]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: zoned: implement sequential extent allocation
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
141386e1
JB
100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101{
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104}
105
d352ac68
CM
106/*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
44b8bd7e 111struct async_submit_bio {
8896a08d 112 struct inode *inode;
44b8bd7e 113 struct bio *bio;
a758781d 114 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 115 int mirror_num;
1941b64b
QW
116
117 /* Optional parameter for submit_bio_start used by direct io */
118 u64 dio_file_offset;
8b712842 119 struct btrfs_work work;
4e4cbee9 120 blk_status_t status;
44b8bd7e
CM
121};
122
85d4e461
CM
123/*
124 * Lockdep class keys for extent_buffer->lock's in this root. For a given
125 * eb, the lockdep key is determined by the btrfs_root it belongs to and
126 * the level the eb occupies in the tree.
127 *
128 * Different roots are used for different purposes and may nest inside each
129 * other and they require separate keysets. As lockdep keys should be
130 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
131 * by btrfs_root->root_key.objectid. This ensures that all special purpose
132 * roots have separate keysets.
4008c04a 133 *
85d4e461
CM
134 * Lock-nesting across peer nodes is always done with the immediate parent
135 * node locked thus preventing deadlock. As lockdep doesn't know this, use
136 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 137 *
85d4e461
CM
138 * The key is set by the readpage_end_io_hook after the buffer has passed
139 * csum validation but before the pages are unlocked. It is also set by
140 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 141 *
85d4e461
CM
142 * We also add a check to make sure the highest level of the tree is the
143 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
144 * needs update as well.
4008c04a
CM
145 */
146#ifdef CONFIG_DEBUG_LOCK_ALLOC
147# if BTRFS_MAX_LEVEL != 8
148# error
149# endif
85d4e461 150
ab1405aa
DS
151#define DEFINE_LEVEL(stem, level) \
152 .names[level] = "btrfs-" stem "-0" #level,
153
154#define DEFINE_NAME(stem) \
155 DEFINE_LEVEL(stem, 0) \
156 DEFINE_LEVEL(stem, 1) \
157 DEFINE_LEVEL(stem, 2) \
158 DEFINE_LEVEL(stem, 3) \
159 DEFINE_LEVEL(stem, 4) \
160 DEFINE_LEVEL(stem, 5) \
161 DEFINE_LEVEL(stem, 6) \
162 DEFINE_LEVEL(stem, 7)
163
85d4e461
CM
164static struct btrfs_lockdep_keyset {
165 u64 id; /* root objectid */
ab1405aa 166 /* Longest entry: btrfs-free-space-00 */
387824af
DS
167 char names[BTRFS_MAX_LEVEL][20];
168 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 169} btrfs_lockdep_keysets[] = {
ab1405aa
DS
170 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
171 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
172 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
173 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
174 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
175 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
176 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
177 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
178 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
179 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
180 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
181 { .id = 0, DEFINE_NAME("tree") },
4008c04a 182};
85d4e461 183
ab1405aa
DS
184#undef DEFINE_LEVEL
185#undef DEFINE_NAME
85d4e461
CM
186
187void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
188 int level)
189{
190 struct btrfs_lockdep_keyset *ks;
191
192 BUG_ON(level >= ARRAY_SIZE(ks->keys));
193
194 /* find the matching keyset, id 0 is the default entry */
195 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
196 if (ks->id == objectid)
197 break;
198
199 lockdep_set_class_and_name(&eb->lock,
200 &ks->keys[level], ks->names[level]);
201}
202
4008c04a
CM
203#endif
204
d352ac68 205/*
2996e1f8 206 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 207 */
c67b3892 208static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 209{
d5178578 210 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 211 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
a26663e7 212 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 214 char *kaddr;
e9be5a30 215 int i;
d5178578
JT
216
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
a26663e7 219 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 221 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 222
e9be5a30
DS
223 for (i = 1; i < num_pages; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 226 }
71a63551 227 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 228 crypto_shash_final(shash, result);
19c00ddc
CM
229}
230
d352ac68
CM
231/*
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
236 */
1259ab75 237static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
238 struct extent_buffer *eb, u64 parent_transid,
239 int atomic)
1259ab75 240{
2ac55d41 241 struct extent_state *cached_state = NULL;
1259ab75 242 int ret;
2755a0de 243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
b9fab919
CM
248 if (atomic)
249 return -EAGAIN;
250
ac5887c8 251 if (need_lock)
a26e8c9f 252 btrfs_tree_read_lock(eb);
a26e8c9f 253
2ac55d41 254 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 255 &cached_state);
0b32f4bb 256 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
257 btrfs_header_generation(eb) == parent_transid) {
258 ret = 0;
259 goto out;
260 }
94647322
DS
261 btrfs_err_rl(eb->fs_info,
262 "parent transid verify failed on %llu wanted %llu found %llu",
263 eb->start,
29549aec 264 parent_transid, btrfs_header_generation(eb));
1259ab75 265 ret = 1;
a26e8c9f
JB
266
267 /*
268 * Things reading via commit roots that don't have normal protection,
269 * like send, can have a really old block in cache that may point at a
01327610 270 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
271 * if we find an eb that is under IO (dirty/writeback) because we could
272 * end up reading in the stale data and then writing it back out and
273 * making everybody very sad.
274 */
275 if (!extent_buffer_under_io(eb))
276 clear_extent_buffer_uptodate(eb);
33958dc6 277out:
2ac55d41 278 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 279 &cached_state);
472b909f 280 if (need_lock)
ac5887c8 281 btrfs_tree_read_unlock(eb);
1259ab75 282 return ret;
1259ab75
CM
283}
284
e7e16f48
JT
285static bool btrfs_supported_super_csum(u16 csum_type)
286{
287 switch (csum_type) {
288 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 289 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 290 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 291 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
292 return true;
293 default:
294 return false;
295 }
296}
297
1104a885
DS
298/*
299 * Return 0 if the superblock checksum type matches the checksum value of that
300 * algorithm. Pass the raw disk superblock data.
301 */
ab8d0fc4
JM
302static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
303 char *raw_disk_sb)
1104a885
DS
304{
305 struct btrfs_super_block *disk_sb =
306 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 307 char result[BTRFS_CSUM_SIZE];
d5178578
JT
308 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
309
310 shash->tfm = fs_info->csum_shash;
1104a885 311
51bce6c9
JT
312 /*
313 * The super_block structure does not span the whole
314 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
315 * filled with zeros and is included in the checksum.
316 */
fd08001f
EB
317 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
318 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 319
55fc29be 320 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 321 return 1;
1104a885 322
e7e16f48 323 return 0;
1104a885
DS
324}
325
e064d5e9 326int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 327 struct btrfs_key *first_key, u64 parent_transid)
581c1760 328{
e064d5e9 329 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
330 int found_level;
331 struct btrfs_key found_key;
332 int ret;
333
334 found_level = btrfs_header_level(eb);
335 if (found_level != level) {
63489055
QW
336 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
337 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
338 btrfs_err(fs_info,
339"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
340 eb->start, level, found_level);
581c1760
QW
341 return -EIO;
342 }
343
344 if (!first_key)
345 return 0;
346
5d41be6f
QW
347 /*
348 * For live tree block (new tree blocks in current transaction),
349 * we need proper lock context to avoid race, which is impossible here.
350 * So we only checks tree blocks which is read from disk, whose
351 * generation <= fs_info->last_trans_committed.
352 */
353 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
354 return 0;
62fdaa52
QW
355
356 /* We have @first_key, so this @eb must have at least one item */
357 if (btrfs_header_nritems(eb) == 0) {
358 btrfs_err(fs_info,
359 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
360 eb->start);
361 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
362 return -EUCLEAN;
363 }
364
581c1760
QW
365 if (found_level)
366 btrfs_node_key_to_cpu(eb, &found_key, 0);
367 else
368 btrfs_item_key_to_cpu(eb, &found_key, 0);
369 ret = btrfs_comp_cpu_keys(first_key, &found_key);
370
581c1760 371 if (ret) {
63489055
QW
372 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
373 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 374 btrfs_err(fs_info,
ff76a864
LB
375"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
376 eb->start, parent_transid, first_key->objectid,
377 first_key->type, first_key->offset,
378 found_key.objectid, found_key.type,
379 found_key.offset);
581c1760 380 }
581c1760
QW
381 return ret;
382}
383
d352ac68
CM
384/*
385 * helper to read a given tree block, doing retries as required when
386 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
387 *
388 * @parent_transid: expected transid, skip check if 0
389 * @level: expected level, mandatory check
390 * @first_key: expected key of first slot, skip check if NULL
d352ac68 391 */
5ab12d1f 392static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
393 u64 parent_transid, int level,
394 struct btrfs_key *first_key)
f188591e 395{
5ab12d1f 396 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 397 struct extent_io_tree *io_tree;
ea466794 398 int failed = 0;
f188591e
CM
399 int ret;
400 int num_copies = 0;
401 int mirror_num = 0;
ea466794 402 int failed_mirror = 0;
f188591e 403
0b246afa 404 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 405 while (1) {
f8397d69 406 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 407 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 408 if (!ret) {
581c1760 409 if (verify_parent_transid(io_tree, eb,
b9fab919 410 parent_transid, 0))
256dd1bb 411 ret = -EIO;
e064d5e9 412 else if (btrfs_verify_level_key(eb, level,
448de471 413 first_key, parent_transid))
581c1760
QW
414 ret = -EUCLEAN;
415 else
416 break;
256dd1bb 417 }
d397712b 418
0b246afa 419 num_copies = btrfs_num_copies(fs_info,
f188591e 420 eb->start, eb->len);
4235298e 421 if (num_copies == 1)
ea466794 422 break;
4235298e 423
5cf1ab56
JB
424 if (!failed_mirror) {
425 failed = 1;
426 failed_mirror = eb->read_mirror;
427 }
428
f188591e 429 mirror_num++;
ea466794
JB
430 if (mirror_num == failed_mirror)
431 mirror_num++;
432
4235298e 433 if (mirror_num > num_copies)
ea466794 434 break;
f188591e 435 }
ea466794 436
c0901581 437 if (failed && !ret && failed_mirror)
20a1fbf9 438 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
439
440 return ret;
f188591e 441}
19c00ddc 442
d352ac68 443/*
ac303b69
QW
444 * Checksum a dirty tree block before IO. This has extra checks to make sure
445 * we only fill in the checksum field in the first page of a multi-page block.
446 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 447 */
ac303b69 448static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 449{
ac303b69 450 struct page *page = bvec->bv_page;
4eee4fa4 451 u64 start = page_offset(page);
19c00ddc 452 u64 found_start;
2996e1f8 453 u8 result[BTRFS_CSUM_SIZE];
19c00ddc 454 struct extent_buffer *eb;
8d47a0d8 455 int ret;
f188591e 456
4f2de97a
JB
457 eb = (struct extent_buffer *)page->private;
458 if (page != eb->pages[0])
459 return 0;
0f805531 460
19c00ddc 461 found_start = btrfs_header_bytenr(eb);
0f805531
AL
462 /*
463 * Please do not consolidate these warnings into a single if.
464 * It is useful to know what went wrong.
465 */
466 if (WARN_ON(found_start != start))
467 return -EUCLEAN;
468 if (WARN_ON(!PageUptodate(page)))
469 return -EUCLEAN;
470
de37aa51 471 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
472 offsetof(struct btrfs_header, fsid),
473 BTRFS_FSID_SIZE) == 0);
0f805531 474
c67b3892 475 csum_tree_block(eb, result);
2996e1f8 476
8d47a0d8
QW
477 if (btrfs_header_level(eb))
478 ret = btrfs_check_node(eb);
479 else
480 ret = btrfs_check_leaf_full(eb);
481
482 if (ret < 0) {
c06631b0 483 btrfs_print_tree(eb, 0);
8d47a0d8
QW
484 btrfs_err(fs_info,
485 "block=%llu write time tree block corruption detected",
486 eb->start);
c06631b0 487 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
488 return ret;
489 }
713cebfb 490 write_extent_buffer(eb, result, 0, fs_info->csum_size);
8d47a0d8 491
2996e1f8 492 return 0;
19c00ddc
CM
493}
494
b0c9b3b0 495static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 496{
b0c9b3b0 497 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 498 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 499 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 500 u8 *metadata_uuid;
2b82032c 501
9a8658e3
DS
502 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
503 BTRFS_FSID_SIZE);
944d3f9f
NB
504 /*
505 * Checking the incompat flag is only valid for the current fs. For
506 * seed devices it's forbidden to have their uuid changed so reading
507 * ->fsid in this case is fine
508 */
509 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
510 metadata_uuid = fs_devices->metadata_uuid;
511 else
512 metadata_uuid = fs_devices->fsid;
513
514 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
515 return 0;
516
517 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
518 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
519 return 0;
520
521 return 1;
2b82032c
YZ
522}
523
77bf40a2
QW
524/* Do basic extent buffer checks at read time */
525static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 526{
77bf40a2 527 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 528 u64 found_start;
77bf40a2
QW
529 const u32 csum_size = fs_info->csum_size;
530 u8 found_level;
2996e1f8 531 u8 result[BTRFS_CSUM_SIZE];
77bf40a2 532 int ret = 0;
ea466794 533
ce9adaa5 534 found_start = btrfs_header_bytenr(eb);
727011e0 535 if (found_start != eb->start) {
893bf4b1
SY
536 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
537 eb->start, found_start);
f188591e 538 ret = -EIO;
77bf40a2 539 goto out;
ce9adaa5 540 }
b0c9b3b0 541 if (check_tree_block_fsid(eb)) {
02873e43
ZL
542 btrfs_err_rl(fs_info, "bad fsid on block %llu",
543 eb->start);
1259ab75 544 ret = -EIO;
77bf40a2 545 goto out;
1259ab75 546 }
ce9adaa5 547 found_level = btrfs_header_level(eb);
1c24c3ce 548 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
549 btrfs_err(fs_info, "bad tree block level %d on %llu",
550 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 551 ret = -EIO;
77bf40a2 552 goto out;
1c24c3ce 553 }
ce9adaa5 554
c67b3892 555 csum_tree_block(eb, result);
a826d6dc 556
2996e1f8 557 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
35be8851 558 u8 val[BTRFS_CSUM_SIZE] = { 0 };
2996e1f8
JT
559
560 read_extent_buffer(eb, &val, 0, csum_size);
561 btrfs_warn_rl(fs_info,
35be8851 562 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
2996e1f8 563 fs_info->sb->s_id, eb->start,
35be8851
JT
564 CSUM_FMT_VALUE(csum_size, val),
565 CSUM_FMT_VALUE(csum_size, result),
566 btrfs_header_level(eb));
2996e1f8 567 ret = -EUCLEAN;
77bf40a2 568 goto out;
2996e1f8
JT
569 }
570
a826d6dc
JB
571 /*
572 * If this is a leaf block and it is corrupt, set the corrupt bit so
573 * that we don't try and read the other copies of this block, just
574 * return -EIO.
575 */
1c4360ee 576 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
577 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
578 ret = -EIO;
579 }
ce9adaa5 580
813fd1dc 581 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
582 ret = -EIO;
583
0b32f4bb
JB
584 if (!ret)
585 set_extent_buffer_uptodate(eb);
75391f0d
QW
586 else
587 btrfs_err(fs_info,
588 "block=%llu read time tree block corruption detected",
589 eb->start);
77bf40a2
QW
590out:
591 return ret;
592}
593
371cdc07
QW
594static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
595 int mirror)
596{
597 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
598 struct extent_buffer *eb;
599 bool reads_done;
600 int ret = 0;
601
602 /*
603 * We don't allow bio merge for subpage metadata read, so we should
604 * only get one eb for each endio hook.
605 */
606 ASSERT(end == start + fs_info->nodesize - 1);
607 ASSERT(PagePrivate(page));
608
609 eb = find_extent_buffer(fs_info, start);
610 /*
611 * When we are reading one tree block, eb must have been inserted into
612 * the radix tree. If not, something is wrong.
613 */
614 ASSERT(eb);
615
616 reads_done = atomic_dec_and_test(&eb->io_pages);
617 /* Subpage read must finish in page read */
618 ASSERT(reads_done);
619
620 eb->read_mirror = mirror;
621 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
622 ret = -EIO;
623 goto err;
624 }
625 ret = validate_extent_buffer(eb);
626 if (ret < 0)
627 goto err;
628
629 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
630 btree_readahead_hook(eb, ret);
631
632 set_extent_buffer_uptodate(eb);
633
634 free_extent_buffer(eb);
635 return ret;
636err:
637 /*
638 * end_bio_extent_readpage decrements io_pages in case of error,
639 * make sure it has something to decrement.
640 */
641 atomic_inc(&eb->io_pages);
642 clear_extent_buffer_uptodate(eb);
643 free_extent_buffer(eb);
644 return ret;
645}
646
8e1dc982 647int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
77bf40a2
QW
648 struct page *page, u64 start, u64 end,
649 int mirror)
650{
651 struct extent_buffer *eb;
652 int ret = 0;
653 int reads_done;
654
655 ASSERT(page->private);
371cdc07
QW
656
657 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
658 return validate_subpage_buffer(page, start, end, mirror);
659
77bf40a2
QW
660 eb = (struct extent_buffer *)page->private;
661
662 /*
663 * The pending IO might have been the only thing that kept this buffer
664 * in memory. Make sure we have a ref for all this other checks
665 */
666 atomic_inc(&eb->refs);
667
668 reads_done = atomic_dec_and_test(&eb->io_pages);
669 if (!reads_done)
670 goto err;
671
672 eb->read_mirror = mirror;
673 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
674 ret = -EIO;
675 goto err;
676 }
677 ret = validate_extent_buffer(eb);
ce9adaa5 678err:
79fb65a1
JB
679 if (reads_done &&
680 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 681 btree_readahead_hook(eb, ret);
4bb31e92 682
53b381b3
DW
683 if (ret) {
684 /*
685 * our io error hook is going to dec the io pages
686 * again, we have to make sure it has something
687 * to decrement
688 */
689 atomic_inc(&eb->io_pages);
0b32f4bb 690 clear_extent_buffer_uptodate(eb);
53b381b3 691 }
0b32f4bb 692 free_extent_buffer(eb);
77bf40a2 693
f188591e 694 return ret;
ce9adaa5
CM
695}
696
4246a0b6 697static void end_workqueue_bio(struct bio *bio)
ce9adaa5 698{
97eb6b69 699 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 700 struct btrfs_fs_info *fs_info;
9e0af237 701 struct btrfs_workqueue *wq;
ce9adaa5 702
ce9adaa5 703 fs_info = end_io_wq->info;
4e4cbee9 704 end_io_wq->status = bio->bi_status;
d20f7043 705
37226b21 706 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 707 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 708 wq = fs_info->endio_meta_write_workers;
a0cac0ec 709 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 710 wq = fs_info->endio_freespace_worker;
a0cac0ec 711 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 712 wq = fs_info->endio_raid56_workers;
a0cac0ec 713 else
9e0af237 714 wq = fs_info->endio_write_workers;
d20f7043 715 } else {
5c047a69 716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 717 wq = fs_info->endio_raid56_workers;
a0cac0ec 718 else if (end_io_wq->metadata)
9e0af237 719 wq = fs_info->endio_meta_workers;
a0cac0ec 720 else
9e0af237 721 wq = fs_info->endio_workers;
d20f7043 722 }
9e0af237 723
a0cac0ec 724 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 725 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
726}
727
4e4cbee9 728blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 729 enum btrfs_wq_endio_type metadata)
0b86a832 730{
97eb6b69 731 struct btrfs_end_io_wq *end_io_wq;
8b110e39 732
97eb6b69 733 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 734 if (!end_io_wq)
4e4cbee9 735 return BLK_STS_RESOURCE;
ce9adaa5
CM
736
737 end_io_wq->private = bio->bi_private;
738 end_io_wq->end_io = bio->bi_end_io;
22c59948 739 end_io_wq->info = info;
4e4cbee9 740 end_io_wq->status = 0;
ce9adaa5 741 end_io_wq->bio = bio;
22c59948 742 end_io_wq->metadata = metadata;
ce9adaa5
CM
743
744 bio->bi_private = end_io_wq;
745 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
746 return 0;
747}
748
4a69a410
CM
749static void run_one_async_start(struct btrfs_work *work)
750{
4a69a410 751 struct async_submit_bio *async;
4e4cbee9 752 blk_status_t ret;
4a69a410
CM
753
754 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
755 ret = async->submit_bio_start(async->inode, async->bio,
756 async->dio_file_offset);
79787eaa 757 if (ret)
4e4cbee9 758 async->status = ret;
4a69a410
CM
759}
760
06ea01b1
DS
761/*
762 * In order to insert checksums into the metadata in large chunks, we wait
763 * until bio submission time. All the pages in the bio are checksummed and
764 * sums are attached onto the ordered extent record.
