]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/block-group.c
btrfs: zoned: load active zone information from devices
[people/ms/linux.git] / fs / btrfs / block-group.c
CommitLineData
2e405ad8
JB
1// SPDX-License-Identifier: GPL-2.0
2
784352fe 3#include "misc.h"
2e405ad8
JB
4#include "ctree.h"
5#include "block-group.h"
3eeb3226 6#include "space-info.h"
9f21246d
JB
7#include "disk-io.h"
8#include "free-space-cache.h"
9#include "free-space-tree.h"
e3e0520b
JB
10#include "volumes.h"
11#include "transaction.h"
12#include "ref-verify.h"
4358d963
JB
13#include "sysfs.h"
14#include "tree-log.h"
77745c05 15#include "delalloc-space.h"
b0643e59 16#include "discard.h"
96a14336 17#include "raid56.h"
08e11a3d 18#include "zoned.h"
2e405ad8 19
878d7b67
JB
20/*
21 * Return target flags in extended format or 0 if restripe for this chunk_type
22 * is not in progress
23 *
24 * Should be called with balance_lock held
25 */
e11c0406 26static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
878d7b67
JB
27{
28 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 u64 target = 0;
30
31 if (!bctl)
32 return 0;
33
34 if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 }
44
45 return target;
46}
47
48/*
49 * @flags: available profiles in extended format (see ctree.h)
50 *
51 * Return reduced profile in chunk format. If profile changing is in progress
52 * (either running or paused) picks the target profile (if it's already
53 * available), otherwise falls back to plain reducing.
54 */
55static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56{
57 u64 num_devices = fs_info->fs_devices->rw_devices;
58 u64 target;
59 u64 raid_type;
60 u64 allowed = 0;
61
62 /*
63 * See if restripe for this chunk_type is in progress, if so try to
64 * reduce to the target profile
65 */
66 spin_lock(&fs_info->balance_lock);
e11c0406 67 target = get_restripe_target(fs_info, flags);
878d7b67 68 if (target) {
162e0a16
JB
69 spin_unlock(&fs_info->balance_lock);
70 return extended_to_chunk(target);
878d7b67
JB
71 }
72 spin_unlock(&fs_info->balance_lock);
73
74 /* First, mask out the RAID levels which aren't possible */
75 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77 allowed |= btrfs_raid_array[raid_type].bg_flag;
78 }
79 allowed &= flags;
80
81 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
82 allowed = BTRFS_BLOCK_GROUP_RAID6;
83 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
84 allowed = BTRFS_BLOCK_GROUP_RAID5;
85 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
86 allowed = BTRFS_BLOCK_GROUP_RAID10;
87 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
88 allowed = BTRFS_BLOCK_GROUP_RAID1;
89 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
90 allowed = BTRFS_BLOCK_GROUP_RAID0;
91
92 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93
94 return extended_to_chunk(flags | allowed);
95}
96
ef0a82da 97u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
878d7b67
JB
98{
99 unsigned seq;
100 u64 flags;
101
102 do {
103 flags = orig_flags;
104 seq = read_seqbegin(&fs_info->profiles_lock);
105
106 if (flags & BTRFS_BLOCK_GROUP_DATA)
107 flags |= fs_info->avail_data_alloc_bits;
108 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
109 flags |= fs_info->avail_system_alloc_bits;
110 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
111 flags |= fs_info->avail_metadata_alloc_bits;
112 } while (read_seqretry(&fs_info->profiles_lock, seq));
113
114 return btrfs_reduce_alloc_profile(fs_info, flags);
115}
116
32da5386 117void btrfs_get_block_group(struct btrfs_block_group *cache)
3cad1284 118{
48aaeebe 119 refcount_inc(&cache->refs);
3cad1284
JB
120}
121
32da5386 122void btrfs_put_block_group(struct btrfs_block_group *cache)
3cad1284 123{
48aaeebe 124 if (refcount_dec_and_test(&cache->refs)) {
3cad1284
JB
125 WARN_ON(cache->pinned > 0);
126 WARN_ON(cache->reserved > 0);
127
b0643e59
DZ
128 /*
129 * A block_group shouldn't be on the discard_list anymore.
130 * Remove the block_group from the discard_list to prevent us
131 * from causing a panic due to NULL pointer dereference.
132 */
133 if (WARN_ON(!list_empty(&cache->discard_list)))
134 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
135 cache);
136
3cad1284
JB
137 /*
138 * If not empty, someone is still holding mutex of
139 * full_stripe_lock, which can only be released by caller.
140 * And it will definitely cause use-after-free when caller
141 * tries to release full stripe lock.
142 *
143 * No better way to resolve, but only to warn.
144 */
145 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
146 kfree(cache->free_space_ctl);
147 kfree(cache);
148 }
149}
150
4358d963
JB
151/*
152 * This adds the block group to the fs_info rb tree for the block group cache
153 */
154static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
32da5386 155 struct btrfs_block_group *block_group)
4358d963
JB
156{
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
32da5386 159 struct btrfs_block_group *cache;
4358d963 160
9afc6649
QW
161 ASSERT(block_group->length != 0);
162
4358d963
JB
163 spin_lock(&info->block_group_cache_lock);
164 p = &info->block_group_cache_tree.rb_node;
165
166 while (*p) {
167 parent = *p;
32da5386 168 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
b3470b5d 169 if (block_group->start < cache->start) {
4358d963 170 p = &(*p)->rb_left;
b3470b5d 171 } else if (block_group->start > cache->start) {
4358d963
JB
172 p = &(*p)->rb_right;
173 } else {
174 spin_unlock(&info->block_group_cache_lock);
175 return -EEXIST;
176 }
177 }
178
179 rb_link_node(&block_group->cache_node, parent, p);
180 rb_insert_color(&block_group->cache_node,
181 &info->block_group_cache_tree);
182
b3470b5d
DS
183 if (info->first_logical_byte > block_group->start)
184 info->first_logical_byte = block_group->start;
4358d963
JB
185
186 spin_unlock(&info->block_group_cache_lock);
187
188 return 0;
189}
190
2e405ad8
JB
191/*
192 * This will return the block group at or after bytenr if contains is 0, else
193 * it will return the block group that contains the bytenr
194 */
32da5386 195static struct btrfs_block_group *block_group_cache_tree_search(
2e405ad8
JB
196 struct btrfs_fs_info *info, u64 bytenr, int contains)
197{
32da5386 198 struct btrfs_block_group *cache, *ret = NULL;
2e405ad8
JB
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
32da5386 206 cache = rb_entry(n, struct btrfs_block_group, cache_node);
b3470b5d
DS
207 end = cache->start + cache->length - 1;
208 start = cache->start;
2e405ad8
JB
209
210 if (bytenr < start) {
b3470b5d 211 if (!contains && (!ret || start < ret->start))
2e405ad8
JB
212 ret = cache;
213 n = n->rb_left;
214 } else if (bytenr > start) {
215 if (contains && bytenr <= end) {
216 ret = cache;
217 break;
218 }
219 n = n->rb_right;
220 } else {
221 ret = cache;
222 break;
223 }
224 }
225 if (ret) {
226 btrfs_get_block_group(ret);
b3470b5d
DS
227 if (bytenr == 0 && info->first_logical_byte > ret->start)
228 info->first_logical_byte = ret->start;
2e405ad8
JB
229 }
230 spin_unlock(&info->block_group_cache_lock);
231
232 return ret;
233}
234
235/*
236 * Return the block group that starts at or after bytenr
237 */
32da5386 238struct btrfs_block_group *btrfs_lookup_first_block_group(
2e405ad8
JB
239 struct btrfs_fs_info *info, u64 bytenr)
240{
241 return block_group_cache_tree_search(info, bytenr, 0);
242}
243
244/*
245 * Return the block group that contains the given bytenr
246 */
32da5386 247struct btrfs_block_group *btrfs_lookup_block_group(
2e405ad8
JB
248 struct btrfs_fs_info *info, u64 bytenr)
249{
250 return block_group_cache_tree_search(info, bytenr, 1);
251}
252
32da5386
DS
253struct btrfs_block_group *btrfs_next_block_group(
254 struct btrfs_block_group *cache)
2e405ad8
JB
255{
256 struct btrfs_fs_info *fs_info = cache->fs_info;
257 struct rb_node *node;
258
259 spin_lock(&fs_info->block_group_cache_lock);
260
261 /* If our block group was removed, we need a full search. */
262 if (RB_EMPTY_NODE(&cache->cache_node)) {
b3470b5d 263 const u64 next_bytenr = cache->start + cache->length;
2e405ad8
JB
264
265 spin_unlock(&fs_info->block_group_cache_lock);
266 btrfs_put_block_group(cache);
267 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268 }
269 node = rb_next(&cache->cache_node);
270 btrfs_put_block_group(cache);
271 if (node) {
32da5386 272 cache = rb_entry(node, struct btrfs_block_group, cache_node);
2e405ad8
JB
273 btrfs_get_block_group(cache);
274 } else
275 cache = NULL;
276 spin_unlock(&fs_info->block_group_cache_lock);
277 return cache;
278}
3eeb3226
JB
279
280bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281{
32da5386 282 struct btrfs_block_group *bg;
3eeb3226
JB
283 bool ret = true;
284
285 bg = btrfs_lookup_block_group(fs_info, bytenr);
286 if (!bg)
287 return false;
288
289 spin_lock(&bg->lock);
290 if (bg->ro)
291 ret = false;
292 else
293 atomic_inc(&bg->nocow_writers);
294 spin_unlock(&bg->lock);
295
296 /* No put on block group, done by btrfs_dec_nocow_writers */
297 if (!ret)
298 btrfs_put_block_group(bg);
299
300 return ret;
301}
302
303void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304{
32da5386 305 struct btrfs_block_group *bg;
3eeb3226
JB
306
307 bg = btrfs_lookup_block_group(fs_info, bytenr);
308 ASSERT(bg);
309 if (atomic_dec_and_test(&bg->nocow_writers))
310 wake_up_var(&bg->nocow_writers);
311 /*
312 * Once for our lookup and once for the lookup done by a previous call
313 * to btrfs_inc_nocow_writers()
314 */
315 btrfs_put_block_group(bg);
316 btrfs_put_block_group(bg);
317}
318
32da5386 319void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
3eeb3226
JB
320{
321 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
322}
323
324void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
325 const u64 start)
326{
32da5386 327 struct btrfs_block_group *bg;
3eeb3226
JB
328
329 bg = btrfs_lookup_block_group(fs_info, start);
330 ASSERT(bg);
331 if (atomic_dec_and_test(&bg->reservations))
332 wake_up_var(&bg->reservations);
333 btrfs_put_block_group(bg);
334}
335
32da5386 336void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
3eeb3226
JB
337{
338 struct btrfs_space_info *space_info = bg->space_info;
339
340 ASSERT(bg->ro);
341
342 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
343 return;
344
345 /*
346 * Our block group is read only but before we set it to read only,
347 * some task might have had allocated an extent from it already, but it
348 * has not yet created a respective ordered extent (and added it to a
349 * root's list of ordered extents).
350 * Therefore wait for any task currently allocating extents, since the
351 * block group's reservations counter is incremented while a read lock
352 * on the groups' semaphore is held and decremented after releasing
353 * the read access on that semaphore and creating the ordered extent.
354 */
355 down_write(&space_info->groups_sem);
356 up_write(&space_info->groups_sem);
357
358 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
359}
9f21246d
JB
360
361struct btrfs_caching_control *btrfs_get_caching_control(
32da5386 362 struct btrfs_block_group *cache)
9f21246d
JB
363{
364 struct btrfs_caching_control *ctl;
365
366 spin_lock(&cache->lock);
367 if (!cache->caching_ctl) {
368 spin_unlock(&cache->lock);
369 return NULL;
370 }
371
372 ctl = cache->caching_ctl;
373 refcount_inc(&ctl->count);
374 spin_unlock(&cache->lock);
375 return ctl;
376}
377
378void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379{
380 if (refcount_dec_and_test(&ctl->count))
381 kfree(ctl);
382}
383
384/*
385 * When we wait for progress in the block group caching, its because our
386 * allocation attempt failed at least once. So, we must sleep and let some
387 * progress happen before we try again.
388 *
389 * This function will sleep at least once waiting for new free space to show
390 * up, and then it will check the block group free space numbers for our min
391 * num_bytes. Another option is to have it go ahead and look in the rbtree for
392 * a free extent of a given size, but this is a good start.
393 *
394 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
395 * any of the information in this block group.
396 */
32da5386 397void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
9f21246d
JB
398 u64 num_bytes)
399{
400 struct btrfs_caching_control *caching_ctl;
401
402 caching_ctl = btrfs_get_caching_control(cache);
403 if (!caching_ctl)
404 return;
405
32da5386 406 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
9f21246d
JB
407 (cache->free_space_ctl->free_space >= num_bytes));
408
409 btrfs_put_caching_control(caching_ctl);
410}
411
32da5386 412int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
9f21246d
JB
413{
414 struct btrfs_caching_control *caching_ctl;
415 int ret = 0;
416
417 caching_ctl = btrfs_get_caching_control(cache);
418 if (!caching_ctl)
419 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420
32da5386 421 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
9f21246d
JB
422 if (cache->cached == BTRFS_CACHE_ERROR)
423 ret = -EIO;
424 btrfs_put_caching_control(caching_ctl);
425 return ret;
426}
427
e747853c
JB
428static bool space_cache_v1_done(struct btrfs_block_group *cache)
429{
430 bool ret;
431
432 spin_lock(&cache->lock);
433 ret = cache->cached != BTRFS_CACHE_FAST;
434 spin_unlock(&cache->lock);
435
436 return ret;
437}
438
439void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
440 struct btrfs_caching_control *caching_ctl)
441{
442 wait_event(caching_ctl->wait, space_cache_v1_done(cache));
443}
444
9f21246d 445#ifdef CONFIG_BTRFS_DEBUG
32da5386 446static void fragment_free_space(struct btrfs_block_group *block_group)
9f21246d
JB
447{
448 struct btrfs_fs_info *fs_info = block_group->fs_info;
b3470b5d
DS
449 u64 start = block_group->start;
450 u64 len = block_group->length;
9f21246d
JB
451 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
452 fs_info->nodesize : fs_info->sectorsize;
453 u64 step = chunk << 1;
454
455 while (len > chunk) {
456 btrfs_remove_free_space(block_group, start, chunk);
457 start += step;
458 if (len < step)
459 len = 0;
460 else
461 len -= step;
462 }
463}
464#endif
465
466/*
467 * This is only called by btrfs_cache_block_group, since we could have freed
468 * extents we need to check the pinned_extents for any extents that can't be
469 * used yet since their free space will be released as soon as the transaction
470 * commits.
471 */
32da5386 472u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
9f21246d
JB
473{
474 struct btrfs_fs_info *info = block_group->fs_info;
475 u64 extent_start, extent_end, size, total_added = 0;
476 int ret;
477
478 while (start < end) {
fe119a6e 479 ret = find_first_extent_bit(&info->excluded_extents, start,
9f21246d
JB
480 &extent_start, &extent_end,
481 EXTENT_DIRTY | EXTENT_UPTODATE,
482 NULL);
483 if (ret)
484 break;
485
486 if (extent_start <= start) {
487 start = extent_end + 1;
488 } else if (extent_start > start && extent_start < end) {
489 size = extent_start - start;
490 total_added += size;
b0643e59
DZ
491 ret = btrfs_add_free_space_async_trimmed(block_group,
492 start, size);
9f21246d
JB
493 BUG_ON(ret); /* -ENOMEM or logic error */
494 start = extent_end + 1;
495 } else {
496 break;
497 }
498 }
499
500 if (start < end) {
501 size = end - start;
502 total_added += size;
b0643e59
DZ
503 ret = btrfs_add_free_space_async_trimmed(block_group, start,
504 size);
9f21246d
JB
505 BUG_ON(ret); /* -ENOMEM or logic error */
506 }
507
508 return total_added;
509}
510
511static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512{
32da5386 513 struct btrfs_block_group *block_group = caching_ctl->block_group;
9f21246d
JB
514 struct btrfs_fs_info *fs_info = block_group->fs_info;
515 struct btrfs_root *extent_root = fs_info->extent_root;
516 struct btrfs_path *path;
517 struct extent_buffer *leaf;
518 struct btrfs_key key;
519 u64 total_found = 0;
520 u64 last = 0;
521 u32 nritems;
522 int ret;
523 bool wakeup = true;
524
525 path = btrfs_alloc_path();
526 if (!path)
527 return -ENOMEM;
528
b3470b5d 529 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
9f21246d
JB
530
531#ifdef CONFIG_BTRFS_DEBUG
532 /*
533 * If we're fragmenting we don't want to make anybody think we can
534 * allocate from this block group until we've had a chance to fragment
535 * the free space.
