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
809
810 return ret;
811}
e3e0520b
JB
812
813static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
814{
815 u64 extra_flags = chunk_to_extended(flags) &
816 BTRFS_EXTENDED_PROFILE_MASK;
817
818 write_seqlock(&fs_info->profiles_lock);
819 if (flags & BTRFS_BLOCK_GROUP_DATA)
820 fs_info->avail_data_alloc_bits &= ~extra_flags;
821 if (flags & BTRFS_BLOCK_GROUP_METADATA)
822 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
823 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
824 fs_info->avail_system_alloc_bits &= ~extra_flags;
825 write_sequnlock(&fs_info->profiles_lock);
826}
827
828/*
829 * Clear incompat bits for the following feature(s):
830 *
831 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
832 * in the whole filesystem
9c907446
DS
833 *
834 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
e3e0520b
JB
835 */
836static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
837{
9c907446
DS
838 bool found_raid56 = false;
839 bool found_raid1c34 = false;
840
841 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
842 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
843 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
e3e0520b
JB
844 struct list_head *head = &fs_info->space_info;
845 struct btrfs_space_info *sinfo;
846
847 list_for_each_entry_rcu(sinfo, head, list) {
e3e0520b
JB
848 down_read(&sinfo->groups_sem);
849 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
9c907446 850 found_raid56 = true;
e3e0520b 851 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
9c907446
DS
852 found_raid56 = true;
853 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
854 found_raid1c34 = true;
855 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
856 found_raid1c34 = true;
e3e0520b 857 up_read(&sinfo->groups_sem);
e3e0520b 858 }
d8e6fd5c 859 if (!found_raid56)
9c907446 860 btrfs_clear_fs_incompat(fs_info, RAID56);
d8e6fd5c 861 if (!found_raid1c34)
9c907446 862 btrfs_clear_fs_incompat(fs_info, RAID1C34);
e3e0520b
JB
863 }
864}
865
866int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
867 u64 group_start, struct extent_map *em)
868{
869 struct btrfs_fs_info *fs_info = trans->fs_info;
870 struct btrfs_root *root = fs_info->extent_root;
871 struct btrfs_path *path;
32da5386 872 struct btrfs_block_group *block_group;
e3e0520b
JB
873 struct btrfs_free_cluster *cluster;
874 struct btrfs_root *tree_root = fs_info->tree_root;
875 struct btrfs_key key;
876 struct inode *inode;
877 struct kobject *kobj = NULL;
878 int ret;
879 int index;
880 int factor;
881 struct btrfs_caching_control *caching_ctl = NULL;
882 bool remove_em;
883 bool remove_rsv = false;
884
885 block_group = btrfs_lookup_block_group(fs_info, group_start);
886 BUG_ON(!block_group);
887 BUG_ON(!block_group->ro);
888
889 trace_btrfs_remove_block_group(block_group);
890 /*
891 * Free the reserved super bytes from this block group before
892 * remove it.
893 */
894 btrfs_free_excluded_extents(block_group);
b3470b5d
DS
895 btrfs_free_ref_tree_range(fs_info, block_group->start,
896 block_group->length);
e3e0520b 897
e3e0520b
JB
898 index = btrfs_bg_flags_to_raid_index(block_group->flags);
899 factor = btrfs_bg_type_to_factor(block_group->flags);
900
901 /* make sure this block group isn't part of an allocation cluster */
902 cluster = &fs_info->data_alloc_cluster;
903 spin_lock(&cluster->refill_lock);
904 btrfs_return_cluster_to_free_space(block_group, cluster);
905 spin_unlock(&cluster->refill_lock);
906
907 /*
908 * make sure this block group isn't part of a metadata
909 * allocation cluster
910 */
911 cluster = &fs_info->meta_alloc_cluster;
912 spin_lock(&cluster->refill_lock);
913 btrfs_return_cluster_to_free_space(block_group, cluster);
914 spin_unlock(&cluster->refill_lock);
915
916 path = btrfs_alloc_path();
917 if (!path) {
918 ret = -ENOMEM;
f6033c5e 919 goto out_put_group;
e3e0520b
JB
920 }
921
922 /*
923 * get the inode first so any iput calls done for the io_list
924 * aren't the final iput (no unlinks allowed now)
925 */
926 inode = lookup_free_space_inode(block_group, path);
927
928 mutex_lock(&trans->transaction->cache_write_mutex);
929 /*
930 * Make sure our free space cache IO is done before removing the
931 * free space inode
932 */
933 spin_lock(&trans->transaction->dirty_bgs_lock);
934 if (!list_empty(&block_group->io_list)) {
935 list_del_init(&block_group->io_list);
936
937 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
938
939 spin_unlock(&trans->transaction->dirty_bgs_lock);
940 btrfs_wait_cache_io(trans, block_group, path);
941 btrfs_put_block_group(block_group);
942 spin_lock(&trans->transaction->dirty_bgs_lock);
943 }
944
945 if (!list_empty(&block_group->dirty_list)) {
946 list_del_init(&block_group->dirty_list);
947 remove_rsv = true;
948 btrfs_put_block_group(block_group);
949 }
950 spin_unlock(&trans->transaction->dirty_bgs_lock);
951 mutex_unlock(&trans->transaction->cache_write_mutex);
952
953 if (!IS_ERR(inode)) {
954 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
955 if (ret) {
956 btrfs_add_delayed_iput(inode);
f6033c5e 957 goto out_put_group;
e3e0520b
JB
958 }
959 clear_nlink(inode);
960 /* One for the block groups ref */
961 spin_lock(&block_group->lock);
962 if (block_group->iref) {
963 block_group->iref = 0;
964 block_group->inode = NULL;
965 spin_unlock(&block_group->lock);
966 iput(inode);
967 } else {
968 spin_unlock(&block_group->lock);
969 }
970 /* One for our lookup ref */
971 btrfs_add_delayed_iput(inode);
972 }
973
974 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
e3e0520b 975 key.type = 0;
b3470b5d 976 key.offset = block_group->start;
e3e0520b
JB
977
978 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
979 if (ret < 0)
f6033c5e 980 goto out_put_group;
e3e0520b
JB
981 if (ret > 0)
982 btrfs_release_path(path);
983 if (ret == 0) {
984 ret = btrfs_del_item(trans, tree_root, path);
985 if (ret)
f6033c5e 986 goto out_put_group;
e3e0520b
JB
987 btrfs_release_path(path);
988 }
989
990 spin_lock(&fs_info->block_group_cache_lock);
991 rb_erase(&block_group->cache_node,
992 &fs_info->block_group_cache_tree);
993 RB_CLEAR_NODE(&block_group->cache_node);
994
b3470b5d 995 if (fs_info->first_logical_byte == block_group->start)
e3e0520b
JB
996 fs_info->first_logical_byte = (u64)-1;
997 spin_unlock(&fs_info->block_group_cache_lock);
998
999 down_write(&block_group->space_info->groups_sem);
1000 /*
1001 * we must use list_del_init so people can check to see if they
1002 * are still on the list after taking the semaphore
1003 */
1004 list_del_init(&block_group->list);
1005 if (list_empty(&block_group->space_info->block_groups[index])) {
1006 kobj = block_group->space_info->block_group_kobjs[index];
1007 block_group->space_info->block_group_kobjs[index] = NULL;
1008 clear_avail_alloc_bits(fs_info, block_group->flags);
1009 }
1010 up_write(&block_group->space_info->groups_sem);
1011 clear_incompat_bg_bits(fs_info, block_group->flags);
1012 if (kobj) {
1013 kobject_del(kobj);
1014 kobject_put(kobj);
1015 }
1016
1017 if (block_group->has_caching_ctl)
1018 caching_ctl = btrfs_get_caching_control(block_group);
1019 if (block_group->cached == BTRFS_CACHE_STARTED)
1020 btrfs_wait_block_group_cache_done(block_group);
1021 if (block_group->has_caching_ctl) {
1022 down_write(&fs_info->commit_root_sem);
1023 if (!caching_ctl) {
1024 struct btrfs_caching_control *ctl;
1025
1026 list_for_each_entry(ctl,
1027 &fs_info->caching_block_groups, list)
1028 if (ctl->block_group == block_group) {
1029 caching_ctl = ctl;
1030 refcount_inc(&caching_ctl->count);
1031 break;
1032 }
1033 }
1034 if (caching_ctl)
1035 list_del_init(&caching_ctl->list);
1036 up_write(&fs_info->commit_root_sem);
1037 if (caching_ctl) {
1038 /* Once for the caching bgs list and once for us. */
1039 btrfs_put_caching_control(caching_ctl);
1040 btrfs_put_caching_control(caching_ctl);
1041 }
1042 }
1043
1044 spin_lock(&trans->transaction->dirty_bgs_lock);
1045 WARN_ON(!list_empty(&block_group->dirty_list));
1046 WARN_ON(!list_empty(&block_group->io_list));
1047 spin_unlock(&trans->transaction->dirty_bgs_lock);
1048
1049 btrfs_remove_free_space_cache(block_group);
1050
1051 spin_lock(&block_group->space_info->lock);
1052 list_del_init(&block_group->ro_list);
1053
1054 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1055 WARN_ON(block_group->space_info->total_bytes
b3470b5d 1056 < block_group->length);
e3e0520b 1057 WARN_ON(block_group->space_info->bytes_readonly
b3470b5d 1058 < block_group->length);
e3e0520b 1059 WARN_ON(block_group->space_info->disk_total
b3470b5d 1060 < block_group->length * factor);
e3e0520b 1061 }
b3470b5d
DS
1062 block_group->space_info->total_bytes -= block_group->length;
1063 block_group->space_info->bytes_readonly -= block_group->length;
1064 block_group->space_info->disk_total -= block_group->length * factor;
e3e0520b
JB
1065
1066 spin_unlock(&block_group->space_info->lock);
1067
b3470b5d
DS
1068 key.objectid = block_group->start;
1069 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1070 key.offset = block_group->length;
e3e0520b
JB
1071
1072 mutex_lock(&fs_info->chunk_mutex);
1073 spin_lock(&block_group->lock);
1074 block_group->removed = 1;
1075 /*
1076 * At this point trimming can't start on this block group, because we
1077 * removed the block group from the tree fs_info->block_group_cache_tree
1078 * so no one can't find it anymore and even if someone already got this
1079 * block group before we removed it from the rbtree, they have already
1080 * incremented block_group->trimming - if they didn't, they won't find
1081 * any free space entries because we already removed them all when we
1082 * called btrfs_remove_free_space_cache().
1083 *
1084 * And we must not remove the extent map from the fs_info->mapping_tree
1085 * to prevent the same logical address range and physical device space
1086 * ranges from being reused for a new block group. This is because our
1087 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1088 * completely transactionless, so while it is trimming a range the
1089 * currently running transaction might finish and a new one start,
1090 * allowing for new block groups to be created that can reuse the same
1091 * physical device locations unless we take this special care.
1092 *
1093 * There may also be an implicit trim operation if the file system
1094 * is mounted with -odiscard. The same protections must remain
1095 * in place until the extents have been discarded completely when
1096 * the transaction commit has completed.
