]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: check-integrity: use proper helper to access btrfs_header
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
141386e1
JB
100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101{
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104}
105
d352ac68
CM
106/*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
44b8bd7e 111struct async_submit_bio {
c6100a4b 112 void *private_data;
44b8bd7e 113 struct bio *bio;
a758781d 114 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 115 int mirror_num;
eaf25d93
CM
116 /*
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
119 */
120 u64 bio_offset;
8b712842 121 struct btrfs_work work;
4e4cbee9 122 blk_status_t status;
44b8bd7e
CM
123};
124
85d4e461
CM
125/*
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
4008c04a 135 *
85d4e461
CM
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 139 *
85d4e461
CM
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 143 *
85d4e461
CM
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
4008c04a
CM
147 */
148#ifdef CONFIG_DEBUG_LOCK_ALLOC
149# if BTRFS_MAX_LEVEL != 8
150# error
151# endif
85d4e461 152
ab1405aa
DS
153#define DEFINE_LEVEL(stem, level) \
154 .names[level] = "btrfs-" stem "-0" #level,
155
156#define DEFINE_NAME(stem) \
157 DEFINE_LEVEL(stem, 0) \
158 DEFINE_LEVEL(stem, 1) \
159 DEFINE_LEVEL(stem, 2) \
160 DEFINE_LEVEL(stem, 3) \
161 DEFINE_LEVEL(stem, 4) \
162 DEFINE_LEVEL(stem, 5) \
163 DEFINE_LEVEL(stem, 6) \
164 DEFINE_LEVEL(stem, 7)
165
85d4e461
CM
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
ab1405aa 168 /* Longest entry: btrfs-free-space-00 */
387824af
DS
169 char names[BTRFS_MAX_LEVEL][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 171} btrfs_lockdep_keysets[] = {
ab1405aa
DS
172 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
175 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
176 { .id = BTRFS_FS_TREE_OBJECTID, DEFINE_NAME("fs") },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
179 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
182 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
184 { .id = 0, DEFINE_NAME("tree") },
4008c04a 185};
85d4e461 186
ab1405aa
DS
187#undef DEFINE_LEVEL
188#undef DEFINE_NAME
85d4e461
CM
189
190void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
191 int level)
192{
193 struct btrfs_lockdep_keyset *ks;
194
195 BUG_ON(level >= ARRAY_SIZE(ks->keys));
196
197 /* find the matching keyset, id 0 is the default entry */
198 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
199 if (ks->id == objectid)
200 break;
201
202 lockdep_set_class_and_name(&eb->lock,
203 &ks->keys[level], ks->names[level]);
204}
205
4008c04a
CM
206#endif
207
d352ac68 208/*
2996e1f8 209 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 210 */
c67b3892 211static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 212{
d5178578 213 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 214 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
d5178578 215 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 216 char *kaddr;
e9be5a30 217 int i;
d5178578
JT
218
219 shash->tfm = fs_info->csum_shash;
220 crypto_shash_init(shash);
e9be5a30
DS
221 kaddr = page_address(buf->pages[0]);
222 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
223 PAGE_SIZE - BTRFS_CSUM_SIZE);
19c00ddc 224
e9be5a30
DS
225 for (i = 1; i < num_pages; i++) {
226 kaddr = page_address(buf->pages[i]);
227 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 228 }
71a63551 229 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 230 crypto_shash_final(shash, result);
19c00ddc
CM
231}
232
d352ac68
CM
233/*
234 * we can't consider a given block up to date unless the transid of the
235 * block matches the transid in the parent node's pointer. This is how we
236 * detect blocks that either didn't get written at all or got written
237 * in the wrong place.
238 */
1259ab75 239static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
240 struct extent_buffer *eb, u64 parent_transid,
241 int atomic)
1259ab75 242{
2ac55d41 243 struct extent_state *cached_state = NULL;
1259ab75 244 int ret;
2755a0de 245 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
246
247 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
248 return 0;
249
b9fab919
CM
250 if (atomic)
251 return -EAGAIN;
252
a26e8c9f
JB
253 if (need_lock) {
254 btrfs_tree_read_lock(eb);
300aa896 255 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
256 }
257
2ac55d41 258 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 259 &cached_state);
0b32f4bb 260 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
261 btrfs_header_generation(eb) == parent_transid) {
262 ret = 0;
263 goto out;
264 }
94647322
DS
265 btrfs_err_rl(eb->fs_info,
266 "parent transid verify failed on %llu wanted %llu found %llu",
267 eb->start,
29549aec 268 parent_transid, btrfs_header_generation(eb));
1259ab75 269 ret = 1;
a26e8c9f
JB
270
271 /*
272 * Things reading via commit roots that don't have normal protection,
273 * like send, can have a really old block in cache that may point at a
01327610 274 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
275 * if we find an eb that is under IO (dirty/writeback) because we could
276 * end up reading in the stale data and then writing it back out and
277 * making everybody very sad.
278 */
279 if (!extent_buffer_under_io(eb))
280 clear_extent_buffer_uptodate(eb);
33958dc6 281out:
2ac55d41 282 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 283 &cached_state);
472b909f
JB
284 if (need_lock)
285 btrfs_tree_read_unlock_blocking(eb);
1259ab75 286 return ret;
1259ab75
CM
287}
288
e7e16f48
JT
289static bool btrfs_supported_super_csum(u16 csum_type)
290{
291 switch (csum_type) {
292 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 293 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 294 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 295 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
296 return true;
297 default:
298 return false;
299 }
300}
301
1104a885
DS
302/*
303 * Return 0 if the superblock checksum type matches the checksum value of that
304 * algorithm. Pass the raw disk superblock data.
305 */
ab8d0fc4
JM
306static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
307 char *raw_disk_sb)
1104a885
DS
308{
309 struct btrfs_super_block *disk_sb =
310 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 311 char result[BTRFS_CSUM_SIZE];
d5178578
JT
312 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
313
314 shash->tfm = fs_info->csum_shash;
1104a885 315
51bce6c9
JT
316 /*
317 * The super_block structure does not span the whole
318 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
319 * filled with zeros and is included in the checksum.
320 */
fd08001f
EB
321 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
322 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 323
51bce6c9
JT
324 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
325 return 1;
1104a885 326
e7e16f48 327 return 0;
1104a885
DS
328}
329
e064d5e9 330int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 331 struct btrfs_key *first_key, u64 parent_transid)
581c1760 332{
e064d5e9 333 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
334 int found_level;
335 struct btrfs_key found_key;
336 int ret;
337
338 found_level = btrfs_header_level(eb);
339 if (found_level != level) {
63489055
QW
340 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
341 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
342 btrfs_err(fs_info,
343"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
344 eb->start, level, found_level);
581c1760
QW
345 return -EIO;
346 }
347
348 if (!first_key)
349 return 0;
350
5d41be6f
QW
351 /*
352 * For live tree block (new tree blocks in current transaction),
353 * we need proper lock context to avoid race, which is impossible here.
354 * So we only checks tree blocks which is read from disk, whose
355 * generation <= fs_info->last_trans_committed.
356 */
357 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
358 return 0;
62fdaa52
QW
359
360 /* We have @first_key, so this @eb must have at least one item */
361 if (btrfs_header_nritems(eb) == 0) {
362 btrfs_err(fs_info,
363 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
364 eb->start);
365 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
366 return -EUCLEAN;
367 }
368
581c1760
QW
369 if (found_level)
370 btrfs_node_key_to_cpu(eb, &found_key, 0);
371 else
372 btrfs_item_key_to_cpu(eb, &found_key, 0);
373 ret = btrfs_comp_cpu_keys(first_key, &found_key);
374
581c1760 375 if (ret) {
63489055
QW
376 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
377 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 378 btrfs_err(fs_info,
ff76a864
LB
379"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
380 eb->start, parent_transid, first_key->objectid,
381 first_key->type, first_key->offset,
382 found_key.objectid, found_key.type,
383 found_key.offset);
581c1760 384 }
581c1760
QW
385 return ret;
386}
387
d352ac68
CM
388/*
389 * helper to read a given tree block, doing retries as required when
390 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
391 *
392 * @parent_transid: expected transid, skip check if 0
393 * @level: expected level, mandatory check
394 * @first_key: expected key of first slot, skip check if NULL
d352ac68 395 */
5ab12d1f 396static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
397 u64 parent_transid, int level,
398 struct btrfs_key *first_key)
f188591e 399{
5ab12d1f 400 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 401 struct extent_io_tree *io_tree;
ea466794 402 int failed = 0;
f188591e
CM
403 int ret;
404 int num_copies = 0;
405 int mirror_num = 0;
ea466794 406 int failed_mirror = 0;
f188591e 407
0b246afa 408 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 409 while (1) {
f8397d69 410 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 411 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 412 if (!ret) {
581c1760 413 if (verify_parent_transid(io_tree, eb,
b9fab919 414 parent_transid, 0))
256dd1bb 415 ret = -EIO;
e064d5e9 416 else if (btrfs_verify_level_key(eb, level,
448de471 417 first_key, parent_transid))
581c1760
QW
418 ret = -EUCLEAN;
419 else
420 break;
256dd1bb 421 }
d397712b 422
0b246afa 423 num_copies = btrfs_num_copies(fs_info,
f188591e 424 eb->start, eb->len);
4235298e 425 if (num_copies == 1)
ea466794 426 break;
4235298e 427
5cf1ab56
JB
428 if (!failed_mirror) {
429 failed = 1;
430 failed_mirror = eb->read_mirror;
431 }
432
f188591e 433 mirror_num++;
ea466794
JB
434 if (mirror_num == failed_mirror)
435 mirror_num++;
436
4235298e 437 if (mirror_num > num_copies)
ea466794 438 break;
f188591e 439 }
ea466794 440
c0901581 441 if (failed && !ret && failed_mirror)
20a1fbf9 442 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
443
444 return ret;
f188591e 445}
19c00ddc 446
d352ac68 447/*
d397712b
CM
448 * checksum a dirty tree block before IO. This has extra checks to make sure
449 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 450 */
d397712b 451
01d58472 452static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 453{
4eee4fa4 454 u64 start = page_offset(page);
19c00ddc 455 u64 found_start;
2996e1f8
JT
456 u8 result[BTRFS_CSUM_SIZE];
457 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 458 struct extent_buffer *eb;
8d47a0d8 459 int ret;
f188591e 460
4f2de97a
JB
461 eb = (struct extent_buffer *)page->private;
462 if (page != eb->pages[0])
463 return 0;
0f805531 464
19c00ddc 465 found_start = btrfs_header_bytenr(eb);
0f805531
AL
466 /*
467 * Please do not consolidate these warnings into a single if.
468 * It is useful to know what went wrong.
469 */
470 if (WARN_ON(found_start != start))
471 return -EUCLEAN;
472 if (WARN_ON(!PageUptodate(page)))
473 return -EUCLEAN;
474
de37aa51 475 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
476 offsetof(struct btrfs_header, fsid),
477 BTRFS_FSID_SIZE) == 0);
0f805531 478
c67b3892 479 csum_tree_block(eb, result);
2996e1f8 480
8d47a0d8
QW
481 if (btrfs_header_level(eb))
482 ret = btrfs_check_node(eb);
483 else
484 ret = btrfs_check_leaf_full(eb);
485
486 if (ret < 0) {
c06631b0 487 btrfs_print_tree(eb, 0);
8d47a0d8
QW
488 btrfs_err(fs_info,
489 "block=%llu write time tree block corruption detected",
490 eb->start);
c06631b0 491 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
492 return ret;
493 }
2996e1f8 494 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 495
2996e1f8 496 return 0;
19c00ddc
CM
497}
498
b0c9b3b0 499static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 500{
b0c9b3b0 501 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 502 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 503 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 504 u8 *metadata_uuid;
2b82032c 505
9a8658e3
DS
506 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
507 BTRFS_FSID_SIZE);
944d3f9f
NB
508 /*
509 * Checking the incompat flag is only valid for the current fs. For
510 * seed devices it's forbidden to have their uuid changed so reading
511 * ->fsid in this case is fine
512 */
513 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
514 metadata_uuid = fs_devices->metadata_uuid;
515 else
516 metadata_uuid = fs_devices->fsid;
517
518 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
519 return 0;
520
521 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
522 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
523 return 0;
524
525 return 1;
2b82032c
YZ
526}
527
9a446d6a
NB
528int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
529 struct page *page, u64 start, u64 end,
530 int mirror)
ce9adaa5 531{
ce9adaa5
CM
532 u64 found_start;
533 int found_level;
ce9adaa5 534 struct extent_buffer *eb;
15b6e8a8
DS
535 struct btrfs_fs_info *fs_info;
536 u16 csum_size;
f188591e 537 int ret = 0;
2996e1f8 538 u8 result[BTRFS_CSUM_SIZE];
727011e0 539 int reads_done;
ce9adaa5 540
ce9adaa5
CM
541 if (!page->private)
542 goto out;
d397712b 543
4f2de97a 544 eb = (struct extent_buffer *)page->private;
15b6e8a8
DS
545 fs_info = eb->fs_info;
546 csum_size = btrfs_super_csum_size(fs_info->super_copy);
d397712b 547
0b32f4bb
JB
548 /* the pending IO might have been the only thing that kept this buffer
549 * in memory. Make sure we have a ref for all this other checks
550 */
67439dad 551 atomic_inc(&eb->refs);
0b32f4bb
JB
552
553 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
554 if (!reads_done)
555 goto err;
f188591e 556
5cf1ab56 557 eb->read_mirror = mirror;
656f30db 558 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
559 ret = -EIO;
560 goto err;
561 }
562
ce9adaa5 563 found_start = btrfs_header_bytenr(eb);
727011e0 564 if (found_start != eb->start) {
893bf4b1
SY
565 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
566 eb->start, found_start);
f188591e 567 ret = -EIO;
ce9adaa5
CM
568 goto err;
569 }
b0c9b3b0 570 if (check_tree_block_fsid(eb)) {
02873e43
ZL
571 btrfs_err_rl(fs_info, "bad fsid on block %llu",
572 eb->start);
1259ab75
CM
573 ret = -EIO;
574 goto err;
575 }
ce9adaa5 576 found_level = btrfs_header_level(eb);
1c24c3ce 577 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
578 btrfs_err(fs_info, "bad tree block level %d on %llu",
579 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
580 ret = -EIO;
581 goto err;
582 }
ce9adaa5 583
85d4e461
CM
584 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
585 eb, found_level);
4008c04a 586
c67b3892 587 csum_tree_block(eb, result);
a826d6dc 588
2996e1f8 589 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
35be8851 590 u8 val[BTRFS_CSUM_SIZE] = { 0 };
2996e1f8
JT
591
592 read_extent_buffer(eb, &val, 0, csum_size);
593 btrfs_warn_rl(fs_info,
35be8851 594 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
2996e1f8 595 fs_info->sb->s_id, eb->start,
35be8851
JT
596 CSUM_FMT_VALUE(csum_size, val),
597 CSUM_FMT_VALUE(csum_size, result),
598 btrfs_header_level(eb));
2996e1f8
JT
599 ret = -EUCLEAN;
600 goto err;
601 }
602
a826d6dc
JB
603 /*
604 * If this is a leaf block and it is corrupt, set the corrupt bit so
605 * that we don't try and read the other copies of this block, just
606 * return -EIO.
607 */
1c4360ee 608 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
609 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
610 ret = -EIO;
611 }
ce9adaa5 612
813fd1dc 613 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
614 ret = -EIO;
615
0b32f4bb
JB
616 if (!ret)
617 set_extent_buffer_uptodate(eb);
75391f0d
QW
618 else
619 btrfs_err(fs_info,
620 "block=%llu read time tree block corruption detected",
621 eb->start);
ce9adaa5 622err:
79fb65a1
JB
623 if (reads_done &&
624 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 625 btree_readahead_hook(eb, ret);
4bb31e92 626
53b381b3
DW
627 if (ret) {
628 /*
629 * our io error hook is going to dec the io pages
630 * again, we have to make sure it has something
631 * to decrement
632 */
633 atomic_inc(&eb->io_pages);
0b32f4bb 634 clear_extent_buffer_uptodate(eb);
53b381b3 635 }
0b32f4bb 636 free_extent_buffer(eb);
ce9adaa5 637out:
f188591e 638 return ret;
ce9adaa5
CM
639}
640
4246a0b6 641static void end_workqueue_bio(struct bio *bio)
ce9adaa5 642{
97eb6b69 643 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 644 struct btrfs_fs_info *fs_info;
9e0af237 645 struct btrfs_workqueue *wq;
ce9adaa5 646
ce9adaa5 647 fs_info = end_io_wq->info;
4e4cbee9 648 end_io_wq->status = bio->bi_status;
d20f7043 649
37226b21 650 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 651 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 652 wq = fs_info->endio_meta_write_workers;
a0cac0ec 653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 654 wq = fs_info->endio_freespace_worker;
a0cac0ec 655 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 656 wq = fs_info->endio_raid56_workers;
a0cac0ec 657 else
9e0af237 658 wq = fs_info->endio_write_workers;
d20f7043 659 } else {
5c047a69 660 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 661 wq = fs_info->endio_raid56_workers;
a0cac0ec 662 else if (end_io_wq->metadata)
9e0af237 663 wq = fs_info->endio_meta_workers;
a0cac0ec 664 else
9e0af237 665 wq = fs_info->endio_workers;
d20f7043 666 }
9e0af237 667
a0cac0ec 668 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 669 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
670}
671
4e4cbee9 672blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 673 enum btrfs_wq_endio_type metadata)
0b86a832 674{
97eb6b69 675 struct btrfs_end_io_wq *end_io_wq;
8b110e39 676
97eb6b69 677 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 678 if (!end_io_wq)
4e4cbee9 679 return BLK_STS_RESOURCE;
ce9adaa5
CM
680
681 end_io_wq->private = bio->bi_private;
682 end_io_wq->end_io = bio->bi_end_io;
22c59948 683 end_io_wq->info = info;
4e4cbee9 684 end_io_wq->status = 0;
ce9adaa5 685 end_io_wq->bio = bio;
22c59948 686 end_io_wq->metadata = metadata;
ce9adaa5
CM
687
688 bio->bi_private = end_io_wq;
689 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
690 return 0;
691}
692
4a69a410
CM
693static void run_one_async_start(struct btrfs_work *work)
694{
4a69a410 695 struct async_submit_bio *async;
4e4cbee9 696 blk_status_t ret;
4a69a410
CM
697
698 async = container_of(work, struct async_submit_bio, work);
c6100a4b 699 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
700 async->bio_offset);
701 if (ret)
4e4cbee9 702 async->status = ret;
4a69a410
CM
703}
704
06ea01b1
DS
705/*
706 * In order to insert checksums into the metadata in large chunks, we wait
707 * until bio submission time. All the pages in the bio are checksummed and
708 * sums are attached onto the ordered extent record.