536 */
537 if (btrfs_should_fragment_free_space(block_group))
538 wakeup = false;
539#endif
540 /*
541 * We don't want to deadlock with somebody trying to allocate a new
542 * extent for the extent root while also trying to search the extent
543 * root to add free space. So we skip locking and search the commit
544 * root, since its read-only
545 */
546 path->skip_locking = 1;
547 path->search_commit_root = 1;
548 path->reada = READA_FORWARD;
549
550 key.objectid = last;
551 key.offset = 0;
552 key.type = BTRFS_EXTENT_ITEM_KEY;
553
554next:
555 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
556 if (ret < 0)
557 goto out;
558
559 leaf = path->nodes[0];
560 nritems = btrfs_header_nritems(leaf);
561
562 while (1) {
563 if (btrfs_fs_closing(fs_info) > 1) {
564 last = (u64)-1;
565 break;
566 }
567
568 if (path->slots[0] < nritems) {
569 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
570 } else {
571 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
572 if (ret)
573 break;
574
575 if (need_resched() ||
576 rwsem_is_contended(&fs_info->commit_root_sem)) {
577 if (wakeup)
578 caching_ctl->progress = last;
579 btrfs_release_path(path);
580 up_read(&fs_info->commit_root_sem);
581 mutex_unlock(&caching_ctl->mutex);
582 cond_resched();
583 mutex_lock(&caching_ctl->mutex);
584 down_read(&fs_info->commit_root_sem);
585 goto next;
586 }
587
588 ret = btrfs_next_leaf(extent_root, path);
589 if (ret < 0)
590 goto out;
591 if (ret)
592 break;
593 leaf = path->nodes[0];
594 nritems = btrfs_header_nritems(leaf);
595 continue;
596 }
597
598 if (key.objectid < last) {
599 key.objectid = last;
600 key.offset = 0;
601 key.type = BTRFS_EXTENT_ITEM_KEY;
602
603 if (wakeup)
604 caching_ctl->progress = last;
605 btrfs_release_path(path);
606 goto next;
607 }
608
b3470b5d 609 if (key.objectid < block_group->start) {
9f21246d
JB
610 path->slots[0]++;
611 continue;
612 }
613
b3470b5d 614 if (key.objectid >= block_group->start + block_group->length)
9f21246d
JB
615 break;
616
617 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
618 key.type == BTRFS_METADATA_ITEM_KEY) {
619 total_found += add_new_free_space(block_group, last,
620 key.objectid);
621 if (key.type == BTRFS_METADATA_ITEM_KEY)
622 last = key.objectid +
623 fs_info->nodesize;
624 else
625 last = key.objectid + key.offset;
626
627 if (total_found > CACHING_CTL_WAKE_UP) {
628 total_found = 0;
629 if (wakeup)
630 wake_up(&caching_ctl->wait);
631 }
632 }
633 path->slots[0]++;
634 }
635 ret = 0;
636
637 total_found += add_new_free_space(block_group, last,
b3470b5d 638 block_group->start + block_group->length);
9f21246d
JB
639 caching_ctl->progress = (u64)-1;
640
641out:
642 btrfs_free_path(path);
643 return ret;
644}
645
646static noinline void caching_thread(struct btrfs_work *work)
647{
32da5386 648 struct btrfs_block_group *block_group;
9f21246d
JB
649 struct btrfs_fs_info *fs_info;
650 struct btrfs_caching_control *caching_ctl;
651 int ret;
652
653 caching_ctl = container_of(work, struct btrfs_caching_control, work);
654 block_group = caching_ctl->block_group;
655 fs_info = block_group->fs_info;
656
657 mutex_lock(&caching_ctl->mutex);
658 down_read(&fs_info->commit_root_sem);
659
e747853c
JB
660 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
661 ret = load_free_space_cache(block_group);
662 if (ret == 1) {
663 ret = 0;
664 goto done;
665 }
666
667 /*
668 * We failed to load the space cache, set ourselves to
669 * CACHE_STARTED and carry on.
670 */
671 spin_lock(&block_group->lock);
672 block_group->cached = BTRFS_CACHE_STARTED;
673 spin_unlock(&block_group->lock);
674 wake_up(&caching_ctl->wait);
675 }
676
2f96e402
JB
677 /*
678 * If we are in the transaction that populated the free space tree we
679 * can't actually cache from the free space tree as our commit root and
680 * real root are the same, so we could change the contents of the blocks
681 * while caching. Instead do the slow caching in this case, and after
682 * the transaction has committed we will be safe.
683 */
684 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
685 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
9f21246d
JB
686 ret = load_free_space_tree(caching_ctl);
687 else
688 ret = load_extent_tree_free(caching_ctl);
e747853c 689done:
9f21246d
JB
690 spin_lock(&block_group->lock);
691 block_group->caching_ctl = NULL;
692 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
693 spin_unlock(&block_group->lock);
694
695#ifdef CONFIG_BTRFS_DEBUG
696 if (btrfs_should_fragment_free_space(block_group)) {
697 u64 bytes_used;
698
699 spin_lock(&block_group->space_info->lock);
700 spin_lock(&block_group->lock);
b3470b5d 701 bytes_used = block_group->length - block_group->used;
9f21246d
JB
702 block_group->space_info->bytes_used += bytes_used >> 1;
703 spin_unlock(&block_group->lock);
704 spin_unlock(&block_group->space_info->lock);
e11c0406 705 fragment_free_space(block_group);
9f21246d
JB
706 }
707#endif
708
709 caching_ctl->progress = (u64)-1;
710
711 up_read(&fs_info->commit_root_sem);
712 btrfs_free_excluded_extents(block_group);
713 mutex_unlock(&caching_ctl->mutex);
714
715 wake_up(&caching_ctl->wait);
716
717 btrfs_put_caching_control(caching_ctl);
718 btrfs_put_block_group(block_group);
719}
720
32da5386 721int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
9f21246d
JB
722{
723 DEFINE_WAIT(wait);
724 struct btrfs_fs_info *fs_info = cache->fs_info;
e747853c 725 struct btrfs_caching_control *caching_ctl = NULL;
9f21246d
JB
726 int ret = 0;
727
2eda5708
NA
728 /* Allocator for zoned filesystems does not use the cache at all */
729 if (btrfs_is_zoned(fs_info))
730 return 0;
731
9f21246d
JB
732 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
733 if (!caching_ctl)
734 return -ENOMEM;
735
736 INIT_LIST_HEAD(&caching_ctl->list);
737 mutex_init(&caching_ctl->mutex);
738 init_waitqueue_head(&caching_ctl->wait);
739 caching_ctl->block_group = cache;
b3470b5d 740 caching_ctl->progress = cache->start;
e747853c 741 refcount_set(&caching_ctl->count, 2);
a0cac0ec 742 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
9f21246d
JB
743
744 spin_lock(&cache->lock);
9f21246d 745 if (cache->cached != BTRFS_CACHE_NO) {
9f21246d 746 kfree(caching_ctl);
e747853c
JB
747
748 caching_ctl = cache->caching_ctl;
749 if (caching_ctl)
750 refcount_inc(&caching_ctl->count);
751 spin_unlock(&cache->lock);
752 goto out;
9f21246d
JB
753 }
754 WARN_ON(cache->caching_ctl);
755 cache->caching_ctl = caching_ctl;
e747853c
JB
756 if (btrfs_test_opt(fs_info, SPACE_CACHE))
757 cache->cached = BTRFS_CACHE_FAST;
758 else
759 cache->cached = BTRFS_CACHE_STARTED;
760 cache->has_caching_ctl = 1;
9f21246d
JB
761 spin_unlock(&cache->lock);
762
bbb86a37 763 spin_lock(&fs_info->block_group_cache_lock);
9f21246d
JB
764 refcount_inc(&caching_ctl->count);
765 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
bbb86a37 766 spin_unlock(&fs_info->block_group_cache_lock);
9f21246d
JB
767
768 btrfs_get_block_group(cache);
769
770 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
e747853c
JB
771out:
772 if (load_cache_only && caching_ctl)
773 btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
774 if (caching_ctl)
775 btrfs_put_caching_control(caching_ctl);
9f21246d
JB
776
777 return ret;
778}
e3e0520b
JB
779
780static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
781{
782 u64 extra_flags = chunk_to_extended(flags) &
783 BTRFS_EXTENDED_PROFILE_MASK;
784
785 write_seqlock(&fs_info->profiles_lock);
786 if (flags & BTRFS_BLOCK_GROUP_DATA)
787 fs_info->avail_data_alloc_bits &= ~extra_flags;
788 if (flags & BTRFS_BLOCK_GROUP_METADATA)
789 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
790 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
791 fs_info->avail_system_alloc_bits &= ~extra_flags;
792 write_sequnlock(&fs_info->profiles_lock);
793}
794
795/*
796 * Clear incompat bits for the following feature(s):
797 *
798 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
799 * in the whole filesystem
9c907446
DS
800 *
801 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
e3e0520b
JB
802 */
803static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
804{
9c907446
DS
805 bool found_raid56 = false;
806 bool found_raid1c34 = false;
807
808 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
809 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
810 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
e3e0520b
JB
811 struct list_head *head = &fs_info->space_info;
812 struct btrfs_space_info *sinfo;
813
814 list_for_each_entry_rcu(sinfo, head, list) {
e3e0520b
JB
815 down_read(&sinfo->groups_sem);
816 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
9c907446 817 found_raid56 = true;
e3e0520b 818 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
9c907446
DS
819 found_raid56 = true;
820 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
821 found_raid1c34 = true;
822 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
823 found_raid1c34 = true;
e3e0520b 824 up_read(&sinfo->groups_sem);
e3e0520b 825 }
d8e6fd5c 826 if (!found_raid56)
9c907446 827 btrfs_clear_fs_incompat(fs_info, RAID56);
d8e6fd5c 828 if (!found_raid1c34)
9c907446 829 btrfs_clear_fs_incompat(fs_info, RAID1C34);
e3e0520b
JB
830 }
831}
832
7357623a
QW
833static int remove_block_group_item(struct btrfs_trans_handle *trans,
834 struct btrfs_path *path,
835 struct btrfs_block_group *block_group)
836{
837 struct btrfs_fs_info *fs_info = trans->fs_info;
838 struct btrfs_root *root;
839 struct btrfs_key key;
840 int ret;
841
842 root = fs_info->extent_root;
843 key.objectid = block_group->start;
844 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
845 key.offset = block_group->length;
846
847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
848 if (ret > 0)
849 ret = -ENOENT;
850 if (ret < 0)
851 return ret;
852
853 ret = btrfs_del_item(trans, root, path);
854 return ret;
855}
856
e3e0520b
JB
857int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
858 u64 group_start, struct extent_map *em)
859{
860 struct btrfs_fs_info *fs_info = trans->fs_info;
e3e0520b 861 struct btrfs_path *path;
32da5386 862 struct btrfs_block_group *block_group;
e3e0520b 863 struct btrfs_free_cluster *cluster;
e3e0520b
JB
864 struct inode *inode;
865 struct kobject *kobj = NULL;
866 int ret;
867 int index;
868 int factor;
869 struct btrfs_caching_control *caching_ctl = NULL;
870 bool remove_em;
871 bool remove_rsv = false;
872
873 block_group = btrfs_lookup_block_group(fs_info, group_start);
874 BUG_ON(!block_group);
875 BUG_ON(!block_group->ro);
876
877 trace_btrfs_remove_block_group(block_group);
878 /*
879 * Free the reserved super bytes from this block group before
880 * remove it.
881 */
882 btrfs_free_excluded_extents(block_group);
b3470b5d
DS
883 btrfs_free_ref_tree_range(fs_info, block_group->start,
884 block_group->length);
e3e0520b 885
e3e0520b
JB
886 index = btrfs_bg_flags_to_raid_index(block_group->flags);
887 factor = btrfs_bg_type_to_factor(block_group->flags);
888
889 /* make sure this block group isn't part of an allocation cluster */
890 cluster = &fs_info->data_alloc_cluster;
891 spin_lock(&cluster->refill_lock);
892 btrfs_return_cluster_to_free_space(block_group, cluster);
893 spin_unlock(&cluster->refill_lock);
894
895 /*
896 * make sure this block group isn't part of a metadata
897 * allocation cluster
898 */
899 cluster = &fs_info->meta_alloc_cluster;
900 spin_lock(&cluster->refill_lock);
901 btrfs_return_cluster_to_free_space(block_group, cluster);
902 spin_unlock(&cluster->refill_lock);
903
40ab3be1
NA
904 btrfs_clear_treelog_bg(block_group);
905
e3e0520b
JB
906 path = btrfs_alloc_path();
907 if (!path) {
908 ret = -ENOMEM;
9fecd132 909 goto out;
e3e0520b
JB
910 }
911
912 /*
913 * get the inode first so any iput calls done for the io_list
914 * aren't the final iput (no unlinks allowed now)
915 */
916 inode = lookup_free_space_inode(block_group, path);
917
918 mutex_lock(&trans->transaction->cache_write_mutex);
919 /*
920 * Make sure our free space cache IO is done before removing the
921 * free space inode
922 */
923 spin_lock(&trans->transaction->dirty_bgs_lock);
924 if (!list_empty(&block_group->io_list)) {
925 list_del_init(&block_group->io_list);
926
927 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928
929 spin_unlock(&trans->transaction->dirty_bgs_lock);
930 btrfs_wait_cache_io(trans, block_group, path);
931 btrfs_put_block_group(block_group);
932 spin_lock(&trans->transaction->dirty_bgs_lock);
933 }
934
935 if (!list_empty(&block_group->dirty_list)) {
936 list_del_init(&block_group->dirty_list);
937 remove_rsv = true;
938 btrfs_put_block_group(block_group);
939 }
940 spin_unlock(&trans->transaction->dirty_bgs_lock);
941 mutex_unlock(&trans->transaction->cache_write_mutex);
942
36b216c8
BB
943 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944 if (ret)
9fecd132 945 goto out;
e3e0520b
JB
946
947 spin_lock(&fs_info->block_group_cache_lock);
948 rb_erase(&block_group->cache_node,
949 &fs_info->block_group_cache_tree);
950 RB_CLEAR_NODE(&block_group->cache_node);
951
9fecd132
FM
952 /* Once for the block groups rbtree */
953 btrfs_put_block_group(block_group);
954
b3470b5d 955 if (fs_info->first_logical_byte == block_group->start)
e3e0520b
JB
956 fs_info->first_logical_byte = (u64)-1;
957 spin_unlock(&fs_info->block_group_cache_lock);
958
959 down_write(&block_group->space_info->groups_sem);
960 /*
961 * we must use list_del_init so people can check to see if they
962 * are still on the list after taking the semaphore
963 */
964 list_del_init(&block_group->list);
965 if (list_empty(&block_group->space_info->block_groups[index])) {
966 kobj = block_group->space_info->block_group_kobjs[index];
967 block_group->space_info->block_group_kobjs[index] = NULL;
968 clear_avail_alloc_bits(fs_info, block_group->flags);
969 }
970 up_write(&block_group->space_info->groups_sem);
971 clear_incompat_bg_bits(fs_info, block_group->flags);
972 if (kobj) {
973 kobject_del(kobj);
974 kobject_put(kobj);
975 }
976
977 if (block_group->has_caching_ctl)
978 caching_ctl = btrfs_get_caching_control(block_group);
979 if (block_group->cached == BTRFS_CACHE_STARTED)
980 btrfs_wait_block_group_cache_done(block_group);
981 if (block_group->has_caching_ctl) {
bbb86a37 982 spin_lock(&fs_info->block_group_cache_lock);
e3e0520b
JB
983 if (!caching_ctl) {
984 struct btrfs_caching_control *ctl;
985
986 list_for_each_entry(ctl,
987 &fs_info->caching_block_groups, list)
988 if (ctl->block_group == block_group) {
989 caching_ctl = ctl;
990 refcount_inc(&caching_ctl->count);
991 break;
992 }
993 }
994 if (caching_ctl)
995 list_del_init(&caching_ctl->list);
bbb86a37 996 spin_unlock(&fs_info->block_group_cache_lock);
e3e0520b
JB
997 if (caching_ctl) {
998 /* Once for the caching bgs list and once for us. */
999 btrfs_put_caching_control(caching_ctl);
1000 btrfs_put_caching_control(caching_ctl);
1001 }
1002 }
1003
1004 spin_lock(&trans->transaction->dirty_bgs_lock);
1005 WARN_ON(!list_empty(&block_group->dirty_list));
1006 WARN_ON(!list_empty(&block_group->io_list));
1007 spin_unlock(&trans->transaction->dirty_bgs_lock);
1008
1009 btrfs_remove_free_space_cache(block_group);
1010
1011 spin_lock(&block_group->space_info->lock);
1012 list_del_init(&block_group->ro_list);
1013
1014 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015 WARN_ON(block_group->space_info->total_bytes
b3470b5d 1016 < block_group->length);
e3e0520b 1017 WARN_ON(block_group->space_info->bytes_readonly
169e0da9
NA
1018 < block_group->length - block_group->zone_unusable);
1019 WARN_ON(block_group->space_info->bytes_zone_unusable
1020 < block_group->zone_unusable);
e3e0520b 1021 WARN_ON(block_group->space_info->disk_total
b3470b5d 1022 < block_group->length * factor);
e3e0520b 1023 }
b3470b5d 1024 block_group->space_info->total_bytes -= block_group->length;
169e0da9
NA
1025 block_group->space_info->bytes_readonly -=
1026 (block_group->length - block_group->zone_unusable);
1027 block_group->space_info->bytes_zone_unusable -=
1028 block_group->zone_unusable;
b3470b5d 1029 block_group->space_info->disk_total -= block_group->length * factor;
e3e0520b
JB
1030
1031 spin_unlock(&block_group->space_info->lock);
1032
ffcb9d44
FM
1033 /*
1034 * Remove the free space for the block group from the free space tree
1035 * and the block group's item from the extent tree before marking the
1036 * block group as removed. This is to prevent races with tasks that
1037 * freeze and unfreeze a block group, this task and another task
1038 * allocating a new block group - the unfreeze task ends up removing
1039 * the block group's extent map before the task calling this function
1040 * deletes the block group item from the extent tree, allowing for
1041 * another task to attempt to create another block group with the same
1042 * item key (and failing with -EEXIST and a transaction abort).
