]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: Output ENOSPC debug info in inc_block_group_ro
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
eb60ceac 42
de0022b9
JB
43#ifdef CONFIG_X86
44#include <asm/cpufeature.h>
45#endif
46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
e8c9f186 54static const struct extent_io_ops btree_extent_io_ops;
8b712842 55static void end_workqueue_fn(struct btrfs_work *work);
143bede5 56static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 57static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 58 struct btrfs_fs_info *fs_info);
143bede5 59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 60static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 61 struct extent_io_tree *dirty_pages,
62 int mark);
2ff7e61e 63static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 64 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
65static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 67
d352ac68 68/*
97eb6b69
DS
69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
70 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
71 * by writes to insert metadata for new file extents after IO is complete.
72 */
97eb6b69 73struct btrfs_end_io_wq {
ce9adaa5
CM
74 struct bio *bio;
75 bio_end_io_t *end_io;
76 void *private;
77 struct btrfs_fs_info *info;
4e4cbee9 78 blk_status_t status;
bfebd8b5 79 enum btrfs_wq_endio_type metadata;
8b712842 80 struct btrfs_work work;
ce9adaa5 81};
0da5468f 82
97eb6b69
DS
83static struct kmem_cache *btrfs_end_io_wq_cache;
84
85int __init btrfs_end_io_wq_init(void)
86{
87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 sizeof(struct btrfs_end_io_wq),
89 0,
fba4b697 90 SLAB_MEM_SPREAD,
97eb6b69
DS
91 NULL);
92 if (!btrfs_end_io_wq_cache)
93 return -ENOMEM;
94 return 0;
95}
96
e67c718b 97void __cold btrfs_end_io_wq_exit(void)
97eb6b69 98{
5598e900 99 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
100}
101
d352ac68
CM
102/*
103 * async submit bios are used to offload expensive checksumming
104 * onto the worker threads. They checksum file and metadata bios
105 * just before they are sent down the IO stack.
106 */
44b8bd7e 107struct async_submit_bio {
c6100a4b 108 void *private_data;
44b8bd7e 109 struct bio *bio;
a758781d 110 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 111 int mirror_num;
eaf25d93
CM
112 /*
113 * bio_offset is optional, can be used if the pages in the bio
114 * can't tell us where in the file the bio should go
115 */
116 u64 bio_offset;
8b712842 117 struct btrfs_work work;
4e4cbee9 118 blk_status_t status;
44b8bd7e
CM
119};
120
85d4e461
CM
121/*
122 * Lockdep class keys for extent_buffer->lock's in this root. For a given
123 * eb, the lockdep key is determined by the btrfs_root it belongs to and
124 * the level the eb occupies in the tree.
125 *
126 * Different roots are used for different purposes and may nest inside each
127 * other and they require separate keysets. As lockdep keys should be
128 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
129 * by btrfs_root->root_key.objectid. This ensures that all special purpose
130 * roots have separate keysets.
4008c04a 131 *
85d4e461
CM
132 * Lock-nesting across peer nodes is always done with the immediate parent
133 * node locked thus preventing deadlock. As lockdep doesn't know this, use
134 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 135 *
85d4e461
CM
136 * The key is set by the readpage_end_io_hook after the buffer has passed
137 * csum validation but before the pages are unlocked. It is also set by
138 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 139 *
85d4e461
CM
140 * We also add a check to make sure the highest level of the tree is the
141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
142 * needs update as well.
4008c04a
CM
143 */
144#ifdef CONFIG_DEBUG_LOCK_ALLOC
145# if BTRFS_MAX_LEVEL != 8
146# error
147# endif
85d4e461
CM
148
149static struct btrfs_lockdep_keyset {
150 u64 id; /* root objectid */
151 const char *name_stem; /* lock name stem */
152 char names[BTRFS_MAX_LEVEL + 1][20];
153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
154} btrfs_lockdep_keysets[] = {
155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 167 { .id = 0, .name_stem = "tree" },
4008c04a 168};
85d4e461
CM
169
170void __init btrfs_init_lockdep(void)
171{
172 int i, j;
173
174 /* initialize lockdep class names */
175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177
178 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 snprintf(ks->names[j], sizeof(ks->names[j]),
180 "btrfs-%s-%02d", ks->name_stem, j);
181 }
182}
183
184void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 int level)
186{
187 struct btrfs_lockdep_keyset *ks;
188
189 BUG_ON(level >= ARRAY_SIZE(ks->keys));
190
191 /* find the matching keyset, id 0 is the default entry */
192 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 if (ks->id == objectid)
194 break;
195
196 lockdep_set_class_and_name(&eb->lock,
197 &ks->keys[level], ks->names[level]);
198}
199
4008c04a
CM
200#endif
201
d352ac68
CM
202/*
203 * extents on the btree inode are pretty simple, there's one extent
204 * that covers the entire device
205 */
6af49dbd 206struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 207 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 208 int create)
7eccb903 209{
3ffbd68c 210 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 211 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
212 struct extent_map *em;
213 int ret;
214
890871be 215 read_lock(&em_tree->lock);
d1310b2e 216 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 217 if (em) {
0b246afa 218 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 219 read_unlock(&em_tree->lock);
5f39d397 220 goto out;
a061fc8d 221 }
890871be 222 read_unlock(&em_tree->lock);
7b13b7b1 223
172ddd60 224 em = alloc_extent_map();
5f39d397
CM
225 if (!em) {
226 em = ERR_PTR(-ENOMEM);
227 goto out;
228 }
229 em->start = 0;
0afbaf8c 230 em->len = (u64)-1;
c8b97818 231 em->block_len = (u64)-1;
5f39d397 232 em->block_start = 0;
0b246afa 233 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 234
890871be 235 write_lock(&em_tree->lock);
09a2a8f9 236 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
237 if (ret == -EEXIST) {
238 free_extent_map(em);
7b13b7b1 239 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 240 if (!em)
0433f20d 241 em = ERR_PTR(-EIO);
5f39d397 242 } else if (ret) {
7b13b7b1 243 free_extent_map(em);
0433f20d 244 em = ERR_PTR(ret);
5f39d397 245 }
890871be 246 write_unlock(&em_tree->lock);
7b13b7b1 247
5f39d397
CM
248out:
249 return em;
7eccb903
CM
250}
251
9ed57367 252u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 253{
9678c543 254 return crc32c(seed, data, len);
19c00ddc
CM
255}
256
0b5e3daf 257void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 258{
7e75bf3f 259 put_unaligned_le32(~crc, result);
19c00ddc
CM
260}
261
d352ac68
CM
262/*
263 * compute the csum for a btree block, and either verify it or write it
264 * into the csum field of the block.
265 */
01d58472
DD
266static int csum_tree_block(struct btrfs_fs_info *fs_info,
267 struct extent_buffer *buf,
19c00ddc
CM
268 int verify)
269{
01d58472 270 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
71a63551 271 char result[BTRFS_CSUM_SIZE];
19c00ddc
CM
272 unsigned long len;
273 unsigned long cur_len;
274 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
275 char *kaddr;
276 unsigned long map_start;
277 unsigned long map_len;
278 int err;
279 u32 crc = ~(u32)0;
280
281 len = buf->len - offset;
d397712b 282 while (len > 0) {
d2e174d5
JT
283 /*
284 * Note: we don't need to check for the err == 1 case here, as
285 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
286 * and 'min_len = 32' and the currently implemented mapping
287 * algorithm we cannot cross a page boundary.
288 */
19c00ddc 289 err = map_private_extent_buffer(buf, offset, 32,
a6591715 290 &kaddr, &map_start, &map_len);
d397712b 291 if (err)
8bd98f0e 292 return err;
19c00ddc 293 cur_len = min(len, map_len - (offset - map_start));
b0496686 294 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
295 crc, cur_len);
296 len -= cur_len;
297 offset += cur_len;
19c00ddc 298 }
71a63551 299 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 300
19c00ddc
CM
301 btrfs_csum_final(crc, result);
302
303 if (verify) {
607d432d 304 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
305 u32 val;
306 u32 found = 0;
607d432d 307 memcpy(&found, result, csum_size);
e4204ded 308
607d432d 309 read_extent_buffer(buf, &val, 0, csum_size);
94647322 310 btrfs_warn_rl(fs_info,
5d163e0e 311 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 312 fs_info->sb->s_id, buf->start,
efe120a0 313 val, found, btrfs_header_level(buf));
8bd98f0e 314 return -EUCLEAN;
19c00ddc
CM
315 }
316 } else {
607d432d 317 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 318 }
71a63551 319
19c00ddc
CM
320 return 0;
321}
322
d352ac68
CM
323/*
324 * we can't consider a given block up to date unless the transid of the
325 * block matches the transid in the parent node's pointer. This is how we
326 * detect blocks that either didn't get written at all or got written
327 * in the wrong place.
328 */
1259ab75 329static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
330 struct extent_buffer *eb, u64 parent_transid,
331 int atomic)
1259ab75 332{
2ac55d41 333 struct extent_state *cached_state = NULL;
1259ab75 334 int ret;
2755a0de 335 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
336
337 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
338 return 0;
339
b9fab919
CM
340 if (atomic)
341 return -EAGAIN;
342
a26e8c9f
JB
343 if (need_lock) {
344 btrfs_tree_read_lock(eb);
300aa896 345 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
346 }
347
2ac55d41 348 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 349 &cached_state);
0b32f4bb 350 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
351 btrfs_header_generation(eb) == parent_transid) {
352 ret = 0;
353 goto out;
354 }
94647322
DS
355 btrfs_err_rl(eb->fs_info,
356 "parent transid verify failed on %llu wanted %llu found %llu",
357 eb->start,
29549aec 358 parent_transid, btrfs_header_generation(eb));
1259ab75 359 ret = 1;
a26e8c9f
JB
360
361 /*
362 * Things reading via commit roots that don't have normal protection,
363 * like send, can have a really old block in cache that may point at a
01327610 364 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
365 * if we find an eb that is under IO (dirty/writeback) because we could
366 * end up reading in the stale data and then writing it back out and
367 * making everybody very sad.
368 */
369 if (!extent_buffer_under_io(eb))
370 clear_extent_buffer_uptodate(eb);
33958dc6 371out:
2ac55d41 372 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 373 &cached_state);
472b909f
JB
374 if (need_lock)
375 btrfs_tree_read_unlock_blocking(eb);
1259ab75 376 return ret;
1259ab75
CM
377}
378
1104a885
DS
379/*
380 * Return 0 if the superblock checksum type matches the checksum value of that
381 * algorithm. Pass the raw disk superblock data.
382 */
ab8d0fc4
JM
383static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
384 char *raw_disk_sb)
1104a885
DS
385{
386 struct btrfs_super_block *disk_sb =
387 (struct btrfs_super_block *)raw_disk_sb;
388 u16 csum_type = btrfs_super_csum_type(disk_sb);
389 int ret = 0;
390
391 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
392 u32 crc = ~(u32)0;
776c4a7c 393 char result[sizeof(crc)];
1104a885
DS
394
395 /*
396 * The super_block structure does not span the whole
397 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 398 * is filled with zeros and is included in the checksum.
1104a885
DS
399 */
400 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
401 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
402 btrfs_csum_final(crc, result);
403
776c4a7c 404 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
405 ret = 1;
406 }
407
408 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 409 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
410 csum_type);
411 ret = 1;
412 }
413
414 return ret;
415}
416
581c1760
QW
417static int verify_level_key(struct btrfs_fs_info *fs_info,
418 struct extent_buffer *eb, int level,
ff76a864 419 struct btrfs_key *first_key, u64 parent_transid)
581c1760
QW
420{
421 int found_level;
422 struct btrfs_key found_key;
423 int ret;
424
425 found_level = btrfs_header_level(eb);
426 if (found_level != level) {
427#ifdef CONFIG_BTRFS_DEBUG
428 WARN_ON(1);
429 btrfs_err(fs_info,
430"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
431 eb->start, level, found_level);
432#endif
433 return -EIO;
434 }
435
436 if (!first_key)
437 return 0;
438
5d41be6f
QW
439 /*
440 * For live tree block (new tree blocks in current transaction),
441 * we need proper lock context to avoid race, which is impossible here.
442 * So we only checks tree blocks which is read from disk, whose
443 * generation <= fs_info->last_trans_committed.
444 */
445 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
446 return 0;
581c1760
QW
447 if (found_level)
448 btrfs_node_key_to_cpu(eb, &found_key, 0);
449 else
450 btrfs_item_key_to_cpu(eb, &found_key, 0);
451 ret = btrfs_comp_cpu_keys(first_key, &found_key);
452
453#ifdef CONFIG_BTRFS_DEBUG
454 if (ret) {
455 WARN_ON(1);
456 btrfs_err(fs_info,
ff76a864
LB
457"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
458 eb->start, parent_transid, first_key->objectid,
459 first_key->type, first_key->offset,
460 found_key.objectid, found_key.type,
461 found_key.offset);
581c1760
QW
462 }
463#endif
464 return ret;
465}
466
d352ac68
CM
467/*
468 * helper to read a given tree block, doing retries as required when
469 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
470 *
471 * @parent_transid: expected transid, skip check if 0
472 * @level: expected level, mandatory check
473 * @first_key: expected key of first slot, skip check if NULL
d352ac68 474 */
2ff7e61e 475static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 476 struct extent_buffer *eb,
581c1760
QW
477 u64 parent_transid, int level,
478 struct btrfs_key *first_key)
f188591e
CM
479{
480 struct extent_io_tree *io_tree;
ea466794 481 int failed = 0;
f188591e
CM
482 int ret;
483 int num_copies = 0;
484 int mirror_num = 0;
ea466794 485 int failed_mirror = 0;
f188591e 486
0b246afa 487 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 488 while (1) {
f8397d69 489 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
8436ea91 490 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 491 mirror_num);
256dd1bb 492 if (!ret) {
581c1760 493 if (verify_parent_transid(io_tree, eb,
b9fab919 494 parent_transid, 0))
256dd1bb 495 ret = -EIO;
581c1760 496 else if (verify_level_key(fs_info, eb, level,
ff76a864 497 first_key, parent_transid))
581c1760
QW
498 ret = -EUCLEAN;
499 else
500 break;
256dd1bb 501 }
d397712b 502
0b246afa 503 num_copies = btrfs_num_copies(fs_info,
f188591e 504 eb->start, eb->len);
4235298e 505 if (num_copies == 1)
ea466794 506 break;
4235298e 507
5cf1ab56
JB
508 if (!failed_mirror) {
509 failed = 1;
510 failed_mirror = eb->read_mirror;
511 }
512
f188591e 513 mirror_num++;
ea466794
JB
514 if (mirror_num == failed_mirror)
515 mirror_num++;
516
4235298e 517 if (mirror_num > num_copies)
ea466794 518 break;
f188591e 519 }
ea466794 520
c0901581 521 if (failed && !ret && failed_mirror)
2ff7e61e 522 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
523
524 return ret;
f188591e 525}
19c00ddc 526
d352ac68 527/*
d397712b
CM
528 * checksum a dirty tree block before IO. This has extra checks to make sure
529 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 530 */
d397712b 531
01d58472 532static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 533{
4eee4fa4 534 u64 start = page_offset(page);
19c00ddc 535 u64 found_start;
19c00ddc 536 struct extent_buffer *eb;
f188591e 537
4f2de97a
JB
538 eb = (struct extent_buffer *)page->private;
539 if (page != eb->pages[0])
540 return 0;
0f805531 541
19c00ddc 542 found_start = btrfs_header_bytenr(eb);
0f805531
AL
543 /*
544 * Please do not consolidate these warnings into a single if.
545 * It is useful to know what went wrong.
546 */
547 if (WARN_ON(found_start != start))
548 return -EUCLEAN;
549 if (WARN_ON(!PageUptodate(page)))
550 return -EUCLEAN;
551
de37aa51 552 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
553 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
554
8bd98f0e 555 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
556}
557
01d58472 558static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
559 struct extent_buffer *eb)
560{
01d58472 561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 562 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
563 int ret = 1;
564
0a4e5586 565 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 566 while (fs_devices) {
7239ff4b
NB
567 u8 *metadata_uuid;
568
569 /*
570 * Checking the incompat flag is only valid for the current
571 * fs. For seed devices it's forbidden to have their uuid
572 * changed so reading ->fsid in this case is fine
573 */
574 if (fs_devices == fs_info->fs_devices &&
575 btrfs_fs_incompat(fs_info, METADATA_UUID))
576 metadata_uuid = fs_devices->metadata_uuid;
577 else
578 metadata_uuid = fs_devices->fsid;
579
580 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
581 ret = 0;
582 break;
583 }
584 fs_devices = fs_devices->seed;
585 }
586 return ret;
587}
588
facc8a22
MX
589static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
590 u64 phy_offset, struct page *page,
591 u64 start, u64 end, int mirror)
ce9adaa5 592{
ce9adaa5
CM
593 u64 found_start;
594 int found_level;
ce9adaa5
CM
595 struct extent_buffer *eb;
596 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 597 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 598 int ret = 0;
727011e0 599 int reads_done;
ce9adaa5 600
ce9adaa5
CM
601 if (!page->private)
602 goto out;
d397712b 603
4f2de97a 604 eb = (struct extent_buffer *)page->private;
d397712b 605
0b32f4bb
JB
606 /* the pending IO might have been the only thing that kept this buffer
607 * in memory. Make sure we have a ref for all this other checks
608 */
609 extent_buffer_get(eb);
610
611 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
612 if (!reads_done)
613 goto err;
f188591e 614
5cf1ab56 615 eb->read_mirror = mirror;
656f30db 616 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
617 ret = -EIO;
618 goto err;
619 }
620
ce9adaa5 621 found_start = btrfs_header_bytenr(eb);
727011e0 622 if (found_start != eb->start) {
893bf4b1
SY
623 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
624 eb->start, found_start);
f188591e 625 ret = -EIO;
ce9adaa5
CM
626 goto err;
627 }
02873e43
ZL
628 if (check_tree_block_fsid(fs_info, eb)) {
629 btrfs_err_rl(fs_info, "bad fsid on block %llu",
630 eb->start);
1259ab75
CM
631 ret = -EIO;
632 goto err;
633 }
ce9adaa5 634 found_level = btrfs_header_level(eb);
1c24c3ce 635 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
636 btrfs_err(fs_info, "bad tree block level %d on %llu",
637 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
638 ret = -EIO;
639 goto err;
640 }
ce9adaa5 641
85d4e461
CM
642 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
643 eb, found_level);
4008c04a 644
02873e43 645 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 646 if (ret)
a826d6dc 647 goto err;
a826d6dc
JB
648
649 /*
650 * If this is a leaf block and it is corrupt, set the corrupt bit so
651 * that we don't try and read the other copies of this block, just
652 * return -EIO.