1097 */
1098 remove_em = (atomic_read(&block_group->trimming) == 0);
1099 spin_unlock(&block_group->lock);
1100
1101 mutex_unlock(&fs_info->chunk_mutex);
1102
1103 ret = remove_block_group_free_space(trans, block_group);
1104 if (ret)
f6033c5e 1105 goto out_put_group;
e3e0520b 1106
f6033c5e 1107 /* Once for the block groups rbtree */
e3e0520b
JB
1108 btrfs_put_block_group(block_group);
1109
1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 if (ret > 0)
1112 ret = -EIO;
1113 if (ret < 0)
1114 goto out;
1115
1116 ret = btrfs_del_item(trans, root, path);
1117 if (ret)
1118 goto out;
1119
1120 if (remove_em) {
1121 struct extent_map_tree *em_tree;
1122
1123 em_tree = &fs_info->mapping_tree;
1124 write_lock(&em_tree->lock);
1125 remove_extent_mapping(em_tree, em);
1126 write_unlock(&em_tree->lock);
1127 /* once for the tree */
1128 free_extent_map(em);
1129 }
f6033c5e
XY
1130
1131out_put_group:
1132 /* Once for the lookup reference */
1133 btrfs_put_block_group(block_group);
e3e0520b
JB
1134out:
1135 if (remove_rsv)
1136 btrfs_delayed_refs_rsv_release(fs_info, 1);
1137 btrfs_free_path(path);
1138 return ret;
1139}
1140
1141struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1142 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1143{
1144 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1145 struct extent_map *em;
1146 struct map_lookup *map;
1147 unsigned int num_items;
1148
1149 read_lock(&em_tree->lock);
1150 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1151 read_unlock(&em_tree->lock);
1152 ASSERT(em && em->start == chunk_offset);
1153
1154 /*
1155 * We need to reserve 3 + N units from the metadata space info in order
1156 * to remove a block group (done at btrfs_remove_chunk() and at
1157 * btrfs_remove_block_group()), which are used for:
1158 *
1159 * 1 unit for adding the free space inode's orphan (located in the tree
1160 * of tree roots).
1161 * 1 unit for deleting the block group item (located in the extent
1162 * tree).
1163 * 1 unit for deleting the free space item (located in tree of tree
1164 * roots).
1165 * N units for deleting N device extent items corresponding to each
1166 * stripe (located in the device tree).
1167 *
1168 * In order to remove a block group we also need to reserve units in the
1169 * system space info in order to update the chunk tree (update one or
1170 * more device items and remove one chunk item), but this is done at
1171 * btrfs_remove_chunk() through a call to check_system_chunk().
1172 */
1173 map = em->map_lookup;
1174 num_items = 3 + map->num_stripes;
1175 free_extent_map(em);
1176
1177 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7f9fe614 1178 num_items);
e3e0520b
JB
1179}
1180
26ce2095
JB
1181/*
1182 * Mark block group @cache read-only, so later write won't happen to block
1183 * group @cache.
1184 *
1185 * If @force is not set, this function will only mark the block group readonly
1186 * if we have enough free space (1M) in other metadata/system block groups.
1187 * If @force is not set, this function will mark the block group readonly
1188 * without checking free space.
1189 *
1190 * NOTE: This function doesn't care if other block groups can contain all the
1191 * data in this block group. That check should be done by relocation routine,
1192 * not this function.
1193 */
32da5386 1194static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
26ce2095
JB
1195{
1196 struct btrfs_space_info *sinfo = cache->space_info;
1197 u64 num_bytes;
26ce2095
JB
1198 int ret = -ENOSPC;
1199
26ce2095
JB
1200 spin_lock(&sinfo->lock);
1201 spin_lock(&cache->lock);
1202
1203 if (cache->ro) {
1204 cache->ro++;
1205 ret = 0;
1206 goto out;
1207 }
1208
b3470b5d 1209 num_bytes = cache->length - cache->reserved - cache->pinned -
bf38be65 1210 cache->bytes_super - cache->used;
26ce2095
JB
1211
1212 /*
a30a3d20
JB
1213 * Data never overcommits, even in mixed mode, so do just the straight
1214 * check of left over space in how much we have allocated.
26ce2095 1215 */
a30a3d20
JB
1216 if (force) {
1217 ret = 0;
1218 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1219 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1220
1221 /*
1222 * Here we make sure if we mark this bg RO, we still have enough
1223 * free space as buffer.
1224 */
1225 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1226 ret = 0;
1227 } else {
1228 /*
1229 * We overcommit metadata, so we need to do the
1230 * btrfs_can_overcommit check here, and we need to pass in
1231 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1232 * leeway to allow us to mark this block group as read only.
1233 */
1234 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1235 BTRFS_RESERVE_NO_FLUSH))
1236 ret = 0;
1237 }
1238
1239 if (!ret) {
26ce2095
JB
1240 sinfo->bytes_readonly += num_bytes;
1241 cache->ro++;
1242 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
26ce2095
JB
1243 }
1244out:
1245 spin_unlock(&cache->lock);
1246 spin_unlock(&sinfo->lock);
1247 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1248 btrfs_info(cache->fs_info,
b3470b5d 1249 "unable to make block group %llu ro", cache->start);
26ce2095
JB
1250 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1251 }
1252 return ret;
1253}
1254
fe119a6e
NB
1255static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1256 struct btrfs_block_group *bg)
45bb5d6a
NB
1257{
1258 struct btrfs_fs_info *fs_info = bg->fs_info;
fe119a6e 1259 struct btrfs_transaction *prev_trans = NULL;
45bb5d6a
NB
1260 const u64 start = bg->start;
1261 const u64 end = start + bg->length - 1;
1262 int ret;
1263
fe119a6e
NB
1264 spin_lock(&fs_info->trans_lock);
1265 if (trans->transaction->list.prev != &fs_info->trans_list) {
1266 prev_trans = list_last_entry(&trans->transaction->list,
1267 struct btrfs_transaction, list);
1268 refcount_inc(&prev_trans->use_count);
1269 }
1270 spin_unlock(&fs_info->trans_lock);
1271
45bb5d6a
NB
1272 /*
1273 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1274 * btrfs_finish_extent_commit(). If we are at transaction N, another
1275 * task might be running finish_extent_commit() for the previous
1276 * transaction N - 1, and have seen a range belonging to the block
fe119a6e
NB
1277 * group in pinned_extents before we were able to clear the whole block
1278 * group range from pinned_extents. This means that task can lookup for
1279 * the block group after we unpinned it from pinned_extents and removed
1280 * it, leading to a BUG_ON() at unpin_extent_range().
45bb5d6a
NB
1281 */
1282 mutex_lock(&fs_info->unused_bg_unpin_mutex);
fe119a6e
NB
1283 if (prev_trans) {
1284 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1285 EXTENT_DIRTY);
1286 if (ret)
1287 goto err;
1288 }
45bb5d6a 1289
fe119a6e 1290 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
45bb5d6a
NB
1291 EXTENT_DIRTY);
1292 if (ret)
1293 goto err;
1294 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5150bf19
FM
1295 if (prev_trans)
1296 btrfs_put_transaction(prev_trans);
45bb5d6a
NB
1297
1298 return true;
1299
1300err:
1301 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5150bf19
FM
1302 if (prev_trans)
1303 btrfs_put_transaction(prev_trans);
45bb5d6a
NB
1304 btrfs_dec_block_group_ro(bg);
1305 return false;
1306}
1307
e3e0520b
JB
1308/*
1309 * Process the unused_bgs list and remove any that don't have any allocated
1310 * space inside of them.
1311 */
1312void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1313{
32da5386 1314 struct btrfs_block_group *block_group;
e3e0520b
JB
1315 struct btrfs_space_info *space_info;
1316 struct btrfs_trans_handle *trans;
6e80d4f8 1317 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
e3e0520b
JB
1318 int ret = 0;
1319
1320 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1321 return;
1322
1323 spin_lock(&fs_info->unused_bgs_lock);
1324 while (!list_empty(&fs_info->unused_bgs)) {
e3e0520b
JB
1325 int trimming;
1326
1327 block_group = list_first_entry(&fs_info->unused_bgs,
32da5386 1328 struct btrfs_block_group,
e3e0520b
JB
1329 bg_list);
1330 list_del_init(&block_group->bg_list);
1331
1332 space_info = block_group->space_info;
1333
1334 if (ret || btrfs_mixed_space_info(space_info)) {
1335 btrfs_put_block_group(block_group);
1336 continue;
1337 }
1338 spin_unlock(&fs_info->unused_bgs_lock);
1339
b0643e59
DZ
1340 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1341
e3e0520b
JB
1342 mutex_lock(&fs_info->delete_unused_bgs_mutex);
1343
1344 /* Don't want to race with allocators so take the groups_sem */
1345 down_write(&space_info->groups_sem);
6e80d4f8
DZ
1346
1347 /*
1348 * Async discard moves the final block group discard to be prior
1349 * to the unused_bgs code path. Therefore, if it's not fully
1350 * trimmed, punt it back to the async discard lists.
1351 */
1352 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1353 !btrfs_is_free_space_trimmed(block_group)) {
1354 trace_btrfs_skip_unused_block_group(block_group);
1355 up_write(&space_info->groups_sem);
1356 /* Requeue if we failed because of async discard */
1357 btrfs_discard_queue_work(&fs_info->discard_ctl,
1358 block_group);
1359 goto next;
1360 }
1361
e3e0520b
JB
1362 spin_lock(&block_group->lock);
1363 if (block_group->reserved || block_group->pinned ||
bf38be65 1364 block_group->used || block_group->ro ||
e3e0520b
JB
1365 list_is_singular(&block_group->list)) {
1366 /*
1367 * We want to bail if we made new allocations or have
1368 * outstanding allocations in this block group. We do
1369 * the ro check in case balance is currently acting on
1370 * this block group.
1371 */
1372 trace_btrfs_skip_unused_block_group(block_group);
1373 spin_unlock(&block_group->lock);
1374 up_write(&space_info->groups_sem);
1375 goto next;
1376 }
1377 spin_unlock(&block_group->lock);
1378
1379 /* We don't want to force the issue, only flip if it's ok. */
e11c0406 1380 ret = inc_block_group_ro(block_group, 0);
e3e0520b
JB
1381 up_write(&space_info->groups_sem);
1382 if (ret < 0) {
1383 ret = 0;
1384 goto next;
1385 }
1386
1387 /*
1388 * Want to do this before we do anything else so we can recover
1389 * properly if we fail to join the transaction.
1390 */
1391 trans = btrfs_start_trans_remove_block_group(fs_info,
b3470b5d 1392 block_group->start);
e3e0520b
JB
1393 if (IS_ERR(trans)) {
1394 btrfs_dec_block_group_ro(block_group);
1395 ret = PTR_ERR(trans);
1396 goto next;
1397 }
1398
1399 /*
1400 * We could have pending pinned extents for this block group,
1401 * just delete them, we don't care about them anymore.
1402 */
fe119a6e 1403 if (!clean_pinned_extents(trans, block_group))
e3e0520b 1404 goto end_trans;
e3e0520b 1405
b0643e59
DZ
1406 /*
1407 * At this point, the block_group is read only and should fail
1408 * new allocations. However, btrfs_finish_extent_commit() can
1409 * cause this block_group to be placed back on the discard
1410 * lists because now the block_group isn't fully discarded.
1411 * Bail here and try again later after discarding everything.
1412 */
1413 spin_lock(&fs_info->discard_ctl.lock);
1414 if (!list_empty(&block_group->discard_list)) {
1415 spin_unlock(&fs_info->discard_ctl.lock);
1416 btrfs_dec_block_group_ro(block_group);
1417 btrfs_discard_queue_work(&fs_info->discard_ctl,
1418 block_group);
1419 goto end_trans;
1420 }
1421 spin_unlock(&fs_info->discard_ctl.lock);
1422
e3e0520b
JB
1423 /* Reset pinned so btrfs_put_block_group doesn't complain */
1424 spin_lock(&space_info->lock);
1425 spin_lock(&block_group->lock);
1426
1427 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1428 -block_group->pinned);
1429 space_info->bytes_readonly += block_group->pinned;
1430 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1431 -block_group->pinned,
1432 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1433 block_group->pinned = 0;
1434
1435 spin_unlock(&block_group->lock);
1436 spin_unlock(&space_info->lock);
1437
6e80d4f8
DZ
1438 /*
1439 * The normal path here is an unused block group is passed here,
1440 * then trimming is handled in the transaction commit path.