709 *
710 * At IO completion time the csums attached on the ordered extent record are
711 * inserted into the tree.
712 */
4a69a410 713static void run_one_async_done(struct btrfs_work *work)
8b712842 714{
8b712842 715 struct async_submit_bio *async;
06ea01b1
DS
716 struct inode *inode;
717 blk_status_t ret;
8b712842
CM
718
719 async = container_of(work, struct async_submit_bio, work);
06ea01b1 720 inode = async->private_data;
4854ddd0 721
bb7ab3b9 722 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
723 if (async->status) {
724 async->bio->bi_status = async->status;
4246a0b6 725 bio_endio(async->bio);
79787eaa
JM
726 return;
727 }
728
ec39f769
CM
729 /*
730 * All of the bios that pass through here are from async helpers.
731 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
732 * This changes nothing when cgroups aren't in use.
733 */
734 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 735 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
736 if (ret) {
737 async->bio->bi_status = ret;
738 bio_endio(async->bio);
739 }
4a69a410
CM
740}
741
742static void run_one_async_free(struct btrfs_work *work)
743{
744 struct async_submit_bio *async;
745
746 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
747 kfree(async);
748}
749
8c27cb35
LT
750blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
751 int mirror_num, unsigned long bio_flags,
752 u64 bio_offset, void *private_data,
e288c080 753 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
754{
755 struct async_submit_bio *async;
756
757 async = kmalloc(sizeof(*async), GFP_NOFS);
758 if (!async)
4e4cbee9 759 return BLK_STS_RESOURCE;
44b8bd7e 760
c6100a4b 761 async->private_data = private_data;
44b8bd7e
CM
762 async->bio = bio;
763 async->mirror_num = mirror_num;
4a69a410 764 async->submit_bio_start = submit_bio_start;
4a69a410 765
a0cac0ec
OS
766 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
767 run_one_async_free);
4a69a410 768
eaf25d93 769 async->bio_offset = bio_offset;
8c8bee1d 770
4e4cbee9 771 async->status = 0;
79787eaa 772
67f055c7 773 if (op_is_sync(bio->bi_opf))
5cdc7ad3 774 btrfs_set_work_high_priority(&async->work);
d313d7a3 775
5cdc7ad3 776 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
777 return 0;
778}
779
4e4cbee9 780static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 781{
2c30c71b 782 struct bio_vec *bvec;
ce3ed71a 783 struct btrfs_root *root;
2b070cfe 784 int ret = 0;
6dc4f100 785 struct bvec_iter_all iter_all;
ce3ed71a 786
c09abff8 787 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 788 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 789 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 790 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
791 if (ret)
792 break;
ce3ed71a 793 }
2c30c71b 794
4e4cbee9 795 return errno_to_blk_status(ret);
ce3ed71a
CM
796}
797
d0ee3934 798static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 799 u64 bio_offset)
22c59948 800{
8b712842
CM
801 /*
802 * when we're called for a write, we're already in the async
5443be45 803 * submission context. Just jump into btrfs_map_bio
8b712842 804 */
79787eaa 805 return btree_csum_one_bio(bio);
4a69a410 806}
22c59948 807
9b4e675a
DS
808static int check_async_write(struct btrfs_fs_info *fs_info,
809 struct btrfs_inode *bi)
de0022b9 810{
6300463b
LB
811 if (atomic_read(&bi->sync_writers))
812 return 0;
9b4e675a 813 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 814 return 0;
de0022b9
JB
815 return 1;
816}
817
1b36294a
NB
818blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
819 int mirror_num, unsigned long bio_flags)
44b8bd7e 820{
0b246afa 821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 822 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 823 blk_status_t ret;
cad321ad 824
37226b21 825 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
826 /*
827 * called for a read, do the setup so that checksum validation
828 * can happen in the async kernel threads
829 */
0b246afa
JM
830 ret = btrfs_bio_wq_end_io(fs_info, bio,
831 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 832 if (ret)
61891923 833 goto out_w_error;
08635bae 834 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
835 } else if (!async) {
836 ret = btree_csum_one_bio(bio);
837 if (ret)
61891923 838 goto out_w_error;
08635bae 839 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
840 } else {
841 /*
842 * kthread helpers are used to submit writes so that
843 * checksumming can happen in parallel across all CPUs
844 */
c6100a4b 845 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 846 0, inode, btree_submit_bio_start);
44b8bd7e 847 }
d313d7a3 848
4246a0b6
CH
849 if (ret)
850 goto out_w_error;
851 return 0;
852
61891923 853out_w_error:
4e4cbee9 854 bio->bi_status = ret;
4246a0b6 855 bio_endio(bio);
61891923 856 return ret;
44b8bd7e
CM
857}
858
3dd1462e 859#ifdef CONFIG_MIGRATION
784b4e29 860static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
861 struct page *newpage, struct page *page,
862 enum migrate_mode mode)
784b4e29
CM
863{
864 /*
865 * we can't safely write a btree page from here,
866 * we haven't done the locking hook
867 */
868 if (PageDirty(page))
869 return -EAGAIN;
870 /*
871 * Buffers may be managed in a filesystem specific way.
872 * We must have no buffers or drop them.
873 */
874 if (page_has_private(page) &&
875 !try_to_release_page(page, GFP_KERNEL))
876 return -EAGAIN;
a6bc32b8 877 return migrate_page(mapping, newpage, page, mode);
784b4e29 878}
3dd1462e 879#endif
784b4e29 880
0da5468f
CM
881
882static int btree_writepages(struct address_space *mapping,
883 struct writeback_control *wbc)
884{
e2d84521
MX
885 struct btrfs_fs_info *fs_info;
886 int ret;
887
d8d5f3e1 888 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
889
890 if (wbc->for_kupdate)
891 return 0;
892
e2d84521 893 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 894 /* this is a bit racy, but that's ok */
d814a491
EL
895 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
896 BTRFS_DIRTY_METADATA_THRESH,
897 fs_info->dirty_metadata_batch);
e2d84521 898 if (ret < 0)
793955bc 899 return 0;
793955bc 900 }
0b32f4bb 901 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
902}
903
70dec807 904static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 905{
98509cfc 906 if (PageWriteback(page) || PageDirty(page))
d397712b 907 return 0;
0c4e538b 908
f7a52a40 909 return try_release_extent_buffer(page);
d98237b3
CM
910}
911
d47992f8
LC
912static void btree_invalidatepage(struct page *page, unsigned int offset,
913 unsigned int length)
d98237b3 914{
d1310b2e
CM
915 struct extent_io_tree *tree;
916 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
917 extent_invalidatepage(tree, page, offset);
918 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 919 if (PagePrivate(page)) {
efe120a0
FH
920 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
921 "page private not zero on page %llu",
922 (unsigned long long)page_offset(page));
d1b89bc0 923 detach_page_private(page);
9ad6b7bc 924 }
d98237b3
CM
925}
926
0b32f4bb
JB
927static int btree_set_page_dirty(struct page *page)
928{
bb146eb2 929#ifdef DEBUG
0b32f4bb
JB
930 struct extent_buffer *eb;
931
932 BUG_ON(!PagePrivate(page));
933 eb = (struct extent_buffer *)page->private;
934 BUG_ON(!eb);
935 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
936 BUG_ON(!atomic_read(&eb->refs));
937 btrfs_assert_tree_locked(eb);
bb146eb2 938#endif
0b32f4bb
JB
939 return __set_page_dirty_nobuffers(page);
940}
941
7f09410b 942static const struct address_space_operations btree_aops = {
0da5468f 943 .writepages = btree_writepages,
5f39d397
CM
944 .releasepage = btree_releasepage,
945 .invalidatepage = btree_invalidatepage,
5a92bc88 946#ifdef CONFIG_MIGRATION
784b4e29 947 .migratepage = btree_migratepage,
5a92bc88 948#endif
0b32f4bb 949 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
950};
951
2ff7e61e 952void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 953{
5f39d397 954 struct extent_buffer *buf = NULL;
537f38f0 955 int ret;
090d1875 956
2ff7e61e 957 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 958 if (IS_ERR(buf))
6197d86e 959 return;
537f38f0 960
c2ccfbc6 961 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
962 if (ret < 0)
963 free_extent_buffer_stale(buf);
964 else
965 free_extent_buffer(buf);
090d1875
CM
966}
967
2ff7e61e
JM
968struct extent_buffer *btrfs_find_create_tree_block(
969 struct btrfs_fs_info *fs_info,
970 u64 bytenr)
0999df54 971{
0b246afa
JM
972 if (btrfs_is_testing(fs_info))
973 return alloc_test_extent_buffer(fs_info, bytenr);
974 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
975}
976
581c1760
QW
977/*
978 * Read tree block at logical address @bytenr and do variant basic but critical
979 * verification.
980 *
981 * @parent_transid: expected transid of this tree block, skip check if 0
982 * @level: expected level, mandatory check
983 * @first_key: expected key in slot 0, skip check if NULL
984 */
2ff7e61e 985struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
986 u64 parent_transid, int level,
987 struct btrfs_key *first_key)
0999df54
CM
988{
989 struct extent_buffer *buf = NULL;
0999df54
CM
990 int ret;
991
2ff7e61e 992 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
993 if (IS_ERR(buf))
994 return buf;
0999df54 995
5ab12d1f 996 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 997 level, first_key);
0f0fe8f7 998 if (ret) {
537f38f0 999 free_extent_buffer_stale(buf);
64c043de 1000 return ERR_PTR(ret);
0f0fe8f7 1001 }
5f39d397 1002 return buf;
ce9adaa5 1003
eb60ceac
CM
1004}
1005
6a884d7d 1006void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1007{
6a884d7d 1008 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1009 if (btrfs_header_generation(buf) ==
e2d84521 1010 fs_info->running_transaction->transid) {
b9447ef8 1011 btrfs_assert_tree_locked(buf);
b4ce94de 1012
b9473439 1013 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1014 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1015 -buf->len,
1016 fs_info->dirty_metadata_batch);
ed7b63eb 1017 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1018 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1019 clear_extent_buffer_dirty(buf);
1020 }
925baedd 1021 }
5f39d397
CM
1022}
1023
da17066c 1024static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1025 u64 objectid)
d97e63b6 1026{
7c0260ee 1027 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1028 root->fs_info = fs_info;
cfaa7295 1029 root->node = NULL;
a28ec197 1030 root->commit_root = NULL;
27cdeb70 1031 root->state = 0;
d68fc57b 1032 root->orphan_cleanup_state = 0;
0b86a832 1033
0f7d52f4 1034 root->last_trans = 0;
13a8a7c8 1035 root->highest_objectid = 0;
eb73c1b7 1036 root->nr_delalloc_inodes = 0;
199c2a9c 1037 root->nr_ordered_extents = 0;
6bef4d31 1038 root->inode_tree = RB_ROOT;
16cdcec7 1039 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1040 root->block_rsv = NULL;
0b86a832
CM
1041
1042 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1043 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1044 INIT_LIST_HEAD(&root->delalloc_inodes);
1045 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1046 INIT_LIST_HEAD(&root->ordered_extents);
1047 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1048 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1049 INIT_LIST_HEAD(&root->logged_list[0]);
1050 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1051 spin_lock_init(&root->inode_lock);
eb73c1b7 1052 spin_lock_init(&root->delalloc_lock);
199c2a9c 1053 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1054 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1055 spin_lock_init(&root->log_extents_lock[0]);
1056 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1057 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1058 mutex_init(&root->objectid_mutex);
e02119d5 1059 mutex_init(&root->log_mutex);
31f3d255 1060 mutex_init(&root->ordered_extent_mutex);
573bfb72 1061 mutex_init(&root->delalloc_mutex);
c53e9653 1062 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1063 init_waitqueue_head(&root->log_writer_wait);
1064 init_waitqueue_head(&root->log_commit_wait[0]);
1065 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1066 INIT_LIST_HEAD(&root->log_ctxs[0]);
1067 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1068 atomic_set(&root->log_commit[0], 0);
1069 atomic_set(&root->log_commit[1], 0);
1070 atomic_set(&root->log_writers, 0);
2ecb7923 1071 atomic_set(&root->log_batch, 0);
0700cea7 1072 refcount_set(&root->refs, 1);
8ecebf4d 1073 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1074 atomic_set(&root->nr_swapfiles, 0);
7237f183 1075 root->log_transid = 0;
d1433deb 1076 root->log_transid_committed = -1;
257c62e1 1077 root->last_log_commit = 0;
e289f03e 1078 if (!dummy) {
43eb5f29
QW
1079 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1080 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1081 extent_io_tree_init(fs_info, &root->log_csum_range,
1082 IO_TREE_LOG_CSUM_RANGE, NULL);
1083 }
017e5369 1084
3768f368
CM
1085 memset(&root->root_key, 0, sizeof(root->root_key));
1086 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1087 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1088 root->root_key.objectid = objectid;
0ee5dc67 1089 root->anon_dev = 0;
8ea05e3a 1090
5f3ab90a 1091 spin_lock_init(&root->root_item_lock);
370a11b8 1092 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1093#ifdef CONFIG_BTRFS_DEBUG
1094 INIT_LIST_HEAD(&root->leak_list);
1095 spin_lock(&fs_info->fs_roots_radix_lock);
1096 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1097 spin_unlock(&fs_info->fs_roots_radix_lock);
1098#endif
3768f368
CM
1099}
1100
74e4d827 1101static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1102 u64 objectid, gfp_t flags)
6f07e42e 1103{
74e4d827 1104 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1105 if (root)
96dfcb46 1106 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1107 return root;
1108}
1109
06ea65a3
JB
1110#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1111/* Should only be used by the testing infrastructure */
da17066c 1112struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1113{
1114 struct btrfs_root *root;
1115
7c0260ee
JM
1116 if (!fs_info)
1117 return ERR_PTR(-EINVAL);
1118
96dfcb46 1119 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1120 if (!root)
1121 return ERR_PTR(-ENOMEM);
da17066c 1122
b9ef22de 1123 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1124 root->alloc_bytenr = 0;
06ea65a3
JB
1125
1126 return root;
1127}
1128#endif
1129
20897f5c 1130struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1131 u64 objectid)
1132{
9b7a2440 1133 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1134 struct extent_buffer *leaf;
1135 struct btrfs_root *tree_root = fs_info->tree_root;
1136 struct btrfs_root *root;
1137 struct btrfs_key key;
b89f6d1f 1138 unsigned int nofs_flag;
20897f5c 1139 int ret = 0;
20897f5c 1140
b89f6d1f
FM
1141 /*
1142 * We're holding a transaction handle, so use a NOFS memory allocation
1143 * context to avoid deadlock if reclaim happens.
1144 */
1145 nofs_flag = memalloc_nofs_save();
96dfcb46 1146 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1147 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1148 if (!root)
1149 return ERR_PTR(-ENOMEM);
1150
20897f5c
AJ
1151 root->root_key.objectid = objectid;
1152 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1153 root->root_key.offset = 0;
1154
9631e4cc
JB
1155 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1156 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1157 if (IS_ERR(leaf)) {
1158 ret = PTR_ERR(leaf);
1dd05682 1159 leaf = NULL;
20897f5c
AJ
1160 goto fail;
1161 }
1162
20897f5c 1163 root->node = leaf;
20897f5c
AJ
1164 btrfs_mark_buffer_dirty(leaf);
1165
1166 root->commit_root = btrfs_root_node(root);
27cdeb70 1167 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1168
1169 root->root_item.flags = 0;
1170 root->root_item.byte_limit = 0;
1171 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1172 btrfs_set_root_generation(&root->root_item, trans->transid);
1173 btrfs_set_root_level(&root->root_item, 0);
1174 btrfs_set_root_refs(&root->root_item, 1);
1175 btrfs_set_root_used(&root->root_item, leaf->len);
1176 btrfs_set_root_last_snapshot(&root->root_item, 0);
1177 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1178 if (is_fstree(objectid))
807fc790
AS
1179 generate_random_guid(root->root_item.uuid);
1180 else
1181 export_guid(root->root_item.uuid, &guid_null);
20897f5c
AJ
1182 root->root_item.drop_level = 0;
1183
1184 key.objectid = objectid;
1185 key.type = BTRFS_ROOT_ITEM_KEY;
1186 key.offset = 0;
1187 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1188 if (ret)
1189 goto fail;
1190
1191 btrfs_tree_unlock(leaf);
1192
1dd05682
TI
1193 return root;
1194
20897f5c 1195fail:
8c38938c 1196 if (leaf)
1dd05682 1197 btrfs_tree_unlock(leaf);
00246528 1198 btrfs_put_root(root);
20897f5c 1199
1dd05682 1200 return ERR_PTR(ret);
20897f5c
AJ
1201}
1202
7237f183
YZ
1203static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1204 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1205{
1206 struct btrfs_root *root;
7237f183 1207 struct extent_buffer *leaf;
e02119d5 1208
96dfcb46 1209 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1210 if (!root)
7237f183 1211 return ERR_PTR(-ENOMEM);
e02119d5 1212
e02119d5
CM
1213 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1214 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1215 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1216
7237f183 1217 /*
92a7cc42 1218 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1219 *
92a7cc42
QW
1220 * Log trees are not exposed to user space thus can't be snapshotted,
1221 * and they go away before a real commit is actually done.
1222 *
1223 * They do store pointers to file data extents, and those reference
1224 * counts still get updated (along with back refs to the log tree).