653 */
2f659546 654 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
a826d6dc
JB
655 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
656 ret = -EIO;
657 }
ce9adaa5 658
2f659546 659 if (found_level > 0 && btrfs_check_node(fs_info, eb))
053ab70f
LB
660 ret = -EIO;
661
0b32f4bb
JB
662 if (!ret)
663 set_extent_buffer_uptodate(eb);
ce9adaa5 664err:
79fb65a1
JB
665 if (reads_done &&
666 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 667 btree_readahead_hook(eb, ret);
4bb31e92 668
53b381b3
DW
669 if (ret) {
670 /*
671 * our io error hook is going to dec the io pages
672 * again, we have to make sure it has something
673 * to decrement
674 */
675 atomic_inc(&eb->io_pages);
0b32f4bb 676 clear_extent_buffer_uptodate(eb);
53b381b3 677 }
0b32f4bb 678 free_extent_buffer(eb);
ce9adaa5 679out:
f188591e 680 return ret;
ce9adaa5
CM
681}
682
4246a0b6 683static void end_workqueue_bio(struct bio *bio)
ce9adaa5 684{
97eb6b69 685 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 686 struct btrfs_fs_info *fs_info;
9e0af237
LB
687 struct btrfs_workqueue *wq;
688 btrfs_work_func_t func;
ce9adaa5 689
ce9adaa5 690 fs_info = end_io_wq->info;
4e4cbee9 691 end_io_wq->status = bio->bi_status;
d20f7043 692
37226b21 693 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
694 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
695 wq = fs_info->endio_meta_write_workers;
696 func = btrfs_endio_meta_write_helper;
697 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
698 wq = fs_info->endio_freespace_worker;
699 func = btrfs_freespace_write_helper;
700 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
701 wq = fs_info->endio_raid56_workers;
702 func = btrfs_endio_raid56_helper;
703 } else {
704 wq = fs_info->endio_write_workers;
705 func = btrfs_endio_write_helper;
706 }
d20f7043 707 } else {
8b110e39
MX
708 if (unlikely(end_io_wq->metadata ==
709 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
710 wq = fs_info->endio_repair_workers;
711 func = btrfs_endio_repair_helper;
712 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
713 wq = fs_info->endio_raid56_workers;
714 func = btrfs_endio_raid56_helper;
715 } else if (end_io_wq->metadata) {
716 wq = fs_info->endio_meta_workers;
717 func = btrfs_endio_meta_helper;
718 } else {
719 wq = fs_info->endio_workers;
720 func = btrfs_endio_helper;
721 }
d20f7043 722 }
9e0af237
LB
723
724 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
725 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
726}
727
4e4cbee9 728blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 729 enum btrfs_wq_endio_type metadata)
0b86a832 730{
97eb6b69 731 struct btrfs_end_io_wq *end_io_wq;
8b110e39 732
97eb6b69 733 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 734 if (!end_io_wq)
4e4cbee9 735 return BLK_STS_RESOURCE;
ce9adaa5
CM
736
737 end_io_wq->private = bio->bi_private;
738 end_io_wq->end_io = bio->bi_end_io;
22c59948 739 end_io_wq->info = info;
4e4cbee9 740 end_io_wq->status = 0;
ce9adaa5 741 end_io_wq->bio = bio;
22c59948 742 end_io_wq->metadata = metadata;
ce9adaa5
CM
743
744 bio->bi_private = end_io_wq;
745 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
746 return 0;
747}
748
4a69a410
CM
749static void run_one_async_start(struct btrfs_work *work)
750{
4a69a410 751 struct async_submit_bio *async;
4e4cbee9 752 blk_status_t ret;
4a69a410
CM
753
754 async = container_of(work, struct async_submit_bio, work);
c6100a4b 755 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
756 async->bio_offset);
757 if (ret)
4e4cbee9 758 async->status = ret;
4a69a410
CM
759}
760
06ea01b1
DS
761/*
762 * In order to insert checksums into the metadata in large chunks, we wait
763 * until bio submission time. All the pages in the bio are checksummed and
764 * sums are attached onto the ordered extent record.
765 *
766 * At IO completion time the csums attached on the ordered extent record are
767 * inserted into the tree.
768 */
4a69a410 769static void run_one_async_done(struct btrfs_work *work)
8b712842 770{
8b712842 771 struct async_submit_bio *async;
06ea01b1
DS
772 struct inode *inode;
773 blk_status_t ret;
8b712842
CM
774
775 async = container_of(work, struct async_submit_bio, work);
06ea01b1 776 inode = async->private_data;
4854ddd0 777
bb7ab3b9 778 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
779 if (async->status) {
780 async->bio->bi_status = async->status;
4246a0b6 781 bio_endio(async->bio);
79787eaa
JM
782 return;
783 }
784
06ea01b1
DS
785 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
786 async->mirror_num, 1);
787 if (ret) {
788 async->bio->bi_status = ret;
789 bio_endio(async->bio);
790 }
4a69a410
CM
791}
792
793static void run_one_async_free(struct btrfs_work *work)
794{
795 struct async_submit_bio *async;
796
797 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
798 kfree(async);
799}
800
8c27cb35
LT
801blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
802 int mirror_num, unsigned long bio_flags,
803 u64 bio_offset, void *private_data,
e288c080 804 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
805{
806 struct async_submit_bio *async;
807
808 async = kmalloc(sizeof(*async), GFP_NOFS);
809 if (!async)
4e4cbee9 810 return BLK_STS_RESOURCE;
44b8bd7e 811
c6100a4b 812 async->private_data = private_data;
44b8bd7e
CM
813 async->bio = bio;
814 async->mirror_num = mirror_num;
4a69a410 815 async->submit_bio_start = submit_bio_start;
4a69a410 816
9e0af237 817 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 818 run_one_async_done, run_one_async_free);
4a69a410 819
eaf25d93 820 async->bio_offset = bio_offset;
8c8bee1d 821
4e4cbee9 822 async->status = 0;
79787eaa 823
67f055c7 824 if (op_is_sync(bio->bi_opf))
5cdc7ad3 825 btrfs_set_work_high_priority(&async->work);
d313d7a3 826
5cdc7ad3 827 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
828 return 0;
829}
830
4e4cbee9 831static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 832{
2c30c71b 833 struct bio_vec *bvec;
ce3ed71a 834 struct btrfs_root *root;
2c30c71b 835 int i, ret = 0;
ce3ed71a 836
c09abff8 837 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 838 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 839 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 840 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
841 if (ret)
842 break;
ce3ed71a 843 }
2c30c71b 844
4e4cbee9 845 return errno_to_blk_status(ret);
ce3ed71a
CM
846}
847
d0ee3934 848static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 849 u64 bio_offset)
22c59948 850{
8b712842
CM
851 /*
852 * when we're called for a write, we're already in the async
5443be45 853 * submission context. Just jump into btrfs_map_bio
8b712842 854 */
79787eaa 855 return btree_csum_one_bio(bio);
4a69a410 856}
22c59948 857
18fdc679 858static int check_async_write(struct btrfs_inode *bi)
de0022b9 859{
6300463b
LB
860 if (atomic_read(&bi->sync_writers))
861 return 0;
de0022b9 862#ifdef CONFIG_X86
bc696ca0 863 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
864 return 0;
865#endif
866 return 1;
867}
868
8c27cb35
LT
869static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
870 int mirror_num, unsigned long bio_flags,
871 u64 bio_offset)
44b8bd7e 872{
c6100a4b 873 struct inode *inode = private_data;
0b246afa 874 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 875 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 876 blk_status_t ret;
cad321ad 877
37226b21 878 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
879 /*
880 * called for a read, do the setup so that checksum validation
881 * can happen in the async kernel threads
882 */
0b246afa
JM
883 ret = btrfs_bio_wq_end_io(fs_info, bio,
884 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 885 if (ret)
61891923 886 goto out_w_error;
2ff7e61e 887 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
888 } else if (!async) {
889 ret = btree_csum_one_bio(bio);
890 if (ret)
61891923 891 goto out_w_error;
2ff7e61e 892 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
893 } else {
894 /*
895 * kthread helpers are used to submit writes so that
896 * checksumming can happen in parallel across all CPUs
897 */
c6100a4b
JB
898 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
899 bio_offset, private_data,
e288c080 900 btree_submit_bio_start);
44b8bd7e 901 }
d313d7a3 902
4246a0b6
CH
903 if (ret)
904 goto out_w_error;
905 return 0;
906
61891923 907out_w_error:
4e4cbee9 908 bio->bi_status = ret;
4246a0b6 909 bio_endio(bio);
61891923 910 return ret;
44b8bd7e
CM
911}
912
3dd1462e 913#ifdef CONFIG_MIGRATION
784b4e29 914static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
915 struct page *newpage, struct page *page,
916 enum migrate_mode mode)
784b4e29
CM
917{
918 /*
919 * we can't safely write a btree page from here,
920 * we haven't done the locking hook
921 */
922 if (PageDirty(page))
923 return -EAGAIN;
924 /*
925 * Buffers may be managed in a filesystem specific way.
926 * We must have no buffers or drop them.
927 */
928 if (page_has_private(page) &&
929 !try_to_release_page(page, GFP_KERNEL))
930 return -EAGAIN;
a6bc32b8 931 return migrate_page(mapping, newpage, page, mode);
784b4e29 932}
3dd1462e 933#endif
784b4e29 934
0da5468f
CM
935
936static int btree_writepages(struct address_space *mapping,
937 struct writeback_control *wbc)
938{
e2d84521
MX
939 struct btrfs_fs_info *fs_info;
940 int ret;
941
d8d5f3e1 942 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
943
944 if (wbc->for_kupdate)
945 return 0;
946
e2d84521 947 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 948 /* this is a bit racy, but that's ok */
d814a491
EL
949 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
950 BTRFS_DIRTY_METADATA_THRESH,
951 fs_info->dirty_metadata_batch);
e2d84521 952 if (ret < 0)
793955bc 953 return 0;
793955bc 954 }
0b32f4bb 955 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
956}
957
b2950863 958static int btree_readpage(struct file *file, struct page *page)
5f39d397 959{
d1310b2e
CM
960 struct extent_io_tree *tree;
961 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 962 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 963}
22b0ebda 964
70dec807 965static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 966{
98509cfc 967 if (PageWriteback(page) || PageDirty(page))
d397712b 968 return 0;
0c4e538b 969
f7a52a40 970 return try_release_extent_buffer(page);
d98237b3
CM
971}
972
d47992f8
LC
973static void btree_invalidatepage(struct page *page, unsigned int offset,
974 unsigned int length)
d98237b3 975{
d1310b2e
CM
976 struct extent_io_tree *tree;
977 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
978 extent_invalidatepage(tree, page, offset);
979 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 980 if (PagePrivate(page)) {
efe120a0
FH
981 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
982 "page private not zero on page %llu",
983 (unsigned long long)page_offset(page));
9ad6b7bc
CM
984 ClearPagePrivate(page);
985 set_page_private(page, 0);
09cbfeaf 986 put_page(page);
9ad6b7bc 987 }
d98237b3
CM
988}
989
0b32f4bb
JB
990static int btree_set_page_dirty(struct page *page)
991{
bb146eb2 992#ifdef DEBUG
0b32f4bb
JB
993 struct extent_buffer *eb;
994
995 BUG_ON(!PagePrivate(page));
996 eb = (struct extent_buffer *)page->private;
997 BUG_ON(!eb);
998 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
999 BUG_ON(!atomic_read(&eb->refs));
1000 btrfs_assert_tree_locked(eb);
bb146eb2 1001#endif
0b32f4bb
JB
1002 return __set_page_dirty_nobuffers(page);
1003}
1004
7f09410b 1005static const struct address_space_operations btree_aops = {
d98237b3 1006 .readpage = btree_readpage,
0da5468f 1007 .writepages = btree_writepages,
5f39d397
CM
1008 .releasepage = btree_releasepage,
1009 .invalidatepage = btree_invalidatepage,
5a92bc88 1010#ifdef CONFIG_MIGRATION
784b4e29 1011 .migratepage = btree_migratepage,
5a92bc88 1012#endif
0b32f4bb 1013 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1014};
1015
2ff7e61e 1016void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1017{
5f39d397 1018 struct extent_buffer *buf = NULL;
2ff7e61e 1019 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1020
2ff7e61e 1021 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1022 if (IS_ERR(buf))
6197d86e 1023 return;
d1310b2e 1024 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
6af49dbd 1025 buf, WAIT_NONE, 0);
5f39d397 1026 free_extent_buffer(buf);
090d1875
CM
1027}
1028
2ff7e61e 1029int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1030 int mirror_num, struct extent_buffer **eb)
1031{
1032 struct extent_buffer *buf = NULL;
2ff7e61e 1033 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1034 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1035 int ret;
1036
2ff7e61e 1037 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1038 if (IS_ERR(buf))
ab0fff03
AJ
1039 return 0;
1040
1041 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1042
8436ea91 1043 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1044 mirror_num);
ab0fff03
AJ
1045 if (ret) {
1046 free_extent_buffer(buf);
1047 return ret;
1048 }
1049
1050 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1051 free_extent_buffer(buf);
1052 return -EIO;
0b32f4bb 1053 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1054 *eb = buf;
1055 } else {
1056 free_extent_buffer(buf);
1057 }
1058 return 0;
1059}
1060
2ff7e61e
JM
1061struct extent_buffer *btrfs_find_create_tree_block(
1062 struct btrfs_fs_info *fs_info,
1063 u64 bytenr)
0999df54 1064{
0b246afa
JM
1065 if (btrfs_is_testing(fs_info))
1066 return alloc_test_extent_buffer(fs_info, bytenr);
1067 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1068}
1069
1070
e02119d5
CM
1071int btrfs_write_tree_block(struct extent_buffer *buf)
1072{
727011e0 1073 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1074 buf->start + buf->len - 1);
e02119d5
CM
1075}
1076
3189ff77 1077void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1078{
3189ff77
JL
1079 filemap_fdatawait_range(buf->pages[0]->mapping,
1080 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1081}
1082
581c1760
QW
1083/*
1084 * Read tree block at logical address @bytenr and do variant basic but critical
1085 * verification.