1441 * Async discard interposes before this to do the trimming
1442 * before coming down the unused block group path as trimming
1443 * will no longer be done later in the transaction commit path.
1444 */
1445 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1446 goto flip_async;
1447
e3e0520b 1448 /* DISCARD can flip during remount */
46b27f50 1449 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
e3e0520b
JB
1450
1451 /* Implicit trim during transaction commit. */
1452 if (trimming)
1453 btrfs_get_block_group_trimming(block_group);
1454
1455 /*
1456 * Btrfs_remove_chunk will abort the transaction if things go
1457 * horribly wrong.
1458 */
b3470b5d 1459 ret = btrfs_remove_chunk(trans, block_group->start);
e3e0520b
JB
1460
1461 if (ret) {
1462 if (trimming)
1463 btrfs_put_block_group_trimming(block_group);
1464 goto end_trans;
1465 }
1466
1467 /*
1468 * If we're not mounted with -odiscard, we can just forget
1469 * about this block group. Otherwise we'll need to wait
1470 * until transaction commit to do the actual discard.
1471 */
1472 if (trimming) {
1473 spin_lock(&fs_info->unused_bgs_lock);
1474 /*
1475 * A concurrent scrub might have added us to the list
1476 * fs_info->unused_bgs, so use a list_move operation
1477 * to add the block group to the deleted_bgs list.
1478 */
1479 list_move(&block_group->bg_list,
1480 &trans->transaction->deleted_bgs);
1481 spin_unlock(&fs_info->unused_bgs_lock);
1482 btrfs_get_block_group(block_group);
1483 }
1484end_trans:
1485 btrfs_end_transaction(trans);
1486next:
1487 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1488 btrfs_put_block_group(block_group);
1489 spin_lock(&fs_info->unused_bgs_lock);
1490 }
1491 spin_unlock(&fs_info->unused_bgs_lock);
6e80d4f8
DZ
1492 return;
1493
1494flip_async:
1495 btrfs_end_transaction(trans);
1496 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1497 btrfs_put_block_group(block_group);
1498 btrfs_discard_punt_unused_bgs_list(fs_info);
e3e0520b
JB
1499}
1500
32da5386 1501void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
e3e0520b
JB
1502{
1503 struct btrfs_fs_info *fs_info = bg->fs_info;
1504
1505 spin_lock(&fs_info->unused_bgs_lock);
1506 if (list_empty(&bg->bg_list)) {
1507 btrfs_get_block_group(bg);
1508 trace_btrfs_add_unused_block_group(bg);
1509 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1510 }
1511 spin_unlock(&fs_info->unused_bgs_lock);
1512}
4358d963
JB
1513
1514static int find_first_block_group(struct btrfs_fs_info *fs_info,
1515 struct btrfs_path *path,
1516 struct btrfs_key *key)
1517{
1518 struct btrfs_root *root = fs_info->extent_root;
1519 int ret = 0;
1520 struct btrfs_key found_key;
1521 struct extent_buffer *leaf;
1522 struct btrfs_block_group_item bg;
1523 u64 flags;
1524 int slot;
1525
1526 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1527 if (ret < 0)
1528 goto out;
1529
1530 while (1) {
1531 slot = path->slots[0];
1532 leaf = path->nodes[0];
1533 if (slot >= btrfs_header_nritems(leaf)) {
1534 ret = btrfs_next_leaf(root, path);
1535 if (ret == 0)
1536 continue;
1537 if (ret < 0)
1538 goto out;
1539 break;
1540 }
1541 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1542
1543 if (found_key.objectid >= key->objectid &&
1544 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1545 struct extent_map_tree *em_tree;
1546 struct extent_map *em;
1547
1548 em_tree = &root->fs_info->mapping_tree;
1549 read_lock(&em_tree->lock);
1550 em = lookup_extent_mapping(em_tree, found_key.objectid,
1551 found_key.offset);
1552 read_unlock(&em_tree->lock);
1553 if (!em) {
1554 btrfs_err(fs_info,
1555 "logical %llu len %llu found bg but no related chunk",
1556 found_key.objectid, found_key.offset);
1557 ret = -ENOENT;
1558 } else if (em->start != found_key.objectid ||
1559 em->len != found_key.offset) {
1560 btrfs_err(fs_info,
1561 "block group %llu len %llu mismatch with chunk %llu len %llu",
1562 found_key.objectid, found_key.offset,
1563 em->start, em->len);
1564 ret = -EUCLEAN;
1565 } else {
1566 read_extent_buffer(leaf, &bg,
1567 btrfs_item_ptr_offset(leaf, slot),
1568 sizeof(bg));
de0dc456 1569 flags = btrfs_stack_block_group_flags(&bg) &
4358d963
JB
1570 BTRFS_BLOCK_GROUP_TYPE_MASK;
1571
1572 if (flags != (em->map_lookup->type &
1573 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1574 btrfs_err(fs_info,
1575"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1576 found_key.objectid,
1577 found_key.offset, flags,
1578 (BTRFS_BLOCK_GROUP_TYPE_MASK &
1579 em->map_lookup->type));
1580 ret = -EUCLEAN;
1581 } else {
1582 ret = 0;
1583 }
1584 }
1585 free_extent_map(em);
1586 goto out;
1587 }
1588 path->slots[0]++;
1589 }
1590out:
1591 return ret;
1592}
1593
1594static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1595{
1596 u64 extra_flags = chunk_to_extended(flags) &
1597 BTRFS_EXTENDED_PROFILE_MASK;
1598
1599 write_seqlock(&fs_info->profiles_lock);
1600 if (flags & BTRFS_BLOCK_GROUP_DATA)
1601 fs_info->avail_data_alloc_bits |= extra_flags;
1602 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1603 fs_info->avail_metadata_alloc_bits |= extra_flags;
1604 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1605 fs_info->avail_system_alloc_bits |= extra_flags;
1606 write_sequnlock(&fs_info->profiles_lock);
1607}
1608
96a14336
NB
1609/**
1610 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1611 * @chunk_start: logical address of block group
1612 * @physical: physical address to map to logical addresses
1613 * @logical: return array of logical addresses which map to @physical
1614 * @naddrs: length of @logical
1615 * @stripe_len: size of IO stripe for the given block group
1616 *
1617 * Maps a particular @physical disk address to a list of @logical addresses.
1618 * Used primarily to exclude those portions of a block group that contain super
1619 * block copies.
1620 */
1621EXPORT_FOR_TESTS
1622int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1623 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1624{
1625 struct extent_map *em;
1626 struct map_lookup *map;
1627 u64 *buf;
1628 u64 bytenr;
1776ad17
NB
1629 u64 data_stripe_length;
1630 u64 io_stripe_size;
1631 int i, nr = 0;
1632 int ret = 0;
96a14336
NB
1633
1634 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1635 if (IS_ERR(em))
1636 return -EIO;
1637
1638 map = em->map_lookup;
1776ad17
NB
1639 data_stripe_length = em->len;
1640 io_stripe_size = map->stripe_len;
96a14336
NB
1641
1642 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1776ad17
NB
1643 data_stripe_length = div_u64(data_stripe_length,
1644 map->num_stripes / map->sub_stripes);
96a14336 1645 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1776ad17 1646 data_stripe_length = div_u64(data_stripe_length, map->num_stripes);
96a14336 1647 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1776ad17
NB
1648 data_stripe_length = div_u64(data_stripe_length,
1649 nr_data_stripes(map));
1650 io_stripe_size = map->stripe_len * nr_data_stripes(map);
96a14336
NB
1651 }
1652
1653 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1776ad17
NB
1654 if (!buf) {
1655 ret = -ENOMEM;
1656 goto out;
1657 }
96a14336
NB
1658
1659 for (i = 0; i < map->num_stripes; i++) {
1776ad17
NB
1660 bool already_inserted = false;
1661 u64 stripe_nr;
1662 int j;
1663
1664 if (!in_range(physical, map->stripes[i].physical,
1665 data_stripe_length))
96a14336
NB
1666 continue;
1667
1668 stripe_nr = physical - map->stripes[i].physical;
1669 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1670
1671 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1672 stripe_nr = stripe_nr * map->num_stripes + i;
1673 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1674 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1675 stripe_nr = stripe_nr * map->num_stripes + i;
1676 }
1677 /*
1678 * The remaining case would be for RAID56, multiply by
1679 * nr_data_stripes(). Alternatively, just use rmap_len below
1680 * instead of map->stripe_len
1681 */
1682
1776ad17
NB
1683 bytenr = chunk_start + stripe_nr * io_stripe_size;
1684
1685 /* Ensure we don't add duplicate addresses */
96a14336 1686 for (j = 0; j < nr; j++) {
1776ad17
NB
1687 if (buf[j] == bytenr) {
1688 already_inserted = true;
96a14336 1689 break;
1776ad17 1690 }
96a14336 1691 }
1776ad17
NB
1692
1693 if (!already_inserted)
96a14336 1694 buf[nr++] = bytenr;
96a14336
NB
1695 }
1696
1697 *logical = buf;
1698 *naddrs = nr;
1776ad17
NB
1699 *stripe_len = io_stripe_size;
1700out:
96a14336 1701 free_extent_map(em);
1776ad17 1702 return ret;
96a14336
NB
1703}
1704
32da5386 1705static int exclude_super_stripes(struct btrfs_block_group *cache)
4358d963
JB
1706{
1707 struct btrfs_fs_info *fs_info = cache->fs_info;
1708 u64 bytenr;
1709 u64 *logical;
1710 int stripe_len;
1711 int i, nr, ret;
1712
b3470b5d
DS
1713 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1714 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
4358d963 1715 cache->bytes_super += stripe_len;
b3470b5d 1716 ret = btrfs_add_excluded_extent(fs_info, cache->start,
4358d963
JB
1717 stripe_len);
1718 if (ret)
1719 return ret;
1720 }
1721
1722 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1723 bytenr = btrfs_sb_offset(i);
b3470b5d 1724 ret = btrfs_rmap_block(fs_info, cache->start,
4358d963
JB
1725 bytenr, &logical, &nr, &stripe_len);
1726 if (ret)
1727 return ret;
1728
1729 while (nr--) {
1730 u64 start, len;
1731
b3470b5d 1732 if (logical[nr] > cache->start + cache->length)
4358d963
JB
1733 continue;
1734
b3470b5d 1735 if (logical[nr] + stripe_len <= cache->start)
4358d963
JB
1736 continue;
1737
1738 start = logical[nr];
b3470b5d
DS
1739 if (start < cache->start) {
1740 start = cache->start;
4358d963
JB
1741 len = (logical[nr] + stripe_len) - start;
1742 } else {
1743 len = min_t(u64, stripe_len,
b3470b5d 1744 cache->start + cache->length - start);
4358d963
JB
1745 }
1746
1747 cache->bytes_super += len;
1748 ret = btrfs_add_excluded_extent(fs_info, start, len);
1749 if (ret) {
1750 kfree(logical);
1751 return ret;
1752 }
1753 }
1754
1755 kfree(logical);
1756 }
1757 return 0;
1758}
1759
32da5386 1760static void link_block_group(struct btrfs_block_group *cache)
4358d963
JB
1761{
1762 struct btrfs_space_info *space_info = cache->space_info;
1763 int index = btrfs_bg_flags_to_raid_index(cache->flags);
1764 bool first = false;
1765
1766 down_write(&space_info->groups_sem);
1767 if (list_empty(&space_info->block_groups[index]))
1768 first = true;
1769 list_add_tail(&cache->list, &space_info->block_groups[index]);
1770 up_write(&space_info->groups_sem);
1771
1772 if (first)
1773 btrfs_sysfs_add_block_group_type(cache);
1774}
1775
32da5386 1776static struct btrfs_block_group *btrfs_create_block_group_cache(
4358d963
JB
1777 struct btrfs_fs_info *fs_info, u64 start, u64 size)
1778{
32da5386 1779 struct btrfs_block_group *cache;
4358d963
JB
1780
1781 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1782 if (!cache)
1783 return NULL;
1784
1785 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1786 GFP_NOFS);
1787 if (!cache->free_space_ctl) {
1788 kfree(cache);
1789 return NULL;
1790 }
1791
b3470b5d
DS
1792 cache->start = start;
1793 cache->length = size;
4358d963
JB
1794
1795 cache->fs_info = fs_info;
1796 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1797 set_free_space_tree_thresholds(cache);
1798
6e80d4f8
DZ
1799 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1800
4358d963
JB
1801 atomic_set(&cache->count, 1);
1802 spin_lock_init(&cache->lock);
1803 init_rwsem(&cache->data_rwsem);
1804 INIT_LIST_HEAD(&cache->list);
1805 INIT_LIST_HEAD(&cache->cluster_list);
1806 INIT_LIST_HEAD(&cache->bg_list);
1807 INIT_LIST_HEAD(&cache->ro_list);
b0643e59 1808 INIT_LIST_HEAD(&cache->discard_list);
4358d963
JB
1809 INIT_LIST_HEAD(&cache->dirty_list);
1810 INIT_LIST_HEAD(&cache->io_list);
1811 btrfs_init_free_space_ctl(cache);
1812 atomic_set(&cache->trimming, 0);
1813 mutex_init(&cache->free_space_lock);
1814 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1815
1816 return cache;
1817}
1818
1819/*
1820 * Iterate all chunks and verify that each of them has the corresponding block
1821 * group
1822 */
1823static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1824{
1825 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1826 struct extent_map *em;
32da5386 1827 struct btrfs_block_group *bg;
4358d963
JB
1828 u64 start = 0;
1829 int ret = 0;
1830
1831 while (1) {
1832 read_lock(&map_tree->lock);
1833 /*
1834 * lookup_extent_mapping will return the first extent map
1835 * intersecting the range, so setting @len to 1 is enough to
1836 * get the first chunk.