1043 */
1044 ret = remove_block_group_free_space(trans, block_group);
1045 if (ret)
1046 goto out;
1047
1048 ret = remove_block_group_item(trans, path, block_group);
1049 if (ret < 0)
1050 goto out;
1051
e3e0520b
JB
1052 spin_lock(&block_group->lock);
1053 block_group->removed = 1;
1054 /*
6b7304af
FM
1055 * At this point trimming or scrub can't start on this block group,
1056 * because we removed the block group from the rbtree
1057 * fs_info->block_group_cache_tree so no one can't find it anymore and
1058 * even if someone already got this block group before we removed it
1059 * from the rbtree, they have already incremented block_group->frozen -
1060 * if they didn't, for the trimming case they won't find any free space
1061 * entries because we already removed them all when we called
1062 * btrfs_remove_free_space_cache().
e3e0520b
JB
1063 *
1064 * And we must not remove the extent map from the fs_info->mapping_tree
1065 * to prevent the same logical address range and physical device space
6b7304af
FM
1066 * ranges from being reused for a new block group. This is needed to
1067 * avoid races with trimming and scrub.
1068 *
1069 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
e3e0520b
JB
1070 * completely transactionless, so while it is trimming a range the
1071 * currently running transaction might finish and a new one start,
1072 * allowing for new block groups to be created that can reuse the same
1073 * physical device locations unless we take this special care.
1074 *
1075 * There may also be an implicit trim operation if the file system
1076 * is mounted with -odiscard. The same protections must remain
1077 * in place until the extents have been discarded completely when
1078 * the transaction commit has completed.
1079 */
6b7304af 1080 remove_em = (atomic_read(&block_group->frozen) == 0);
e3e0520b
JB
1081 spin_unlock(&block_group->lock);
1082
e3e0520b
JB
1083 if (remove_em) {
1084 struct extent_map_tree *em_tree;
1085
1086 em_tree = &fs_info->mapping_tree;
1087 write_lock(&em_tree->lock);
1088 remove_extent_mapping(em_tree, em);
1089 write_unlock(&em_tree->lock);
1090 /* once for the tree */
1091 free_extent_map(em);
1092 }
f6033c5e 1093
9fecd132 1094out:
f6033c5e
XY
1095 /* Once for the lookup reference */
1096 btrfs_put_block_group(block_group);
e3e0520b
JB
1097 if (remove_rsv)
1098 btrfs_delayed_refs_rsv_release(fs_info, 1);
1099 btrfs_free_path(path);
1100 return ret;
1101}
1102
1103struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105{
1106 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107 struct extent_map *em;
1108 struct map_lookup *map;
1109 unsigned int num_items;
1110
1111 read_lock(&em_tree->lock);
1112 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113 read_unlock(&em_tree->lock);
1114 ASSERT(em && em->start == chunk_offset);
1115
1116 /*
1117 * We need to reserve 3 + N units from the metadata space info in order
1118 * to remove a block group (done at btrfs_remove_chunk() and at
1119 * btrfs_remove_block_group()), which are used for:
1120 *
1121 * 1 unit for adding the free space inode's orphan (located in the tree
1122 * of tree roots).
1123 * 1 unit for deleting the block group item (located in the extent
1124 * tree).
1125 * 1 unit for deleting the free space item (located in tree of tree
1126 * roots).
1127 * N units for deleting N device extent items corresponding to each
1128 * stripe (located in the device tree).
1129 *
1130 * In order to remove a block group we also need to reserve units in the
1131 * system space info in order to update the chunk tree (update one or
1132 * more device items and remove one chunk item), but this is done at
1133 * btrfs_remove_chunk() through a call to check_system_chunk().
1134 */
1135 map = em->map_lookup;
1136 num_items = 3 + map->num_stripes;
1137 free_extent_map(em);
1138
1139 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7f9fe614 1140 num_items);
e3e0520b
JB
1141}
1142
26ce2095
JB
1143/*
1144 * Mark block group @cache read-only, so later write won't happen to block
1145 * group @cache.
1146 *
1147 * If @force is not set, this function will only mark the block group readonly
1148 * if we have enough free space (1M) in other metadata/system block groups.
1149 * If @force is not set, this function will mark the block group readonly
1150 * without checking free space.
1151 *
1152 * NOTE: This function doesn't care if other block groups can contain all the
1153 * data in this block group. That check should be done by relocation routine,
1154 * not this function.
1155 */
32da5386 1156static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
26ce2095
JB
1157{
1158 struct btrfs_space_info *sinfo = cache->space_info;
1159 u64 num_bytes;
26ce2095
JB
1160 int ret = -ENOSPC;
1161
26ce2095
JB
1162 spin_lock(&sinfo->lock);
1163 spin_lock(&cache->lock);
1164
195a49ea
FM
1165 if (cache->swap_extents) {
1166 ret = -ETXTBSY;
1167 goto out;
1168 }
1169
26ce2095
JB
1170 if (cache->ro) {
1171 cache->ro++;
1172 ret = 0;
1173 goto out;
1174 }
1175
b3470b5d 1176 num_bytes = cache->length - cache->reserved - cache->pinned -
169e0da9 1177 cache->bytes_super - cache->zone_unusable - cache->used;
26ce2095
JB
1178
1179 /*
a30a3d20
JB
1180 * Data never overcommits, even in mixed mode, so do just the straight
1181 * check of left over space in how much we have allocated.
26ce2095 1182 */
a30a3d20
JB
1183 if (force) {
1184 ret = 0;
1185 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187
1188 /*
1189 * Here we make sure if we mark this bg RO, we still have enough
1190 * free space as buffer.
1191 */
1192 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193 ret = 0;
1194 } else {
1195 /*
1196 * We overcommit metadata, so we need to do the
1197 * btrfs_can_overcommit check here, and we need to pass in
1198 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199 * leeway to allow us to mark this block group as read only.
1200 */
1201 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202 BTRFS_RESERVE_NO_FLUSH))
1203 ret = 0;
1204 }
1205
1206 if (!ret) {
26ce2095 1207 sinfo->bytes_readonly += num_bytes;
169e0da9
NA
1208 if (btrfs_is_zoned(cache->fs_info)) {
1209 /* Migrate zone_unusable bytes to readonly */
1210 sinfo->bytes_readonly += cache->zone_unusable;
1211 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212 cache->zone_unusable = 0;
1213 }
26ce2095
JB
1214 cache->ro++;
1215 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
26ce2095
JB
1216 }
1217out:
1218 spin_unlock(&cache->lock);
1219 spin_unlock(&sinfo->lock);
1220 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221 btrfs_info(cache->fs_info,
b3470b5d 1222 "unable to make block group %llu ro", cache->start);
26ce2095
JB
1223 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224 }
1225 return ret;
1226}
1227
fe119a6e
NB
1228static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229 struct btrfs_block_group *bg)
45bb5d6a
NB
1230{
1231 struct btrfs_fs_info *fs_info = bg->fs_info;
fe119a6e 1232 struct btrfs_transaction *prev_trans = NULL;
45bb5d6a
NB
1233 const u64 start = bg->start;
1234 const u64 end = start + bg->length - 1;
1235 int ret;
1236
fe119a6e
NB
1237 spin_lock(&fs_info->trans_lock);
1238 if (trans->transaction->list.prev != &fs_info->trans_list) {
1239 prev_trans = list_last_entry(&trans->transaction->list,
1240 struct btrfs_transaction, list);
1241 refcount_inc(&prev_trans->use_count);
1242 }
1243 spin_unlock(&fs_info->trans_lock);
1244
45bb5d6a
NB
1245 /*
1246 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247 * btrfs_finish_extent_commit(). If we are at transaction N, another
1248 * task might be running finish_extent_commit() for the previous
1249 * transaction N - 1, and have seen a range belonging to the block
fe119a6e
NB
1250 * group in pinned_extents before we were able to clear the whole block
1251 * group range from pinned_extents. This means that task can lookup for
1252 * the block group after we unpinned it from pinned_extents and removed
1253 * it, leading to a BUG_ON() at unpin_extent_range().
45bb5d6a
NB
1254 */
1255 mutex_lock(&fs_info->unused_bg_unpin_mutex);
fe119a6e
NB
1256 if (prev_trans) {
1257 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258 EXTENT_DIRTY);
1259 if (ret)
534cf531 1260 goto out;
fe119a6e 1261 }
45bb5d6a 1262
fe119a6e 1263 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
45bb5d6a 1264 EXTENT_DIRTY);
534cf531 1265out:
45bb5d6a 1266 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5150bf19
FM
1267 if (prev_trans)
1268 btrfs_put_transaction(prev_trans);
45bb5d6a 1269
534cf531 1270 return ret == 0;
45bb5d6a
NB
1271}
1272
e3e0520b
JB
1273/*
1274 * Process the unused_bgs list and remove any that don't have any allocated
1275 * space inside of them.
1276 */
1277void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278{
32da5386 1279 struct btrfs_block_group *block_group;
e3e0520b
JB
1280 struct btrfs_space_info *space_info;
1281 struct btrfs_trans_handle *trans;
6e80d4f8 1282 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
e3e0520b
JB
1283 int ret = 0;
1284
1285 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286 return;
1287
ddfd08cb
JB
1288 /*
1289 * Long running balances can keep us blocked here for eternity, so
1290 * simply skip deletion if we're unable to get the mutex.
1291 */
f3372065 1292 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
ddfd08cb
JB
1293 return;
1294
e3e0520b
JB
1295 spin_lock(&fs_info->unused_bgs_lock);
1296 while (!list_empty(&fs_info->unused_bgs)) {
e3e0520b
JB
1297 int trimming;
1298
1299 block_group = list_first_entry(&fs_info->unused_bgs,
32da5386 1300 struct btrfs_block_group,
e3e0520b
JB
1301 bg_list);
1302 list_del_init(&block_group->bg_list);
1303
1304 space_info = block_group->space_info;
1305
1306 if (ret || btrfs_mixed_space_info(space_info)) {
1307 btrfs_put_block_group(block_group);
1308 continue;
1309 }
1310 spin_unlock(&fs_info->unused_bgs_lock);
1311
b0643e59
DZ
1312 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313
e3e0520b
JB
1314 /* Don't want to race with allocators so take the groups_sem */
1315 down_write(&space_info->groups_sem);
6e80d4f8
DZ
1316
1317 /*
1318 * Async discard moves the final block group discard to be prior
1319 * to the unused_bgs code path. Therefore, if it's not fully
1320 * trimmed, punt it back to the async discard lists.
1321 */
1322 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323 !btrfs_is_free_space_trimmed(block_group)) {
1324 trace_btrfs_skip_unused_block_group(block_group);
1325 up_write(&space_info->groups_sem);
1326 /* Requeue if we failed because of async discard */
1327 btrfs_discard_queue_work(&fs_info->discard_ctl,
1328 block_group);
1329 goto next;
1330 }
1331
e3e0520b
JB
1332 spin_lock(&block_group->lock);
1333 if (block_group->reserved || block_group->pinned ||
bf38be65 1334 block_group->used || block_group->ro ||
e3e0520b
JB
1335 list_is_singular(&block_group->list)) {
1336 /*
1337 * We want to bail if we made new allocations or have
1338 * outstanding allocations in this block group. We do
1339 * the ro check in case balance is currently acting on
1340 * this block group.
1341 */
1342 trace_btrfs_skip_unused_block_group(block_group);
1343 spin_unlock(&block_group->lock);
1344 up_write(&space_info->groups_sem);
1345 goto next;
1346 }
1347 spin_unlock(&block_group->lock);
1348
1349 /* We don't want to force the issue, only flip if it's ok. */
e11c0406 1350 ret = inc_block_group_ro(block_group, 0);
e3e0520b
JB
1351 up_write(&space_info->groups_sem);
1352 if (ret < 0) {
1353 ret = 0;
1354 goto next;
1355 }
1356
1357 /*
1358 * Want to do this before we do anything else so we can recover
1359 * properly if we fail to join the transaction.
1360 */
1361 trans = btrfs_start_trans_remove_block_group(fs_info,
b3470b5d 1362 block_group->start);
e3e0520b
JB
1363 if (IS_ERR(trans)) {
1364 btrfs_dec_block_group_ro(block_group);
1365 ret = PTR_ERR(trans);
1366 goto next;
1367 }
1368
1369 /*
1370 * We could have pending pinned extents for this block group,
1371 * just delete them, we don't care about them anymore.
1372 */
534cf531
FM
1373 if (!clean_pinned_extents(trans, block_group)) {
1374 btrfs_dec_block_group_ro(block_group);
e3e0520b 1375 goto end_trans;
534cf531 1376 }
e3e0520b 1377
b0643e59
DZ
1378 /*
1379 * At this point, the block_group is read only and should fail
1380 * new allocations. However, btrfs_finish_extent_commit() can
1381 * cause this block_group to be placed back on the discard
1382 * lists because now the block_group isn't fully discarded.
1383 * Bail here and try again later after discarding everything.
1384 */
1385 spin_lock(&fs_info->discard_ctl.lock);
1386 if (!list_empty(&block_group->discard_list)) {
1387 spin_unlock(&fs_info->discard_ctl.lock);
1388 btrfs_dec_block_group_ro(block_group);
1389 btrfs_discard_queue_work(&fs_info->discard_ctl,
1390 block_group);
1391 goto end_trans;
1392 }
1393 spin_unlock(&fs_info->discard_ctl.lock);
1394
e3e0520b
JB
1395 /* Reset pinned so btrfs_put_block_group doesn't complain */
1396 spin_lock(&space_info->lock);
1397 spin_lock(&block_group->lock);
1398
1399 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400 -block_group->pinned);
1401 space_info->bytes_readonly += block_group->pinned;
e3e0520b
JB
1402 block_group->pinned = 0;
1403
1404 spin_unlock(&block_group->lock);
1405 spin_unlock(&space_info->lock);
1406
6e80d4f8
DZ
1407 /*
1408 * The normal path here is an unused block group is passed here,
1409 * then trimming is handled in the transaction commit path.
1410 * Async discard interposes before this to do the trimming
1411 * before coming down the unused block group path as trimming
1412 * will no longer be done later in the transaction commit path.
1413 */
1414 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1415 goto flip_async;
1416
dcba6e48
NA
1417 /*
1418 * DISCARD can flip during remount. On zoned filesystems, we
1419 * need to reset sequential-required zones.
1420 */
1421 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1422 btrfs_is_zoned(fs_info);
e3e0520b
JB
1423
1424 /* Implicit trim during transaction commit. */
1425 if (trimming)
6b7304af 1426 btrfs_freeze_block_group(block_group);
e3e0520b
JB
1427
1428 /*
1429 * Btrfs_remove_chunk will abort the transaction if things go
1430 * horribly wrong.
1431 */
b3470b5d 1432 ret = btrfs_remove_chunk(trans, block_group->start);
e3e0520b
JB
1433
1434 if (ret) {
1435 if (trimming)
6b7304af 1436 btrfs_unfreeze_block_group(block_group);
e3e0520b
JB
1437 goto end_trans;
1438 }
1439
1440 /*
1441 * If we're not mounted with -odiscard, we can just forget
1442 * about this block group. Otherwise we'll need to wait
1443 * until transaction commit to do the actual discard.
1444 */
1445 if (trimming) {
1446 spin_lock(&fs_info->unused_bgs_lock);
1447 /*
1448 * A concurrent scrub might have added us to the list
1449 * fs_info->unused_bgs, so use a list_move operation
1450 * to add the block group to the deleted_bgs list.
1451 */
1452 list_move(&block_group->bg_list,
1453 &trans->transaction->deleted_bgs);
1454 spin_unlock(&fs_info->unused_bgs_lock);
1455 btrfs_get_block_group(block_group);
1456 }
1457end_trans:
1458 btrfs_end_transaction(trans);
1459next:
e3e0520b
JB
1460 btrfs_put_block_group(block_group);
1461 spin_lock(&fs_info->unused_bgs_lock);
1462 }
1463 spin_unlock(&fs_info->unused_bgs_lock);
f3372065 1464 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1465 return;
1466
1467flip_async:
1468 btrfs_end_transaction(trans);
f3372065 1469 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1470 btrfs_put_block_group(block_group);
1471 btrfs_discard_punt_unused_bgs_list(fs_info);
e3e0520b
JB
1472}
1473
32da5386 1474void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
e3e0520b
JB
1475{
1476 struct btrfs_fs_info *fs_info = bg->fs_info;
1477
1478 spin_lock(&fs_info->unused_bgs_lock);
1479 if (list_empty(&bg->bg_list)) {
1480 btrfs_get_block_group(bg);
1481 trace_btrfs_add_unused_block_group(bg);
1482 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1483 }
1484 spin_unlock(&fs_info->unused_bgs_lock);
1485}
4358d963 1486
18bb8bbf
JT
1487void btrfs_reclaim_bgs_work(struct work_struct *work)
1488{
1489 struct btrfs_fs_info *fs_info =
1490 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1491 struct btrfs_block_group *bg;
1492 struct btrfs_space_info *space_info;
1cea5cf0 1493 LIST_HEAD(again_list);
18bb8bbf
JT
1494
1495 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1496 return;
1497
1498 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1499 return;
1500
9cc0b837
JT
1501 /*
1502 * Long running balances can keep us blocked here for eternity, so
1503 * simply skip reclaim if we're unable to get the mutex.
1504 */
1505 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1506 btrfs_exclop_finish(fs_info);
1507 return;
1508 }
1509
18bb8bbf
JT
1510 spin_lock(&fs_info->unused_bgs_lock);
1511 while (!list_empty(&fs_info->reclaim_bgs)) {
5f93e776 1512 u64 zone_unusable;
1cea5cf0
FM
1513 int ret = 0;
1514
18bb8bbf
JT
1515 bg = list_first_entry(&fs_info->reclaim_bgs,
1516 struct btrfs_block_group,
1517 bg_list);
1518 list_del_init(&bg->bg_list);
1519
1520 space_info = bg->space_info;
1521 spin_unlock(&fs_info->unused_bgs_lock);
1522
1523 /* Don't race with allocators so take the groups_sem */
1524 down_write(&space_info->groups_sem);
1525
1526 spin_lock(&bg->lock);
1527 if (bg->reserved || bg->pinned || bg->ro) {
1528 /*
1529 * We want to bail if we made new allocations or have
1530 * outstanding allocations in this block group. We do
1531 * the ro check in case balance is currently acting on
1532 * this block group.