1086 *
1087 * @parent_transid: expected transid of this tree block, skip check if 0
1088 * @level: expected level, mandatory check
1089 * @first_key: expected key in slot 0, skip check if NULL
1090 */
2ff7e61e 1091struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1092 u64 parent_transid, int level,
1093 struct btrfs_key *first_key)
0999df54
CM
1094{
1095 struct extent_buffer *buf = NULL;
0999df54
CM
1096 int ret;
1097
2ff7e61e 1098 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1099 if (IS_ERR(buf))
1100 return buf;
0999df54 1101
581c1760
QW
1102 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1103 level, first_key);
0f0fe8f7
FDBM
1104 if (ret) {
1105 free_extent_buffer(buf);
64c043de 1106 return ERR_PTR(ret);
0f0fe8f7 1107 }
5f39d397 1108 return buf;
ce9adaa5 1109
eb60ceac
CM
1110}
1111
7c302b49 1112void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1113 struct extent_buffer *buf)
ed2ff2cb 1114{
55c69072 1115 if (btrfs_header_generation(buf) ==
e2d84521 1116 fs_info->running_transaction->transid) {
b9447ef8 1117 btrfs_assert_tree_locked(buf);
b4ce94de 1118
b9473439 1119 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1120 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1121 -buf->len,
1122 fs_info->dirty_metadata_batch);
ed7b63eb 1123 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1124 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1125 clear_extent_buffer_dirty(buf);
1126 }
925baedd 1127 }
5f39d397
CM
1128}
1129
8257b2dc
MX
1130static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1131{
1132 struct btrfs_subvolume_writers *writers;
1133 int ret;
1134
1135 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1136 if (!writers)
1137 return ERR_PTR(-ENOMEM);
1138
8a5a916d 1139 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1140 if (ret < 0) {
1141 kfree(writers);
1142 return ERR_PTR(ret);
1143 }
1144
1145 init_waitqueue_head(&writers->wait);
1146 return writers;
1147}
1148
1149static void
1150btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1151{
1152 percpu_counter_destroy(&writers->counter);
1153 kfree(writers);
1154}
1155
da17066c 1156static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1157 u64 objectid)
d97e63b6 1158{
7c0260ee 1159 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1160 root->node = NULL;
a28ec197 1161 root->commit_root = NULL;
27cdeb70 1162 root->state = 0;
d68fc57b 1163 root->orphan_cleanup_state = 0;
0b86a832 1164
0f7d52f4 1165 root->last_trans = 0;
13a8a7c8 1166 root->highest_objectid = 0;
eb73c1b7 1167 root->nr_delalloc_inodes = 0;
199c2a9c 1168 root->nr_ordered_extents = 0;
6bef4d31 1169 root->inode_tree = RB_ROOT;
16cdcec7 1170 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1171 root->block_rsv = NULL;
0b86a832
CM
1172
1173 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1174 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1175 INIT_LIST_HEAD(&root->delalloc_inodes);
1176 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1177 INIT_LIST_HEAD(&root->ordered_extents);
1178 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1179 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1180 INIT_LIST_HEAD(&root->logged_list[0]);
1181 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1182 spin_lock_init(&root->inode_lock);
eb73c1b7 1183 spin_lock_init(&root->delalloc_lock);
199c2a9c 1184 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1185 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1186 spin_lock_init(&root->log_extents_lock[0]);
1187 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1188 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1189 mutex_init(&root->objectid_mutex);
e02119d5 1190 mutex_init(&root->log_mutex);
31f3d255 1191 mutex_init(&root->ordered_extent_mutex);
573bfb72 1192 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1193 init_waitqueue_head(&root->log_writer_wait);
1194 init_waitqueue_head(&root->log_commit_wait[0]);
1195 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1196 INIT_LIST_HEAD(&root->log_ctxs[0]);
1197 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1198 atomic_set(&root->log_commit[0], 0);
1199 atomic_set(&root->log_commit[1], 0);
1200 atomic_set(&root->log_writers, 0);
2ecb7923 1201 atomic_set(&root->log_batch, 0);
0700cea7 1202 refcount_set(&root->refs, 1);
ea14b57f 1203 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1204 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1205 atomic_set(&root->nr_swapfiles, 0);
7237f183 1206 root->log_transid = 0;
d1433deb 1207 root->log_transid_committed = -1;
257c62e1 1208 root->last_log_commit = 0;
7c0260ee 1209 if (!dummy)
c6100a4b 1210 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1211
3768f368
CM
1212 memset(&root->root_key, 0, sizeof(root->root_key));
1213 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1214 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1215 if (!dummy)
06ea65a3
JB
1216 root->defrag_trans_start = fs_info->generation;
1217 else
1218 root->defrag_trans_start = 0;
4d775673 1219 root->root_key.objectid = objectid;
0ee5dc67 1220 root->anon_dev = 0;
8ea05e3a 1221
5f3ab90a 1222 spin_lock_init(&root->root_item_lock);
370a11b8 1223 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1224}
1225
74e4d827
DS
1226static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1227 gfp_t flags)
6f07e42e 1228{
74e4d827 1229 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1230 if (root)
1231 root->fs_info = fs_info;
1232 return root;
1233}
1234
06ea65a3
JB
1235#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1236/* Should only be used by the testing infrastructure */
da17066c 1237struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1238{
1239 struct btrfs_root *root;
1240
7c0260ee
JM
1241 if (!fs_info)
1242 return ERR_PTR(-EINVAL);
1243
1244 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1245 if (!root)
1246 return ERR_PTR(-ENOMEM);
da17066c 1247
b9ef22de 1248 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1249 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1250 root->alloc_bytenr = 0;
06ea65a3
JB
1251
1252 return root;
1253}
1254#endif
1255
20897f5c
AJ
1256struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1257 struct btrfs_fs_info *fs_info,
1258 u64 objectid)
1259{
1260 struct extent_buffer *leaf;
1261 struct btrfs_root *tree_root = fs_info->tree_root;
1262 struct btrfs_root *root;
1263 struct btrfs_key key;
b89f6d1f 1264 unsigned int nofs_flag;
20897f5c 1265 int ret = 0;
33d85fda 1266 uuid_le uuid = NULL_UUID_LE;
20897f5c 1267
b89f6d1f
FM
1268 /*
1269 * We're holding a transaction handle, so use a NOFS memory allocation
1270 * context to avoid deadlock if reclaim happens.
1271 */
1272 nofs_flag = memalloc_nofs_save();
74e4d827 1273 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1274 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1275 if (!root)
1276 return ERR_PTR(-ENOMEM);
1277
da17066c 1278 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1279 root->root_key.objectid = objectid;
1280 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1281 root->root_key.offset = 0;
1282
4d75f8a9 1283 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1284 if (IS_ERR(leaf)) {
1285 ret = PTR_ERR(leaf);
1dd05682 1286 leaf = NULL;
20897f5c
AJ
1287 goto fail;
1288 }
1289
20897f5c 1290 root->node = leaf;
20897f5c
AJ
1291 btrfs_mark_buffer_dirty(leaf);
1292
1293 root->commit_root = btrfs_root_node(root);
27cdeb70 1294 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1295
1296 root->root_item.flags = 0;
1297 root->root_item.byte_limit = 0;
1298 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1299 btrfs_set_root_generation(&root->root_item, trans->transid);
1300 btrfs_set_root_level(&root->root_item, 0);
1301 btrfs_set_root_refs(&root->root_item, 1);
1302 btrfs_set_root_used(&root->root_item, leaf->len);
1303 btrfs_set_root_last_snapshot(&root->root_item, 0);
1304 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1305 if (is_fstree(objectid))
1306 uuid_le_gen(&uuid);
6463fe58 1307 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1308 root->root_item.drop_level = 0;
1309
1310 key.objectid = objectid;
1311 key.type = BTRFS_ROOT_ITEM_KEY;
1312 key.offset = 0;
1313 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1314 if (ret)
1315 goto fail;
1316
1317 btrfs_tree_unlock(leaf);
1318
1dd05682
TI
1319 return root;
1320
20897f5c 1321fail:
1dd05682
TI
1322 if (leaf) {
1323 btrfs_tree_unlock(leaf);
59885b39 1324 free_extent_buffer(root->commit_root);
1dd05682
TI
1325 free_extent_buffer(leaf);
1326 }
1327 kfree(root);
20897f5c 1328
1dd05682 1329 return ERR_PTR(ret);
20897f5c
AJ
1330}
1331
7237f183
YZ
1332static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1333 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1334{
1335 struct btrfs_root *root;
7237f183 1336 struct extent_buffer *leaf;
e02119d5 1337
74e4d827 1338 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1339 if (!root)
7237f183 1340 return ERR_PTR(-ENOMEM);
e02119d5 1341
da17066c 1342 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1343
1344 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1345 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1346 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1347
7237f183 1348 /*
27cdeb70
MX
1349 * DON'T set REF_COWS for log trees
1350 *
7237f183
YZ
1351 * log trees do not get reference counted because they go away
1352 * before a real commit is actually done. They do store pointers
1353 * to file data extents, and those reference counts still get
1354 * updated (along with back refs to the log tree).
1355 */
e02119d5 1356
4d75f8a9
DS
1357 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1358 NULL, 0, 0, 0);
7237f183
YZ
1359 if (IS_ERR(leaf)) {
1360 kfree(root);
1361 return ERR_CAST(leaf);
1362 }
e02119d5 1363
7237f183 1364 root->node = leaf;
e02119d5 1365
e02119d5
CM
1366 btrfs_mark_buffer_dirty(root->node);
1367 btrfs_tree_unlock(root->node);
7237f183
YZ
1368 return root;
1369}
1370
1371int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1372 struct btrfs_fs_info *fs_info)
1373{
1374 struct btrfs_root *log_root;
1375
1376 log_root = alloc_log_tree(trans, fs_info);
1377 if (IS_ERR(log_root))
1378 return PTR_ERR(log_root);
1379 WARN_ON(fs_info->log_root_tree);
1380 fs_info->log_root_tree = log_root;
1381 return 0;
1382}
1383
1384int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1385 struct btrfs_root *root)
1386{
0b246afa 1387 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1388 struct btrfs_root *log_root;
1389 struct btrfs_inode_item *inode_item;
1390
0b246afa 1391 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1392 if (IS_ERR(log_root))
1393 return PTR_ERR(log_root);
1394
1395 log_root->last_trans = trans->transid;
1396 log_root->root_key.offset = root->root_key.objectid;
1397
1398 inode_item = &log_root->root_item.inode;
3cae210f
QW
1399 btrfs_set_stack_inode_generation(inode_item, 1);
1400 btrfs_set_stack_inode_size(inode_item, 3);
1401 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1402 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1403 fs_info->nodesize);
3cae210f 1404 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1405
5d4f98a2 1406 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1407
1408 WARN_ON(root->log_root);
1409 root->log_root = log_root;
1410 root->log_transid = 0;
d1433deb 1411 root->log_transid_committed = -1;
257c62e1 1412 root->last_log_commit = 0;
e02119d5
CM
1413 return 0;
1414}
1415
35a3621b
SB
1416static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1417 struct btrfs_key *key)
e02119d5
CM
1418{
1419 struct btrfs_root *root;
1420 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1421 struct btrfs_path *path;
84234f3a 1422 u64 generation;
cb517eab 1423 int ret;
581c1760 1424 int level;
0f7d52f4 1425
cb517eab
MX
1426 path = btrfs_alloc_path();
1427 if (!path)
0f7d52f4 1428 return ERR_PTR(-ENOMEM);
cb517eab 1429
74e4d827 1430 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1431 if (!root) {
1432 ret = -ENOMEM;
1433 goto alloc_fail;
0f7d52f4
CM
1434 }
1435
da17066c 1436 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1437
cb517eab
MX
1438 ret = btrfs_find_root(tree_root, key, path,
1439 &root->root_item, &root->root_key);
0f7d52f4 1440 if (ret) {
13a8a7c8
YZ
1441 if (ret > 0)
1442 ret = -ENOENT;
cb517eab 1443 goto find_fail;
0f7d52f4 1444 }
13a8a7c8 1445
84234f3a 1446 generation = btrfs_root_generation(&root->root_item);
581c1760 1447 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1448 root->node = read_tree_block(fs_info,
1449 btrfs_root_bytenr(&root->root_item),
581c1760 1450 generation, level, NULL);
64c043de
LB
1451 if (IS_ERR(root->node)) {
1452 ret = PTR_ERR(root->node);
cb517eab
MX
1453 goto find_fail;
1454 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1455 ret = -EIO;
64c043de
LB
1456 free_extent_buffer(root->node);
1457 goto find_fail;
416bc658 1458 }
5d4f98a2 1459 root->commit_root = btrfs_root_node(root);
13a8a7c8 1460out:
cb517eab
MX
1461 btrfs_free_path(path);
1462 return root;
1463
cb517eab
MX
1464find_fail:
1465 kfree(root);
1466alloc_fail:
1467 root = ERR_PTR(ret);
1468 goto out;
1469}
1470
1471struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1472 struct btrfs_key *location)
1473{
1474 struct btrfs_root *root;
1475
1476 root = btrfs_read_tree_root(tree_root, location);
1477 if (IS_ERR(root))
1478 return root;
1479
1480 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1481 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1482 btrfs_check_and_init_root_item(&root->root_item);
1483 }
13a8a7c8 1484
5eda7b5e
CM
1485 return root;
1486}
1487
cb517eab
MX
1488int btrfs_init_fs_root(struct btrfs_root *root)
1489{
1490 int ret;
8257b2dc 1491 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1492
1493 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1494 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1495 GFP_NOFS);
1496 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1497 ret = -ENOMEM;
1498 goto fail;
1499 }
1500
8257b2dc
MX
1501 writers = btrfs_alloc_subvolume_writers();
1502 if (IS_ERR(writers)) {
1503 ret = PTR_ERR(writers);
1504 goto fail;
1505 }
1506 root->subv_writers = writers;
1507
cb517eab 1508 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1509 spin_lock_init(&root->ino_cache_lock);
1510 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1511
1512 ret = get_anon_bdev(&root->anon_dev);
1513 if (ret)
876d2cf1 1514 goto fail;
f32e48e9
CR
1515
1516 mutex_lock(&root->objectid_mutex);
1517 ret = btrfs_find_highest_objectid(root,
1518 &root->highest_objectid);
1519 if (ret) {
1520 mutex_unlock(&root->objectid_mutex);
876d2cf1 1521 goto fail;
f32e48e9
CR
1522 }
1523
1524 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1525
1526 mutex_unlock(&root->objectid_mutex);
1527
cb517eab
MX
1528 return 0;
1529fail:
84db5ccf 1530 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1531 return ret;
1532}
1533
35bbb97f
JM
1534struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1535 u64 root_id)
cb517eab
MX
1536{
1537 struct btrfs_root *root;
1538
1539 spin_lock(&fs_info->fs_roots_radix_lock);
1540 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1541 (unsigned long)root_id);
1542 spin_unlock(&fs_info->fs_roots_radix_lock);
1543 return root;
1544}
1545
1546int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1547 struct btrfs_root *root)
1548{
1549 int ret;
1550
e1860a77 1551 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1552 if (ret)
1553 return ret;
1554
1555 spin_lock(&fs_info->fs_roots_radix_lock);
1556 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1557 (unsigned long)root->root_key.objectid,
1558 root);
1559 if (ret == 0)
27cdeb70 1560 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1561 spin_unlock(&fs_info->fs_roots_radix_lock);
1562 radix_tree_preload_end();
1563
1564 return ret;
1565}
1566
c00869f1
MX
1567struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1568 struct btrfs_key *location,
1569 bool check_ref)
5eda7b5e
CM
1570{
1571 struct btrfs_root *root;
381cf658 1572 struct btrfs_path *path;
1d4c08e0 1573 struct btrfs_key key;
5eda7b5e
CM
1574 int ret;
1575
edbd8d4e
CM
1576 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1577 return fs_info->tree_root;
1578 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579 return fs_info->extent_root;
8f18cf13
CM
1580 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581 return fs_info->chunk_root;
1582 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1583 return fs_info->dev_root;
0403e47e
YZ
1584 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1585 return fs_info->csum_root;
bcef60f2
AJ
1586 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587 return fs_info->quota_root ? fs_info->quota_root :
1588 ERR_PTR(-ENOENT);
f7a81ea4
SB
1589 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1590 return fs_info->uuid_root ? fs_info->uuid_root :
1591 ERR_PTR(-ENOENT);
70f6d82e
OS
1592 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1593 return fs_info->free_space_root ? fs_info->free_space_root :
1594 ERR_PTR(-ENOENT);
4df27c4d 1595again:
cb517eab 1596 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1597 if (root) {
c00869f1 1598 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1599 return ERR_PTR(-ENOENT);
5eda7b5e 1600 return root;
48475471 1601 }
5eda7b5e 1602
cb517eab 1603 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1604 if (IS_ERR(root))
1605 return root;
3394e160 1606
c00869f1 1607 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1608 ret = -ENOENT;
581bb050 1609 goto fail;
35a30d7c 1610 }
581bb050 1611
cb517eab 1612 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1613 if (ret)
1614 goto fail;
3394e160 1615
381cf658
DS
1616 path = btrfs_alloc_path();
1617 if (!path) {
1618 ret = -ENOMEM;
1619 goto fail;
1620 }
1d4c08e0
DS
1621 key.objectid = BTRFS_ORPHAN_OBJECTID;
1622 key.type = BTRFS_ORPHAN_ITEM_KEY;
1623 key.offset = location->objectid;
1624
1625 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1626 btrfs_free_path(path);
d68fc57b
YZ
1627 if (ret < 0)
1628 goto fail;
1629 if (ret == 0)
27cdeb70 1630 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1631
cb517eab 1632 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1633 if (ret) {
4df27c4d 1634 if (ret == -EEXIST) {
84db5ccf 1635 btrfs_free_fs_root(root);
4df27c4d
YZ
1636 goto again;
1637 }
1638 goto fail;
0f7d52f4 1639 }
edbd8d4e 1640 return root;
4df27c4d 1641fail:
84db5ccf 1642 btrfs_free_fs_root(root);
4df27c4d 1643 return ERR_PTR(ret);
edbd8d4e
CM
1644}
1645
04160088
CM
1646static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1647{
1648 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1649 int ret = 0;
04160088
CM
1650 struct btrfs_device *device;
1651 struct backing_dev_info *bdi;
b7967db7 1652
1f78160c
XG
1653 rcu_read_lock();
1654 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1655 if (!device->bdev)
1656 continue;
efa7c9f9 1657 bdi = device->bdev->bd_bdi;
ff9ea323 1658 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1659 ret = 1;
1660 break;
1661 }
1662 }
1f78160c 1663 rcu_read_unlock();
04160088
CM
1664 return ret;
1665}
1666
8b712842
CM
1667/*
1668 * called by the kthread helper functions to finally call the bio end_io
1669 * functions. This is where read checksum verification actually happens
1670 */
1671static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1672{
ce9adaa5 1673 struct bio *bio;
97eb6b69 1674 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1675
97eb6b69 1676 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1677 bio = end_io_wq->bio;
ce9adaa5 1678
4e4cbee9 1679 bio->bi_status = end_io_wq->status;
8b712842
CM
1680 bio->bi_private = end_io_wq->private;
1681 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1682 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1683 bio_endio(bio);
44b8bd7e
CM
1684}
1685
a74a4b97
CM
1686static int cleaner_kthread(void *arg)
1687{
1688 struct btrfs_root *root = arg;
0b246afa 1689 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1690 int again;
a74a4b97 1691
d6fd0ae2 1692 while (1) {
d0278245 1693 again = 0;
a74a4b97 1694
fd340d0f
JB
1695 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1696
d0278245 1697 /* Make the cleaner go to sleep early. */
2ff7e61e 1698 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1699 goto sleep;
1700
90c711ab
ZB
1701 /*
1702 * Do not do anything if we might cause open_ctree() to block
1703 * before we have finished mounting the filesystem.
1704 */
0b246afa 1705 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1706 goto sleep;
1707
0b246afa 1708 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1709 goto sleep;
1710
dc7f370c
MX
1711 /*
1712 * Avoid the problem that we change the status of the fs
1713 * during the above check and trylock.
1714 */
2ff7e61e 1715 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1716 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1717 goto sleep;
76dda93c 1718 }
a74a4b97 1719
0b246afa 1720 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1721 btrfs_run_delayed_iputs(fs_info);
0b246afa 1722 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1723
d0278245 1724 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1725 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1726
1727 /*
05323cd1
MX
1728 * The defragger has dealt with the R/O remount and umount,
1729 * needn't do anything special here.
d0278245 1730 */
0b246afa 1731 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1732
1733 /*
1734 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1735 * with relocation (btrfs_relocate_chunk) and relocation
1736 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1737 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1738 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1739 * unused block groups.