765 *
766 * At IO completion time the csums attached on the ordered extent record are
767 * inserted into the tree.
768 */
4a69a410 769static void run_one_async_done(struct btrfs_work *work)
8b712842 770{
8b712842 771 struct async_submit_bio *async;
06ea01b1
DS
772 struct inode *inode;
773 blk_status_t ret;
8b712842
CM
774
775 async = container_of(work, struct async_submit_bio, work);
8896a08d 776 inode = async->inode;
4854ddd0 777
bb7ab3b9 778 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
779 if (async->status) {
780 async->bio->bi_status = async->status;
4246a0b6 781 bio_endio(async->bio);
79787eaa
JM
782 return;
783 }
784
ec39f769
CM
785 /*
786 * All of the bios that pass through here are from async helpers.
787 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
788 * This changes nothing when cgroups aren't in use.
789 */
790 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 791 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
792 if (ret) {
793 async->bio->bi_status = ret;
794 bio_endio(async->bio);
795 }
4a69a410
CM
796}
797
798static void run_one_async_free(struct btrfs_work *work)
799{
800 struct async_submit_bio *async;
801
802 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
803 kfree(async);
804}
805
8896a08d 806blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 807 int mirror_num, unsigned long bio_flags,
1941b64b 808 u64 dio_file_offset,
e288c080 809 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 810{
8896a08d 811 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
812 struct async_submit_bio *async;
813
814 async = kmalloc(sizeof(*async), GFP_NOFS);
815 if (!async)
4e4cbee9 816 return BLK_STS_RESOURCE;
44b8bd7e 817
8896a08d 818 async->inode = inode;
44b8bd7e
CM
819 async->bio = bio;
820 async->mirror_num = mirror_num;
4a69a410 821 async->submit_bio_start = submit_bio_start;
4a69a410 822
a0cac0ec
OS
823 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
824 run_one_async_free);
4a69a410 825
1941b64b 826 async->dio_file_offset = dio_file_offset;
8c8bee1d 827
4e4cbee9 828 async->status = 0;
79787eaa 829
67f055c7 830 if (op_is_sync(bio->bi_opf))
5cdc7ad3 831 btrfs_set_work_high_priority(&async->work);
d313d7a3 832
5cdc7ad3 833 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
834 return 0;
835}
836
4e4cbee9 837static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 838{
2c30c71b 839 struct bio_vec *bvec;
ce3ed71a 840 struct btrfs_root *root;
2b070cfe 841 int ret = 0;
6dc4f100 842 struct bvec_iter_all iter_all;
ce3ed71a 843
c09abff8 844 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 845 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 846 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 847 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
848 if (ret)
849 break;
ce3ed71a 850 }
2c30c71b 851
4e4cbee9 852 return errno_to_blk_status(ret);
ce3ed71a
CM
853}
854
8896a08d 855static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 856 u64 dio_file_offset)
22c59948 857{
8b712842
CM
858 /*
859 * when we're called for a write, we're already in the async
5443be45 860 * submission context. Just jump into btrfs_map_bio
8b712842 861 */
79787eaa 862 return btree_csum_one_bio(bio);
4a69a410 863}
22c59948 864
9b4e675a
DS
865static int check_async_write(struct btrfs_fs_info *fs_info,
866 struct btrfs_inode *bi)
de0022b9 867{
6300463b
LB
868 if (atomic_read(&bi->sync_writers))
869 return 0;
9b4e675a 870 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 871 return 0;
de0022b9
JB
872 return 1;
873}
874
1b36294a
NB
875blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
876 int mirror_num, unsigned long bio_flags)
44b8bd7e 877{
0b246afa 878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 879 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 880 blk_status_t ret;
cad321ad 881
37226b21 882 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
883 /*
884 * called for a read, do the setup so that checksum validation
885 * can happen in the async kernel threads
886 */
0b246afa
JM
887 ret = btrfs_bio_wq_end_io(fs_info, bio,
888 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 889 if (ret)
61891923 890 goto out_w_error;
08635bae 891 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
892 } else if (!async) {
893 ret = btree_csum_one_bio(bio);
894 if (ret)
61891923 895 goto out_w_error;
08635bae 896 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
897 } else {
898 /*
899 * kthread helpers are used to submit writes so that
900 * checksumming can happen in parallel across all CPUs
901 */
8896a08d
QW
902 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
903 0, btree_submit_bio_start);
44b8bd7e 904 }
d313d7a3 905
4246a0b6
CH
906 if (ret)
907 goto out_w_error;
908 return 0;
909
61891923 910out_w_error:
4e4cbee9 911 bio->bi_status = ret;
4246a0b6 912 bio_endio(bio);
61891923 913 return ret;
44b8bd7e
CM
914}
915
3dd1462e 916#ifdef CONFIG_MIGRATION
784b4e29 917static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
918 struct page *newpage, struct page *page,
919 enum migrate_mode mode)
784b4e29
CM
920{
921 /*
922 * we can't safely write a btree page from here,
923 * we haven't done the locking hook
924 */
925 if (PageDirty(page))
926 return -EAGAIN;
927 /*
928 * Buffers may be managed in a filesystem specific way.
929 * We must have no buffers or drop them.
930 */
931 if (page_has_private(page) &&
932 !try_to_release_page(page, GFP_KERNEL))
933 return -EAGAIN;
a6bc32b8 934 return migrate_page(mapping, newpage, page, mode);
784b4e29 935}
3dd1462e 936#endif
784b4e29 937
0da5468f
CM
938
939static int btree_writepages(struct address_space *mapping,
940 struct writeback_control *wbc)
941{
e2d84521
MX
942 struct btrfs_fs_info *fs_info;
943 int ret;
944
d8d5f3e1 945 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
946
947 if (wbc->for_kupdate)
948 return 0;
949
e2d84521 950 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 951 /* this is a bit racy, but that's ok */
d814a491
EL
952 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
953 BTRFS_DIRTY_METADATA_THRESH,
954 fs_info->dirty_metadata_batch);
e2d84521 955 if (ret < 0)
793955bc 956 return 0;
793955bc 957 }
0b32f4bb 958 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
959}
960
70dec807 961static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 962{
98509cfc 963 if (PageWriteback(page) || PageDirty(page))
d397712b 964 return 0;
0c4e538b 965
f7a52a40 966 return try_release_extent_buffer(page);
d98237b3
CM
967}
968
d47992f8
LC
969static void btree_invalidatepage(struct page *page, unsigned int offset,
970 unsigned int length)
d98237b3 971{
d1310b2e
CM
972 struct extent_io_tree *tree;
973 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
974 extent_invalidatepage(tree, page, offset);
975 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 976 if (PagePrivate(page)) {
efe120a0
FH
977 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
978 "page private not zero on page %llu",
979 (unsigned long long)page_offset(page));
d1b89bc0 980 detach_page_private(page);
9ad6b7bc 981 }
d98237b3
CM
982}
983
0b32f4bb
JB
984static int btree_set_page_dirty(struct page *page)
985{
bb146eb2 986#ifdef DEBUG
0b32f4bb
JB
987 struct extent_buffer *eb;
988
989 BUG_ON(!PagePrivate(page));
990 eb = (struct extent_buffer *)page->private;
991 BUG_ON(!eb);
992 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
993 BUG_ON(!atomic_read(&eb->refs));
994 btrfs_assert_tree_locked(eb);
bb146eb2 995#endif
0b32f4bb
JB
996 return __set_page_dirty_nobuffers(page);
997}
998
7f09410b 999static const struct address_space_operations btree_aops = {
0da5468f 1000 .writepages = btree_writepages,
5f39d397
CM
1001 .releasepage = btree_releasepage,
1002 .invalidatepage = btree_invalidatepage,
5a92bc88 1003#ifdef CONFIG_MIGRATION
784b4e29 1004 .migratepage = btree_migratepage,
5a92bc88 1005#endif
0b32f4bb 1006 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1007};
1008
2ff7e61e
JM
1009struct extent_buffer *btrfs_find_create_tree_block(
1010 struct btrfs_fs_info *fs_info,
3fbaf258
JB
1011 u64 bytenr, u64 owner_root,
1012 int level)
0999df54 1013{
0b246afa
JM
1014 if (btrfs_is_testing(fs_info))
1015 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 1016 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
1017}
1018
581c1760
QW
1019/*
1020 * Read tree block at logical address @bytenr and do variant basic but critical
1021 * verification.
1022 *
1b7ec85e 1023 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
1024 * @parent_transid: expected transid of this tree block, skip check if 0
1025 * @level: expected level, mandatory check
1026 * @first_key: expected key in slot 0, skip check if NULL
1027 */
2ff7e61e 1028struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
1029 u64 owner_root, u64 parent_transid,
1030 int level, struct btrfs_key *first_key)
0999df54
CM
1031{
1032 struct extent_buffer *buf = NULL;
0999df54
CM
1033 int ret;
1034
3fbaf258 1035 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
1036 if (IS_ERR(buf))
1037 return buf;
0999df54 1038
5ab12d1f 1039 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1040 level, first_key);
0f0fe8f7 1041 if (ret) {
537f38f0 1042 free_extent_buffer_stale(buf);
64c043de 1043 return ERR_PTR(ret);
0f0fe8f7 1044 }
5f39d397 1045 return buf;
ce9adaa5 1046
eb60ceac
CM
1047}
1048
6a884d7d 1049void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1050{
6a884d7d 1051 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1052 if (btrfs_header_generation(buf) ==
e2d84521 1053 fs_info->running_transaction->transid) {
b9447ef8 1054 btrfs_assert_tree_locked(buf);
b4ce94de 1055
b9473439 1056 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1057 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1058 -buf->len,
1059 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1060 clear_extent_buffer_dirty(buf);
1061 }
925baedd 1062 }
5f39d397
CM
1063}
1064
da17066c 1065static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1066 u64 objectid)
d97e63b6 1067{
7c0260ee 1068 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1069 root->fs_info = fs_info;
cfaa7295 1070 root->node = NULL;
a28ec197 1071 root->commit_root = NULL;
27cdeb70 1072 root->state = 0;
d68fc57b 1073 root->orphan_cleanup_state = 0;
0b86a832 1074
0f7d52f4 1075 root->last_trans = 0;
6b8fad57 1076 root->free_objectid = 0;
eb73c1b7 1077 root->nr_delalloc_inodes = 0;
199c2a9c 1078 root->nr_ordered_extents = 0;
6bef4d31 1079 root->inode_tree = RB_ROOT;
16cdcec7 1080 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1081 root->block_rsv = NULL;
0b86a832
CM
1082
1083 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1084 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1085 INIT_LIST_HEAD(&root->delalloc_inodes);
1086 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1087 INIT_LIST_HEAD(&root->ordered_extents);
1088 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1089 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1090 INIT_LIST_HEAD(&root->logged_list[0]);
1091 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1092 spin_lock_init(&root->inode_lock);
eb73c1b7 1093 spin_lock_init(&root->delalloc_lock);
199c2a9c 1094 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1095 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1096 spin_lock_init(&root->log_extents_lock[0]);
1097 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1098 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1099 mutex_init(&root->objectid_mutex);
e02119d5 1100 mutex_init(&root->log_mutex);
31f3d255 1101 mutex_init(&root->ordered_extent_mutex);
573bfb72 1102 mutex_init(&root->delalloc_mutex);
c53e9653 1103 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1104 init_waitqueue_head(&root->log_writer_wait);
1105 init_waitqueue_head(&root->log_commit_wait[0]);
1106 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1107 INIT_LIST_HEAD(&root->log_ctxs[0]);
1108 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1109 atomic_set(&root->log_commit[0], 0);
1110 atomic_set(&root->log_commit[1], 0);
1111 atomic_set(&root->log_writers, 0);
2ecb7923 1112 atomic_set(&root->log_batch, 0);
0700cea7 1113 refcount_set(&root->refs, 1);
8ecebf4d 1114 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1115 atomic_set(&root->nr_swapfiles, 0);
7237f183 1116 root->log_transid = 0;
d1433deb 1117 root->log_transid_committed = -1;
257c62e1 1118 root->last_log_commit = 0;
e289f03e 1119 if (!dummy) {
43eb5f29
QW
1120 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1121 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1122 extent_io_tree_init(fs_info, &root->log_csum_range,
1123 IO_TREE_LOG_CSUM_RANGE, NULL);
1124 }
017e5369 1125
3768f368
CM
1126 memset(&root->root_key, 0, sizeof(root->root_key));
1127 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1128 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1129 root->root_key.objectid = objectid;
0ee5dc67 1130 root->anon_dev = 0;
8ea05e3a 1131
5f3ab90a 1132 spin_lock_init(&root->root_item_lock);
370a11b8 1133 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1134#ifdef CONFIG_BTRFS_DEBUG
1135 INIT_LIST_HEAD(&root->leak_list);
1136 spin_lock(&fs_info->fs_roots_radix_lock);
1137 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1138 spin_unlock(&fs_info->fs_roots_radix_lock);
1139#endif
3768f368
CM
1140}
1141
74e4d827 1142static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1143 u64 objectid, gfp_t flags)
6f07e42e 1144{
74e4d827 1145 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1146 if (root)
96dfcb46 1147 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1148 return root;
1149}
1150
06ea65a3
JB
1151#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1152/* Should only be used by the testing infrastructure */
da17066c 1153struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1154{
1155 struct btrfs_root *root;
1156
7c0260ee
JM
1157 if (!fs_info)
1158 return ERR_PTR(-EINVAL);
1159
96dfcb46 1160 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1161 if (!root)
1162 return ERR_PTR(-ENOMEM);
da17066c 1163
b9ef22de 1164 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1165 root->alloc_bytenr = 0;
06ea65a3
JB
1166
1167 return root;
1168}
1169#endif
1170
20897f5c 1171struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1172 u64 objectid)
1173{
9b7a2440 1174 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1175 struct extent_buffer *leaf;
1176 struct btrfs_root *tree_root = fs_info->tree_root;
1177 struct btrfs_root *root;
1178 struct btrfs_key key;
b89f6d1f 1179 unsigned int nofs_flag;
20897f5c 1180 int ret = 0;
20897f5c 1181
b89f6d1f
FM
1182 /*
1183 * We're holding a transaction handle, so use a NOFS memory allocation
1184 * context to avoid deadlock if reclaim happens.
1185 */
1186 nofs_flag = memalloc_nofs_save();
96dfcb46 1187 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1188 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1189 if (!root)
1190 return ERR_PTR(-ENOMEM);
1191
20897f5c
AJ
1192 root->root_key.objectid = objectid;
1193 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1194 root->root_key.offset = 0;
1195
9631e4cc
JB
1196 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1197 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1198 if (IS_ERR(leaf)) {
1199 ret = PTR_ERR(leaf);
1dd05682 1200 leaf = NULL;
8a6a87cd 1201 goto fail_unlock;
20897f5c
AJ
1202 }
1203
20897f5c 1204 root->node = leaf;
20897f5c
AJ
1205 btrfs_mark_buffer_dirty(leaf);
1206
1207 root->commit_root = btrfs_root_node(root);
27cdeb70 1208 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1209
f944d2cb
DS
1210 btrfs_set_root_flags(&root->root_item, 0);
1211 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1212 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1213 btrfs_set_root_generation(&root->root_item, trans->transid);
1214 btrfs_set_root_level(&root->root_item, 0);
1215 btrfs_set_root_refs(&root->root_item, 1);
1216 btrfs_set_root_used(&root->root_item, leaf->len);
1217 btrfs_set_root_last_snapshot(&root->root_item, 0);
1218 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1219 if (is_fstree(objectid))
807fc790
AS
1220 generate_random_guid(root->root_item.uuid);
1221 else
1222 export_guid(root->root_item.uuid, &guid_null);
c8422684 1223 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1224
8a6a87cd
BB
1225 btrfs_tree_unlock(leaf);
1226
20897f5c
AJ
1227 key.objectid = objectid;
1228 key.type = BTRFS_ROOT_ITEM_KEY;
1229 key.offset = 0;
1230 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1231 if (ret)
1232 goto fail;
1233
1dd05682
TI
1234 return root;
1235
8a6a87cd 1236fail_unlock:
8c38938c 1237 if (leaf)
1dd05682 1238 btrfs_tree_unlock(leaf);
8a6a87cd 1239fail:
00246528 1240 btrfs_put_root(root);
20897f5c 1241
1dd05682 1242 return ERR_PTR(ret);
20897f5c
AJ
1243}
1244
7237f183
YZ
1245static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1246 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1247{
1248 struct btrfs_root *root;
7237f183 1249 struct extent_buffer *leaf;
e02119d5 1250
96dfcb46 1251 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1252 if (!root)
7237f183 1253 return ERR_PTR(-ENOMEM);
e02119d5 1254
e02119d5
CM
1255 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1256 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1257 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1258
7237f183 1259 /*
92a7cc42 1260 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1261 *
92a7cc42
QW
1262 * Log trees are not exposed to user space thus can't be snapshotted,
1263 * and they go away before a real commit is actually done.