7237f183 1225 */
e02119d5 1226
4d75f8a9 1227 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1228 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
7237f183 1229 if (IS_ERR(leaf)) {
00246528 1230 btrfs_put_root(root);
7237f183
YZ
1231 return ERR_CAST(leaf);
1232 }
e02119d5 1233
7237f183 1234 root->node = leaf;
e02119d5 1235
e02119d5
CM
1236 btrfs_mark_buffer_dirty(root->node);
1237 btrfs_tree_unlock(root->node);
7237f183
YZ
1238 return root;
1239}
1240
1241int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1242 struct btrfs_fs_info *fs_info)
1243{
1244 struct btrfs_root *log_root;
1245
1246 log_root = alloc_log_tree(trans, fs_info);
1247 if (IS_ERR(log_root))
1248 return PTR_ERR(log_root);
1249 WARN_ON(fs_info->log_root_tree);
1250 fs_info->log_root_tree = log_root;
1251 return 0;
1252}
1253
1254int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1255 struct btrfs_root *root)
1256{
0b246afa 1257 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1258 struct btrfs_root *log_root;
1259 struct btrfs_inode_item *inode_item;
1260
0b246afa 1261 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1262 if (IS_ERR(log_root))
1263 return PTR_ERR(log_root);
1264
1265 log_root->last_trans = trans->transid;
1266 log_root->root_key.offset = root->root_key.objectid;
1267
1268 inode_item = &log_root->root_item.inode;
3cae210f
QW
1269 btrfs_set_stack_inode_generation(inode_item, 1);
1270 btrfs_set_stack_inode_size(inode_item, 3);
1271 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1272 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1273 fs_info->nodesize);
3cae210f 1274 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1275
5d4f98a2 1276 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1277
1278 WARN_ON(root->log_root);
1279 root->log_root = log_root;
1280 root->log_transid = 0;
d1433deb 1281 root->log_transid_committed = -1;
257c62e1 1282 root->last_log_commit = 0;
e02119d5
CM
1283 return 0;
1284}
1285
49d11bea
JB
1286static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1287 struct btrfs_path *path,
1288 struct btrfs_key *key)
e02119d5
CM
1289{
1290 struct btrfs_root *root;
1291 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1292 u64 generation;
cb517eab 1293 int ret;
581c1760 1294 int level;
0f7d52f4 1295
96dfcb46 1296 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1297 if (!root)
1298 return ERR_PTR(-ENOMEM);
0f7d52f4 1299
cb517eab
MX
1300 ret = btrfs_find_root(tree_root, key, path,
1301 &root->root_item, &root->root_key);
0f7d52f4 1302 if (ret) {
13a8a7c8
YZ
1303 if (ret > 0)
1304 ret = -ENOENT;
49d11bea 1305 goto fail;
0f7d52f4 1306 }
13a8a7c8 1307
84234f3a 1308 generation = btrfs_root_generation(&root->root_item);
581c1760 1309 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1310 root->node = read_tree_block(fs_info,
1311 btrfs_root_bytenr(&root->root_item),
581c1760 1312 generation, level, NULL);
64c043de
LB
1313 if (IS_ERR(root->node)) {
1314 ret = PTR_ERR(root->node);
8c38938c 1315 root->node = NULL;
49d11bea 1316 goto fail;
cb517eab
MX
1317 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1318 ret = -EIO;
49d11bea 1319 goto fail;
416bc658 1320 }
5d4f98a2 1321 root->commit_root = btrfs_root_node(root);
cb517eab 1322 return root;
49d11bea 1323fail:
00246528 1324 btrfs_put_root(root);
49d11bea
JB
1325 return ERR_PTR(ret);
1326}
1327
1328struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1329 struct btrfs_key *key)
1330{
1331 struct btrfs_root *root;
1332 struct btrfs_path *path;
1333
1334 path = btrfs_alloc_path();
1335 if (!path)
1336 return ERR_PTR(-ENOMEM);
1337 root = read_tree_root_path(tree_root, path, key);
1338 btrfs_free_path(path);
1339
1340 return root;
cb517eab
MX
1341}
1342
2dfb1e43
QW
1343/*
1344 * Initialize subvolume root in-memory structure
1345 *
1346 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1347 */
1348static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1349{
1350 int ret;
dcc3eb96 1351 unsigned int nofs_flag;
cb517eab
MX
1352
1353 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1354 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1355 GFP_NOFS);
1356 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1357 ret = -ENOMEM;
1358 goto fail;
1359 }
1360
dcc3eb96
NB
1361 /*
1362 * We might be called under a transaction (e.g. indirect backref
1363 * resolution) which could deadlock if it triggers memory reclaim
1364 */
1365 nofs_flag = memalloc_nofs_save();
1366 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1367 memalloc_nofs_restore(nofs_flag);
1368 if (ret)
8257b2dc 1369 goto fail;
8257b2dc 1370
aeb935a4
QW
1371 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1372 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1373 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1374 btrfs_check_and_init_root_item(&root->root_item);
1375 }
1376
cb517eab 1377 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1378 spin_lock_init(&root->ino_cache_lock);
1379 init_waitqueue_head(&root->ino_cache_wait);
cb517eab 1380
851fd730
QW
1381 /*
1382 * Don't assign anonymous block device to roots that are not exposed to
1383 * userspace, the id pool is limited to 1M
1384 */
1385 if (is_fstree(root->root_key.objectid) &&
1386 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1387 if (!anon_dev) {
1388 ret = get_anon_bdev(&root->anon_dev);
1389 if (ret)
1390 goto fail;
1391 } else {
1392 root->anon_dev = anon_dev;
1393 }
851fd730 1394 }
f32e48e9
CR
1395
1396 mutex_lock(&root->objectid_mutex);
1397 ret = btrfs_find_highest_objectid(root,
1398 &root->highest_objectid);
1399 if (ret) {
1400 mutex_unlock(&root->objectid_mutex);
876d2cf1 1401 goto fail;
f32e48e9
CR
1402 }
1403
1404 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1405
1406 mutex_unlock(&root->objectid_mutex);
1407
cb517eab
MX
1408 return 0;
1409fail:
84db5ccf 1410 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1411 return ret;
1412}
1413
a98db0f3
JB
1414static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1415 u64 root_id)
cb517eab
MX
1416{
1417 struct btrfs_root *root;
1418
1419 spin_lock(&fs_info->fs_roots_radix_lock);
1420 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1421 (unsigned long)root_id);
bc44d7c4 1422 if (root)
00246528 1423 root = btrfs_grab_root(root);
cb517eab
MX
1424 spin_unlock(&fs_info->fs_roots_radix_lock);
1425 return root;
1426}
1427
49d11bea
JB
1428static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1429 u64 objectid)
1430{
1431 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1432 return btrfs_grab_root(fs_info->tree_root);
1433 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1434 return btrfs_grab_root(fs_info->extent_root);
1435 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1436 return btrfs_grab_root(fs_info->chunk_root);
1437 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1438 return btrfs_grab_root(fs_info->dev_root);
1439 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1440 return btrfs_grab_root(fs_info->csum_root);
1441 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1442 return btrfs_grab_root(fs_info->quota_root) ?
1443 fs_info->quota_root : ERR_PTR(-ENOENT);
1444 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1445 return btrfs_grab_root(fs_info->uuid_root) ?
1446 fs_info->uuid_root : ERR_PTR(-ENOENT);
1447 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1448 return btrfs_grab_root(fs_info->free_space_root) ?
1449 fs_info->free_space_root : ERR_PTR(-ENOENT);
1450 return NULL;
1451}
1452
cb517eab
MX
1453int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1454 struct btrfs_root *root)
1455{
1456 int ret;
1457
e1860a77 1458 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1459 if (ret)
1460 return ret;
1461
1462 spin_lock(&fs_info->fs_roots_radix_lock);
1463 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1464 (unsigned long)root->root_key.objectid,
1465 root);
af01d2e5 1466 if (ret == 0) {
00246528 1467 btrfs_grab_root(root);
27cdeb70 1468 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1469 }
cb517eab
MX
1470 spin_unlock(&fs_info->fs_roots_radix_lock);
1471 radix_tree_preload_end();
1472
1473 return ret;
1474}
1475
bd647ce3
JB
1476void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1477{
1478#ifdef CONFIG_BTRFS_DEBUG
1479 struct btrfs_root *root;
1480
1481 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1482 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1483
bd647ce3
JB
1484 root = list_first_entry(&fs_info->allocated_roots,
1485 struct btrfs_root, leak_list);
457f1864
JB
1486 btrfs_err(fs_info, "leaked root %s refcount %d",
1487 btrfs_root_name(root->root_key.objectid, buf),
bd647ce3
JB
1488 refcount_read(&root->refs));
1489 while (refcount_read(&root->refs) > 1)
00246528
JB
1490 btrfs_put_root(root);
1491 btrfs_put_root(root);
bd647ce3
JB
1492 }
1493#endif
1494}
1495
0d4b0463
JB
1496void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1497{
141386e1
JB
1498 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1499 percpu_counter_destroy(&fs_info->delalloc_bytes);
1500 percpu_counter_destroy(&fs_info->dio_bytes);
1501 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1502 btrfs_free_csum_hash(fs_info);
1503 btrfs_free_stripe_hash_table(fs_info);
1504 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1505 kfree(fs_info->balance_ctl);
1506 kfree(fs_info->delayed_root);
00246528
JB
1507 btrfs_put_root(fs_info->extent_root);
1508 btrfs_put_root(fs_info->tree_root);
1509 btrfs_put_root(fs_info->chunk_root);
1510 btrfs_put_root(fs_info->dev_root);
1511 btrfs_put_root(fs_info->csum_root);
1512 btrfs_put_root(fs_info->quota_root);
1513 btrfs_put_root(fs_info->uuid_root);
1514 btrfs_put_root(fs_info->free_space_root);
1515 btrfs_put_root(fs_info->fs_root);
aeb935a4 1516 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1517 btrfs_check_leaked_roots(fs_info);
3fd63727 1518 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1519 kfree(fs_info->super_copy);
1520 kfree(fs_info->super_for_commit);
1521 kvfree(fs_info);
1522}
1523
1524
2dfb1e43
QW
1525/*
1526 * Get an in-memory reference of a root structure.
1527 *
1528 * For essential trees like root/extent tree, we grab it from fs_info directly.
1529 * For subvolume trees, we check the cached filesystem roots first. If not
1530 * found, then read it from disk and add it to cached fs roots.
1531 *
1532 * Caller should release the root by calling btrfs_put_root() after the usage.
1533 *
1534 * NOTE: Reloc and log trees can't be read by this function as they share the
1535 * same root objectid.
1536 *
1537 * @objectid: root id
1538 * @anon_dev: preallocated anonymous block device number for new roots,
1539 * pass 0 for new allocation.
1540 * @check_ref: whether to check root item references, If true, return -ENOENT
1541 * for orphan roots
1542 */
1543static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1544 u64 objectid, dev_t anon_dev,
1545 bool check_ref)
5eda7b5e
CM
1546{
1547 struct btrfs_root *root;
381cf658 1548 struct btrfs_path *path;
1d4c08e0 1549 struct btrfs_key key;
5eda7b5e
CM
1550 int ret;
1551
49d11bea
JB
1552 root = btrfs_get_global_root(fs_info, objectid);
1553 if (root)
1554 return root;
4df27c4d 1555again:
56e9357a 1556 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1557 if (root) {
2dfb1e43
QW
1558 /* Shouldn't get preallocated anon_dev for cached roots */
1559 ASSERT(!anon_dev);
bc44d7c4 1560 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1561 btrfs_put_root(root);
48475471 1562 return ERR_PTR(-ENOENT);
bc44d7c4 1563 }
5eda7b5e 1564 return root;
48475471 1565 }
5eda7b5e 1566
56e9357a
DS
1567 key.objectid = objectid;
1568 key.type = BTRFS_ROOT_ITEM_KEY;
1569 key.offset = (u64)-1;
1570 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1571 if (IS_ERR(root))
1572 return root;
3394e160 1573
c00869f1 1574 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1575 ret = -ENOENT;
581bb050 1576 goto fail;
35a30d7c 1577 }
581bb050 1578
2dfb1e43 1579 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1580 if (ret)
1581 goto fail;
3394e160 1582
381cf658
DS
1583 path = btrfs_alloc_path();
1584 if (!path) {
1585 ret = -ENOMEM;
1586 goto fail;
1587 }
1d4c08e0
DS
1588 key.objectid = BTRFS_ORPHAN_OBJECTID;
1589 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1590 key.offset = objectid;
1d4c08e0
DS
1591
1592 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1593 btrfs_free_path(path);
d68fc57b
YZ
1594 if (ret < 0)
1595 goto fail;
1596 if (ret == 0)
27cdeb70 1597 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1598
cb517eab 1599 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1600 if (ret) {
00246528 1601 btrfs_put_root(root);
4785e24f 1602 if (ret == -EEXIST)
4df27c4d 1603 goto again;
4df27c4d 1604 goto fail;
0f7d52f4 1605 }
edbd8d4e 1606 return root;
4df27c4d 1607fail:
8c38938c 1608 btrfs_put_root(root);
4df27c4d 1609 return ERR_PTR(ret);
edbd8d4e
CM
1610}
1611
2dfb1e43
QW
1612/*
1613 * Get in-memory reference of a root structure
1614 *
1615 * @objectid: tree objectid
1616 * @check_ref: if set, verify that the tree exists and the item has at least
1617 * one reference
1618 */
1619struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1620 u64 objectid, bool check_ref)
1621{
1622 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1623}
1624
1625/*
1626 * Get in-memory reference of a root structure, created as new, optionally pass
1627 * the anonymous block device id
1628 *
1629 * @objectid: tree objectid
1630 * @anon_dev: if zero, allocate a new anonymous block device or use the
1631 * parameter value
1632 */
1633struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1634 u64 objectid, dev_t anon_dev)
1635{
1636 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1637}
1638
49d11bea
JB
1639/*
1640 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1641 * @fs_info: the fs_info
1642 * @objectid: the objectid we need to lookup
1643 *
1644 * This is exclusively used for backref walking, and exists specifically because
1645 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1646 * creation time, which means we may have to read the tree_root in order to look
1647 * up a fs root that is not in memory. If the root is not in memory we will
1648 * read the tree root commit root and look up the fs root from there. This is a
1649 * temporary root, it will not be inserted into the radix tree as it doesn't
1650 * have the most uptodate information, it'll simply be discarded once the
1651 * backref code is finished using the root.
1652 */
1653struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1654 struct btrfs_path *path,
1655 u64 objectid)
1656{
1657 struct btrfs_root *root;
1658 struct btrfs_key key;
1659
1660 ASSERT(path->search_commit_root && path->skip_locking);
1661
1662 /*
1663 * This can return -ENOENT if we ask for a root that doesn't exist, but
1664 * since this is called via the backref walking code we won't be looking
1665 * up a root that doesn't exist, unless there's corruption. So if root
1666 * != NULL just return it.
1667 */
1668 root = btrfs_get_global_root(fs_info, objectid);
1669 if (root)
1670 return root;
1671
1672 root = btrfs_lookup_fs_root(fs_info, objectid);
1673 if (root)
1674 return root;
1675
1676 key.objectid = objectid;
1677 key.type = BTRFS_ROOT_ITEM_KEY;
1678 key.offset = (u64)-1;
1679 root = read_tree_root_path(fs_info->tree_root, path, &key);
1680 btrfs_release_path(path);
1681
1682 return root;
1683}
1684
8b712842
CM
1685/*
1686 * called by the kthread helper functions to finally call the bio end_io
1687 * functions. This is where read checksum verification actually happens
1688 */
1689static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1690{
ce9adaa5 1691 struct bio *bio;
97eb6b69 1692 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1693
97eb6b69 1694 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1695 bio = end_io_wq->bio;
ce9adaa5 1696
4e4cbee9 1697 bio->bi_status = end_io_wq->status;
8b712842
CM
1698 bio->bi_private = end_io_wq->private;
1699 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1700 bio_endio(bio);
9be490f1 1701 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1702}
1703
a74a4b97
CM
1704static int cleaner_kthread(void *arg)
1705{
1706 struct btrfs_root *root = arg;
0b246afa 1707 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1708 int again;
a74a4b97 1709
d6fd0ae2 1710 while (1) {
d0278245 1711 again = 0;
a74a4b97 1712
fd340d0f
JB
1713 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1714
d0278245 1715 /* Make the cleaner go to sleep early. */
2ff7e61e 1716 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1717 goto sleep;
1718
90c711ab
ZB
1719 /*
1720 * Do not do anything if we might cause open_ctree() to block
1721 * before we have finished mounting the filesystem.
1722 */
0b246afa 1723 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1724 goto sleep;
1725
0b246afa 1726 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1727 goto sleep;
1728
dc7f370c
MX
1729 /*
1730 * Avoid the problem that we change the status of the fs
1731 * during the above check and trylock.
1732 */
2ff7e61e 1733 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1734 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1735 goto sleep;
76dda93c 1736 }
a74a4b97 1737
2ff7e61e 1738 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1739
d0278245 1740 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1741 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1742
1743 /*
05323cd1
MX
1744 * The defragger has dealt with the R/O remount and umount,
1745 * needn't do anything special here.
d0278245 1746 */
0b246afa 1747 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1748
1749 /*
1750 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1751 * with relocation (btrfs_relocate_chunk) and relocation
1752 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1753 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1754 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1755 * unused block groups.