1837 */
1838 em = lookup_extent_mapping(map_tree, start, 1);
1839 read_unlock(&map_tree->lock);
1840 if (!em)
1841 break;
1842
1843 bg = btrfs_lookup_block_group(fs_info, em->start);
1844 if (!bg) {
1845 btrfs_err(fs_info,
1846 "chunk start=%llu len=%llu doesn't have corresponding block group",
1847 em->start, em->len);
1848 ret = -EUCLEAN;
1849 free_extent_map(em);
1850 break;
1851 }
b3470b5d 1852 if (bg->start != em->start || bg->length != em->len ||
4358d963
JB
1853 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1854 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1855 btrfs_err(fs_info,
1856"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1857 em->start, em->len,
1858 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
b3470b5d 1859 bg->start, bg->length,
4358d963
JB
1860 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1861 ret = -EUCLEAN;
1862 free_extent_map(em);
1863 btrfs_put_block_group(bg);
1864 break;
1865 }
1866 start = em->start + em->len;
1867 free_extent_map(em);
1868 btrfs_put_block_group(bg);
1869 }
1870 return ret;
1871}
1872
ffb9e0f0
QW
1873static int read_one_block_group(struct btrfs_fs_info *info,
1874 struct btrfs_path *path,
d49a2ddb 1875 const struct btrfs_key *key,
ffb9e0f0
QW
1876 int need_clear)
1877{
1878 struct extent_buffer *leaf = path->nodes[0];
32da5386 1879 struct btrfs_block_group *cache;
ffb9e0f0 1880 struct btrfs_space_info *space_info;
ffb9e0f0
QW
1881 struct btrfs_block_group_item bgi;
1882 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1883 int slot = path->slots[0];
1884 int ret;
1885
d49a2ddb 1886 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
ffb9e0f0 1887
d49a2ddb 1888 cache = btrfs_create_block_group_cache(info, key->objectid, key->offset);
ffb9e0f0
QW
1889 if (!cache)
1890 return -ENOMEM;
1891
1892 if (need_clear) {
1893 /*
1894 * When we mount with old space cache, we need to
1895 * set BTRFS_DC_CLEAR and set dirty flag.
1896 *
1897 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1898 * truncate the old free space cache inode and
1899 * setup a new one.
1900 * b) Setting 'dirty flag' makes sure that we flush
1901 * the new space cache info onto disk.
1902 */
1903 if (btrfs_test_opt(info, SPACE_CACHE))
1904 cache->disk_cache_state = BTRFS_DC_CLEAR;
1905 }
1906 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1907 sizeof(bgi));
1908 cache->used = btrfs_stack_block_group_used(&bgi);
1909 cache->flags = btrfs_stack_block_group_flags(&bgi);
1910 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1911 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1912 btrfs_err(info,
1913"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1914 cache->start);
1915 ret = -EINVAL;
1916 goto error;
1917 }
1918
1919 /*
1920 * We need to exclude the super stripes now so that the space info has
1921 * super bytes accounted for, otherwise we'll think we have more space
1922 * than we actually do.
1923 */
1924 ret = exclude_super_stripes(cache);
1925 if (ret) {
1926 /* We may have excluded something, so call this just in case. */
1927 btrfs_free_excluded_extents(cache);
1928 goto error;
1929 }
1930
1931 /*
1932 * Check for two cases, either we are full, and therefore don't need
1933 * to bother with the caching work since we won't find any space, or we
1934 * are empty, and we can just add all the space in and be done with it.
1935 * This saves us _a_lot_ of time, particularly in the full case.
1936 */
d49a2ddb 1937 if (key->offset == cache->used) {
ffb9e0f0
QW
1938 cache->last_byte_to_unpin = (u64)-1;
1939 cache->cached = BTRFS_CACHE_FINISHED;
1940 btrfs_free_excluded_extents(cache);
1941 } else if (cache->used == 0) {
1942 cache->last_byte_to_unpin = (u64)-1;
1943 cache->cached = BTRFS_CACHE_FINISHED;
d49a2ddb
QW
1944 add_new_free_space(cache, key->objectid,
1945 key->objectid + key->offset);
ffb9e0f0
QW
1946 btrfs_free_excluded_extents(cache);
1947 }
1948
1949 ret = btrfs_add_block_group_cache(info, cache);
1950 if (ret) {
1951 btrfs_remove_free_space_cache(cache);
1952 goto error;
1953 }
1954 trace_btrfs_add_block_group(info, cache, 0);
d49a2ddb 1955 btrfs_update_space_info(info, cache->flags, key->offset,
ffb9e0f0
QW
1956 cache->used, cache->bytes_super, &space_info);
1957
1958 cache->space_info = space_info;
1959
1960 link_block_group(cache);
1961
1962 set_avail_alloc_bits(info, cache->flags);
1963 if (btrfs_chunk_readonly(info, cache->start)) {
1964 inc_block_group_ro(cache, 1);
1965 } else if (cache->used == 0) {
1966 ASSERT(list_empty(&cache->bg_list));
6e80d4f8
DZ
1967 if (btrfs_test_opt(info, DISCARD_ASYNC))
1968 btrfs_discard_queue_work(&info->discard_ctl, cache);
1969 else
1970 btrfs_mark_bg_unused(cache);
ffb9e0f0
QW
1971 }
1972 return 0;
1973error:
1974 btrfs_put_block_group(cache);
1975 return ret;
1976}
1977
4358d963
JB
1978int btrfs_read_block_groups(struct btrfs_fs_info *info)
1979{
1980 struct btrfs_path *path;
1981 int ret;
32da5386 1982 struct btrfs_block_group *cache;
4358d963
JB
1983 struct btrfs_space_info *space_info;
1984 struct btrfs_key key;
4358d963
JB
1985 int need_clear = 0;
1986 u64 cache_gen;
4358d963
JB
1987
1988 key.objectid = 0;
1989 key.offset = 0;
1990 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1991 path = btrfs_alloc_path();
1992 if (!path)
1993 return -ENOMEM;
1994 path->reada = READA_FORWARD;
1995
1996 cache_gen = btrfs_super_cache_generation(info->super_copy);
1997 if (btrfs_test_opt(info, SPACE_CACHE) &&
1998 btrfs_super_generation(info->super_copy) != cache_gen)
1999 need_clear = 1;
2000 if (btrfs_test_opt(info, CLEAR_CACHE))
2001 need_clear = 1;
2002
2003 while (1) {
2004 ret = find_first_block_group(info, path, &key);
2005 if (ret > 0)
2006 break;
2007 if (ret != 0)
2008 goto error;
2009
ffb9e0f0 2010 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
d49a2ddb 2011 ret = read_one_block_group(info, path, &key, need_clear);
ffb9e0f0 2012 if (ret < 0)
4358d963 2013 goto error;
ffb9e0f0
QW
2014 key.objectid += key.offset;
2015 key.offset = 0;
4358d963 2016 btrfs_release_path(path);
4358d963
JB
2017 }
2018
29566c9c 2019 rcu_read_lock();
4358d963
JB
2020 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2021 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2022 (BTRFS_BLOCK_GROUP_RAID10 |
2023 BTRFS_BLOCK_GROUP_RAID1_MASK |
2024 BTRFS_BLOCK_GROUP_RAID56_MASK |
2025 BTRFS_BLOCK_GROUP_DUP)))
2026 continue;
2027 /*
2028 * Avoid allocating from un-mirrored block group if there are
2029 * mirrored block groups.