1533 */
1534 spin_unlock(&bg->lock);
1535 up_write(&space_info->groups_sem);
1536 goto next;
1537 }
1538 spin_unlock(&bg->lock);
1539
1540 /* Get out fast, in case we're unmounting the filesystem */
1541 if (btrfs_fs_closing(fs_info)) {
1542 up_write(&space_info->groups_sem);
1543 goto next;
1544 }
1545
5f93e776
JT
1546 /*
1547 * Cache the zone_unusable value before turning the block group
1548 * to read only. As soon as the blog group is read only it's
1549 * zone_unusable value gets moved to the block group's read-only
1550 * bytes and isn't available for calculations anymore.
1551 */
1552 zone_unusable = bg->zone_unusable;
18bb8bbf
JT
1553 ret = inc_block_group_ro(bg, 0);
1554 up_write(&space_info->groups_sem);
1555 if (ret < 0)
1556 goto next;
1557
5f93e776
JT
1558 btrfs_info(fs_info,
1559 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1560 bg->start, div_u64(bg->used * 100, bg->length),
1561 div64_u64(zone_unusable * 100, bg->length));
18bb8bbf
JT
1562 trace_btrfs_reclaim_block_group(bg);
1563 ret = btrfs_relocate_chunk(fs_info, bg->start);
ba86dd9f 1564 if (ret && ret != -EAGAIN)
18bb8bbf
JT
1565 btrfs_err(fs_info, "error relocating chunk %llu",
1566 bg->start);
1567
1568next:
18bb8bbf 1569 spin_lock(&fs_info->unused_bgs_lock);
1cea5cf0
FM
1570 if (ret == -EAGAIN && list_empty(&bg->bg_list))
1571 list_add_tail(&bg->bg_list, &again_list);
1572 else
1573 btrfs_put_block_group(bg);
18bb8bbf 1574 }
1cea5cf0 1575 list_splice_tail(&again_list, &fs_info->reclaim_bgs);
18bb8bbf
JT
1576 spin_unlock(&fs_info->unused_bgs_lock);
1577 mutex_unlock(&fs_info->reclaim_bgs_lock);
1578 btrfs_exclop_finish(fs_info);
1579}
1580
1581void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1582{
1583 spin_lock(&fs_info->unused_bgs_lock);
1584 if (!list_empty(&fs_info->reclaim_bgs))
1585 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1586 spin_unlock(&fs_info->unused_bgs_lock);
1587}
1588
1589void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1590{
1591 struct btrfs_fs_info *fs_info = bg->fs_info;
1592
1593 spin_lock(&fs_info->unused_bgs_lock);
1594 if (list_empty(&bg->bg_list)) {
1595 btrfs_get_block_group(bg);
1596 trace_btrfs_add_reclaim_block_group(bg);
1597 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1598 }
1599 spin_unlock(&fs_info->unused_bgs_lock);
1600}
1601
e3ba67a1
JT
1602static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1603 struct btrfs_path *path)
1604{
1605 struct extent_map_tree *em_tree;
1606 struct extent_map *em;
1607 struct btrfs_block_group_item bg;
1608 struct extent_buffer *leaf;
1609 int slot;
1610 u64 flags;
1611 int ret = 0;
1612
1613 slot = path->slots[0];
1614 leaf = path->nodes[0];
1615
1616 em_tree = &fs_info->mapping_tree;
1617 read_lock(&em_tree->lock);
1618 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1619 read_unlock(&em_tree->lock);
1620 if (!em) {
1621 btrfs_err(fs_info,
1622 "logical %llu len %llu found bg but no related chunk",
1623 key->objectid, key->offset);
1624 return -ENOENT;
1625 }
1626
1627 if (em->start != key->objectid || em->len != key->offset) {
1628 btrfs_err(fs_info,
1629 "block group %llu len %llu mismatch with chunk %llu len %llu",
1630 key->objectid, key->offset, em->start, em->len);
1631 ret = -EUCLEAN;
1632 goto out_free_em;
1633 }
1634
1635 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1636 sizeof(bg));
1637 flags = btrfs_stack_block_group_flags(&bg) &
1638 BTRFS_BLOCK_GROUP_TYPE_MASK;
1639
1640 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1641 btrfs_err(fs_info,
1642"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1643 key->objectid, key->offset, flags,
1644 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1645 ret = -EUCLEAN;
1646 }
1647
1648out_free_em:
1649 free_extent_map(em);
1650 return ret;
1651}
1652
4358d963
JB
1653static int find_first_block_group(struct btrfs_fs_info *fs_info,
1654 struct btrfs_path *path,
1655 struct btrfs_key *key)
1656{
1657 struct btrfs_root *root = fs_info->extent_root;
e3ba67a1 1658 int ret;
4358d963
JB
1659 struct btrfs_key found_key;
1660 struct extent_buffer *leaf;
4358d963
JB
1661 int slot;
1662
1663 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1664 if (ret < 0)
e3ba67a1 1665 return ret;
4358d963
JB
1666
1667 while (1) {
1668 slot = path->slots[0];
1669 leaf = path->nodes[0];
1670 if (slot >= btrfs_header_nritems(leaf)) {
1671 ret = btrfs_next_leaf(root, path);
1672 if (ret == 0)
1673 continue;
1674 if (ret < 0)
1675 goto out;
1676 break;
1677 }
1678 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1679
1680 if (found_key.objectid >= key->objectid &&
1681 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
e3ba67a1
JT
1682 ret = read_bg_from_eb(fs_info, &found_key, path);
1683 break;
4358d963 1684 }
e3ba67a1 1685
4358d963
JB
1686 path->slots[0]++;
1687 }
1688out:
1689 return ret;
1690}
1691
1692static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1693{
1694 u64 extra_flags = chunk_to_extended(flags) &
1695 BTRFS_EXTENDED_PROFILE_MASK;
1696
1697 write_seqlock(&fs_info->profiles_lock);
1698 if (flags & BTRFS_BLOCK_GROUP_DATA)
1699 fs_info->avail_data_alloc_bits |= extra_flags;
1700 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1701 fs_info->avail_metadata_alloc_bits |= extra_flags;
1702 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1703 fs_info->avail_system_alloc_bits |= extra_flags;
1704 write_sequnlock(&fs_info->profiles_lock);
1705}
1706
96a14336 1707/**
9ee9b979
NB
1708 * Map a physical disk address to a list of logical addresses
1709 *
1710 * @fs_info: the filesystem
96a14336 1711 * @chunk_start: logical address of block group
138082f3 1712 * @bdev: physical device to resolve, can be NULL to indicate any device
96a14336
NB
1713 * @physical: physical address to map to logical addresses
1714 * @logical: return array of logical addresses which map to @physical
1715 * @naddrs: length of @logical
1716 * @stripe_len: size of IO stripe for the given block group
1717 *
1718 * Maps a particular @physical disk address to a list of @logical addresses.
1719 * Used primarily to exclude those portions of a block group that contain super
1720 * block copies.
1721 */
96a14336 1722int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
138082f3
NA
1723 struct block_device *bdev, u64 physical, u64 **logical,
1724 int *naddrs, int *stripe_len)
96a14336
NB
1725{
1726 struct extent_map *em;
1727 struct map_lookup *map;
1728 u64 *buf;
1729 u64 bytenr;
1776ad17
NB
1730 u64 data_stripe_length;
1731 u64 io_stripe_size;
1732 int i, nr = 0;
1733 int ret = 0;
96a14336
NB
1734
1735 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1736 if (IS_ERR(em))
1737 return -EIO;
1738
1739 map = em->map_lookup;
9e22b925 1740 data_stripe_length = em->orig_block_len;
1776ad17 1741 io_stripe_size = map->stripe_len;
138082f3 1742 chunk_start = em->start;
96a14336 1743
9e22b925
NB
1744 /* For RAID5/6 adjust to a full IO stripe length */
1745 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1776ad17 1746 io_stripe_size = map->stripe_len * nr_data_stripes(map);
96a14336
NB
1747
1748 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1776ad17
NB
1749 if (!buf) {
1750 ret = -ENOMEM;
1751 goto out;
1752 }
96a14336
NB
1753
1754 for (i = 0; i < map->num_stripes; i++) {
1776ad17
NB
1755 bool already_inserted = false;
1756 u64 stripe_nr;
138082f3 1757 u64 offset;
1776ad17
NB
1758 int j;
1759
1760 if (!in_range(physical, map->stripes[i].physical,
1761 data_stripe_length))
96a14336
NB
1762 continue;
1763
138082f3
NA
1764 if (bdev && map->stripes[i].dev->bdev != bdev)
1765 continue;
1766
96a14336 1767 stripe_nr = physical - map->stripes[i].physical;
138082f3 1768 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
96a14336
NB
1769
1770 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1771 stripe_nr = stripe_nr * map->num_stripes + i;
1772 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1773 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1774 stripe_nr = stripe_nr * map->num_stripes + i;
1775 }
1776 /*
1777 * The remaining case would be for RAID56, multiply by
1778 * nr_data_stripes(). Alternatively, just use rmap_len below
1779 * instead of map->stripe_len
1780 */
1781
138082f3 1782 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1776ad17
NB
1783
1784 /* Ensure we don't add duplicate addresses */
96a14336 1785 for (j = 0; j < nr; j++) {
1776ad17
NB
1786 if (buf[j] == bytenr) {
1787 already_inserted = true;
96a14336 1788 break;
1776ad17 1789 }
96a14336 1790 }
1776ad17
NB
1791
1792 if (!already_inserted)
96a14336 1793 buf[nr++] = bytenr;
96a14336
NB
1794 }
1795
1796 *logical = buf;
1797 *naddrs = nr;
1776ad17
NB
1798 *stripe_len = io_stripe_size;
1799out:
96a14336 1800 free_extent_map(em);
1776ad17 1801 return ret;
96a14336
NB
1802}
1803
32da5386 1804static int exclude_super_stripes(struct btrfs_block_group *cache)
4358d963
JB
1805{
1806 struct btrfs_fs_info *fs_info = cache->fs_info;
12659251 1807 const bool zoned = btrfs_is_zoned(fs_info);
4358d963
JB
1808 u64 bytenr;
1809 u64 *logical;
1810 int stripe_len;
1811 int i, nr, ret;
1812
b3470b5d
DS
1813 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1814 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
4358d963 1815 cache->bytes_super += stripe_len;
b3470b5d 1816 ret = btrfs_add_excluded_extent(fs_info, cache->start,
4358d963
JB
1817 stripe_len);
1818 if (ret)
1819 return ret;
1820 }
1821
1822 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1823 bytenr = btrfs_sb_offset(i);
138082f3 1824 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
4358d963
JB
1825 bytenr, &logical, &nr, &stripe_len);
1826 if (ret)
1827 return ret;
1828
12659251
NA
1829 /* Shouldn't have super stripes in sequential zones */
1830 if (zoned && nr) {
1831 btrfs_err(fs_info,
1832 "zoned: block group %llu must not contain super block",
1833 cache->start);
1834 return -EUCLEAN;
1835 }
1836
4358d963 1837 while (nr--) {
96f9b0f2
NB
1838 u64 len = min_t(u64, stripe_len,
1839 cache->start + cache->length - logical[nr]);
4358d963
JB
1840
1841 cache->bytes_super += len;
96f9b0f2
NB
1842 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1843 len);
4358d963
JB
1844 if (ret) {
1845 kfree(logical);
1846 return ret;
1847 }
1848 }
1849
1850 kfree(logical);
1851 }
1852 return 0;
1853}
1854
32da5386 1855static void link_block_group(struct btrfs_block_group *cache)
4358d963
JB
1856{
1857 struct btrfs_space_info *space_info = cache->space_info;
1858 int index = btrfs_bg_flags_to_raid_index(cache->flags);
4358d963
JB
1859
1860 down_write(&space_info->groups_sem);
4358d963
JB
1861 list_add_tail(&cache->list, &space_info->block_groups[index]);
1862 up_write(&space_info->groups_sem);
4358d963
JB
1863}
1864
32da5386 1865static struct btrfs_block_group *btrfs_create_block_group_cache(
9afc6649 1866 struct btrfs_fs_info *fs_info, u64 start)
4358d963 1867{
32da5386 1868 struct btrfs_block_group *cache;
4358d963
JB
1869
1870 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1871 if (!cache)
1872 return NULL;
1873
1874 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1875 GFP_NOFS);
1876 if (!cache->free_space_ctl) {
1877 kfree(cache);
1878 return NULL;
1879 }
1880
b3470b5d 1881 cache->start = start;
4358d963
JB
1882
1883 cache->fs_info = fs_info;
1884 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
4358d963 1885
6e80d4f8
DZ
1886 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1887
48aaeebe 1888 refcount_set(&cache->refs, 1);
4358d963
JB
1889 spin_lock_init(&cache->lock);
1890 init_rwsem(&cache->data_rwsem);
1891 INIT_LIST_HEAD(&cache->list);
1892 INIT_LIST_HEAD(&cache->cluster_list);
1893 INIT_LIST_HEAD(&cache->bg_list);
1894 INIT_LIST_HEAD(&cache->ro_list);
b0643e59 1895 INIT_LIST_HEAD(&cache->discard_list);
4358d963
JB
1896 INIT_LIST_HEAD(&cache->dirty_list);
1897 INIT_LIST_HEAD(&cache->io_list);
cd79909b 1898 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
6b7304af 1899 atomic_set(&cache->frozen, 0);
4358d963
JB
1900 mutex_init(&cache->free_space_lock);
1901 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1902
1903 return cache;
1904}
1905
1906/*
1907 * Iterate all chunks and verify that each of them has the corresponding block
1908 * group
1909 */
1910static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1911{
1912 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1913 struct extent_map *em;
32da5386 1914 struct btrfs_block_group *bg;
4358d963
JB
1915 u64 start = 0;
1916 int ret = 0;
1917
1918 while (1) {
1919 read_lock(&map_tree->lock);
1920 /*
1921 * lookup_extent_mapping will return the first extent map
1922 * intersecting the range, so setting @len to 1 is enough to
1923 * get the first chunk.
1924 */
1925 em = lookup_extent_mapping(map_tree, start, 1);
1926 read_unlock(&map_tree->lock);
1927 if (!em)
1928 break;
1929
1930 bg = btrfs_lookup_block_group(fs_info, em->start);
1931 if (!bg) {
1932 btrfs_err(fs_info,
1933 "chunk start=%llu len=%llu doesn't have corresponding block group",
1934 em->start, em->len);
1935 ret = -EUCLEAN;
1936 free_extent_map(em);
1937 break;
1938 }
b3470b5d 1939 if (bg->start != em->start || bg->length != em->len ||
4358d963
JB
1940 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1941 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1942 btrfs_err(fs_info,
1943"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1944 em->start, em->len,
1945 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
b3470b5d 1946 bg->start, bg->length,
4358d963
JB
1947 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1948 ret = -EUCLEAN;
1949 free_extent_map(em);
1950 btrfs_put_block_group(bg);
1951 break;
1952 }
1953 start = em->start + em->len;
1954 free_extent_map(em);
1955 btrfs_put_block_group(bg);
1956 }
1957 return ret;
1958}
1959
ffb9e0f0 1960static int read_one_block_group(struct btrfs_fs_info *info,
4afd2fe8 1961 struct btrfs_block_group_item *bgi,
d49a2ddb 1962 const struct btrfs_key *key,
ffb9e0f0
QW
1963 int need_clear)
1964{
32da5386 1965 struct btrfs_block_group *cache;
ffb9e0f0 1966 struct btrfs_space_info *space_info;
ffb9e0f0 1967 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
ffb9e0f0
QW
1968 int ret;
1969
d49a2ddb 1970 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
ffb9e0f0 1971
9afc6649 1972 cache = btrfs_create_block_group_cache(info, key->objectid);
ffb9e0f0
QW
1973 if (!cache)
1974 return -ENOMEM;
1975
4afd2fe8
JT
1976 cache->length = key->offset;
1977 cache->used = btrfs_stack_block_group_used(bgi);
1978 cache->flags = btrfs_stack_block_group_flags(bgi);
9afc6649 1979
e3e39c72
MPS
1980 set_free_space_tree_thresholds(cache);
1981
ffb9e0f0
QW
1982 if (need_clear) {
1983 /*
1984 * When we mount with old space cache, we need to
1985 * set BTRFS_DC_CLEAR and set dirty flag.
1986 *
1987 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1988 * truncate the old free space cache inode and
1989 * setup a new one.
1990 * b) Setting 'dirty flag' makes sure that we flush
1991 * the new space cache info onto disk.
1992 */
1993 if (btrfs_test_opt(info, SPACE_CACHE))
1994 cache->disk_cache_state = BTRFS_DC_CLEAR;
1995 }
ffb9e0f0
QW
1996 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1997 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1998 btrfs_err(info,
1999"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2000 cache->start);
2001 ret = -EINVAL;
2002 goto error;
2003 }
2004
a94794d5 2005 ret = btrfs_load_block_group_zone_info(cache, false);
08e11a3d
NA
2006 if (ret) {
2007 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2008 cache->start);
2009 goto error;
2010 }
2011
ffb9e0f0
QW
2012 /*
2013 * We need to exclude the super stripes now so that the space info has
2014 * super bytes accounted for, otherwise we'll think we have more space
2015 * than we actually do.