1756 */
0b246afa 1757 btrfs_delete_unused_bgs(fs_info);
d0278245 1758sleep:
fd340d0f 1759 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1760 if (kthread_should_park())
1761 kthread_parkme();
1762 if (kthread_should_stop())
1763 return 0;
838fe188 1764 if (!again) {
a74a4b97 1765 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1766 schedule();
a74a4b97
CM
1767 __set_current_state(TASK_RUNNING);
1768 }
da288d28 1769 }
a74a4b97
CM
1770}
1771
1772static int transaction_kthread(void *arg)
1773{
1774 struct btrfs_root *root = arg;
0b246afa 1775 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1776 struct btrfs_trans_handle *trans;
1777 struct btrfs_transaction *cur;
8929ecfa 1778 u64 transid;
643900be 1779 time64_t delta;
a74a4b97 1780 unsigned long delay;
914b2007 1781 bool cannot_commit;
a74a4b97
CM
1782
1783 do {
914b2007 1784 cannot_commit = false;
ba1bc00f 1785 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1786 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1787
0b246afa
JM
1788 spin_lock(&fs_info->trans_lock);
1789 cur = fs_info->running_transaction;
a74a4b97 1790 if (!cur) {
0b246afa 1791 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1792 goto sleep;
1793 }
31153d81 1794
643900be 1795 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1796 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1797 delta < fs_info->commit_interval) {
0b246afa 1798 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1799 delay -= msecs_to_jiffies((delta - 1) * 1000);
1800 delay = min(delay,
1801 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1802 goto sleep;
1803 }
8929ecfa 1804 transid = cur->transid;
0b246afa 1805 spin_unlock(&fs_info->trans_lock);
56bec294 1806
79787eaa 1807 /* If the file system is aborted, this will always fail. */
354aa0fb 1808 trans = btrfs_attach_transaction(root);
914b2007 1809 if (IS_ERR(trans)) {
354aa0fb
MX
1810 if (PTR_ERR(trans) != -ENOENT)
1811 cannot_commit = true;
79787eaa 1812 goto sleep;
914b2007 1813 }
8929ecfa 1814 if (transid == trans->transid) {
3a45bb20 1815 btrfs_commit_transaction(trans);
8929ecfa 1816 } else {
3a45bb20 1817 btrfs_end_transaction(trans);
8929ecfa 1818 }
a74a4b97 1819sleep:
0b246afa
JM
1820 wake_up_process(fs_info->cleaner_kthread);
1821 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1822
4e121c06 1823 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1824 &fs_info->fs_state)))
2ff7e61e 1825 btrfs_cleanup_transaction(fs_info);
ce63f891 1826 if (!kthread_should_stop() &&
0b246afa 1827 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1828 cannot_commit))
bc5511d0 1829 schedule_timeout_interruptible(delay);
a74a4b97
CM
1830 } while (!kthread_should_stop());
1831 return 0;
1832}
1833
af31f5e5 1834/*
01f0f9da
NB
1835 * This will find the highest generation in the array of root backups. The
1836 * index of the highest array is returned, or -EINVAL if we can't find
1837 * anything.
af31f5e5
CM
1838 *
1839 * We check to make sure the array is valid by comparing the
1840 * generation of the latest root in the array with the generation
1841 * in the super block. If they don't match we pitch it.
1842 */
01f0f9da 1843static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1844{
01f0f9da 1845 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1846 u64 cur;
af31f5e5
CM
1847 struct btrfs_root_backup *root_backup;
1848 int i;
1849
1850 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1851 root_backup = info->super_copy->super_roots + i;
1852 cur = btrfs_backup_tree_root_gen(root_backup);
1853 if (cur == newest_gen)
01f0f9da 1854 return i;
af31f5e5
CM
1855 }
1856
01f0f9da 1857 return -EINVAL;
af31f5e5
CM
1858}
1859
af31f5e5
CM
1860/*
1861 * copy all the root pointers into the super backup array.
1862 * this will bump the backup pointer by one when it is
1863 * done
1864 */
1865static void backup_super_roots(struct btrfs_fs_info *info)
1866{
6ef108dd 1867 const int next_backup = info->backup_root_index;
af31f5e5 1868 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1869
1870 root_backup = info->super_for_commit->super_roots + next_backup;
1871
1872 /*
1873 * make sure all of our padding and empty slots get zero filled
1874 * regardless of which ones we use today
1875 */
1876 memset(root_backup, 0, sizeof(*root_backup));
1877
1878 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1879
1880 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1881 btrfs_set_backup_tree_root_gen(root_backup,
1882 btrfs_header_generation(info->tree_root->node));
1883
1884 btrfs_set_backup_tree_root_level(root_backup,
1885 btrfs_header_level(info->tree_root->node));
1886
1887 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1888 btrfs_set_backup_chunk_root_gen(root_backup,
1889 btrfs_header_generation(info->chunk_root->node));
1890 btrfs_set_backup_chunk_root_level(root_backup,
1891 btrfs_header_level(info->chunk_root->node));
1892
1893 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1894 btrfs_set_backup_extent_root_gen(root_backup,
1895 btrfs_header_generation(info->extent_root->node));
1896 btrfs_set_backup_extent_root_level(root_backup,
1897 btrfs_header_level(info->extent_root->node));
1898
7c7e82a7
CM
1899 /*
1900 * we might commit during log recovery, which happens before we set
1901 * the fs_root. Make sure it is valid before we fill it in.
1902 */
1903 if (info->fs_root && info->fs_root->node) {
1904 btrfs_set_backup_fs_root(root_backup,
1905 info->fs_root->node->start);
1906 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1907 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1908 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1909 btrfs_header_level(info->fs_root->node));
7c7e82a7 1910 }
af31f5e5
CM
1911
1912 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1913 btrfs_set_backup_dev_root_gen(root_backup,
1914 btrfs_header_generation(info->dev_root->node));
1915 btrfs_set_backup_dev_root_level(root_backup,
1916 btrfs_header_level(info->dev_root->node));
1917
1918 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1919 btrfs_set_backup_csum_root_gen(root_backup,
1920 btrfs_header_generation(info->csum_root->node));
1921 btrfs_set_backup_csum_root_level(root_backup,
1922 btrfs_header_level(info->csum_root->node));
1923
1924 btrfs_set_backup_total_bytes(root_backup,
1925 btrfs_super_total_bytes(info->super_copy));
1926 btrfs_set_backup_bytes_used(root_backup,
1927 btrfs_super_bytes_used(info->super_copy));
1928 btrfs_set_backup_num_devices(root_backup,
1929 btrfs_super_num_devices(info->super_copy));
1930
1931 /*
1932 * if we don't copy this out to the super_copy, it won't get remembered
1933 * for the next commit
1934 */
1935 memcpy(&info->super_copy->super_roots,
1936 &info->super_for_commit->super_roots,
1937 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1938}
1939
bd2336b2
NB
1940/*
1941 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1942 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1943 *
1944 * fs_info - filesystem whose backup roots need to be read
1945 * priority - priority of backup root required
1946 *
1947 * Returns backup root index on success and -EINVAL otherwise.
1948 */
1949static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1950{
1951 int backup_index = find_newest_super_backup(fs_info);
1952 struct btrfs_super_block *super = fs_info->super_copy;
1953 struct btrfs_root_backup *root_backup;
1954
1955 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1956 if (priority == 0)
1957 return backup_index;
1958
1959 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1960 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1961 } else {
1962 return -EINVAL;
1963 }
1964
1965 root_backup = super->super_roots + backup_index;
1966
1967 btrfs_set_super_generation(super,
1968 btrfs_backup_tree_root_gen(root_backup));
1969 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1970 btrfs_set_super_root_level(super,
1971 btrfs_backup_tree_root_level(root_backup));
1972 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1973
1974 /*
1975 * Fixme: the total bytes and num_devices need to match or we should
1976 * need a fsck
1977 */
1978 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1979 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1980
1981 return backup_index;
1982}
1983
7abadb64
LB
1984/* helper to cleanup workers */
1985static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1986{
dc6e3209 1987 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1988 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1989 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1990 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1991 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 1992 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1993 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1994 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1995 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1996 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1997 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1998 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1999 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2000 if (fs_info->discard_ctl.discard_workers)
2001 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2002 /*
2003 * Now that all other work queues are destroyed, we can safely destroy
2004 * the queues used for metadata I/O, since tasks from those other work
2005 * queues can do metadata I/O operations.
2006 */
2007 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2008 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2009}
2010
2e9f5954
R
2011static void free_root_extent_buffers(struct btrfs_root *root)
2012{
2013 if (root) {
2014 free_extent_buffer(root->node);
2015 free_extent_buffer(root->commit_root);
2016 root->node = NULL;
2017 root->commit_root = NULL;
2018 }
2019}
2020
af31f5e5 2021/* helper to cleanup tree roots */
4273eaff 2022static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2023{
2e9f5954 2024 free_root_extent_buffers(info->tree_root);
655b09fe 2025
2e9f5954
R
2026 free_root_extent_buffers(info->dev_root);
2027 free_root_extent_buffers(info->extent_root);
2028 free_root_extent_buffers(info->csum_root);
2029 free_root_extent_buffers(info->quota_root);
2030 free_root_extent_buffers(info->uuid_root);
8c38938c 2031 free_root_extent_buffers(info->fs_root);
aeb935a4 2032 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2033 if (free_chunk_root)
2e9f5954 2034 free_root_extent_buffers(info->chunk_root);
70f6d82e 2035 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2036}
2037
8c38938c
JB
2038void btrfs_put_root(struct btrfs_root *root)
2039{
2040 if (!root)
2041 return;
2042
2043 if (refcount_dec_and_test(&root->refs)) {
2044 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2045 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2046 if (root->anon_dev)
2047 free_anon_bdev(root->anon_dev);
2048 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2049 free_root_extent_buffers(root);
8c38938c
JB
2050 kfree(root->free_ino_ctl);
2051 kfree(root->free_ino_pinned);
2052#ifdef CONFIG_BTRFS_DEBUG
2053 spin_lock(&root->fs_info->fs_roots_radix_lock);
2054 list_del_init(&root->leak_list);
2055 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2056#endif
2057 kfree(root);
2058 }
2059}
2060
faa2dbf0 2061void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2062{
2063 int ret;
2064 struct btrfs_root *gang[8];
2065 int i;
2066
2067 while (!list_empty(&fs_info->dead_roots)) {
2068 gang[0] = list_entry(fs_info->dead_roots.next,
2069 struct btrfs_root, root_list);
2070 list_del(&gang[0]->root_list);
2071
8c38938c 2072 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2073 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2074 btrfs_put_root(gang[0]);
171f6537
JB
2075 }
2076
2077 while (1) {
2078 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2079 (void **)gang, 0,
2080 ARRAY_SIZE(gang));
2081 if (!ret)
2082 break;
2083 for (i = 0; i < ret; i++)
cb517eab 2084 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2085 }
2086}
af31f5e5 2087
638aa7ed
ES
2088static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2089{
2090 mutex_init(&fs_info->scrub_lock);
2091 atomic_set(&fs_info->scrubs_running, 0);
2092 atomic_set(&fs_info->scrub_pause_req, 0);
2093 atomic_set(&fs_info->scrubs_paused, 0);
2094 atomic_set(&fs_info->scrub_cancel_req, 0);
2095 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2096 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2097}
2098
779a65a4
ES
2099static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2100{
2101 spin_lock_init(&fs_info->balance_lock);
2102 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2103 atomic_set(&fs_info->balance_pause_req, 0);
2104 atomic_set(&fs_info->balance_cancel_req, 0);
2105 fs_info->balance_ctl = NULL;
2106 init_waitqueue_head(&fs_info->balance_wait_q);
2107}
2108
6bccf3ab 2109static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2110{
2ff7e61e
JM
2111 struct inode *inode = fs_info->btree_inode;
2112
2113 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2114 set_nlink(inode, 1);
f37938e0
ES
2115 /*
2116 * we set the i_size on the btree inode to the max possible int.
2117 * the real end of the address space is determined by all of
2118 * the devices in the system
2119 */
2ff7e61e
JM
2120 inode->i_size = OFFSET_MAX;
2121 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2122
2ff7e61e 2123 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2124 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2125 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2126 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2127 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2128
5c8fd99f 2129 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2130 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2131 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2132 btrfs_insert_inode_hash(inode);
f37938e0
ES
2133}
2134
ad618368
ES
2135static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2136{
ad618368 2137 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2138 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2139 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2140}
2141
f9e92e40
ES
2142static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2143{
2144 spin_lock_init(&fs_info->qgroup_lock);
2145 mutex_init(&fs_info->qgroup_ioctl_lock);
2146 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2147 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2148 fs_info->qgroup_seq = 1;
f9e92e40 2149 fs_info->qgroup_ulist = NULL;
d2c609b8 2150 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2151 mutex_init(&fs_info->qgroup_rescan_lock);
2152}
2153
2a458198
ES
2154static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2155 struct btrfs_fs_devices *fs_devices)
2156{
f7b885be 2157 u32 max_active = fs_info->thread_pool_size;
6f011058 2158 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2159
2160 fs_info->workers =
cb001095
JM
2161 btrfs_alloc_workqueue(fs_info, "worker",
2162 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2163
2164 fs_info->delalloc_workers =
cb001095
JM
2165 btrfs_alloc_workqueue(fs_info, "delalloc",
2166 flags, max_active, 2);
2a458198
ES
2167
2168 fs_info->flush_workers =
cb001095
JM
2169 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2170 flags, max_active, 0);
2a458198
ES
2171
2172 fs_info->caching_workers =
cb001095 2173 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2174
2a458198 2175 fs_info->fixup_workers =
cb001095 2176 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2177
2178 /*
2179 * endios are largely parallel and should have a very
2180 * low idle thresh
2181 */
2182 fs_info->endio_workers =
cb001095 2183 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2184 fs_info->endio_meta_workers =
cb001095
JM
2185 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2186 max_active, 4);
2a458198 2187 fs_info->endio_meta_write_workers =
cb001095
JM
2188 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2189 max_active, 2);
2a458198 2190 fs_info->endio_raid56_workers =
cb001095
JM
2191 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2192 max_active, 4);
2a458198 2193 fs_info->rmw_workers =
cb001095 2194 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2195 fs_info->endio_write_workers =
cb001095
JM
2196 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2197 max_active, 2);
2a458198 2198 fs_info->endio_freespace_worker =
cb001095
JM
2199 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2200 max_active, 0);
2a458198 2201 fs_info->delayed_workers =
cb001095
JM
2202 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2203 max_active, 0);
2a458198 2204 fs_info->readahead_workers =
cb001095
JM
2205 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2206 max_active, 2);
2a458198 2207 fs_info->qgroup_rescan_workers =
cb001095 2208 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2209 fs_info->discard_ctl.discard_workers =
2210 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2211
2212 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2213 fs_info->flush_workers &&
2a458198
ES
2214 fs_info->endio_workers && fs_info->endio_meta_workers &&
2215 fs_info->endio_meta_write_workers &&
2a458198
ES
2216 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2217 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2218 fs_info->caching_workers && fs_info->readahead_workers &&
2219 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2220 fs_info->qgroup_rescan_workers &&
2221 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2222 return -ENOMEM;
2223 }
2224
2225 return 0;
2226}
2227
6d97c6e3
JT
2228static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2229{
2230 struct crypto_shash *csum_shash;
b4e967be 2231 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2232
b4e967be 2233 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2234
2235 if (IS_ERR(csum_shash)) {
2236 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2237 csum_driver);
6d97c6e3
JT
2238 return PTR_ERR(csum_shash);
2239 }
2240
2241 fs_info->csum_shash = csum_shash;
2242
2243 return 0;
2244}
2245
63443bf5
ES
2246static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2247 struct btrfs_fs_devices *fs_devices)
2248{
2249 int ret;
63443bf5
ES
2250 struct btrfs_root *log_tree_root;
2251 struct btrfs_super_block *disk_super = fs_info->super_copy;
2252 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2253 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2254
2255 if (fs_devices->rw_devices == 0) {
f14d104d 2256 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2257 return -EIO;
2258 }
2259
96dfcb46
JB
2260 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2261 GFP_KERNEL);
63443bf5
ES
2262 if (!log_tree_root)
2263 return -ENOMEM;
2264
2ff7e61e 2265 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2266 fs_info->generation + 1,
2267 level, NULL);
64c043de 2268 if (IS_ERR(log_tree_root->node)) {
f14d104d 2269 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2270 ret = PTR_ERR(log_tree_root->node);
8c38938c 2271 log_tree_root->node = NULL;
00246528 2272 btrfs_put_root(log_tree_root);
0eeff236 2273 return ret;
64c043de 2274 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2275 btrfs_err(fs_info, "failed to read log tree");
00246528 2276 btrfs_put_root(log_tree_root);
63443bf5
ES
2277 return -EIO;
2278 }
2279 /* returns with log_tree_root freed on success */
2280 ret = btrfs_recover_log_trees(log_tree_root);
2281 if (ret) {
0b246afa
JM
2282 btrfs_handle_fs_error(fs_info, ret,
2283 "Failed to recover log tree");
00246528 2284 btrfs_put_root(log_tree_root);
63443bf5
ES
2285 return ret;
2286 }
2287
bc98a42c 2288 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2289 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2290 if (ret)
2291 return ret;
2292 }
2293
2294 return 0;
2295}
2296
6bccf3ab 2297static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2298{
6bccf3ab 2299 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2300 struct btrfs_root *root;
4bbcaa64
ES
2301 struct btrfs_key location;
2302 int ret;
2303
6bccf3ab
JM
2304 BUG_ON(!fs_info->tree_root);
2305
4bbcaa64
ES
2306 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2307 location.type = BTRFS_ROOT_ITEM_KEY;
2308 location.offset = 0;
2309
a4f3d2c4 2310 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2311 if (IS_ERR(root)) {
42437a63
JB
2312 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2313 ret = PTR_ERR(root);
2314 goto out;
2315 }
2316 } else {
2317 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2318 fs_info->extent_root = root;
f50f4353 2319 }
4bbcaa64
ES
2320
2321 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2322 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2323 if (IS_ERR(root)) {
42437a63
JB
2324 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2325 ret = PTR_ERR(root);
2326 goto out;
2327 }
2328 } else {
2329 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2330 fs_info->dev_root = root;
2331 btrfs_init_devices_late(fs_info);
f50f4353 2332 }
4bbcaa64 2333
882dbe0c
JB
2334 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2335 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2336 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2337 root = btrfs_read_tree_root(tree_root, &location);
2338 if (IS_ERR(root)) {
2339 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2340 ret = PTR_ERR(root);
2341 goto out;
2342 }
2343 } else {
2344 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2345 fs_info->csum_root = root;
42437a63 2346 }
f50f4353 2347 }
4bbcaa64 2348
aeb935a4
QW
2349 /*
2350 * This tree can share blocks with some other fs tree during relocation
2351 * and we need a proper setup by btrfs_get_fs_root
2352 */
56e9357a
DS
2353 root = btrfs_get_fs_root(tree_root->fs_info,
2354 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2355 if (IS_ERR(root)) {
42437a63
JB
2356 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2357 ret = PTR_ERR(root);
2358 goto out;
2359 }
2360 } else {
2361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362 fs_info->data_reloc_root = root;
aeb935a4 2363 }
aeb935a4 2364
4bbcaa64 2365 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2366 root = btrfs_read_tree_root(tree_root, &location);
2367 if (!IS_ERR(root)) {
2368 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2369 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2370 fs_info->quota_root = root;
4bbcaa64
ES
2371 }
2372
2373 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2374 root = btrfs_read_tree_root(tree_root, &location);
2375 if (IS_ERR(root)) {
42437a63
JB
2376 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2377 ret = PTR_ERR(root);
2378 if (ret != -ENOENT)
2379 goto out;
2380 }
4bbcaa64 2381 } else {
a4f3d2c4
DS
2382 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2383 fs_info->uuid_root = root;
4bbcaa64
ES
2384 }
2385
70f6d82e
OS
2386 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2387 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2388 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2389 if (IS_ERR(root)) {
42437a63
JB
2390 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2391 ret = PTR_ERR(root);
2392 goto out;
2393 }
2394 } else {
2395 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2396 fs_info->free_space_root = root;
f50f4353 2397 }
70f6d82e
OS
2398 }
2399
4bbcaa64 2400 return 0;
f50f4353
LB
2401out:
2402 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2403 location.objectid, ret);
2404 return ret;
4bbcaa64
ES
2405}
2406
069ec957
QW
2407/*
2408 * Real super block validation
2409 * NOTE: super csum type and incompat features will not be checked here.