2030 */
2031 list_for_each_entry(cache,
2032 &space_info->block_groups[BTRFS_RAID_RAID0],
2033 list)
e11c0406 2034 inc_block_group_ro(cache, 1);
4358d963
JB
2035 list_for_each_entry(cache,
2036 &space_info->block_groups[BTRFS_RAID_SINGLE],
2037 list)
e11c0406 2038 inc_block_group_ro(cache, 1);
4358d963 2039 }
29566c9c 2040 rcu_read_unlock();
4358d963
JB
2041
2042 btrfs_init_global_block_rsv(info);
2043 ret = check_chunk_block_group_mappings(info);
2044error:
2045 btrfs_free_path(path);
2046 return ret;
2047}
2048
2049void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2050{
2051 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2052 struct btrfs_block_group *block_group;
4358d963
JB
2053 struct btrfs_root *extent_root = fs_info->extent_root;
2054 struct btrfs_block_group_item item;
2055 struct btrfs_key key;
2056 int ret = 0;
2057
2058 if (!trans->can_flush_pending_bgs)
2059 return;
2060
2061 while (!list_empty(&trans->new_bgs)) {
2062 block_group = list_first_entry(&trans->new_bgs,
32da5386 2063 struct btrfs_block_group,
4358d963
JB
2064 bg_list);
2065 if (ret)
2066 goto next;
2067
2068 spin_lock(&block_group->lock);
de0dc456
DS
2069 btrfs_set_stack_block_group_used(&item, block_group->used);
2070 btrfs_set_stack_block_group_chunk_objectid(&item,
3d976388 2071 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
de0dc456 2072 btrfs_set_stack_block_group_flags(&item, block_group->flags);
b3470b5d
DS
2073 key.objectid = block_group->start;
2074 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2075 key.offset = block_group->length;
4358d963
JB
2076 spin_unlock(&block_group->lock);
2077
2078 ret = btrfs_insert_item(trans, extent_root, &key, &item,
2079 sizeof(item));
2080 if (ret)
2081 btrfs_abort_transaction(trans, ret);
2082 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
2083 if (ret)
2084 btrfs_abort_transaction(trans, ret);
2085 add_block_group_free_space(trans, block_group);
2086 /* Already aborted the transaction if it failed. */
2087next:
2088 btrfs_delayed_refs_rsv_release(fs_info, 1);
2089 list_del_init(&block_group->bg_list);
2090 }
2091 btrfs_trans_release_chunk_metadata(trans);
2092}
2093
2094int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2095 u64 type, u64 chunk_offset, u64 size)
2096{
2097 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2098 struct btrfs_block_group *cache;
4358d963
JB
2099 int ret;
2100
2101 btrfs_set_log_full_commit(trans);
2102
2103 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
2104 if (!cache)
2105 return -ENOMEM;
2106
bf38be65 2107 cache->used = bytes_used;
4358d963
JB
2108 cache->flags = type;
2109 cache->last_byte_to_unpin = (u64)-1;
2110 cache->cached = BTRFS_CACHE_FINISHED;
2111 cache->needs_free_space = 1;
2112 ret = exclude_super_stripes(cache);
2113 if (ret) {
2114 /* We may have excluded something, so call this just in case */
2115 btrfs_free_excluded_extents(cache);
2116 btrfs_put_block_group(cache);
2117 return ret;
2118 }
2119
2120 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2121
2122 btrfs_free_excluded_extents(cache);
2123
2124#ifdef CONFIG_BTRFS_DEBUG
2125 if (btrfs_should_fragment_free_space(cache)) {
2126 u64 new_bytes_used = size - bytes_used;
2127
2128 bytes_used += new_bytes_used >> 1;
e11c0406 2129 fragment_free_space(cache);
4358d963
JB
2130 }
2131#endif
2132 /*
2133 * Ensure the corresponding space_info object is created and
2134 * assigned to our block group. We want our bg to be added to the rbtree
2135 * with its ->space_info set.
2136 */
2137 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2138 ASSERT(cache->space_info);
2139
2140 ret = btrfs_add_block_group_cache(fs_info, cache);
2141 if (ret) {
2142 btrfs_remove_free_space_cache(cache);
2143 btrfs_put_block_group(cache);
2144 return ret;
2145 }
2146
2147 /*
2148 * Now that our block group has its ->space_info set and is inserted in
2149 * the rbtree, update the space info's counters.
2150 */
2151 trace_btrfs_add_block_group(fs_info, cache, 1);
2152 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2153 cache->bytes_super, &cache->space_info);
2154 btrfs_update_global_block_rsv(fs_info);
2155
2156 link_block_group(cache);
2157
2158 list_add_tail(&cache->bg_list, &trans->new_bgs);
2159 trans->delayed_ref_updates++;
2160 btrfs_update_delayed_refs_rsv(trans);
2161
2162 set_avail_alloc_bits(fs_info, type);
2163 return 0;
2164}
26ce2095
JB
2165
2166static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
2167{
2168 u64 num_devices;
2169 u64 stripped;
2170
2171 /*
2172 * if restripe for this chunk_type is on pick target profile and
2173 * return, otherwise do the usual balance
2174 */
e11c0406 2175 stripped = get_restripe_target(fs_info, flags);
26ce2095
JB
2176 if (stripped)
2177 return extended_to_chunk(stripped);
2178
2179 num_devices = fs_info->fs_devices->rw_devices;
2180
2181 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
2182 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
2183
2184 if (num_devices == 1) {
2185 stripped |= BTRFS_BLOCK_GROUP_DUP;
2186 stripped = flags & ~stripped;
2187
2188 /* turn raid0 into single device chunks */
2189 if (flags & BTRFS_BLOCK_GROUP_RAID0)
2190 return stripped;
2191
2192 /* turn mirroring into duplication */
2193 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2194 BTRFS_BLOCK_GROUP_RAID10))
2195 return stripped | BTRFS_BLOCK_GROUP_DUP;
2196 } else {
2197 /* they already had raid on here, just return */
2198 if (flags & stripped)
2199 return flags;
2200
2201 stripped |= BTRFS_BLOCK_GROUP_DUP;
2202 stripped = flags & ~stripped;
2203
2204 /* switch duplicated blocks with raid1 */
2205 if (flags & BTRFS_BLOCK_GROUP_DUP)
2206 return stripped | BTRFS_BLOCK_GROUP_RAID1;
2207
2208 /* this is drive concat, leave it alone */
2209 }
2210
2211 return flags;
2212}
2213
b12de528
QW
2214/*
2215 * Mark one block group RO, can be called several times for the same block
2216 * group.
2217 *
2218 * @cache: the destination block group
2219 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2220 * ensure we still have some free space after marking this
2221 * block group RO.
2222 */
2223int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2224 bool do_chunk_alloc)
26ce2095
JB
2225{
2226 struct btrfs_fs_info *fs_info = cache->fs_info;
2227 struct btrfs_trans_handle *trans;
2228 u64 alloc_flags;
2229 int ret;
2230
2231again:
2232 trans = btrfs_join_transaction(fs_info->extent_root);
2233 if (IS_ERR(trans))
2234 return PTR_ERR(trans);
2235
2236 /*
2237 * we're not allowed to set block groups readonly after the dirty
2238 * block groups cache has started writing. If it already started,
2239 * back off and let this transaction commit
2240 */
2241 mutex_lock(&fs_info->ro_block_group_mutex);
2242 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2243 u64 transid = trans->transid;
2244
2245 mutex_unlock(&fs_info->ro_block_group_mutex);
2246 btrfs_end_transaction(trans);
2247
2248 ret = btrfs_wait_for_commit(fs_info, transid);
2249 if (ret)
2250 return ret;
2251 goto again;
2252 }
2253
b12de528 2254 if (do_chunk_alloc) {
26ce2095 2255 /*
b12de528
QW
2256 * If we are changing raid levels, try to allocate a
2257 * corresponding block group with the new raid level.
26ce2095 2258 */
b12de528
QW
2259 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2260 if (alloc_flags != cache->flags) {
2261 ret = btrfs_chunk_alloc(trans, alloc_flags,
2262 CHUNK_ALLOC_FORCE);
2263 /*
2264 * ENOSPC is allowed here, we may have enough space
2265 * already allocated at the new raid level to carry on
2266 */
2267 if (ret == -ENOSPC)
2268 ret = 0;
2269 if (ret < 0)
2270 goto out;
2271 }
26ce2095
JB
2272 }
2273
a7a63acc 2274 ret = inc_block_group_ro(cache, 0);
b12de528
QW
2275 if (!do_chunk_alloc)
2276 goto unlock_out;
26ce2095
JB
2277 if (!ret)
2278 goto out;
2279 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2280 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2281 if (ret < 0)
2282 goto out;
e11c0406 2283 ret = inc_block_group_ro(cache, 0);
26ce2095
JB
2284out:
2285 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2286 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2287 mutex_lock(&fs_info->chunk_mutex);
2288 check_system_chunk(trans, alloc_flags);
2289 mutex_unlock(&fs_info->chunk_mutex);
2290 }
b12de528 2291unlock_out:
26ce2095
JB
2292 mutex_unlock(&fs_info->ro_block_group_mutex);
2293
2294 btrfs_end_transaction(trans);
2295 return ret;
2296}
2297
32da5386 2298void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
26ce2095
JB
2299{
2300 struct btrfs_space_info *sinfo = cache->space_info;
2301 u64 num_bytes;
2302
2303 BUG_ON(!cache->ro);
2304
2305 spin_lock(&sinfo->lock);
2306 spin_lock(&cache->lock);
2307 if (!--cache->ro) {
b3470b5d 2308 num_bytes = cache->length - cache->reserved -
bf38be65 2309 cache->pinned - cache->bytes_super - cache->used;
26ce2095
JB
2310 sinfo->bytes_readonly -= num_bytes;
2311 list_del_init(&cache->ro_list);
2312 }
2313 spin_unlock(&cache->lock);
2314 spin_unlock(&sinfo->lock);
2315}
77745c05
JB
2316
2317static int write_one_cache_group(struct btrfs_trans_handle *trans,
2318 struct btrfs_path *path,
32da5386 2319 struct btrfs_block_group *cache)
77745c05
JB
2320{
2321 struct btrfs_fs_info *fs_info = trans->fs_info;
2322 int ret;
2323 struct btrfs_root *extent_root = fs_info->extent_root;
2324 unsigned long bi;
2325 struct extent_buffer *leaf;
bf38be65 2326 struct btrfs_block_group_item bgi;
b3470b5d
DS
2327 struct btrfs_key key;
2328
2329 key.objectid = cache->start;
2330 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2331 key.offset = cache->length;
77745c05 2332
b3470b5d 2333 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1);
77745c05
JB
2334 if (ret) {
2335 if (ret > 0)
2336 ret = -ENOENT;
2337 goto fail;
2338 }
2339
2340 leaf = path->nodes[0];
2341 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
de0dc456
DS
2342 btrfs_set_stack_block_group_used(&bgi, cache->used);
2343 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3d976388 2344 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
de0dc456 2345 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
bf38be65 2346 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
77745c05
JB
2347 btrfs_mark_buffer_dirty(leaf);
2348fail:
2349 btrfs_release_path(path);
2350 return ret;
2351
2352}
2353
32da5386 2354static int cache_save_setup(struct btrfs_block_group *block_group,
77745c05
JB
2355 struct btrfs_trans_handle *trans,
2356 struct btrfs_path *path)
2357{
2358 struct btrfs_fs_info *fs_info = block_group->fs_info;
2359 struct btrfs_root *root = fs_info->tree_root;
2360 struct inode *inode = NULL;
2361 struct extent_changeset *data_reserved = NULL;
2362 u64 alloc_hint = 0;
2363 int dcs = BTRFS_DC_ERROR;
2364 u64 num_pages = 0;
2365 int retries = 0;
2366 int ret = 0;
2367
2368 /*
2369 * If this block group is smaller than 100 megs don't bother caching the
2370 * block group.
2371 */
b3470b5d 2372 if (block_group->length < (100 * SZ_1M)) {
77745c05
JB
2373 spin_lock(&block_group->lock);
2374 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2375 spin_unlock(&block_group->lock);
2376 return 0;
2377 }
2378
bf31f87f 2379 if (TRANS_ABORTED(trans))
77745c05
JB
2380 return 0;
2381again:
2382 inode = lookup_free_space_inode(block_group, path);
2383 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2384 ret = PTR_ERR(inode);
2385 btrfs_release_path(path);
2386 goto out;
2387 }
2388
2389 if (IS_ERR(inode)) {
2390 BUG_ON(retries);
2391 retries++;
2392
2393 if (block_group->ro)
2394 goto out_free;
2395
2396 ret = create_free_space_inode(trans, block_group, path);
2397 if (ret)
2398 goto out_free;
2399 goto again;
2400 }
2401
2402 /*
2403 * We want to set the generation to 0, that way if anything goes wrong
2404 * from here on out we know not to trust this cache when we load up next
2405 * time.