2016 */
2017 ret = exclude_super_stripes(cache);
2018 if (ret) {
2019 /* We may have excluded something, so call this just in case. */
2020 btrfs_free_excluded_extents(cache);
2021 goto error;
2022 }
2023
2024 /*
169e0da9
NA
2025 * For zoned filesystem, space after the allocation offset is the only
2026 * free space for a block group. So, we don't need any caching work.
2027 * btrfs_calc_zone_unusable() will set the amount of free space and
2028 * zone_unusable space.
2029 *
2030 * For regular filesystem, check for two cases, either we are full, and
2031 * therefore don't need to bother with the caching work since we won't
2032 * find any space, or we are empty, and we can just add all the space
2033 * in and be done with it. This saves us _a_lot_ of time, particularly
2034 * in the full case.
ffb9e0f0 2035 */
169e0da9
NA
2036 if (btrfs_is_zoned(info)) {
2037 btrfs_calc_zone_unusable(cache);
c46c4247
NA
2038 /* Should not have any excluded extents. Just in case, though. */
2039 btrfs_free_excluded_extents(cache);
169e0da9 2040 } else if (cache->length == cache->used) {
ffb9e0f0
QW
2041 cache->last_byte_to_unpin = (u64)-1;
2042 cache->cached = BTRFS_CACHE_FINISHED;
2043 btrfs_free_excluded_extents(cache);
2044 } else if (cache->used == 0) {
2045 cache->last_byte_to_unpin = (u64)-1;
2046 cache->cached = BTRFS_CACHE_FINISHED;
9afc6649
QW
2047 add_new_free_space(cache, cache->start,
2048 cache->start + cache->length);
ffb9e0f0
QW
2049 btrfs_free_excluded_extents(cache);
2050 }
2051
2052 ret = btrfs_add_block_group_cache(info, cache);
2053 if (ret) {
2054 btrfs_remove_free_space_cache(cache);
2055 goto error;
2056 }
2057 trace_btrfs_add_block_group(info, cache, 0);
9afc6649 2058 btrfs_update_space_info(info, cache->flags, cache->length,
169e0da9
NA
2059 cache->used, cache->bytes_super,
2060 cache->zone_unusable, &space_info);
ffb9e0f0
QW
2061
2062 cache->space_info = space_info;
2063
2064 link_block_group(cache);
2065
2066 set_avail_alloc_bits(info, cache->flags);
a09f23c3
AJ
2067 if (btrfs_chunk_writeable(info, cache->start)) {
2068 if (cache->used == 0) {
2069 ASSERT(list_empty(&cache->bg_list));
2070 if (btrfs_test_opt(info, DISCARD_ASYNC))
2071 btrfs_discard_queue_work(&info->discard_ctl, cache);
2072 else
2073 btrfs_mark_bg_unused(cache);
2074 }
2075 } else {
ffb9e0f0 2076 inc_block_group_ro(cache, 1);
ffb9e0f0 2077 }
a09f23c3 2078
ffb9e0f0
QW
2079 return 0;
2080error:
2081 btrfs_put_block_group(cache);
2082 return ret;
2083}
2084
42437a63
JB
2085static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2086{
2087 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2088 struct btrfs_space_info *space_info;
2089 struct rb_node *node;
2090 int ret = 0;
2091
2092 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2093 struct extent_map *em;
2094 struct map_lookup *map;
2095 struct btrfs_block_group *bg;
2096
2097 em = rb_entry(node, struct extent_map, rb_node);
2098 map = em->map_lookup;
2099 bg = btrfs_create_block_group_cache(fs_info, em->start);
2100 if (!bg) {
2101 ret = -ENOMEM;
2102 break;
2103 }
2104
2105 /* Fill dummy cache as FULL */
2106 bg->length = em->len;
2107 bg->flags = map->type;
2108 bg->last_byte_to_unpin = (u64)-1;
2109 bg->cached = BTRFS_CACHE_FINISHED;
2110 bg->used = em->len;
2111 bg->flags = map->type;
2112 ret = btrfs_add_block_group_cache(fs_info, bg);
2b29726c
QW
2113 /*
2114 * We may have some valid block group cache added already, in
2115 * that case we skip to the next one.
2116 */
2117 if (ret == -EEXIST) {
2118 ret = 0;
2119 btrfs_put_block_group(bg);
2120 continue;
2121 }
2122
42437a63
JB
2123 if (ret) {
2124 btrfs_remove_free_space_cache(bg);
2125 btrfs_put_block_group(bg);
2126 break;
2127 }
2b29726c 2128
42437a63 2129 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
169e0da9 2130 0, 0, &space_info);
42437a63
JB
2131 bg->space_info = space_info;
2132 link_block_group(bg);
2133
2134 set_avail_alloc_bits(fs_info, bg->flags);
2135 }
2136 if (!ret)
2137 btrfs_init_global_block_rsv(fs_info);
2138 return ret;
2139}
2140
4358d963
JB
2141int btrfs_read_block_groups(struct btrfs_fs_info *info)
2142{
2143 struct btrfs_path *path;
2144 int ret;
32da5386 2145 struct btrfs_block_group *cache;
4358d963
JB
2146 struct btrfs_space_info *space_info;
2147 struct btrfs_key key;
4358d963
JB
2148 int need_clear = 0;
2149 u64 cache_gen;
4358d963 2150
42437a63
JB
2151 if (!info->extent_root)
2152 return fill_dummy_bgs(info);
2153
4358d963
JB
2154 key.objectid = 0;
2155 key.offset = 0;
2156 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2157 path = btrfs_alloc_path();
2158 if (!path)
2159 return -ENOMEM;
4358d963
JB
2160
2161 cache_gen = btrfs_super_cache_generation(info->super_copy);
2162 if (btrfs_test_opt(info, SPACE_CACHE) &&
2163 btrfs_super_generation(info->super_copy) != cache_gen)
2164 need_clear = 1;
2165 if (btrfs_test_opt(info, CLEAR_CACHE))
2166 need_clear = 1;
2167
2168 while (1) {
4afd2fe8
JT
2169 struct btrfs_block_group_item bgi;
2170 struct extent_buffer *leaf;
2171 int slot;
2172
4358d963
JB
2173 ret = find_first_block_group(info, path, &key);
2174 if (ret > 0)
2175 break;
2176 if (ret != 0)
2177 goto error;
2178
4afd2fe8
JT
2179 leaf = path->nodes[0];
2180 slot = path->slots[0];
2181
2182 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2183 sizeof(bgi));
2184
2185 btrfs_item_key_to_cpu(leaf, &key, slot);
2186 btrfs_release_path(path);
2187 ret = read_one_block_group(info, &bgi, &key, need_clear);
ffb9e0f0 2188 if (ret < 0)
4358d963 2189 goto error;
ffb9e0f0
QW
2190 key.objectid += key.offset;
2191 key.offset = 0;
4358d963 2192 }
7837fa88 2193 btrfs_release_path(path);
4358d963 2194
72804905 2195 list_for_each_entry(space_info, &info->space_info, list) {
49ea112d
JB
2196 int i;
2197
2198 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2199 if (list_empty(&space_info->block_groups[i]))
2200 continue;
2201 cache = list_first_entry(&space_info->block_groups[i],
2202 struct btrfs_block_group,
2203 list);
2204 btrfs_sysfs_add_block_group_type(cache);
2205 }
2206
4358d963
JB
2207 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2208 (BTRFS_BLOCK_GROUP_RAID10 |
2209 BTRFS_BLOCK_GROUP_RAID1_MASK |
2210 BTRFS_BLOCK_GROUP_RAID56_MASK |
2211 BTRFS_BLOCK_GROUP_DUP)))
2212 continue;
2213 /*
2214 * Avoid allocating from un-mirrored block group if there are
2215 * mirrored block groups.
2216 */
2217 list_for_each_entry(cache,
2218 &space_info->block_groups[BTRFS_RAID_RAID0],
2219 list)
e11c0406 2220 inc_block_group_ro(cache, 1);
4358d963
JB
2221 list_for_each_entry(cache,
2222 &space_info->block_groups[BTRFS_RAID_SINGLE],
2223 list)
e11c0406 2224 inc_block_group_ro(cache, 1);
4358d963
JB
2225 }
2226
2227 btrfs_init_global_block_rsv(info);
2228 ret = check_chunk_block_group_mappings(info);
2229error:
2230 btrfs_free_path(path);
2b29726c
QW
2231 /*
2232 * We've hit some error while reading the extent tree, and have
2233 * rescue=ibadroots mount option.
2234 * Try to fill the tree using dummy block groups so that the user can
2235 * continue to mount and grab their data.
2236 */
2237 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2238 ret = fill_dummy_bgs(info);
4358d963
JB
2239 return ret;
2240}
2241
79bd3712
FM
2242/*
2243 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2244 * allocation.
2245 *
2246 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2247 * phases.
2248 */
97f4728a
QW
2249static int insert_block_group_item(struct btrfs_trans_handle *trans,
2250 struct btrfs_block_group *block_group)
2251{
2252 struct btrfs_fs_info *fs_info = trans->fs_info;
2253 struct btrfs_block_group_item bgi;
2254 struct btrfs_root *root;
2255 struct btrfs_key key;
2256
2257 spin_lock(&block_group->lock);
2258 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2259 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2260 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2261 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2262 key.objectid = block_group->start;
2263 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2264 key.offset = block_group->length;
2265 spin_unlock(&block_group->lock);
2266
2267 root = fs_info->extent_root;
2268 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2269}
2270
2eadb9e7
NB
2271static int insert_dev_extent(struct btrfs_trans_handle *trans,
2272 struct btrfs_device *device, u64 chunk_offset,
2273 u64 start, u64 num_bytes)
2274{
2275 struct btrfs_fs_info *fs_info = device->fs_info;
2276 struct btrfs_root *root = fs_info->dev_root;
2277 struct btrfs_path *path;
2278 struct btrfs_dev_extent *extent;
2279 struct extent_buffer *leaf;
2280 struct btrfs_key key;
2281 int ret;
2282
2283 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2284 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2285 path = btrfs_alloc_path();
2286 if (!path)
2287 return -ENOMEM;
2288
2289 key.objectid = device->devid;
2290 key.type = BTRFS_DEV_EXTENT_KEY;
2291 key.offset = start;
2292 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2293 if (ret)
2294 goto out;
2295
2296 leaf = path->nodes[0];
2297 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2298 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2299 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2300 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2301 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2302
2303 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2304 btrfs_mark_buffer_dirty(leaf);
2305out:
2306 btrfs_free_path(path);
2307 return ret;
2308}
2309
2310/*
2311 * This function belongs to phase 2.
2312 *
2313 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2314 * phases.
2315 */
2316static int insert_dev_extents(struct btrfs_trans_handle *trans,
2317 u64 chunk_offset, u64 chunk_size)
2318{
2319 struct btrfs_fs_info *fs_info = trans->fs_info;
2320 struct btrfs_device *device;
2321 struct extent_map *em;
2322 struct map_lookup *map;
2323 u64 dev_offset;
2324 u64 stripe_size;
2325 int i;
2326 int ret = 0;
2327
2328 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2329 if (IS_ERR(em))
2330 return PTR_ERR(em);
2331
2332 map = em->map_lookup;
2333 stripe_size = em->orig_block_len;
2334
2335 /*
2336 * Take the device list mutex to prevent races with the final phase of
2337 * a device replace operation that replaces the device object associated
2338 * with the map's stripes, because the device object's id can change
2339 * at any time during that final phase of the device replace operation
2340 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2341 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2342 * resulting in persisting a device extent item with such ID.
2343 */
2344 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2345 for (i = 0; i < map->num_stripes; i++) {
2346 device = map->stripes[i].dev;
2347 dev_offset = map->stripes[i].physical;
2348
2349 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2350 stripe_size);
2351 if (ret)
2352 break;
2353 }
2354 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2355
2356 free_extent_map(em);
2357 return ret;
2358}
2359
79bd3712
FM
2360/*
2361 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2362 * chunk allocation.
2363 *
2364 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2365 * phases.
2366 */
4358d963
JB
2367void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2368{
2369 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2370 struct btrfs_block_group *block_group;
4358d963
JB
2371 int ret = 0;
2372
4358d963 2373 while (!list_empty(&trans->new_bgs)) {
49ea112d
JB
2374 int index;
2375
4358d963 2376 block_group = list_first_entry(&trans->new_bgs,
32da5386 2377 struct btrfs_block_group,
4358d963
JB
2378 bg_list);
2379 if (ret)
2380 goto next;
2381
49ea112d
JB
2382 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2383
97f4728a 2384 ret = insert_block_group_item(trans, block_group);
4358d963
JB
2385 if (ret)
2386 btrfs_abort_transaction(trans, ret);
79bd3712
FM
2387 if (!block_group->chunk_item_inserted) {
2388 mutex_lock(&fs_info->chunk_mutex);
2389 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2390 mutex_unlock(&fs_info->chunk_mutex);
2391 if (ret)
2392 btrfs_abort_transaction(trans, ret);
2393 }
2eadb9e7
NB
2394 ret = insert_dev_extents(trans, block_group->start,
2395 block_group->length);
4358d963
JB
2396 if (ret)
2397 btrfs_abort_transaction(trans, ret);
2398 add_block_group_free_space(trans, block_group);
49ea112d
JB
2399
2400 /*
2401 * If we restriped during balance, we may have added a new raid
2402 * type, so now add the sysfs entries when it is safe to do so.
2403 * We don't have to worry about locking here as it's handled in
2404 * btrfs_sysfs_add_block_group_type.
2405 */
2406 if (block_group->space_info->block_group_kobjs[index] == NULL)
2407 btrfs_sysfs_add_block_group_type(block_group);
2408
4358d963
JB
2409 /* Already aborted the transaction if it failed. */
2410next:
2411 btrfs_delayed_refs_rsv_release(fs_info, 1);
2412 list_del_init(&block_group->bg_list);
2413 }
2414 btrfs_trans_release_chunk_metadata(trans);
2415}
2416
79bd3712
FM
2417struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2418 u64 bytes_used, u64 type,
2419 u64 chunk_offset, u64 size)
4358d963
JB
2420{
2421 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2422 struct btrfs_block_group *cache;
4358d963
JB
2423 int ret;
2424
2425 btrfs_set_log_full_commit(trans);
2426
9afc6649 2427 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
4358d963 2428 if (!cache)
79bd3712 2429 return ERR_PTR(-ENOMEM);
4358d963 2430
9afc6649 2431 cache->length = size;
e3e39c72 2432 set_free_space_tree_thresholds(cache);
bf38be65 2433 cache->used = bytes_used;
4358d963
JB
2434 cache->flags = type;
2435 cache->last_byte_to_unpin = (u64)-1;
2436 cache->cached = BTRFS_CACHE_FINISHED;
997e3e2e
BB
2437 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2438 cache->needs_free_space = 1;
08e11a3d 2439
a94794d5 2440 ret = btrfs_load_block_group_zone_info(cache, true);
08e11a3d
NA
2441 if (ret) {
2442 btrfs_put_block_group(cache);
79bd3712 2443 return ERR_PTR(ret);
08e11a3d
NA
2444 }
2445
4358d963
JB
2446 ret = exclude_super_stripes(cache);
2447 if (ret) {
2448 /* We may have excluded something, so call this just in case */
2449 btrfs_free_excluded_extents(cache);
2450 btrfs_put_block_group(cache);
79bd3712 2451 return ERR_PTR(ret);
4358d963
JB
2452 }
2453
2454 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2455
2456 btrfs_free_excluded_extents(cache);
2457
2458#ifdef CONFIG_BTRFS_DEBUG
2459 if (btrfs_should_fragment_free_space(cache)) {
2460 u64 new_bytes_used = size - bytes_used;
2461
2462 bytes_used += new_bytes_used >> 1;
e11c0406 2463 fragment_free_space(cache);
4358d963
JB
2464 }
2465#endif
2466 /*
2467 * Ensure the corresponding space_info object is created and
2468 * assigned to our block group. We want our bg to be added to the rbtree
2469 * with its ->space_info set.
2470 */
2471 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2472 ASSERT(cache->space_info);
2473
2474 ret = btrfs_add_block_group_cache(fs_info, cache);
2475 if (ret) {
2476 btrfs_remove_free_space_cache(cache);
2477 btrfs_put_block_group(cache);
79bd3712 2478 return ERR_PTR(ret);
4358d963
JB
2479 }
2480
2481 /*
2482 * Now that our block group has its ->space_info set and is inserted in
2483 * the rbtree, update the space info's counters.
2484 */
2485 trace_btrfs_add_block_group(fs_info, cache, 1);
2486 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
98173255
NA
2487 cache->bytes_super, cache->zone_unusable,
2488 &cache->space_info);
4358d963
JB
2489 btrfs_update_global_block_rsv(fs_info);
2490
2491 link_block_group(cache);
2492
2493 list_add_tail(&cache->bg_list, &trans->new_bgs);
2494 trans->delayed_ref_updates++;
2495 btrfs_update_delayed_refs_rsv(trans);
2496
2497 set_avail_alloc_bits(fs_info, type);
79bd3712 2498 return cache;
4358d963 2499}
26ce2095 2500
b12de528
QW
2501/*
2502 * Mark one block group RO, can be called several times for the same block
2503 * group.
2504 *
2505 * @cache: the destination block group
2506 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2507 * ensure we still have some free space after marking this
2508 * block group RO.