2410 *
2411 * @sb: super block to check
2412 * @mirror_num: the super block number to check its bytenr:
2413 * 0 the primary (1st) sb
2414 * 1, 2 2nd and 3rd backup copy
2415 * -1 skip bytenr check
2416 */
2417static int validate_super(struct btrfs_fs_info *fs_info,
2418 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2419{
21a852b0
QW
2420 u64 nodesize = btrfs_super_nodesize(sb);
2421 u64 sectorsize = btrfs_super_sectorsize(sb);
2422 int ret = 0;
2423
2424 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2425 btrfs_err(fs_info, "no valid FS found");
2426 ret = -EINVAL;
2427 }
2428 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2429 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2430 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2431 ret = -EINVAL;
2432 }
2433 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2434 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2435 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2436 ret = -EINVAL;
2437 }
2438 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2439 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2440 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2441 ret = -EINVAL;
2442 }
2443 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2444 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2445 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2446 ret = -EINVAL;
2447 }
2448
2449 /*
2450 * Check sectorsize and nodesize first, other check will need it.
2451 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2452 */
2453 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2454 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2455 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2456 ret = -EINVAL;
2457 }
2458 /* Only PAGE SIZE is supported yet */
2459 if (sectorsize != PAGE_SIZE) {
2460 btrfs_err(fs_info,
2461 "sectorsize %llu not supported yet, only support %lu",
2462 sectorsize, PAGE_SIZE);
2463 ret = -EINVAL;
2464 }
2465 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2466 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2467 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2468 ret = -EINVAL;
2469 }
2470 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2471 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2472 le32_to_cpu(sb->__unused_leafsize), nodesize);
2473 ret = -EINVAL;
2474 }
2475
2476 /* Root alignment check */
2477 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2478 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2479 btrfs_super_root(sb));
2480 ret = -EINVAL;
2481 }
2482 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2483 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2484 btrfs_super_chunk_root(sb));
2485 ret = -EINVAL;
2486 }
2487 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2488 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2489 btrfs_super_log_root(sb));
2490 ret = -EINVAL;
2491 }
2492
de37aa51 2493 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2494 BTRFS_FSID_SIZE) != 0) {
21a852b0 2495 btrfs_err(fs_info,
7239ff4b 2496 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2497 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2498 ret = -EINVAL;
2499 }
2500
2501 /*
2502 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2503 * done later
2504 */
2505 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2506 btrfs_err(fs_info, "bytes_used is too small %llu",
2507 btrfs_super_bytes_used(sb));
2508 ret = -EINVAL;
2509 }
2510 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2511 btrfs_err(fs_info, "invalid stripesize %u",
2512 btrfs_super_stripesize(sb));
2513 ret = -EINVAL;
2514 }
2515 if (btrfs_super_num_devices(sb) > (1UL << 31))
2516 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2517 btrfs_super_num_devices(sb));
2518 if (btrfs_super_num_devices(sb) == 0) {
2519 btrfs_err(fs_info, "number of devices is 0");
2520 ret = -EINVAL;
2521 }
2522
069ec957
QW
2523 if (mirror_num >= 0 &&
2524 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2525 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2526 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2527 ret = -EINVAL;
2528 }
2529
2530 /*
2531 * Obvious sys_chunk_array corruptions, it must hold at least one key
2532 * and one chunk
2533 */
2534 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2535 btrfs_err(fs_info, "system chunk array too big %u > %u",
2536 btrfs_super_sys_array_size(sb),
2537 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2538 ret = -EINVAL;
2539 }
2540 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2541 + sizeof(struct btrfs_chunk)) {
2542 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2543 btrfs_super_sys_array_size(sb),
2544 sizeof(struct btrfs_disk_key)
2545 + sizeof(struct btrfs_chunk));
2546 ret = -EINVAL;
2547 }
2548
2549 /*
2550 * The generation is a global counter, we'll trust it more than the others
2551 * but it's still possible that it's the one that's wrong.
2552 */
2553 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2554 btrfs_warn(fs_info,
2555 "suspicious: generation < chunk_root_generation: %llu < %llu",
2556 btrfs_super_generation(sb),
2557 btrfs_super_chunk_root_generation(sb));
2558 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2559 && btrfs_super_cache_generation(sb) != (u64)-1)
2560 btrfs_warn(fs_info,
2561 "suspicious: generation < cache_generation: %llu < %llu",
2562 btrfs_super_generation(sb),
2563 btrfs_super_cache_generation(sb));
2564
2565 return ret;
2566}
2567
069ec957
QW
2568/*
2569 * Validation of super block at mount time.
2570 * Some checks already done early at mount time, like csum type and incompat
2571 * flags will be skipped.
2572 */
2573static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2574{
2575 return validate_super(fs_info, fs_info->super_copy, 0);
2576}
2577
75cb857d
QW
2578/*
2579 * Validation of super block at write time.
2580 * Some checks like bytenr check will be skipped as their values will be
2581 * overwritten soon.
2582 * Extra checks like csum type and incompat flags will be done here.
2583 */
2584static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2585 struct btrfs_super_block *sb)
2586{
2587 int ret;
2588
2589 ret = validate_super(fs_info, sb, -1);
2590 if (ret < 0)
2591 goto out;
e7e16f48 2592 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2593 ret = -EUCLEAN;
2594 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2595 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2596 goto out;
2597 }
2598 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2599 ret = -EUCLEAN;
2600 btrfs_err(fs_info,
2601 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2602 btrfs_super_incompat_flags(sb),
2603 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2604 goto out;
2605 }
2606out:
2607 if (ret < 0)
2608 btrfs_err(fs_info,
2609 "super block corruption detected before writing it to disk");
2610 return ret;
2611}
2612
6ef108dd 2613static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2614{
6ef108dd 2615 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2616 struct btrfs_super_block *sb = fs_info->super_copy;
2617 struct btrfs_root *tree_root = fs_info->tree_root;
2618 bool handle_error = false;
2619 int ret = 0;
2620 int i;
2621
2622 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2623 u64 generation;
2624 int level;
2625
2626 if (handle_error) {
2627 if (!IS_ERR(tree_root->node))
2628 free_extent_buffer(tree_root->node);
2629 tree_root->node = NULL;
2630
2631 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2632 break;
2633
2634 free_root_pointers(fs_info, 0);
2635
2636 /*
2637 * Don't use the log in recovery mode, it won't be
2638 * valid
2639 */
2640 btrfs_set_super_log_root(sb, 0);
2641
2642 /* We can't trust the free space cache either */
2643 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2644
2645 ret = read_backup_root(fs_info, i);
6ef108dd 2646 backup_index = ret;
b8522a1e
NB
2647 if (ret < 0)
2648 return ret;
2649 }
2650 generation = btrfs_super_generation(sb);
2651 level = btrfs_super_root_level(sb);
2652 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2653 generation, level, NULL);
217f5004 2654 if (IS_ERR(tree_root->node)) {
b8522a1e 2655 handle_error = true;
217f5004
NB
2656 ret = PTR_ERR(tree_root->node);
2657 tree_root->node = NULL;
2658 btrfs_warn(fs_info, "couldn't read tree root");
2659 continue;
b8522a1e 2660
217f5004
NB
2661 } else if (!extent_buffer_uptodate(tree_root->node)) {
2662 handle_error = true;
2663 ret = -EIO;
2664 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2665 continue;
2666 }
2667
2668 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2669 tree_root->commit_root = btrfs_root_node(tree_root);
2670 btrfs_set_root_refs(&tree_root->root_item, 1);
2671
336a0d8d
NB
2672 /*
2673 * No need to hold btrfs_root::objectid_mutex since the fs
2674 * hasn't been fully initialised and we are the only user
2675 */
b8522a1e
NB
2676 ret = btrfs_find_highest_objectid(tree_root,
2677 &tree_root->highest_objectid);
2678 if (ret < 0) {
b8522a1e
NB
2679 handle_error = true;
2680 continue;
2681 }
2682
2683 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2684
2685 ret = btrfs_read_roots(fs_info);
2686 if (ret < 0) {
2687 handle_error = true;
2688 continue;
2689 }
2690
2691 /* All successful */
2692 fs_info->generation = generation;
2693 fs_info->last_trans_committed = generation;
6ef108dd
NB
2694
2695 /* Always begin writing backup roots after the one being used */
2696 if (backup_index < 0) {
2697 fs_info->backup_root_index = 0;
2698 } else {
2699 fs_info->backup_root_index = backup_index + 1;
2700 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2701 }
b8522a1e
NB
2702 break;
2703 }
2704
2705 return ret;
2706}
2707
8260edba 2708void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2709{
76dda93c 2710 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2711 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2712 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2713 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2714 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2715 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2716 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2717 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2718 spin_lock_init(&fs_info->trans_lock);
76dda93c 2719 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2720 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2721 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2722 spin_lock_init(&fs_info->super_lock);
f28491e0 2723 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2724 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2725 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2726 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2727 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2728 mutex_init(&fs_info->reloc_mutex);
573bfb72 2729 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2730 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2731
0b86a832 2732 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2733 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2734 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2735 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2736#ifdef CONFIG_BTRFS_DEBUG
2737 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2738 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2739 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2740#endif
c8bf1b67 2741 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2742 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2743 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2744 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2745 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2746 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2747 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2748 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2749 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2750 BTRFS_BLOCK_RSV_DELREFS);
2751
771ed689 2752 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2753 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2754 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2755 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2756 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2757 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2758 fs_info->metadata_ratio = 0;
4cb5300b 2759 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2760 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2761 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2762 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2763 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2764 /* readahead state */
d0164adc 2765 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2766 spin_lock_init(&fs_info->reada_lock);
fd708b81 2767 btrfs_init_ref_verify(fs_info);
c8b97818 2768
b34b086c
CM
2769 fs_info->thread_pool_size = min_t(unsigned long,
2770 num_online_cpus() + 2, 8);
0afbaf8c 2771
199c2a9c
MX
2772 INIT_LIST_HEAD(&fs_info->ordered_roots);
2773 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2774
638aa7ed 2775 btrfs_init_scrub(fs_info);
21adbd5c
SB
2776#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2777 fs_info->check_integrity_print_mask = 0;
2778#endif
779a65a4 2779 btrfs_init_balance(fs_info);
57056740 2780 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2781
0f9dd46c 2782 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2783 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2784 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2785
fe119a6e
NB
2786 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2787 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2788 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2789
5a3f23d5 2790 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2791 mutex_init(&fs_info->tree_log_mutex);
925baedd 2792 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2793 mutex_init(&fs_info->transaction_kthread_mutex);
2794 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2795 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2796 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2797 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2798 init_rwsem(&fs_info->subvol_sem);
803b2f54 2799 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2800
ad618368 2801 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2802 btrfs_init_qgroup(fs_info);
b0643e59 2803 btrfs_discard_init(fs_info);
416ac51d 2804
fa9c0d79
CM
2805 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2806 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2807
e6dcd2dc 2808 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2809 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2810 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2811 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2812 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2813
da17066c
JM
2814 /* Usable values until the real ones are cached from the superblock */
2815 fs_info->nodesize = 4096;
2816 fs_info->sectorsize = 4096;
2817 fs_info->stripesize = 4096;
2818
eede2bf3
OS
2819 spin_lock_init(&fs_info->swapfile_pins_lock);
2820 fs_info->swapfile_pins = RB_ROOT;
2821
9e967495 2822 fs_info->send_in_progress = 0;
8260edba
JB
2823}
2824
2825static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2826{
2827 int ret;
2828
2829 fs_info->sb = sb;
2830 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2831 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2832
ae18c37a
JB
2833 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2834 if (ret)
c75e8394 2835 return ret;
ae18c37a
JB
2836
2837 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2838 if (ret)
c75e8394 2839 return ret;
ae18c37a
JB
2840
2841 fs_info->dirty_metadata_batch = PAGE_SIZE *
2842 (1 + ilog2(nr_cpu_ids));
2843
2844 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2845 if (ret)
c75e8394 2846 return ret;
ae18c37a
JB
2847
2848 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2849 GFP_KERNEL);
2850 if (ret)
c75e8394 2851 return ret;
ae18c37a
JB
2852
2853 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2854 GFP_KERNEL);
c75e8394
JB
2855 if (!fs_info->delayed_root)
2856 return -ENOMEM;
ae18c37a
JB
2857 btrfs_init_delayed_root(fs_info->delayed_root);
2858
c75e8394 2859 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2860}
2861
97f4dd09
NB
2862static int btrfs_uuid_rescan_kthread(void *data)
2863{
2864 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2865 int ret;
2866
2867 /*
2868 * 1st step is to iterate through the existing UUID tree and
2869 * to delete all entries that contain outdated data.
2870 * 2nd step is to add all missing entries to the UUID tree.
2871 */
2872 ret = btrfs_uuid_tree_iterate(fs_info);
2873 if (ret < 0) {
c94bec2c
JB
2874 if (ret != -EINTR)
2875 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2876 ret);
97f4dd09
NB
2877 up(&fs_info->uuid_tree_rescan_sem);
2878 return ret;
2879 }
2880 return btrfs_uuid_scan_kthread(data);
2881}
2882
2883static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2884{
2885 struct task_struct *task;
2886
2887 down(&fs_info->uuid_tree_rescan_sem);
2888 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2889 if (IS_ERR(task)) {
2890 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2891 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2892 up(&fs_info->uuid_tree_rescan_sem);
2893 return PTR_ERR(task);
2894 }
2895
2896 return 0;
2897}
2898
ae18c37a
JB
2899int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2900 char *options)
2901{
2902 u32 sectorsize;
2903 u32 nodesize;
2904 u32 stripesize;
2905 u64 generation;
2906 u64 features;
2907 u16 csum_type;
ae18c37a
JB
2908 struct btrfs_super_block *disk_super;
2909 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2910 struct btrfs_root *tree_root;
2911 struct btrfs_root *chunk_root;
2912 int ret;
2913 int err = -EINVAL;
2914 int clear_free_space_tree = 0;
2915 int level;
2916
8260edba 2917 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2918 if (ret) {
83c8266a 2919 err = ret;
ae18c37a 2920 goto fail;
53b381b3
DW
2921 }
2922
ae18c37a
JB
2923 /* These need to be init'ed before we start creating inodes and such. */
2924 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2925 GFP_KERNEL);
2926 fs_info->tree_root = tree_root;
2927 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2928 GFP_KERNEL);
2929 fs_info->chunk_root = chunk_root;
2930 if (!tree_root || !chunk_root) {
2931 err = -ENOMEM;
c75e8394 2932 goto fail;
ae18c37a
JB
2933 }
2934
2935 fs_info->btree_inode = new_inode(sb);
2936 if (!fs_info->btree_inode) {
2937 err = -ENOMEM;
c75e8394 2938 goto fail;
ae18c37a
JB
2939 }
2940 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2941 btrfs_init_btree_inode(fs_info);
2942
3c4bb26b 2943 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2944
2945 /*
2946 * Read super block and check the signature bytes only
2947 */
8f32380d
JT
2948 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2949 if (IS_ERR(disk_super)) {
2950 err = PTR_ERR(disk_super);
16cdcec7 2951 goto fail_alloc;
20b45077 2952 }
39279cc3 2953
8dc3f22c 2954 /*
260db43c 2955 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
2956 * corrupted, we'll find out
2957 */
8f32380d 2958 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2959 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2960 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2961 csum_type);
8dc3f22c 2962 err = -EINVAL;
8f32380d 2963 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2964 goto fail_alloc;
2965 }
2966
6d97c6e3
JT
2967 ret = btrfs_init_csum_hash(fs_info, csum_type);
2968 if (ret) {
2969 err = ret;
8f32380d 2970 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2971 goto fail_alloc;
2972 }
2973
1104a885
DS
2974 /*
2975 * We want to check superblock checksum, the type is stored inside.
2976 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2977 */
8f32380d 2978 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2979 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2980 err = -EINVAL;
8f32380d 2981 btrfs_release_disk_super(disk_super);
141386e1 2982 goto fail_alloc;
1104a885
DS
2983 }
2984
2985 /*
2986 * super_copy is zeroed at allocation time and we never touch the
2987 * following bytes up to INFO_SIZE, the checksum is calculated from
2988 * the whole block of INFO_SIZE
2989 */
8f32380d
JT
2990 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2991 btrfs_release_disk_super(disk_super);
5f39d397 2992
fbc6feae
NB
2993 disk_super = fs_info->super_copy;
2994
de37aa51
NB
2995 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2996 BTRFS_FSID_SIZE));
2997
7239ff4b 2998 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2999 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3000 fs_info->super_copy->metadata_uuid,
3001 BTRFS_FSID_SIZE));
7239ff4b 3002 }
0b86a832 3003
fbc6feae
NB
3004 features = btrfs_super_flags(disk_super);
3005 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3006 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3007 btrfs_set_super_flags(disk_super, features);
3008 btrfs_info(fs_info,
3009 "found metadata UUID change in progress flag, clearing");
3010 }
3011
3012 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3013 sizeof(*fs_info->super_for_commit));
de37aa51 3014
069ec957 3015 ret = btrfs_validate_mount_super(fs_info);
1104a885 3016 if (ret) {
05135f59 3017 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3018 err = -EINVAL;
141386e1 3019 goto fail_alloc;
1104a885
DS
3020 }
3021
0f7d52f4 3022 if (!btrfs_super_root(disk_super))
141386e1 3023 goto fail_alloc;
0f7d52f4 3024
acce952b 3025 /* check FS state, whether FS is broken. */
87533c47
MX
3026 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3027 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3028
75e7cb7f
LB
3029 /*
3030 * In the long term, we'll store the compression type in the super
3031 * block, and it'll be used for per file compression control.