2406 */
2407 BTRFS_I(inode)->generation = 0;
2408 ret = btrfs_update_inode(trans, root, inode);
2409 if (ret) {
2410 /*
2411 * So theoretically we could recover from this, simply set the
2412 * super cache generation to 0 so we know to invalidate the
2413 * cache, but then we'd have to keep track of the block groups
2414 * that fail this way so we know we _have_ to reset this cache
2415 * before the next commit or risk reading stale cache. So to
2416 * limit our exposure to horrible edge cases lets just abort the
2417 * transaction, this only happens in really bad situations
2418 * anyway.
2419 */
2420 btrfs_abort_transaction(trans, ret);
2421 goto out_put;
2422 }
2423 WARN_ON(ret);
2424
2425 /* We've already setup this transaction, go ahead and exit */
2426 if (block_group->cache_generation == trans->transid &&
2427 i_size_read(inode)) {
2428 dcs = BTRFS_DC_SETUP;
2429 goto out_put;
2430 }
2431
2432 if (i_size_read(inode) > 0) {
2433 ret = btrfs_check_trunc_cache_free_space(fs_info,
2434 &fs_info->global_block_rsv);
2435 if (ret)
2436 goto out_put;
2437
2438 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2439 if (ret)
2440 goto out_put;
2441 }
2442
2443 spin_lock(&block_group->lock);
2444 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2445 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2446 /*
2447 * don't bother trying to write stuff out _if_
2448 * a) we're not cached,
2449 * b) we're with nospace_cache mount option,
2450 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2451 */
2452 dcs = BTRFS_DC_WRITTEN;
2453 spin_unlock(&block_group->lock);
2454 goto out_put;
2455 }
2456 spin_unlock(&block_group->lock);
2457
2458 /*
2459 * We hit an ENOSPC when setting up the cache in this transaction, just
2460 * skip doing the setup, we've already cleared the cache so we're safe.
2461 */
2462 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2463 ret = -ENOSPC;
2464 goto out_put;
2465 }
2466
2467 /*
2468 * Try to preallocate enough space based on how big the block group is.
2469 * Keep in mind this has to include any pinned space which could end up
2470 * taking up quite a bit since it's not folded into the other space
2471 * cache.
2472 */
b3470b5d 2473 num_pages = div_u64(block_group->length, SZ_256M);
77745c05
JB
2474 if (!num_pages)
2475 num_pages = 1;
2476
2477 num_pages *= 16;
2478 num_pages *= PAGE_SIZE;
2479
2480 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2481 if (ret)
2482 goto out_put;
2483
2484 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2485 num_pages, num_pages,
2486 &alloc_hint);
2487 /*
2488 * Our cache requires contiguous chunks so that we don't modify a bunch
2489 * of metadata or split extents when writing the cache out, which means
2490 * we can enospc if we are heavily fragmented in addition to just normal
2491 * out of space conditions. So if we hit this just skip setting up any
2492 * other block groups for this transaction, maybe we'll unpin enough
2493 * space the next time around.
2494 */
2495 if (!ret)
2496 dcs = BTRFS_DC_SETUP;
2497 else if (ret == -ENOSPC)
2498 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2499
2500out_put:
2501 iput(inode);
2502out_free:
2503 btrfs_release_path(path);
2504out:
2505 spin_lock(&block_group->lock);
2506 if (!ret && dcs == BTRFS_DC_SETUP)
2507 block_group->cache_generation = trans->transid;
2508 block_group->disk_cache_state = dcs;
2509 spin_unlock(&block_group->lock);
2510
2511 extent_changeset_free(data_reserved);
2512 return ret;
2513}
2514
2515int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2516{
2517 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2518 struct btrfs_block_group *cache, *tmp;
77745c05
JB
2519 struct btrfs_transaction *cur_trans = trans->transaction;
2520 struct btrfs_path *path;
2521
2522 if (list_empty(&cur_trans->dirty_bgs) ||
2523 !btrfs_test_opt(fs_info, SPACE_CACHE))
2524 return 0;
2525
2526 path = btrfs_alloc_path();
2527 if (!path)
2528 return -ENOMEM;
2529
2530 /* Could add new block groups, use _safe just in case */
2531 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2532 dirty_list) {
2533 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2534 cache_save_setup(cache, trans, path);
2535 }
2536
2537 btrfs_free_path(path);
2538 return 0;
2539}
2540
2541/*
2542 * Transaction commit does final block group cache writeback during a critical
2543 * section where nothing is allowed to change the FS. This is required in
2544 * order for the cache to actually match the block group, but can introduce a
2545 * lot of latency into the commit.
2546 *
2547 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2548 * There's a chance we'll have to redo some of it if the block group changes
2549 * again during the commit, but it greatly reduces the commit latency by
2550 * getting rid of the easy block groups while we're still allowing others to
2551 * join the commit.
2552 */
2553int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2554{
2555 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2556 struct btrfs_block_group *cache;
77745c05
JB
2557 struct btrfs_transaction *cur_trans = trans->transaction;
2558 int ret = 0;
2559 int should_put;
2560 struct btrfs_path *path = NULL;
2561 LIST_HEAD(dirty);
2562 struct list_head *io = &cur_trans->io_bgs;
2563 int num_started = 0;
2564 int loops = 0;
2565
2566 spin_lock(&cur_trans->dirty_bgs_lock);
2567 if (list_empty(&cur_trans->dirty_bgs)) {
2568 spin_unlock(&cur_trans->dirty_bgs_lock);
2569 return 0;
2570 }
2571 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2572 spin_unlock(&cur_trans->dirty_bgs_lock);
2573
2574again:
2575 /* Make sure all the block groups on our dirty list actually exist */
2576 btrfs_create_pending_block_groups(trans);
2577
2578 if (!path) {
2579 path = btrfs_alloc_path();
2580 if (!path)
2581 return -ENOMEM;
2582 }
2583
2584 /*
2585 * cache_write_mutex is here only to save us from balance or automatic
2586 * removal of empty block groups deleting this block group while we are
2587 * writing out the cache
2588 */
2589 mutex_lock(&trans->transaction->cache_write_mutex);
2590 while (!list_empty(&dirty)) {
2591 bool drop_reserve = true;
2592
32da5386 2593 cache = list_first_entry(&dirty, struct btrfs_block_group,
77745c05
JB
2594 dirty_list);
2595 /*
2596 * This can happen if something re-dirties a block group that
2597 * is already under IO. Just wait for it to finish and then do
2598 * it all again
2599 */
2600 if (!list_empty(&cache->io_list)) {
2601 list_del_init(&cache->io_list);
2602 btrfs_wait_cache_io(trans, cache, path);
2603 btrfs_put_block_group(cache);
2604 }
2605
2606
2607 /*
2608 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2609 * it should update the cache_state. Don't delete until after
2610 * we wait.
2611 *
2612 * Since we're not running in the commit critical section
2613 * we need the dirty_bgs_lock to protect from update_block_group
2614 */
2615 spin_lock(&cur_trans->dirty_bgs_lock);
2616 list_del_init(&cache->dirty_list);
2617 spin_unlock(&cur_trans->dirty_bgs_lock);
2618
2619 should_put = 1;
2620
2621 cache_save_setup(cache, trans, path);
2622
2623 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2624 cache->io_ctl.inode = NULL;
2625 ret = btrfs_write_out_cache(trans, cache, path);
2626 if (ret == 0 && cache->io_ctl.inode) {
2627 num_started++;
2628 should_put = 0;
2629
2630 /*
2631 * The cache_write_mutex is protecting the
2632 * io_list, also refer to the definition of
2633 * btrfs_transaction::io_bgs for more details
2634 */
2635 list_add_tail(&cache->io_list, io);
2636 } else {
2637 /*
2638 * If we failed to write the cache, the
2639 * generation will be bad and life goes on
2640 */
2641 ret = 0;
2642 }
2643 }
2644 if (!ret) {
2645 ret = write_one_cache_group(trans, path, cache);
2646 /*
2647 * Our block group might still be attached to the list
2648 * of new block groups in the transaction handle of some
2649 * other task (struct btrfs_trans_handle->new_bgs). This
2650 * means its block group item isn't yet in the extent
2651 * tree. If this happens ignore the error, as we will
2652 * try again later in the critical section of the
2653 * transaction commit.
2654 */
2655 if (ret == -ENOENT) {
2656 ret = 0;
2657 spin_lock(&cur_trans->dirty_bgs_lock);
2658 if (list_empty(&cache->dirty_list)) {
2659 list_add_tail(&cache->dirty_list,
2660 &cur_trans->dirty_bgs);
2661 btrfs_get_block_group(cache);
2662 drop_reserve = false;
2663 }
2664 spin_unlock(&cur_trans->dirty_bgs_lock);
2665 } else if (ret) {
2666 btrfs_abort_transaction(trans, ret);
2667 }
2668 }
2669
2670 /* If it's not on the io list, we need to put the block group */
2671 if (should_put)
2672 btrfs_put_block_group(cache);
2673 if (drop_reserve)
2674 btrfs_delayed_refs_rsv_release(fs_info, 1);
2675
2676 if (ret)
2677 break;
2678
2679 /*
2680 * Avoid blocking other tasks for too long. It might even save
2681 * us from writing caches for block groups that are going to be
2682 * removed.
2683 */
2684 mutex_unlock(&trans->transaction->cache_write_mutex);
2685 mutex_lock(&trans->transaction->cache_write_mutex);
2686 }
2687 mutex_unlock(&trans->transaction->cache_write_mutex);
2688
2689 /*
2690 * Go through delayed refs for all the stuff we've just kicked off
2691 * and then loop back (just once)
2692 */
2693 ret = btrfs_run_delayed_refs(trans, 0);
2694 if (!ret && loops == 0) {
2695 loops++;
2696 spin_lock(&cur_trans->dirty_bgs_lock);
2697 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2698 /*
2699 * dirty_bgs_lock protects us from concurrent block group
2700 * deletes too (not just cache_write_mutex).
2701 */
2702 if (!list_empty(&dirty)) {
2703 spin_unlock(&cur_trans->dirty_bgs_lock);
2704 goto again;
2705 }
2706 spin_unlock(&cur_trans->dirty_bgs_lock);
2707 } else if (ret < 0) {
2708 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2709 }
2710
2711 btrfs_free_path(path);
2712 return ret;
2713}
2714
2715int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2716{
2717 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2718 struct btrfs_block_group *cache;
77745c05
JB
2719 struct btrfs_transaction *cur_trans = trans->transaction;
2720 int ret = 0;
2721 int should_put;
2722 struct btrfs_path *path;
2723 struct list_head *io = &cur_trans->io_bgs;
2724 int num_started = 0;
2725
2726 path = btrfs_alloc_path();
2727 if (!path)
2728 return -ENOMEM;
2729
2730 /*
2731 * Even though we are in the critical section of the transaction commit,
2732 * we can still have concurrent tasks adding elements to this
2733 * transaction's list of dirty block groups. These tasks correspond to
2734 * endio free space workers started when writeback finishes for a
2735 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2736 * allocate new block groups as a result of COWing nodes of the root
2737 * tree when updating the free space inode. The writeback for the space
2738 * caches is triggered by an earlier call to
2739 * btrfs_start_dirty_block_groups() and iterations of the following
2740 * loop.
2741 * Also we want to do the cache_save_setup first and then run the
2742 * delayed refs to make sure we have the best chance at doing this all
2743 * in one shot.