1740 */
0b246afa 1741 btrfs_delete_unused_bgs(fs_info);
d0278245 1742sleep:
fd340d0f 1743 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1744 if (kthread_should_park())
1745 kthread_parkme();
1746 if (kthread_should_stop())
1747 return 0;
838fe188 1748 if (!again) {
a74a4b97 1749 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1750 schedule();
a74a4b97
CM
1751 __set_current_state(TASK_RUNNING);
1752 }
da288d28 1753 }
a74a4b97
CM
1754}
1755
1756static int transaction_kthread(void *arg)
1757{
1758 struct btrfs_root *root = arg;
0b246afa 1759 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1760 struct btrfs_trans_handle *trans;
1761 struct btrfs_transaction *cur;
8929ecfa 1762 u64 transid;
a944442c 1763 time64_t now;
a74a4b97 1764 unsigned long delay;
914b2007 1765 bool cannot_commit;
a74a4b97
CM
1766
1767 do {
914b2007 1768 cannot_commit = false;
0b246afa
JM
1769 delay = HZ * fs_info->commit_interval;
1770 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1771
0b246afa
JM
1772 spin_lock(&fs_info->trans_lock);
1773 cur = fs_info->running_transaction;
a74a4b97 1774 if (!cur) {
0b246afa 1775 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1776 goto sleep;
1777 }
31153d81 1778
afd48513 1779 now = ktime_get_seconds();
4a9d8bde 1780 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1781 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1782 (now < cur->start_time ||
0b246afa
JM
1783 now - cur->start_time < fs_info->commit_interval)) {
1784 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1785 delay = HZ * 5;
1786 goto sleep;
1787 }
8929ecfa 1788 transid = cur->transid;
0b246afa 1789 spin_unlock(&fs_info->trans_lock);
56bec294 1790
79787eaa 1791 /* If the file system is aborted, this will always fail. */
354aa0fb 1792 trans = btrfs_attach_transaction(root);
914b2007 1793 if (IS_ERR(trans)) {
354aa0fb
MX
1794 if (PTR_ERR(trans) != -ENOENT)
1795 cannot_commit = true;
79787eaa 1796 goto sleep;
914b2007 1797 }
8929ecfa 1798 if (transid == trans->transid) {
3a45bb20 1799 btrfs_commit_transaction(trans);
8929ecfa 1800 } else {
3a45bb20 1801 btrfs_end_transaction(trans);
8929ecfa 1802 }
a74a4b97 1803sleep:
0b246afa
JM
1804 wake_up_process(fs_info->cleaner_kthread);
1805 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1806
4e121c06 1807 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1808 &fs_info->fs_state)))
2ff7e61e 1809 btrfs_cleanup_transaction(fs_info);
ce63f891 1810 if (!kthread_should_stop() &&
0b246afa 1811 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1812 cannot_commit))
bc5511d0 1813 schedule_timeout_interruptible(delay);
a74a4b97
CM
1814 } while (!kthread_should_stop());
1815 return 0;
1816}
1817
af31f5e5
CM
1818/*
1819 * this will find the highest generation in the array of
1820 * root backups. The index of the highest array is returned,
1821 * or -1 if we can't find anything.
1822 *
1823 * We check to make sure the array is valid by comparing the
1824 * generation of the latest root in the array with the generation
1825 * in the super block. If they don't match we pitch it.
1826 */
1827static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1828{
1829 u64 cur;
1830 int newest_index = -1;
1831 struct btrfs_root_backup *root_backup;
1832 int i;
1833
1834 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1835 root_backup = info->super_copy->super_roots + i;
1836 cur = btrfs_backup_tree_root_gen(root_backup);
1837 if (cur == newest_gen)
1838 newest_index = i;
1839 }
1840
1841 /* check to see if we actually wrapped around */
1842 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1843 root_backup = info->super_copy->super_roots;
1844 cur = btrfs_backup_tree_root_gen(root_backup);
1845 if (cur == newest_gen)
1846 newest_index = 0;
1847 }
1848 return newest_index;
1849}
1850
1851
1852/*
1853 * find the oldest backup so we know where to store new entries
1854 * in the backup array. This will set the backup_root_index
1855 * field in the fs_info struct
1856 */
1857static void find_oldest_super_backup(struct btrfs_fs_info *info,
1858 u64 newest_gen)
1859{
1860 int newest_index = -1;
1861
1862 newest_index = find_newest_super_backup(info, newest_gen);
1863 /* if there was garbage in there, just move along */
1864 if (newest_index == -1) {
1865 info->backup_root_index = 0;
1866 } else {
1867 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1868 }
1869}
1870
1871/*
1872 * copy all the root pointers into the super backup array.
1873 * this will bump the backup pointer by one when it is
1874 * done
1875 */
1876static void backup_super_roots(struct btrfs_fs_info *info)
1877{
1878 int next_backup;
1879 struct btrfs_root_backup *root_backup;
1880 int last_backup;
1881
1882 next_backup = info->backup_root_index;
1883 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1884 BTRFS_NUM_BACKUP_ROOTS;
1885
1886 /*
1887 * just overwrite the last backup if we're at the same generation
1888 * this happens only at umount
1889 */
1890 root_backup = info->super_for_commit->super_roots + last_backup;
1891 if (btrfs_backup_tree_root_gen(root_backup) ==
1892 btrfs_header_generation(info->tree_root->node))
1893 next_backup = last_backup;
1894
1895 root_backup = info->super_for_commit->super_roots + next_backup;
1896
1897 /*
1898 * make sure all of our padding and empty slots get zero filled
1899 * regardless of which ones we use today
1900 */
1901 memset(root_backup, 0, sizeof(*root_backup));
1902
1903 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1904
1905 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1906 btrfs_set_backup_tree_root_gen(root_backup,
1907 btrfs_header_generation(info->tree_root->node));
1908
1909 btrfs_set_backup_tree_root_level(root_backup,
1910 btrfs_header_level(info->tree_root->node));
1911
1912 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1913 btrfs_set_backup_chunk_root_gen(root_backup,
1914 btrfs_header_generation(info->chunk_root->node));
1915 btrfs_set_backup_chunk_root_level(root_backup,
1916 btrfs_header_level(info->chunk_root->node));
1917
1918 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1919 btrfs_set_backup_extent_root_gen(root_backup,
1920 btrfs_header_generation(info->extent_root->node));
1921 btrfs_set_backup_extent_root_level(root_backup,
1922 btrfs_header_level(info->extent_root->node));
1923
7c7e82a7
CM
1924 /*
1925 * we might commit during log recovery, which happens before we set
1926 * the fs_root. Make sure it is valid before we fill it in.
1927 */
1928 if (info->fs_root && info->fs_root->node) {
1929 btrfs_set_backup_fs_root(root_backup,
1930 info->fs_root->node->start);
1931 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1932 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1933 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1934 btrfs_header_level(info->fs_root->node));
7c7e82a7 1935 }
af31f5e5
CM
1936
1937 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1938 btrfs_set_backup_dev_root_gen(root_backup,
1939 btrfs_header_generation(info->dev_root->node));
1940 btrfs_set_backup_dev_root_level(root_backup,
1941 btrfs_header_level(info->dev_root->node));
1942
1943 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1944 btrfs_set_backup_csum_root_gen(root_backup,
1945 btrfs_header_generation(info->csum_root->node));
1946 btrfs_set_backup_csum_root_level(root_backup,
1947 btrfs_header_level(info->csum_root->node));
1948
1949 btrfs_set_backup_total_bytes(root_backup,
1950 btrfs_super_total_bytes(info->super_copy));
1951 btrfs_set_backup_bytes_used(root_backup,
1952 btrfs_super_bytes_used(info->super_copy));
1953 btrfs_set_backup_num_devices(root_backup,
1954 btrfs_super_num_devices(info->super_copy));
1955
1956 /*
1957 * if we don't copy this out to the super_copy, it won't get remembered
1958 * for the next commit
1959 */
1960 memcpy(&info->super_copy->super_roots,
1961 &info->super_for_commit->super_roots,
1962 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1963}
1964
1965/*
1966 * this copies info out of the root backup array and back into
1967 * the in-memory super block. It is meant to help iterate through
1968 * the array, so you send it the number of backups you've already
1969 * tried and the last backup index you used.
1970 *
1971 * this returns -1 when it has tried all the backups
1972 */
1973static noinline int next_root_backup(struct btrfs_fs_info *info,
1974 struct btrfs_super_block *super,
1975 int *num_backups_tried, int *backup_index)
1976{
1977 struct btrfs_root_backup *root_backup;
1978 int newest = *backup_index;
1979
1980 if (*num_backups_tried == 0) {
1981 u64 gen = btrfs_super_generation(super);
1982
1983 newest = find_newest_super_backup(info, gen);
1984 if (newest == -1)
1985 return -1;
1986
1987 *backup_index = newest;
1988 *num_backups_tried = 1;
1989 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1990 /* we've tried all the backups, all done */
1991 return -1;
1992 } else {
1993 /* jump to the next oldest backup */
1994 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1995 BTRFS_NUM_BACKUP_ROOTS;
1996 *backup_index = newest;
1997 *num_backups_tried += 1;
1998 }
1999 root_backup = super->super_roots + newest;
2000
2001 btrfs_set_super_generation(super,
2002 btrfs_backup_tree_root_gen(root_backup));
2003 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2004 btrfs_set_super_root_level(super,
2005 btrfs_backup_tree_root_level(root_backup));
2006 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2007
2008 /*
2009 * fixme: the total bytes and num_devices need to match or we should
2010 * need a fsck
2011 */
2012 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2013 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2014 return 0;
2015}
2016
7abadb64
LB
2017/* helper to cleanup workers */
2018static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2019{
dc6e3209 2020 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2021 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2022 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2023 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2024 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2025 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2026 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2027 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2028 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2029 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2030 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2031 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2032 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2033 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2034 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2035 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2036 /*
2037 * Now that all other work queues are destroyed, we can safely destroy
2038 * the queues used for metadata I/O, since tasks from those other work
2039 * queues can do metadata I/O operations.
2040 */
2041 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2042 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2043}
2044
2e9f5954
R
2045static void free_root_extent_buffers(struct btrfs_root *root)
2046{
2047 if (root) {
2048 free_extent_buffer(root->node);
2049 free_extent_buffer(root->commit_root);
2050 root->node = NULL;
2051 root->commit_root = NULL;
2052 }
2053}
2054
af31f5e5
CM
2055/* helper to cleanup tree roots */
2056static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2057{
2e9f5954 2058 free_root_extent_buffers(info->tree_root);
655b09fe 2059
2e9f5954
R
2060 free_root_extent_buffers(info->dev_root);
2061 free_root_extent_buffers(info->extent_root);
2062 free_root_extent_buffers(info->csum_root);
2063 free_root_extent_buffers(info->quota_root);
2064 free_root_extent_buffers(info->uuid_root);
2065 if (chunk_root)
2066 free_root_extent_buffers(info->chunk_root);
70f6d82e 2067 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2068}
2069
faa2dbf0 2070void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2071{
2072 int ret;
2073 struct btrfs_root *gang[8];
2074 int i;
2075
2076 while (!list_empty(&fs_info->dead_roots)) {
2077 gang[0] = list_entry(fs_info->dead_roots.next,
2078 struct btrfs_root, root_list);
2079 list_del(&gang[0]->root_list);
2080
27cdeb70 2081 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2082 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2083 } else {
2084 free_extent_buffer(gang[0]->node);
2085 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2086 btrfs_put_fs_root(gang[0]);
171f6537
JB
2087 }
2088 }
2089
2090 while (1) {
2091 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2092 (void **)gang, 0,
2093 ARRAY_SIZE(gang));
2094 if (!ret)
2095 break;
2096 for (i = 0; i < ret; i++)
cb517eab 2097 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2098 }
1a4319cc
LB
2099
2100 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2101 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2102 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2103 }
171f6537 2104}
af31f5e5 2105
638aa7ed
ES
2106static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2107{
2108 mutex_init(&fs_info->scrub_lock);
2109 atomic_set(&fs_info->scrubs_running, 0);
2110 atomic_set(&fs_info->scrub_pause_req, 0);
2111 atomic_set(&fs_info->scrubs_paused, 0);
2112 atomic_set(&fs_info->scrub_cancel_req, 0);
2113 init_waitqueue_head(&fs_info->scrub_pause_wait);
2114 fs_info->scrub_workers_refcnt = 0;
2115}
2116
779a65a4
ES
2117static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2118{
2119 spin_lock_init(&fs_info->balance_lock);
2120 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2121 atomic_set(&fs_info->balance_pause_req, 0);
2122 atomic_set(&fs_info->balance_cancel_req, 0);
2123 fs_info->balance_ctl = NULL;
2124 init_waitqueue_head(&fs_info->balance_wait_q);
2125}
2126
6bccf3ab 2127static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2128{
2ff7e61e
JM
2129 struct inode *inode = fs_info->btree_inode;
2130
2131 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2132 set_nlink(inode, 1);
f37938e0
ES
2133 /*
2134 * we set the i_size on the btree inode to the max possible int.
2135 * the real end of the address space is determined by all of
2136 * the devices in the system
2137 */
2ff7e61e
JM
2138 inode->i_size = OFFSET_MAX;
2139 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2140
2ff7e61e 2141 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2142 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2143 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2144 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2145
2ff7e61e 2146 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2147
2ff7e61e
JM
2148 BTRFS_I(inode)->root = fs_info->tree_root;
2149 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2150 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2151 btrfs_insert_inode_hash(inode);
f37938e0
ES
2152}
2153
ad618368
ES
2154static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2155{
ad618368 2156 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2157 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2158 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2159}
2160
f9e92e40
ES
2161static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2162{
2163 spin_lock_init(&fs_info->qgroup_lock);
2164 mutex_init(&fs_info->qgroup_ioctl_lock);
2165 fs_info->qgroup_tree = RB_ROOT;
2166 fs_info->qgroup_op_tree = RB_ROOT;
2167 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2168 fs_info->qgroup_seq = 1;
f9e92e40 2169 fs_info->qgroup_ulist = NULL;
d2c609b8 2170 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2171 mutex_init(&fs_info->qgroup_rescan_lock);
2172}
2173
2a458198
ES
2174static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2175 struct btrfs_fs_devices *fs_devices)
2176{
f7b885be 2177 u32 max_active = fs_info->thread_pool_size;
6f011058 2178 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2179
2180 fs_info->workers =
cb001095
JM
2181 btrfs_alloc_workqueue(fs_info, "worker",
2182 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2183
2184 fs_info->delalloc_workers =
cb001095
JM
2185 btrfs_alloc_workqueue(fs_info, "delalloc",
2186 flags, max_active, 2);
2a458198
ES
2187
2188 fs_info->flush_workers =
cb001095
JM
2189 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2190 flags, max_active, 0);
2a458198
ES
2191
2192 fs_info->caching_workers =
cb001095 2193 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2194
2195 /*
2196 * a higher idle thresh on the submit workers makes it much more
2197 * likely that bios will be send down in a sane order to the
2198 * devices
2199 */
2200 fs_info->submit_workers =
cb001095 2201 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2202 min_t(u64, fs_devices->num_devices,
2203 max_active), 64);
2204
2205 fs_info->fixup_workers =
cb001095 2206 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2207
2208 /*
2209 * endios are largely parallel and should have a very
2210 * low idle thresh
2211 */
2212 fs_info->endio_workers =
cb001095 2213 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2214 fs_info->endio_meta_workers =
cb001095
JM
2215 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2216 max_active, 4);
2a458198 2217 fs_info->endio_meta_write_workers =
cb001095
JM
2218 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2219 max_active, 2);
2a458198 2220 fs_info->endio_raid56_workers =
cb001095
JM
2221 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2222 max_active, 4);
2a458198 2223 fs_info->endio_repair_workers =
cb001095 2224 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2225 fs_info->rmw_workers =
cb001095 2226 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2227 fs_info->endio_write_workers =
cb001095
JM
2228 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2229 max_active, 2);
2a458198 2230 fs_info->endio_freespace_worker =
cb001095
JM
2231 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2232 max_active, 0);
2a458198 2233 fs_info->delayed_workers =
cb001095
JM
2234 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2235 max_active, 0);
2a458198 2236 fs_info->readahead_workers =
cb001095
JM
2237 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2238 max_active, 2);
2a458198 2239 fs_info->qgroup_rescan_workers =
cb001095 2240 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2241 fs_info->extent_workers =
cb001095 2242 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2243 min_t(u64, fs_devices->num_devices,
2244 max_active), 8);
2245
2246 if (!(fs_info->workers && fs_info->delalloc_workers &&
2247 fs_info->submit_workers && fs_info->flush_workers &&
2248 fs_info->endio_workers && fs_info->endio_meta_workers &&
2249 fs_info->endio_meta_write_workers &&
2250 fs_info->endio_repair_workers &&
2251 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2252 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2253 fs_info->caching_workers && fs_info->readahead_workers &&
2254 fs_info->fixup_workers && fs_info->delayed_workers &&
2255 fs_info->extent_workers &&
2256 fs_info->qgroup_rescan_workers)) {
2257 return -ENOMEM;
2258 }
2259
2260 return 0;
2261}
2262
63443bf5
ES
2263static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2264 struct btrfs_fs_devices *fs_devices)
2265{
2266 int ret;
63443bf5
ES
2267 struct btrfs_root *log_tree_root;
2268 struct btrfs_super_block *disk_super = fs_info->super_copy;
2269 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2270 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2271
2272 if (fs_devices->rw_devices == 0) {
f14d104d 2273 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2274 return -EIO;
2275 }
2276
74e4d827 2277 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2278 if (!log_tree_root)
2279 return -ENOMEM;
2280
da17066c 2281 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2282
2ff7e61e 2283 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2284 fs_info->generation + 1,
2285 level, NULL);
64c043de 2286 if (IS_ERR(log_tree_root->node)) {
f14d104d 2287 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2288 ret = PTR_ERR(log_tree_root->node);
64c043de 2289 kfree(log_tree_root);
0eeff236 2290 return ret;
64c043de 2291 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2292 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2293 free_extent_buffer(log_tree_root->node);
2294 kfree(log_tree_root);
2295 return -EIO;
2296 }
2297 /* returns with log_tree_root freed on success */
2298 ret = btrfs_recover_log_trees(log_tree_root);
2299 if (ret) {
0b246afa
JM
2300 btrfs_handle_fs_error(fs_info, ret,
2301 "Failed to recover log tree");
63443bf5
ES
2302 free_extent_buffer(log_tree_root->node);
2303 kfree(log_tree_root);
2304 return ret;
2305 }
2306
bc98a42c 2307 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2308 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2309 if (ret)
2310 return ret;
2311 }
2312
2313 return 0;
2314}
2315
6bccf3ab 2316static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2317{
6bccf3ab 2318 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2319 struct btrfs_root *root;
4bbcaa64
ES
2320 struct btrfs_key location;
2321 int ret;
2322
6bccf3ab
JM
2323 BUG_ON(!fs_info->tree_root);
2324
4bbcaa64
ES
2325 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2326 location.type = BTRFS_ROOT_ITEM_KEY;
2327 location.offset = 0;
2328
a4f3d2c4 2329 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2330 if (IS_ERR(root)) {
2331 ret = PTR_ERR(root);
2332 goto out;
2333 }
a4f3d2c4
DS
2334 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335 fs_info->extent_root = root;
4bbcaa64
ES
2336
2337 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2338 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2339 if (IS_ERR(root)) {
2340 ret = PTR_ERR(root);
2341 goto out;
2342 }
a4f3d2c4
DS
2343 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2344 fs_info->dev_root = root;
4bbcaa64
ES
2345 btrfs_init_devices_late(fs_info);
2346
2347 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2348 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2349 if (IS_ERR(root)) {
2350 ret = PTR_ERR(root);
2351 goto out;
2352 }
a4f3d2c4
DS
2353 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2354 fs_info->csum_root = root;
4bbcaa64
ES
2355
2356 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2357 root = btrfs_read_tree_root(tree_root, &location);
2358 if (!IS_ERR(root)) {
2359 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2360 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2361 fs_info->quota_root = root;
4bbcaa64
ES
2362 }
2363
2364 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2365 root = btrfs_read_tree_root(tree_root, &location);
2366 if (IS_ERR(root)) {
2367 ret = PTR_ERR(root);
4bbcaa64 2368 if (ret != -ENOENT)
f50f4353 2369 goto out;
4bbcaa64 2370 } else {
a4f3d2c4
DS
2371 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2372 fs_info->uuid_root = root;
4bbcaa64
ES
2373 }
2374
70f6d82e
OS
2375 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2376 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2377 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2378 if (IS_ERR(root)) {
2379 ret = PTR_ERR(root);
2380 goto out;
2381 }
70f6d82e
OS
2382 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2383 fs_info->free_space_root = root;
2384 }
2385
4bbcaa64 2386 return 0;
f50f4353
LB
2387out:
2388 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2389 location.objectid, ret);
2390 return ret;
4bbcaa64
ES
2391}
2392
069ec957
QW
2393/*
2394 * Real super block validation
2395 * NOTE: super csum type and incompat features will not be checked here.