2509 */
2510int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2511 bool do_chunk_alloc)
26ce2095
JB
2512{
2513 struct btrfs_fs_info *fs_info = cache->fs_info;
2514 struct btrfs_trans_handle *trans;
2515 u64 alloc_flags;
2516 int ret;
b6e9f16c 2517 bool dirty_bg_running;
26ce2095 2518
b6e9f16c
NB
2519 do {
2520 trans = btrfs_join_transaction(fs_info->extent_root);
2521 if (IS_ERR(trans))
2522 return PTR_ERR(trans);
26ce2095 2523
b6e9f16c 2524 dirty_bg_running = false;
26ce2095 2525
b6e9f16c
NB
2526 /*
2527 * We're not allowed to set block groups readonly after the dirty
2528 * block group cache has started writing. If it already started,
2529 * back off and let this transaction commit.
2530 */
2531 mutex_lock(&fs_info->ro_block_group_mutex);
2532 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2533 u64 transid = trans->transid;
26ce2095 2534
b6e9f16c
NB
2535 mutex_unlock(&fs_info->ro_block_group_mutex);
2536 btrfs_end_transaction(trans);
2537
2538 ret = btrfs_wait_for_commit(fs_info, transid);
2539 if (ret)
2540 return ret;
2541 dirty_bg_running = true;
2542 }
2543 } while (dirty_bg_running);
26ce2095 2544
b12de528 2545 if (do_chunk_alloc) {
26ce2095 2546 /*
b12de528
QW
2547 * If we are changing raid levels, try to allocate a
2548 * corresponding block group with the new raid level.
26ce2095 2549 */
349e120e 2550 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
b12de528
QW
2551 if (alloc_flags != cache->flags) {
2552 ret = btrfs_chunk_alloc(trans, alloc_flags,
2553 CHUNK_ALLOC_FORCE);
2554 /*
2555 * ENOSPC is allowed here, we may have enough space
2556 * already allocated at the new raid level to carry on
2557 */
2558 if (ret == -ENOSPC)
2559 ret = 0;
2560 if (ret < 0)
2561 goto out;
2562 }
26ce2095
JB
2563 }
2564
a7a63acc 2565 ret = inc_block_group_ro(cache, 0);
195a49ea 2566 if (!do_chunk_alloc || ret == -ETXTBSY)
b12de528 2567 goto unlock_out;
26ce2095
JB
2568 if (!ret)
2569 goto out;
2570 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2571 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2572 if (ret < 0)
2573 goto out;
e11c0406 2574 ret = inc_block_group_ro(cache, 0);
195a49ea
FM
2575 if (ret == -ETXTBSY)
2576 goto unlock_out;
26ce2095
JB
2577out:
2578 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
349e120e 2579 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
26ce2095
JB
2580 mutex_lock(&fs_info->chunk_mutex);
2581 check_system_chunk(trans, alloc_flags);
2582 mutex_unlock(&fs_info->chunk_mutex);
2583 }
b12de528 2584unlock_out:
26ce2095
JB
2585 mutex_unlock(&fs_info->ro_block_group_mutex);
2586
2587 btrfs_end_transaction(trans);
2588 return ret;
2589}
2590
32da5386 2591void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
26ce2095
JB
2592{
2593 struct btrfs_space_info *sinfo = cache->space_info;
2594 u64 num_bytes;
2595
2596 BUG_ON(!cache->ro);
2597
2598 spin_lock(&sinfo->lock);
2599 spin_lock(&cache->lock);
2600 if (!--cache->ro) {
169e0da9
NA
2601 if (btrfs_is_zoned(cache->fs_info)) {
2602 /* Migrate zone_unusable bytes back */
98173255
NA
2603 cache->zone_unusable =
2604 (cache->alloc_offset - cache->used) +
2605 (cache->length - cache->zone_capacity);
169e0da9
NA
2606 sinfo->bytes_zone_unusable += cache->zone_unusable;
2607 sinfo->bytes_readonly -= cache->zone_unusable;
2608 }
f9f28e5b
NA
2609 num_bytes = cache->length - cache->reserved -
2610 cache->pinned - cache->bytes_super -
2611 cache->zone_unusable - cache->used;
2612 sinfo->bytes_readonly -= num_bytes;
26ce2095
JB
2613 list_del_init(&cache->ro_list);
2614 }
2615 spin_unlock(&cache->lock);
2616 spin_unlock(&sinfo->lock);
2617}
77745c05 2618
3be4d8ef
QW
2619static int update_block_group_item(struct btrfs_trans_handle *trans,
2620 struct btrfs_path *path,
2621 struct btrfs_block_group *cache)
77745c05
JB
2622{
2623 struct btrfs_fs_info *fs_info = trans->fs_info;
2624 int ret;
3be4d8ef 2625 struct btrfs_root *root = fs_info->extent_root;
77745c05
JB
2626 unsigned long bi;
2627 struct extent_buffer *leaf;
bf38be65 2628 struct btrfs_block_group_item bgi;
b3470b5d
DS
2629 struct btrfs_key key;
2630
2631 key.objectid = cache->start;
2632 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2633 key.offset = cache->length;
77745c05 2634
3be4d8ef 2635 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
77745c05
JB
2636 if (ret) {
2637 if (ret > 0)
2638 ret = -ENOENT;
2639 goto fail;
2640 }
2641
2642 leaf = path->nodes[0];
2643 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
de0dc456
DS
2644 btrfs_set_stack_block_group_used(&bgi, cache->used);
2645 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3d976388 2646 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
de0dc456 2647 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
bf38be65 2648 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
77745c05
JB
2649 btrfs_mark_buffer_dirty(leaf);
2650fail:
2651 btrfs_release_path(path);
2652 return ret;
2653
2654}
2655
32da5386 2656static int cache_save_setup(struct btrfs_block_group *block_group,
77745c05
JB
2657 struct btrfs_trans_handle *trans,
2658 struct btrfs_path *path)
2659{
2660 struct btrfs_fs_info *fs_info = block_group->fs_info;
2661 struct btrfs_root *root = fs_info->tree_root;
2662 struct inode *inode = NULL;
2663 struct extent_changeset *data_reserved = NULL;
2664 u64 alloc_hint = 0;
2665 int dcs = BTRFS_DC_ERROR;
0044ae11 2666 u64 cache_size = 0;
77745c05
JB
2667 int retries = 0;
2668 int ret = 0;
2669
af456a2c
BB
2670 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2671 return 0;
2672
77745c05
JB
2673 /*
2674 * If this block group is smaller than 100 megs don't bother caching the
2675 * block group.
2676 */
b3470b5d 2677 if (block_group->length < (100 * SZ_1M)) {
77745c05
JB
2678 spin_lock(&block_group->lock);
2679 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2680 spin_unlock(&block_group->lock);
2681 return 0;
2682 }
2683
bf31f87f 2684 if (TRANS_ABORTED(trans))
77745c05
JB
2685 return 0;
2686again:
2687 inode = lookup_free_space_inode(block_group, path);
2688 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2689 ret = PTR_ERR(inode);
2690 btrfs_release_path(path);
2691 goto out;
2692 }
2693
2694 if (IS_ERR(inode)) {
2695 BUG_ON(retries);
2696 retries++;
2697
2698 if (block_group->ro)
2699 goto out_free;
2700
2701 ret = create_free_space_inode(trans, block_group, path);
2702 if (ret)
2703 goto out_free;
2704 goto again;
2705 }
2706
2707 /*
2708 * We want to set the generation to 0, that way if anything goes wrong
2709 * from here on out we know not to trust this cache when we load up next
2710 * time.
2711 */
2712 BTRFS_I(inode)->generation = 0;
9a56fcd1 2713 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
77745c05
JB
2714 if (ret) {
2715 /*
2716 * So theoretically we could recover from this, simply set the
2717 * super cache generation to 0 so we know to invalidate the
2718 * cache, but then we'd have to keep track of the block groups
2719 * that fail this way so we know we _have_ to reset this cache
2720 * before the next commit or risk reading stale cache. So to
2721 * limit our exposure to horrible edge cases lets just abort the
2722 * transaction, this only happens in really bad situations
2723 * anyway.
2724 */
2725 btrfs_abort_transaction(trans, ret);
2726 goto out_put;
2727 }
2728 WARN_ON(ret);
2729
2730 /* We've already setup this transaction, go ahead and exit */
2731 if (block_group->cache_generation == trans->transid &&
2732 i_size_read(inode)) {
2733 dcs = BTRFS_DC_SETUP;
2734 goto out_put;
2735 }
2736
2737 if (i_size_read(inode) > 0) {
2738 ret = btrfs_check_trunc_cache_free_space(fs_info,
2739 &fs_info->global_block_rsv);
2740 if (ret)
2741 goto out_put;
2742
2743 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2744 if (ret)
2745 goto out_put;
2746 }
2747
2748 spin_lock(&block_group->lock);
2749 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2750 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2751 /*
2752 * don't bother trying to write stuff out _if_
2753 * a) we're not cached,
2754 * b) we're with nospace_cache mount option,
2755 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2756 */
2757 dcs = BTRFS_DC_WRITTEN;
2758 spin_unlock(&block_group->lock);
2759 goto out_put;
2760 }
2761 spin_unlock(&block_group->lock);
2762
2763 /*
2764 * We hit an ENOSPC when setting up the cache in this transaction, just
2765 * skip doing the setup, we've already cleared the cache so we're safe.
2766 */
2767 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2768 ret = -ENOSPC;
2769 goto out_put;
2770 }
2771
2772 /*
2773 * Try to preallocate enough space based on how big the block group is.
2774 * Keep in mind this has to include any pinned space which could end up
2775 * taking up quite a bit since it's not folded into the other space
2776 * cache.
2777 */
0044ae11
QW
2778 cache_size = div_u64(block_group->length, SZ_256M);
2779 if (!cache_size)
2780 cache_size = 1;
77745c05 2781
0044ae11
QW
2782 cache_size *= 16;
2783 cache_size *= fs_info->sectorsize;
77745c05 2784
36ea6f3e 2785 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
0044ae11 2786 cache_size);
77745c05
JB
2787 if (ret)
2788 goto out_put;
2789
0044ae11
QW
2790 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2791 cache_size, cache_size,
77745c05
JB
2792 &alloc_hint);
2793 /*
2794 * Our cache requires contiguous chunks so that we don't modify a bunch
2795 * of metadata or split extents when writing the cache out, which means
2796 * we can enospc if we are heavily fragmented in addition to just normal
2797 * out of space conditions. So if we hit this just skip setting up any
2798 * other block groups for this transaction, maybe we'll unpin enough
2799 * space the next time around.
2800 */
2801 if (!ret)
2802 dcs = BTRFS_DC_SETUP;
2803 else if (ret == -ENOSPC)
2804 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2805
2806out_put:
2807 iput(inode);
2808out_free:
2809 btrfs_release_path(path);
2810out:
2811 spin_lock(&block_group->lock);
2812 if (!ret && dcs == BTRFS_DC_SETUP)
2813 block_group->cache_generation = trans->transid;
2814 block_group->disk_cache_state = dcs;
2815 spin_unlock(&block_group->lock);
2816
2817 extent_changeset_free(data_reserved);
2818 return ret;
2819}
2820
2821int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2822{
2823 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2824 struct btrfs_block_group *cache, *tmp;
77745c05
JB
2825 struct btrfs_transaction *cur_trans = trans->transaction;
2826 struct btrfs_path *path;
2827
2828 if (list_empty(&cur_trans->dirty_bgs) ||
2829 !btrfs_test_opt(fs_info, SPACE_CACHE))
2830 return 0;
2831
2832 path = btrfs_alloc_path();
2833 if (!path)
2834 return -ENOMEM;
2835
2836 /* Could add new block groups, use _safe just in case */
2837 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2838 dirty_list) {
2839 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2840 cache_save_setup(cache, trans, path);
2841 }
2842
2843 btrfs_free_path(path);
2844 return 0;
2845}
2846
2847/*
2848 * Transaction commit does final block group cache writeback during a critical
2849 * section where nothing is allowed to change the FS. This is required in
2850 * order for the cache to actually match the block group, but can introduce a
2851 * lot of latency into the commit.
2852 *
2853 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2854 * There's a chance we'll have to redo some of it if the block group changes
2855 * again during the commit, but it greatly reduces the commit latency by
2856 * getting rid of the easy block groups while we're still allowing others to
2857 * join the commit.
2858 */
2859int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2860{
2861 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2862 struct btrfs_block_group *cache;
77745c05
JB
2863 struct btrfs_transaction *cur_trans = trans->transaction;
2864 int ret = 0;
2865 int should_put;
2866 struct btrfs_path *path = NULL;
2867 LIST_HEAD(dirty);
2868 struct list_head *io = &cur_trans->io_bgs;
2869 int num_started = 0;
2870 int loops = 0;
2871
2872 spin_lock(&cur_trans->dirty_bgs_lock);
2873 if (list_empty(&cur_trans->dirty_bgs)) {
2874 spin_unlock(&cur_trans->dirty_bgs_lock);
2875 return 0;
2876 }
2877 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2878 spin_unlock(&cur_trans->dirty_bgs_lock);
2879
2880again:
2881 /* Make sure all the block groups on our dirty list actually exist */
2882 btrfs_create_pending_block_groups(trans);
2883
2884 if (!path) {
2885 path = btrfs_alloc_path();
938fcbfb
JB
2886 if (!path) {
2887 ret = -ENOMEM;
2888 goto out;
2889 }
77745c05
JB
2890 }
2891
2892 /*
2893 * cache_write_mutex is here only to save us from balance or automatic
2894 * removal of empty block groups deleting this block group while we are
2895 * writing out the cache
2896 */
2897 mutex_lock(&trans->transaction->cache_write_mutex);
2898 while (!list_empty(&dirty)) {
2899 bool drop_reserve = true;
2900
32da5386 2901 cache = list_first_entry(&dirty, struct btrfs_block_group,
77745c05
JB
2902 dirty_list);
2903 /*
2904 * This can happen if something re-dirties a block group that
2905 * is already under IO. Just wait for it to finish and then do
2906 * it all again
2907 */
2908 if (!list_empty(&cache->io_list)) {
2909 list_del_init(&cache->io_list);
2910 btrfs_wait_cache_io(trans, cache, path);
2911 btrfs_put_block_group(cache);
2912 }
2913
2914
2915 /*
2916 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2917 * it should update the cache_state. Don't delete until after
2918 * we wait.
2919 *
2920 * Since we're not running in the commit critical section
2921 * we need the dirty_bgs_lock to protect from update_block_group
2922 */
2923 spin_lock(&cur_trans->dirty_bgs_lock);
2924 list_del_init(&cache->dirty_list);
2925 spin_unlock(&cur_trans->dirty_bgs_lock);
2926
2927 should_put = 1;
2928
2929 cache_save_setup(cache, trans, path);
2930
2931 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2932 cache->io_ctl.inode = NULL;
2933 ret = btrfs_write_out_cache(trans, cache, path);
2934 if (ret == 0 && cache->io_ctl.inode) {
2935 num_started++;
2936 should_put = 0;
2937
2938 /*
2939 * The cache_write_mutex is protecting the
2940 * io_list, also refer to the definition of
2941 * btrfs_transaction::io_bgs for more details
2942 */
2943 list_add_tail(&cache->io_list, io);
2944 } else {
2945 /*
2946 * If we failed to write the cache, the
2947 * generation will be bad and life goes on
2948 */
2949 ret = 0;
2950 }
2951 }
2952 if (!ret) {
3be4d8ef 2953 ret = update_block_group_item(trans, path, cache);
77745c05
JB
2954 /*
2955 * Our block group might still be attached to the list
2956 * of new block groups in the transaction handle of some
2957 * other task (struct btrfs_trans_handle->new_bgs). This
2958 * means its block group item isn't yet in the extent
2959 * tree. If this happens ignore the error, as we will
2960 * try again later in the critical section of the
2961 * transaction commit.
2962 */
2963 if (ret == -ENOENT) {
2964 ret = 0;
2965 spin_lock(&cur_trans->dirty_bgs_lock);
2966 if (list_empty(&cache->dirty_list)) {
2967 list_add_tail(&cache->dirty_list,
2968 &cur_trans->dirty_bgs);
2969 btrfs_get_block_group(cache);
2970 drop_reserve = false;
2971 }
2972 spin_unlock(&cur_trans->dirty_bgs_lock);
2973 } else if (ret) {
2974 btrfs_abort_transaction(trans, ret);
2975 }
2976 }
2977
2978 /* If it's not on the io list, we need to put the block group */
2979 if (should_put)
2980 btrfs_put_block_group(cache);
2981 if (drop_reserve)
2982 btrfs_delayed_refs_rsv_release(fs_info, 1);
77745c05
JB
2983 /*
2984 * Avoid blocking other tasks for too long. It might even save
2985 * us from writing caches for block groups that are going to be
2986 * removed.
2987 */
2988 mutex_unlock(&trans->transaction->cache_write_mutex);
938fcbfb
JB
2989 if (ret)
2990 goto out;
77745c05
JB
2991 mutex_lock(&trans->transaction->cache_write_mutex);
2992 }
2993 mutex_unlock(&trans->transaction->cache_write_mutex);
2994
2995 /*
2996 * Go through delayed refs for all the stuff we've just kicked off
2997 * and then loop back (just once)
2998 */
34d1eb0e
JB
2999 if (!ret)
3000 ret = btrfs_run_delayed_refs(trans, 0);
77745c05
JB
3001 if (!ret && loops == 0) {
3002 loops++;
3003 spin_lock(&cur_trans->dirty_bgs_lock);
3004 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3005 /*
3006 * dirty_bgs_lock protects us from concurrent block group
3007 * deletes too (not just cache_write_mutex).