1264 *
1265 * They do store pointers to file data extents, and those reference
1266 * counts still get updated (along with back refs to the log tree).
7237f183 1267 */
e02119d5 1268
4d75f8a9 1269 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1270 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
7237f183 1271 if (IS_ERR(leaf)) {
00246528 1272 btrfs_put_root(root);
7237f183
YZ
1273 return ERR_CAST(leaf);
1274 }
e02119d5 1275
7237f183 1276 root->node = leaf;
e02119d5 1277
e02119d5
CM
1278 btrfs_mark_buffer_dirty(root->node);
1279 btrfs_tree_unlock(root->node);
7237f183
YZ
1280 return root;
1281}
1282
1283int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1284 struct btrfs_fs_info *fs_info)
1285{
1286 struct btrfs_root *log_root;
1287
1288 log_root = alloc_log_tree(trans, fs_info);
1289 if (IS_ERR(log_root))
1290 return PTR_ERR(log_root);
1291 WARN_ON(fs_info->log_root_tree);
1292 fs_info->log_root_tree = log_root;
1293 return 0;
1294}
1295
1296int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1297 struct btrfs_root *root)
1298{
0b246afa 1299 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1300 struct btrfs_root *log_root;
1301 struct btrfs_inode_item *inode_item;
1302
0b246afa 1303 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1304 if (IS_ERR(log_root))
1305 return PTR_ERR(log_root);
1306
1307 log_root->last_trans = trans->transid;
1308 log_root->root_key.offset = root->root_key.objectid;
1309
1310 inode_item = &log_root->root_item.inode;
3cae210f
QW
1311 btrfs_set_stack_inode_generation(inode_item, 1);
1312 btrfs_set_stack_inode_size(inode_item, 3);
1313 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1314 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1315 fs_info->nodesize);
3cae210f 1316 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1317
5d4f98a2 1318 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1319
1320 WARN_ON(root->log_root);
1321 root->log_root = log_root;
1322 root->log_transid = 0;
d1433deb 1323 root->log_transid_committed = -1;
257c62e1 1324 root->last_log_commit = 0;
e02119d5
CM
1325 return 0;
1326}
1327
49d11bea
JB
1328static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1329 struct btrfs_path *path,
1330 struct btrfs_key *key)
e02119d5
CM
1331{
1332 struct btrfs_root *root;
1333 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1334 u64 generation;
cb517eab 1335 int ret;
581c1760 1336 int level;
0f7d52f4 1337
96dfcb46 1338 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1339 if (!root)
1340 return ERR_PTR(-ENOMEM);
0f7d52f4 1341
cb517eab
MX
1342 ret = btrfs_find_root(tree_root, key, path,
1343 &root->root_item, &root->root_key);
0f7d52f4 1344 if (ret) {
13a8a7c8
YZ
1345 if (ret > 0)
1346 ret = -ENOENT;
49d11bea 1347 goto fail;
0f7d52f4 1348 }
13a8a7c8 1349
84234f3a 1350 generation = btrfs_root_generation(&root->root_item);
581c1760 1351 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1352 root->node = read_tree_block(fs_info,
1353 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1354 key->objectid, generation, level, NULL);
64c043de
LB
1355 if (IS_ERR(root->node)) {
1356 ret = PTR_ERR(root->node);
8c38938c 1357 root->node = NULL;
49d11bea 1358 goto fail;
cb517eab
MX
1359 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1360 ret = -EIO;
49d11bea 1361 goto fail;
416bc658 1362 }
5d4f98a2 1363 root->commit_root = btrfs_root_node(root);
cb517eab 1364 return root;
49d11bea 1365fail:
00246528 1366 btrfs_put_root(root);
49d11bea
JB
1367 return ERR_PTR(ret);
1368}
1369
1370struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1371 struct btrfs_key *key)
1372{
1373 struct btrfs_root *root;
1374 struct btrfs_path *path;
1375
1376 path = btrfs_alloc_path();
1377 if (!path)
1378 return ERR_PTR(-ENOMEM);
1379 root = read_tree_root_path(tree_root, path, key);
1380 btrfs_free_path(path);
1381
1382 return root;
cb517eab
MX
1383}
1384
2dfb1e43
QW
1385/*
1386 * Initialize subvolume root in-memory structure
1387 *
1388 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1389 */
1390static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1391{
1392 int ret;
dcc3eb96 1393 unsigned int nofs_flag;
cb517eab 1394
dcc3eb96
NB
1395 /*
1396 * We might be called under a transaction (e.g. indirect backref
1397 * resolution) which could deadlock if it triggers memory reclaim
1398 */
1399 nofs_flag = memalloc_nofs_save();
1400 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1401 memalloc_nofs_restore(nofs_flag);
1402 if (ret)
8257b2dc 1403 goto fail;
8257b2dc 1404
aeb935a4
QW
1405 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1406 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1407 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1408 btrfs_check_and_init_root_item(&root->root_item);
1409 }
1410
851fd730
QW
1411 /*
1412 * Don't assign anonymous block device to roots that are not exposed to
1413 * userspace, the id pool is limited to 1M
1414 */
1415 if (is_fstree(root->root_key.objectid) &&
1416 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1417 if (!anon_dev) {
1418 ret = get_anon_bdev(&root->anon_dev);
1419 if (ret)
1420 goto fail;
1421 } else {
1422 root->anon_dev = anon_dev;
1423 }
851fd730 1424 }
f32e48e9
CR
1425
1426 mutex_lock(&root->objectid_mutex);
453e4873 1427 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1428 if (ret) {
1429 mutex_unlock(&root->objectid_mutex);
876d2cf1 1430 goto fail;
f32e48e9
CR
1431 }
1432
6b8fad57 1433 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1434
1435 mutex_unlock(&root->objectid_mutex);
1436
cb517eab
MX
1437 return 0;
1438fail:
84db5ccf 1439 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1440 return ret;
1441}
1442
a98db0f3
JB
1443static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1444 u64 root_id)
cb517eab
MX
1445{
1446 struct btrfs_root *root;
1447
1448 spin_lock(&fs_info->fs_roots_radix_lock);
1449 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1450 (unsigned long)root_id);
bc44d7c4 1451 if (root)
00246528 1452 root = btrfs_grab_root(root);
cb517eab
MX
1453 spin_unlock(&fs_info->fs_roots_radix_lock);
1454 return root;
1455}
1456
49d11bea
JB
1457static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1458 u64 objectid)
1459{
1460 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1461 return btrfs_grab_root(fs_info->tree_root);
1462 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1463 return btrfs_grab_root(fs_info->extent_root);
1464 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1465 return btrfs_grab_root(fs_info->chunk_root);
1466 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1467 return btrfs_grab_root(fs_info->dev_root);
1468 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1469 return btrfs_grab_root(fs_info->csum_root);
1470 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1471 return btrfs_grab_root(fs_info->quota_root) ?
1472 fs_info->quota_root : ERR_PTR(-ENOENT);
1473 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1474 return btrfs_grab_root(fs_info->uuid_root) ?
1475 fs_info->uuid_root : ERR_PTR(-ENOENT);
1476 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1477 return btrfs_grab_root(fs_info->free_space_root) ?
1478 fs_info->free_space_root : ERR_PTR(-ENOENT);
1479 return NULL;
1480}
1481
cb517eab
MX
1482int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1483 struct btrfs_root *root)
1484{
1485 int ret;
1486
e1860a77 1487 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1488 if (ret)
1489 return ret;
1490
1491 spin_lock(&fs_info->fs_roots_radix_lock);
1492 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1493 (unsigned long)root->root_key.objectid,
1494 root);
af01d2e5 1495 if (ret == 0) {
00246528 1496 btrfs_grab_root(root);
27cdeb70 1497 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1498 }
cb517eab
MX
1499 spin_unlock(&fs_info->fs_roots_radix_lock);
1500 radix_tree_preload_end();
1501
1502 return ret;
1503}
1504
bd647ce3
JB
1505void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1506{
1507#ifdef CONFIG_BTRFS_DEBUG
1508 struct btrfs_root *root;
1509
1510 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1511 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1512
bd647ce3
JB
1513 root = list_first_entry(&fs_info->allocated_roots,
1514 struct btrfs_root, leak_list);
457f1864 1515 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1516 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1517 refcount_read(&root->refs));
1518 while (refcount_read(&root->refs) > 1)
00246528
JB
1519 btrfs_put_root(root);
1520 btrfs_put_root(root);
bd647ce3
JB
1521 }
1522#endif
1523}
1524
0d4b0463
JB
1525void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1526{
141386e1
JB
1527 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1528 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1529 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1530 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1531 btrfs_free_csum_hash(fs_info);
1532 btrfs_free_stripe_hash_table(fs_info);
1533 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1534 kfree(fs_info->balance_ctl);
1535 kfree(fs_info->delayed_root);
00246528
JB
1536 btrfs_put_root(fs_info->extent_root);
1537 btrfs_put_root(fs_info->tree_root);
1538 btrfs_put_root(fs_info->chunk_root);
1539 btrfs_put_root(fs_info->dev_root);
1540 btrfs_put_root(fs_info->csum_root);
1541 btrfs_put_root(fs_info->quota_root);
1542 btrfs_put_root(fs_info->uuid_root);
1543 btrfs_put_root(fs_info->free_space_root);
1544 btrfs_put_root(fs_info->fs_root);
aeb935a4 1545 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1546 btrfs_check_leaked_roots(fs_info);
3fd63727 1547 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1548 kfree(fs_info->super_copy);
1549 kfree(fs_info->super_for_commit);
1550 kvfree(fs_info);
1551}
1552
1553
2dfb1e43
QW
1554/*
1555 * Get an in-memory reference of a root structure.
1556 *
1557 * For essential trees like root/extent tree, we grab it from fs_info directly.
1558 * For subvolume trees, we check the cached filesystem roots first. If not
1559 * found, then read it from disk and add it to cached fs roots.
1560 *
1561 * Caller should release the root by calling btrfs_put_root() after the usage.
1562 *
1563 * NOTE: Reloc and log trees can't be read by this function as they share the
1564 * same root objectid.
1565 *
1566 * @objectid: root id
1567 * @anon_dev: preallocated anonymous block device number for new roots,
1568 * pass 0 for new allocation.
1569 * @check_ref: whether to check root item references, If true, return -ENOENT
1570 * for orphan roots
1571 */
1572static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1573 u64 objectid, dev_t anon_dev,
1574 bool check_ref)
5eda7b5e
CM
1575{
1576 struct btrfs_root *root;
381cf658 1577 struct btrfs_path *path;
1d4c08e0 1578 struct btrfs_key key;
5eda7b5e
CM
1579 int ret;
1580
49d11bea
JB
1581 root = btrfs_get_global_root(fs_info, objectid);
1582 if (root)
1583 return root;
4df27c4d 1584again:
56e9357a 1585 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1586 if (root) {
2dfb1e43
QW
1587 /* Shouldn't get preallocated anon_dev for cached roots */
1588 ASSERT(!anon_dev);
bc44d7c4 1589 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1590 btrfs_put_root(root);
48475471 1591 return ERR_PTR(-ENOENT);
bc44d7c4 1592 }
5eda7b5e 1593 return root;
48475471 1594 }
5eda7b5e 1595
56e9357a
DS
1596 key.objectid = objectid;
1597 key.type = BTRFS_ROOT_ITEM_KEY;
1598 key.offset = (u64)-1;
1599 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1600 if (IS_ERR(root))
1601 return root;
3394e160 1602
c00869f1 1603 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1604 ret = -ENOENT;
581bb050 1605 goto fail;
35a30d7c 1606 }
581bb050 1607
2dfb1e43 1608 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1609 if (ret)
1610 goto fail;
3394e160 1611
381cf658
DS
1612 path = btrfs_alloc_path();
1613 if (!path) {
1614 ret = -ENOMEM;
1615 goto fail;
1616 }
1d4c08e0
DS
1617 key.objectid = BTRFS_ORPHAN_OBJECTID;
1618 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1619 key.offset = objectid;
1d4c08e0
DS
1620
1621 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1622 btrfs_free_path(path);
d68fc57b
YZ
1623 if (ret < 0)
1624 goto fail;
1625 if (ret == 0)
27cdeb70 1626 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1627
cb517eab 1628 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1629 if (ret) {
00246528 1630 btrfs_put_root(root);
4785e24f 1631 if (ret == -EEXIST)
4df27c4d 1632 goto again;
4df27c4d 1633 goto fail;
0f7d52f4 1634 }
edbd8d4e 1635 return root;
4df27c4d 1636fail:
8c38938c 1637 btrfs_put_root(root);
4df27c4d 1638 return ERR_PTR(ret);
edbd8d4e
CM
1639}
1640
2dfb1e43
QW
1641/*
1642 * Get in-memory reference of a root structure
1643 *
1644 * @objectid: tree objectid
1645 * @check_ref: if set, verify that the tree exists and the item has at least
1646 * one reference
1647 */
1648struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1649 u64 objectid, bool check_ref)
1650{
1651 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1652}
1653
1654/*
1655 * Get in-memory reference of a root structure, created as new, optionally pass
1656 * the anonymous block device id
1657 *
1658 * @objectid: tree objectid
1659 * @anon_dev: if zero, allocate a new anonymous block device or use the
1660 * parameter value
1661 */
1662struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1663 u64 objectid, dev_t anon_dev)
1664{
1665 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1666}
1667
49d11bea
JB
1668/*
1669 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1670 * @fs_info: the fs_info
1671 * @objectid: the objectid we need to lookup
1672 *
1673 * This is exclusively used for backref walking, and exists specifically because
1674 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1675 * creation time, which means we may have to read the tree_root in order to look
1676 * up a fs root that is not in memory. If the root is not in memory we will
1677 * read the tree root commit root and look up the fs root from there. This is a
1678 * temporary root, it will not be inserted into the radix tree as it doesn't
1679 * have the most uptodate information, it'll simply be discarded once the
1680 * backref code is finished using the root.
1681 */
1682struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1683 struct btrfs_path *path,
1684 u64 objectid)
1685{
1686 struct btrfs_root *root;
1687 struct btrfs_key key;
1688
1689 ASSERT(path->search_commit_root && path->skip_locking);
1690
1691 /*
1692 * This can return -ENOENT if we ask for a root that doesn't exist, but
1693 * since this is called via the backref walking code we won't be looking
1694 * up a root that doesn't exist, unless there's corruption. So if root
1695 * != NULL just return it.
1696 */
1697 root = btrfs_get_global_root(fs_info, objectid);
1698 if (root)
1699 return root;
1700
1701 root = btrfs_lookup_fs_root(fs_info, objectid);
1702 if (root)
1703 return root;
1704
1705 key.objectid = objectid;
1706 key.type = BTRFS_ROOT_ITEM_KEY;
1707 key.offset = (u64)-1;
1708 root = read_tree_root_path(fs_info->tree_root, path, &key);
1709 btrfs_release_path(path);
1710
1711 return root;
1712}
1713
8b712842
CM
1714/*
1715 * called by the kthread helper functions to finally call the bio end_io
1716 * functions. This is where read checksum verification actually happens
1717 */
1718static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1719{
ce9adaa5 1720 struct bio *bio;
97eb6b69 1721 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1722
97eb6b69 1723 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1724 bio = end_io_wq->bio;
ce9adaa5 1725
4e4cbee9 1726 bio->bi_status = end_io_wq->status;
8b712842
CM
1727 bio->bi_private = end_io_wq->private;
1728 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1729 bio_endio(bio);
9be490f1 1730 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1731}
1732
a74a4b97
CM
1733static int cleaner_kthread(void *arg)
1734{
1735 struct btrfs_root *root = arg;
0b246afa 1736 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1737 int again;
a74a4b97 1738
d6fd0ae2 1739 while (1) {
d0278245 1740 again = 0;
a74a4b97 1741
fd340d0f
JB
1742 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1743
d0278245 1744 /* Make the cleaner go to sleep early. */
2ff7e61e 1745 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1746 goto sleep;
1747
90c711ab
ZB
1748 /*
1749 * Do not do anything if we might cause open_ctree() to block
1750 * before we have finished mounting the filesystem.
1751 */
0b246afa 1752 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1753 goto sleep;
1754
0b246afa 1755 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1756 goto sleep;
1757
dc7f370c
MX
1758 /*
1759 * Avoid the problem that we change the status of the fs
1760 * during the above check and trylock.
1761 */
2ff7e61e 1762 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1763 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1764 goto sleep;
76dda93c 1765 }
a74a4b97 1766
2ff7e61e 1767 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1768
d0278245 1769 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1770 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1771
1772 /*
05323cd1
MX
1773 * The defragger has dealt with the R/O remount and umount,
1774 * needn't do anything special here.
d0278245 1775 */
0b246afa 1776 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1777
1778 /*
1779 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1780 * with relocation (btrfs_relocate_chunk) and relocation
1781 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1782 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1783 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1784 * unused block groups.
1785 */
0b246afa 1786 btrfs_delete_unused_bgs(fs_info);
d0278245 1787sleep:
a0a1db70 1788 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1789 if (kthread_should_park())
1790 kthread_parkme();
1791 if (kthread_should_stop())
1792 return 0;
838fe188 1793 if (!again) {
a74a4b97 1794 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1795 schedule();
a74a4b97
CM
1796 __set_current_state(TASK_RUNNING);
1797 }
da288d28 1798 }
a74a4b97
CM
1799}
1800
1801static int transaction_kthread(void *arg)
1802{
1803 struct btrfs_root *root = arg;
0b246afa 1804 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1805 struct btrfs_trans_handle *trans;
1806 struct btrfs_transaction *cur;
8929ecfa 1807 u64 transid;
643900be 1808 time64_t delta;
a74a4b97 1809 unsigned long delay;
914b2007 1810 bool cannot_commit;
a74a4b97
CM
1811
1812 do {
914b2007 1813 cannot_commit = false;
ba1bc00f 1814 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1815 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1816
0b246afa
JM
1817 spin_lock(&fs_info->trans_lock);
1818 cur = fs_info->running_transaction;
a74a4b97 1819 if (!cur) {
0b246afa 1820 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1821 goto sleep;
1822 }
31153d81 1823
643900be 1824 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1825 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1826 delta < fs_info->commit_interval) {
0b246afa 1827 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1828 delay -= msecs_to_jiffies((delta - 1) * 1000);
1829 delay = min(delay,
1830 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1831 goto sleep;
1832 }
8929ecfa 1833 transid = cur->transid;
0b246afa 1834 spin_unlock(&fs_info->trans_lock);
56bec294 1835
79787eaa 1836 /* If the file system is aborted, this will always fail. */
354aa0fb 1837 trans = btrfs_attach_transaction(root);
914b2007 1838 if (IS_ERR(trans)) {
354aa0fb
MX
1839 if (PTR_ERR(trans) != -ENOENT)
1840 cannot_commit = true;
79787eaa 1841 goto sleep;
914b2007 1842 }
8929ecfa 1843 if (transid == trans->transid) {
3a45bb20 1844 btrfs_commit_transaction(trans);
8929ecfa 1845 } else {
3a45bb20 1846 btrfs_end_transaction(trans);
8929ecfa 1847 }
a74a4b97 1848sleep:
0b246afa
JM
1849 wake_up_process(fs_info->cleaner_kthread);
1850 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1851
4e121c06 1852 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1853 &fs_info->fs_state)))
2ff7e61e 1854 btrfs_cleanup_transaction(fs_info);
ce63f891 1855 if (!kthread_should_stop() &&
0b246afa 1856 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1857 cannot_commit))
bc5511d0 1858 schedule_timeout_interruptible(delay);
a74a4b97
CM
1859 } while (!kthread_should_stop());
1860 return 0;
1861}
1862
af31f5e5 1863/*
01f0f9da
NB
1864 * This will find the highest generation in the array of root backups. The
1865 * index of the highest array is returned, or -EINVAL if we can't find
1866 * anything.
af31f5e5
CM
1867 *
1868 * We check to make sure the array is valid by comparing the
1869 * generation of the latest root in the array with the generation
1870 * in the super block. If they don't match we pitch it.