3032 */
3033 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3034
2ff7e61e 3035 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3036 if (ret) {
3037 err = ret;
141386e1 3038 goto fail_alloc;
2b82032c 3039 }
dfe25020 3040
f2b636e8
JB
3041 features = btrfs_super_incompat_flags(disk_super) &
3042 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3043 if (features) {
05135f59
DS
3044 btrfs_err(fs_info,
3045 "cannot mount because of unsupported optional features (%llx)",
3046 features);
f2b636e8 3047 err = -EINVAL;
141386e1 3048 goto fail_alloc;
f2b636e8
JB
3049 }
3050
5d4f98a2 3051 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3052 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3053 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3054 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3055 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3056 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3057
3173a18f 3058 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3059 btrfs_info(fs_info, "has skinny extents");
3173a18f 3060
727011e0
CM
3061 /*
3062 * flag our filesystem as having big metadata blocks if
3063 * they are bigger than the page size
3064 */
09cbfeaf 3065 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3066 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3067 btrfs_info(fs_info,
3068 "flagging fs with big metadata feature");
727011e0
CM
3069 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3070 }
3071
bc3f116f 3072 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3073 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3074 stripesize = sectorsize;
707e8a07 3075 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3076 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3077
da17066c
JM
3078 /* Cache block sizes */
3079 fs_info->nodesize = nodesize;
3080 fs_info->sectorsize = sectorsize;
3081 fs_info->stripesize = stripesize;
3082
bc3f116f
CM
3083 /*
3084 * mixed block groups end up with duplicate but slightly offset
3085 * extent buffers for the same range. It leads to corruptions
3086 */
3087 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3088 (sectorsize != nodesize)) {
05135f59
DS
3089 btrfs_err(fs_info,
3090"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3091 nodesize, sectorsize);
141386e1 3092 goto fail_alloc;
bc3f116f
CM
3093 }
3094
ceda0864
MX
3095 /*
3096 * Needn't use the lock because there is no other task which will
3097 * update the flag.
3098 */
a6fa6fae 3099 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3100
f2b636e8
JB
3101 features = btrfs_super_compat_ro_flags(disk_super) &
3102 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3103 if (!sb_rdonly(sb) && features) {
05135f59
DS
3104 btrfs_err(fs_info,
3105 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3106 features);
f2b636e8 3107 err = -EINVAL;
141386e1 3108 goto fail_alloc;
f2b636e8 3109 }
61d92c32 3110
2a458198
ES
3111 ret = btrfs_init_workqueues(fs_info, fs_devices);
3112 if (ret) {
3113 err = ret;
0dc3b84a
JB
3114 goto fail_sb_buffer;
3115 }
4543df7e 3116
9e11ceee
JK
3117 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3118 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3119
a061fc8d
CM
3120 sb->s_blocksize = sectorsize;
3121 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3122 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3123
925baedd 3124 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3125 ret = btrfs_read_sys_array(fs_info);
925baedd 3126 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3127 if (ret) {
05135f59 3128 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3129 goto fail_sb_buffer;
84eed90f 3130 }
0b86a832 3131
84234f3a 3132 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3133 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3134
2ff7e61e 3135 chunk_root->node = read_tree_block(fs_info,
0b86a832 3136 btrfs_super_chunk_root(disk_super),
581c1760 3137 generation, level, NULL);
64c043de
LB
3138 if (IS_ERR(chunk_root->node) ||
3139 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3140 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3141 if (!IS_ERR(chunk_root->node))
3142 free_extent_buffer(chunk_root->node);
95ab1f64 3143 chunk_root->node = NULL;
af31f5e5 3144 goto fail_tree_roots;
83121942 3145 }
5d4f98a2
YZ
3146 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3147 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3148
e17cade2 3149 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3150 offsetof(struct btrfs_header, chunk_tree_uuid),
3151 BTRFS_UUID_SIZE);
e17cade2 3152
5b4aacef 3153 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3154 if (ret) {
05135f59 3155 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3156 goto fail_tree_roots;
2b82032c 3157 }
0b86a832 3158
8dabb742 3159 /*
9b99b115
AJ
3160 * Keep the devid that is marked to be the target device for the
3161 * device replace procedure
8dabb742 3162 */
9b99b115 3163 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3164
a6b0d5c8 3165 if (!fs_devices->latest_bdev) {
05135f59 3166 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3167 goto fail_tree_roots;
3168 }
3169
b8522a1e 3170 ret = init_tree_roots(fs_info);
4bbcaa64 3171 if (ret)
b8522a1e 3172 goto fail_tree_roots;
8929ecfa 3173
75ec1db8
JB
3174 /*
3175 * If we have a uuid root and we're not being told to rescan we need to
3176 * check the generation here so we can set the
3177 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3178 * transaction during a balance or the log replay without updating the
3179 * uuid generation, and then if we crash we would rescan the uuid tree,
3180 * even though it was perfectly fine.
3181 */
3182 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3183 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3184 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3185
cf90d884
QW
3186 ret = btrfs_verify_dev_extents(fs_info);
3187 if (ret) {
3188 btrfs_err(fs_info,
3189 "failed to verify dev extents against chunks: %d",
3190 ret);
3191 goto fail_block_groups;
3192 }
68310a5e
ID
3193 ret = btrfs_recover_balance(fs_info);
3194 if (ret) {
05135f59 3195 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3196 goto fail_block_groups;
3197 }
3198
733f4fbb
SB
3199 ret = btrfs_init_dev_stats(fs_info);
3200 if (ret) {
05135f59 3201 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3202 goto fail_block_groups;
3203 }
3204
8dabb742
SB
3205 ret = btrfs_init_dev_replace(fs_info);
3206 if (ret) {
05135f59 3207 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3208 goto fail_block_groups;
3209 }
3210
9b99b115 3211 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3212
c6761a9e 3213 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3214 if (ret) {
05135f59
DS
3215 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3216 ret);
b7c35e81
AJ
3217 goto fail_block_groups;
3218 }
3219
96f3136e 3220 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3221 if (ret) {
05135f59 3222 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3223 goto fail_fsdev_sysfs;
c59021f8 3224 }
3225
c59021f8 3226 ret = btrfs_init_space_info(fs_info);
3227 if (ret) {
05135f59 3228 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3229 goto fail_sysfs;
c59021f8 3230 }
3231
5b4aacef 3232 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3233 if (ret) {
05135f59 3234 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3235 goto fail_sysfs;
1b1d1f66 3236 }
4330e183 3237
6528b99d 3238 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3239 btrfs_warn(fs_info,
52042d8e 3240 "writable mount is not allowed due to too many missing devices");
2365dd3c 3241 goto fail_sysfs;
292fd7fc 3242 }
9078a3e1 3243
a74a4b97
CM
3244 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3245 "btrfs-cleaner");
57506d50 3246 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3247 goto fail_sysfs;
a74a4b97
CM
3248
3249 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3250 tree_root,
3251 "btrfs-transaction");
57506d50 3252 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3253 goto fail_cleaner;
a74a4b97 3254
583b7231 3255 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3256 !fs_info->fs_devices->rotating) {
583b7231 3257 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3258 }
3259
572d9ab7 3260 /*
01327610 3261 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3262 * not have to wait for transaction commit
3263 */
3264 btrfs_apply_pending_changes(fs_info);
3818aea2 3265
21adbd5c 3266#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3267 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3268 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3269 btrfs_test_opt(fs_info,
21adbd5c
SB
3270 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3271 1 : 0,
3272 fs_info->check_integrity_print_mask);
3273 if (ret)
05135f59
DS
3274 btrfs_warn(fs_info,
3275 "failed to initialize integrity check module: %d",
3276 ret);
21adbd5c
SB
3277 }
3278#endif
bcef60f2
AJ
3279 ret = btrfs_read_qgroup_config(fs_info);
3280 if (ret)
3281 goto fail_trans_kthread;
21adbd5c 3282
fd708b81
JB
3283 if (btrfs_build_ref_tree(fs_info))
3284 btrfs_err(fs_info, "couldn't build ref tree");
3285
96da0919
QW
3286 /* do not make disk changes in broken FS or nologreplay is given */
3287 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3288 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3289 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3290 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3291 if (ret) {
63443bf5 3292 err = ret;
28c16cbb 3293 goto fail_qgroup;
79787eaa 3294 }
e02119d5 3295 }
1a40e23b 3296
6bccf3ab 3297 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3298 if (ret)
28c16cbb 3299 goto fail_qgroup;
76dda93c 3300
bc98a42c 3301 if (!sb_rdonly(sb)) {
d68fc57b 3302 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3303 if (ret)
28c16cbb 3304 goto fail_qgroup;
90c711ab
ZB
3305
3306 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3307 ret = btrfs_recover_relocation(tree_root);
90c711ab 3308 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3309 if (ret < 0) {
05135f59
DS
3310 btrfs_warn(fs_info, "failed to recover relocation: %d",
3311 ret);
d7ce5843 3312 err = -EINVAL;
bcef60f2 3313 goto fail_qgroup;
d7ce5843 3314 }
7c2ca468 3315 }
1a40e23b 3316
56e9357a 3317 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3318 if (IS_ERR(fs_info->fs_root)) {
3319 err = PTR_ERR(fs_info->fs_root);
f50f4353 3320 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3321 fs_info->fs_root = NULL;
bcef60f2 3322 goto fail_qgroup;
3140c9a3 3323 }
c289811c 3324
bc98a42c 3325 if (sb_rdonly(sb))
2b6ba629 3326 return 0;
59641015 3327
f8d468a1
OS
3328 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3329 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3330 clear_free_space_tree = 1;
3331 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3332 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3333 btrfs_warn(fs_info, "free space tree is invalid");
3334 clear_free_space_tree = 1;
3335 }
3336
3337 if (clear_free_space_tree) {
f8d468a1
OS
3338 btrfs_info(fs_info, "clearing free space tree");
3339 ret = btrfs_clear_free_space_tree(fs_info);
3340 if (ret) {
3341 btrfs_warn(fs_info,
3342 "failed to clear free space tree: %d", ret);
6bccf3ab 3343 close_ctree(fs_info);
f8d468a1
OS
3344 return ret;
3345 }
3346 }
3347
0b246afa 3348 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3349 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3350 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3351 ret = btrfs_create_free_space_tree(fs_info);
3352 if (ret) {
05135f59
DS
3353 btrfs_warn(fs_info,
3354 "failed to create free space tree: %d", ret);
6bccf3ab 3355 close_ctree(fs_info);
511711af
CM
3356 return ret;
3357 }
3358 }
3359
2b6ba629
ID
3360 down_read(&fs_info->cleanup_work_sem);
3361 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3362 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3363 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3364 close_ctree(fs_info);
2b6ba629
ID
3365 return ret;
3366 }
3367 up_read(&fs_info->cleanup_work_sem);
59641015 3368
2b6ba629
ID
3369 ret = btrfs_resume_balance_async(fs_info);
3370 if (ret) {
05135f59 3371 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3372 close_ctree(fs_info);
2b6ba629 3373 return ret;
e3acc2a6
JB
3374 }
3375
8dabb742
SB
3376 ret = btrfs_resume_dev_replace_async(fs_info);
3377 if (ret) {
05135f59 3378 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3379 close_ctree(fs_info);
8dabb742
SB
3380 return ret;
3381 }
3382
b382a324 3383 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3384 btrfs_discard_resume(fs_info);
b382a324 3385
4bbcaa64 3386 if (!fs_info->uuid_root) {
05135f59 3387 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3388 ret = btrfs_create_uuid_tree(fs_info);
3389 if (ret) {
05135f59
DS
3390 btrfs_warn(fs_info,
3391 "failed to create the UUID tree: %d", ret);
6bccf3ab 3392 close_ctree(fs_info);
f7a81ea4
SB
3393 return ret;
3394 }
0b246afa 3395 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3396 fs_info->generation !=
3397 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3398 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3399 ret = btrfs_check_uuid_tree(fs_info);
3400 if (ret) {
05135f59
DS
3401 btrfs_warn(fs_info,
3402 "failed to check the UUID tree: %d", ret);
6bccf3ab 3403 close_ctree(fs_info);
70f80175
SB
3404 return ret;
3405 }
f7a81ea4 3406 }
afcdd129 3407 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3408
ad2b2c80 3409 return 0;
39279cc3 3410
bcef60f2
AJ
3411fail_qgroup:
3412 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3413fail_trans_kthread:
3414 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3415 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3416 btrfs_free_fs_roots(fs_info);
3f157a2f 3417fail_cleaner:
a74a4b97 3418 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3419
3420 /*
3421 * make sure we're done with the btree inode before we stop our
3422 * kthreads
3423 */
3424 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3425
2365dd3c 3426fail_sysfs:
6618a59b 3427 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3428
b7c35e81
AJ
3429fail_fsdev_sysfs:
3430 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3431
1b1d1f66 3432fail_block_groups:
54067ae9 3433 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3434
3435fail_tree_roots:
9e3aa805
JB
3436 if (fs_info->data_reloc_root)
3437 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3438 free_root_pointers(fs_info, true);
2b8195bb 3439 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3440
39279cc3 3441fail_sb_buffer:
7abadb64 3442 btrfs_stop_all_workers(fs_info);
5cdd7db6 3443 btrfs_free_block_groups(fs_info);
16cdcec7 3444fail_alloc:
586e46e2
ID
3445 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3446
4543df7e 3447 iput(fs_info->btree_inode);
7e662854 3448fail:
586e46e2 3449 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3450 return err;
eb60ceac 3451}
663faf9f 3452ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3453
314b6dd0 3454static void btrfs_end_super_write(struct bio *bio)
f2984462 3455{
314b6dd0
JT
3456 struct btrfs_device *device = bio->bi_private;
3457 struct bio_vec *bvec;
3458 struct bvec_iter_all iter_all;
3459 struct page *page;
3460
3461 bio_for_each_segment_all(bvec, bio, iter_all) {
3462 page = bvec->bv_page;
3463
3464 if (bio->bi_status) {
3465 btrfs_warn_rl_in_rcu(device->fs_info,
3466 "lost page write due to IO error on %s (%d)",
3467 rcu_str_deref(device->name),
3468 blk_status_to_errno(bio->bi_status));
3469 ClearPageUptodate(page);
3470 SetPageError(page);
3471 btrfs_dev_stat_inc_and_print(device,
3472 BTRFS_DEV_STAT_WRITE_ERRS);
3473 } else {
3474 SetPageUptodate(page);
3475 }
3476
3477 put_page(page);
3478 unlock_page(page);
f2984462 3479 }
314b6dd0
JT
3480
3481 bio_put(bio);
f2984462
CM
3482}
3483
8f32380d
JT
3484struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3485 int copy_num)
29c36d72 3486{
29c36d72 3487 struct btrfs_super_block *super;
8f32380d 3488 struct page *page;
29c36d72 3489 u64 bytenr;
8f32380d 3490 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3491
3492 bytenr = btrfs_sb_offset(copy_num);
3493 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3494 return ERR_PTR(-EINVAL);
29c36d72 3495
8f32380d
JT
3496 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3497 if (IS_ERR(page))
3498 return ERR_CAST(page);
29c36d72 3499
8f32380d 3500 super = page_address(page);
96c2e067
AJ
3501 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3502 btrfs_release_disk_super(super);
3503 return ERR_PTR(-ENODATA);
3504 }
3505
3506 if (btrfs_super_bytenr(super) != bytenr) {
8f32380d
JT
3507 btrfs_release_disk_super(super);
3508 return ERR_PTR(-EINVAL);
29c36d72
AJ
3509 }
3510
8f32380d 3511 return super;
29c36d72
AJ
3512}
3513
3514
8f32380d 3515struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3516{
8f32380d 3517 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3518 int i;
3519 u64 transid = 0;
a512bbf8
YZ
3520
3521 /* we would like to check all the supers, but that would make
3522 * a btrfs mount succeed after a mkfs from a different FS.
3523 * So, we need to add a special mount option to scan for
3524 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3525 */
3526 for (i = 0; i < 1; i++) {
8f32380d
JT
3527 super = btrfs_read_dev_one_super(bdev, i);
3528 if (IS_ERR(super))
a512bbf8
YZ
3529 continue;
3530
a512bbf8 3531 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3532 if (latest)
3533 btrfs_release_disk_super(super);
3534
3535 latest = super;
a512bbf8 3536 transid = btrfs_super_generation(super);
a512bbf8
YZ
3537 }
3538 }
92fc03fb 3539
8f32380d 3540 return super;
a512bbf8
YZ
3541}
3542
4eedeb75 3543/*
abbb3b8e 3544 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3545 * pages we use for writing are locked.
4eedeb75 3546 *
abbb3b8e
DS
3547 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3548 * the expected device size at commit time. Note that max_mirrors must be
3549 * same for write and wait phases.
4eedeb75 3550 *
314b6dd0 3551 * Return number of errors when page is not found or submission fails.
4eedeb75 3552 */
a512bbf8 3553static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3554 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3555{
d5178578 3556 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3557 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3558 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3559 int i;
a512bbf8 3560 int errors = 0;
a512bbf8 3561 u64 bytenr;
a512bbf8
YZ
3562
3563 if (max_mirrors == 0)
3564 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3565
d5178578
JT
3566 shash->tfm = fs_info->csum_shash;
3567
a512bbf8 3568 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3569 struct page *page;
3570 struct bio *bio;
3571 struct btrfs_super_block *disk_super;
3572
a512bbf8 3573 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3574 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3575 device->commit_total_bytes)
a512bbf8
YZ
3576 break;
3577
abbb3b8e 3578 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3579
fd08001f
EB
3580 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3581 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3582 sb->csum);
4eedeb75 3583
314b6dd0
JT
3584 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3585 GFP_NOFS);
3586 if (!page) {
abbb3b8e 3587 btrfs_err(device->fs_info,
314b6dd0 3588 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3589 bytenr);
3590 errors++;
4eedeb75 3591 continue;
abbb3b8e 3592 }
634554dc 3593
314b6dd0
JT
3594 /* Bump the refcount for wait_dev_supers() */
3595 get_page(page);
a512bbf8 3596
314b6dd0
JT
3597 disk_super = page_address(page);
3598 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3599
314b6dd0
JT
3600 /*
3601 * Directly use bios here instead of relying on the page cache
3602 * to do I/O, so we don't lose the ability to do integrity
3603 * checking.