2396 *
2397 * @sb: super block to check
2398 * @mirror_num: the super block number to check its bytenr:
2399 * 0 the primary (1st) sb
2400 * 1, 2 2nd and 3rd backup copy
2401 * -1 skip bytenr check
2402 */
2403static int validate_super(struct btrfs_fs_info *fs_info,
2404 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2405{
21a852b0
QW
2406 u64 nodesize = btrfs_super_nodesize(sb);
2407 u64 sectorsize = btrfs_super_sectorsize(sb);
2408 int ret = 0;
2409
2410 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2411 btrfs_err(fs_info, "no valid FS found");
2412 ret = -EINVAL;
2413 }
2414 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2415 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2416 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2417 ret = -EINVAL;
2418 }
2419 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2420 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2421 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2422 ret = -EINVAL;
2423 }
2424 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2425 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2426 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2427 ret = -EINVAL;
2428 }
2429 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2430 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2431 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2432 ret = -EINVAL;
2433 }
2434
2435 /*
2436 * Check sectorsize and nodesize first, other check will need it.
2437 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2438 */
2439 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2440 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2441 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2442 ret = -EINVAL;
2443 }
2444 /* Only PAGE SIZE is supported yet */
2445 if (sectorsize != PAGE_SIZE) {
2446 btrfs_err(fs_info,
2447 "sectorsize %llu not supported yet, only support %lu",
2448 sectorsize, PAGE_SIZE);
2449 ret = -EINVAL;
2450 }
2451 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2452 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2453 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2454 ret = -EINVAL;
2455 }
2456 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2457 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2458 le32_to_cpu(sb->__unused_leafsize), nodesize);
2459 ret = -EINVAL;
2460 }
2461
2462 /* Root alignment check */
2463 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2464 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2465 btrfs_super_root(sb));
2466 ret = -EINVAL;
2467 }
2468 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2469 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2470 btrfs_super_chunk_root(sb));
2471 ret = -EINVAL;
2472 }
2473 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2474 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2475 btrfs_super_log_root(sb));
2476 ret = -EINVAL;
2477 }
2478
de37aa51 2479 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2480 BTRFS_FSID_SIZE) != 0) {
21a852b0 2481 btrfs_err(fs_info,
7239ff4b 2482 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2483 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2484 ret = -EINVAL;
2485 }
2486
2487 /*
2488 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2489 * done later
2490 */
2491 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2492 btrfs_err(fs_info, "bytes_used is too small %llu",
2493 btrfs_super_bytes_used(sb));
2494 ret = -EINVAL;
2495 }
2496 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2497 btrfs_err(fs_info, "invalid stripesize %u",
2498 btrfs_super_stripesize(sb));
2499 ret = -EINVAL;
2500 }
2501 if (btrfs_super_num_devices(sb) > (1UL << 31))
2502 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2503 btrfs_super_num_devices(sb));
2504 if (btrfs_super_num_devices(sb) == 0) {
2505 btrfs_err(fs_info, "number of devices is 0");
2506 ret = -EINVAL;
2507 }
2508
069ec957
QW
2509 if (mirror_num >= 0 &&
2510 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2511 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2512 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2513 ret = -EINVAL;
2514 }
2515
2516 /*
2517 * Obvious sys_chunk_array corruptions, it must hold at least one key
2518 * and one chunk
2519 */
2520 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2521 btrfs_err(fs_info, "system chunk array too big %u > %u",
2522 btrfs_super_sys_array_size(sb),
2523 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2524 ret = -EINVAL;
2525 }
2526 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2527 + sizeof(struct btrfs_chunk)) {
2528 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2529 btrfs_super_sys_array_size(sb),
2530 sizeof(struct btrfs_disk_key)
2531 + sizeof(struct btrfs_chunk));
2532 ret = -EINVAL;
2533 }
2534
2535 /*
2536 * The generation is a global counter, we'll trust it more than the others
2537 * but it's still possible that it's the one that's wrong.
2538 */
2539 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2540 btrfs_warn(fs_info,
2541 "suspicious: generation < chunk_root_generation: %llu < %llu",
2542 btrfs_super_generation(sb),
2543 btrfs_super_chunk_root_generation(sb));
2544 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2545 && btrfs_super_cache_generation(sb) != (u64)-1)
2546 btrfs_warn(fs_info,
2547 "suspicious: generation < cache_generation: %llu < %llu",
2548 btrfs_super_generation(sb),
2549 btrfs_super_cache_generation(sb));
2550
2551 return ret;
2552}
2553
069ec957
QW
2554/*
2555 * Validation of super block at mount time.
2556 * Some checks already done early at mount time, like csum type and incompat
2557 * flags will be skipped.
2558 */
2559static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2560{
2561 return validate_super(fs_info, fs_info->super_copy, 0);
2562}
2563
75cb857d
QW
2564/*
2565 * Validation of super block at write time.
2566 * Some checks like bytenr check will be skipped as their values will be
2567 * overwritten soon.
2568 * Extra checks like csum type and incompat flags will be done here.
2569 */
2570static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2571 struct btrfs_super_block *sb)
2572{
2573 int ret;
2574
2575 ret = validate_super(fs_info, sb, -1);
2576 if (ret < 0)
2577 goto out;
2578 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2579 ret = -EUCLEAN;
2580 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2581 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2582 goto out;
2583 }
2584 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2585 ret = -EUCLEAN;
2586 btrfs_err(fs_info,
2587 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2588 btrfs_super_incompat_flags(sb),
2589 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2590 goto out;
2591 }
2592out:
2593 if (ret < 0)
2594 btrfs_err(fs_info,
2595 "super block corruption detected before writing it to disk");
2596 return ret;
2597}
2598
ad2b2c80
AV
2599int open_ctree(struct super_block *sb,
2600 struct btrfs_fs_devices *fs_devices,
2601 char *options)
2e635a27 2602{
db94535d
CM
2603 u32 sectorsize;
2604 u32 nodesize;
87ee04eb 2605 u32 stripesize;
84234f3a 2606 u64 generation;
f2b636e8 2607 u64 features;
3de4586c 2608 struct btrfs_key location;
a061fc8d 2609 struct buffer_head *bh;
4d34b278 2610 struct btrfs_super_block *disk_super;
815745cf 2611 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2612 struct btrfs_root *tree_root;
4d34b278 2613 struct btrfs_root *chunk_root;
eb60ceac 2614 int ret;
e58ca020 2615 int err = -EINVAL;
af31f5e5
CM
2616 int num_backups_tried = 0;
2617 int backup_index = 0;
6675df31 2618 int clear_free_space_tree = 0;
581c1760 2619 int level;
4543df7e 2620
74e4d827
DS
2621 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2622 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2623 if (!tree_root || !chunk_root) {
39279cc3
CM
2624 err = -ENOMEM;
2625 goto fail;
2626 }
76dda93c
YZ
2627
2628 ret = init_srcu_struct(&fs_info->subvol_srcu);
2629 if (ret) {
2630 err = ret;
2631 goto fail;
2632 }
2633
908c7f19 2634 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2635 if (ret) {
2636 err = ret;
9e11ceee 2637 goto fail_srcu;
e2d84521 2638 }
09cbfeaf 2639 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2640 (1 + ilog2(nr_cpu_ids));
2641
908c7f19 2642 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2643 if (ret) {
2644 err = ret;
2645 goto fail_dirty_metadata_bytes;
2646 }
2647
7f8d236a
DS
2648 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2649 GFP_KERNEL);
c404e0dc
MX
2650 if (ret) {
2651 err = ret;
2652 goto fail_delalloc_bytes;
2653 }
2654
76dda93c 2655 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2656 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2657 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2658 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2659 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2660 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2661 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2662 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2663 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2664 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2665 spin_lock_init(&fs_info->trans_lock);
76dda93c 2666 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2667 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2668 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2669 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2670 spin_lock_init(&fs_info->super_lock);
fcebe456 2671 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2672 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2673 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2674 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2675 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2676 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2677 mutex_init(&fs_info->reloc_mutex);
573bfb72 2678 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2679 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2680 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2681
0b86a832 2682 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2683 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2684 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2685 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2686 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2687 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2688 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2689 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2690 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2691 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2692 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2693 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2694 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2695 BTRFS_BLOCK_RSV_DELREFS);
2696
771ed689 2697 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2698 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2699 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2700 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2701 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2702 fs_info->sb = sb;
95ac567a 2703 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2704 fs_info->metadata_ratio = 0;
4cb5300b 2705 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2706 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2707 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2708 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2709 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2710 /* readahead state */
d0164adc 2711 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2712 spin_lock_init(&fs_info->reada_lock);
fd708b81 2713 btrfs_init_ref_verify(fs_info);
c8b97818 2714
b34b086c
CM
2715 fs_info->thread_pool_size = min_t(unsigned long,
2716 num_online_cpus() + 2, 8);
0afbaf8c 2717
199c2a9c
MX
2718 INIT_LIST_HEAD(&fs_info->ordered_roots);
2719 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2720
2721 fs_info->btree_inode = new_inode(sb);
2722 if (!fs_info->btree_inode) {
2723 err = -ENOMEM;
2724 goto fail_bio_counter;
2725 }
2726 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2727
16cdcec7 2728 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2729 GFP_KERNEL);
16cdcec7
MX
2730 if (!fs_info->delayed_root) {
2731 err = -ENOMEM;
2732 goto fail_iput;
2733 }
2734 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2735
638aa7ed 2736 btrfs_init_scrub(fs_info);
21adbd5c
SB
2737#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2738 fs_info->check_integrity_print_mask = 0;
2739#endif
779a65a4 2740 btrfs_init_balance(fs_info);
21c7e756 2741 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2742
9f6d2510
DS
2743 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2744 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2745
6bccf3ab 2746 btrfs_init_btree_inode(fs_info);
76dda93c 2747
0f9dd46c 2748 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2749 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2750 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2751
c6100a4b
JB
2752 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2753 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2754 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2755 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2756
5a3f23d5 2757 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2758 mutex_init(&fs_info->tree_log_mutex);
925baedd 2759 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2760 mutex_init(&fs_info->transaction_kthread_mutex);
2761 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2762 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2763 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2764 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2765 init_rwsem(&fs_info->subvol_sem);
803b2f54 2766 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2767
ad618368 2768 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2769 btrfs_init_qgroup(fs_info);
416ac51d 2770
fa9c0d79
CM
2771 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2772 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2773
e6dcd2dc 2774 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2775 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2776 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2777 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2778
04216820
FM
2779 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2780
da17066c
JM
2781 /* Usable values until the real ones are cached from the superblock */
2782 fs_info->nodesize = 4096;
2783 fs_info->sectorsize = 4096;
2784 fs_info->stripesize = 4096;
2785
eede2bf3
OS
2786 spin_lock_init(&fs_info->swapfile_pins_lock);
2787 fs_info->swapfile_pins = RB_ROOT;
2788
53b381b3
DW
2789 ret = btrfs_alloc_stripe_hash_table(fs_info);
2790 if (ret) {
83c8266a 2791 err = ret;
53b381b3
DW
2792 goto fail_alloc;
2793 }
2794
da17066c 2795 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2796
3c4bb26b 2797 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2798
2799 /*
2800 * Read super block and check the signature bytes only
2801 */
a512bbf8 2802 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2803 if (IS_ERR(bh)) {
2804 err = PTR_ERR(bh);
16cdcec7 2805 goto fail_alloc;
20b45077 2806 }
39279cc3 2807
1104a885
DS
2808 /*
2809 * We want to check superblock checksum, the type is stored inside.
2810 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2811 */
ab8d0fc4 2812 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2813 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2814 err = -EINVAL;
b2acdddf 2815 brelse(bh);
1104a885
DS
2816 goto fail_alloc;
2817 }
2818
2819 /*
2820 * super_copy is zeroed at allocation time and we never touch the
2821 * following bytes up to INFO_SIZE, the checksum is calculated from
2822 * the whole block of INFO_SIZE
2823 */
6c41761f 2824 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2825 brelse(bh);
5f39d397 2826
fbc6feae
NB
2827 disk_super = fs_info->super_copy;
2828
de37aa51
NB
2829 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2830 BTRFS_FSID_SIZE));
2831
7239ff4b 2832 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2833 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2834 fs_info->super_copy->metadata_uuid,
2835 BTRFS_FSID_SIZE));
7239ff4b 2836 }
0b86a832 2837
fbc6feae
NB
2838 features = btrfs_super_flags(disk_super);
2839 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2840 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2841 btrfs_set_super_flags(disk_super, features);
2842 btrfs_info(fs_info,
2843 "found metadata UUID change in progress flag, clearing");
2844 }
2845
2846 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2847 sizeof(*fs_info->super_for_commit));
de37aa51 2848
069ec957 2849 ret = btrfs_validate_mount_super(fs_info);
1104a885 2850 if (ret) {
05135f59 2851 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2852 err = -EINVAL;
2853 goto fail_alloc;
2854 }
2855
0f7d52f4 2856 if (!btrfs_super_root(disk_super))
16cdcec7 2857 goto fail_alloc;
0f7d52f4 2858
acce952b 2859 /* check FS state, whether FS is broken. */
87533c47
MX
2860 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2861 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2862
af31f5e5
CM
2863 /*
2864 * run through our array of backup supers and setup
2865 * our ring pointer to the oldest one
2866 */
2867 generation = btrfs_super_generation(disk_super);
2868 find_oldest_super_backup(fs_info, generation);
2869
75e7cb7f
LB
2870 /*
2871 * In the long term, we'll store the compression type in the super
2872 * block, and it'll be used for per file compression control.