1871 */
01f0f9da 1872static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1873{
01f0f9da 1874 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1875 u64 cur;
af31f5e5
CM
1876 struct btrfs_root_backup *root_backup;
1877 int i;
1878
1879 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1880 root_backup = info->super_copy->super_roots + i;
1881 cur = btrfs_backup_tree_root_gen(root_backup);
1882 if (cur == newest_gen)
01f0f9da 1883 return i;
af31f5e5
CM
1884 }
1885
01f0f9da 1886 return -EINVAL;
af31f5e5
CM
1887}
1888
af31f5e5
CM
1889/*
1890 * copy all the root pointers into the super backup array.
1891 * this will bump the backup pointer by one when it is
1892 * done
1893 */
1894static void backup_super_roots(struct btrfs_fs_info *info)
1895{
6ef108dd 1896 const int next_backup = info->backup_root_index;
af31f5e5 1897 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1898
1899 root_backup = info->super_for_commit->super_roots + next_backup;
1900
1901 /*
1902 * make sure all of our padding and empty slots get zero filled
1903 * regardless of which ones we use today
1904 */
1905 memset(root_backup, 0, sizeof(*root_backup));
1906
1907 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1908
1909 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1910 btrfs_set_backup_tree_root_gen(root_backup,
1911 btrfs_header_generation(info->tree_root->node));
1912
1913 btrfs_set_backup_tree_root_level(root_backup,
1914 btrfs_header_level(info->tree_root->node));
1915
1916 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1917 btrfs_set_backup_chunk_root_gen(root_backup,
1918 btrfs_header_generation(info->chunk_root->node));
1919 btrfs_set_backup_chunk_root_level(root_backup,
1920 btrfs_header_level(info->chunk_root->node));
1921
1922 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1923 btrfs_set_backup_extent_root_gen(root_backup,
1924 btrfs_header_generation(info->extent_root->node));
1925 btrfs_set_backup_extent_root_level(root_backup,
1926 btrfs_header_level(info->extent_root->node));
1927
7c7e82a7
CM
1928 /*
1929 * we might commit during log recovery, which happens before we set
1930 * the fs_root. Make sure it is valid before we fill it in.
1931 */
1932 if (info->fs_root && info->fs_root->node) {
1933 btrfs_set_backup_fs_root(root_backup,
1934 info->fs_root->node->start);
1935 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1936 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1937 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1938 btrfs_header_level(info->fs_root->node));
7c7e82a7 1939 }
af31f5e5
CM
1940
1941 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1942 btrfs_set_backup_dev_root_gen(root_backup,
1943 btrfs_header_generation(info->dev_root->node));
1944 btrfs_set_backup_dev_root_level(root_backup,
1945 btrfs_header_level(info->dev_root->node));
1946
1947 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1948 btrfs_set_backup_csum_root_gen(root_backup,
1949 btrfs_header_generation(info->csum_root->node));
1950 btrfs_set_backup_csum_root_level(root_backup,
1951 btrfs_header_level(info->csum_root->node));
1952
1953 btrfs_set_backup_total_bytes(root_backup,
1954 btrfs_super_total_bytes(info->super_copy));
1955 btrfs_set_backup_bytes_used(root_backup,
1956 btrfs_super_bytes_used(info->super_copy));
1957 btrfs_set_backup_num_devices(root_backup,
1958 btrfs_super_num_devices(info->super_copy));
1959
1960 /*
1961 * if we don't copy this out to the super_copy, it won't get remembered
1962 * for the next commit
1963 */
1964 memcpy(&info->super_copy->super_roots,
1965 &info->super_for_commit->super_roots,
1966 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1967}
1968
bd2336b2
NB
1969/*
1970 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1971 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1972 *
1973 * fs_info - filesystem whose backup roots need to be read
1974 * priority - priority of backup root required
1975 *
1976 * Returns backup root index on success and -EINVAL otherwise.
1977 */
1978static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1979{
1980 int backup_index = find_newest_super_backup(fs_info);
1981 struct btrfs_super_block *super = fs_info->super_copy;
1982 struct btrfs_root_backup *root_backup;
1983
1984 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1985 if (priority == 0)
1986 return backup_index;
1987
1988 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1989 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1990 } else {
1991 return -EINVAL;
1992 }
1993
1994 root_backup = super->super_roots + backup_index;
1995
1996 btrfs_set_super_generation(super,
1997 btrfs_backup_tree_root_gen(root_backup));
1998 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1999 btrfs_set_super_root_level(super,
2000 btrfs_backup_tree_root_level(root_backup));
2001 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2002
2003 /*
2004 * Fixme: the total bytes and num_devices need to match or we should
2005 * need a fsck
2006 */
2007 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2008 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2009
2010 return backup_index;
2011}
2012
7abadb64
LB
2013/* helper to cleanup workers */
2014static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2015{
dc6e3209 2016 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2017 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2018 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2019 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2020 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2021 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2022 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2023 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2024 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2025 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2026 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2027 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2028 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2029 if (fs_info->discard_ctl.discard_workers)
2030 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2031 /*
2032 * Now that all other work queues are destroyed, we can safely destroy
2033 * the queues used for metadata I/O, since tasks from those other work
2034 * queues can do metadata I/O operations.
2035 */
2036 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2037 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2038}
2039
2e9f5954
R
2040static void free_root_extent_buffers(struct btrfs_root *root)
2041{
2042 if (root) {
2043 free_extent_buffer(root->node);
2044 free_extent_buffer(root->commit_root);
2045 root->node = NULL;
2046 root->commit_root = NULL;
2047 }
2048}
2049
af31f5e5 2050/* helper to cleanup tree roots */
4273eaff 2051static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2052{
2e9f5954 2053 free_root_extent_buffers(info->tree_root);
655b09fe 2054
2e9f5954
R
2055 free_root_extent_buffers(info->dev_root);
2056 free_root_extent_buffers(info->extent_root);
2057 free_root_extent_buffers(info->csum_root);
2058 free_root_extent_buffers(info->quota_root);
2059 free_root_extent_buffers(info->uuid_root);
8c38938c 2060 free_root_extent_buffers(info->fs_root);
aeb935a4 2061 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2062 if (free_chunk_root)
2e9f5954 2063 free_root_extent_buffers(info->chunk_root);
70f6d82e 2064 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2065}
2066
8c38938c
JB
2067void btrfs_put_root(struct btrfs_root *root)
2068{
2069 if (!root)
2070 return;
2071
2072 if (refcount_dec_and_test(&root->refs)) {
2073 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2074 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2075 if (root->anon_dev)
2076 free_anon_bdev(root->anon_dev);
2077 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2078 free_root_extent_buffers(root);
8c38938c
JB
2079#ifdef CONFIG_BTRFS_DEBUG
2080 spin_lock(&root->fs_info->fs_roots_radix_lock);
2081 list_del_init(&root->leak_list);
2082 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2083#endif
2084 kfree(root);
2085 }
2086}
2087
faa2dbf0 2088void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2089{
2090 int ret;
2091 struct btrfs_root *gang[8];
2092 int i;
2093
2094 while (!list_empty(&fs_info->dead_roots)) {
2095 gang[0] = list_entry(fs_info->dead_roots.next,
2096 struct btrfs_root, root_list);
2097 list_del(&gang[0]->root_list);
2098
8c38938c 2099 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2100 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2101 btrfs_put_root(gang[0]);
171f6537
JB
2102 }
2103
2104 while (1) {
2105 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2106 (void **)gang, 0,
2107 ARRAY_SIZE(gang));
2108 if (!ret)
2109 break;
2110 for (i = 0; i < ret; i++)
cb517eab 2111 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2112 }
2113}
af31f5e5 2114
638aa7ed
ES
2115static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2116{
2117 mutex_init(&fs_info->scrub_lock);
2118 atomic_set(&fs_info->scrubs_running, 0);
2119 atomic_set(&fs_info->scrub_pause_req, 0);
2120 atomic_set(&fs_info->scrubs_paused, 0);
2121 atomic_set(&fs_info->scrub_cancel_req, 0);
2122 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2123 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2124}
2125
779a65a4
ES
2126static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2127{
2128 spin_lock_init(&fs_info->balance_lock);
2129 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2130 atomic_set(&fs_info->balance_pause_req, 0);
2131 atomic_set(&fs_info->balance_cancel_req, 0);
2132 fs_info->balance_ctl = NULL;
2133 init_waitqueue_head(&fs_info->balance_wait_q);
2134}
2135
6bccf3ab 2136static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2137{
2ff7e61e
JM
2138 struct inode *inode = fs_info->btree_inode;
2139
2140 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2141 set_nlink(inode, 1);
f37938e0
ES
2142 /*
2143 * we set the i_size on the btree inode to the max possible int.
2144 * the real end of the address space is determined by all of
2145 * the devices in the system
2146 */
2ff7e61e
JM
2147 inode->i_size = OFFSET_MAX;
2148 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2149
2ff7e61e 2150 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2151 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2152 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2153 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2154 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2155
5c8fd99f 2156 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2157 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2158 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2159 btrfs_insert_inode_hash(inode);
f37938e0
ES
2160}
2161
ad618368
ES
2162static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2163{
ad618368 2164 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2165 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2166 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2167}
2168
f9e92e40
ES
2169static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2170{
2171 spin_lock_init(&fs_info->qgroup_lock);
2172 mutex_init(&fs_info->qgroup_ioctl_lock);
2173 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2174 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2175 fs_info->qgroup_seq = 1;
f9e92e40 2176 fs_info->qgroup_ulist = NULL;
d2c609b8 2177 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2178 mutex_init(&fs_info->qgroup_rescan_lock);
2179}
2180
2a458198
ES
2181static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2182 struct btrfs_fs_devices *fs_devices)
2183{
f7b885be 2184 u32 max_active = fs_info->thread_pool_size;
6f011058 2185 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2186
2187 fs_info->workers =
cb001095
JM
2188 btrfs_alloc_workqueue(fs_info, "worker",
2189 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2190
2191 fs_info->delalloc_workers =
cb001095
JM
2192 btrfs_alloc_workqueue(fs_info, "delalloc",
2193 flags, max_active, 2);
2a458198
ES
2194
2195 fs_info->flush_workers =
cb001095
JM
2196 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2197 flags, max_active, 0);
2a458198
ES
2198
2199 fs_info->caching_workers =
cb001095 2200 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2201
2a458198 2202 fs_info->fixup_workers =
cb001095 2203 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2204
2205 /*
2206 * endios are largely parallel and should have a very
2207 * low idle thresh
2208 */
2209 fs_info->endio_workers =
cb001095 2210 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2211 fs_info->endio_meta_workers =
cb001095
JM
2212 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2213 max_active, 4);
2a458198 2214 fs_info->endio_meta_write_workers =
cb001095
JM
2215 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2216 max_active, 2);
2a458198 2217 fs_info->endio_raid56_workers =
cb001095
JM
2218 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2219 max_active, 4);
2a458198 2220 fs_info->rmw_workers =
cb001095 2221 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2222 fs_info->endio_write_workers =
cb001095
JM
2223 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2224 max_active, 2);
2a458198 2225 fs_info->endio_freespace_worker =
cb001095
JM
2226 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2227 max_active, 0);
2a458198 2228 fs_info->delayed_workers =
cb001095
JM
2229 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2230 max_active, 0);
2a458198 2231 fs_info->readahead_workers =
cb001095
JM
2232 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2233 max_active, 2);
2a458198 2234 fs_info->qgroup_rescan_workers =
cb001095 2235 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2236 fs_info->discard_ctl.discard_workers =
2237 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2238
2239 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2240 fs_info->flush_workers &&
2a458198
ES
2241 fs_info->endio_workers && fs_info->endio_meta_workers &&
2242 fs_info->endio_meta_write_workers &&
2a458198
ES
2243 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2244 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2245 fs_info->caching_workers && fs_info->readahead_workers &&
2246 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2247 fs_info->qgroup_rescan_workers &&
2248 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2249 return -ENOMEM;
2250 }
2251
2252 return 0;
2253}
2254
6d97c6e3
JT
2255static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2256{
2257 struct crypto_shash *csum_shash;
b4e967be 2258 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2259
b4e967be 2260 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2261
2262 if (IS_ERR(csum_shash)) {
2263 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2264 csum_driver);
6d97c6e3
JT
2265 return PTR_ERR(csum_shash);
2266 }
2267
2268 fs_info->csum_shash = csum_shash;
2269
2270 return 0;
2271}
2272
63443bf5
ES
2273static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2274 struct btrfs_fs_devices *fs_devices)
2275{
2276 int ret;
63443bf5
ES
2277 struct btrfs_root *log_tree_root;
2278 struct btrfs_super_block *disk_super = fs_info->super_copy;
2279 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2280 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2281
2282 if (fs_devices->rw_devices == 0) {
f14d104d 2283 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2284 return -EIO;
2285 }
2286
96dfcb46
JB
2287 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2288 GFP_KERNEL);
63443bf5
ES
2289 if (!log_tree_root)
2290 return -ENOMEM;
2291
2ff7e61e 2292 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2293 BTRFS_TREE_LOG_OBJECTID,
2294 fs_info->generation + 1, level,
2295 NULL);
64c043de 2296 if (IS_ERR(log_tree_root->node)) {
f14d104d 2297 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2298 ret = PTR_ERR(log_tree_root->node);
8c38938c 2299 log_tree_root->node = NULL;
00246528 2300 btrfs_put_root(log_tree_root);
0eeff236 2301 return ret;
64c043de 2302 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2303 btrfs_err(fs_info, "failed to read log tree");
00246528 2304 btrfs_put_root(log_tree_root);
63443bf5
ES
2305 return -EIO;
2306 }
2307 /* returns with log_tree_root freed on success */
2308 ret = btrfs_recover_log_trees(log_tree_root);
2309 if (ret) {
0b246afa
JM
2310 btrfs_handle_fs_error(fs_info, ret,
2311 "Failed to recover log tree");
00246528 2312 btrfs_put_root(log_tree_root);
63443bf5
ES
2313 return ret;
2314 }
2315
bc98a42c 2316 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2317 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2318 if (ret)
2319 return ret;
2320 }
2321
2322 return 0;
2323}
2324
6bccf3ab 2325static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2326{
6bccf3ab 2327 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2328 struct btrfs_root *root;
4bbcaa64
ES
2329 struct btrfs_key location;
2330 int ret;
2331
6bccf3ab
JM
2332 BUG_ON(!fs_info->tree_root);
2333
4bbcaa64
ES
2334 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2335 location.type = BTRFS_ROOT_ITEM_KEY;
2336 location.offset = 0;
2337
a4f3d2c4 2338 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2339 if (IS_ERR(root)) {
42437a63
JB
2340 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2341 ret = PTR_ERR(root);
2342 goto out;
2343 }
2344 } else {
2345 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2346 fs_info->extent_root = root;
f50f4353 2347 }
4bbcaa64
ES
2348
2349 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2350 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2351 if (IS_ERR(root)) {
42437a63
JB
2352 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2353 ret = PTR_ERR(root);
2354 goto out;
2355 }
2356 } else {
2357 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2358 fs_info->dev_root = root;
2359 btrfs_init_devices_late(fs_info);
f50f4353 2360 }
4bbcaa64 2361
882dbe0c
JB
2362 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2363 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2364 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2365 root = btrfs_read_tree_root(tree_root, &location);
2366 if (IS_ERR(root)) {
2367 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2368 ret = PTR_ERR(root);
2369 goto out;
2370 }
2371 } else {
2372 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2373 fs_info->csum_root = root;
42437a63 2374 }
f50f4353 2375 }
4bbcaa64 2376
aeb935a4
QW
2377 /*
2378 * This tree can share blocks with some other fs tree during relocation
2379 * and we need a proper setup by btrfs_get_fs_root
2380 */
56e9357a
DS
2381 root = btrfs_get_fs_root(tree_root->fs_info,
2382 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2383 if (IS_ERR(root)) {
42437a63
JB
2384 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2385 ret = PTR_ERR(root);
2386 goto out;
2387 }
2388 } else {
2389 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2390 fs_info->data_reloc_root = root;
aeb935a4 2391 }
aeb935a4 2392
4bbcaa64 2393 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2394 root = btrfs_read_tree_root(tree_root, &location);
2395 if (!IS_ERR(root)) {
2396 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2397 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2398 fs_info->quota_root = root;
4bbcaa64
ES
2399 }
2400
2401 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2402 root = btrfs_read_tree_root(tree_root, &location);
2403 if (IS_ERR(root)) {
42437a63
JB
2404 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2405 ret = PTR_ERR(root);
2406 if (ret != -ENOENT)
2407 goto out;
2408 }
4bbcaa64 2409 } else {
a4f3d2c4
DS
2410 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2411 fs_info->uuid_root = root;
4bbcaa64
ES
2412 }
2413
70f6d82e
OS
2414 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2415 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2416 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2417 if (IS_ERR(root)) {
42437a63
JB
2418 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2419 ret = PTR_ERR(root);
2420 goto out;
2421 }
2422 } else {
2423 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2424 fs_info->free_space_root = root;
f50f4353 2425 }
70f6d82e
OS
2426 }
2427
4bbcaa64 2428 return 0;
f50f4353
LB
2429out:
2430 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2431 location.objectid, ret);
2432 return ret;
4bbcaa64
ES
2433}
2434
069ec957
QW
2435/*
2436 * Real super block validation
2437 * NOTE: super csum type and incompat features will not be checked here.