3604 */
3605 bio = bio_alloc(GFP_NOFS, 1);
3606 bio_set_dev(bio, device->bdev);
3607 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3608 bio->bi_private = device;
3609 bio->bi_end_io = btrfs_end_super_write;
3610 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3611 offset_in_page(bytenr));
a512bbf8 3612
387125fc 3613 /*
314b6dd0
JT
3614 * We FUA only the first super block. The others we allow to
3615 * go down lazy and there's a short window where the on-disk
3616 * copies might still contain the older version.
387125fc 3617 */
314b6dd0 3618 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3619 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3620 bio->bi_opf |= REQ_FUA;
3621
3622 btrfsic_submit_bio(bio);
a512bbf8
YZ
3623 }
3624 return errors < i ? 0 : -1;
3625}
3626
abbb3b8e
DS
3627/*
3628 * Wait for write completion of superblocks done by write_dev_supers,
3629 * @max_mirrors same for write and wait phases.
3630 *
314b6dd0 3631 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3632 * date.
3633 */
3634static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3635{
abbb3b8e
DS
3636 int i;
3637 int errors = 0;
b6a535fa 3638 bool primary_failed = false;
abbb3b8e
DS
3639 u64 bytenr;
3640
3641 if (max_mirrors == 0)
3642 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3643
3644 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3645 struct page *page;
3646
abbb3b8e
DS
3647 bytenr = btrfs_sb_offset(i);
3648 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3649 device->commit_total_bytes)
3650 break;
3651
314b6dd0
JT
3652 page = find_get_page(device->bdev->bd_inode->i_mapping,
3653 bytenr >> PAGE_SHIFT);
3654 if (!page) {
abbb3b8e 3655 errors++;
b6a535fa
HM
3656 if (i == 0)
3657 primary_failed = true;
abbb3b8e
DS
3658 continue;
3659 }
314b6dd0
JT
3660 /* Page is submitted locked and unlocked once the IO completes */
3661 wait_on_page_locked(page);
3662 if (PageError(page)) {
abbb3b8e 3663 errors++;
b6a535fa
HM
3664 if (i == 0)
3665 primary_failed = true;
3666 }
abbb3b8e 3667
314b6dd0
JT
3668 /* Drop our reference */
3669 put_page(page);
abbb3b8e 3670
314b6dd0
JT
3671 /* Drop the reference from the writing run */
3672 put_page(page);
abbb3b8e
DS
3673 }
3674
b6a535fa
HM
3675 /* log error, force error return */
3676 if (primary_failed) {
3677 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3678 device->devid);
3679 return -1;
3680 }
3681
abbb3b8e
DS
3682 return errors < i ? 0 : -1;
3683}
3684
387125fc
CM
3685/*
3686 * endio for the write_dev_flush, this will wake anyone waiting
3687 * for the barrier when it is done
3688 */
4246a0b6 3689static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3690{
e0ae9994 3691 complete(bio->bi_private);
387125fc
CM
3692}
3693
3694/*
4fc6441a
AJ
3695 * Submit a flush request to the device if it supports it. Error handling is
3696 * done in the waiting counterpart.
387125fc 3697 */
4fc6441a 3698static void write_dev_flush(struct btrfs_device *device)
387125fc 3699{
c2a9c7ab 3700 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3701 struct bio *bio = device->flush_bio;
387125fc 3702
c2a9c7ab 3703 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3704 return;
387125fc 3705
e0ae9994 3706 bio_reset(bio);
387125fc 3707 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3708 bio_set_dev(bio, device->bdev);
8d910125 3709 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3710 init_completion(&device->flush_wait);
3711 bio->bi_private = &device->flush_wait;
387125fc 3712
43a01111 3713 btrfsic_submit_bio(bio);
1c3063b6 3714 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3715}
387125fc 3716
4fc6441a
AJ
3717/*
3718 * If the flush bio has been submitted by write_dev_flush, wait for it.
3719 */
8c27cb35 3720static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3721{
4fc6441a 3722 struct bio *bio = device->flush_bio;
387125fc 3723
1c3063b6 3724 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3725 return BLK_STS_OK;
387125fc 3726
1c3063b6 3727 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3728 wait_for_completion_io(&device->flush_wait);
387125fc 3729
8c27cb35 3730 return bio->bi_status;
387125fc 3731}
387125fc 3732
d10b82fe 3733static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3734{
6528b99d 3735 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3736 return -EIO;
387125fc
CM
3737 return 0;
3738}
3739
3740/*
3741 * send an empty flush down to each device in parallel,
3742 * then wait for them
3743 */
3744static int barrier_all_devices(struct btrfs_fs_info *info)
3745{
3746 struct list_head *head;
3747 struct btrfs_device *dev;
5af3e8cc 3748 int errors_wait = 0;
4e4cbee9 3749 blk_status_t ret;
387125fc 3750
1538e6c5 3751 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3752 /* send down all the barriers */
3753 head = &info->fs_devices->devices;
1538e6c5 3754 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3755 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3756 continue;
cea7c8bf 3757 if (!dev->bdev)
387125fc 3758 continue;
e12c9621 3759 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3760 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3761 continue;
3762
4fc6441a 3763 write_dev_flush(dev);
58efbc9f 3764 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3765 }
3766
3767 /* wait for all the barriers */
1538e6c5 3768 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3769 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3770 continue;
387125fc 3771 if (!dev->bdev) {
5af3e8cc 3772 errors_wait++;
387125fc
CM
3773 continue;
3774 }
e12c9621 3775 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3776 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3777 continue;
3778
4fc6441a 3779 ret = wait_dev_flush(dev);
401b41e5
AJ
3780 if (ret) {
3781 dev->last_flush_error = ret;
66b4993e
DS
3782 btrfs_dev_stat_inc_and_print(dev,
3783 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3784 errors_wait++;
401b41e5
AJ
3785 }
3786 }
3787
cea7c8bf 3788 if (errors_wait) {
401b41e5
AJ
3789 /*
3790 * At some point we need the status of all disks
3791 * to arrive at the volume status. So error checking
3792 * is being pushed to a separate loop.
3793 */
d10b82fe 3794 return check_barrier_error(info);
387125fc 3795 }
387125fc
CM
3796 return 0;
3797}
3798
943c6e99
ZL
3799int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3800{
8789f4fe
ZL
3801 int raid_type;
3802 int min_tolerated = INT_MAX;
943c6e99 3803
8789f4fe
ZL
3804 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3805 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3806 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3807 btrfs_raid_array[BTRFS_RAID_SINGLE].
3808 tolerated_failures);
943c6e99 3809
8789f4fe
ZL
3810 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3811 if (raid_type == BTRFS_RAID_SINGLE)
3812 continue;
41a6e891 3813 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3814 continue;
8c3e3582 3815 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3816 btrfs_raid_array[raid_type].
3817 tolerated_failures);
3818 }
943c6e99 3819
8789f4fe 3820 if (min_tolerated == INT_MAX) {
ab8d0fc4 3821 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3822 min_tolerated = 0;
3823 }
3824
3825 return min_tolerated;
943c6e99
ZL
3826}
3827
eece6a9c 3828int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3829{
e5e9a520 3830 struct list_head *head;
f2984462 3831 struct btrfs_device *dev;
a061fc8d 3832 struct btrfs_super_block *sb;
f2984462 3833 struct btrfs_dev_item *dev_item;
f2984462
CM
3834 int ret;
3835 int do_barriers;
a236aed1
CM
3836 int max_errors;
3837 int total_errors = 0;
a061fc8d 3838 u64 flags;
f2984462 3839
0b246afa 3840 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3841
3842 /*
3843 * max_mirrors == 0 indicates we're from commit_transaction,
3844 * not from fsync where the tree roots in fs_info have not
3845 * been consistent on disk.
3846 */
3847 if (max_mirrors == 0)
3848 backup_super_roots(fs_info);
f2984462 3849
0b246afa 3850 sb = fs_info->super_for_commit;
a061fc8d 3851 dev_item = &sb->dev_item;
e5e9a520 3852
0b246afa
JM
3853 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3854 head = &fs_info->fs_devices->devices;
3855 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3856
5af3e8cc 3857 if (do_barriers) {
0b246afa 3858 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3859 if (ret) {
3860 mutex_unlock(
0b246afa
JM
3861 &fs_info->fs_devices->device_list_mutex);
3862 btrfs_handle_fs_error(fs_info, ret,
3863 "errors while submitting device barriers.");
5af3e8cc
SB
3864 return ret;
3865 }
3866 }
387125fc 3867
1538e6c5 3868 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3869 if (!dev->bdev) {
3870 total_errors++;
3871 continue;
3872 }
e12c9621 3873 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3874 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3875 continue;
3876
2b82032c 3877 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3878 btrfs_set_stack_device_type(dev_item, dev->type);
3879 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3880 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3881 dev->commit_total_bytes);
ce7213c7
MX
3882 btrfs_set_stack_device_bytes_used(dev_item,
3883 dev->commit_bytes_used);
a061fc8d
CM
3884 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3885 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3886 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3887 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3888 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3889 BTRFS_FSID_SIZE);
a512bbf8 3890
a061fc8d
CM
3891 flags = btrfs_super_flags(sb);
3892 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3893
75cb857d
QW
3894 ret = btrfs_validate_write_super(fs_info, sb);
3895 if (ret < 0) {
3896 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3897 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3898 "unexpected superblock corruption detected");
3899 return -EUCLEAN;
3900 }
3901
abbb3b8e 3902 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3903 if (ret)
3904 total_errors++;
f2984462 3905 }
a236aed1 3906 if (total_errors > max_errors) {
0b246afa
JM
3907 btrfs_err(fs_info, "%d errors while writing supers",
3908 total_errors);
3909 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3910
9d565ba4 3911 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3912 btrfs_handle_fs_error(fs_info, -EIO,
3913 "%d errors while writing supers",
3914 total_errors);
9d565ba4 3915 return -EIO;
a236aed1 3916 }
f2984462 3917
a512bbf8 3918 total_errors = 0;
1538e6c5 3919 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3920 if (!dev->bdev)
3921 continue;
e12c9621 3922 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3923 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3924 continue;
3925
abbb3b8e 3926 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3927 if (ret)
3928 total_errors++;
f2984462 3929 }
0b246afa 3930 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3931 if (total_errors > max_errors) {
0b246afa
JM
3932 btrfs_handle_fs_error(fs_info, -EIO,
3933 "%d errors while writing supers",
3934 total_errors);
79787eaa 3935 return -EIO;
a236aed1 3936 }
f2984462
CM
3937 return 0;
3938}
3939
cb517eab
MX
3940/* Drop a fs root from the radix tree and free it. */
3941void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3942 struct btrfs_root *root)
2619ba1f 3943{
4785e24f
JB
3944 bool drop_ref = false;
3945
4df27c4d 3946 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3947 radix_tree_delete(&fs_info->fs_roots_radix,
3948 (unsigned long)root->root_key.objectid);
af01d2e5 3949 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 3950 drop_ref = true;
4df27c4d 3951 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 3952
1c1ea4f7 3953 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 3954 ASSERT(root->log_root == NULL);
1c1ea4f7 3955 if (root->reloc_root) {
00246528 3956 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3957 root->reloc_root = NULL;
3958 }
3959 }
3321719e 3960
faa2dbf0
JB
3961 if (root->free_ino_pinned)
3962 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3963 if (root->free_ino_ctl)
3964 __btrfs_remove_free_space_cache(root->free_ino_ctl);
0e996e7f
JB
3965 if (root->ino_cache_inode) {
3966 iput(root->ino_cache_inode);
3967 root->ino_cache_inode = NULL;
3968 }
4785e24f
JB
3969 if (drop_ref)
3970 btrfs_put_root(root);
2619ba1f
CM
3971}
3972
c146afad 3973int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3974{
c146afad
YZ
3975 u64 root_objectid = 0;
3976 struct btrfs_root *gang[8];
65d33fd7
QW
3977 int i = 0;
3978 int err = 0;
3979 unsigned int ret = 0;
e089f05c 3980
c146afad 3981 while (1) {
efc34534 3982 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
3983 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3984 (void **)gang, root_objectid,
3985 ARRAY_SIZE(gang));
65d33fd7 3986 if (!ret) {
efc34534 3987 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 3988 break;
65d33fd7 3989 }
5d4f98a2 3990 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3991
c146afad 3992 for (i = 0; i < ret; i++) {
65d33fd7
QW
3993 /* Avoid to grab roots in dead_roots */
3994 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3995 gang[i] = NULL;
3996 continue;
3997 }
3998 /* grab all the search result for later use */
00246528 3999 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4000 }
efc34534 4001 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4002
65d33fd7
QW
4003 for (i = 0; i < ret; i++) {
4004 if (!gang[i])
4005 continue;
c146afad 4006 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4007 err = btrfs_orphan_cleanup(gang[i]);
4008 if (err)
65d33fd7 4009 break;
00246528 4010 btrfs_put_root(gang[i]);
c146afad
YZ
4011 }
4012 root_objectid++;
4013 }
65d33fd7
QW
4014
4015 /* release the uncleaned roots due to error */
4016 for (; i < ret; i++) {
4017 if (gang[i])
00246528 4018 btrfs_put_root(gang[i]);
65d33fd7
QW
4019 }
4020 return err;
c146afad 4021}
a2135011 4022
6bccf3ab 4023int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4024{
6bccf3ab 4025 struct btrfs_root *root = fs_info->tree_root;
c146afad 4026 struct btrfs_trans_handle *trans;
a74a4b97 4027
0b246afa 4028 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4029 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4030 mutex_unlock(&fs_info->cleaner_mutex);
4031 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4032
4033 /* wait until ongoing cleanup work done */
0b246afa
JM
4034 down_write(&fs_info->cleanup_work_sem);
4035 up_write(&fs_info->cleanup_work_sem);
c71bf099 4036
7a7eaa40 4037 trans = btrfs_join_transaction(root);
3612b495
TI
4038 if (IS_ERR(trans))
4039 return PTR_ERR(trans);
3a45bb20 4040 return btrfs_commit_transaction(trans);
c146afad
YZ
4041}
4042
b105e927 4043void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4044{
c146afad
YZ
4045 int ret;
4046
afcdd129 4047 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4048 /*
4049 * We don't want the cleaner to start new transactions, add more delayed
4050 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4051 * because that frees the task_struct, and the transaction kthread might
4052 * still try to wake up the cleaner.
4053 */
4054 kthread_park(fs_info->cleaner_kthread);
c146afad 4055
7343dd61 4056 /* wait for the qgroup rescan worker to stop */
d06f23d6 4057 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4058
803b2f54
SB
4059 /* wait for the uuid_scan task to finish */
4060 down(&fs_info->uuid_tree_rescan_sem);
4061 /* avoid complains from lockdep et al., set sem back to initial state */
4062 up(&fs_info->uuid_tree_rescan_sem);
4063
837d5b6e 4064 /* pause restriper - we want to resume on mount */
aa1b8cd4 4065 btrfs_pause_balance(fs_info);
837d5b6e 4066
8dabb742
SB
4067 btrfs_dev_replace_suspend_for_unmount(fs_info);
4068
aa1b8cd4 4069 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4070
4071 /* wait for any defraggers to finish */
4072 wait_event(fs_info->transaction_wait,
4073 (atomic_read(&fs_info->defrag_running) == 0));
4074
4075 /* clear out the rbtree of defraggable inodes */
26176e7c 4076 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4077
21c7e756 4078 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4079 cancel_work_sync(&fs_info->async_data_reclaim_work);
21c7e756 4080
b0643e59
DZ
4081 /* Cancel or finish ongoing discard work */
4082 btrfs_discard_cleanup(fs_info);
4083
bc98a42c 4084 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4085 /*
d6fd0ae2
OS
4086 * The cleaner kthread is stopped, so do one final pass over
4087 * unused block groups.
e44163e1 4088 */
0b246afa 4089 btrfs_delete_unused_bgs(fs_info);
e44163e1 4090
f0cc2cd7
FM
4091 /*
4092 * There might be existing delayed inode workers still running
4093 * and holding an empty delayed inode item. We must wait for
4094 * them to complete first because they can create a transaction.
4095 * This happens when someone calls btrfs_balance_delayed_items()
4096 * and then a transaction commit runs the same delayed nodes
4097 * before any delayed worker has done something with the nodes.
4098 * We must wait for any worker here and not at transaction
4099 * commit time since that could cause a deadlock.
4100 * This is a very rare case.
4101 */
4102 btrfs_flush_workqueue(fs_info->delayed_workers);
4103
6bccf3ab 4104 ret = btrfs_commit_super(fs_info);
acce952b 4105 if (ret)
04892340 4106 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4107 }
4108
af722733
LB
4109 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4110 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4111 btrfs_error_commit_super(fs_info);
0f7d52f4 4112
e3029d9f
AV
4113 kthread_stop(fs_info->transaction_kthread);
4114 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4115
e187831e 4116 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4117 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4118
5958253c
QW
4119 if (btrfs_check_quota_leak(fs_info)) {
4120 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4121 btrfs_err(fs_info, "qgroup reserved space leaked");
4122 }
4123
04892340 4124 btrfs_free_qgroup_config(fs_info);
fe816d0f 4125 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4126
963d678b 4127 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4128 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4129 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4130 }
bcc63abb 4131
4297ff84
JB
4132 if (percpu_counter_sum(&fs_info->dio_bytes))
4133 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4134 percpu_counter_sum(&fs_info->dio_bytes));
4135
6618a59b 4136 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4137 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4138
1a4319cc
LB
4139 btrfs_put_block_group_cache(fs_info);
4140
de348ee0
WS
4141 /*
4142 * we must make sure there is not any read request to
4143 * submit after we stopping all workers.