2873 */
2874 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2875
2ff7e61e 2876 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2877 if (ret) {
2878 err = ret;
16cdcec7 2879 goto fail_alloc;
2b82032c 2880 }
dfe25020 2881
f2b636e8
JB
2882 features = btrfs_super_incompat_flags(disk_super) &
2883 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2884 if (features) {
05135f59
DS
2885 btrfs_err(fs_info,
2886 "cannot mount because of unsupported optional features (%llx)",
2887 features);
f2b636e8 2888 err = -EINVAL;
16cdcec7 2889 goto fail_alloc;
f2b636e8
JB
2890 }
2891
5d4f98a2 2892 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2893 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2894 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2895 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2896 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2897 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2898
3173a18f 2899 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2900 btrfs_info(fs_info, "has skinny extents");
3173a18f 2901
727011e0
CM
2902 /*
2903 * flag our filesystem as having big metadata blocks if
2904 * they are bigger than the page size
2905 */
09cbfeaf 2906 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2907 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2908 btrfs_info(fs_info,
2909 "flagging fs with big metadata feature");
727011e0
CM
2910 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2911 }
2912
bc3f116f 2913 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2914 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2915 stripesize = sectorsize;
707e8a07 2916 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2917 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2918
da17066c
JM
2919 /* Cache block sizes */
2920 fs_info->nodesize = nodesize;
2921 fs_info->sectorsize = sectorsize;
2922 fs_info->stripesize = stripesize;
2923
bc3f116f
CM
2924 /*
2925 * mixed block groups end up with duplicate but slightly offset
2926 * extent buffers for the same range. It leads to corruptions
2927 */
2928 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2929 (sectorsize != nodesize)) {
05135f59
DS
2930 btrfs_err(fs_info,
2931"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2932 nodesize, sectorsize);
bc3f116f
CM
2933 goto fail_alloc;
2934 }
2935
ceda0864
MX
2936 /*
2937 * Needn't use the lock because there is no other task which will
2938 * update the flag.
2939 */
a6fa6fae 2940 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2941
f2b636e8
JB
2942 features = btrfs_super_compat_ro_flags(disk_super) &
2943 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2944 if (!sb_rdonly(sb) && features) {
05135f59
DS
2945 btrfs_err(fs_info,
2946 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2947 features);
f2b636e8 2948 err = -EINVAL;
16cdcec7 2949 goto fail_alloc;
f2b636e8 2950 }
61d92c32 2951
2a458198
ES
2952 ret = btrfs_init_workqueues(fs_info, fs_devices);
2953 if (ret) {
2954 err = ret;
0dc3b84a
JB
2955 goto fail_sb_buffer;
2956 }
4543df7e 2957
9e11ceee
JK
2958 sb->s_bdi->congested_fn = btrfs_congested_fn;
2959 sb->s_bdi->congested_data = fs_info;
2960 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
d4417e22 2961 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
9e11ceee
JK
2962 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2963 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2964
a061fc8d
CM
2965 sb->s_blocksize = sectorsize;
2966 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2967 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2968
925baedd 2969 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2970 ret = btrfs_read_sys_array(fs_info);
925baedd 2971 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2972 if (ret) {
05135f59 2973 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2974 goto fail_sb_buffer;
84eed90f 2975 }
0b86a832 2976
84234f3a 2977 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2978 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2979
da17066c 2980 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2981
2ff7e61e 2982 chunk_root->node = read_tree_block(fs_info,
0b86a832 2983 btrfs_super_chunk_root(disk_super),
581c1760 2984 generation, level, NULL);
64c043de
LB
2985 if (IS_ERR(chunk_root->node) ||
2986 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2987 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2988 if (!IS_ERR(chunk_root->node))
2989 free_extent_buffer(chunk_root->node);
95ab1f64 2990 chunk_root->node = NULL;
af31f5e5 2991 goto fail_tree_roots;
83121942 2992 }
5d4f98a2
YZ
2993 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2994 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2995
e17cade2 2996 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2997 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2998
5b4aacef 2999 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3000 if (ret) {
05135f59 3001 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3002 goto fail_tree_roots;
2b82032c 3003 }
0b86a832 3004
8dabb742 3005 /*
9b99b115
AJ
3006 * Keep the devid that is marked to be the target device for the
3007 * device replace procedure
8dabb742 3008 */
9b99b115 3009 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3010
a6b0d5c8 3011 if (!fs_devices->latest_bdev) {
05135f59 3012 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3013 goto fail_tree_roots;
3014 }
3015
af31f5e5 3016retry_root_backup:
84234f3a 3017 generation = btrfs_super_generation(disk_super);
581c1760 3018 level = btrfs_super_root_level(disk_super);
0b86a832 3019
2ff7e61e 3020 tree_root->node = read_tree_block(fs_info,
db94535d 3021 btrfs_super_root(disk_super),
581c1760 3022 generation, level, NULL);
64c043de
LB
3023 if (IS_ERR(tree_root->node) ||
3024 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3025 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3026 if (!IS_ERR(tree_root->node))
3027 free_extent_buffer(tree_root->node);
95ab1f64 3028 tree_root->node = NULL;
af31f5e5 3029 goto recovery_tree_root;
83121942 3030 }
af31f5e5 3031
5d4f98a2
YZ
3032 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3033 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3034 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3035
f32e48e9
CR
3036 mutex_lock(&tree_root->objectid_mutex);
3037 ret = btrfs_find_highest_objectid(tree_root,
3038 &tree_root->highest_objectid);
3039 if (ret) {
3040 mutex_unlock(&tree_root->objectid_mutex);
3041 goto recovery_tree_root;
3042 }
3043
3044 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3045
3046 mutex_unlock(&tree_root->objectid_mutex);
3047
6bccf3ab 3048 ret = btrfs_read_roots(fs_info);
4bbcaa64 3049 if (ret)
af31f5e5 3050 goto recovery_tree_root;
f7a81ea4 3051
8929ecfa
YZ
3052 fs_info->generation = generation;
3053 fs_info->last_trans_committed = generation;
8929ecfa 3054
cf90d884
QW
3055 ret = btrfs_verify_dev_extents(fs_info);
3056 if (ret) {
3057 btrfs_err(fs_info,
3058 "failed to verify dev extents against chunks: %d",
3059 ret);
3060 goto fail_block_groups;
3061 }
68310a5e
ID
3062 ret = btrfs_recover_balance(fs_info);
3063 if (ret) {
05135f59 3064 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3065 goto fail_block_groups;
3066 }
3067
733f4fbb
SB
3068 ret = btrfs_init_dev_stats(fs_info);
3069 if (ret) {
05135f59 3070 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3071 goto fail_block_groups;
3072 }
3073
8dabb742
SB
3074 ret = btrfs_init_dev_replace(fs_info);
3075 if (ret) {
05135f59 3076 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3077 goto fail_block_groups;
3078 }
3079
9b99b115 3080 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3081
b7c35e81
AJ
3082 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3083 if (ret) {
05135f59
DS
3084 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3085 ret);
b7c35e81
AJ
3086 goto fail_block_groups;
3087 }
3088
3089 ret = btrfs_sysfs_add_device(fs_devices);
3090 if (ret) {
05135f59
DS
3091 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3092 ret);
b7c35e81
AJ
3093 goto fail_fsdev_sysfs;
3094 }
3095
96f3136e 3096 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3097 if (ret) {
05135f59 3098 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3099 goto fail_fsdev_sysfs;
c59021f8 3100 }
3101
c59021f8 3102 ret = btrfs_init_space_info(fs_info);
3103 if (ret) {
05135f59 3104 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3105 goto fail_sysfs;
c59021f8 3106 }
3107
5b4aacef 3108 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3109 if (ret) {
05135f59 3110 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3111 goto fail_sysfs;
1b1d1f66 3112 }
4330e183 3113
6528b99d 3114 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3115 btrfs_warn(fs_info,
52042d8e 3116 "writable mount is not allowed due to too many missing devices");
2365dd3c 3117 goto fail_sysfs;
292fd7fc 3118 }
9078a3e1 3119
a74a4b97
CM
3120 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3121 "btrfs-cleaner");
57506d50 3122 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3123 goto fail_sysfs;
a74a4b97
CM
3124
3125 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3126 tree_root,
3127 "btrfs-transaction");
57506d50 3128 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3129 goto fail_cleaner;
a74a4b97 3130
583b7231 3131 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3132 !fs_info->fs_devices->rotating) {
583b7231 3133 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3134 }
3135
572d9ab7 3136 /*
01327610 3137 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3138 * not have to wait for transaction commit
3139 */
3140 btrfs_apply_pending_changes(fs_info);
3818aea2 3141
21adbd5c 3142#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3143 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3144 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3145 btrfs_test_opt(fs_info,
21adbd5c
SB
3146 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3147 1 : 0,
3148 fs_info->check_integrity_print_mask);
3149 if (ret)
05135f59
DS
3150 btrfs_warn(fs_info,
3151 "failed to initialize integrity check module: %d",
3152 ret);
21adbd5c
SB
3153 }
3154#endif
bcef60f2
AJ
3155 ret = btrfs_read_qgroup_config(fs_info);
3156 if (ret)
3157 goto fail_trans_kthread;
21adbd5c 3158
fd708b81
JB
3159 if (btrfs_build_ref_tree(fs_info))
3160 btrfs_err(fs_info, "couldn't build ref tree");
3161
96da0919
QW
3162 /* do not make disk changes in broken FS or nologreplay is given */
3163 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3164 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3165 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3166 if (ret) {
63443bf5 3167 err = ret;
28c16cbb 3168 goto fail_qgroup;
79787eaa 3169 }
e02119d5 3170 }
1a40e23b 3171
6bccf3ab 3172 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3173 if (ret)
28c16cbb 3174 goto fail_qgroup;
76dda93c 3175
bc98a42c 3176 if (!sb_rdonly(sb)) {
d68fc57b 3177 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3178 if (ret)
28c16cbb 3179 goto fail_qgroup;
90c711ab
ZB
3180
3181 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3182 ret = btrfs_recover_relocation(tree_root);
90c711ab 3183 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3184 if (ret < 0) {
05135f59
DS
3185 btrfs_warn(fs_info, "failed to recover relocation: %d",
3186 ret);
d7ce5843 3187 err = -EINVAL;
bcef60f2 3188 goto fail_qgroup;
d7ce5843 3189 }
7c2ca468 3190 }
1a40e23b 3191
3de4586c
CM
3192 location.objectid = BTRFS_FS_TREE_OBJECTID;
3193 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3194 location.offset = 0;
3de4586c 3195
3de4586c 3196 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3197 if (IS_ERR(fs_info->fs_root)) {
3198 err = PTR_ERR(fs_info->fs_root);
f50f4353 3199 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3200 goto fail_qgroup;
3140c9a3 3201 }
c289811c 3202
bc98a42c 3203 if (sb_rdonly(sb))
2b6ba629 3204 return 0;
59641015 3205
f8d468a1
OS
3206 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3207 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3208 clear_free_space_tree = 1;
3209 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3210 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3211 btrfs_warn(fs_info, "free space tree is invalid");
3212 clear_free_space_tree = 1;
3213 }
3214
3215 if (clear_free_space_tree) {
f8d468a1
OS
3216 btrfs_info(fs_info, "clearing free space tree");
3217 ret = btrfs_clear_free_space_tree(fs_info);
3218 if (ret) {
3219 btrfs_warn(fs_info,
3220 "failed to clear free space tree: %d", ret);
6bccf3ab 3221 close_ctree(fs_info);
f8d468a1
OS
3222 return ret;
3223 }
3224 }
3225
0b246afa 3226 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3227 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3228 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3229 ret = btrfs_create_free_space_tree(fs_info);
3230 if (ret) {
05135f59
DS
3231 btrfs_warn(fs_info,
3232 "failed to create free space tree: %d", ret);
6bccf3ab 3233 close_ctree(fs_info);
511711af
CM
3234 return ret;
3235 }
3236 }
3237
2b6ba629
ID
3238 down_read(&fs_info->cleanup_work_sem);
3239 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3240 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3241 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3242 close_ctree(fs_info);
2b6ba629
ID
3243 return ret;
3244 }
3245 up_read(&fs_info->cleanup_work_sem);
59641015 3246
2b6ba629
ID
3247 ret = btrfs_resume_balance_async(fs_info);
3248 if (ret) {
05135f59 3249 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3250 close_ctree(fs_info);
2b6ba629 3251 return ret;
e3acc2a6
JB
3252 }
3253
8dabb742
SB
3254 ret = btrfs_resume_dev_replace_async(fs_info);
3255 if (ret) {
05135f59 3256 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3257 close_ctree(fs_info);
8dabb742
SB
3258 return ret;
3259 }
3260
b382a324
JS
3261 btrfs_qgroup_rescan_resume(fs_info);
3262
4bbcaa64 3263 if (!fs_info->uuid_root) {
05135f59 3264 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3265 ret = btrfs_create_uuid_tree(fs_info);
3266 if (ret) {
05135f59
DS
3267 btrfs_warn(fs_info,
3268 "failed to create the UUID tree: %d", ret);
6bccf3ab 3269 close_ctree(fs_info);
f7a81ea4
SB
3270 return ret;
3271 }
0b246afa 3272 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3273 fs_info->generation !=
3274 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3275 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3276 ret = btrfs_check_uuid_tree(fs_info);
3277 if (ret) {
05135f59
DS
3278 btrfs_warn(fs_info,
3279 "failed to check the UUID tree: %d", ret);
6bccf3ab 3280 close_ctree(fs_info);
70f80175
SB
3281 return ret;
3282 }
3283 } else {
afcdd129 3284 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3285 }
afcdd129 3286 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3287
8dcddfa0
QW
3288 /*
3289 * backuproot only affect mount behavior, and if open_ctree succeeded,
3290 * no need to keep the flag
3291 */
3292 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3293
ad2b2c80 3294 return 0;
39279cc3 3295
bcef60f2
AJ
3296fail_qgroup:
3297 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3298fail_trans_kthread:
3299 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3300 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3301 btrfs_free_fs_roots(fs_info);
3f157a2f 3302fail_cleaner:
a74a4b97 3303 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3304
3305 /*
3306 * make sure we're done with the btree inode before we stop our
3307 * kthreads
3308 */
3309 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3310
2365dd3c 3311fail_sysfs:
6618a59b 3312 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3313
b7c35e81
AJ
3314fail_fsdev_sysfs:
3315 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3316
1b1d1f66 3317fail_block_groups:
54067ae9 3318 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3319
3320fail_tree_roots:
3321 free_root_pointers(fs_info, 1);
2b8195bb 3322 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3323
39279cc3 3324fail_sb_buffer:
7abadb64 3325 btrfs_stop_all_workers(fs_info);
5cdd7db6 3326 btrfs_free_block_groups(fs_info);
16cdcec7 3327fail_alloc:
4543df7e 3328fail_iput:
586e46e2
ID
3329 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3330
4543df7e 3331 iput(fs_info->btree_inode);
c404e0dc 3332fail_bio_counter:
7f8d236a 3333 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3334fail_delalloc_bytes:
3335 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3336fail_dirty_metadata_bytes:
3337 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3338fail_srcu:
3339 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3340fail:
53b381b3 3341 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3342 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3343 return err;
af31f5e5
CM
3344
3345recovery_tree_root:
0b246afa 3346 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3347 goto fail_tree_roots;
3348
3349 free_root_pointers(fs_info, 0);
3350
3351 /* don't use the log in recovery mode, it won't be valid */
3352 btrfs_set_super_log_root(disk_super, 0);
3353
3354 /* we can't trust the free space cache either */
3355 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3356
3357 ret = next_root_backup(fs_info, fs_info->super_copy,
3358 &num_backups_tried, &backup_index);
3359 if (ret == -1)
3360 goto fail_block_groups;
3361 goto retry_root_backup;
eb60ceac 3362}
663faf9f 3363ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3364
f2984462
CM
3365static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3366{
f2984462
CM
3367 if (uptodate) {
3368 set_buffer_uptodate(bh);
3369 } else {
442a4f63
SB
3370 struct btrfs_device *device = (struct btrfs_device *)
3371 bh->b_private;
3372
fb456252 3373 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3374 "lost page write due to IO error on %s",
606686ee 3375 rcu_str_deref(device->name));
01327610 3376 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3377 * our own ways of dealing with the IO errors
3378 */
f2984462 3379 clear_buffer_uptodate(bh);
442a4f63 3380 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3381 }
3382 unlock_buffer(bh);
3383 put_bh(bh);
3384}
3385
29c36d72
AJ
3386int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3387 struct buffer_head **bh_ret)
3388{
3389 struct buffer_head *bh;
3390 struct btrfs_super_block *super;
3391 u64 bytenr;
3392
3393 bytenr = btrfs_sb_offset(copy_num);
3394 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3395 return -EINVAL;
3396
9f6d2510 3397 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3398 /*
3399 * If we fail to read from the underlying devices, as of now
3400 * the best option we have is to mark it EIO.
3401 */
3402 if (!bh)
3403 return -EIO;
3404
3405 super = (struct btrfs_super_block *)bh->b_data;
3406 if (btrfs_super_bytenr(super) != bytenr ||
3407 btrfs_super_magic(super) != BTRFS_MAGIC) {
3408 brelse(bh);
3409 return -EINVAL;
3410 }
3411
3412 *bh_ret = bh;
3413 return 0;
3414}
3415
3416
a512bbf8
YZ
3417struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3418{
3419 struct buffer_head *bh;
3420 struct buffer_head *latest = NULL;
3421 struct btrfs_super_block *super;
3422 int i;
3423 u64 transid = 0;
92fc03fb 3424 int ret = -EINVAL;
a512bbf8
YZ
3425
3426 /* we would like to check all the supers, but that would make
3427 * a btrfs mount succeed after a mkfs from a different FS.
3428 * So, we need to add a special mount option to scan for
3429 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3430 */
3431 for (i = 0; i < 1; i++) {
29c36d72
AJ
3432 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3433 if (ret)
a512bbf8
YZ
3434 continue;
3435
3436 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3437
3438 if (!latest || btrfs_super_generation(super) > transid) {
3439 brelse(latest);
3440 latest = bh;
3441 transid = btrfs_super_generation(super);
3442 } else {
3443 brelse(bh);
3444 }
3445 }
92fc03fb
AJ
3446
3447 if (!latest)
3448 return ERR_PTR(ret);
3449
a512bbf8
YZ
3450 return latest;
3451}
3452
4eedeb75 3453/*
abbb3b8e
DS
3454 * Write superblock @sb to the @device. Do not wait for completion, all the
3455 * buffer heads we write are pinned.
4eedeb75 3456 *
abbb3b8e
DS
3457 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3458 * the expected device size at commit time. Note that max_mirrors must be
3459 * same for write and wait phases.