2438 *
2439 * @sb: super block to check
2440 * @mirror_num: the super block number to check its bytenr:
2441 * 0 the primary (1st) sb
2442 * 1, 2 2nd and 3rd backup copy
2443 * -1 skip bytenr check
2444 */
2445static int validate_super(struct btrfs_fs_info *fs_info,
2446 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2447{
21a852b0
QW
2448 u64 nodesize = btrfs_super_nodesize(sb);
2449 u64 sectorsize = btrfs_super_sectorsize(sb);
2450 int ret = 0;
2451
2452 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2453 btrfs_err(fs_info, "no valid FS found");
2454 ret = -EINVAL;
2455 }
2456 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2457 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2458 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2459 ret = -EINVAL;
2460 }
2461 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2462 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2463 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2464 ret = -EINVAL;
2465 }
2466 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2467 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2468 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2469 ret = -EINVAL;
2470 }
2471 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2472 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2473 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2474 ret = -EINVAL;
2475 }
2476
2477 /*
2478 * Check sectorsize and nodesize first, other check will need it.
2479 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2480 */
2481 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2482 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2483 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2484 ret = -EINVAL;
2485 }
0bb3eb3e
QW
2486
2487 /*
2488 * For 4K page size, we only support 4K sector size.
2489 * For 64K page size, we support read-write for 64K sector size, and
2490 * read-only for 4K sector size.
2491 */
2492 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2493 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2494 sectorsize != SZ_64K))) {
21a852b0 2495 btrfs_err(fs_info,
0bb3eb3e 2496 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2497 sectorsize, PAGE_SIZE);
2498 ret = -EINVAL;
2499 }
0bb3eb3e 2500
21a852b0
QW
2501 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2502 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2503 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2504 ret = -EINVAL;
2505 }
2506 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2507 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2508 le32_to_cpu(sb->__unused_leafsize), nodesize);
2509 ret = -EINVAL;
2510 }
2511
2512 /* Root alignment check */
2513 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2514 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2515 btrfs_super_root(sb));
2516 ret = -EINVAL;
2517 }
2518 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2519 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2520 btrfs_super_chunk_root(sb));
2521 ret = -EINVAL;
2522 }
2523 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2524 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2525 btrfs_super_log_root(sb));
2526 ret = -EINVAL;
2527 }
2528
de37aa51 2529 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2530 BTRFS_FSID_SIZE) != 0) {
21a852b0 2531 btrfs_err(fs_info,
7239ff4b 2532 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2533 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2534 ret = -EINVAL;
2535 }
2536
2537 /*
2538 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2539 * done later
2540 */
2541 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2542 btrfs_err(fs_info, "bytes_used is too small %llu",
2543 btrfs_super_bytes_used(sb));
2544 ret = -EINVAL;
2545 }
2546 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2547 btrfs_err(fs_info, "invalid stripesize %u",
2548 btrfs_super_stripesize(sb));
2549 ret = -EINVAL;
2550 }
2551 if (btrfs_super_num_devices(sb) > (1UL << 31))
2552 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2553 btrfs_super_num_devices(sb));
2554 if (btrfs_super_num_devices(sb) == 0) {
2555 btrfs_err(fs_info, "number of devices is 0");
2556 ret = -EINVAL;
2557 }
2558
069ec957
QW
2559 if (mirror_num >= 0 &&
2560 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2561 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2562 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2563 ret = -EINVAL;
2564 }
2565
2566 /*
2567 * Obvious sys_chunk_array corruptions, it must hold at least one key
2568 * and one chunk
2569 */
2570 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2571 btrfs_err(fs_info, "system chunk array too big %u > %u",
2572 btrfs_super_sys_array_size(sb),
2573 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2574 ret = -EINVAL;
2575 }
2576 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2577 + sizeof(struct btrfs_chunk)) {
2578 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2579 btrfs_super_sys_array_size(sb),
2580 sizeof(struct btrfs_disk_key)
2581 + sizeof(struct btrfs_chunk));
2582 ret = -EINVAL;
2583 }
2584
2585 /*
2586 * The generation is a global counter, we'll trust it more than the others
2587 * but it's still possible that it's the one that's wrong.
2588 */
2589 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2590 btrfs_warn(fs_info,
2591 "suspicious: generation < chunk_root_generation: %llu < %llu",
2592 btrfs_super_generation(sb),
2593 btrfs_super_chunk_root_generation(sb));
2594 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2595 && btrfs_super_cache_generation(sb) != (u64)-1)
2596 btrfs_warn(fs_info,
2597 "suspicious: generation < cache_generation: %llu < %llu",
2598 btrfs_super_generation(sb),
2599 btrfs_super_cache_generation(sb));
2600
2601 return ret;
2602}
2603
069ec957
QW
2604/*
2605 * Validation of super block at mount time.
2606 * Some checks already done early at mount time, like csum type and incompat
2607 * flags will be skipped.
2608 */
2609static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2610{
2611 return validate_super(fs_info, fs_info->super_copy, 0);
2612}
2613
75cb857d
QW
2614/*
2615 * Validation of super block at write time.
2616 * Some checks like bytenr check will be skipped as their values will be
2617 * overwritten soon.
2618 * Extra checks like csum type and incompat flags will be done here.
2619 */
2620static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2621 struct btrfs_super_block *sb)
2622{
2623 int ret;
2624
2625 ret = validate_super(fs_info, sb, -1);
2626 if (ret < 0)
2627 goto out;
e7e16f48 2628 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2629 ret = -EUCLEAN;
2630 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2631 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2632 goto out;
2633 }
2634 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2635 ret = -EUCLEAN;
2636 btrfs_err(fs_info,
2637 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2638 btrfs_super_incompat_flags(sb),
2639 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2640 goto out;
2641 }
2642out:
2643 if (ret < 0)
2644 btrfs_err(fs_info,
2645 "super block corruption detected before writing it to disk");
2646 return ret;
2647}
2648
6ef108dd 2649static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2650{
6ef108dd 2651 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2652 struct btrfs_super_block *sb = fs_info->super_copy;
2653 struct btrfs_root *tree_root = fs_info->tree_root;
2654 bool handle_error = false;
2655 int ret = 0;
2656 int i;
2657
2658 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2659 u64 generation;
2660 int level;
2661
2662 if (handle_error) {
2663 if (!IS_ERR(tree_root->node))
2664 free_extent_buffer(tree_root->node);
2665 tree_root->node = NULL;
2666
2667 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2668 break;
2669
2670 free_root_pointers(fs_info, 0);
2671
2672 /*
2673 * Don't use the log in recovery mode, it won't be
2674 * valid
2675 */
2676 btrfs_set_super_log_root(sb, 0);
2677
2678 /* We can't trust the free space cache either */
2679 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2680
2681 ret = read_backup_root(fs_info, i);
6ef108dd 2682 backup_index = ret;
b8522a1e
NB
2683 if (ret < 0)
2684 return ret;
2685 }
2686 generation = btrfs_super_generation(sb);
2687 level = btrfs_super_root_level(sb);
2688 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
1b7ec85e 2689 BTRFS_ROOT_TREE_OBJECTID,
b8522a1e 2690 generation, level, NULL);
217f5004 2691 if (IS_ERR(tree_root->node)) {
b8522a1e 2692 handle_error = true;
217f5004
NB
2693 ret = PTR_ERR(tree_root->node);
2694 tree_root->node = NULL;
2695 btrfs_warn(fs_info, "couldn't read tree root");
2696 continue;
b8522a1e 2697
217f5004
NB
2698 } else if (!extent_buffer_uptodate(tree_root->node)) {
2699 handle_error = true;
2700 ret = -EIO;
2701 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2702 continue;
2703 }
2704
2705 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2706 tree_root->commit_root = btrfs_root_node(tree_root);
2707 btrfs_set_root_refs(&tree_root->root_item, 1);
2708
336a0d8d
NB
2709 /*
2710 * No need to hold btrfs_root::objectid_mutex since the fs
2711 * hasn't been fully initialised and we are the only user
2712 */
453e4873 2713 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2714 if (ret < 0) {
b8522a1e
NB
2715 handle_error = true;
2716 continue;
2717 }
2718
6b8fad57 2719 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2720
2721 ret = btrfs_read_roots(fs_info);
2722 if (ret < 0) {
2723 handle_error = true;
2724 continue;
2725 }
2726
2727 /* All successful */
2728 fs_info->generation = generation;
2729 fs_info->last_trans_committed = generation;
6ef108dd
NB
2730
2731 /* Always begin writing backup roots after the one being used */
2732 if (backup_index < 0) {
2733 fs_info->backup_root_index = 0;
2734 } else {
2735 fs_info->backup_root_index = backup_index + 1;
2736 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2737 }
b8522a1e
NB
2738 break;
2739 }
2740
2741 return ret;
2742}
2743
8260edba 2744void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2745{
76dda93c 2746 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2747 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2748 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2749 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2750 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2751 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2752 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2753 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2754 spin_lock_init(&fs_info->trans_lock);
76dda93c 2755 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2756 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2757 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2758 spin_lock_init(&fs_info->super_lock);
f28491e0 2759 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2760 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2761 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2762 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2763 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2764 mutex_init(&fs_info->reloc_mutex);
573bfb72 2765 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2766 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2767
0b86a832 2768 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2769 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2770 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2771 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2772#ifdef CONFIG_BTRFS_DEBUG
2773 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2774 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2775 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2776#endif
c8bf1b67 2777 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2778 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2779 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2780 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2781 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2782 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2783 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2784 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2785 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2786 BTRFS_BLOCK_RSV_DELREFS);
2787
771ed689 2788 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2789 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2790 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2791 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2792 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2793 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2794 fs_info->metadata_ratio = 0;
4cb5300b 2795 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2796 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2797 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2798 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2799 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2800 /* readahead state */
d0164adc 2801 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2802 spin_lock_init(&fs_info->reada_lock);
fd708b81 2803 btrfs_init_ref_verify(fs_info);
c8b97818 2804
b34b086c
CM
2805 fs_info->thread_pool_size = min_t(unsigned long,
2806 num_online_cpus() + 2, 8);
0afbaf8c 2807
199c2a9c
MX
2808 INIT_LIST_HEAD(&fs_info->ordered_roots);
2809 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2810
638aa7ed 2811 btrfs_init_scrub(fs_info);
21adbd5c
SB
2812#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2813 fs_info->check_integrity_print_mask = 0;
2814#endif
779a65a4 2815 btrfs_init_balance(fs_info);
57056740 2816 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2817
0f9dd46c 2818 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2819 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2820 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2821
fe119a6e
NB
2822 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2823 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2824 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2825
5a3f23d5 2826 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2827 mutex_init(&fs_info->tree_log_mutex);
925baedd 2828 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2829 mutex_init(&fs_info->transaction_kthread_mutex);
2830 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2831 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2832 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2833 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2834 init_rwsem(&fs_info->subvol_sem);
803b2f54 2835 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2836
ad618368 2837 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2838 btrfs_init_qgroup(fs_info);
b0643e59 2839 btrfs_discard_init(fs_info);
416ac51d 2840
fa9c0d79
CM
2841 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2842 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2843
e6dcd2dc 2844 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2845 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2846 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2847 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2848 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2849
da17066c
JM
2850 /* Usable values until the real ones are cached from the superblock */
2851 fs_info->nodesize = 4096;
2852 fs_info->sectorsize = 4096;
ab108d99 2853 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2854 fs_info->stripesize = 4096;
2855
eede2bf3
OS
2856 spin_lock_init(&fs_info->swapfile_pins_lock);
2857 fs_info->swapfile_pins = RB_ROOT;
2858
9e967495 2859 fs_info->send_in_progress = 0;
8260edba
JB
2860}
2861
2862static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2863{
2864 int ret;
2865
2866 fs_info->sb = sb;
2867 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2868 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2869
5deb17e1 2870 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 2871 if (ret)
c75e8394 2872 return ret;
ae18c37a
JB
2873
2874 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2875 if (ret)
c75e8394 2876 return ret;
ae18c37a
JB
2877
2878 fs_info->dirty_metadata_batch = PAGE_SIZE *
2879 (1 + ilog2(nr_cpu_ids));
2880
2881 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2882 if (ret)
c75e8394 2883 return ret;
ae18c37a
JB
2884
2885 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2886 GFP_KERNEL);
2887 if (ret)
c75e8394 2888 return ret;
ae18c37a
JB
2889
2890 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2891 GFP_KERNEL);
c75e8394
JB
2892 if (!fs_info->delayed_root)
2893 return -ENOMEM;
ae18c37a
JB
2894 btrfs_init_delayed_root(fs_info->delayed_root);
2895
a0a1db70
FM
2896 if (sb_rdonly(sb))
2897 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2898
c75e8394 2899 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2900}
2901
97f4dd09
NB
2902static int btrfs_uuid_rescan_kthread(void *data)
2903{
2904 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2905 int ret;
2906
2907 /*
2908 * 1st step is to iterate through the existing UUID tree and
2909 * to delete all entries that contain outdated data.
2910 * 2nd step is to add all missing entries to the UUID tree.
2911 */
2912 ret = btrfs_uuid_tree_iterate(fs_info);
2913 if (ret < 0) {
c94bec2c
JB
2914 if (ret != -EINTR)
2915 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2916 ret);
97f4dd09
NB
2917 up(&fs_info->uuid_tree_rescan_sem);
2918 return ret;
2919 }
2920 return btrfs_uuid_scan_kthread(data);
2921}
2922
2923static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2924{
2925 struct task_struct *task;
2926
2927 down(&fs_info->uuid_tree_rescan_sem);
2928 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2929 if (IS_ERR(task)) {
2930 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2931 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2932 up(&fs_info->uuid_tree_rescan_sem);
2933 return PTR_ERR(task);
2934 }
2935
2936 return 0;
2937}
2938
8cd29088
BB
2939/*
2940 * Some options only have meaning at mount time and shouldn't persist across
2941 * remounts, or be displayed. Clear these at the end of mount and remount
2942 * code paths.
2943 */
2944void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2945{
2946 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 2947 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
2948}
2949
44c0ca21
BB
2950/*
2951 * Mounting logic specific to read-write file systems. Shared by open_ctree
2952 * and btrfs_remount when remounting from read-only to read-write.
2953 */
2954int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2955{
2956 int ret;
94846229 2957 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
2958 bool clear_free_space_tree = false;
2959
2960 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2961 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2962 clear_free_space_tree = true;
2963 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2964 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2965 btrfs_warn(fs_info, "free space tree is invalid");
2966 clear_free_space_tree = true;
2967 }
2968
2969 if (clear_free_space_tree) {
2970 btrfs_info(fs_info, "clearing free space tree");
2971 ret = btrfs_clear_free_space_tree(fs_info);
2972 if (ret) {
2973 btrfs_warn(fs_info,
2974 "failed to clear free space tree: %d", ret);
2975 goto out;
2976 }
2977 }
44c0ca21
BB
2978
2979 ret = btrfs_cleanup_fs_roots(fs_info);
2980 if (ret)
2981 goto out;
2982
8f1c21d7
BB
2983 down_read(&fs_info->cleanup_work_sem);
2984 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2985 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2986 up_read(&fs_info->cleanup_work_sem);
2987 goto out;
2988 }
2989 up_read(&fs_info->cleanup_work_sem);
2990
44c0ca21
BB
2991 mutex_lock(&fs_info->cleaner_mutex);
2992 ret = btrfs_recover_relocation(fs_info->tree_root);
2993 mutex_unlock(&fs_info->cleaner_mutex);
2994 if (ret < 0) {
2995 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
2996 goto out;
2997 }
2998
5011139a
BB
2999 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3000 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3001 btrfs_info(fs_info, "creating free space tree");
3002 ret = btrfs_create_free_space_tree(fs_info);
3003 if (ret) {
3004 btrfs_warn(fs_info,
3005 "failed to create free space tree: %d", ret);
3006 goto out;
3007 }
3008 }
3009
94846229
BB
3010 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3011 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3012 if (ret)
3013 goto out;
3014 }
3015
44c0ca21
BB
3016 ret = btrfs_resume_balance_async(fs_info);
3017 if (ret)
3018 goto out;
3019
3020 ret = btrfs_resume_dev_replace_async(fs_info);
3021 if (ret) {
3022 btrfs_warn(fs_info, "failed to resume dev_replace");
3023 goto out;
3024 }
3025
3026 btrfs_qgroup_rescan_resume(fs_info);
3027
3028 if (!fs_info->uuid_root) {
3029 btrfs_info(fs_info, "creating UUID tree");
3030 ret = btrfs_create_uuid_tree(fs_info);
3031 if (ret) {
3032 btrfs_warn(fs_info,
3033 "failed to create the UUID tree %d", ret);
3034 goto out;
3035 }
3036 }
3037
638331fa 3038 ret = btrfs_find_orphan_roots(fs_info);
44c0ca21
BB
3039out:
3040 return ret;
3041}
3042
ae18c37a
JB
3043int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3044 char *options)
3045{
3046 u32 sectorsize;
3047 u32 nodesize;
3048 u32 stripesize;
3049 u64 generation;
3050 u64 features;
3051 u16 csum_type;
ae18c37a
JB
3052 struct btrfs_super_block *disk_super;
3053 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3054 struct btrfs_root *tree_root;
3055 struct btrfs_root *chunk_root;
3056 int ret;
3057 int err = -EINVAL;
ae18c37a
JB
3058 int level;
3059
8260edba 3060 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3061 if (ret) {
83c8266a 3062 err = ret;
ae18c37a 3063 goto fail;
53b381b3
DW
3064 }
3065
ae18c37a
JB
3066 /* These need to be init'ed before we start creating inodes and such. */
3067 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3068 GFP_KERNEL);
3069 fs_info->tree_root = tree_root;
3070 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3071 GFP_KERNEL);
3072 fs_info->chunk_root = chunk_root;
3073 if (!tree_root || !chunk_root) {
3074 err = -ENOMEM;
c75e8394 3075 goto fail;
ae18c37a
JB
3076 }
3077
3078 fs_info->btree_inode = new_inode(sb);
3079 if (!fs_info->btree_inode) {
3080 err = -ENOMEM;
c75e8394 3081 goto fail;
ae18c37a
JB
3082 }
3083 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3084 btrfs_init_btree_inode(fs_info);
3085
3c4bb26b 3086 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
3087
3088 /*
3089 * Read super block and check the signature bytes only
3090 */
8f32380d
JT
3091 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3092 if (IS_ERR(disk_super)) {
3093 err = PTR_ERR(disk_super);
16cdcec7 3094 goto fail_alloc;
20b45077 3095 }
39279cc3 3096
8dc3f22c 3097 /*
260db43c 3098 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3099 * corrupted, we'll find out
3100 */
8f32380d 3101 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3102 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3103 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3104 csum_type);
8dc3f22c 3105 err = -EINVAL;
8f32380d 3106 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3107 goto fail_alloc;
3108 }
3109
6d97c6e3
JT
3110 ret = btrfs_init_csum_hash(fs_info, csum_type);
3111 if (ret) {
3112 err = ret;
8f32380d 3113 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3114 goto fail_alloc;
3115 }
3116
1104a885
DS
3117 /*
3118 * We want to check superblock checksum, the type is stored inside.