3008 */
3009 if (!list_empty(&dirty)) {
3010 spin_unlock(&cur_trans->dirty_bgs_lock);
3011 goto again;
3012 }
3013 spin_unlock(&cur_trans->dirty_bgs_lock);
938fcbfb
JB
3014 }
3015out:
3016 if (ret < 0) {
3017 spin_lock(&cur_trans->dirty_bgs_lock);
3018 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3019 spin_unlock(&cur_trans->dirty_bgs_lock);
77745c05
JB
3020 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3021 }
3022
3023 btrfs_free_path(path);
3024 return ret;
3025}
3026
3027int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3028{
3029 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 3030 struct btrfs_block_group *cache;
77745c05
JB
3031 struct btrfs_transaction *cur_trans = trans->transaction;
3032 int ret = 0;
3033 int should_put;
3034 struct btrfs_path *path;
3035 struct list_head *io = &cur_trans->io_bgs;
3036 int num_started = 0;
3037
3038 path = btrfs_alloc_path();
3039 if (!path)
3040 return -ENOMEM;
3041
3042 /*
3043 * Even though we are in the critical section of the transaction commit,
3044 * we can still have concurrent tasks adding elements to this
3045 * transaction's list of dirty block groups. These tasks correspond to
3046 * endio free space workers started when writeback finishes for a
3047 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3048 * allocate new block groups as a result of COWing nodes of the root
3049 * tree when updating the free space inode. The writeback for the space
3050 * caches is triggered by an earlier call to
3051 * btrfs_start_dirty_block_groups() and iterations of the following
3052 * loop.
3053 * Also we want to do the cache_save_setup first and then run the
3054 * delayed refs to make sure we have the best chance at doing this all
3055 * in one shot.
3056 */
3057 spin_lock(&cur_trans->dirty_bgs_lock);
3058 while (!list_empty(&cur_trans->dirty_bgs)) {
3059 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 3060 struct btrfs_block_group,
77745c05
JB
3061 dirty_list);
3062
3063 /*
3064 * This can happen if cache_save_setup re-dirties a block group
3065 * that is already under IO. Just wait for it to finish and
3066 * then do it all again
3067 */
3068 if (!list_empty(&cache->io_list)) {
3069 spin_unlock(&cur_trans->dirty_bgs_lock);
3070 list_del_init(&cache->io_list);
3071 btrfs_wait_cache_io(trans, cache, path);
3072 btrfs_put_block_group(cache);
3073 spin_lock(&cur_trans->dirty_bgs_lock);
3074 }
3075
3076 /*
3077 * Don't remove from the dirty list until after we've waited on
3078 * any pending IO
3079 */
3080 list_del_init(&cache->dirty_list);
3081 spin_unlock(&cur_trans->dirty_bgs_lock);
3082 should_put = 1;
3083
3084 cache_save_setup(cache, trans, path);
3085
3086 if (!ret)
3087 ret = btrfs_run_delayed_refs(trans,
3088 (unsigned long) -1);
3089
3090 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3091 cache->io_ctl.inode = NULL;
3092 ret = btrfs_write_out_cache(trans, cache, path);
3093 if (ret == 0 && cache->io_ctl.inode) {
3094 num_started++;
3095 should_put = 0;
3096 list_add_tail(&cache->io_list, io);
3097 } else {
3098 /*
3099 * If we failed to write the cache, the
3100 * generation will be bad and life goes on
3101 */
3102 ret = 0;
3103 }
3104 }
3105 if (!ret) {
3be4d8ef 3106 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3107 /*
3108 * One of the free space endio workers might have
3109 * created a new block group while updating a free space
3110 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3111 * and hasn't released its transaction handle yet, in
3112 * which case the new block group is still attached to
3113 * its transaction handle and its creation has not
3114 * finished yet (no block group item in the extent tree
3115 * yet, etc). If this is the case, wait for all free
3116 * space endio workers to finish and retry. This is a
260db43c 3117 * very rare case so no need for a more efficient and
77745c05
JB
3118 * complex approach.
3119 */
3120 if (ret == -ENOENT) {
3121 wait_event(cur_trans->writer_wait,
3122 atomic_read(&cur_trans->num_writers) == 1);
3be4d8ef 3123 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3124 }
3125 if (ret)
3126 btrfs_abort_transaction(trans, ret);
3127 }
3128
3129 /* If its not on the io list, we need to put the block group */
3130 if (should_put)
3131 btrfs_put_block_group(cache);
3132 btrfs_delayed_refs_rsv_release(fs_info, 1);
3133 spin_lock(&cur_trans->dirty_bgs_lock);
3134 }
3135 spin_unlock(&cur_trans->dirty_bgs_lock);
3136
3137 /*
3138 * Refer to the definition of io_bgs member for details why it's safe
3139 * to use it without any locking
3140 */
3141 while (!list_empty(io)) {
32da5386 3142 cache = list_first_entry(io, struct btrfs_block_group,
77745c05
JB
3143 io_list);
3144 list_del_init(&cache->io_list);
3145 btrfs_wait_cache_io(trans, cache, path);
3146 btrfs_put_block_group(cache);
3147 }
3148
3149 btrfs_free_path(path);
3150 return ret;
3151}
606d1bf1
JB
3152
3153int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3154 u64 bytenr, u64 num_bytes, int alloc)
3155{
3156 struct btrfs_fs_info *info = trans->fs_info;
32da5386 3157 struct btrfs_block_group *cache = NULL;
606d1bf1
JB
3158 u64 total = num_bytes;
3159 u64 old_val;
3160 u64 byte_in_group;
3161 int factor;
3162 int ret = 0;
3163
3164 /* Block accounting for super block */
3165 spin_lock(&info->delalloc_root_lock);
3166 old_val = btrfs_super_bytes_used(info->super_copy);
3167 if (alloc)
3168 old_val += num_bytes;
3169 else
3170 old_val -= num_bytes;
3171 btrfs_set_super_bytes_used(info->super_copy, old_val);
3172 spin_unlock(&info->delalloc_root_lock);
3173
3174 while (total) {
3175 cache = btrfs_lookup_block_group(info, bytenr);
3176 if (!cache) {
3177 ret = -ENOENT;
3178 break;
3179 }
3180 factor = btrfs_bg_type_to_factor(cache->flags);
3181
3182 /*
3183 * If this block group has free space cache written out, we
3184 * need to make sure to load it if we are removing space. This
3185 * is because we need the unpinning stage to actually add the
3186 * space back to the block group, otherwise we will leak space.
3187 */
32da5386 3188 if (!alloc && !btrfs_block_group_done(cache))
606d1bf1
JB
3189 btrfs_cache_block_group(cache, 1);
3190
b3470b5d
DS
3191 byte_in_group = bytenr - cache->start;
3192 WARN_ON(byte_in_group > cache->length);
606d1bf1
JB
3193
3194 spin_lock(&cache->space_info->lock);
3195 spin_lock(&cache->lock);
3196
3197 if (btrfs_test_opt(info, SPACE_CACHE) &&
3198 cache->disk_cache_state < BTRFS_DC_CLEAR)
3199 cache->disk_cache_state = BTRFS_DC_CLEAR;
3200
bf38be65 3201 old_val = cache->used;
b3470b5d 3202 num_bytes = min(total, cache->length - byte_in_group);
606d1bf1
JB
3203 if (alloc) {
3204 old_val += num_bytes;
bf38be65 3205 cache->used = old_val;
606d1bf1
JB
3206 cache->reserved -= num_bytes;
3207 cache->space_info->bytes_reserved -= num_bytes;
3208 cache->space_info->bytes_used += num_bytes;
3209 cache->space_info->disk_used += num_bytes * factor;
3210 spin_unlock(&cache->lock);
3211 spin_unlock(&cache->space_info->lock);
3212 } else {
3213 old_val -= num_bytes;
bf38be65 3214 cache->used = old_val;
606d1bf1
JB
3215 cache->pinned += num_bytes;
3216 btrfs_space_info_update_bytes_pinned(info,
3217 cache->space_info, num_bytes);
3218 cache->space_info->bytes_used -= num_bytes;
3219 cache->space_info->disk_used -= num_bytes * factor;
3220 spin_unlock(&cache->lock);
3221 spin_unlock(&cache->space_info->lock);
3222
fe119a6e 3223 set_extent_dirty(&trans->transaction->pinned_extents,
606d1bf1
JB
3224 bytenr, bytenr + num_bytes - 1,
3225 GFP_NOFS | __GFP_NOFAIL);
3226 }
3227
3228 spin_lock(&trans->transaction->dirty_bgs_lock);
3229 if (list_empty(&cache->dirty_list)) {
3230 list_add_tail(&cache->dirty_list,
3231 &trans->transaction->dirty_bgs);
3232 trans->delayed_ref_updates++;
3233 btrfs_get_block_group(cache);
3234 }
3235 spin_unlock(&trans->transaction->dirty_bgs_lock);
3236
3237 /*
3238 * No longer have used bytes in this block group, queue it for
3239 * deletion. We do this after adding the block group to the
3240 * dirty list to avoid races between cleaner kthread and space
3241 * cache writeout.
3242 */
6e80d4f8
DZ
3243 if (!alloc && old_val == 0) {
3244 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3245 btrfs_mark_bg_unused(cache);
3246 }
606d1bf1
JB
3247
3248 btrfs_put_block_group(cache);
3249 total -= num_bytes;
3250 bytenr += num_bytes;
3251 }
3252
3253 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3254 btrfs_update_delayed_refs_rsv(trans);
3255 return ret;
3256}
3257
3258/**
3259 * btrfs_add_reserved_bytes - update the block_group and space info counters
3260 * @cache: The cache we are manipulating
3261 * @ram_bytes: The number of bytes of file content, and will be same to
3262 * @num_bytes except for the compress path.
3263 * @num_bytes: The number of bytes in question
3264 * @delalloc: The blocks are allocated for the delalloc write
3265 *
3266 * This is called by the allocator when it reserves space. If this is a
3267 * reservation and the block group has become read only we cannot make the
3268 * reservation and return -EAGAIN, otherwise this function always succeeds.
3269 */
32da5386 3270int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3271 u64 ram_bytes, u64 num_bytes, int delalloc)
3272{
3273 struct btrfs_space_info *space_info = cache->space_info;
3274 int ret = 0;
3275
3276 spin_lock(&space_info->lock);
3277 spin_lock(&cache->lock);
3278 if (cache->ro) {
3279 ret = -EAGAIN;
3280 } else {
3281 cache->reserved += num_bytes;
3282 space_info->bytes_reserved += num_bytes;
a43c3835
JB
3283 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3284 space_info->flags, num_bytes, 1);
606d1bf1
JB
3285 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3286 space_info, -ram_bytes);
3287 if (delalloc)
3288 cache->delalloc_bytes += num_bytes;
99ffb43e
JB
3289
3290 /*
3291 * Compression can use less space than we reserved, so wake
3292 * tickets if that happens
3293 */
3294 if (num_bytes < ram_bytes)
3295 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3296 }
3297 spin_unlock(&cache->lock);
3298 spin_unlock(&space_info->lock);
3299 return ret;
3300}
3301
3302/**
3303 * btrfs_free_reserved_bytes - update the block_group and space info counters
3304 * @cache: The cache we are manipulating
3305 * @num_bytes: The number of bytes in question
3306 * @delalloc: The blocks are allocated for the delalloc write
3307 *
3308 * This is called by somebody who is freeing space that was never actually used
3309 * on disk. For example if you reserve some space for a new leaf in transaction
3310 * A and before transaction A commits you free that leaf, you call this with
3311 * reserve set to 0 in order to clear the reservation.
3312 */
32da5386 3313void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3314 u64 num_bytes, int delalloc)
3315{
3316 struct btrfs_space_info *space_info = cache->space_info;
3317
3318 spin_lock(&space_info->lock);
3319 spin_lock(&cache->lock);
3320 if (cache->ro)
3321 space_info->bytes_readonly += num_bytes;
3322 cache->reserved -= num_bytes;
3323 space_info->bytes_reserved -= num_bytes;
3324 space_info->max_extent_size = 0;
3325
3326 if (delalloc)
3327 cache->delalloc_bytes -= num_bytes;
3328 spin_unlock(&cache->lock);
3308234a
JB
3329
3330 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3331 spin_unlock(&space_info->lock);
3332}
07730d87
JB
3333
3334static void force_metadata_allocation(struct btrfs_fs_info *info)
3335{
3336 struct list_head *head = &info->space_info;
3337 struct btrfs_space_info *found;
3338
72804905 3339 list_for_each_entry(found, head, list) {
07730d87
JB
3340 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3341 found->force_alloc = CHUNK_ALLOC_FORCE;
3342 }
07730d87
JB
3343}
3344
3345static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3346 struct btrfs_space_info *sinfo, int force)
3347{
3348 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3349 u64 thresh;
3350
3351 if (force == CHUNK_ALLOC_FORCE)
3352 return 1;
3353
3354 /*
3355 * in limited mode, we want to have some free space up to
3356 * about 1% of the FS size.
3357 */
3358 if (force == CHUNK_ALLOC_LIMITED) {
3359 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3360 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3361
3362 if (sinfo->total_bytes - bytes_used < thresh)
3363 return 1;
3364 }
3365
3366 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3367 return 0;
3368 return 1;
3369}
3370
3371int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3372{
3373 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3374
3375 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3376}
3377
79bd3712
FM
3378static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3379{
3380 struct btrfs_block_group *bg;
3381 int ret;
3382
3383 /*
3384 * Check if we have enough space in the system space info because we
3385 * will need to update device items in the chunk btree and insert a new
3386 * chunk item in the chunk btree as well. This will allocate a new
3387 * system block group if needed.
3388 */
3389 check_system_chunk(trans, flags);
3390
f6f39f7a 3391 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
3392 if (IS_ERR(bg)) {
3393 ret = PTR_ERR(bg);
3394 goto out;
3395 }
3396
3397 /*
3398 * If this is a system chunk allocation then stop right here and do not
3399 * add the chunk item to the chunk btree. This is to prevent a deadlock
3400 * because this system chunk allocation can be triggered while COWing
3401 * some extent buffer of the chunk btree and while holding a lock on a
3402 * parent extent buffer, in which case attempting to insert the chunk
3403 * item (or update the device item) would result in a deadlock on that
3404 * parent extent buffer. In this case defer the chunk btree updates to
3405 * the second phase of chunk allocation and keep our reservation until
3406 * the second phase completes.
3407 *
3408 * This is a rare case and can only be triggered by the very few cases
3409 * we have where we need to touch the chunk btree outside chunk allocation
3410 * and chunk removal. These cases are basically adding a device, removing
3411 * a device or resizing a device.
3412 */
3413 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3414 return 0;
3415
3416 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3417 /*
3418 * Normally we are not expected to fail with -ENOSPC here, since we have
3419 * previously reserved space in the system space_info and allocated one
3420 * new system chunk if necessary. However there are two exceptions:
3421 *
3422 * 1) We may have enough free space in the system space_info but all the
3423 * existing system block groups have a profile which can not be used
3424 * for extent allocation.
3425 *
3426 * This happens when mounting in degraded mode. For example we have a
3427 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3428 * using the other device in degraded mode. If we then allocate a chunk,
3429 * we may have enough free space in the existing system space_info, but
3430 * none of the block groups can be used for extent allocation since they
3431 * have a RAID1 profile, and because we are in degraded mode with a
3432 * single device, we are forced to allocate a new system chunk with a
3433 * SINGLE profile. Making check_system_chunk() iterate over all system
3434 * block groups and check if they have a usable profile and enough space
3435 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3436 * try again after forcing allocation of a new system chunk. Like this
3437 * we avoid paying the cost of that search in normal circumstances, when
3438 * we were not mounted in degraded mode;
3439 *
3440 * 2) We had enough free space info the system space_info, and one suitable
3441 * block group to allocate from when we called check_system_chunk()
3442 * above. However right after we called it, the only system block group
3443 * with enough free space got turned into RO mode by a running scrub,
3444 * and in this case we have to allocate a new one and retry. We only
3445 * need do this allocate and retry once, since we have a transaction
3446 * handle and scrub uses the commit root to search for block groups.
3447 */
3448 if (ret == -ENOSPC) {
3449 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3450 struct btrfs_block_group *sys_bg;
3451
f6f39f7a 3452 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3453 if (IS_ERR(sys_bg)) {
3454 ret = PTR_ERR(sys_bg);
3455 btrfs_abort_transaction(trans, ret);
3456 goto out;
3457 }
3458
3459 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3460 if (ret) {
3461 btrfs_abort_transaction(trans, ret);
3462 goto out;
3463 }
3464
3465 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3466 if (ret) {
3467 btrfs_abort_transaction(trans, ret);
3468 goto out;
3469 }
3470 } else if (ret) {
3471 btrfs_abort_transaction(trans, ret);
3472 goto out;
3473 }
3474out:
3475 btrfs_trans_release_chunk_metadata(trans);
3476
3477 return ret;
3478}
3479
07730d87 3480/*
79bd3712
FM
3481 * Chunk allocation is done in 2 phases:
3482 *
3483 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3484 * the chunk, the chunk mapping, create its block group and add the items
3485 * that belong in the chunk btree to it - more specifically, we need to
3486 * update device items in the chunk btree and add a new chunk item to it.
3487 *
3488 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3489 * group item to the extent btree and the device extent items to the devices
3490 * btree.
3491 *
3492 * This is done to prevent deadlocks. For example when COWing a node from the
3493 * extent btree we are holding a write lock on the node's parent and if we
3494 * trigger chunk allocation and attempted to insert the new block group item
3495 * in the extent btree right way, we could deadlock because the path for the
3496 * insertion can include that parent node. At first glance it seems impossible
3497 * to trigger chunk allocation after starting a transaction since tasks should
3498 * reserve enough transaction units (metadata space), however while that is true
3499 * most of the time, chunk allocation may still be triggered for several reasons:
3500 *
3501 * 1) When reserving metadata, we check if there is enough free space in the
3502 * metadata space_info and therefore don't trigger allocation of a new chunk.