4eedeb75 3460 *
abbb3b8e 3461 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3462 */
a512bbf8 3463static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3464 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3465{
3466 struct buffer_head *bh;
3467 int i;
3468 int ret;
3469 int errors = 0;
3470 u32 crc;
3471 u64 bytenr;
1b9e619c 3472 int op_flags;
a512bbf8
YZ
3473
3474 if (max_mirrors == 0)
3475 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3476
a512bbf8
YZ
3477 for (i = 0; i < max_mirrors; i++) {
3478 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3479 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3480 device->commit_total_bytes)
a512bbf8
YZ
3481 break;
3482
abbb3b8e 3483 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3484
abbb3b8e
DS
3485 crc = ~(u32)0;
3486 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3487 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3488 btrfs_csum_final(crc, sb->csum);
4eedeb75 3489
abbb3b8e 3490 /* One reference for us, and we leave it for the caller */
9f6d2510 3491 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3492 BTRFS_SUPER_INFO_SIZE);
3493 if (!bh) {
3494 btrfs_err(device->fs_info,
3495 "couldn't get super buffer head for bytenr %llu",
3496 bytenr);
3497 errors++;
4eedeb75 3498 continue;
abbb3b8e 3499 }
634554dc 3500
abbb3b8e 3501 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3502
abbb3b8e
DS
3503 /* one reference for submit_bh */
3504 get_bh(bh);
4eedeb75 3505
abbb3b8e
DS
3506 set_buffer_uptodate(bh);
3507 lock_buffer(bh);
3508 bh->b_end_io = btrfs_end_buffer_write_sync;
3509 bh->b_private = device;
a512bbf8 3510
387125fc
CM
3511 /*
3512 * we fua the first super. The others we allow
3513 * to go down lazy.
3514 */
1b9e619c
OS
3515 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3516 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3517 op_flags |= REQ_FUA;
3518 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3519 if (ret)
a512bbf8 3520 errors++;
a512bbf8
YZ
3521 }
3522 return errors < i ? 0 : -1;
3523}
3524
abbb3b8e
DS
3525/*
3526 * Wait for write completion of superblocks done by write_dev_supers,
3527 * @max_mirrors same for write and wait phases.
3528 *
3529 * Return number of errors when buffer head is not found or not marked up to
3530 * date.
3531 */
3532static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3533{
3534 struct buffer_head *bh;
3535 int i;
3536 int errors = 0;
b6a535fa 3537 bool primary_failed = false;
abbb3b8e
DS
3538 u64 bytenr;
3539
3540 if (max_mirrors == 0)
3541 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3542
3543 for (i = 0; i < max_mirrors; i++) {
3544 bytenr = btrfs_sb_offset(i);
3545 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3546 device->commit_total_bytes)
3547 break;
3548
9f6d2510
DS
3549 bh = __find_get_block(device->bdev,
3550 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3551 BTRFS_SUPER_INFO_SIZE);
3552 if (!bh) {
3553 errors++;
b6a535fa
HM
3554 if (i == 0)
3555 primary_failed = true;
abbb3b8e
DS
3556 continue;
3557 }
3558 wait_on_buffer(bh);
b6a535fa 3559 if (!buffer_uptodate(bh)) {
abbb3b8e 3560 errors++;
b6a535fa
HM
3561 if (i == 0)
3562 primary_failed = true;
3563 }
abbb3b8e
DS
3564
3565 /* drop our reference */
3566 brelse(bh);
3567
3568 /* drop the reference from the writing run */
3569 brelse(bh);
3570 }
3571
b6a535fa
HM
3572 /* log error, force error return */
3573 if (primary_failed) {
3574 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3575 device->devid);
3576 return -1;
3577 }
3578
abbb3b8e
DS
3579 return errors < i ? 0 : -1;
3580}
3581
387125fc
CM
3582/*
3583 * endio for the write_dev_flush, this will wake anyone waiting
3584 * for the barrier when it is done
3585 */
4246a0b6 3586static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3587{
e0ae9994 3588 complete(bio->bi_private);
387125fc
CM
3589}
3590
3591/*
4fc6441a
AJ
3592 * Submit a flush request to the device if it supports it. Error handling is
3593 * done in the waiting counterpart.
387125fc 3594 */
4fc6441a 3595static void write_dev_flush(struct btrfs_device *device)
387125fc 3596{
c2a9c7ab 3597 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3598 struct bio *bio = device->flush_bio;
387125fc 3599
c2a9c7ab 3600 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3601 return;
387125fc 3602
e0ae9994 3603 bio_reset(bio);
387125fc 3604 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3605 bio_set_dev(bio, device->bdev);
8d910125 3606 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3607 init_completion(&device->flush_wait);
3608 bio->bi_private = &device->flush_wait;
387125fc 3609
43a01111 3610 btrfsic_submit_bio(bio);
1c3063b6 3611 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3612}
387125fc 3613
4fc6441a
AJ
3614/*
3615 * If the flush bio has been submitted by write_dev_flush, wait for it.
3616 */
8c27cb35 3617static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3618{
4fc6441a 3619 struct bio *bio = device->flush_bio;
387125fc 3620
1c3063b6 3621 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3622 return BLK_STS_OK;
387125fc 3623
1c3063b6 3624 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3625 wait_for_completion_io(&device->flush_wait);
387125fc 3626
8c27cb35 3627 return bio->bi_status;
387125fc 3628}
387125fc 3629
d10b82fe 3630static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3631{
6528b99d 3632 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3633 return -EIO;
387125fc
CM
3634 return 0;
3635}
3636
3637/*
3638 * send an empty flush down to each device in parallel,
3639 * then wait for them
3640 */
3641static int barrier_all_devices(struct btrfs_fs_info *info)
3642{
3643 struct list_head *head;
3644 struct btrfs_device *dev;
5af3e8cc 3645 int errors_wait = 0;
4e4cbee9 3646 blk_status_t ret;
387125fc 3647
1538e6c5 3648 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3649 /* send down all the barriers */
3650 head = &info->fs_devices->devices;
1538e6c5 3651 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3652 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3653 continue;
cea7c8bf 3654 if (!dev->bdev)
387125fc 3655 continue;
e12c9621 3656 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3657 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3658 continue;
3659
4fc6441a 3660 write_dev_flush(dev);
58efbc9f 3661 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3662 }
3663
3664 /* wait for all the barriers */
1538e6c5 3665 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3666 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3667 continue;
387125fc 3668 if (!dev->bdev) {
5af3e8cc 3669 errors_wait++;
387125fc
CM
3670 continue;
3671 }
e12c9621 3672 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3673 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3674 continue;
3675
4fc6441a 3676 ret = wait_dev_flush(dev);
401b41e5
AJ
3677 if (ret) {
3678 dev->last_flush_error = ret;
66b4993e
DS
3679 btrfs_dev_stat_inc_and_print(dev,
3680 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3681 errors_wait++;
401b41e5
AJ
3682 }
3683 }
3684
cea7c8bf 3685 if (errors_wait) {
401b41e5
AJ
3686 /*
3687 * At some point we need the status of all disks
3688 * to arrive at the volume status. So error checking
3689 * is being pushed to a separate loop.
3690 */
d10b82fe 3691 return check_barrier_error(info);
387125fc 3692 }
387125fc
CM
3693 return 0;
3694}
3695
943c6e99
ZL
3696int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3697{
8789f4fe
ZL
3698 int raid_type;
3699 int min_tolerated = INT_MAX;
943c6e99 3700
8789f4fe
ZL
3701 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3702 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3703 min_tolerated = min(min_tolerated,
3704 btrfs_raid_array[BTRFS_RAID_SINGLE].
3705 tolerated_failures);
943c6e99 3706
8789f4fe
ZL
3707 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3708 if (raid_type == BTRFS_RAID_SINGLE)
3709 continue;
41a6e891 3710 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3711 continue;
3712 min_tolerated = min(min_tolerated,
3713 btrfs_raid_array[raid_type].
3714 tolerated_failures);
3715 }
943c6e99 3716
8789f4fe 3717 if (min_tolerated == INT_MAX) {
ab8d0fc4 3718 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3719 min_tolerated = 0;
3720 }
3721
3722 return min_tolerated;
943c6e99
ZL
3723}
3724
eece6a9c 3725int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3726{
e5e9a520 3727 struct list_head *head;
f2984462 3728 struct btrfs_device *dev;
a061fc8d 3729 struct btrfs_super_block *sb;
f2984462 3730 struct btrfs_dev_item *dev_item;
f2984462
CM
3731 int ret;
3732 int do_barriers;
a236aed1
CM
3733 int max_errors;
3734 int total_errors = 0;
a061fc8d 3735 u64 flags;
f2984462 3736
0b246afa 3737 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3738
3739 /*
3740 * max_mirrors == 0 indicates we're from commit_transaction,
3741 * not from fsync where the tree roots in fs_info have not
3742 * been consistent on disk.
3743 */
3744 if (max_mirrors == 0)
3745 backup_super_roots(fs_info);
f2984462 3746
0b246afa 3747 sb = fs_info->super_for_commit;
a061fc8d 3748 dev_item = &sb->dev_item;
e5e9a520 3749
0b246afa
JM
3750 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3751 head = &fs_info->fs_devices->devices;
3752 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3753
5af3e8cc 3754 if (do_barriers) {
0b246afa 3755 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3756 if (ret) {
3757 mutex_unlock(
0b246afa
JM
3758 &fs_info->fs_devices->device_list_mutex);
3759 btrfs_handle_fs_error(fs_info, ret,
3760 "errors while submitting device barriers.");
5af3e8cc
SB
3761 return ret;
3762 }
3763 }
387125fc 3764
1538e6c5 3765 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3766 if (!dev->bdev) {
3767 total_errors++;
3768 continue;
3769 }
e12c9621 3770 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3771 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3772 continue;
3773
2b82032c 3774 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3775 btrfs_set_stack_device_type(dev_item, dev->type);
3776 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3777 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3778 dev->commit_total_bytes);
ce7213c7
MX
3779 btrfs_set_stack_device_bytes_used(dev_item,
3780 dev->commit_bytes_used);
a061fc8d
CM
3781 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3782 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3783 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3784 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3785 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3786 BTRFS_FSID_SIZE);
a512bbf8 3787
a061fc8d
CM
3788 flags = btrfs_super_flags(sb);
3789 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3790
75cb857d
QW
3791 ret = btrfs_validate_write_super(fs_info, sb);
3792 if (ret < 0) {
3793 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3794 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3795 "unexpected superblock corruption detected");
3796 return -EUCLEAN;
3797 }
3798
abbb3b8e 3799 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3800 if (ret)
3801 total_errors++;
f2984462 3802 }
a236aed1 3803 if (total_errors > max_errors) {
0b246afa
JM
3804 btrfs_err(fs_info, "%d errors while writing supers",
3805 total_errors);
3806 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3807
9d565ba4 3808 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3809 btrfs_handle_fs_error(fs_info, -EIO,
3810 "%d errors while writing supers",
3811 total_errors);
9d565ba4 3812 return -EIO;
a236aed1 3813 }
f2984462 3814
a512bbf8 3815 total_errors = 0;
1538e6c5 3816 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3817 if (!dev->bdev)
3818 continue;
e12c9621 3819 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3820 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3821 continue;
3822
abbb3b8e 3823 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3824 if (ret)
3825 total_errors++;
f2984462 3826 }
0b246afa 3827 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3828 if (total_errors > max_errors) {
0b246afa
JM
3829 btrfs_handle_fs_error(fs_info, -EIO,
3830 "%d errors while writing supers",
3831 total_errors);
79787eaa 3832 return -EIO;
a236aed1 3833 }
f2984462
CM
3834 return 0;
3835}
3836
cb517eab
MX
3837/* Drop a fs root from the radix tree and free it. */
3838void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3839 struct btrfs_root *root)
2619ba1f 3840{
4df27c4d 3841 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3842 radix_tree_delete(&fs_info->fs_roots_radix,
3843 (unsigned long)root->root_key.objectid);
4df27c4d 3844 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3845
3846 if (btrfs_root_refs(&root->root_item) == 0)
3847 synchronize_srcu(&fs_info->subvol_srcu);
3848
1c1ea4f7 3849 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3850 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3851 if (root->reloc_root) {
3852 free_extent_buffer(root->reloc_root->node);
3853 free_extent_buffer(root->reloc_root->commit_root);
3854 btrfs_put_fs_root(root->reloc_root);
3855 root->reloc_root = NULL;
3856 }
3857 }
3321719e 3858
faa2dbf0
JB
3859 if (root->free_ino_pinned)
3860 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3861 if (root->free_ino_ctl)
3862 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3863 btrfs_free_fs_root(root);
4df27c4d
YZ
3864}
3865
84db5ccf 3866void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3867{
57cdc8db 3868 iput(root->ino_cache_inode);
4df27c4d 3869 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3870 if (root->anon_dev)
3871 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3872 if (root->subv_writers)
3873 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3874 free_extent_buffer(root->node);
3875 free_extent_buffer(root->commit_root);
581bb050
LZ
3876 kfree(root->free_ino_ctl);
3877 kfree(root->free_ino_pinned);
b0feb9d9 3878 btrfs_put_fs_root(root);
2619ba1f
CM
3879}
3880
c146afad 3881int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3882{
c146afad
YZ
3883 u64 root_objectid = 0;
3884 struct btrfs_root *gang[8];
65d33fd7
QW
3885 int i = 0;
3886 int err = 0;
3887 unsigned int ret = 0;
3888 int index;
e089f05c 3889
c146afad 3890 while (1) {
65d33fd7 3891 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3892 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3893 (void **)gang, root_objectid,
3894 ARRAY_SIZE(gang));
65d33fd7
QW
3895 if (!ret) {
3896 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3897 break;
65d33fd7 3898 }
5d4f98a2 3899 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3900
c146afad 3901 for (i = 0; i < ret; i++) {
65d33fd7
QW
3902 /* Avoid to grab roots in dead_roots */
3903 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3904 gang[i] = NULL;
3905 continue;
3906 }
3907 /* grab all the search result for later use */
3908 gang[i] = btrfs_grab_fs_root(gang[i]);
3909 }
3910 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3911
65d33fd7
QW
3912 for (i = 0; i < ret; i++) {
3913 if (!gang[i])
3914 continue;
c146afad 3915 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3916 err = btrfs_orphan_cleanup(gang[i]);
3917 if (err)
65d33fd7
QW
3918 break;
3919 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3920 }
3921 root_objectid++;
3922 }
65d33fd7
QW
3923
3924 /* release the uncleaned roots due to error */
3925 for (; i < ret; i++) {
3926 if (gang[i])
3927 btrfs_put_fs_root(gang[i]);
3928 }
3929 return err;
c146afad 3930}
a2135011 3931
6bccf3ab 3932int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3933{
6bccf3ab 3934 struct btrfs_root *root = fs_info->tree_root;
c146afad 3935 struct btrfs_trans_handle *trans;
a74a4b97 3936
0b246afa 3937 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3938 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3939 mutex_unlock(&fs_info->cleaner_mutex);
3940 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3941
3942 /* wait until ongoing cleanup work done */
0b246afa
JM
3943 down_write(&fs_info->cleanup_work_sem);
3944 up_write(&fs_info->cleanup_work_sem);
c71bf099 3945
7a7eaa40 3946 trans = btrfs_join_transaction(root);
3612b495
TI
3947 if (IS_ERR(trans))
3948 return PTR_ERR(trans);
3a45bb20 3949 return btrfs_commit_transaction(trans);
c146afad
YZ
3950}
3951
6bccf3ab 3952void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3953{
c146afad
YZ
3954 int ret;
3955
afcdd129 3956 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3957 /*
3958 * We don't want the cleaner to start new transactions, add more delayed
3959 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3960 * because that frees the task_struct, and the transaction kthread might
3961 * still try to wake up the cleaner.
3962 */
3963 kthread_park(fs_info->cleaner_kthread);
c146afad 3964
7343dd61 3965 /* wait for the qgroup rescan worker to stop */
d06f23d6 3966 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3967
803b2f54
SB
3968 /* wait for the uuid_scan task to finish */
3969 down(&fs_info->uuid_tree_rescan_sem);
3970 /* avoid complains from lockdep et al., set sem back to initial state */
3971 up(&fs_info->uuid_tree_rescan_sem);
3972
837d5b6e 3973 /* pause restriper - we want to resume on mount */
aa1b8cd4 3974 btrfs_pause_balance(fs_info);
837d5b6e 3975
8dabb742
SB
3976 btrfs_dev_replace_suspend_for_unmount(fs_info);
3977
aa1b8cd4 3978 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3979
3980 /* wait for any defraggers to finish */
3981 wait_event(fs_info->transaction_wait,
3982 (atomic_read(&fs_info->defrag_running) == 0));
3983
3984 /* clear out the rbtree of defraggable inodes */
26176e7c 3985 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3986
21c7e756
MX
3987 cancel_work_sync(&fs_info->async_reclaim_work);
3988
bc98a42c 3989 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3990 /*
d6fd0ae2
OS
3991 * The cleaner kthread is stopped, so do one final pass over
3992 * unused block groups.
e44163e1 3993 */
0b246afa 3994 btrfs_delete_unused_bgs(fs_info);
e44163e1 3995
6bccf3ab 3996 ret = btrfs_commit_super(fs_info);
acce952b 3997 if (ret)
04892340 3998 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3999 }
4000
af722733
LB
4001 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4002 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4003 btrfs_error_commit_super(fs_info);
0f7d52f4 4004
e3029d9f
AV
4005 kthread_stop(fs_info->transaction_kthread);
4006 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4007
e187831e 4008 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4009 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4010
04892340 4011 btrfs_free_qgroup_config(fs_info);
fe816d0f 4012 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4013
963d678b 4014 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4015 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4016 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4017 }
bcc63abb 4018
6618a59b 4019 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4020 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4021
faa2dbf0 4022 btrfs_free_fs_roots(fs_info);
d10c5f31 4023
1a4319cc
LB
4024 btrfs_put_block_group_cache(fs_info);
4025
de348ee0
WS
4026 /*
4027 * we must make sure there is not any read request to
4028 * submit after we stopping all workers.