3119 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3120 */
8f32380d 3121 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3122 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3123 err = -EINVAL;
8f32380d 3124 btrfs_release_disk_super(disk_super);
141386e1 3125 goto fail_alloc;
1104a885
DS
3126 }
3127
3128 /*
3129 * super_copy is zeroed at allocation time and we never touch the
3130 * following bytes up to INFO_SIZE, the checksum is calculated from
3131 * the whole block of INFO_SIZE
3132 */
8f32380d
JT
3133 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3134 btrfs_release_disk_super(disk_super);
5f39d397 3135
fbc6feae
NB
3136 disk_super = fs_info->super_copy;
3137
de37aa51
NB
3138 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3139 BTRFS_FSID_SIZE));
3140
7239ff4b 3141 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
3142 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3143 fs_info->super_copy->metadata_uuid,
3144 BTRFS_FSID_SIZE));
7239ff4b 3145 }
0b86a832 3146
fbc6feae
NB
3147 features = btrfs_super_flags(disk_super);
3148 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3149 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3150 btrfs_set_super_flags(disk_super, features);
3151 btrfs_info(fs_info,
3152 "found metadata UUID change in progress flag, clearing");
3153 }
3154
3155 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3156 sizeof(*fs_info->super_for_commit));
de37aa51 3157
069ec957 3158 ret = btrfs_validate_mount_super(fs_info);
1104a885 3159 if (ret) {
05135f59 3160 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3161 err = -EINVAL;
141386e1 3162 goto fail_alloc;
1104a885
DS
3163 }
3164
0f7d52f4 3165 if (!btrfs_super_root(disk_super))
141386e1 3166 goto fail_alloc;
0f7d52f4 3167
acce952b 3168 /* check FS state, whether FS is broken. */
87533c47
MX
3169 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3170 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3171
75e7cb7f
LB
3172 /*
3173 * In the long term, we'll store the compression type in the super
3174 * block, and it'll be used for per file compression control.
3175 */
3176 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3177
2ff7e61e 3178 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3179 if (ret) {
3180 err = ret;
141386e1 3181 goto fail_alloc;
2b82032c 3182 }
dfe25020 3183
f2b636e8
JB
3184 features = btrfs_super_incompat_flags(disk_super) &
3185 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3186 if (features) {
05135f59
DS
3187 btrfs_err(fs_info,
3188 "cannot mount because of unsupported optional features (%llx)",
3189 features);
f2b636e8 3190 err = -EINVAL;
141386e1 3191 goto fail_alloc;
f2b636e8
JB
3192 }
3193
5d4f98a2 3194 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3195 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3196 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3197 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3198 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3199 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3200
3173a18f 3201 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3202 btrfs_info(fs_info, "has skinny extents");
3173a18f 3203
727011e0
CM
3204 /*
3205 * flag our filesystem as having big metadata blocks if
3206 * they are bigger than the page size
3207 */
09cbfeaf 3208 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3209 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3210 btrfs_info(fs_info,
3211 "flagging fs with big metadata feature");
727011e0
CM
3212 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3213 }
3214
bc3f116f 3215 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3216 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3217 stripesize = sectorsize;
707e8a07 3218 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3219 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3220
da17066c
JM
3221 /* Cache block sizes */
3222 fs_info->nodesize = nodesize;
3223 fs_info->sectorsize = sectorsize;
ab108d99 3224 fs_info->sectorsize_bits = ilog2(sectorsize);
22b6331d 3225 fs_info->csum_size = btrfs_super_csum_size(disk_super);
fe5ecbe8 3226 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
da17066c
JM
3227 fs_info->stripesize = stripesize;
3228
bc3f116f
CM
3229 /*
3230 * mixed block groups end up with duplicate but slightly offset
3231 * extent buffers for the same range. It leads to corruptions
3232 */
3233 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3234 (sectorsize != nodesize)) {
05135f59
DS
3235 btrfs_err(fs_info,
3236"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3237 nodesize, sectorsize);
141386e1 3238 goto fail_alloc;
bc3f116f
CM
3239 }
3240
ceda0864
MX
3241 /*
3242 * Needn't use the lock because there is no other task which will
3243 * update the flag.
3244 */
a6fa6fae 3245 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3246
f2b636e8
JB
3247 features = btrfs_super_compat_ro_flags(disk_super) &
3248 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3249 if (!sb_rdonly(sb) && features) {
05135f59
DS
3250 btrfs_err(fs_info,
3251 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3252 features);
f2b636e8 3253 err = -EINVAL;
141386e1 3254 goto fail_alloc;
f2b636e8 3255 }
61d92c32 3256
0bb3eb3e
QW
3257 /* For 4K sector size support, it's only read-only */
3258 if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) {
3259 if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) {
3260 btrfs_err(fs_info,
3261 "subpage sectorsize %u only supported read-only for page size %lu",
3262 sectorsize, PAGE_SIZE);
3263 err = -EINVAL;
3264 goto fail_alloc;
3265 }
3266 }
3267
2a458198
ES
3268 ret = btrfs_init_workqueues(fs_info, fs_devices);
3269 if (ret) {
3270 err = ret;
0dc3b84a
JB
3271 goto fail_sb_buffer;
3272 }
4543df7e 3273
9e11ceee
JK
3274 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3275 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3276
a061fc8d
CM
3277 sb->s_blocksize = sectorsize;
3278 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3279 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3280
925baedd 3281 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3282 ret = btrfs_read_sys_array(fs_info);
925baedd 3283 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3284 if (ret) {
05135f59 3285 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3286 goto fail_sb_buffer;
84eed90f 3287 }
0b86a832 3288
84234f3a 3289 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3290 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3291
2ff7e61e 3292 chunk_root->node = read_tree_block(fs_info,
0b86a832 3293 btrfs_super_chunk_root(disk_super),
1b7ec85e 3294 BTRFS_CHUNK_TREE_OBJECTID,
581c1760 3295 generation, level, NULL);
64c043de
LB
3296 if (IS_ERR(chunk_root->node) ||
3297 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3298 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3299 if (!IS_ERR(chunk_root->node))
3300 free_extent_buffer(chunk_root->node);
95ab1f64 3301 chunk_root->node = NULL;
af31f5e5 3302 goto fail_tree_roots;
83121942 3303 }
5d4f98a2
YZ
3304 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3305 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3306
e17cade2 3307 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3308 offsetof(struct btrfs_header, chunk_tree_uuid),
3309 BTRFS_UUID_SIZE);
e17cade2 3310
5b4aacef 3311 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3312 if (ret) {
05135f59 3313 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3314 goto fail_tree_roots;
2b82032c 3315 }
0b86a832 3316
8dabb742 3317 /*
bacce86a
AJ
3318 * At this point we know all the devices that make this filesystem,
3319 * including the seed devices but we don't know yet if the replace
3320 * target is required. So free devices that are not part of this
3321 * filesystem but skip the replace traget device which is checked
3322 * below in btrfs_init_dev_replace().
8dabb742 3323 */
bacce86a 3324 btrfs_free_extra_devids(fs_devices);
a6b0d5c8 3325 if (!fs_devices->latest_bdev) {
05135f59 3326 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3327 goto fail_tree_roots;
3328 }
3329
b8522a1e 3330 ret = init_tree_roots(fs_info);
4bbcaa64 3331 if (ret)
b8522a1e 3332 goto fail_tree_roots;
8929ecfa 3333
73651042
NA
3334 /*
3335 * Get zone type information of zoned block devices. This will also
3336 * handle emulation of a zoned filesystem if a regular device has the
3337 * zoned incompat feature flag set.
3338 */
3339 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3340 if (ret) {
3341 btrfs_err(fs_info,
3342 "zoned: failed to read device zone info: %d",
3343 ret);
3344 goto fail_block_groups;
3345 }
3346
75ec1db8
JB
3347 /*
3348 * If we have a uuid root and we're not being told to rescan we need to
3349 * check the generation here so we can set the
3350 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3351 * transaction during a balance or the log replay without updating the
3352 * uuid generation, and then if we crash we would rescan the uuid tree,
3353 * even though it was perfectly fine.
3354 */
3355 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3356 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3357 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3358
cf90d884
QW
3359 ret = btrfs_verify_dev_extents(fs_info);
3360 if (ret) {
3361 btrfs_err(fs_info,
3362 "failed to verify dev extents against chunks: %d",
3363 ret);
3364 goto fail_block_groups;
3365 }
68310a5e
ID
3366 ret = btrfs_recover_balance(fs_info);
3367 if (ret) {
05135f59 3368 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3369 goto fail_block_groups;
3370 }
3371
733f4fbb
SB
3372 ret = btrfs_init_dev_stats(fs_info);
3373 if (ret) {
05135f59 3374 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3375 goto fail_block_groups;
3376 }
3377
8dabb742
SB
3378 ret = btrfs_init_dev_replace(fs_info);
3379 if (ret) {
05135f59 3380 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3381 goto fail_block_groups;
3382 }
3383
b70f5097
NA
3384 ret = btrfs_check_zoned_mode(fs_info);
3385 if (ret) {
3386 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3387 ret);
3388 goto fail_block_groups;
3389 }
3390
c6761a9e 3391 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3392 if (ret) {
05135f59
DS
3393 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3394 ret);
b7c35e81
AJ
3395 goto fail_block_groups;
3396 }
3397
96f3136e 3398 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3399 if (ret) {
05135f59 3400 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3401 goto fail_fsdev_sysfs;
c59021f8 3402 }
3403
c59021f8 3404 ret = btrfs_init_space_info(fs_info);
3405 if (ret) {
05135f59 3406 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3407 goto fail_sysfs;
c59021f8 3408 }
3409
5b4aacef 3410 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3411 if (ret) {
05135f59 3412 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3413 goto fail_sysfs;
1b1d1f66 3414 }
4330e183 3415
6528b99d 3416 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3417 btrfs_warn(fs_info,
52042d8e 3418 "writable mount is not allowed due to too many missing devices");
2365dd3c 3419 goto fail_sysfs;
292fd7fc 3420 }
9078a3e1 3421
a74a4b97
CM
3422 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3423 "btrfs-cleaner");
57506d50 3424 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3425 goto fail_sysfs;
a74a4b97
CM
3426
3427 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3428 tree_root,
3429 "btrfs-transaction");
57506d50 3430 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3431 goto fail_cleaner;
a74a4b97 3432
583b7231 3433 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3434 !fs_info->fs_devices->rotating) {
583b7231 3435 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3436 }
3437
572d9ab7 3438 /*
01327610 3439 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3440 * not have to wait for transaction commit
3441 */
3442 btrfs_apply_pending_changes(fs_info);
3818aea2 3443
21adbd5c 3444#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3445 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3446 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3447 btrfs_test_opt(fs_info,
21adbd5c
SB
3448 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3449 1 : 0,
3450 fs_info->check_integrity_print_mask);
3451 if (ret)
05135f59
DS
3452 btrfs_warn(fs_info,
3453 "failed to initialize integrity check module: %d",
3454 ret);
21adbd5c
SB
3455 }
3456#endif
bcef60f2
AJ
3457 ret = btrfs_read_qgroup_config(fs_info);
3458 if (ret)
3459 goto fail_trans_kthread;
21adbd5c 3460
fd708b81
JB
3461 if (btrfs_build_ref_tree(fs_info))
3462 btrfs_err(fs_info, "couldn't build ref tree");
3463
96da0919
QW
3464 /* do not make disk changes in broken FS or nologreplay is given */
3465 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3466 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3467 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3468 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3469 if (ret) {
63443bf5 3470 err = ret;
28c16cbb 3471 goto fail_qgroup;
79787eaa 3472 }
e02119d5 3473 }
1a40e23b 3474
56e9357a 3475 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3476 if (IS_ERR(fs_info->fs_root)) {
3477 err = PTR_ERR(fs_info->fs_root);
f50f4353 3478 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3479 fs_info->fs_root = NULL;
bcef60f2 3480 goto fail_qgroup;
3140c9a3 3481 }
c289811c 3482
bc98a42c 3483 if (sb_rdonly(sb))
8cd29088 3484 goto clear_oneshot;
59641015 3485
44c0ca21 3486 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3487 if (ret) {
6bccf3ab 3488 close_ctree(fs_info);
2b6ba629 3489 return ret;
e3acc2a6 3490 }
b0643e59 3491 btrfs_discard_resume(fs_info);
b382a324 3492
44c0ca21
BB
3493 if (fs_info->uuid_root &&
3494 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3495 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3496 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3497 ret = btrfs_check_uuid_tree(fs_info);
3498 if (ret) {
05135f59
DS
3499 btrfs_warn(fs_info,
3500 "failed to check the UUID tree: %d", ret);
6bccf3ab 3501 close_ctree(fs_info);
70f80175
SB
3502 return ret;
3503 }
f7a81ea4 3504 }
94846229 3505
afcdd129 3506 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3507
8cd29088
BB
3508clear_oneshot:
3509 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3510 return 0;
39279cc3 3511
bcef60f2
AJ
3512fail_qgroup:
3513 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3514fail_trans_kthread:
3515 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3516 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3517 btrfs_free_fs_roots(fs_info);
3f157a2f 3518fail_cleaner:
a74a4b97 3519 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3520
3521 /*
3522 * make sure we're done with the btree inode before we stop our
3523 * kthreads
3524 */
3525 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3526
2365dd3c 3527fail_sysfs:
6618a59b 3528 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3529
b7c35e81
AJ
3530fail_fsdev_sysfs:
3531 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3532
1b1d1f66 3533fail_block_groups:
54067ae9 3534 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3535
3536fail_tree_roots:
9e3aa805
JB
3537 if (fs_info->data_reloc_root)
3538 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3539 free_root_pointers(fs_info, true);
2b8195bb 3540 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3541
39279cc3 3542fail_sb_buffer:
7abadb64 3543 btrfs_stop_all_workers(fs_info);
5cdd7db6 3544 btrfs_free_block_groups(fs_info);
16cdcec7 3545fail_alloc:
586e46e2
ID
3546 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3547
4543df7e 3548 iput(fs_info->btree_inode);
7e662854 3549fail:
586e46e2 3550 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3551 return err;
eb60ceac 3552}
663faf9f 3553ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3554
314b6dd0 3555static void btrfs_end_super_write(struct bio *bio)
f2984462 3556{
314b6dd0
JT
3557 struct btrfs_device *device = bio->bi_private;
3558 struct bio_vec *bvec;
3559 struct bvec_iter_all iter_all;
3560 struct page *page;
3561
3562 bio_for_each_segment_all(bvec, bio, iter_all) {
3563 page = bvec->bv_page;
3564
3565 if (bio->bi_status) {
3566 btrfs_warn_rl_in_rcu(device->fs_info,
3567 "lost page write due to IO error on %s (%d)",
3568 rcu_str_deref(device->name),
3569 blk_status_to_errno(bio->bi_status));
3570 ClearPageUptodate(page);
3571 SetPageError(page);
3572 btrfs_dev_stat_inc_and_print(device,
3573 BTRFS_DEV_STAT_WRITE_ERRS);
3574 } else {
3575 SetPageUptodate(page);
3576 }
3577
3578 put_page(page);
3579 unlock_page(page);
f2984462 3580 }
314b6dd0
JT
3581
3582 bio_put(bio);
f2984462
CM
3583}
3584
8f32380d
JT
3585struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3586 int copy_num)
29c36d72 3587{
29c36d72 3588 struct btrfs_super_block *super;
8f32380d 3589 struct page *page;
12659251 3590 u64 bytenr, bytenr_orig;
8f32380d 3591 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3592 int ret;
3593
3594 bytenr_orig = btrfs_sb_offset(copy_num);
3595 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3596 if (ret == -ENOENT)
3597 return ERR_PTR(-EINVAL);
3598 else if (ret)
3599 return ERR_PTR(ret);
29c36d72 3600
29c36d72 3601 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3602 return ERR_PTR(-EINVAL);
29c36d72 3603
8f32380d
JT
3604 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3605 if (IS_ERR(page))
3606 return ERR_CAST(page);
29c36d72 3607
8f32380d 3608 super = page_address(page);
96c2e067
AJ
3609 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3610 btrfs_release_disk_super(super);
3611 return ERR_PTR(-ENODATA);
3612 }
3613
12659251 3614 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3615 btrfs_release_disk_super(super);
3616 return ERR_PTR(-EINVAL);
29c36d72
AJ
3617 }
3618
8f32380d 3619 return super;
29c36d72
AJ
3620}
3621
3622
8f32380d 3623struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3624{
8f32380d 3625 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3626 int i;
3627 u64 transid = 0;
a512bbf8
YZ
3628
3629 /* we would like to check all the supers, but that would make
3630 * a btrfs mount succeed after a mkfs from a different FS.
3631 * So, we need to add a special mount option to scan for
3632 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3633 */
3634 for (i = 0; i < 1; i++) {
8f32380d
JT
3635 super = btrfs_read_dev_one_super(bdev, i);
3636 if (IS_ERR(super))
a512bbf8
YZ
3637 continue;
3638
a512bbf8 3639 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3640 if (latest)
3641 btrfs_release_disk_super(super);
3642
3643 latest = super;
a512bbf8 3644 transid = btrfs_super_generation(super);
a512bbf8
YZ
3645 }
3646 }
92fc03fb 3647
8f32380d 3648 return super;
a512bbf8
YZ
3649}
3650
4eedeb75 3651/*
abbb3b8e 3652 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3653 * pages we use for writing are locked.
4eedeb75 3654 *
abbb3b8e
DS
3655 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3656 * the expected device size at commit time. Note that max_mirrors must be
3657 * same for write and wait phases.
4eedeb75 3658 *
314b6dd0 3659 * Return number of errors when page is not found or submission fails.
4eedeb75 3660 */
a512bbf8 3661static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3662 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3663{
d5178578 3664 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3665 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3666 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3667 int i;
a512bbf8 3668 int errors = 0;
12659251
NA
3669 int ret;
3670 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3671
3672 if (max_mirrors == 0)
3673 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3674
d5178578
JT
3675 shash->tfm = fs_info->csum_shash;
3676
a512bbf8 3677 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3678 struct page *page;
3679 struct bio *bio;
3680 struct btrfs_super_block *disk_super;
3681
12659251
NA
3682 bytenr_orig = btrfs_sb_offset(i);
3683 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3684 if (ret == -ENOENT) {
3685 continue;
3686 } else if (ret < 0) {
3687 btrfs_err(device->fs_info,
3688 "couldn't get super block location for mirror %d",
3689 i);
3690 errors++;
3691 continue;
3692 }
935e5cc9
MX
3693 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3694 device->commit_total_bytes)
a512bbf8
YZ
3695 break;
3696
12659251 3697 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3698
fd08001f
EB
3699 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3700 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3701 sb->csum);
4eedeb75 3702
314b6dd0
JT
3703 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3704 GFP_NOFS);
3705 if (!page) {
abbb3b8e 3706 btrfs_err(device->fs_info,
314b6dd0 3707 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3708 bytenr);
3709 errors++;
4eedeb75 3710 continue;
abbb3b8e 3711 }
634554dc 3712
314b6dd0
JT
3713 /* Bump the refcount for wait_dev_supers() */
3714 get_page(page);
a512bbf8 3715
314b6dd0
JT
3716 disk_super = page_address(page);
3717 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3718
314b6dd0
JT
3719 /*
3720 * Directly use bios here instead of relying on the page cache
3721 * to do I/O, so we don't lose the ability to do integrity
3722 * checking.