2744 */
2745 spin_lock(&cur_trans->dirty_bgs_lock);
2746 while (!list_empty(&cur_trans->dirty_bgs)) {
2747 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 2748 struct btrfs_block_group,
77745c05
JB
2749 dirty_list);
2750
2751 /*
2752 * This can happen if cache_save_setup re-dirties a block group
2753 * that is already under IO. Just wait for it to finish and
2754 * then do it all again
2755 */
2756 if (!list_empty(&cache->io_list)) {
2757 spin_unlock(&cur_trans->dirty_bgs_lock);
2758 list_del_init(&cache->io_list);
2759 btrfs_wait_cache_io(trans, cache, path);
2760 btrfs_put_block_group(cache);
2761 spin_lock(&cur_trans->dirty_bgs_lock);
2762 }
2763
2764 /*
2765 * Don't remove from the dirty list until after we've waited on
2766 * any pending IO
2767 */
2768 list_del_init(&cache->dirty_list);
2769 spin_unlock(&cur_trans->dirty_bgs_lock);
2770 should_put = 1;
2771
2772 cache_save_setup(cache, trans, path);
2773
2774 if (!ret)
2775 ret = btrfs_run_delayed_refs(trans,
2776 (unsigned long) -1);
2777
2778 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2779 cache->io_ctl.inode = NULL;
2780 ret = btrfs_write_out_cache(trans, cache, path);
2781 if (ret == 0 && cache->io_ctl.inode) {
2782 num_started++;
2783 should_put = 0;
2784 list_add_tail(&cache->io_list, io);
2785 } else {
2786 /*
2787 * If we failed to write the cache, the
2788 * generation will be bad and life goes on
2789 */
2790 ret = 0;
2791 }
2792 }
2793 if (!ret) {
2794 ret = write_one_cache_group(trans, path, cache);
2795 /*
2796 * One of the free space endio workers might have
2797 * created a new block group while updating a free space
2798 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2799 * and hasn't released its transaction handle yet, in
2800 * which case the new block group is still attached to
2801 * its transaction handle and its creation has not
2802 * finished yet (no block group item in the extent tree
2803 * yet, etc). If this is the case, wait for all free
2804 * space endio workers to finish and retry. This is a
2805 * a very rare case so no need for a more efficient and
2806 * complex approach.
2807 */
2808 if (ret == -ENOENT) {
2809 wait_event(cur_trans->writer_wait,
2810 atomic_read(&cur_trans->num_writers) == 1);
2811 ret = write_one_cache_group(trans, path, cache);
2812 }
2813 if (ret)
2814 btrfs_abort_transaction(trans, ret);
2815 }
2816
2817 /* If its not on the io list, we need to put the block group */
2818 if (should_put)
2819 btrfs_put_block_group(cache);
2820 btrfs_delayed_refs_rsv_release(fs_info, 1);
2821 spin_lock(&cur_trans->dirty_bgs_lock);
2822 }
2823 spin_unlock(&cur_trans->dirty_bgs_lock);
2824
2825 /*
2826 * Refer to the definition of io_bgs member for details why it's safe
2827 * to use it without any locking
2828 */
2829 while (!list_empty(io)) {
32da5386 2830 cache = list_first_entry(io, struct btrfs_block_group,
77745c05
JB
2831 io_list);
2832 list_del_init(&cache->io_list);
2833 btrfs_wait_cache_io(trans, cache, path);
2834 btrfs_put_block_group(cache);
2835 }
2836
2837 btrfs_free_path(path);
2838 return ret;
2839}
606d1bf1
JB
2840
2841int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2842 u64 bytenr, u64 num_bytes, int alloc)
2843{
2844 struct btrfs_fs_info *info = trans->fs_info;
32da5386 2845 struct btrfs_block_group *cache = NULL;
606d1bf1
JB
2846 u64 total = num_bytes;
2847 u64 old_val;
2848 u64 byte_in_group;
2849 int factor;
2850 int ret = 0;
2851
2852 /* Block accounting for super block */
2853 spin_lock(&info->delalloc_root_lock);
2854 old_val = btrfs_super_bytes_used(info->super_copy);
2855 if (alloc)
2856 old_val += num_bytes;
2857 else
2858 old_val -= num_bytes;
2859 btrfs_set_super_bytes_used(info->super_copy, old_val);
2860 spin_unlock(&info->delalloc_root_lock);
2861
2862 while (total) {
2863 cache = btrfs_lookup_block_group(info, bytenr);
2864 if (!cache) {
2865 ret = -ENOENT;
2866 break;
2867 }
2868 factor = btrfs_bg_type_to_factor(cache->flags);
2869
2870 /*
2871 * If this block group has free space cache written out, we
2872 * need to make sure to load it if we are removing space. This
2873 * is because we need the unpinning stage to actually add the
2874 * space back to the block group, otherwise we will leak space.
2875 */
32da5386 2876 if (!alloc && !btrfs_block_group_done(cache))
606d1bf1
JB
2877 btrfs_cache_block_group(cache, 1);
2878
b3470b5d
DS
2879 byte_in_group = bytenr - cache->start;
2880 WARN_ON(byte_in_group > cache->length);
606d1bf1
JB
2881
2882 spin_lock(&cache->space_info->lock);
2883 spin_lock(&cache->lock);
2884
2885 if (btrfs_test_opt(info, SPACE_CACHE) &&
2886 cache->disk_cache_state < BTRFS_DC_CLEAR)
2887 cache->disk_cache_state = BTRFS_DC_CLEAR;
2888
bf38be65 2889 old_val = cache->used;
b3470b5d 2890 num_bytes = min(total, cache->length - byte_in_group);
606d1bf1
JB
2891 if (alloc) {
2892 old_val += num_bytes;
bf38be65 2893 cache->used = old_val;
606d1bf1
JB
2894 cache->reserved -= num_bytes;
2895 cache->space_info->bytes_reserved -= num_bytes;
2896 cache->space_info->bytes_used += num_bytes;
2897 cache->space_info->disk_used += num_bytes * factor;
2898 spin_unlock(&cache->lock);
2899 spin_unlock(&cache->space_info->lock);
2900 } else {
2901 old_val -= num_bytes;
bf38be65 2902 cache->used = old_val;
606d1bf1
JB
2903 cache->pinned += num_bytes;
2904 btrfs_space_info_update_bytes_pinned(info,
2905 cache->space_info, num_bytes);
2906 cache->space_info->bytes_used -= num_bytes;
2907 cache->space_info->disk_used -= num_bytes * factor;
2908 spin_unlock(&cache->lock);
2909 spin_unlock(&cache->space_info->lock);
2910
606d1bf1
JB
2911 percpu_counter_add_batch(
2912 &cache->space_info->total_bytes_pinned,
2913 num_bytes,
2914 BTRFS_TOTAL_BYTES_PINNED_BATCH);
fe119a6e 2915 set_extent_dirty(&trans->transaction->pinned_extents,
606d1bf1
JB
2916 bytenr, bytenr + num_bytes - 1,
2917 GFP_NOFS | __GFP_NOFAIL);
2918 }
2919
2920 spin_lock(&trans->transaction->dirty_bgs_lock);
2921 if (list_empty(&cache->dirty_list)) {
2922 list_add_tail(&cache->dirty_list,
2923 &trans->transaction->dirty_bgs);
2924 trans->delayed_ref_updates++;
2925 btrfs_get_block_group(cache);
2926 }
2927 spin_unlock(&trans->transaction->dirty_bgs_lock);
2928
2929 /*
2930 * No longer have used bytes in this block group, queue it for
2931 * deletion. We do this after adding the block group to the
2932 * dirty list to avoid races between cleaner kthread and space
2933 * cache writeout.
2934 */
6e80d4f8
DZ
2935 if (!alloc && old_val == 0) {
2936 if (!btrfs_test_opt(info, DISCARD_ASYNC))
2937 btrfs_mark_bg_unused(cache);
2938 }
606d1bf1
JB
2939
2940 btrfs_put_block_group(cache);
2941 total -= num_bytes;
2942 bytenr += num_bytes;
2943 }
2944
2945 /* Modified block groups are accounted for in the delayed_refs_rsv. */
2946 btrfs_update_delayed_refs_rsv(trans);
2947 return ret;
2948}
2949
2950/**
2951 * btrfs_add_reserved_bytes - update the block_group and space info counters
2952 * @cache: The cache we are manipulating
2953 * @ram_bytes: The number of bytes of file content, and will be same to
2954 * @num_bytes except for the compress path.
2955 * @num_bytes: The number of bytes in question
2956 * @delalloc: The blocks are allocated for the delalloc write
2957 *
2958 * This is called by the allocator when it reserves space. If this is a
2959 * reservation and the block group has become read only we cannot make the
2960 * reservation and return -EAGAIN, otherwise this function always succeeds.
2961 */
32da5386 2962int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
2963 u64 ram_bytes, u64 num_bytes, int delalloc)
2964{
2965 struct btrfs_space_info *space_info = cache->space_info;
2966 int ret = 0;
2967
2968 spin_lock(&space_info->lock);
2969 spin_lock(&cache->lock);
2970 if (cache->ro) {
2971 ret = -EAGAIN;
2972 } else {
2973 cache->reserved += num_bytes;
2974 space_info->bytes_reserved += num_bytes;
a43c3835
JB
2975 trace_btrfs_space_reservation(cache->fs_info, "space_info",
2976 space_info->flags, num_bytes, 1);
606d1bf1
JB
2977 btrfs_space_info_update_bytes_may_use(cache->fs_info,
2978 space_info, -ram_bytes);
2979 if (delalloc)
2980 cache->delalloc_bytes += num_bytes;
2981 }
2982 spin_unlock(&cache->lock);
2983 spin_unlock(&space_info->lock);
2984 return ret;
2985}
2986
2987/**
2988 * btrfs_free_reserved_bytes - update the block_group and space info counters
2989 * @cache: The cache we are manipulating
2990 * @num_bytes: The number of bytes in question
2991 * @delalloc: The blocks are allocated for the delalloc write
2992 *
2993 * This is called by somebody who is freeing space that was never actually used
2994 * on disk. For example if you reserve some space for a new leaf in transaction
2995 * A and before transaction A commits you free that leaf, you call this with
2996 * reserve set to 0 in order to clear the reservation.
2997 */
32da5386 2998void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
2999 u64 num_bytes, int delalloc)
3000{
3001 struct btrfs_space_info *space_info = cache->space_info;
3002
3003 spin_lock(&space_info->lock);
3004 spin_lock(&cache->lock);
3005 if (cache->ro)
3006 space_info->bytes_readonly += num_bytes;
3007 cache->reserved -= num_bytes;
3008 space_info->bytes_reserved -= num_bytes;
3009 space_info->max_extent_size = 0;
3010
3011 if (delalloc)
3012 cache->delalloc_bytes -= num_bytes;
3013 spin_unlock(&cache->lock);
3014 spin_unlock(&space_info->lock);
3015}
07730d87
JB
3016
3017static void force_metadata_allocation(struct btrfs_fs_info *info)
3018{
3019 struct list_head *head = &info->space_info;
3020 struct btrfs_space_info *found;
3021
3022 rcu_read_lock();
3023 list_for_each_entry_rcu(found, head, list) {
3024 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3025 found->force_alloc = CHUNK_ALLOC_FORCE;
3026 }
3027 rcu_read_unlock();
3028}
3029
3030static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3031 struct btrfs_space_info *sinfo, int force)
3032{
3033 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3034 u64 thresh;
3035
3036 if (force == CHUNK_ALLOC_FORCE)
3037 return 1;
3038
3039 /*
3040 * in limited mode, we want to have some free space up to
3041 * about 1% of the FS size.