4144 */
4145 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4146 btrfs_stop_all_workers(fs_info);
4147
afcdd129 4148 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4149 free_root_pointers(fs_info, true);
8c38938c 4150 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4151
4e19443d
JB
4152 /*
4153 * We must free the block groups after dropping the fs_roots as we could
4154 * have had an IO error and have left over tree log blocks that aren't
4155 * cleaned up until the fs roots are freed. This makes the block group
4156 * accounting appear to be wrong because there's pending reserved bytes,
4157 * so make sure we do the block group cleanup afterwards.
4158 */
4159 btrfs_free_block_groups(fs_info);
4160
13e6c37b 4161 iput(fs_info->btree_inode);
d6bfde87 4162
21adbd5c 4163#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4164 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4165 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4166#endif
4167
0b86a832 4168 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4169 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4170}
4171
b9fab919
CM
4172int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4173 int atomic)
5f39d397 4174{
1259ab75 4175 int ret;
727011e0 4176 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4177
0b32f4bb 4178 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4179 if (!ret)
4180 return ret;
4181
4182 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4183 parent_transid, atomic);
4184 if (ret == -EAGAIN)
4185 return ret;
1259ab75 4186 return !ret;
5f39d397
CM
4187}
4188
5f39d397
CM
4189void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4190{
0b246afa 4191 struct btrfs_fs_info *fs_info;
06ea65a3 4192 struct btrfs_root *root;
5f39d397 4193 u64 transid = btrfs_header_generation(buf);
b9473439 4194 int was_dirty;
b4ce94de 4195
06ea65a3
JB
4196#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4197 /*
4198 * This is a fast path so only do this check if we have sanity tests
52042d8e 4199 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4200 * outside of the sanity tests.
4201 */
b0132a3b 4202 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4203 return;
4204#endif
4205 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4206 fs_info = root->fs_info;
b9447ef8 4207 btrfs_assert_tree_locked(buf);
0b246afa 4208 if (transid != fs_info->generation)
5d163e0e 4209 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4210 buf->start, transid, fs_info->generation);
0b32f4bb 4211 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4212 if (!was_dirty)
104b4e51
NB
4213 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4214 buf->len,
4215 fs_info->dirty_metadata_batch);
1f21ef0a 4216#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4217 /*
4218 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4219 * but item data not updated.
4220 * So here we should only check item pointers, not item data.
4221 */
4222 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4223 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4224 btrfs_print_leaf(buf);
1f21ef0a
FM
4225 ASSERT(0);
4226 }
4227#endif
eb60ceac
CM
4228}
4229
2ff7e61e 4230static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4231 int flush_delayed)
16cdcec7
MX
4232{
4233 /*
4234 * looks as though older kernels can get into trouble with
4235 * this code, they end up stuck in balance_dirty_pages forever
4236 */
e2d84521 4237 int ret;
16cdcec7
MX
4238
4239 if (current->flags & PF_MEMALLOC)
4240 return;
4241
b53d3f5d 4242 if (flush_delayed)
2ff7e61e 4243 btrfs_balance_delayed_items(fs_info);
16cdcec7 4244
d814a491
EL
4245 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4246 BTRFS_DIRTY_METADATA_THRESH,
4247 fs_info->dirty_metadata_batch);
e2d84521 4248 if (ret > 0) {
0b246afa 4249 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4250 }
16cdcec7
MX
4251}
4252
2ff7e61e 4253void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4254{
2ff7e61e 4255 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4256}
585ad2c3 4257
2ff7e61e 4258void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4259{
2ff7e61e 4260 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4261}
6b80053d 4262
581c1760
QW
4263int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4264 struct btrfs_key *first_key)
6b80053d 4265{
5ab12d1f 4266 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4267 level, first_key);
6b80053d 4268}
0da5468f 4269
2ff7e61e 4270static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4271{
fe816d0f
NB
4272 /* cleanup FS via transaction */
4273 btrfs_cleanup_transaction(fs_info);
4274
0b246afa 4275 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4276 btrfs_run_delayed_iputs(fs_info);
0b246afa 4277 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4278
0b246afa
JM
4279 down_write(&fs_info->cleanup_work_sem);
4280 up_write(&fs_info->cleanup_work_sem);
acce952b 4281}
4282
ef67963d
JB
4283static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4284{
4285 struct btrfs_root *gang[8];
4286 u64 root_objectid = 0;
4287 int ret;
4288
4289 spin_lock(&fs_info->fs_roots_radix_lock);
4290 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4291 (void **)gang, root_objectid,
4292 ARRAY_SIZE(gang))) != 0) {
4293 int i;
4294
4295 for (i = 0; i < ret; i++)
4296 gang[i] = btrfs_grab_root(gang[i]);
4297 spin_unlock(&fs_info->fs_roots_radix_lock);
4298
4299 for (i = 0; i < ret; i++) {
4300 if (!gang[i])
4301 continue;
4302 root_objectid = gang[i]->root_key.objectid;
4303 btrfs_free_log(NULL, gang[i]);
4304 btrfs_put_root(gang[i]);
4305 }
4306 root_objectid++;
4307 spin_lock(&fs_info->fs_roots_radix_lock);
4308 }
4309 spin_unlock(&fs_info->fs_roots_radix_lock);
4310 btrfs_free_log_root_tree(NULL, fs_info);
4311}
4312
143bede5 4313static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4314{
acce952b 4315 struct btrfs_ordered_extent *ordered;
acce952b 4316
199c2a9c 4317 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4318 /*
4319 * This will just short circuit the ordered completion stuff which will
4320 * make sure the ordered extent gets properly cleaned up.
4321 */
199c2a9c 4322 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4323 root_extent_list)
4324 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4325 spin_unlock(&root->ordered_extent_lock);
4326}
4327
4328static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4329{
4330 struct btrfs_root *root;
4331 struct list_head splice;
4332
4333 INIT_LIST_HEAD(&splice);
4334
4335 spin_lock(&fs_info->ordered_root_lock);
4336 list_splice_init(&fs_info->ordered_roots, &splice);
4337 while (!list_empty(&splice)) {
4338 root = list_first_entry(&splice, struct btrfs_root,
4339 ordered_root);
1de2cfde
JB
4340 list_move_tail(&root->ordered_root,
4341 &fs_info->ordered_roots);
199c2a9c 4342
2a85d9ca 4343 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4344 btrfs_destroy_ordered_extents(root);
4345
2a85d9ca
LB
4346 cond_resched();
4347 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4348 }
4349 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4350
4351 /*
4352 * We need this here because if we've been flipped read-only we won't
4353 * get sync() from the umount, so we need to make sure any ordered
4354 * extents that haven't had their dirty pages IO start writeout yet
4355 * actually get run and error out properly.
4356 */
4357 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4358}
4359
35a3621b 4360static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4361 struct btrfs_fs_info *fs_info)
acce952b 4362{
4363 struct rb_node *node;
4364 struct btrfs_delayed_ref_root *delayed_refs;
4365 struct btrfs_delayed_ref_node *ref;
4366 int ret = 0;
4367
4368 delayed_refs = &trans->delayed_refs;
4369
4370 spin_lock(&delayed_refs->lock);
d7df2c79 4371 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4372 spin_unlock(&delayed_refs->lock);
b79ce3dd 4373 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4374 return ret;
4375 }
4376
5c9d028b 4377 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4378 struct btrfs_delayed_ref_head *head;
0e0adbcf 4379 struct rb_node *n;
e78417d1 4380 bool pin_bytes = false;
acce952b 4381
d7df2c79
JB
4382 head = rb_entry(node, struct btrfs_delayed_ref_head,
4383 href_node);
3069bd26 4384 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4385 continue;
3069bd26 4386
d7df2c79 4387 spin_lock(&head->lock);
e3d03965 4388 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4389 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4390 ref_node);
d7df2c79 4391 ref->in_tree = 0;
e3d03965 4392 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4393 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4394 if (!list_empty(&ref->add_list))
4395 list_del(&ref->add_list);
d7df2c79
JB
4396 atomic_dec(&delayed_refs->num_entries);
4397 btrfs_put_delayed_ref(ref);
e78417d1 4398 }
d7df2c79
JB
4399 if (head->must_insert_reserved)
4400 pin_bytes = true;
4401 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4402 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4403 spin_unlock(&head->lock);
4404 spin_unlock(&delayed_refs->lock);
4405 mutex_unlock(&head->mutex);
acce952b 4406
f603bb94
NB
4407 if (pin_bytes) {
4408 struct btrfs_block_group *cache;
4409
4410 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4411 BUG_ON(!cache);
4412
4413 spin_lock(&cache->space_info->lock);
4414 spin_lock(&cache->lock);
4415 cache->pinned += head->num_bytes;
4416 btrfs_space_info_update_bytes_pinned(fs_info,
4417 cache->space_info, head->num_bytes);
4418 cache->reserved -= head->num_bytes;
4419 cache->space_info->bytes_reserved -= head->num_bytes;
4420 spin_unlock(&cache->lock);
4421 spin_unlock(&cache->space_info->lock);
4422 percpu_counter_add_batch(
4423 &cache->space_info->total_bytes_pinned,
4424 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4425
4426 btrfs_put_block_group(cache);
4427
4428 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4429 head->bytenr + head->num_bytes - 1);
4430 }
31890da0 4431 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4432 btrfs_put_delayed_ref_head(head);
acce952b 4433 cond_resched();
4434 spin_lock(&delayed_refs->lock);
4435 }
81f7eb00 4436 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4437
4438 spin_unlock(&delayed_refs->lock);
4439
4440 return ret;
4441}
4442
143bede5 4443static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4444{
4445 struct btrfs_inode *btrfs_inode;
4446 struct list_head splice;
4447
4448 INIT_LIST_HEAD(&splice);
4449
eb73c1b7
MX
4450 spin_lock(&root->delalloc_lock);
4451 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4452
4453 while (!list_empty(&splice)) {
fe816d0f 4454 struct inode *inode = NULL;
eb73c1b7
MX
4455 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4456 delalloc_inodes);
fe816d0f 4457 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4458 spin_unlock(&root->delalloc_lock);
acce952b 4459
fe816d0f
NB
4460 /*
4461 * Make sure we get a live inode and that it'll not disappear
4462 * meanwhile.
4463 */
4464 inode = igrab(&btrfs_inode->vfs_inode);
4465 if (inode) {
4466 invalidate_inode_pages2(inode->i_mapping);
4467 iput(inode);
4468 }
eb73c1b7 4469 spin_lock(&root->delalloc_lock);
acce952b 4470 }
eb73c1b7
MX
4471 spin_unlock(&root->delalloc_lock);
4472}
4473
4474static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4475{
4476 struct btrfs_root *root;
4477 struct list_head splice;
4478
4479 INIT_LIST_HEAD(&splice);
4480
4481 spin_lock(&fs_info->delalloc_root_lock);
4482 list_splice_init(&fs_info->delalloc_roots, &splice);
4483 while (!list_empty(&splice)) {
4484 root = list_first_entry(&splice, struct btrfs_root,
4485 delalloc_root);
00246528 4486 root = btrfs_grab_root(root);
eb73c1b7
MX
4487 BUG_ON(!root);
4488 spin_unlock(&fs_info->delalloc_root_lock);
4489
4490 btrfs_destroy_delalloc_inodes(root);
00246528 4491 btrfs_put_root(root);
eb73c1b7
MX
4492
4493 spin_lock(&fs_info->delalloc_root_lock);
4494 }
4495 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4496}
4497
2ff7e61e 4498static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4499 struct extent_io_tree *dirty_pages,
4500 int mark)
4501{
4502 int ret;
acce952b 4503 struct extent_buffer *eb;
4504 u64 start = 0;
4505 u64 end;
acce952b 4506
4507 while (1) {
4508 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4509 mark, NULL);
acce952b 4510 if (ret)
4511 break;
4512
91166212 4513 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4514 while (start <= end) {
0b246afa
JM
4515 eb = find_extent_buffer(fs_info, start);
4516 start += fs_info->nodesize;
fd8b2b61 4517 if (!eb)
acce952b 4518 continue;
fd8b2b61 4519 wait_on_extent_buffer_writeback(eb);
acce952b 4520
fd8b2b61
JB
4521 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4522 &eb->bflags))
4523 clear_extent_buffer_dirty(eb);
4524 free_extent_buffer_stale(eb);
acce952b 4525 }
4526 }
4527
4528 return ret;
4529}
4530
2ff7e61e 4531static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4532 struct extent_io_tree *unpin)
acce952b 4533{
acce952b 4534 u64 start;
4535 u64 end;
4536 int ret;
4537
acce952b 4538 while (1) {
0e6ec385
FM
4539 struct extent_state *cached_state = NULL;
4540
fcd5e742
LF
4541 /*
4542 * The btrfs_finish_extent_commit() may get the same range as
4543 * ours between find_first_extent_bit and clear_extent_dirty.
4544 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4545 * the same extent range.
4546 */
4547 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4548 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4549 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4550 if (ret) {
4551 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4552 break;
fcd5e742 4553 }
acce952b 4554
0e6ec385
FM
4555 clear_extent_dirty(unpin, start, end, &cached_state);
4556 free_extent_state(cached_state);
2ff7e61e 4557 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4558 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4559 cond_resched();
4560 }
4561
4562 return 0;
4563}
4564
32da5386 4565static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4566{
4567 struct inode *inode;
4568
4569 inode = cache->io_ctl.inode;
4570 if (inode) {
4571 invalidate_inode_pages2(inode->i_mapping);
4572 BTRFS_I(inode)->generation = 0;
4573 cache->io_ctl.inode = NULL;
4574 iput(inode);
4575 }
bbc37d6e 4576 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4577 btrfs_put_block_group(cache);
4578}
4579
4580void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4581 struct btrfs_fs_info *fs_info)
c79a1751 4582{
32da5386 4583 struct btrfs_block_group *cache;
c79a1751
LB
4584
4585 spin_lock(&cur_trans->dirty_bgs_lock);
4586 while (!list_empty(&cur_trans->dirty_bgs)) {
4587 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4588 struct btrfs_block_group,
c79a1751 4589 dirty_list);
c79a1751
LB
4590
4591 if (!list_empty(&cache->io_list)) {
4592 spin_unlock(&cur_trans->dirty_bgs_lock);
4593 list_del_init(&cache->io_list);
4594 btrfs_cleanup_bg_io(cache);
4595 spin_lock(&cur_trans->dirty_bgs_lock);
4596 }
4597
4598 list_del_init(&cache->dirty_list);
4599 spin_lock(&cache->lock);
4600 cache->disk_cache_state = BTRFS_DC_ERROR;
4601 spin_unlock(&cache->lock);
4602
4603 spin_unlock(&cur_trans->dirty_bgs_lock);
4604 btrfs_put_block_group(cache);
ba2c4d4e 4605 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4606 spin_lock(&cur_trans->dirty_bgs_lock);
4607 }
4608 spin_unlock(&cur_trans->dirty_bgs_lock);
4609
45ae2c18
NB
4610 /*
4611 * Refer to the definition of io_bgs member for details why it's safe
4612 * to use it without any locking
4613 */
c79a1751
LB
4614 while (!list_empty(&cur_trans->io_bgs)) {
4615 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4616 struct btrfs_block_group,
c79a1751 4617 io_list);
c79a1751
LB
4618
4619 list_del_init(&cache->io_list);
4620 spin_lock(&cache->lock);
4621 cache->disk_cache_state = BTRFS_DC_ERROR;
4622 spin_unlock(&cache->lock);
4623 btrfs_cleanup_bg_io(cache);
4624 }
4625}
4626
49b25e05 4627void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4628 struct btrfs_fs_info *fs_info)
49b25e05 4629{
bbbf7243
NB
4630 struct btrfs_device *dev, *tmp;
4631
2ff7e61e 4632 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4633 ASSERT(list_empty(&cur_trans->dirty_bgs));
4634 ASSERT(list_empty(&cur_trans->io_bgs));
4635
bbbf7243
NB
4636 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4637 post_commit_list) {
4638 list_del_init(&dev->post_commit_list);
4639 }
4640
2ff7e61e 4641 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4642
4a9d8bde 4643 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4644 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4645
4a9d8bde 4646 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4647 wake_up(&fs_info->transaction_wait);
49b25e05 4648
ccdf9b30 4649 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4650
2ff7e61e 4651 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4652 EXTENT_DIRTY);
fe119a6e 4653 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4654
4a9d8bde
MX
4655 cur_trans->state =TRANS_STATE_COMPLETED;
4656 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4657}
4658
2ff7e61e 4659static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4660{
4661 struct btrfs_transaction *t;
acce952b 4662
0b246afa 4663 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4664
0b246afa
JM
4665 spin_lock(&fs_info->trans_lock);
4666 while (!list_empty(&fs_info->trans_list)) {
4667 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4668 struct btrfs_transaction, list);
4669 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4670 refcount_inc(&t->use_count);
0b246afa 4671 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4672 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4673 btrfs_put_transaction(t);
0b246afa 4674 spin_lock(&fs_info->trans_lock);
724e2315
JB
4675 continue;
4676 }
0b246afa 4677 if (t == fs_info->running_transaction) {
724e2315 4678 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4679 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4680 /*
4681 * We wait for 0 num_writers since we don't hold a trans
4682 * handle open currently for this transaction.
4683 */
4684 wait_event(t->writer_wait,
4685 atomic_read(&t->num_writers) == 0);
4686 } else {
0b246afa 4687 spin_unlock(&fs_info->trans_lock);
724e2315 4688 }
2ff7e61e 4689 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4690
0b246afa
JM
4691 spin_lock(&fs_info->trans_lock);
4692 if (t == fs_info->running_transaction)
4693 fs_info->running_transaction = NULL;
acce952b 4694 list_del_init(&t->list);
0b246afa 4695 spin_unlock(&fs_info->trans_lock);
acce952b 4696
724e2315 4697 btrfs_put_transaction(t);
2ff7e61e 4698 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4699 spin_lock(&fs_info->trans_lock);
724e2315 4700 }
0b246afa
JM
4701 spin_unlock(&fs_info->trans_lock);
4702 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4703 btrfs_destroy_delayed_inodes(fs_info);
4704 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4705 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4706 btrfs_drop_all_logs(fs_info);
0b246afa 4707 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4708
4709 return 0;
4710}