3723 */
3724 bio = bio_alloc(GFP_NOFS, 1);
3725 bio_set_dev(bio, device->bdev);
3726 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3727 bio->bi_private = device;
3728 bio->bi_end_io = btrfs_end_super_write;
3729 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3730 offset_in_page(bytenr));
a512bbf8 3731
387125fc 3732 /*
314b6dd0
JT
3733 * We FUA only the first super block. The others we allow to
3734 * go down lazy and there's a short window where the on-disk
3735 * copies might still contain the older version.
387125fc 3736 */
314b6dd0 3737 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3738 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3739 bio->bi_opf |= REQ_FUA;
3740
3741 btrfsic_submit_bio(bio);
12659251 3742 btrfs_advance_sb_log(device, i);
a512bbf8
YZ
3743 }
3744 return errors < i ? 0 : -1;
3745}
3746
abbb3b8e
DS
3747/*
3748 * Wait for write completion of superblocks done by write_dev_supers,
3749 * @max_mirrors same for write and wait phases.
3750 *
314b6dd0 3751 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3752 * date.
3753 */
3754static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3755{
abbb3b8e
DS
3756 int i;
3757 int errors = 0;
b6a535fa 3758 bool primary_failed = false;
12659251 3759 int ret;
abbb3b8e
DS
3760 u64 bytenr;
3761
3762 if (max_mirrors == 0)
3763 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3764
3765 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3766 struct page *page;
3767
12659251
NA
3768 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3769 if (ret == -ENOENT) {
3770 break;
3771 } else if (ret < 0) {
3772 errors++;
3773 if (i == 0)
3774 primary_failed = true;
3775 continue;
3776 }
abbb3b8e
DS
3777 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3778 device->commit_total_bytes)
3779 break;
3780
314b6dd0
JT
3781 page = find_get_page(device->bdev->bd_inode->i_mapping,
3782 bytenr >> PAGE_SHIFT);
3783 if (!page) {
abbb3b8e 3784 errors++;
b6a535fa
HM
3785 if (i == 0)
3786 primary_failed = true;
abbb3b8e
DS
3787 continue;
3788 }
314b6dd0
JT
3789 /* Page is submitted locked and unlocked once the IO completes */
3790 wait_on_page_locked(page);
3791 if (PageError(page)) {
abbb3b8e 3792 errors++;
b6a535fa
HM
3793 if (i == 0)
3794 primary_failed = true;
3795 }
abbb3b8e 3796
314b6dd0
JT
3797 /* Drop our reference */
3798 put_page(page);
abbb3b8e 3799
314b6dd0
JT
3800 /* Drop the reference from the writing run */
3801 put_page(page);
abbb3b8e
DS
3802 }
3803
b6a535fa
HM
3804 /* log error, force error return */
3805 if (primary_failed) {
3806 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3807 device->devid);
3808 return -1;
3809 }
3810
abbb3b8e
DS
3811 return errors < i ? 0 : -1;
3812}
3813
387125fc
CM
3814/*
3815 * endio for the write_dev_flush, this will wake anyone waiting
3816 * for the barrier when it is done
3817 */
4246a0b6 3818static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3819{
e0ae9994 3820 complete(bio->bi_private);
387125fc
CM
3821}
3822
3823/*
4fc6441a
AJ
3824 * Submit a flush request to the device if it supports it. Error handling is
3825 * done in the waiting counterpart.
387125fc 3826 */
4fc6441a 3827static void write_dev_flush(struct btrfs_device *device)
387125fc 3828{
c2a9c7ab 3829 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3830 struct bio *bio = device->flush_bio;
387125fc 3831
c2a9c7ab 3832 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3833 return;
387125fc 3834
e0ae9994 3835 bio_reset(bio);
387125fc 3836 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3837 bio_set_dev(bio, device->bdev);
8d910125 3838 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3839 init_completion(&device->flush_wait);
3840 bio->bi_private = &device->flush_wait;
387125fc 3841
43a01111 3842 btrfsic_submit_bio(bio);
1c3063b6 3843 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3844}
387125fc 3845
4fc6441a
AJ
3846/*
3847 * If the flush bio has been submitted by write_dev_flush, wait for it.
3848 */
8c27cb35 3849static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3850{
4fc6441a 3851 struct bio *bio = device->flush_bio;
387125fc 3852
1c3063b6 3853 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3854 return BLK_STS_OK;
387125fc 3855
1c3063b6 3856 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3857 wait_for_completion_io(&device->flush_wait);
387125fc 3858
8c27cb35 3859 return bio->bi_status;
387125fc 3860}
387125fc 3861
d10b82fe 3862static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3863{
6528b99d 3864 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3865 return -EIO;
387125fc
CM
3866 return 0;
3867}
3868
3869/*
3870 * send an empty flush down to each device in parallel,
3871 * then wait for them
3872 */
3873static int barrier_all_devices(struct btrfs_fs_info *info)
3874{
3875 struct list_head *head;
3876 struct btrfs_device *dev;
5af3e8cc 3877 int errors_wait = 0;
4e4cbee9 3878 blk_status_t ret;
387125fc 3879
1538e6c5 3880 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3881 /* send down all the barriers */
3882 head = &info->fs_devices->devices;
1538e6c5 3883 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3884 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3885 continue;
cea7c8bf 3886 if (!dev->bdev)
387125fc 3887 continue;
e12c9621 3888 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3889 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3890 continue;
3891
4fc6441a 3892 write_dev_flush(dev);
58efbc9f 3893 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3894 }
3895
3896 /* wait for all the barriers */
1538e6c5 3897 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3898 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3899 continue;
387125fc 3900 if (!dev->bdev) {
5af3e8cc 3901 errors_wait++;
387125fc
CM
3902 continue;
3903 }
e12c9621 3904 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3905 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3906 continue;
3907
4fc6441a 3908 ret = wait_dev_flush(dev);
401b41e5
AJ
3909 if (ret) {
3910 dev->last_flush_error = ret;
66b4993e
DS
3911 btrfs_dev_stat_inc_and_print(dev,
3912 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3913 errors_wait++;
401b41e5
AJ
3914 }
3915 }
3916
cea7c8bf 3917 if (errors_wait) {
401b41e5
AJ
3918 /*
3919 * At some point we need the status of all disks
3920 * to arrive at the volume status. So error checking
3921 * is being pushed to a separate loop.
3922 */
d10b82fe 3923 return check_barrier_error(info);
387125fc 3924 }
387125fc
CM
3925 return 0;
3926}
3927
943c6e99
ZL
3928int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3929{
8789f4fe
ZL
3930 int raid_type;
3931 int min_tolerated = INT_MAX;
943c6e99 3932
8789f4fe
ZL
3933 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3934 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3935 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3936 btrfs_raid_array[BTRFS_RAID_SINGLE].
3937 tolerated_failures);
943c6e99 3938
8789f4fe
ZL
3939 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3940 if (raid_type == BTRFS_RAID_SINGLE)
3941 continue;
41a6e891 3942 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3943 continue;
8c3e3582 3944 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3945 btrfs_raid_array[raid_type].
3946 tolerated_failures);
3947 }
943c6e99 3948
8789f4fe 3949 if (min_tolerated == INT_MAX) {
ab8d0fc4 3950 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3951 min_tolerated = 0;
3952 }
3953
3954 return min_tolerated;
943c6e99
ZL
3955}
3956
eece6a9c 3957int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3958{
e5e9a520 3959 struct list_head *head;
f2984462 3960 struct btrfs_device *dev;
a061fc8d 3961 struct btrfs_super_block *sb;
f2984462 3962 struct btrfs_dev_item *dev_item;
f2984462
CM
3963 int ret;
3964 int do_barriers;
a236aed1
CM
3965 int max_errors;
3966 int total_errors = 0;
a061fc8d 3967 u64 flags;
f2984462 3968
0b246afa 3969 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3970
3971 /*
3972 * max_mirrors == 0 indicates we're from commit_transaction,
3973 * not from fsync where the tree roots in fs_info have not
3974 * been consistent on disk.
3975 */
3976 if (max_mirrors == 0)
3977 backup_super_roots(fs_info);
f2984462 3978
0b246afa 3979 sb = fs_info->super_for_commit;
a061fc8d 3980 dev_item = &sb->dev_item;
e5e9a520 3981
0b246afa
JM
3982 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3983 head = &fs_info->fs_devices->devices;
3984 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3985
5af3e8cc 3986 if (do_barriers) {
0b246afa 3987 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3988 if (ret) {
3989 mutex_unlock(
0b246afa
JM
3990 &fs_info->fs_devices->device_list_mutex);
3991 btrfs_handle_fs_error(fs_info, ret,
3992 "errors while submitting device barriers.");
5af3e8cc
SB
3993 return ret;
3994 }
3995 }
387125fc 3996
1538e6c5 3997 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3998 if (!dev->bdev) {
3999 total_errors++;
4000 continue;
4001 }
e12c9621 4002 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4003 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4004 continue;
4005
2b82032c 4006 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4007 btrfs_set_stack_device_type(dev_item, dev->type);
4008 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4009 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4010 dev->commit_total_bytes);
ce7213c7
MX
4011 btrfs_set_stack_device_bytes_used(dev_item,
4012 dev->commit_bytes_used);
a061fc8d
CM
4013 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4014 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4015 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4016 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4017 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4018 BTRFS_FSID_SIZE);
a512bbf8 4019
a061fc8d
CM
4020 flags = btrfs_super_flags(sb);
4021 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4022
75cb857d
QW
4023 ret = btrfs_validate_write_super(fs_info, sb);
4024 if (ret < 0) {
4025 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4026 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4027 "unexpected superblock corruption detected");
4028 return -EUCLEAN;
4029 }
4030
abbb3b8e 4031 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4032 if (ret)
4033 total_errors++;
f2984462 4034 }
a236aed1 4035 if (total_errors > max_errors) {
0b246afa
JM
4036 btrfs_err(fs_info, "%d errors while writing supers",
4037 total_errors);
4038 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4039
9d565ba4 4040 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4041 btrfs_handle_fs_error(fs_info, -EIO,
4042 "%d errors while writing supers",
4043 total_errors);
9d565ba4 4044 return -EIO;
a236aed1 4045 }
f2984462 4046
a512bbf8 4047 total_errors = 0;
1538e6c5 4048 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4049 if (!dev->bdev)
4050 continue;
e12c9621 4051 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4052 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4053 continue;
4054
abbb3b8e 4055 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4056 if (ret)
4057 total_errors++;
f2984462 4058 }
0b246afa 4059 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4060 if (total_errors > max_errors) {
0b246afa
JM
4061 btrfs_handle_fs_error(fs_info, -EIO,
4062 "%d errors while writing supers",
4063 total_errors);
79787eaa 4064 return -EIO;
a236aed1 4065 }
f2984462
CM
4066 return 0;
4067}
4068
cb517eab
MX
4069/* Drop a fs root from the radix tree and free it. */
4070void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4071 struct btrfs_root *root)
2619ba1f 4072{
4785e24f
JB
4073 bool drop_ref = false;
4074
4df27c4d 4075 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
4076 radix_tree_delete(&fs_info->fs_roots_radix,
4077 (unsigned long)root->root_key.objectid);
af01d2e5 4078 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4079 drop_ref = true;
4df27c4d 4080 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4081
1c1ea4f7 4082 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 4083 ASSERT(root->log_root == NULL);
1c1ea4f7 4084 if (root->reloc_root) {
00246528 4085 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4086 root->reloc_root = NULL;
4087 }
4088 }
3321719e 4089
4785e24f
JB
4090 if (drop_ref)
4091 btrfs_put_root(root);
2619ba1f
CM
4092}
4093
c146afad 4094int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4095{
c146afad
YZ
4096 u64 root_objectid = 0;
4097 struct btrfs_root *gang[8];
65d33fd7
QW
4098 int i = 0;
4099 int err = 0;
4100 unsigned int ret = 0;
e089f05c 4101
c146afad 4102 while (1) {
efc34534 4103 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
4104 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4105 (void **)gang, root_objectid,
4106 ARRAY_SIZE(gang));
65d33fd7 4107 if (!ret) {
efc34534 4108 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 4109 break;
65d33fd7 4110 }
5d4f98a2 4111 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4112
c146afad 4113 for (i = 0; i < ret; i++) {
65d33fd7
QW
4114 /* Avoid to grab roots in dead_roots */
4115 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4116 gang[i] = NULL;
4117 continue;
4118 }
4119 /* grab all the search result for later use */
00246528 4120 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4121 }
efc34534 4122 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4123
65d33fd7
QW
4124 for (i = 0; i < ret; i++) {
4125 if (!gang[i])
4126 continue;
c146afad 4127 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4128 err = btrfs_orphan_cleanup(gang[i]);
4129 if (err)
65d33fd7 4130 break;
00246528 4131 btrfs_put_root(gang[i]);
c146afad
YZ
4132 }
4133 root_objectid++;
4134 }
65d33fd7
QW
4135
4136 /* release the uncleaned roots due to error */
4137 for (; i < ret; i++) {
4138 if (gang[i])
00246528 4139 btrfs_put_root(gang[i]);
65d33fd7
QW
4140 }
4141 return err;
c146afad 4142}
a2135011 4143
6bccf3ab 4144int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4145{
6bccf3ab 4146 struct btrfs_root *root = fs_info->tree_root;
c146afad 4147 struct btrfs_trans_handle *trans;
a74a4b97 4148
0b246afa 4149 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4150 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4151 mutex_unlock(&fs_info->cleaner_mutex);
4152 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4153
4154 /* wait until ongoing cleanup work done */
0b246afa
JM
4155 down_write(&fs_info->cleanup_work_sem);
4156 up_write(&fs_info->cleanup_work_sem);
c71bf099 4157
7a7eaa40 4158 trans = btrfs_join_transaction(root);
3612b495
TI
4159 if (IS_ERR(trans))
4160 return PTR_ERR(trans);
3a45bb20 4161 return btrfs_commit_transaction(trans);
c146afad
YZ
4162}
4163
b105e927 4164void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4165{
c146afad
YZ
4166 int ret;
4167
afcdd129 4168 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4169 /*
4170 * We don't want the cleaner to start new transactions, add more delayed
4171 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4172 * because that frees the task_struct, and the transaction kthread might
4173 * still try to wake up the cleaner.
4174 */
4175 kthread_park(fs_info->cleaner_kthread);
c146afad 4176
7343dd61 4177 /* wait for the qgroup rescan worker to stop */
d06f23d6 4178 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4179
803b2f54
SB
4180 /* wait for the uuid_scan task to finish */
4181 down(&fs_info->uuid_tree_rescan_sem);
4182 /* avoid complains from lockdep et al., set sem back to initial state */
4183 up(&fs_info->uuid_tree_rescan_sem);
4184
837d5b6e 4185 /* pause restriper - we want to resume on mount */
aa1b8cd4 4186 btrfs_pause_balance(fs_info);
837d5b6e 4187
8dabb742
SB
4188 btrfs_dev_replace_suspend_for_unmount(fs_info);
4189
aa1b8cd4 4190 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4191
4192 /* wait for any defraggers to finish */
4193 wait_event(fs_info->transaction_wait,
4194 (atomic_read(&fs_info->defrag_running) == 0));
4195
4196 /* clear out the rbtree of defraggable inodes */
26176e7c 4197 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4198
21c7e756 4199 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4200 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4201 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4202
b0643e59
DZ
4203 /* Cancel or finish ongoing discard work */
4204 btrfs_discard_cleanup(fs_info);
4205
bc98a42c 4206 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4207 /*
d6fd0ae2
OS
4208 * The cleaner kthread is stopped, so do one final pass over
4209 * unused block groups.
e44163e1 4210 */
0b246afa 4211 btrfs_delete_unused_bgs(fs_info);
e44163e1 4212
f0cc2cd7
FM
4213 /*
4214 * There might be existing delayed inode workers still running
4215 * and holding an empty delayed inode item. We must wait for
4216 * them to complete first because they can create a transaction.
4217 * This happens when someone calls btrfs_balance_delayed_items()
4218 * and then a transaction commit runs the same delayed nodes
4219 * before any delayed worker has done something with the nodes.
4220 * We must wait for any worker here and not at transaction
4221 * commit time since that could cause a deadlock.
4222 * This is a very rare case.
4223 */
4224 btrfs_flush_workqueue(fs_info->delayed_workers);
4225
6bccf3ab 4226 ret = btrfs_commit_super(fs_info);
acce952b 4227 if (ret)
04892340 4228 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4229 }
4230
af722733
LB
4231 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4232 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4233 btrfs_error_commit_super(fs_info);
0f7d52f4 4234
e3029d9f
AV
4235 kthread_stop(fs_info->transaction_kthread);
4236 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4237
e187831e 4238 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4239 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4240
5958253c
QW
4241 if (btrfs_check_quota_leak(fs_info)) {
4242 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4243 btrfs_err(fs_info, "qgroup reserved space leaked");
4244 }
4245
04892340 4246 btrfs_free_qgroup_config(fs_info);
fe816d0f 4247 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4248
963d678b 4249 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4250 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4251 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4252 }
bcc63abb 4253
5deb17e1 4254 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4255 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4256 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4257
6618a59b 4258 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4259 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4260
1a4319cc
LB
4261 btrfs_put_block_group_cache(fs_info);
4262
de348ee0
WS
4263 /*
4264 * we must make sure there is not any read request to
4265 * submit after we stopping all workers.
4266 */
4267 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4268 btrfs_stop_all_workers(fs_info);
4269
0a31daa4
FM
4270 /* We shouldn't have any transaction open at this point */
4271 ASSERT(list_empty(&fs_info->trans_list));
4272
afcdd129 4273 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4274 free_root_pointers(fs_info, true);
8c38938c 4275 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4276
4e19443d
JB
4277 /*
4278 * We must free the block groups after dropping the fs_roots as we could
4279 * have had an IO error and have left over tree log blocks that aren't
4280 * cleaned up until the fs roots are freed. This makes the block group
4281 * accounting appear to be wrong because there's pending reserved bytes,
4282 * so make sure we do the block group cleanup afterwards.