3042 */
3043 if (force == CHUNK_ALLOC_LIMITED) {
3044 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3045 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3046
3047 if (sinfo->total_bytes - bytes_used < thresh)
3048 return 1;
3049 }
3050
3051 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3052 return 0;
3053 return 1;
3054}
3055
3056int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3057{
3058 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3059
3060 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3061}
3062
3063/*
3064 * If force is CHUNK_ALLOC_FORCE:
3065 * - return 1 if it successfully allocates a chunk,
3066 * - return errors including -ENOSPC otherwise.
3067 * If force is NOT CHUNK_ALLOC_FORCE:
3068 * - return 0 if it doesn't need to allocate a new chunk,
3069 * - return 1 if it successfully allocates a chunk,
3070 * - return errors including -ENOSPC otherwise.
3071 */
3072int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3073 enum btrfs_chunk_alloc_enum force)
3074{
3075 struct btrfs_fs_info *fs_info = trans->fs_info;
3076 struct btrfs_space_info *space_info;
3077 bool wait_for_alloc = false;
3078 bool should_alloc = false;
3079 int ret = 0;
3080
3081 /* Don't re-enter if we're already allocating a chunk */
3082 if (trans->allocating_chunk)
3083 return -ENOSPC;
3084
3085 space_info = btrfs_find_space_info(fs_info, flags);
3086 ASSERT(space_info);
3087
3088 do {
3089 spin_lock(&space_info->lock);
3090 if (force < space_info->force_alloc)
3091 force = space_info->force_alloc;
3092 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3093 if (space_info->full) {
3094 /* No more free physical space */
3095 if (should_alloc)
3096 ret = -ENOSPC;
3097 else
3098 ret = 0;
3099 spin_unlock(&space_info->lock);
3100 return ret;
3101 } else if (!should_alloc) {
3102 spin_unlock(&space_info->lock);
3103 return 0;
3104 } else if (space_info->chunk_alloc) {
3105 /*
3106 * Someone is already allocating, so we need to block
3107 * until this someone is finished and then loop to
3108 * recheck if we should continue with our allocation
3109 * attempt.
3110 */
3111 wait_for_alloc = true;
3112 spin_unlock(&space_info->lock);
3113 mutex_lock(&fs_info->chunk_mutex);
3114 mutex_unlock(&fs_info->chunk_mutex);
3115 } else {
3116 /* Proceed with allocation */
3117 space_info->chunk_alloc = 1;
3118 wait_for_alloc = false;
3119 spin_unlock(&space_info->lock);
3120 }
3121
3122 cond_resched();
3123 } while (wait_for_alloc);
3124
3125 mutex_lock(&fs_info->chunk_mutex);
3126 trans->allocating_chunk = true;
3127
3128 /*
3129 * If we have mixed data/metadata chunks we want to make sure we keep
3130 * allocating mixed chunks instead of individual chunks.
3131 */
3132 if (btrfs_mixed_space_info(space_info))
3133 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3134
3135 /*
3136 * if we're doing a data chunk, go ahead and make sure that
3137 * we keep a reasonable number of metadata chunks allocated in the
3138 * FS as well.
3139 */
3140 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3141 fs_info->data_chunk_allocations++;
3142 if (!(fs_info->data_chunk_allocations %
3143 fs_info->metadata_ratio))
3144 force_metadata_allocation(fs_info);
3145 }
3146
3147 /*
3148 * Check if we have enough space in SYSTEM chunk because we may need
3149 * to update devices.
3150 */
3151 check_system_chunk(trans, flags);
3152
3153 ret = btrfs_alloc_chunk(trans, flags);
3154 trans->allocating_chunk = false;
3155
3156 spin_lock(&space_info->lock);
3157 if (ret < 0) {
3158 if (ret == -ENOSPC)
3159 space_info->full = 1;
3160 else
3161 goto out;
3162 } else {
3163 ret = 1;
3164 space_info->max_extent_size = 0;
3165 }
3166
3167 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3168out:
3169 space_info->chunk_alloc = 0;
3170 spin_unlock(&space_info->lock);
3171 mutex_unlock(&fs_info->chunk_mutex);
3172 /*
3173 * When we allocate a new chunk we reserve space in the chunk block
3174 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3175 * add new nodes/leafs to it if we end up needing to do it when
3176 * inserting the chunk item and updating device items as part of the
3177 * second phase of chunk allocation, performed by
3178 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3179 * large number of new block groups to create in our transaction
3180 * handle's new_bgs list to avoid exhausting the chunk block reserve
3181 * in extreme cases - like having a single transaction create many new
3182 * block groups when starting to write out the free space caches of all
3183 * the block groups that were made dirty during the lifetime of the
3184 * transaction.
3185 */
3186 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3187 btrfs_create_pending_block_groups(trans);
3188
3189 return ret;
3190}
3191
3192static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3193{
3194 u64 num_dev;
3195
3196 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3197 if (!num_dev)
3198 num_dev = fs_info->fs_devices->rw_devices;
3199
3200 return num_dev;
3201}
3202
3203/*
a9143bd3 3204 * Reserve space in the system space for allocating or removing a chunk
07730d87
JB
3205 */
3206void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3207{
3208 struct btrfs_fs_info *fs_info = trans->fs_info;
3209 struct btrfs_space_info *info;
3210 u64 left;
3211 u64 thresh;
3212 int ret = 0;
3213 u64 num_devs;
3214
3215 /*
3216 * Needed because we can end up allocating a system chunk and for an
3217 * atomic and race free space reservation in the chunk block reserve.
3218 */
3219 lockdep_assert_held(&fs_info->chunk_mutex);
3220
3221 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3222 spin_lock(&info->lock);
3223 left = info->total_bytes - btrfs_space_info_used(info, true);
3224 spin_unlock(&info->lock);
3225
3226 num_devs = get_profile_num_devs(fs_info, type);
3227
3228 /* num_devs device items to update and 1 chunk item to add or remove */
2bd36e7b
JB
3229 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3230 btrfs_calc_insert_metadata_size(fs_info, 1);
07730d87
JB
3231
3232 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3233 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3234 left, thresh, type);
3235 btrfs_dump_space_info(fs_info, info, 0, 0);
3236 }
3237
3238 if (left < thresh) {
3239 u64 flags = btrfs_system_alloc_profile(fs_info);
3240
3241 /*
3242 * Ignore failure to create system chunk. We might end up not
3243 * needing it, as we might not need to COW all nodes/leafs from
3244 * the paths we visit in the chunk tree (they were already COWed
3245 * or created in the current transaction for example).
3246 */
3247 ret = btrfs_alloc_chunk(trans, flags);
3248 }
3249
3250 if (!ret) {
3251 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3252 &fs_info->chunk_block_rsv,
3253 thresh, BTRFS_RESERVE_NO_FLUSH);
3254 if (!ret)
3255 trans->chunk_bytes_reserved += thresh;
3256 }
3257}
3258
3e43c279
JB
3259void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3260{
32da5386 3261 struct btrfs_block_group *block_group;
3e43c279
JB
3262 u64 last = 0;
3263
3264 while (1) {
3265 struct inode *inode;
3266
3267 block_group = btrfs_lookup_first_block_group(info, last);
3268 while (block_group) {
3269 btrfs_wait_block_group_cache_done(block_group);
3270 spin_lock(&block_group->lock);
3271 if (block_group->iref)
3272 break;
3273 spin_unlock(&block_group->lock);
3274 block_group = btrfs_next_block_group(block_group);
3275 }
3276 if (!block_group) {
3277 if (last == 0)
3278 break;
3279 last = 0;
3280 continue;
3281 }
3282
3283 inode = block_group->inode;
3284 block_group->iref = 0;
3285 block_group->inode = NULL;
3286 spin_unlock(&block_group->lock);
3287 ASSERT(block_group->io_ctl.inode == NULL);
3288 iput(inode);
b3470b5d 3289 last = block_group->start + block_group->length;
3e43c279
JB
3290 btrfs_put_block_group(block_group);
3291 }
3292}
3293
3294/*
3295 * Must be called only after stopping all workers, since we could have block
3296 * group caching kthreads running, and therefore they could race with us if we
3297 * freed the block groups before stopping them.
3298 */
3299int btrfs_free_block_groups(struct btrfs_fs_info *info)
3300{
32da5386 3301 struct btrfs_block_group *block_group;
3e43c279
JB
3302 struct btrfs_space_info *space_info;
3303 struct btrfs_caching_control *caching_ctl;
3304 struct rb_node *n;
3305
3306 down_write(&info->commit_root_sem);
3307 while (!list_empty(&info->caching_block_groups)) {
3308 caching_ctl = list_entry(info->caching_block_groups.next,
3309 struct btrfs_caching_control, list);
3310 list_del(&caching_ctl->list);
3311 btrfs_put_caching_control(caching_ctl);
3312 }
3313 up_write(&info->commit_root_sem);
3314
3315 spin_lock(&info->unused_bgs_lock);
3316 while (!list_empty(&info->unused_bgs)) {
3317 block_group = list_first_entry(&info->unused_bgs,
32da5386 3318 struct btrfs_block_group,
3e43c279
JB
3319 bg_list);
3320 list_del_init(&block_group->bg_list);
3321 btrfs_put_block_group(block_group);
3322 }
3323 spin_unlock(&info->unused_bgs_lock);
3324
3325 spin_lock(&info->block_group_cache_lock);
3326 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
32da5386 3327 block_group = rb_entry(n, struct btrfs_block_group,
3e43c279
JB
3328 cache_node);
3329 rb_erase(&block_group->cache_node,
3330 &info->block_group_cache_tree);
3331 RB_CLEAR_NODE(&block_group->cache_node);
3332 spin_unlock(&info->block_group_cache_lock);
3333
3334 down_write(&block_group->space_info->groups_sem);
3335 list_del(&block_group->list);
3336 up_write(&block_group->space_info->groups_sem);
3337
3338 /*
3339 * We haven't cached this block group, which means we could
3340 * possibly have excluded extents on this block group.
3341 */
3342 if (block_group->cached == BTRFS_CACHE_NO ||
3343 block_group->cached == BTRFS_CACHE_ERROR)
3344 btrfs_free_excluded_extents(block_group);
3345
3346 btrfs_remove_free_space_cache(block_group);
3347 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3348 ASSERT(list_empty(&block_group->dirty_list));
3349 ASSERT(list_empty(&block_group->io_list));
3350 ASSERT(list_empty(&block_group->bg_list));
3351 ASSERT(atomic_read(&block_group->count) == 1);
3352 btrfs_put_block_group(block_group);
3353
3354 spin_lock(&info->block_group_cache_lock);
3355 }
3356 spin_unlock(&info->block_group_cache_lock);
3357
3358 /*
3359 * Now that all the block groups are freed, go through and free all the
3360 * space_info structs. This is only called during the final stages of
3361 * unmount, and so we know nobody is using them. We call
3362 * synchronize_rcu() once before we start, just to be on the safe side.
3363 */
3364 synchronize_rcu();
3365
3366 btrfs_release_global_block_rsv(info);
3367
3368 while (!list_empty(&info->space_info)) {
3369 space_info = list_entry(info->space_info.next,
3370 struct btrfs_space_info,
3371 list);
3372
3373 /*
3374 * Do not hide this behind enospc_debug, this is actually
3375 * important and indicates a real bug if this happens.
3376 */
3377 if (WARN_ON(space_info->bytes_pinned > 0 ||
3378 space_info->bytes_reserved > 0 ||
3379 space_info->bytes_may_use > 0))
3380 btrfs_dump_space_info(info, space_info, 0, 0);
d611add4 3381 WARN_ON(space_info->reclaim_size > 0);
3e43c279
JB
3382 list_del(&space_info->list);
3383 btrfs_sysfs_remove_space_info(space_info);
3384 }
3385 return 0;
3386}