3503 * However later when the task actually tries to COW an extent buffer from
3504 * the extent btree or from the device btree for example, it is forced to
3505 * allocate a new block group (chunk) because the only one that had enough
3506 * free space was just turned to RO mode by a running scrub for example (or
3507 * device replace, block group reclaim thread, etc), so we can not use it
3508 * for allocating an extent and end up being forced to allocate a new one;
3509 *
3510 * 2) Because we only check that the metadata space_info has enough free bytes,
3511 * we end up not allocating a new metadata chunk in that case. However if
3512 * the filesystem was mounted in degraded mode, none of the existing block
3513 * groups might be suitable for extent allocation due to their incompatible
3514 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3515 * use a RAID1 profile, in degraded mode using a single device). In this case
3516 * when the task attempts to COW some extent buffer of the extent btree for
3517 * example, it will trigger allocation of a new metadata block group with a
3518 * suitable profile (SINGLE profile in the example of the degraded mount of
3519 * the RAID1 filesystem);
3520 *
3521 * 3) The task has reserved enough transaction units / metadata space, but when
3522 * it attempts to COW an extent buffer from the extent or device btree for
3523 * example, it does not find any free extent in any metadata block group,
3524 * therefore forced to try to allocate a new metadata block group.
3525 * This is because some other task allocated all available extents in the
3526 * meanwhile - this typically happens with tasks that don't reserve space
3527 * properly, either intentionally or as a bug. One example where this is
3528 * done intentionally is fsync, as it does not reserve any transaction units
3529 * and ends up allocating a variable number of metadata extents for log
3530 * tree extent buffers.
3531 *
3532 * We also need this 2 phases setup when adding a device to a filesystem with
3533 * a seed device - we must create new metadata and system chunks without adding
3534 * any of the block group items to the chunk, extent and device btrees. If we
3535 * did not do it this way, we would get ENOSPC when attempting to update those
3536 * btrees, since all the chunks from the seed device are read-only.
3537 *
3538 * Phase 1 does the updates and insertions to the chunk btree because if we had
3539 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3540 * parallel, we risk having too many system chunks allocated by many tasks if
3541 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3542 * extreme case this leads to exhaustion of the system chunk array in the
3543 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3544 * and with RAID filesystems (so we have more device items in the chunk btree).
3545 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3546 * the system chunk array due to concurrent allocations") provides more details.
3547 *
3548 * For allocation of system chunks, we defer the updates and insertions into the
3549 * chunk btree to phase 2. This is to prevent deadlocks on extent buffers because
3550 * if the chunk allocation is triggered while COWing an extent buffer of the
3551 * chunk btree, we are holding a lock on the parent of that extent buffer and
3552 * doing the chunk btree updates and insertions can require locking that parent.
3553 * This is for the very few and rare cases where we update the chunk btree that
3554 * are not chunk allocation or chunk removal: adding a device, removing a device
3555 * or resizing a device.
3556 *
3557 * The reservation of system space, done through check_system_chunk(), as well
3558 * as all the updates and insertions into the chunk btree must be done while
3559 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3560 * an extent buffer from the chunks btree we never trigger allocation of a new
3561 * system chunk, which would result in a deadlock (trying to lock twice an
3562 * extent buffer of the chunk btree, first time before triggering the chunk
3563 * allocation and the second time during chunk allocation while attempting to
3564 * update the chunks btree). The system chunk array is also updated while holding
3565 * that mutex. The same logic applies to removing chunks - we must reserve system
3566 * space, update the chunk btree and the system chunk array in the superblock
3567 * while holding fs_info->chunk_mutex.
3568 *
3569 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3570 *
3571 * If @force is CHUNK_ALLOC_FORCE:
07730d87
JB
3572 * - return 1 if it successfully allocates a chunk,
3573 * - return errors including -ENOSPC otherwise.
79bd3712 3574 * If @force is NOT CHUNK_ALLOC_FORCE:
07730d87
JB
3575 * - return 0 if it doesn't need to allocate a new chunk,
3576 * - return 1 if it successfully allocates a chunk,
3577 * - return errors including -ENOSPC otherwise.
3578 */
3579int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3580 enum btrfs_chunk_alloc_enum force)
3581{
3582 struct btrfs_fs_info *fs_info = trans->fs_info;
3583 struct btrfs_space_info *space_info;
3584 bool wait_for_alloc = false;
3585 bool should_alloc = false;
3586 int ret = 0;
3587
3588 /* Don't re-enter if we're already allocating a chunk */
3589 if (trans->allocating_chunk)
3590 return -ENOSPC;
79bd3712
FM
3591 /*
3592 * If we are removing a chunk, don't re-enter or we would deadlock.
3593 * System space reservation and system chunk allocation is done by the
3594 * chunk remove operation (btrfs_remove_chunk()).
3595 */
3596 if (trans->removing_chunk)
3597 return -ENOSPC;
07730d87
JB
3598
3599 space_info = btrfs_find_space_info(fs_info, flags);
3600 ASSERT(space_info);
3601
3602 do {
3603 spin_lock(&space_info->lock);
3604 if (force < space_info->force_alloc)
3605 force = space_info->force_alloc;
3606 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3607 if (space_info->full) {
3608 /* No more free physical space */
3609 if (should_alloc)
3610 ret = -ENOSPC;
3611 else
3612 ret = 0;
3613 spin_unlock(&space_info->lock);
3614 return ret;
3615 } else if (!should_alloc) {
3616 spin_unlock(&space_info->lock);
3617 return 0;
3618 } else if (space_info->chunk_alloc) {
3619 /*
3620 * Someone is already allocating, so we need to block
3621 * until this someone is finished and then loop to
3622 * recheck if we should continue with our allocation
3623 * attempt.
3624 */
3625 wait_for_alloc = true;
3626 spin_unlock(&space_info->lock);
3627 mutex_lock(&fs_info->chunk_mutex);
3628 mutex_unlock(&fs_info->chunk_mutex);
3629 } else {
3630 /* Proceed with allocation */
3631 space_info->chunk_alloc = 1;
3632 wait_for_alloc = false;
3633 spin_unlock(&space_info->lock);
3634 }
3635
3636 cond_resched();
3637 } while (wait_for_alloc);
3638
3639 mutex_lock(&fs_info->chunk_mutex);
3640 trans->allocating_chunk = true;
3641
3642 /*
3643 * If we have mixed data/metadata chunks we want to make sure we keep
3644 * allocating mixed chunks instead of individual chunks.
3645 */
3646 if (btrfs_mixed_space_info(space_info))
3647 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3648
3649 /*
3650 * if we're doing a data chunk, go ahead and make sure that
3651 * we keep a reasonable number of metadata chunks allocated in the
3652 * FS as well.
3653 */
3654 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3655 fs_info->data_chunk_allocations++;
3656 if (!(fs_info->data_chunk_allocations %
3657 fs_info->metadata_ratio))
3658 force_metadata_allocation(fs_info);
3659 }
3660
79bd3712 3661 ret = do_chunk_alloc(trans, flags);
07730d87
JB
3662 trans->allocating_chunk = false;
3663
3664 spin_lock(&space_info->lock);
3665 if (ret < 0) {
3666 if (ret == -ENOSPC)
3667 space_info->full = 1;
3668 else
3669 goto out;
3670 } else {
3671 ret = 1;
3672 space_info->max_extent_size = 0;
3673 }
3674
3675 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3676out:
3677 space_info->chunk_alloc = 0;
3678 spin_unlock(&space_info->lock);
3679 mutex_unlock(&fs_info->chunk_mutex);
07730d87
JB
3680
3681 return ret;
3682}
3683
3684static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3685{
3686 u64 num_dev;
3687
3688 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3689 if (!num_dev)
3690 num_dev = fs_info->fs_devices->rw_devices;
3691
3692 return num_dev;
3693}
3694
3695/*
a9143bd3 3696 * Reserve space in the system space for allocating or removing a chunk
07730d87
JB
3697 */
3698void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3699{
3700 struct btrfs_fs_info *fs_info = trans->fs_info;
3701 struct btrfs_space_info *info;
3702 u64 left;
3703 u64 thresh;
3704 int ret = 0;
3705 u64 num_devs;
3706
3707 /*
3708 * Needed because we can end up allocating a system chunk and for an
3709 * atomic and race free space reservation in the chunk block reserve.
3710 */
3711 lockdep_assert_held(&fs_info->chunk_mutex);
3712
3713 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3714 spin_lock(&info->lock);
3715 left = info->total_bytes - btrfs_space_info_used(info, true);
3716 spin_unlock(&info->lock);
3717
3718 num_devs = get_profile_num_devs(fs_info, type);
3719
3720 /* num_devs device items to update and 1 chunk item to add or remove */
2bd36e7b
JB
3721 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3722 btrfs_calc_insert_metadata_size(fs_info, 1);
07730d87
JB
3723
3724 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3725 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3726 left, thresh, type);
3727 btrfs_dump_space_info(fs_info, info, 0, 0);
3728 }
3729
3730 if (left < thresh) {
3731 u64 flags = btrfs_system_alloc_profile(fs_info);
79bd3712 3732 struct btrfs_block_group *bg;
07730d87
JB
3733
3734 /*
3735 * Ignore failure to create system chunk. We might end up not
3736 * needing it, as we might not need to COW all nodes/leafs from
3737 * the paths we visit in the chunk tree (they were already COWed
3738 * or created in the current transaction for example).
79bd3712
FM
3739 *
3740 * Also, if our caller is allocating a system chunk, do not
3741 * attempt to insert the chunk item in the chunk btree, as we
3742 * could deadlock on an extent buffer since our caller may be
3743 * COWing an extent buffer from the chunk btree.
07730d87 3744 */
f6f39f7a 3745 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
3746 if (IS_ERR(bg)) {
3747 ret = PTR_ERR(bg);
3748 } else if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) {
3749 /*
3750 * If we fail to add the chunk item here, we end up
3751 * trying again at phase 2 of chunk allocation, at
3752 * btrfs_create_pending_block_groups(). So ignore
3753 * any error here.
3754 */
3755 btrfs_chunk_alloc_add_chunk_item(trans, bg);
3756 }
07730d87
JB
3757 }
3758
3759 if (!ret) {
3760 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3761 &fs_info->chunk_block_rsv,
3762 thresh, BTRFS_RESERVE_NO_FLUSH);
1cb3db1c 3763 if (!ret)
07730d87
JB
3764 trans->chunk_bytes_reserved += thresh;
3765 }
3766}
3767
3e43c279
JB
3768void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3769{
32da5386 3770 struct btrfs_block_group *block_group;
3e43c279
JB
3771 u64 last = 0;
3772
3773 while (1) {
3774 struct inode *inode;
3775
3776 block_group = btrfs_lookup_first_block_group(info, last);
3777 while (block_group) {
3778 btrfs_wait_block_group_cache_done(block_group);
3779 spin_lock(&block_group->lock);
3780 if (block_group->iref)
3781 break;
3782 spin_unlock(&block_group->lock);
3783 block_group = btrfs_next_block_group(block_group);
3784 }
3785 if (!block_group) {
3786 if (last == 0)
3787 break;
3788 last = 0;
3789 continue;
3790 }
3791
3792 inode = block_group->inode;
3793 block_group->iref = 0;
3794 block_group->inode = NULL;
3795 spin_unlock(&block_group->lock);
3796 ASSERT(block_group->io_ctl.inode == NULL);
3797 iput(inode);
b3470b5d 3798 last = block_group->start + block_group->length;
3e43c279
JB
3799 btrfs_put_block_group(block_group);
3800 }
3801}
3802
3803/*
3804 * Must be called only after stopping all workers, since we could have block
3805 * group caching kthreads running, and therefore they could race with us if we
3806 * freed the block groups before stopping them.
3807 */
3808int btrfs_free_block_groups(struct btrfs_fs_info *info)
3809{
32da5386 3810 struct btrfs_block_group *block_group;
3e43c279
JB
3811 struct btrfs_space_info *space_info;
3812 struct btrfs_caching_control *caching_ctl;
3813 struct rb_node *n;
3814
bbb86a37 3815 spin_lock(&info->block_group_cache_lock);
3e43c279
JB
3816 while (!list_empty(&info->caching_block_groups)) {
3817 caching_ctl = list_entry(info->caching_block_groups.next,
3818 struct btrfs_caching_control, list);
3819 list_del(&caching_ctl->list);
3820 btrfs_put_caching_control(caching_ctl);
3821 }
bbb86a37 3822 spin_unlock(&info->block_group_cache_lock);
3e43c279
JB
3823
3824 spin_lock(&info->unused_bgs_lock);
3825 while (!list_empty(&info->unused_bgs)) {
3826 block_group = list_first_entry(&info->unused_bgs,
32da5386 3827 struct btrfs_block_group,
3e43c279
JB
3828 bg_list);
3829 list_del_init(&block_group->bg_list);
3830 btrfs_put_block_group(block_group);
3831 }
3832 spin_unlock(&info->unused_bgs_lock);
3833
18bb8bbf
JT
3834 spin_lock(&info->unused_bgs_lock);
3835 while (!list_empty(&info->reclaim_bgs)) {
3836 block_group = list_first_entry(&info->reclaim_bgs,
3837 struct btrfs_block_group,
3838 bg_list);
3839 list_del_init(&block_group->bg_list);
3840 btrfs_put_block_group(block_group);
3841 }
3842 spin_unlock(&info->unused_bgs_lock);
3843
3e43c279
JB
3844 spin_lock(&info->block_group_cache_lock);
3845 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
32da5386 3846 block_group = rb_entry(n, struct btrfs_block_group,
3e43c279
JB
3847 cache_node);
3848 rb_erase(&block_group->cache_node,
3849 &info->block_group_cache_tree);
3850 RB_CLEAR_NODE(&block_group->cache_node);
3851 spin_unlock(&info->block_group_cache_lock);
3852
3853 down_write(&block_group->space_info->groups_sem);
3854 list_del(&block_group->list);
3855 up_write(&block_group->space_info->groups_sem);
3856
3857 /*
3858 * We haven't cached this block group, which means we could
3859 * possibly have excluded extents on this block group.
3860 */
3861 if (block_group->cached == BTRFS_CACHE_NO ||
3862 block_group->cached == BTRFS_CACHE_ERROR)
3863 btrfs_free_excluded_extents(block_group);
3864
3865 btrfs_remove_free_space_cache(block_group);
3866 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3867 ASSERT(list_empty(&block_group->dirty_list));
3868 ASSERT(list_empty(&block_group->io_list));
3869 ASSERT(list_empty(&block_group->bg_list));
48aaeebe 3870 ASSERT(refcount_read(&block_group->refs) == 1);
195a49ea 3871 ASSERT(block_group->swap_extents == 0);
3e43c279
JB
3872 btrfs_put_block_group(block_group);
3873
3874 spin_lock(&info->block_group_cache_lock);
3875 }
3876 spin_unlock(&info->block_group_cache_lock);
3877
3e43c279
JB
3878 btrfs_release_global_block_rsv(info);
3879
3880 while (!list_empty(&info->space_info)) {
3881 space_info = list_entry(info->space_info.next,
3882 struct btrfs_space_info,
3883 list);
3884
3885 /*
3886 * Do not hide this behind enospc_debug, this is actually
3887 * important and indicates a real bug if this happens.
3888 */
3889 if (WARN_ON(space_info->bytes_pinned > 0 ||
3890 space_info->bytes_reserved > 0 ||
3891 space_info->bytes_may_use > 0))
3892 btrfs_dump_space_info(info, space_info, 0, 0);
d611add4 3893 WARN_ON(space_info->reclaim_size > 0);
3e43c279
JB
3894 list_del(&space_info->list);
3895 btrfs_sysfs_remove_space_info(space_info);
3896 }
3897 return 0;
3898}
684b752b
FM
3899
3900void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3901{
3902 atomic_inc(&cache->frozen);
3903}
3904
3905void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3906{
3907 struct btrfs_fs_info *fs_info = block_group->fs_info;
3908 struct extent_map_tree *em_tree;
3909 struct extent_map *em;
3910 bool cleanup;
3911
3912 spin_lock(&block_group->lock);
3913 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3914 block_group->removed);
3915 spin_unlock(&block_group->lock);
3916
3917 if (cleanup) {
684b752b
FM
3918 em_tree = &fs_info->mapping_tree;
3919 write_lock(&em_tree->lock);
3920 em = lookup_extent_mapping(em_tree, block_group->start,
3921 1);
3922 BUG_ON(!em); /* logic error, can't happen */
3923 remove_extent_mapping(em_tree, em);
3924 write_unlock(&em_tree->lock);
684b752b
FM
3925
3926 /* once for us and once for the tree */
3927 free_extent_map(em);
3928 free_extent_map(em);
3929
3930 /*
3931 * We may have left one free space entry and other possible
3932 * tasks trimming this block group have left 1 entry each one.
3933 * Free them if any.
3934 */
3935 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3936 }
3937}
195a49ea
FM
3938
3939bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3940{
3941 bool ret = true;
3942
3943 spin_lock(&bg->lock);
3944 if (bg->ro)
3945 ret = false;
3946 else
3947 bg->swap_extents++;
3948 spin_unlock(&bg->lock);
3949
3950 return ret;
3951}
3952
3953void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3954{
3955 spin_lock(&bg->lock);
3956 ASSERT(!bg->ro);
3957 ASSERT(bg->swap_extents >= amount);
3958 bg->swap_extents -= amount;
3959 spin_unlock(&bg->lock);
3960}