4283 */
4284 btrfs_free_block_groups(fs_info);
4285
13e6c37b 4286 iput(fs_info->btree_inode);
d6bfde87 4287
21adbd5c 4288#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4289 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4290 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4291#endif
4292
0b86a832 4293 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4294 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4295}
4296
b9fab919
CM
4297int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4298 int atomic)
5f39d397 4299{
1259ab75 4300 int ret;
727011e0 4301 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4302
0b32f4bb 4303 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4304 if (!ret)
4305 return ret;
4306
4307 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4308 parent_transid, atomic);
4309 if (ret == -EAGAIN)
4310 return ret;
1259ab75 4311 return !ret;
5f39d397
CM
4312}
4313
5f39d397
CM
4314void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4315{
2f4d60df 4316 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4317 u64 transid = btrfs_header_generation(buf);
b9473439 4318 int was_dirty;
b4ce94de 4319
06ea65a3
JB
4320#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4321 /*
4322 * This is a fast path so only do this check if we have sanity tests
52042d8e 4323 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4324 * outside of the sanity tests.
4325 */
b0132a3b 4326 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4327 return;
4328#endif
b9447ef8 4329 btrfs_assert_tree_locked(buf);
0b246afa 4330 if (transid != fs_info->generation)
5d163e0e 4331 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4332 buf->start, transid, fs_info->generation);
0b32f4bb 4333 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4334 if (!was_dirty)
104b4e51
NB
4335 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4336 buf->len,
4337 fs_info->dirty_metadata_batch);
1f21ef0a 4338#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4339 /*
4340 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4341 * but item data not updated.
4342 * So here we should only check item pointers, not item data.
4343 */
4344 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4345 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4346 btrfs_print_leaf(buf);
1f21ef0a
FM
4347 ASSERT(0);
4348 }
4349#endif
eb60ceac
CM
4350}
4351
2ff7e61e 4352static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4353 int flush_delayed)
16cdcec7
MX
4354{
4355 /*
4356 * looks as though older kernels can get into trouble with
4357 * this code, they end up stuck in balance_dirty_pages forever
4358 */
e2d84521 4359 int ret;
16cdcec7
MX
4360
4361 if (current->flags & PF_MEMALLOC)
4362 return;
4363
b53d3f5d 4364 if (flush_delayed)
2ff7e61e 4365 btrfs_balance_delayed_items(fs_info);
16cdcec7 4366
d814a491
EL
4367 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4368 BTRFS_DIRTY_METADATA_THRESH,
4369 fs_info->dirty_metadata_batch);
e2d84521 4370 if (ret > 0) {
0b246afa 4371 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4372 }
16cdcec7
MX
4373}
4374
2ff7e61e 4375void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4376{
2ff7e61e 4377 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4378}
585ad2c3 4379
2ff7e61e 4380void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4381{
2ff7e61e 4382 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4383}
6b80053d 4384
581c1760
QW
4385int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4386 struct btrfs_key *first_key)
6b80053d 4387{
5ab12d1f 4388 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4389 level, first_key);
6b80053d 4390}
0da5468f 4391
2ff7e61e 4392static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4393{
fe816d0f
NB
4394 /* cleanup FS via transaction */
4395 btrfs_cleanup_transaction(fs_info);
4396
0b246afa 4397 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4398 btrfs_run_delayed_iputs(fs_info);
0b246afa 4399 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4400
0b246afa
JM
4401 down_write(&fs_info->cleanup_work_sem);
4402 up_write(&fs_info->cleanup_work_sem);
acce952b 4403}
4404
ef67963d
JB
4405static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4406{
4407 struct btrfs_root *gang[8];
4408 u64 root_objectid = 0;
4409 int ret;
4410
4411 spin_lock(&fs_info->fs_roots_radix_lock);
4412 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4413 (void **)gang, root_objectid,
4414 ARRAY_SIZE(gang))) != 0) {
4415 int i;
4416
4417 for (i = 0; i < ret; i++)
4418 gang[i] = btrfs_grab_root(gang[i]);
4419 spin_unlock(&fs_info->fs_roots_radix_lock);
4420
4421 for (i = 0; i < ret; i++) {
4422 if (!gang[i])
4423 continue;
4424 root_objectid = gang[i]->root_key.objectid;
4425 btrfs_free_log(NULL, gang[i]);
4426 btrfs_put_root(gang[i]);
4427 }
4428 root_objectid++;
4429 spin_lock(&fs_info->fs_roots_radix_lock);
4430 }
4431 spin_unlock(&fs_info->fs_roots_radix_lock);
4432 btrfs_free_log_root_tree(NULL, fs_info);
4433}
4434
143bede5 4435static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4436{
acce952b 4437 struct btrfs_ordered_extent *ordered;
acce952b 4438
199c2a9c 4439 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4440 /*
4441 * This will just short circuit the ordered completion stuff which will
4442 * make sure the ordered extent gets properly cleaned up.
4443 */
199c2a9c 4444 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4445 root_extent_list)
4446 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4447 spin_unlock(&root->ordered_extent_lock);
4448}
4449
4450static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4451{
4452 struct btrfs_root *root;
4453 struct list_head splice;
4454
4455 INIT_LIST_HEAD(&splice);
4456
4457 spin_lock(&fs_info->ordered_root_lock);
4458 list_splice_init(&fs_info->ordered_roots, &splice);
4459 while (!list_empty(&splice)) {
4460 root = list_first_entry(&splice, struct btrfs_root,
4461 ordered_root);
1de2cfde
JB
4462 list_move_tail(&root->ordered_root,
4463 &fs_info->ordered_roots);
199c2a9c 4464
2a85d9ca 4465 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4466 btrfs_destroy_ordered_extents(root);
4467
2a85d9ca
LB
4468 cond_resched();
4469 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4470 }
4471 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4472
4473 /*
4474 * We need this here because if we've been flipped read-only we won't
4475 * get sync() from the umount, so we need to make sure any ordered
4476 * extents that haven't had their dirty pages IO start writeout yet
4477 * actually get run and error out properly.
4478 */
4479 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4480}
4481
35a3621b 4482static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4483 struct btrfs_fs_info *fs_info)
acce952b 4484{
4485 struct rb_node *node;
4486 struct btrfs_delayed_ref_root *delayed_refs;
4487 struct btrfs_delayed_ref_node *ref;
4488 int ret = 0;
4489
4490 delayed_refs = &trans->delayed_refs;
4491
4492 spin_lock(&delayed_refs->lock);
d7df2c79 4493 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4494 spin_unlock(&delayed_refs->lock);
b79ce3dd 4495 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4496 return ret;
4497 }
4498
5c9d028b 4499 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4500 struct btrfs_delayed_ref_head *head;
0e0adbcf 4501 struct rb_node *n;
e78417d1 4502 bool pin_bytes = false;
acce952b 4503
d7df2c79
JB
4504 head = rb_entry(node, struct btrfs_delayed_ref_head,
4505 href_node);
3069bd26 4506 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4507 continue;
3069bd26 4508
d7df2c79 4509 spin_lock(&head->lock);
e3d03965 4510 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4511 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4512 ref_node);
d7df2c79 4513 ref->in_tree = 0;
e3d03965 4514 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4515 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4516 if (!list_empty(&ref->add_list))
4517 list_del(&ref->add_list);
d7df2c79
JB
4518 atomic_dec(&delayed_refs->num_entries);
4519 btrfs_put_delayed_ref(ref);
e78417d1 4520 }
d7df2c79
JB
4521 if (head->must_insert_reserved)
4522 pin_bytes = true;
4523 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4524 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4525 spin_unlock(&head->lock);
4526 spin_unlock(&delayed_refs->lock);
4527 mutex_unlock(&head->mutex);
acce952b 4528
f603bb94
NB
4529 if (pin_bytes) {
4530 struct btrfs_block_group *cache;
4531
4532 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4533 BUG_ON(!cache);
4534
4535 spin_lock(&cache->space_info->lock);
4536 spin_lock(&cache->lock);
4537 cache->pinned += head->num_bytes;
4538 btrfs_space_info_update_bytes_pinned(fs_info,
4539 cache->space_info, head->num_bytes);
4540 cache->reserved -= head->num_bytes;
4541 cache->space_info->bytes_reserved -= head->num_bytes;
4542 spin_unlock(&cache->lock);
4543 spin_unlock(&cache->space_info->lock);
4544 percpu_counter_add_batch(
4545 &cache->space_info->total_bytes_pinned,
4546 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4547
4548 btrfs_put_block_group(cache);
4549
4550 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4551 head->bytenr + head->num_bytes - 1);
4552 }
31890da0 4553 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4554 btrfs_put_delayed_ref_head(head);
acce952b 4555 cond_resched();
4556 spin_lock(&delayed_refs->lock);
4557 }
81f7eb00 4558 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4559
4560 spin_unlock(&delayed_refs->lock);
4561
4562 return ret;
4563}
4564
143bede5 4565static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4566{
4567 struct btrfs_inode *btrfs_inode;
4568 struct list_head splice;
4569
4570 INIT_LIST_HEAD(&splice);
4571
eb73c1b7
MX
4572 spin_lock(&root->delalloc_lock);
4573 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4574
4575 while (!list_empty(&splice)) {
fe816d0f 4576 struct inode *inode = NULL;
eb73c1b7
MX
4577 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4578 delalloc_inodes);
fe816d0f 4579 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4580 spin_unlock(&root->delalloc_lock);
acce952b 4581
fe816d0f
NB
4582 /*
4583 * Make sure we get a live inode and that it'll not disappear
4584 * meanwhile.
4585 */
4586 inode = igrab(&btrfs_inode->vfs_inode);
4587 if (inode) {
4588 invalidate_inode_pages2(inode->i_mapping);
4589 iput(inode);
4590 }
eb73c1b7 4591 spin_lock(&root->delalloc_lock);
acce952b 4592 }
eb73c1b7
MX
4593 spin_unlock(&root->delalloc_lock);
4594}
4595
4596static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4597{
4598 struct btrfs_root *root;
4599 struct list_head splice;
4600
4601 INIT_LIST_HEAD(&splice);
4602
4603 spin_lock(&fs_info->delalloc_root_lock);
4604 list_splice_init(&fs_info->delalloc_roots, &splice);
4605 while (!list_empty(&splice)) {
4606 root = list_first_entry(&splice, struct btrfs_root,
4607 delalloc_root);
00246528 4608 root = btrfs_grab_root(root);
eb73c1b7
MX
4609 BUG_ON(!root);
4610 spin_unlock(&fs_info->delalloc_root_lock);
4611
4612 btrfs_destroy_delalloc_inodes(root);
00246528 4613 btrfs_put_root(root);
eb73c1b7
MX
4614
4615 spin_lock(&fs_info->delalloc_root_lock);
4616 }
4617 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4618}
4619
2ff7e61e 4620static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4621 struct extent_io_tree *dirty_pages,
4622 int mark)
4623{
4624 int ret;
acce952b 4625 struct extent_buffer *eb;
4626 u64 start = 0;
4627 u64 end;
acce952b 4628
4629 while (1) {
4630 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4631 mark, NULL);
acce952b 4632 if (ret)
4633 break;
4634
91166212 4635 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4636 while (start <= end) {
0b246afa
JM
4637 eb = find_extent_buffer(fs_info, start);
4638 start += fs_info->nodesize;
fd8b2b61 4639 if (!eb)
acce952b 4640 continue;
fd8b2b61 4641 wait_on_extent_buffer_writeback(eb);
acce952b 4642
fd8b2b61
JB
4643 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4644 &eb->bflags))
4645 clear_extent_buffer_dirty(eb);
4646 free_extent_buffer_stale(eb);
acce952b 4647 }
4648 }
4649
4650 return ret;
4651}
4652
2ff7e61e 4653static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4654 struct extent_io_tree *unpin)
acce952b 4655{
acce952b 4656 u64 start;
4657 u64 end;
4658 int ret;
4659
acce952b 4660 while (1) {
0e6ec385
FM
4661 struct extent_state *cached_state = NULL;
4662
fcd5e742
LF
4663 /*
4664 * The btrfs_finish_extent_commit() may get the same range as
4665 * ours between find_first_extent_bit and clear_extent_dirty.
4666 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4667 * the same extent range.
4668 */
4669 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4670 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4671 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4672 if (ret) {
4673 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4674 break;
fcd5e742 4675 }
acce952b 4676
0e6ec385
FM
4677 clear_extent_dirty(unpin, start, end, &cached_state);
4678 free_extent_state(cached_state);
2ff7e61e 4679 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4680 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4681 cond_resched();
4682 }
4683
4684 return 0;
4685}
4686
32da5386 4687static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4688{
4689 struct inode *inode;
4690
4691 inode = cache->io_ctl.inode;
4692 if (inode) {
4693 invalidate_inode_pages2(inode->i_mapping);
4694 BTRFS_I(inode)->generation = 0;
4695 cache->io_ctl.inode = NULL;
4696 iput(inode);
4697 }
bbc37d6e 4698 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4699 btrfs_put_block_group(cache);
4700}
4701
4702void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4703 struct btrfs_fs_info *fs_info)
c79a1751 4704{
32da5386 4705 struct btrfs_block_group *cache;
c79a1751
LB
4706
4707 spin_lock(&cur_trans->dirty_bgs_lock);
4708 while (!list_empty(&cur_trans->dirty_bgs)) {
4709 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4710 struct btrfs_block_group,
c79a1751 4711 dirty_list);
c79a1751
LB
4712
4713 if (!list_empty(&cache->io_list)) {
4714 spin_unlock(&cur_trans->dirty_bgs_lock);
4715 list_del_init(&cache->io_list);
4716 btrfs_cleanup_bg_io(cache);
4717 spin_lock(&cur_trans->dirty_bgs_lock);
4718 }
4719
4720 list_del_init(&cache->dirty_list);
4721 spin_lock(&cache->lock);
4722 cache->disk_cache_state = BTRFS_DC_ERROR;
4723 spin_unlock(&cache->lock);
4724
4725 spin_unlock(&cur_trans->dirty_bgs_lock);
4726 btrfs_put_block_group(cache);
ba2c4d4e 4727 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4728 spin_lock(&cur_trans->dirty_bgs_lock);
4729 }
4730 spin_unlock(&cur_trans->dirty_bgs_lock);
4731
45ae2c18
NB
4732 /*
4733 * Refer to the definition of io_bgs member for details why it's safe
4734 * to use it without any locking
4735 */
c79a1751
LB
4736 while (!list_empty(&cur_trans->io_bgs)) {
4737 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4738 struct btrfs_block_group,
c79a1751 4739 io_list);
c79a1751
LB
4740
4741 list_del_init(&cache->io_list);
4742 spin_lock(&cache->lock);
4743 cache->disk_cache_state = BTRFS_DC_ERROR;
4744 spin_unlock(&cache->lock);
4745 btrfs_cleanup_bg_io(cache);
4746 }
4747}
4748
49b25e05 4749void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4750 struct btrfs_fs_info *fs_info)
49b25e05 4751{
bbbf7243
NB
4752 struct btrfs_device *dev, *tmp;
4753
2ff7e61e 4754 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4755 ASSERT(list_empty(&cur_trans->dirty_bgs));
4756 ASSERT(list_empty(&cur_trans->io_bgs));
4757
bbbf7243
NB
4758 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4759 post_commit_list) {
4760 list_del_init(&dev->post_commit_list);
4761 }
4762
2ff7e61e 4763 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4764
4a9d8bde 4765 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4766 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4767
4a9d8bde 4768 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4769 wake_up(&fs_info->transaction_wait);
49b25e05 4770
ccdf9b30 4771 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4772
2ff7e61e 4773 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4774 EXTENT_DIRTY);
fe119a6e 4775 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4776
4a9d8bde
MX
4777 cur_trans->state =TRANS_STATE_COMPLETED;
4778 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4779}
4780
2ff7e61e 4781static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4782{
4783 struct btrfs_transaction *t;
acce952b 4784
0b246afa 4785 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4786
0b246afa
JM
4787 spin_lock(&fs_info->trans_lock);
4788 while (!list_empty(&fs_info->trans_list)) {
4789 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4790 struct btrfs_transaction, list);
4791 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4792 refcount_inc(&t->use_count);
0b246afa 4793 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4794 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4795 btrfs_put_transaction(t);
0b246afa 4796 spin_lock(&fs_info->trans_lock);
724e2315
JB
4797 continue;
4798 }
0b246afa 4799 if (t == fs_info->running_transaction) {
724e2315 4800 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4801 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4802 /*
4803 * We wait for 0 num_writers since we don't hold a trans
4804 * handle open currently for this transaction.
4805 */
4806 wait_event(t->writer_wait,
4807 atomic_read(&t->num_writers) == 0);
4808 } else {
0b246afa 4809 spin_unlock(&fs_info->trans_lock);
724e2315 4810 }
2ff7e61e 4811 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4812
0b246afa
JM
4813 spin_lock(&fs_info->trans_lock);
4814 if (t == fs_info->running_transaction)
4815 fs_info->running_transaction = NULL;
acce952b 4816 list_del_init(&t->list);
0b246afa 4817 spin_unlock(&fs_info->trans_lock);
acce952b 4818
724e2315 4819 btrfs_put_transaction(t);
2ff7e61e 4820 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4821 spin_lock(&fs_info->trans_lock);
724e2315 4822 }
0b246afa
JM
4823 spin_unlock(&fs_info->trans_lock);
4824 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4825 btrfs_destroy_delayed_inodes(fs_info);
4826 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4827 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4828 btrfs_drop_all_logs(fs_info);
0b246afa 4829 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4830
4831 return 0;
4832}
ec7d6dfd 4833
453e4873 4834int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
4835{
4836 struct btrfs_path *path;
4837 int ret;
4838 struct extent_buffer *l;
4839 struct btrfs_key search_key;
4840 struct btrfs_key found_key;
4841 int slot;
4842
4843 path = btrfs_alloc_path();
4844 if (!path)
4845 return -ENOMEM;
4846
4847 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4848 search_key.type = -1;
4849 search_key.offset = (u64)-1;
4850 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4851 if (ret < 0)
4852 goto error;
4853 BUG_ON(ret == 0); /* Corruption */
4854 if (path->slots[0] > 0) {
4855 slot = path->slots[0] - 1;
4856 l = path->nodes[0];
4857 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
4858 root->free_objectid = max_t(u64, found_key.objectid + 1,
4859 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 4860 } else {
23125104 4861 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
4862 }
4863 ret = 0;
4864error:
4865 btrfs_free_path(path);
4866 return ret;
4867}
4868
543068a2 4869int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
4870{
4871 int ret;
4872 mutex_lock(&root->objectid_mutex);
4873
6b8fad57 4874 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
4875 btrfs_warn(root->fs_info,
4876 "the objectid of root %llu reaches its highest value",
4877 root->root_key.objectid);
4878 ret = -ENOSPC;
4879 goto out;
4880 }
4881
23125104 4882 *objectid = root->free_objectid++;
ec7d6dfd
NB
4883 ret = 0;
4884out:
4885 mutex_unlock(&root->objectid_mutex);
4886 return ret;
4887}