4029 */
4030 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4031 btrfs_stop_all_workers(fs_info);
4032
5cdd7db6
FM
4033 btrfs_free_block_groups(fs_info);
4034
afcdd129 4035 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4036 free_root_pointers(fs_info, 1);
9ad6b7bc 4037
13e6c37b 4038 iput(fs_info->btree_inode);
d6bfde87 4039
21adbd5c 4040#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4041 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4042 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4043#endif
4044
dfe25020 4045 btrfs_close_devices(fs_info->fs_devices);
0b86a832 4046 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 4047
e2d84521 4048 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4049 percpu_counter_destroy(&fs_info->delalloc_bytes);
7f8d236a 4050 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4051 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4052
53b381b3 4053 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4054 btrfs_free_ref_cache(fs_info);
53b381b3 4055
04216820
FM
4056 while (!list_empty(&fs_info->pinned_chunks)) {
4057 struct extent_map *em;
4058
4059 em = list_first_entry(&fs_info->pinned_chunks,
4060 struct extent_map, list);
4061 list_del_init(&em->list);
4062 free_extent_map(em);
4063 }
eb60ceac
CM
4064}
4065
b9fab919
CM
4066int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4067 int atomic)
5f39d397 4068{
1259ab75 4069 int ret;
727011e0 4070 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4071
0b32f4bb 4072 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4073 if (!ret)
4074 return ret;
4075
4076 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4077 parent_transid, atomic);
4078 if (ret == -EAGAIN)
4079 return ret;
1259ab75 4080 return !ret;
5f39d397
CM
4081}
4082
5f39d397
CM
4083void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4084{
0b246afa 4085 struct btrfs_fs_info *fs_info;
06ea65a3 4086 struct btrfs_root *root;
5f39d397 4087 u64 transid = btrfs_header_generation(buf);
b9473439 4088 int was_dirty;
b4ce94de 4089
06ea65a3
JB
4090#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4091 /*
4092 * This is a fast path so only do this check if we have sanity tests
52042d8e 4093 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4094 * outside of the sanity tests.
4095 */
b0132a3b 4096 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4097 return;
4098#endif
4099 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4100 fs_info = root->fs_info;
b9447ef8 4101 btrfs_assert_tree_locked(buf);
0b246afa 4102 if (transid != fs_info->generation)
5d163e0e 4103 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4104 buf->start, transid, fs_info->generation);
0b32f4bb 4105 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4106 if (!was_dirty)
104b4e51
NB
4107 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4108 buf->len,
4109 fs_info->dirty_metadata_batch);
1f21ef0a 4110#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4111 /*
4112 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4113 * but item data not updated.
4114 * So here we should only check item pointers, not item data.
4115 */
4116 if (btrfs_header_level(buf) == 0 &&
2f659546 4117 btrfs_check_leaf_relaxed(fs_info, buf)) {
a4f78750 4118 btrfs_print_leaf(buf);
1f21ef0a
FM
4119 ASSERT(0);
4120 }
4121#endif
eb60ceac
CM
4122}
4123
2ff7e61e 4124static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4125 int flush_delayed)
16cdcec7
MX
4126{
4127 /*
4128 * looks as though older kernels can get into trouble with
4129 * this code, they end up stuck in balance_dirty_pages forever
4130 */
e2d84521 4131 int ret;
16cdcec7
MX
4132
4133 if (current->flags & PF_MEMALLOC)
4134 return;
4135
b53d3f5d 4136 if (flush_delayed)
2ff7e61e 4137 btrfs_balance_delayed_items(fs_info);
16cdcec7 4138
d814a491
EL
4139 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4140 BTRFS_DIRTY_METADATA_THRESH,
4141 fs_info->dirty_metadata_batch);
e2d84521 4142 if (ret > 0) {
0b246afa 4143 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4144 }
16cdcec7
MX
4145}
4146
2ff7e61e 4147void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4148{
2ff7e61e 4149 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4150}
585ad2c3 4151
2ff7e61e 4152void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4153{
2ff7e61e 4154 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4155}
6b80053d 4156
581c1760
QW
4157int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4158 struct btrfs_key *first_key)
6b80053d 4159{
727011e0 4160 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4161 struct btrfs_fs_info *fs_info = root->fs_info;
4162
581c1760
QW
4163 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4164 level, first_key);
6b80053d 4165}
0da5468f 4166
2ff7e61e 4167static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4168{
fe816d0f
NB
4169 /* cleanup FS via transaction */
4170 btrfs_cleanup_transaction(fs_info);
4171
0b246afa 4172 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4173 btrfs_run_delayed_iputs(fs_info);
0b246afa 4174 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4175
0b246afa
JM
4176 down_write(&fs_info->cleanup_work_sem);
4177 up_write(&fs_info->cleanup_work_sem);
acce952b 4178}
4179
143bede5 4180static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4181{
acce952b 4182 struct btrfs_ordered_extent *ordered;
acce952b 4183
199c2a9c 4184 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4185 /*
4186 * This will just short circuit the ordered completion stuff which will
4187 * make sure the ordered extent gets properly cleaned up.
4188 */
199c2a9c 4189 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4190 root_extent_list)
4191 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4192 spin_unlock(&root->ordered_extent_lock);
4193}
4194
4195static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4196{
4197 struct btrfs_root *root;
4198 struct list_head splice;
4199
4200 INIT_LIST_HEAD(&splice);
4201
4202 spin_lock(&fs_info->ordered_root_lock);
4203 list_splice_init(&fs_info->ordered_roots, &splice);
4204 while (!list_empty(&splice)) {
4205 root = list_first_entry(&splice, struct btrfs_root,
4206 ordered_root);
1de2cfde
JB
4207 list_move_tail(&root->ordered_root,
4208 &fs_info->ordered_roots);
199c2a9c 4209
2a85d9ca 4210 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4211 btrfs_destroy_ordered_extents(root);
4212
2a85d9ca
LB
4213 cond_resched();
4214 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4215 }
4216 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4217
4218 /*
4219 * We need this here because if we've been flipped read-only we won't
4220 * get sync() from the umount, so we need to make sure any ordered
4221 * extents that haven't had their dirty pages IO start writeout yet
4222 * actually get run and error out properly.
4223 */
4224 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4225}
4226
35a3621b 4227static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4228 struct btrfs_fs_info *fs_info)
acce952b 4229{
4230 struct rb_node *node;
4231 struct btrfs_delayed_ref_root *delayed_refs;
4232 struct btrfs_delayed_ref_node *ref;
4233 int ret = 0;
4234
4235 delayed_refs = &trans->delayed_refs;
4236
4237 spin_lock(&delayed_refs->lock);
d7df2c79 4238 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4239 spin_unlock(&delayed_refs->lock);
0b246afa 4240 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4241 return ret;
4242 }
4243
5c9d028b 4244 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4245 struct btrfs_delayed_ref_head *head;
0e0adbcf 4246 struct rb_node *n;
e78417d1 4247 bool pin_bytes = false;
acce952b 4248
d7df2c79
JB
4249 head = rb_entry(node, struct btrfs_delayed_ref_head,
4250 href_node);
3069bd26 4251 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4252 continue;
3069bd26 4253
d7df2c79 4254 spin_lock(&head->lock);
e3d03965 4255 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4256 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4257 ref_node);
d7df2c79 4258 ref->in_tree = 0;
e3d03965 4259 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4260 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4261 if (!list_empty(&ref->add_list))
4262 list_del(&ref->add_list);
d7df2c79
JB
4263 atomic_dec(&delayed_refs->num_entries);
4264 btrfs_put_delayed_ref(ref);
e78417d1 4265 }
d7df2c79
JB
4266 if (head->must_insert_reserved)
4267 pin_bytes = true;
4268 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4269 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4270 spin_unlock(&head->lock);
4271 spin_unlock(&delayed_refs->lock);
4272 mutex_unlock(&head->mutex);
acce952b 4273
d7df2c79 4274 if (pin_bytes)
d278850e
JB
4275 btrfs_pin_extent(fs_info, head->bytenr,
4276 head->num_bytes, 1);
31890da0 4277 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4278 btrfs_put_delayed_ref_head(head);
acce952b 4279 cond_resched();
4280 spin_lock(&delayed_refs->lock);
4281 }
4282
4283 spin_unlock(&delayed_refs->lock);
4284
4285 return ret;
4286}
4287
143bede5 4288static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4289{
4290 struct btrfs_inode *btrfs_inode;
4291 struct list_head splice;
4292
4293 INIT_LIST_HEAD(&splice);
4294
eb73c1b7
MX
4295 spin_lock(&root->delalloc_lock);
4296 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4297
4298 while (!list_empty(&splice)) {
fe816d0f 4299 struct inode *inode = NULL;
eb73c1b7
MX
4300 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4301 delalloc_inodes);
fe816d0f 4302 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4303 spin_unlock(&root->delalloc_lock);
acce952b 4304
fe816d0f
NB
4305 /*
4306 * Make sure we get a live inode and that it'll not disappear
4307 * meanwhile.
4308 */
4309 inode = igrab(&btrfs_inode->vfs_inode);
4310 if (inode) {
4311 invalidate_inode_pages2(inode->i_mapping);
4312 iput(inode);
4313 }
eb73c1b7 4314 spin_lock(&root->delalloc_lock);
acce952b 4315 }
eb73c1b7
MX
4316 spin_unlock(&root->delalloc_lock);
4317}
4318
4319static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4320{
4321 struct btrfs_root *root;
4322 struct list_head splice;
4323
4324 INIT_LIST_HEAD(&splice);
4325
4326 spin_lock(&fs_info->delalloc_root_lock);
4327 list_splice_init(&fs_info->delalloc_roots, &splice);
4328 while (!list_empty(&splice)) {
4329 root = list_first_entry(&splice, struct btrfs_root,
4330 delalloc_root);
eb73c1b7
MX
4331 root = btrfs_grab_fs_root(root);
4332 BUG_ON(!root);
4333 spin_unlock(&fs_info->delalloc_root_lock);
4334
4335 btrfs_destroy_delalloc_inodes(root);
4336 btrfs_put_fs_root(root);
4337
4338 spin_lock(&fs_info->delalloc_root_lock);
4339 }
4340 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4341}
4342
2ff7e61e 4343static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4344 struct extent_io_tree *dirty_pages,
4345 int mark)
4346{
4347 int ret;
acce952b 4348 struct extent_buffer *eb;
4349 u64 start = 0;
4350 u64 end;
acce952b 4351
4352 while (1) {
4353 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4354 mark, NULL);
acce952b 4355 if (ret)
4356 break;
4357
91166212 4358 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4359 while (start <= end) {
0b246afa
JM
4360 eb = find_extent_buffer(fs_info, start);
4361 start += fs_info->nodesize;
fd8b2b61 4362 if (!eb)
acce952b 4363 continue;
fd8b2b61 4364 wait_on_extent_buffer_writeback(eb);
acce952b 4365
fd8b2b61
JB
4366 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4367 &eb->bflags))
4368 clear_extent_buffer_dirty(eb);
4369 free_extent_buffer_stale(eb);
acce952b 4370 }
4371 }
4372
4373 return ret;
4374}
4375
2ff7e61e 4376static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4377 struct extent_io_tree *pinned_extents)
4378{
4379 struct extent_io_tree *unpin;
4380 u64 start;
4381 u64 end;
4382 int ret;
ed0eaa14 4383 bool loop = true;
acce952b 4384
4385 unpin = pinned_extents;
ed0eaa14 4386again:
acce952b 4387 while (1) {
0e6ec385
FM
4388 struct extent_state *cached_state = NULL;
4389
fcd5e742
LF
4390 /*
4391 * The btrfs_finish_extent_commit() may get the same range as
4392 * ours between find_first_extent_bit and clear_extent_dirty.
4393 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4394 * the same extent range.
4395 */
4396 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4397 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4398 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4399 if (ret) {
4400 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4401 break;
fcd5e742 4402 }
acce952b 4403
0e6ec385
FM
4404 clear_extent_dirty(unpin, start, end, &cached_state);
4405 free_extent_state(cached_state);
2ff7e61e 4406 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4407 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4408 cond_resched();
4409 }
4410
ed0eaa14 4411 if (loop) {
0b246afa
JM
4412 if (unpin == &fs_info->freed_extents[0])
4413 unpin = &fs_info->freed_extents[1];
ed0eaa14 4414 else
0b246afa 4415 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4416 loop = false;
4417 goto again;
4418 }
4419
acce952b 4420 return 0;
4421}
4422
c79a1751
LB
4423static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4424{
4425 struct inode *inode;
4426
4427 inode = cache->io_ctl.inode;
4428 if (inode) {
4429 invalidate_inode_pages2(inode->i_mapping);
4430 BTRFS_I(inode)->generation = 0;
4431 cache->io_ctl.inode = NULL;
4432 iput(inode);
4433 }
4434 btrfs_put_block_group(cache);
4435}
4436
4437void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4438 struct btrfs_fs_info *fs_info)
c79a1751
LB
4439{
4440 struct btrfs_block_group_cache *cache;
4441
4442 spin_lock(&cur_trans->dirty_bgs_lock);
4443 while (!list_empty(&cur_trans->dirty_bgs)) {
4444 cache = list_first_entry(&cur_trans->dirty_bgs,
4445 struct btrfs_block_group_cache,
4446 dirty_list);
c79a1751
LB
4447
4448 if (!list_empty(&cache->io_list)) {
4449 spin_unlock(&cur_trans->dirty_bgs_lock);
4450 list_del_init(&cache->io_list);
4451 btrfs_cleanup_bg_io(cache);
4452 spin_lock(&cur_trans->dirty_bgs_lock);
4453 }
4454
4455 list_del_init(&cache->dirty_list);
4456 spin_lock(&cache->lock);
4457 cache->disk_cache_state = BTRFS_DC_ERROR;
4458 spin_unlock(&cache->lock);
4459
4460 spin_unlock(&cur_trans->dirty_bgs_lock);
4461 btrfs_put_block_group(cache);
ba2c4d4e 4462 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4463 spin_lock(&cur_trans->dirty_bgs_lock);
4464 }
4465 spin_unlock(&cur_trans->dirty_bgs_lock);
4466
45ae2c18
NB
4467 /*
4468 * Refer to the definition of io_bgs member for details why it's safe
4469 * to use it without any locking
4470 */
c79a1751
LB
4471 while (!list_empty(&cur_trans->io_bgs)) {
4472 cache = list_first_entry(&cur_trans->io_bgs,
4473 struct btrfs_block_group_cache,
4474 io_list);
c79a1751
LB
4475
4476 list_del_init(&cache->io_list);
4477 spin_lock(&cache->lock);
4478 cache->disk_cache_state = BTRFS_DC_ERROR;
4479 spin_unlock(&cache->lock);
4480 btrfs_cleanup_bg_io(cache);
4481 }
4482}
4483
49b25e05 4484void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4485 struct btrfs_fs_info *fs_info)
49b25e05 4486{
2ff7e61e 4487 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4488 ASSERT(list_empty(&cur_trans->dirty_bgs));
4489 ASSERT(list_empty(&cur_trans->io_bgs));
4490
2ff7e61e 4491 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4492
4a9d8bde 4493 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4494 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4495
4a9d8bde 4496 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4497 wake_up(&fs_info->transaction_wait);
49b25e05 4498
ccdf9b30
JM
4499 btrfs_destroy_delayed_inodes(fs_info);
4500 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4501
2ff7e61e 4502 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4503 EXTENT_DIRTY);
2ff7e61e 4504 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4505 fs_info->pinned_extents);
49b25e05 4506
4a9d8bde
MX
4507 cur_trans->state =TRANS_STATE_COMPLETED;
4508 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4509}
4510
2ff7e61e 4511static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4512{
4513 struct btrfs_transaction *t;
acce952b 4514
0b246afa 4515 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4516
0b246afa
JM
4517 spin_lock(&fs_info->trans_lock);
4518 while (!list_empty(&fs_info->trans_list)) {
4519 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4520 struct btrfs_transaction, list);
4521 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4522 refcount_inc(&t->use_count);
0b246afa 4523 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4524 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4525 btrfs_put_transaction(t);
0b246afa 4526 spin_lock(&fs_info->trans_lock);
724e2315
JB
4527 continue;
4528 }
0b246afa 4529 if (t == fs_info->running_transaction) {
724e2315 4530 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4531 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4532 /*
4533 * We wait for 0 num_writers since we don't hold a trans
4534 * handle open currently for this transaction.
4535 */
4536 wait_event(t->writer_wait,
4537 atomic_read(&t->num_writers) == 0);
4538 } else {
0b246afa 4539 spin_unlock(&fs_info->trans_lock);
724e2315 4540 }
2ff7e61e 4541 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4542
0b246afa
JM
4543 spin_lock(&fs_info->trans_lock);
4544 if (t == fs_info->running_transaction)
4545 fs_info->running_transaction = NULL;
acce952b 4546 list_del_init(&t->list);
0b246afa 4547 spin_unlock(&fs_info->trans_lock);
acce952b 4548
724e2315 4549 btrfs_put_transaction(t);
2ff7e61e 4550 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4551 spin_lock(&fs_info->trans_lock);
724e2315 4552 }
0b246afa
JM
4553 spin_unlock(&fs_info->trans_lock);
4554 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4555 btrfs_destroy_delayed_inodes(fs_info);
4556 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4557 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4558 btrfs_destroy_all_delalloc_inodes(fs_info);
4559 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4560
4561 return 0;
4562}
4563
e8c9f186 4564static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4565 /* mandatory callbacks */
0b86a832 4566 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4567 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4568};